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1. Introduction 

The advances in biosciences and medical research in the last century led to enormous 

improvement in healthcare and with this to better life conditions in most countries worldwide. 

As a consequence, life expectancy at birth is constantly rising. Within the EU, for example, 

these have increased by ten years in average over the last 50 years [1]. According to 

Eurostat’s latest population project scenario (Europop 2010), this trend will probably persist 

in the next decades and contribute strongly to another demographical tendency: the 

inevitable population aging [2, 3]. Although these are beyond doubt positive perspectives, the 

global demographic aging brings also some serious economical and social challenges. Thus, 

proliferation of many age-related disorders can be expected in near future, which will 

unavoidably lead to a considerable increase in global healthcare costs.  

Neurodegeneration is a general term for neurological disorders with progressive loss of 

neuronal structures and functions. While advancing age is a major risk factor for many 

neurodegenerative diseases, dementia is probably the most frequent clinical symptom. It 

should be taken into consideration that real pathological dementia, as discussed here, is a 

serious decline in cognitive capacity, which goes beyond “normal” obliviousness in older 

individuals. Referring again to the global trend of aging population in combination with ever-

growing life expectancy, some researchers forecast a real epidemic towards 2050 – 2060. 

Hence, WHO designates dementia a “public health priority” in its latest report from 2012 [4, 

5]. According to this, cases of dementia worldwide will at least double until 2030, increasing 

from almost 36 Mio presently, up to 66 Mio. For 2060 even more than 115 Mio cases are 

being predicted, which is more than triple of what we probably have today. Estimations of 

overall global financial costs for 2010 are in the range of 600 billion US $, which is 1% of the 

worldwide gross domestic product and the costs are constantly rising. Thus, dementia has 

significant economical and social impact on societies worldwide. Recently, governments in 

UK, France, USA and other countries have declared dementia for a health- and social-care 

priority and developed accordant strategies [6]. Others are expected to follow soon. 

Beside the considerable social impact, dementia has a profound influence on patients’ life 

and environment. The progressive memory loss is often accompanied by further psychiatric 

problems like depression, anxiety, psychosis and others, even leading to personality 

changes [7-9]. The outcome is finally a major impairment of patients’ life quality, often 

supported by social exclusion [10]. The situation is quite dramatic also for family members 

and caretakers, especially during late disease stages, causing heavy emotional and financial 
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burdens. The awareness of the irreversibility and incurability of this severe condition 

contributes further to the suffering of all persons involved.   

Dementia itself, however, is not a single disease. It is rather a syndrome that can occur in the 

course of several different neurodegenerative disorders, such as Vascular Dementia, 

Dementia with Lewy Bodies, Parkinson Dementia, Frontotemporal Dementia and others. Yet, 

it mostly proves to be Morbus Alzheimer (AD), accounting for estimated 60% – 80% of all 

diagnosed dementia cases [11]. According to this, AD prevalence is extremely high in older 

population. About 13% of the over 65-years-olds is affected, which is every eighth person in 

this age group. Reaching the age of 85 leads to a drastic escalation of a 45% chance to fall ill 

[5]. Thus, statistical data and economical impacts, mentioned above in regard to dementia, 

can be directly assigned to AD. Hence, hundreds of scientific groups worldwide, both in 

academia and industry, work on AD research to date.  

Another prominent neurodegenerative disorder in focus of both scientific and pharmaceutical 

communities, is Multiple Sclerosis (MS). In contrast to AD, MS is in no way typical for the 

elderly. On the contrary, in the majority of cases it is being diagnosed in adults between the 

ages of 20 – 40 and females are affected 2 – 3 times more frequently than men [12]. 

Besides, although also associated with cognitive impairments (30% – 70% of cases), this 

symptom does not play such a central role, as in AD [13, 14]. Depending on where the 

inflammation occurs in the nervous system, it can become manifest in almost every 

neurological condition: visual disturbance, muscle weakness and spasms, difficulties in 

coordination, problems in speech, bladder dysfunction and many others [15]. Consequently, 

this chronic disorder can considerably affect patients’ quality of life, leading in many cases to 

severe physical disabilities and paralysis. Disease prevalence is estimated at 2 – 150 per 

100,000 people, depending strongly on geographical region and ethnical background [16]. 

Thus, to date around 2.5 Mio people worldwide suffer from MS. Because of its usually early 

onset and life-long duration, it causes substantial economical costs and personal struggling 

to patients, their families and the society as a whole [17].  

Hence, although being both neurodegenerative disorders, AD and MS have quite different 

characteristics. Yet, they also have some important features in common. Despite many 

crucial findings and numerous publications (over 4,200 and 3,600 Pub Med entries per year 

for AD and MS in 2012, respectively), for both is valid:  explicit cause is still not entirely 

understood, no cure is available and diagnosis is difficult.  
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1.1. Diagnostic aspects in neurodegenerative disorders 

Accurate and preferably early diagnosis has obvious advantages and, therefore, attracts 

particular scientific attention. It would allow appropriate medication, lead to better disease 

prognosis and even decrease treatment and care costs [18]. Yet, precise disease 

assignment is in both cases a considerable challenge, especially at early disease stages. 

Currently there are no established early clinical tests available and no distinct biomarkers are 

known.    

1.1.1. Morbus Alzheimer (AD) diagnostics 

A definite diagnosis of AD is only possible postmortem by pathological examination of the 

brain tissue and determination of histological AD hallmarks in an autopsy. On a microscopic 

level the two key neuronal lesions are amyloidal senile plaques (SPs) and neurofibrillary 

tangles (NFTs). These are concentrated especially in brain regions such as the temporal and 

the parietal lobes [19, 20]. The overall appearance of the late stage AD brain also 

demonstrates the devastating outcome of the disease: massive neuron atrophy and 

diminution of whole brain regions with most severe shrinking in the cortex and hippocampus 

areas [21]. Consequently, an AD brain can be up to 15% smaller in size and volume, 

compared to controls of same age at death point. Moreover, normal aging can lead to a 

moderate brain tissue reduction as well, further increasing the dramatic extent of 

degeneration in AD [22]. With this, two big problems concerning AD diagnostic have been 

revealed. First, a brain biopsy for histological analysis from a living person is simply not 

feasible. And second, even if possible, differential diagnosis would still remain difficult, since 

many other conditions share same or at least similar features.  

To begin with, although being classical AD hallmarks, SPs and NFTs are not limited to it. 

They can also be found in cognitively normal older individuals [23], as well as in several other 

neurodegenerative diseases. Thus, SP’s have been associated with other disorders like 

Parkinson’s Disease Dementia (PDD) and Dementia with Lewy Bodies (DLB) too [24, 25]. 

AD brain plaques are formed by aggregated Amyloid-ß (Aß) peptides. These are generated 

in the so-called “amyloidogenic” pathway of the Amyloid-ß precursor protein (APP) after its 

abnormal consecutive proteolytic cleavage by the β- and then the γ-Secretase [26]. The Aß-

plaques are believed to be mainly responsible for neuron toxicity and hence the primary 

cause for neurodegeneration (Amyloid Cascade Hypothesis) [27, 28]. Although being 

probably one of the most deeply studied proteins in molecular biology, the normal 

physiological functions of APP are still not fully understood. It is ubiquitously expressed in the 

CNS and is believed to be involved in several brain key pathways, such as neuroprotection, 



Introduction 
 

 
 

17 

synapse formation, adhesion and nutrition of neurons [29-31]. Despite huge amounts of 

literature, it is also still unclear, which molecular mechanisms lead to the fatal amyloidogenic 

APP processing in particular and how exactly the Aß-peptide acts as a neurotoxic agent on 

biochemical level. Consequently, some researches challenge the Aß hypothesis, since no 

precise evidence exists whether the SPs are causal to AD or just a symptom of the “real” 

pathological process, which is still unrevealed [32-34]. However, the correlation between SPs 

and dementia, regardless of causality direction, is generally accepted. Yet again, there are 

some exceptional cases known, which must be considered. For example, Berlau et al. 

published in 2007 an intriguing case study, where an elderly woman did not suffer from any 

significant memory loss or cognitive decline until her death with 92 years of age. 

Nevertheless, the brain autopsy showed SPs in an advanced stadium, typical for AD [35]. 

Apparently, further unknown factors exist in the complex APP pathology, like the special 

APOE-Y2 isoform, proposed by the authors in this case. These may play a compensatory 

and/or a protective role, thus being potentially of therapeutic interest.  

The situation with the other primary AD hallmark, the NFTs, is just as unclear and 

controversial, as it is with SPs. NFTs are intracellular aggregates, mainly consisting of the 

hyperphosphorylated tau protein. Besides AD, at least 10 other neurodegenerative disorders 

belong to the so-called tauopathies, such as Pick’s Disease, Progressive Supranuclear Palsy 

(PSP), Frontotemporal Dementia and others [36]. Tau was the first polypeptide, reported to 

be a microtubule-associated protein and essential for microtubule assembly and stability in 

neurons [37]. Further studies led to the assumption that its central function would be axonal 

stabilization and development [38]. According to the most broadly accepted hypothesis, the 

abnormal phosphorylation leads to tau self-assembly and formation of highly insoluble NFTs. 

In this state, tau’s association with the microtubule is inhibited, consequently leading to 

axonal instability and potentially to neurotoxicity and neurodegeneration [39]. Although the 

precise causality between NFT-presence in neurons and dementia, respectively AD, remains 

unproven, indications about their correlation continue accumulating. Thus, a direct 

connection between tau and Aß-neurotoxicity could be shown by Rapoport et al. in 2002 [40]. 

More recent studies also suggest possible synergistic effects between tau and Aß, which 

could be causal to neurodegeneration [41-43]. Furthermore, some researchers discuss a 

novel hypothesis and propose that NFPs could be only a side effect in the course of AD 

pathology. Instead, soluble rather than aggregated tau-forms could be the real disease 

agents [44].  

So, after all: How is AD diagnosed, when even its most prominent hallmarks are not limited 

to it and so many questions about its etiology and pathogenesis are still unclear? The 

pathophysiological difference between a normally aged and an AD brain seems to be rather 
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the quantity than the appearance of SPs and NFTs. Thus, the higher density and the bulk of 

plaques is one criterion. Another one is the relatively specific topography of the plaques, 

which are mostly concentrated in certain brain regions, as described above. In comparison, 

the plaques found in non-diseased brains of elderly individuals appear more randomly 

scattered [45, 46]. Levels of Aß and tau can be monitored in living individuals. For this, two 

diagnostic tools are currently available: protein evaluation in the cerebrospinal fluid (CSF) 

and brain imaging procedures.  

The three biomarkers that are usually measured in the CSF are Aß1-42, total tau (t-tau) and 

tau phosphorylated at the threonine in position 181 (p-tau181). Typical for AD-patients are 

decreased Aß1-42-levels and increased levels of tau-proteins [47-49]. Albeit very useful as 

additional diagnostic parameters, the three CSF biomarkers are not considered to be able to 

predict AD or any other neurological disorder on their own. On the one hand, protein levels 

seem to change, depending on disease stage. On the other, currently no validated reference 

values exist that can precisely assign pathological conditions. Also the large inter-laboratory 

coefficient of variation of up to 35% in protein level results is a considerable problem [50, 51]. 

These variations are due to differences in sample collection, storage and transport as well as 

different assay and laboratory standards. Currently, several projects work on developing 

standard protocols and operating procedures to overcome this drawback [52, 53]. Finally, 

taking a CSF sample via a lumbar puncture is not a simple medical intervention. It can only 

be performed by a specialist in a clinical environment. Taking into account the large amount 

of dementia cases, it is unlikely that CSF analysis will become a routine diagnostic practice in 

near future. Yet, CSF biomarkers harbor a big advantage, since they could potentially be 

able to predict pathological changes in a very early presymptomatic stage. Also the very 

important, but difficult to characterize conversion from the mild cognitive impairment (MCI) 

state to full-blown AD may become easier to monitor. It is well known today that AD lesions 

accumulate slowly over time, first aggregates possibly occurring 20 – 25 years before any 

signs of cognitive impairment begin to manifest [34, 54]. Thereby, Aß-plaques seem to form 

already in a very early stage, leading to a detectable decrease of Aß in the CSF. Measurable 

tau alterations are rather associated with later AD stadia, as tau-species are believed to be 

released from damaged neurons, thus reflecting their stage of degeneration [47, 55, 56]. 

Good sensitivity and specificity values were achieved when using at least two CSF 

biomarkers in combination, e.g. t-tau/Aß1-42 [57]. For the discrimination between AD patients 

and non-diseased of same age sensitivity of 85.7% and specificity of 84.6% could be shown 

[55]. In a study to distinguish between late stage AD and individuals with MCI even better 

performance was reached: sensitivity of 95% and specificity of 85% [58]. To sum up, the 

“CSF AD signature” remains an interesting and potential diagnostic tool. However, it needs 
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further improvement on specification and validation before it can be applied on a broad scale 

in practice. 

Rapid technological development in the field of medical imaging in the last decades has 

massively extended our options for diagnosis of disorders in the CNS. Since biopsying in this 

particular area is fairly critical, powerful in vivo imaging techniques, such as positron 

emission tomography (PET) and magnetic resonance imaging (MRI), are helpful non-

invasive alternatives in visualizing histological and morphological changes in brain tissues. 

Among these, PET is currently the most popular technique for that purpose. It is based on 

the detection of radiolabeled compounds, called tracers, which accumulate in certain parts of 

the brain, depending on the targeted molecule or tissue structure [59]. Two kinds of tracers 

are most widely used, addressing two different targets and with this also two different AD 

stages. The PiB tracer contains the so-called Pittsburgh compound B, labeled with an 11C-

isotop. It is the most common amyloid-tracer and applied for detection of abnormal Aß 

changes in an early presymptomatic AD stage. The information output gained through this 

analysis overlaps largely with the results from CSF Aß-level measurements. Therefore, the 

two procedures are usually not applied in parallel [60]. PET-PiB performs generally very well, 

as almost all clinically diagnosed AD cases also show distinct pathological Aß alterations. 

Yet, it has a grave disadvantage as a sole biomarker, since around 30% of cognitively 

healthy individuals would deliver positive Aß-PET-images as well [61]. The other frequently 

used tracer is 18F-FDG (Fluoro-2-deoxy-glucose). Unlike PiB, it is rather applied to monitor 

decreased glucose uptake in neuron cells, which would reflect synaptic activity and level of 

neurodegeneration. Hence, it is more useful in later dementia, respectively AD stages [62]. 

Finally, magnetic resonance imaging (MRI) is usually the method of choice to visualize 

structural brain changes, e.g. atrophied areas. However, these are first detectable only in a 

relatively late stage of neuron damage and not sufficiently AD-specific. Thus, the three most 

widespread imaging procedures are rather complementary to each other and to other 

biomarkers and not likely to become applicable as sole diagnostic criteria in future [63, 64]. 

According to many researchers, the great potential of both CSF and imaging biomarkers is 

their ability to address and reflect different stages in the pathogenesis of AD. Hypothetically, 

each biomarker, or rather a combination of these, would be able not only to confirm the 

presence of pathological changes in the CNS, but also the actual stage of the condition, as 

schematically depicted in Fig. 1 below. Such more accurate diagnosis would consequently 

allow more appropriate medication in future [65].  
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Fig. 1 Correlation between the temporal course of AD development and changing biomarker 
values. X-axis shows clinical disease stages from the presymptomatic period (Cognitively normal), 

through the transition period with signs of mild cognitive impairment (MCI), to full-blown dementia. Y-

axis indicates chronological alterations in each biomarker according to AD stadium. Aß-biomarkers are 

measurements in CSF and PET-PiB (red). Neurodegeneration is detectable by tau-measurements in 

CSF and PET-FDG (blue). Structural changes in brain can be visualized by MRI (light green). Memory 

problems (purple) and final cognitive decline (dark green) are assessed by psychiatric tests. Source: 

Jack et al. [66]. 

Since the five AD biomarkers, described so far, are already known today, the question is: Are 

they included in routine clinical diagnosis of dementia causing neurological disorders? The 

answer is, they are not, or only in isolated cases at the utmost. Their major application is 

rather in the scientific environment, e.g. for characterization and selection of appropriate 

subjects for clinical trials [65]. One major problem is certainly the lack of standardized 

procedure protocols and uniform reference values, as discussed above. Additionally, since 

no real therapeutic options exist anyway and both CSF analysis and medical imaging are 

invasive and relatively expensive procedures, there is obviously not enough motive force for 

their clinical application.  

Recently the so-called “NINCDS-ADRDA Alzheimer’s Criteria”, which are the official 

guidelines for AD diagnostic, were thoroughly revised. This was greatly needed, as they have 

not been changed since their introduction in 1984 by NINCDS (National Institute of 

Neurological and Communicative Disorders and Stroke) and ADRDA (Alzheimer’s Disease 

and Related Disorders Association) [67]. While the original comprised solely neuropsychiatric 

tests to ascertain cognitive impairment, the updated version, published in April 2011, now 

also includes CSF analysis and neuroimaging as a recommendation to confirm the 

psychiatric diagnosis [68]. Thus, the general need for novel diagnostic parameters based on 
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histopathological and biochemical data is clearly distinguishable. Yet, because of the major 

restrictions of the currently available biomarkers, clinical AD diagnosis remains depending on 

the established psychiatric criteria. These include mainly neuropsychological tests to assign 

the level of memory loss and cognitive decline, observation by family members (history by 

proxy) and exclusion of other neurological pathologies, as far as possible. Hence, they are 

concentrating basically on dementia determination. The most widely used tests are the so-

called Mini-Mental State Examination (MMSE), its extended version CERAD (Consortium to 

Establish a Registry for Alzheimer’s Disease) and the Clock-Draw-Test (CDT). All three 

perform with a high accuracy, e.g. sensitivity of up to 90% and specificity of 80% [69]. 

Moreover, it could be shown that MMSE can be helpful to discriminate between AD and other 

dementia types like Dementia with Lewy bodies for example [70, 71]. However, 

neuropsychological tests have also a considerable disadvantage, since they are first 

applicable when clear signs of cognitive impairment begin to manifest, which usually 

correlates with an advanced disease stadium. 

To sum up, diverse diagnostic possibilities are available and applicable to date. Yet, none of 

them meets all the requirements for an exclusive AD biomarker alone. Best performances 

are reached when using at least two different parameters in combination and this will 

probably remain so in future [72]. Table 1 below compares the characteristics of the AD 

diagnostic tools discussed so far according to the most important features, which a 

hypothetical “ideal” biomarker should posses.    

Table 1. Comparison of the most widely used AD diagnostic tools (modified from Borroni et al. 

[72]).  

  
AD 

specific 
presymptomatic 

diagnosis 
autopsy 
proven 

non-
invasive standardized 

simple to 
perform 

specificity > 70% 
sensitivity > 85% 

low 
costs 

Biopsy yes unknown yes no no no yes unknown 

CSF Aß no yes yes no no no yes no 

CSF tau no no yes no no no yes no 

PET-PiB no yes yes yes yes no no no 

PET-FDL no no yes yes yes no no no 

MRI no no yes yes yes yes no no 
Psychological 
tests no no yes yes yes yes yes yes 

Table 1 reveals the weak points of the available AD biomarkers, which have to be especially 

taken into consideration and improved. Thus, the biggest problem is obviously the absence 

of a parameter that would allow a real differential AD diagnosis. Discovery of an outstanding 

hallmark, reflecting a strictly specific AD feature, would be certainly a great breakthrough in 

this research field. Also applicability, including rapid and simple performance, low strains for 

patients and preferably low costs, is a challenge. For this reason many research groups have 

been focusing their biomarker discovery efforts on fluids and body regions apart from the 
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CNS, such as blood, urine, skin and others [72]. Last but not least, early presymptomatic 

diagnosis is meanwhile of high priority as well. In conclusion, the keen search for more 

accurate and better applicable biomarkers will undoubtedly proceed in the next years and will 

hopefully bring novel insights into the complex AD pathophysiology. 

1.1.2. Multiple Sclerosis (MS) diagnostics 

Diagnosis of MS is, similar to AD, still a difficult issue. This is certainly again due to 

inaccessibility of the involved tissues and a relatively large overlap of symptoms with many 

other neurological disorders. However, the situation here is probably even more complicated 

due to the heterogeneity in regard of disease subtypes, affected physiological areas and 

symptoms. Thus, four different clinical courses have been ascribed to MS in 1996 by the 

National Multiple Sclerosis Society (NMSS) and are valid standards since then [73]. These 

are: 

• Relapsing-remitting MS (RRMS) 

• Secondary progressive MS (SPMS) 

• Primary progressive MS (PPMS) 

• Progressive relapsing MS (PRMS) 

The RRMS subtype is the most common, accounting for 85% – 90% of all MS cases at 

onset. It is characterized by distinct disease episodes, in which neurological symptoms 

occur, followed by recovery periods without disease progression. 65% of the RRMS patients, 

however, go later over to SPMS. This is the state, which usually leads to the greatest 

disabilities [15, 74, 75]. 10% of all patients develop PPMS already at onset, having no acute 

attacks but undergoing a steady decline of neurological functions [76]. Finally, PRMS is 

characterized by progressive disease development from the beginning, additionally 

accompanied by intense relapse phases. The differentiation of the four courses is crucial for 

diagnostic and prognostic purposes, as well as for adequate treatment and medication.  

Another difficulty with diagnosing MS is the highly variable presentation of symptoms, 

depending on the current area of axon demyelization in brain and/or spinal cord. First 

disease peaks are often being neglected, because of their usually quick decay and full 

functional recovery. Moreover, each episode can occur in another CNS region and can differ 

completely in its physiological manifestation from the previous one. Thus, it can take years 

until first medical examinations would begin. These again can last for months, as no standard 

laboratory tests exist and a vast number of other neurological causes have to be excluded. 

Finally, the first neurological attack, called “clinically isolated syndrome” (CIS), earmarks the 

beginning of MS in only 60% – 80% of cases, while the rest do not develop the disease. 
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Although numerous risk factors have been described so far, forecasting the outcome of a 

CIS remains fairly difficult [77].  

There are currently few guidelines for MS diagnosis existing, which are being applied in 

practice. Most popular is the “McDonald Criteria”, introduced in 2001 by NMSS [78] and last 

revised in 2010 [79]. Yet, no full consensus on differential MS diagnosis has been reached 

so far. New amendments and improvements are consistently being published [80, 81]. 

However, in general, diagnostic procedures rely mainly on three clinical tools, which are 

currently available: electroencephalography (EEG), MRI and analysis of CSF proteins. 

EEG measurements have been used for over 30 years to detect irregularities in the electrical 

brain activity in many neurological disorders. In case of MS, especially measurement of so-

called visual evoked potentials (VEP) proved valuable for diagnostic purposes [82]. In 

contrast to classical EEG, which detects mainly spontaneous potentials, VEP appear first as 

a response to a distinct stimulus, for example light. Visual dysfunctions, such as optic 

neuritis, are one of the most common clinical MS manifestations. Moreover, they usually 

appear very early in the disease course [83]. Distinctive for MS is a delayed VEP latency 

after stimulation, which can be detected in 50% – 80% of cases [84]. VEP can reveal 

abnormalities even if the provoking lesions are clinically silent at measurement point. Thus, it 

is a well-established diagnostic tool for MS, but not specific for it. Also other disorders, such 

as neurosarcoidosis, SLE, hereditary ataxias, brain compression and even Vitamin B12 

deficiency, can lead to positive VEP measurements [85]. Currently, further diagnostic 

methods dealing with MS-related visual disturbances are under investigation. Among those, 

Optical Coherence Tomography and Low-contrast Letter Acuity seem to be the most 

promising tests [86, 87].     

Like in AD, MR imaging is used to visualize dissemination of MS lesions in brain and spinal 

cord. It is especially helpful for the prognosis whether a CIS has the potential to convert to a 

clinically definite MS. Thus, number of lesions and specific brain locations were correlated to 

the risk of conversion [88, 89]. Sensitivity and specificity of MRI as a diagnostic tool for MS 

were determined as 72% and 87%, respectively [90]. Nevertheless, overlap of indications 

with other neurological disorders that mimic MS are again the greatest challenge. For 

example, while relatively effective in differentiating MS from SLE and Sjögren’s syndrome, 

attempts to distinguish MS from different forms of CNS vasculitis using MRI have been 

unsuccessful [91].  

Major MS biomarker in the CSF is the presence of IgG oligoclonal bands (OCB) and their 

accordant absence in blood serum. This is usually a clear sign of an ongoing inflammatory 

reaction in the CNS, which is again not typical for MS only. OCBs can be found in 60% – 
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98% of MS patients, especially during acute relapse phases. Yet, this ratio is strongly 

variable in different studies, depending on the applied detection method [77, 92, 93]. Thus, 

OCB can help to support MS diagnosis, but cannot necessarily confirm MS. Since CSF 

extraction via lumbar puncture is an additional difficulty, many patients are not even being 

examined for OCB presence, regardless of their disease stage [94]. Yet, the majority of 

authors still strongly recommend this procedure to support findings from other tests and 

eventually to narrow down the ongoing disease subtype and prognosis [95, 96].  

Beside OCB, also numerous other CSF biomarkers have been discussed in the literature, 

which could have the potential to become clinically applicable. Many of them reflect the acute 

immune response in the relapsing phase. These are, for example, the presence of mature B 

cells [97], elevated free κ light chains [98], myelin-specific antibody response, as well as 

antibodies against other lipid antigens [99], increased cytokine and chemokine levels, such 

as IL-12p40 [100], IL-6 [101], IL-17 [102], TNF-α [103], CXCL13 [104], CCL5 [105]. Other 

protein biomarkers are associated with the level of neuronal tissue damage and 

degeneration. Representatives from this group are: increased levels of nitric oxide 

metabolites [106], chitinase 3-like 1 protein [107] and tau protein [108]. Also neurofilaments, 

specific structural proteins in neurons, are being released after injury. Thus, increased levels 

of neurofilament light chains were correlated to relapsing MS phases and functional disease 

progression [109]. Elevated amounts of neurofilament heavy chains, on the other hand, were 

associated with a high probability for conversion from CIS to RRMS and a potentially more 

severe disability [110]. The structural protein of the myelin sheath, the myelin basic protein 

(MBP), was a research object in several MS studies. Some of them could identify specific 

MBP antibodies, which could play a significant role in pathogenesis and help predict disease 

outcome [111]. Much popularity has gained the so-called “molecular mimicry hypothesis”, 

according to which a peptide of the MBP could equally cross react and subsequently activate 

T-cells, which would normally recognize a peptide from the HHV-6 (Human herpes virus 6) 

capsid [112]. Finally, increased MBP levels in the CSF were successfully linked to the level 

of demyelization [113].  

The current state of MS biomarker research was recently reviewed in detail by Graber and 

Dhib-Jalbut [114]. Unfortunately, none of the markers seem to be able to translate into 

applicable diagnostic tool in near future, mainly because of their insufficient specificity for 

MS. Further considerable hurdles are: lack of standardized assays, studies with limited 

patient numbers and the lack of verification by independent laboratories [77]. Thus, as in 

case of AD, the search for better MS biomarkers is very likely to persist further. 
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1.1.3. Serological autoimmunity-based biomarkers 

Until some 20 years ago, the CNS was believed to be an immunologically “privileged” body 

compartment, inaccessible for cells and mediators of the immune system. However, this 

assumption has been entirely refuted by numerous recent findings, showing that although 

accession is in fact restricted, it is not fully intercepted. Thus, brain and CSF are not totally 

isolated from peripheral circulation, especially not during inflammatory processes [115, 116].      

The blood-brain barrier (BBB) is the main gatekeeper between CNS and circulating blood. Its 

highly dense layer of endothelial cells, equipped with tight junctions that do not appear in any 

other blood vessel tissues, is the physical limitation that keeps potential hazards away from 

the fragile, vitally important organs of the CNS [85]. While permeable for water, liposoluble 

molecules and essential nutrients, such as glucose and vitamins (via special carriers), it is 

fairly impassable for the majority of polar molecules, e.g. proteins. Therefore, effectors of the 

immune system like immunoglobulins (Ig) and complements are normally only very scarcely 

present in the CNS. Also, there is usually no passage through the BBB wall for bacterial and 

immune cells [117].  

However, situation changes, when inflammation begins. Pathological conditions, such as 

microbial infections, neoplasia and neurodegeneration lead to increased BBB permeability, 

induced by pro-inflammatory signals. Activated T-cells are the first to pass through an even 

still intact BBB, probably by secreting specific enzymes to degrade endothelial cell 

membranes [118, 119]. Shortly after, accessory inflammatory cells, macrophages and further 

components of the immune system flood the CNS through the “leaky” BBB, which can even 

become completely broken in severe cases [120]. Earlier it was also believed that the CNS 

completely lacks antigen-presenting cells (APC), necessary for T-cell interactions and hence 

regulation of the inflammatory process. However, this argument in favor of the “isolation 

hypothesis” was proven to be only partially true. Indeed, no professional APCs circulate in 

the CNS, but there are resident cells, able to conduct this function. These facultative APCs 

are mainly microglia, expressing Class II MHC molecules [121]. But also astrocytes and 

certain macrophage-like cells were shown to be inducible to present antigens [122]. In 

conclusion, communication certainly exists between CNS and the immune system, which is 

normally muted in a healthy organism, but can be rapidly activated in case of inflammation.  

Increased BBB permeability during a real infectious process in the CNS is beyond doubt 

essential for survival. Yet, if certain control mechanisms in the highly complex immune 

response cascade fail, undesirable intracerebral immune reactions can occur. Classical 

examples for such neurological autoimmune disorders are MS and its animal model 

Experimental Autoimmune Encephalomyelitis (EAE). At this point, following considerations 
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should be kept in mind: EAE is de facto a T-cell mediated autoimmune disease, initiated by 

myelin antigens such as MBP and MOG. In case of MS neither MS-specific autoantibodies, 

nor distinct disease causing autoantigens have been revealed so far. Both MBP and MOG 

have been under thorough investigation, but sufficient evidence for their initiative 

immunoreactive role could not be found. Thus, it still remains unproven, if autoimmunity is 

the factual basis for MS pathogenesis [123]. Nevertheless, its central role is undoubted. 

Major indications for this assumption are the lack of obvious infectious agents, the positive 

therapeutic effect of immunosuppressants and the strong analogies to the EAE disease 

phenotype. However, for the aims of the present study not the causality of MS pathogenesis, 

but rather its distinct autoimmune aspects were of importance. Thus, MS was chosen as a 

representative of a neurodegenerative disorder with a clear linkage to autoimmunity in 

contrast to AD, where it does not seem to play such a pivotal role. Yet, immune response in 

general is definitely part of the AD pathophysiology as well, since massive neuron 

degradation is its major morphological hallmark. Intense neuroinflammation with its highly 

complex course is a key characteristic in AD, which we are only beginning to understand 

[124, 125]. Furthermore, both neurodegenerative disorders, AD and MS, are characterized 

by a massive breakdown of the BBB [126-129]. Accordingly, not only components of the 

immune system gain access to the CNS, but most likely, also a converse seepage of CNS 

compounds into peripheral circulation occurs. Thus, it is by all means possible that specific 

disease-relevant polypeptides, resulting from particular inflammation and degradation 

processes, would accumulate in blood serum of AD and MS patients. And this circumstance 

could potentially be an essential differential between diseased and healthy individuals, which 

in turn can be useful for diagnostic purposes. Besides, blood serum assays are excellent 

diagnostic tools: non-harming, convenient in performance and usually low priced. Hence, 

many efforts have been made to discover and establish specific serological biomarkers for 

both AD and MS. 

In case of AD, many researchers are again primarily concentrating on the pathological 

hallmark Amyloid ß. In fact, Aß1-42 could be found in plasma of AD patients, but no agreement 

exists about its correlation to disease stage and/or dementia severity. Findings remain fairly 

controversial, since some studies proposed elevated [130] and others reduced levels of 

serum Aß1-42 [131] to be indicative. Moreover, significantly high inter- but also intra-person 

variability was observed, making the establishment of uniform diagnostic criteria difficult 

[132]. Proteomic analyses of AD blood revealed altered levels of numerous other molecules, 

such as inflammatory agents [133, 134], α-1-antitrypsin and apolipoprotein J [135], diverse 

signaling proteins [136, 137] and many others. Much attention raised the identification of an 

unknown Aß protein in 2002, which occurred to be expressed in elderly individuals, 

diagnosed with possible AD: The Alzheimer-associated protein (ALZAS) [138]. Interestingly, 
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not the increased concentration of ALZAS itself, but rather, increased levels of α-ALZAS IgG 

antibodies were determined in AD patients in comparison to healthy controls of same age. 

This finding led to the conclusion that autoimmune reactions are probably also part of the 

inflammatory process in AD [139]. Also other research groups focus on screening AD 

patients’ sera for disease-specific autoantibodies. For example, Nagele et al. were able to 

identify 10 different autoantigens with specificity and sensitivity for AD of over 90% in a 

protein microarrays screening [140]. Recently, most well-known AD autoantigens were 

reviewed by Colasanti et al. [141]. These include quite diverse molecules and functional 

entities, once again demonstrating the complex AD pathophysiology: Amyloid ß, lipoproteins, 

neurotransmitters, microglia, redox-reactive species, aldolase, ATP synthase and numerous 

others have been discussed.    

Attempts to identify serological biomarkers in MS yielded a large number of potential 

candidates with altered concentration levels compared to healthy individuals. Most of them 

reflect the acute inflammatory situation and neurodegeneration. Among others, immune 

mediators such as cytokines and chemokines, as well as apoptotic molecules like TNF-α, 

could be determined. Findings in this research field were recently reviewed by Hagman et al. 

[142]. Also further blood biomarker candidates with potential diagnostic applicability have 

been recently described, such as thrombomodulin [143] and the translocator protein 18 kDa 

TSPO [144]. Further, variable serum autoantibody signatures against common MS antigens 

in the four different disease subtypes have been described by Quintana et al. [145].     

To sum up, several promising protein biomarkers have already been isolated from blood sera 

of both AD and MS patients, which can prove useful for diagnostic purposes in future. But so 

far, none of them has been sufficiently validated in regard of specificity and sensitivity for the 

particular disease. Thus, further and larger studies have to be performed, before they can be 

applied in real diagnostic assays. Currently, the perception seems to become generally 

accepted that in complex multilateral disorders like AD and MS not a single top biomarker, 

but rather a combination of many would be a more efficient diagnostic tool. Such 

multiparametric approach lay at the basis of the present study as well. However, my working 

hypothesis is based on the assumption that blood sera comprise not only disease-specific 

protein profiles, but disease-specific autoantibody profiles as well. Major arguments are the 

massive neuroinflammation and tissue degeneration, accompanied by the breakdown of the 

blood-brain barrier, allowing CNS polypeptides to enter the peripheral circulation and hence 

to initiate specific autoimmune reactions. However, also blood sera of non-diseased 

individuals show high autoimmune reactivity, as very recently demonstrated by Nagele et al. 

[146]. Thus, natural autoimmunity is obviously not implicitly a pathological indication. Its 

physiological role in healthy organisms is not yet understood, but should be taken into 
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consideration when screening for disease-specific auto-antigenicity profiles, as illustrated in 

Fig. 2 below.  

 

Fig. 2 Hypothetical intersection of auto-antigenicity profiles between AD, MS, healthy 

individuals and other neurodegenerative disorders.  

To reveal these hypothetical auto-antigenicity profiles, I applied two different high-throughput 

proteomic-based screening platforms: protein macroarray technology and filamentous phage 

display of human full-ORF polypeptides.  

1.2. High-throughput screening technologies 

Proteomics-based high-throughput screening platforms have become valuable tools in 

contemporary biochemical and medical research, allowing a rapid and straightforward 

scanning of large sample sets. They are particularly popular in the field of drug target and 

biomarker discovery. Thus, in laboratory practice many projects begin with a high-throughput 

screening in order to quickly prove the initial hypothesis and to narrow down the number of 

potential candidates, which are then further evaluated in more specific assays. In addition, 

most platforms are automatable, making high-throughput approaches fairly easy to handle 

[147]. Automation typically leads to less susceptibility for manual aberrations and to better 

reproducibility. Especially highly heterogeneous samples such as blood serum are ideal for 

this kind of screening technologies. In my thesis I applied two proteomics-based high-

throughput screening methods that are entirely different in mode of action and their initial 

source libraries are complementing each other: protein macroarray and phage display of 

human full-ORF polypeptides. The latter was additionally coupled to another high-throughput 

technique as a read out tool: Next generation sequencing. Here, all three are described in 

detail, with a special focus on their mode of application through my thesis. 
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1.2.1. Protein macroarray technology 

The first high-density protein arrays were developed at our research institute in the 90’s by 

Büssow et al. [148, 149]. They comprise of thousands of arrayed bacteria on filter 

membranes, harboring human cDNA in expression plasmids. Once bacteria cells are grown 

and expression of recombinant proteins is induced, cells are lysed and the protein content is 

cross-linked to the membrane. Since that time, the protein macroarrays were several times 

modified and refined. Currently, the final version (hEXselect) can be commercially obtained 

from Source BioScience, Nottingham, UK. The macroarrays are large sheets of PVDF 

membranes (22 cm x 22 cm), on which 23,806 different cDNA expression clones of the 

original human hEx1 library, derived from human fetal brain tissue mRNA, are directly 

spotted. 9,709 clones (~40%) are annotated as expressed in frame, thus representing 3,657 

real genes. Clone redundancy, i.e. the number of different clones covering the same gene, 

varies between 1 and 467 clones per gene. Yet, the median value of the redundancy 

distribution is 2 clones per gene: over 75% of all genes are represented by only 3 clones and 

less than 5% of all genes are covered by more than 10 different clones. Approximately 30% 

of all clones are so called “singletons”, being the only clone representing a gene. These have 

been physically replicated in the library (real duplicates).   

All clones have been sequenced and are entirely annotated. They possess an N-terminal 

His6-tag and have been subjected to thorough in-frame analysis. Each clone is spotted in 

duplicate and in a certain pattern, which allows a reliable assignment of the positive hits. 

Fig. 3 below shows the workflow of filter production, screening procedures and final analysis 

of the hit clones.  
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Fig. 3 Overview of the protein macroarray production and usage. Bacterial cDNA expression 

library is grown in a 384-well microtiter plate and subsequently printed on a PVDF membrane by a 

spotting robot. Overnight protein expression in E. coli is induced directly on the membrane by IPTG. 

During fixation, bacteria are simultaneously lysed and lyophilized. Screenings are performed by 

incubating the filter in the fluid of interest, e.g. blood serum, in an appropriate dilution. Detection is 

achieved by a secondary antibody, conjugated with an alkaline phosphatase (AP) enzyme and a 

suitable fluorescent substrate (e.g. AttoPhos®, Roche). Since all clones are spotted in duplicate and 

arranged in a specific 5 x 5 pattern around guiding ink dots (here white spots), it can be easily 

distinguished between positive hits (here black spots) and residual non-reactive clones (here grey 

spots). Digitalized pictures can be analyzed by commercially available software packages like AIDA 

Image Analyzer (Raytest, Berlin, GER)). Source: Protein Macroarrays Manual, Source BioScience 

Imagenes, November 2010 [150]. 

Virtually all kinds of screenings, based on protein interactions, can be performed on hEX 

protein macroarrays. They have been successfully applied in studies to identify and analyze 

novel protein-protein interactions [151-153] or DNA-binding proteins [154]. However, their 

largest utilization is probably the screening of protein-antibody interactions in body fluids, 

such as blood serum or CSF from different donor cohorts in comparison. The determination 

of auto-antigenicity profiles proved to be a valuable source of novel diagnostic biomarker 

targets. Recent examples for this kind of applications are screenings of patients’ blood sera 

with glaucoma [155], colorectal cancer [156], multiple sclerosis [157, 158], myasthenia gravis 

[159], neuroblastoma versus Wilms tumor cancers [160], progressive encephalomyelitis 

[161], anaplastic large cell lymphoma [162], neuro-Behçet disease [163], Wegener’s 

granulomatosis [164]. All mentioned screenings successfully yielded disease-specific auto-

antigenicity patterns, useful for discriminating between diseased and healthy donors or 
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between different cancer types, for example. Of note, however, is that all protein-antibody 

interactions described so far are exclusively based on antigen-detection with serum 

antibodies of the IgG class.  

The reason for using anti-IgG detection is obvious, since this major immunoglobulin family is 

the most abundant in human blood. Furthermore, autoreactive IgGs play a central role in 

many autoimmune disorders. Yet, also IgA is an interesting study object in the field of 

autoimmunity, even though it is mainly concentrated in mucous secretions, such as saliva 

and gastrointestinal tract. In peripheral blood circulation, IgA is the second most abundant 

isotype, but with a five times higher metabolization rate than IgG [165]. Furthermore, IgA has 

a direct linkage to autoimmunity, although full mechanism is not entirely understood. Thus, 

adults, deficient in IgA, were shown to be more susceptible to autoimmune disorders like 

rheumatoid arthritis, Morbus Crohn or allergies [166, 167]. On this account, a few research 

groups focus on detection of autoreactive IgA antibodies as well. Potential IgA-based serum 

biomarkers have been recently described for disease like esophageal cancer [168], 

autoimmune hemolytic anemia [169], celiac disease [170] and inflammatory bowel disease 

[171]. 

1.2.2. Filamentous phage display of full-ORF polypeptides 

Another powerful platform for high-throughput proteomic screenings is (bacterio)phage 

surface display. First introduced by Smith et al. in 1985, it quickly evolved to one of the most 

popular presentation scaffolds for polypeptides, due to its highly advantageous physical 

linkage between genotype and phenotype [172]. Three different kinds of phage display 

systems have been developed and successfully utilized in molecular biotechnology: T7 

phage [173], λ-Phage [174] and filamentous phages of the Ff-class: f1, fd and M13 [175, 

176]. Among these, Ff phages, especially M13, are the most widespread. Ff bacteriophages 

infect gram-negative bacteria, including E. coli, in a non-lytic way.  

The process of binders selection is called bio-panning in analogy to gold panning, a method 

used to gather gold particles by agitating earth sediments in water. In principle, phage 

display mimics the molecular evolutionary selection process in vitro. Genes of interest are 

incorporated into the phage genome in a way to be presented on phage surface, fused to 

one of the coat proteins. Hence, the polypeptides of interest are being displayed to face their 

interaction partners in the subsequent selection rounds. In each round, the displayed library 

is confronted anew with the target of choice, which is usually coated on a solid surface, e.g. 

nitrocellulose [177], polysterene bottoms of microtiter plates [178] or magnetic beads [179]. 

Bait and target undergo following repetitive steps in each selection round: binding, washing, 
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elution (if required) and finally propagation of selected phages in a bacterial host. Fig. 4 

below demonstrates the overall selection procedure schematically. 

 

Fig. 4 Workflow of the phage display bio-panning process. In the shown example, targets are 

antibodies, coated on magnetic beads and baits are proteins, displayed on filamentous phage surface. 

The genotype-phenotype linkage in phages is indicated by using same color for the GOI and for the 

POI. Selection with four subsequent rounds is shown. The phage population, displaying a purple 

protein, binds strong enough to the target and is being selected. On the contrary, phage populations, 

displaying green and blue proteins do not interact with target and are being washed away. In the end, 

only the purple population is being propagated and enters the next selection round.     

Thereby, an additional washing step is included in each following selection round, in order to 

increase pressure for the selection of strong binders. Thus, with each additional round the 

weaker binders become naturally outsourced, while the stronger binders are propagated 

further. As a consequence, the diversity of the initial phage library declines rapidly during 

selection, while the specificity of the remaining binders proportionally increases. This main 

characteristic of the PD selection process is show in Fig. 5 below. 
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Fig. 5 Overview of the phage display selection process. With the increasing number of selection 

rounds, also the number of enriched specific phages increases. In contrast, diversity of the phage 

library and background of non-specific phages decrease. Source: Konthur, Z. [180].    

Thus, depending on experimental aim, low number of selection rounds can be chosen to 

keep library diversity high. Respectively, additional rounds deliver high-affinity binders and a 

smaller background of non-specific binders.  

The M13 virus particle has the shape of a 900 – 1,000 nm long and 6 - 7 nm wide rod. Its 

single-stranded circular genome (ssDNA) encodes for overall 11 proteins. Five of them are 

structural coat proteins: one major pVIII, presented with ~2,800 copies per phage, and four 

minor pIII, pVI, pVII and pIX, each presented with five copies per phage. While pVIII fully 

covers the longitudinal sides of the virion, the minor coat proteins are situated at its distal 

ends: pIII and pVI at the one end, pVII and pIX at the opposite (s. Fig. 6) [181]. All five coat 

proteins have been shown to be appropriate for polypeptide fusion and its presentation on 

phage surface. However, pIII and pVIII proved to be most effective for these purposes [182]. 

Yet, pVIII is only suitable for the presentation of shorter peptides, as longer peptides lead to 

capsid instability. Thus, pIII is often the method of choice in conventional applications and in 

the present work as well.  

Wildtype pIII consists of three domains, D1, D2 and D3, catenated by glycin-rich linkers 

[183]. It plays a major role in the infection and cell intrusion processes, which occur at the 

bacterial F-Pilus site [184]. Engineered pIII, applied in phage display, is usually truncated, 

missing both D1 and D2 or at least a part of D2, which results in diminished infectivity of the 

recombinant phage particles [185]. In the late 80’s so-called phagemid cloning vectors were 

established and became rapidly popular [186]. They combine features of both bacterial and 

phage plasmids, such as two origins of replication (bacterial and phage), a phage packaging 

signal, an antibiotic resistance gene and a multi-cloning site for the polypeptide of interest 

(POI) to be fused to pIII [187]. Since all other phage genes are absent in the phagemid, a co-

infection with a special helper phage is needed to “rescue” the cloned pIII-POI-fusion and to 
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produce recombinant phage particles. In turn, helper phages are usually genetically 

engineered to contain deletions in their origin of replication and/or packaging signal sites. 

Consequently, phagemids and not the helper phage genomes are preferably integrated in 

the newly produced virions [188]. The choice of an appropriate helper phage allows choosing 

between different types of POI presentation. For instance, co-infection with the M13K07 

helper phage leads to a monovalent display, meaning that on average only one of the five 

pIII-proteins carries the polypeptide of interest, while the residual four are non-recombinant. 

In the so-called Hyperphage, on the other hand, the wildtype pIII-gene is completely removed 

from the genome. Hence, only pIII-POI-fusions are integrated into the phage virion leading to 

a multivalent display, i.e. simultaneous presentation of the recombinant POI on all five pIII-

proteins. Consequently, very low infectivity is usually characteristic for multivalent phages, 

which can potentially hamper the selection process [189]. Thus, each presentation strategy 

can prove advantageous, depending on project aim. In a bio-panning process with multiple 

selection rounds, different helper phage applications can be combined, since co-infection is 

required at every single round of selection. 

Filamentous phage display found its broadest application in presentation of combinatorial 

antibody and peptide libraries [190-192]. Heterogeneous libraries like cDNA-products, 

however, proved more complicated, due to significant intrinsic limitations. One such limitation 

is the orientation of the capsid proteins. Most of them are presenting their N-terminus to the 

outer milieu and their C-terminus is buried within the capsid. Hence, only N-terminal direct 

fusions of the displayed molecule are feasible. This requires the inserts to be in frame with 

the downstream pIII-gene and to contain no stop codons. Yet, most cDNA-fragments 

naturally contain translational stop codons in their UTRs. Furthermore, due to the triplet 

nature of the genetic code, the statistical chance of a gene-coding DNA fragment to contain 

an ORF to be in frame with pIII is 1:3 per definition. Consequently, many strategies have 

been developed to overcome these bottlenecks and make cDNA phage display more 

manageable, which we reviewed recently [193]. In 1993 Crameri et al. introduced a truly 

elegant solution to overcome this problem, namely a phagemid vector, called pJuFo that 

allowed separate expression of pIII and the polypeptide of interest and their subsequent 

indirect fusion via a leucine-zipper structure [194]. In detail, pIII is expressed with an N-

terminal fusion to the leucine zipper domain of the c-Jun, while the POI is expressed with the 

accordant N-terminal leucine zipper domain of c-Fos. Both, c-Jun and c-Fos are human 

transcription factors, possessing leucine stretches, able to form very stable leucine zippers 

[195]. The POI-Fos-fusion and the pIII-Jun-fusion are separately exported into bacterial 

periplasmic space, where they finally meet and “stick” together. Fig. 6 below shows direct 

and indirect pIII-POI-fusion in comparison.     
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Fig. 6 Schematic representation of bacteriophage M13 and different monovalent display types. 

A. Direct fusion of POI to a truncated pIII.  B. Indirect fusion by means of a leucine zipper structure. 

Major coat protein pVIII and all minor coat proteins pIII, pVI, pVII and pIX are depicted as well. Source: 

Georgieva and Konthur [193].   

Another issue of heterogeneous polypeptide display is the folding of the presented 

molecules. In E. coli the folding process is dependent on the surrounding milieu. The most 

common approach, as used for antibody fragments for example, is to equip the POI with a 

signal peptide, targeting the E. coli Sec-translocon [196]. The Sec-export machinery guides 

polypeptides through the cell membrane in an unfolded state after completed translation. 

Since pIII needs the periplasmic space for proper folding and association with the rest of the 

phage coat proteins, Sec is the most appropriate export way for it too [197]. Yet, Sec 

occurred to be rather unsuitable for other molecules, such as DARPins that could only be 

successfully displayed when exported through the co-translational SRP-dependent pathway 

[198]. The third well-known E. coli export system, the TAT-pathway, proved appropriate for 

strictly cytoplasmic proteins, since it translocates mature, already folded polypeptides. 

Notably, in contrast to Sec and SRP, TAT can only be applied in an indirect POI-pIII-fusion. 

TAT-mediated phage display was first introduced in 2005 by Paschke and Höhne and is 

based on the pJuFo-vector [199].  

 

A. 

B. 
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1.2.3. Next generation sequencing 

The pioneering work of Francis Crick and James D. Watson about decoding nucleic acids 

structure more than half a century ago steered the research field of molecular biology and 

biochemistry in a completely new dimension and paved the way for modern life sciences 

[200]. After Marshal Nirenberg finally deciphered the genetic code in 1962 [201], it was just a 

matter of time for the first DNA sequencing methods to be developed. Thus, the next 

milestone in DNA research was the work of Frederick Sanger from 1977 [202]. His DNA 

sequencing method, based on chain determination and incorporation of labeled ddNTPs, 

became a worldwide standard and dominated the field for about three decades.  

However, recent introduction of the so-called next generation sequencing (NGS) methods 

revolutionized the DNA sequencing field anew and opened up an entirely novel vista of 

experimental applications. NGS allows real high-throughput sequencing of millions of DNA 

fragments in parallel in a very short time without the need of laborious cloning of DNA 

fragments to generate sequencing templates. NGS platforms and services became 

commercially available around 2004 – 2005 and still experience rapid development since 

then. Not only the number of different platforms (i.e. sequencing methods) increases steadily, 

at the same time the sequencing price per megabase is constantly falling, currently 

accounting for about 10 US cents per megabase [203]. Consequently, many different 

applications of NGS were developed, ranging from genome-wide expression surveys (DNA-

Seq), through discovery of novel DNA-interacting and –modifying molecules (Methyl-Seq, 

ChIP-Seq, MAINE-Seq), to transcriptome (RNA-Seq, TRAP) and immune cell analysis 

(Immune-Seq) and many others (recently reviewed by Shendure and Aiden, 2012 [204]). 

The available NGS platforms have different features when it comes down to number of 

sequence reads, read length and accuracy. In recent years two platforms dominated the 

international market: Illumina/Solexa Genome Analyzer (Illumina) and 454 FLX (Roche). 

Roche/454 was the first NGS platform to achieve market access in 2004 [205]. Its 

methodology is based on so-called pyrosequencing. Pyrophosphates are generated in the 

process of nucleotide incorporation into the new DNA strand by the DNA polymerase. These 

are further involved in a side-reaction cascade, at which end a light emission reaction by a 

luciferase enzyme takes place. This is finally the detection signal for the nucleotide 

incorporation event. Specific for the 454 sequencing method, is the immobilization of the 

target DNA molecules on agarose beads in a way that each bead is associated with a single 

DNA molecule. Additionally, sample amplification is usually performed in emulsion PCR, i.e. 

in separate oil:water microreactions. Consequently, amplification biases, which usually occur 

in a conventional open PCR, are strongly minimized [206]. This approach proved 

advantageous for analyzing in vivo conditions, such as natural antibodies repertoires, for 
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example. Biggest advantage of the 454 system is certainly the relatively large sequence 

length of up to 500 – 1,000 bases per molecule [207]. Therefore, 454 is usually applied for 

cDNA-sequencing [208] and in other cases, where insert lengths are not defined and 

possibly long reads are desirable.  

Illumina is currently the primary player on the international NGS market, mainly due to the 

Solexa sequencing technology, which was commercially acquired in 2006 [209]. The 

methodology is based on the sequencing-by-synthesis approach. For this, all four 

nucleotides are added with the DNA polymerase enzyme to the reaction mix. Each 

nucleotide carries a base-specific fluorescent label and a blocked 3’-OH-group. As a 

consequence, every incorporation is a unique event, followed by an imaging and detection 

step. After the image is taken, the blocking agent and the dye at the 3’-end are removed and 

the DNA strand is ready for yet another incorporation round. Fig. 7 below illustrates the 

Illumina/Solexa working principle.   
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Fig. 7 Workflow of the Illumina Genome Analyzer. A. Library preparation. Prior to sequencing, 

dsDNA (PCR amplicons, genomic DNA, etc.) is randomly fragmented and ligated with specific 

adapters at both ends. B. Target bridge amplification. After denaturation, ssDNA fragments are 

added to the Illumina flow cell channels, coated with primers, which are complementary to the 

adaptors. Hybridized DNA fragments form a “bridge” and 3’ → 5’ amplification is performed. After 

several rounds of amplification, “discrete fragment clusters” are generated, DNA denaturated and 

cluster strands are primed with sequencing primers. C. Sequencing-by-synthesis. DNA polymerase 

and fluorescent-labeled ddNTPs are added. After each incorporation step, reaction is stopped by the 

blocking 3’-OH-group of the ligated nucleotide and unbound reaction partners are washed away. Next, 

the flow cell channel surface is imaged by a scanning optics system to detect the newly integrated 

nucleotide. After imaging is completed, the nucleotide is chemically unblocked, amplification reagents 

are added anew and another round of incorporation and detection begins. Source: Tucker et al. [210].               

B. 

A. 

C. 
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Illumina read lengths are naturally defined by the DNA shredding step at the beginning of the 

sequencing procedure (75 – 150 bp). Biggest advantages of this platform are significantly 

lower costs per run, compared to 454/Roche, and very high output of sequence data 

(currently up to 600 Gb of sequence for the HiSeq 2500/2000 sequencer [211]).           

In the last few years also entirely novel sequencing approaches, aiming at single molecule 

sequencing in real-time detection (SMRT), are on the rise [212]. Market leader with this kind 

of method is currently Pacific Biosciences (USA). Their first sequencer PacBio RS was 

introduced in late 2010, of which a second improved version is available since April 2013 

[213]. The average read length reaches ca. 1,000 bp, but up to 15,000 bp should be 

theoretically possible, as proposed by the manufacturers [214]. In general, due to a highly 

competing market and ever growing demand in the scientific communities worldwide, all 

sequencing platforms experience a steady improvement in regard of read lengths, accuracy, 

number of sequences obtained per run, sequencing time needed and, last but not least, 

declining costs. Thus, further exciting developments and applications in this field can be 

certainly expected in future.  

The phage display community has also developed diverse strategies to utilize NGS 

platforms. The combination of the two high-throughput technologies led to remarkable 

improvements in performing and evaluating affinity-driven selections. Two major applications 

proved rather advantageous in this field. Sequencing of the initial pre-selection phage library 

allows rapid and fairly complete examination of its quality and diversity, on the one hand. On 

the other, sequencing of selected libraries not only enables identification and annotation of 

the enriched binders, but also makes enrichment visible, since all molecules in a sample are 

being sequenced at once. This kind of “deep sequencing” can be informative for prioritization 

of strong vs. weak binders. First publications, demonstrating successful NGS utilization in 

combination with PD, appeared around 2009 [215-217]. To date, almost every new 

publication, dealing with combinatorial libraries and in vitro selections, describes implication 

of an NGS platform as well. Recently, the overall workflow of a “usual” PD-NGS-application 

was reviewed by Ravn et al. [218].  

At the beginning of the present work (June, 2009), the conjoined usage of PD and NGS was 

a novel and exciting application. Meanwhile, however, it became rather frequent. Considering 

the on-going rapid development of the NGS methods, decreasing sequencing costs and 

steadily improving possibilities for storage and processing of huge amounts of data 

bioinformatically, it may be concluded that this methodological symbiosis will become 

standard in near future.                            
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2. Objective 

To date, there are no validated uniform biomarkers available for the precise diagnosis of 

Morbus Alzheimer (AD) or Multiple Sclerosis (MS). Blood serum is an excellent medium for 

diagnostic purposes, since it is easy to sample and highly informative about organism’s 

health status. The blood brain barrier becomes leaky during neuroinflammation, which occurs 

in the course of both disorders. Thus, it is expectable that the immune system gets in contact 

with CNS antigens, resulting from massive neurodegeneration. My thesis is based on the 

hypothesis that disease-specific autoantibodies are generated and can be detected in blood 

sera of AD and MS patients. Consequently, major task of my work was to describe 

intersecting autoimmune profiles between the three different donor cohorts (AD, MS and 

healthy) and to expose disease-specific autoantigens in AD and MS, which can be used for 

multiparametric diagnostic tests in future. 

Two different proteomics-based high-throughput screening technologies were applied: a 

human brain cDNA expression library, arrayed on macroarrays, and human full-ORF 

polypeptides, displayed on the surface of M13 phages. Both presentation scaffolds were 

screened for interactions with human autoantibodies of the immunoglobulin classes IgG and 

IgA from the three blood sera cohorts. Phage display selected autoantigens were 

determined, applying the next generation sequencing platform Illumina Genome Analyzer. 

Identified positive hits from both screening procedures were further evaluated to prove their 

potential as applicable diagnostic biomarkers. For this, chosen biomarker candidates with 

best performances were recombinantly expressed in E. coli, affinity-purified and tested in 

ELISA with larger sera sets. 

A secondary, methodology-driven task was the further development of the M13 phage 

display technique. The functional presentation of heterogeneous full-ORF libraries is non-

conventional and was established in the course of my studies. To expand the range of 

properly displayed proteins, novel phagemid vector series were generated, implementing all 

three major export pathways in E. coli. To prove the feasibility of the newly constructed 

vectors, test cloning with EGFP and subsequent functionality assays with EGFP-presenting 

phages were performed.  

Finally, results from both screenings were summarized and compared. Advantages and 

limitations of the two applied high-throughput technologies were discussed in regard to 

technical applicability, initial source libraries and future application fields. 
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Overall experimental workflow 

 

Fig. 8 Overall experimental workflow. Pictures sources: www.picture-alliance/dpa; Protein 
Macroarrays Manual [150]; www.illumina.com; www.biology.arizona.edu  
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3. Materials  

3.1. Consumables 

Material Manufacturer 

96-well conical bottom MTP, PP, natural, 0.5 ml Nunc, Thermo Fisher Scientific, USA  

96-well flat bottom MTP, PST, clear, 0.3 ml Nunc, Thermo Fisher Scientific, USA  

96-well flexible PVC flat-bottom MTP Becton, USA 

Amicon® centrifugal filter devices Ultra-15, 10 K Merck Millipore, IRL 

Cryo vials 2 ml Greiner Bio-One GmbH, Frickenhausen, GER 

Culture tubes round-bottom 5 ml Greiner Bio-One GmbH, Frickenhausen, GER 

Dialysis tubing Carl Roth, Karlsruhe, GER 

Disposable cuvettes P948 Carl Roth, Karlsruhe, GER 

Disposable pipette tips 10 µl; 200 µl; 1 ml Gilson, Middleton, USA 

Disposable sterile pipettes 5 ml; 10 ml; 25 ml Corning, New York, USA 

Scalpel Cutfix B Braun, Melsungen, GER 

Electroporation cuvettes 1 mm Bio-Rad Laboratories GmbH, Munich, GER 

Erlenmeyer flasks 50 ml; 250 ml; 500 ml; 1 l Schott, Mainz, GER 

Glass bottles 100 ml; 250 ml; 500 ml; 1 l, 3 l Schott, Mainz, GER 

Hybond ECL nitrocellulose membrane  GE Healthcare, Munich, GER 

Inoculation loops Nunc, Roskilde, DK 

Kimtech precision wipes, white Kimberly-Clark Professional, UK 

Lazy-L spreader Sigma-Aldrich GmbH, Munich, GER 

Ni-NTA Agarose Qiagen N.V., Hilden, GER 

Nitrile examination gloves Blossom, USA  

NuPAGE 4 – 12% BisTris gel Invitrogen, Life Technologies, USA 

Parafilm M American National CanTM, USA 

PCR 8-tube stripes 0,2 ml Greiner Bio-One GmbH, Frickenhausen, GER 

Petri dishes 100 mm Greiner Bio-One GmbH, Frickenhausen, GER 

PP tubes 14 ml; 50 ml Greiner Bio-One GmbH, Frickenhausen, GER 

Pyrex solid glass beads 3 mm In-house glazier’s workshop, MPI-MG 

Reaction tubes (0,5 ml; 1,5 ml; 2,0 ml) Eppendorf AG, Hamburg, GER 

Safe-seal tips (10 µl; 20 µl; 200 µl; 1 ml)  BioZym GmbH, Oldendorf, GER 

Whatman paper 3 mm Biometra, Göttingen, GER 
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3.2. Chemicals, buffers and solutions 

Unless stated otherwise, buffers and solutions were sterilized by filtration through a 0,2 µm 

pore size filter, when required. 

Chemicals Manufacturer 

(NH4)2SO4 Merck, Darmstadt, GER 

29% Acrylamide, 0,8% Bisacrylamide Carl Roth, Karlsruhe, GER 

ABTS tablets Sigma-Aldrich GmbH, Munich, GER 

Acetic acid Carl Roth, Karlsruhe, GER 

Ammonium acetate Merck, Darmstadt, GER 

Ampicillin  Carl Roth, Karlsruhe, GER 

APS BioRad Laboratories GmbH, Munich, GER 

Bacto Agar Becton, Difco Laborastories, Sparks, USA 

Bacto Tryptone Becton, Difco Laborastories, Sparks, USA 

Bacto Yeast Extract Becton, Difco Laborastories, Sparks, USA 

Boric acid Merck, Darmstadt, GER 

Bromophenol blue Sigma-Aldrich GmbH, Munich, GER 

BSA NEB, Ipswich, UK 

CaCl2 Merck, Darmstadt, GER 

Chloramhinicol Carl Roth, Karlsruhe, GER 

Citric acid Merck, Darmstadt, GER 

Coomassie Brilliant Blue G250 Sigma-Aldrich GmbH, Munich, GER 

D(+)-Glucose monohydrate Merck, Darmstadt, GER 

DNA loading dye, 6x Fermentas, Thermo Fisher Scientific, USA 

dNTP’s NEB, Ipswich, UK 

DTT Serva, Heidelberg, GER 

Ethanol Merck, Darmstadt, GER 

Ethidium bromide  Merck, Darmstadt, GER 

Glycerin Merck, Darmstadt, GER 

Glycine Merck, Darmstadt, GER 

Glyco Blue Applied Biosystems, Carlsbad, USA 

H2O2 Merck, Darmstadt, GER 

HCl Carl Roth, Karlsruhe, GER 

Imidazole Sigma-Aldrich GmbH, Munich, GER 

IPTG Fermentas, Thermo Fisher Scientific, USA 

Isobutanol Merck, Darmstadt, GER 

K2HPO4 Merck, Darmstadt, GER 

Kanamycin Carl Roth, Karlsruhe, GER 

KCl Merck, Darmstadt, GER 
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K2HPO4 Merck, Darmstadt, GER 

KH2PO4 Merck, Darmstadt, GER 

MES Sigma-Aldrich GmbH, Munich, GER 

MgCl2 Merck, Darmstadt, GER 

MgSO4 Merck, Darmstadt, GER 

Na2EDTA Merck, Darmstadt, GER 

NaH2PO4 Merck, Darmstadt, GER 

Na2HPO4 Merck, Darmstadt, GER 

Na3 -citrate Merck, Darmstadt, GER 

NaCl Sigma-Aldrich GmbH, Munich, GER 

NaOH Merck, Darmstadt, GER 

Non-fat dry milk powder Bio-Rad Laboratories GmbH, Munich, GER 

PEG 6000 Merck, Darmstadt, GER 

SDS Bio-Rad Laboratories GmbH, Munich, GER 

ß-Mercaptoethanol Merck, Darmstadt, GER 

Sucrose Merck, Darmstadt, GER 

TEMED Invitrogen, Life Technologies, USA 

Tris-base Merck, Darmstadt, GER 

Triton X-100 Sigma-Aldrich GmbH, Munich, GER 

Tween 20 Sigma-Aldrich GmbH, Munich, GER 

UltraPure Agarose Invitrogen, Life Technologies, USA 

Urea AppliChem, Darmstadt, GER 

 

Buffers Recipe  

AttoPhos buffer 1 mM MgCl2; 100 mM Tris/HCl (pH 9.5) 

Blocking buffer for macroarrays TBS-T + 3% non-fat dry milk powder 

Blocking buffer for magnetic beads PBS + 0.5% BSA + 0.05% Tween 20, pH 7.4 

Coating buffer for magnetic beads 0.1 M Boric acid, pH 9.5 with NaOH 

Laemmli loading buffer 4x 0.04% Bromophenol blue; 40% (w/v) Glycerin; 
8% SDS; 5% ß-Mercaptoethanol; 0.2 M  
Tris-HCl pH 6.8 

Laemmli running buffer 0.125 mM Tris-base; 1.25 mM Glycine;  
0.5% SDS 

MES running buffer 20x, pH 7.3 1 M MES; 1 M Tris-base; 69.3 mM SDS; 
20.5 mM EDTA  

Native elution buffer 50 mM NaH2PO4; 300 mM NaCl;  
250 mM Imidazole 

Native lysis/binding buffer, pH 8.0 50 mM NaH2PO4; 300 mM NaCl;  
10 mM Imidazole 
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Native wash buffer, pH 8.0 50 mM NaH2PO4; 300 mM NaCl;  
20 mM Imidazole 

PBS-T PBS + 0.2% Tween 20 

PBS, pH 7.4 0.0027 M KCl; 0.137 M NaCl; 0.01 M phosphate 
buffer (Na2HPO4/NaH2PO4)  

PE buffer for periplasmic extraction 0.1 M Tris-HCl (pH 8.0); 1 mM EDTA;  
0.5 M Sucrose 

PTM blocking buffer PBS-T + 2% non-fat dry milk powder 

Stripping buffer for protein macroarrays 2% SDS; 65.5 mM Tris/HCl (pH 6.8);  

100 mM ß-Mercaptoethanol 

TAE running buffer 10x, pH 8.2 48.4 g/l Tris-base; 10.9 g/l Glacial acetic acid; 
2.92 g/l EDTA 

TBE running buffer 50x, pH 8.2 54.0 g/l Tris-base; 27.5 g/l Boric acid;  
2.92 g/l EDTA 

TBS 10 mM Tris-HCl (pH 7.5); 150 mM NaCl 

TBS-T TBS + 0.1% Tween 20 

TE 10 mM Tris-HCl (pH 8.0); 1 mM EDTA 

TES buffer for periplasmic extraction  0.2 M Tris-HCl (pH 8.0); 0.5 mM EDTA;  
0.5 M Sucrose 

Transfer buffer for western blot 4.2 g Tris-base; 19.6 g Glycine in 1.4 l ddH2O 

Washing and storage buffer for magnetic beads PBS + 0.1% BSA + 0.05% Tween 20, pH 7.4 

 

Solutions Recipe  

ABTS substrate solution 1x ABTS tablet (10 mg);  
10 ml 50 mM Na3-citrate;  
10 ml 50 mM Citric acid; 10 µl 30% H2O2 

Agarose – gel solution 5 – 10 g/l Agarose in 1x TAE or 0.5x TBE buffer 

Ammonium acetate, 7.5 M, pH 7.5 57.8 g Ammonium acetate in 100 ml ddH2O 

BSA, 4% 4 g BSA in 100 ml PBS 

Coomassie blue staining solution 1.25 g Coomassie Brilliant Blue G250;  
225 ml Ethanol (technical grade);  
50 ml Acetic acid.  

Destain solution  20 ml Ethanol (technical grade);  
10 ml Acetic acid; 70 ml ddH2O 

EDTA, 0.5 M, pH 8.0 186.1 g Na2EDTA x 2H2O in 1 l ddH2O 

Ethanol, 70% (v/v) 700 ml Ethanol (technical grade) in 1 l ddH2O 

Glucose, 40% (w/v) 400 g D(+)-Glucose monohydrate in 1 l ddH2O 

IPTG, 1 M 1.19 g IPTG in 5 ml ddH2O  

(NH4)2SO4 stock solution, 3 M, pH 9.5 39.6 g (NH4)2SO4 in 100 ml coating buffer  
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Phage precipitation solution  20% PEG 6000; 2.5 M NaCl in ddH2O 

SDS separating gel solution  23.8 ml ddH2O; 0.4 ml SDS (10%);  
10 ml Tris-HCl (0.5 M, pH 6.8);  
5.3 ml 29% Acrylamide, 0,8% Bisacrylamide. 
400 µl APS; 40 µl TEMED 

SDS stacking gel solution  10.4 ml ddH2O; 0.8 ml SDS (10%);  
20 ml Tris-HCl (1.5 M, pH 8.8);  
48 ml 29% Acrylamide, 0,8% Bisacrylamide. 
800 µl APS; 25 µl TEMED  

Solution 1 for HMFM 3.65 mM MgSO4 x 7H2O; 36 mM (NH4)2SO4;  
5 mM Na3 –citrate x 2H2O; 44% Glycerin  

Solution  2 for HMFM 132 mM K2HPO4; 270 mM KH2PO4 

Tris-HCl, 1 M, pH 6.8 12.1 g Tris-base in 100 ml ddH2O  

Urea, 8 M 48 g Urea in 100 ml ddH2O 

3.3. Growth culture media and additives 

Unless stated otherwise, growth culture media were sterilized by autoclaving at 120°C for 

20 min. If required, additives were added after cooling down to at least 55°C. Standard 

concentration of Glucose in all media was 2%, unless stated otherwise. 

Growth culture media and additives Recipe 

2xYT Broth 16 g Bacto Tryptone; 10 g Bacto Yeast Extract; 
5 g NaCl in 1 l ddH2O 

2xYT Broth Agar 31 g 2xYT – Broth + 5 g Bacto Agar in 1 l ddH2O 

Ampicilin, working solution 100 µg/ml Stock solution: 50 mg/ml in 50% Ethanol 

Chloramphenicol, working solution 17 µg/ml Stock solution: 30 mg/ml in ddH2O 

HMFM freezing additive, 10x 4 x Solution 1 : 1 x Solution 2 

Kanamycin, working solution 60 µg/ml Stock solution: 34 mg/ml in ddH2O 

LB 10 g Bacto Tryptone; 5 g Bacto Yeast Extract; 
10 g NaCl in 1 l ddH2O 

SOB  20 g Bacto Tryptone; 5 g Bacto Yeast Extract; 
0.5 g NaCl in 1 l ddH2O 

SOC  100 ml SOB + 1 ml Glucose (40%); 1 ml MgCl2 
(1 M); 1 ml MgSO4 (1 M) 

Top Agar 100 ml heated 2xYT Broth Agar + 100 ml 2xYT 
Broth 
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3.4. E. coli strains 

Unless stated otherwise, all used bacterial cells were electro-competent. 

Strain name Genotype Provider 

BL21 Star (DE3) F- ompT hsdSB(rB-, mB-) gal dcm rne131 (DE3) Invitrogen, Life 
Technologies, USA 

DB3.1 F- gyrA462 endA1 glnV44 Δ(sr1-recA) mcrB mrr hsdS20(rB
-, 

mB
-) ara14 galK2 lacY1 proA2 rpsL20(Smr) xyl5 Δleu mtl1 

Invitrogen, Life 
Technologies, USA 

DH10B F-
 
mcrA Δ(mrr-hsd RMS-mcrBC) Φ80dlacZΔM15 ΔlacX74 

endA1 recA1 deoR Δ(ara, leu)7697 araD139 galU galK 
nupG rpsL λ- 

Invitrogen, Life 
Technologies, USA 

HB2151 nalr
 
thi-1ara Δ(lac-proAB) thi [F’ pro A+B lacIq lacZΔM15]  Clontech, Mountain 

View, USA 

SCS1/pSE111 hsdR17(rK- mK-) recA1 gyrA96 thi-1 relA1 supE44 Stratagene, La 
Jola, USA 

TG1 supE thi-1 Δ(lac-proAB) Δ(mcrB-hsdSM)5(rK- mK-) [F’ 
traD36 proAB lacIq ZΔM15]  

Stratagene, La 
Jola, USA 

XL-1 Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F’ 
proAB lacIq ZΔM15 Tn10 (Tetr)]  

Stratagene, La 
Jola, USA 

3.5. Helper phages 

Strain name Provider 

Hyperphage M13K07ΔpIII  Progen Biotechnik, Heidelberg, GER 

M13K07 Helper Phage NEB, Ipswich, UK 

3.6. Plasmids and OC source libraries 

Plasmid name Producer 

pENTR 223/hOHS Carola Stoschek, AG Konthur, MPI-MG 

pENTR/EGFP Miriam Baradari, AG Konthur, MPI-MG 

pENTR/GUS Invitrogen, Life Technologies, USA 

pENTR/OCAA Imagenes, Source BioScience, Nottingham, UK 

pENTR/OCAB Imagenes, Source BioScience, Nottingham, UK 

pIT2-mTKIN Dr. Volker Sievert, AG Konthur, MPI-MG 

pJuFo-B AG Konthur, MPI-MG 
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pQE30NST Dr. Konrad Büssow, AG Konthur, MPI-MG 

pRSET-BH6 AG Konthur, MPI-MG 

pRSET/EGFP Dejan Gagoski, AG Konthur, MPI-MG 

pUC18 Invitrogen, Life Technologies, USA 

All pENTR/full-ORF plasmids, containing the human ORFeome collection (OC), were 

commercially obtained from Imagenes GmbH (now Source BioScience, UK), pooled in four 

separate DNA prep-samples: 

OC source library Clone number DNA concentration [µg/µl]  

pENTR/OCAA with stop codon 6,240 3.13 

pENTR/OCAA w/o stop codon 4,929 0.89 

pENTR/OCAB with stop codon 1,200 0.15 

pENTR/OCAB w/o stop codon 1,152 0.07 

OC clones originated from the following providers: DKFZ, NIH-MGC, HIP and WTSI. Most 

clones have been generated by a BP reaction between a cDNA fragment, flanked by attB-

sites, and an appropriate pDONR vector to generate the correspondent pENTR vector. For 

this, four slightly different pDONR vectors have been used: pDONR201, pDONR221, 

pDONR223 and pDONR223.1 [179].      

3.7. Protein macroarrays 

hEX select filters with arrayed expression products of cDNA fragments from human fetal 

brain tissue were commercially obtained from Imagenes GmbH (now Source BioScience, 

UK). Approx. 24,000 different clones are spotted on each macroarray. Redundancy differs 

strongly between spotted clones, yet each clone is represented at least twice per filter in a 

distinct double spotting pattern. The majority of all clones are His6-tagged and annotated.       

3.8. Human blood sera 

Human blood sera were commercially obtained from in.vent Diagnostica GmbH, Berlin. 20 

sera from each of the three patient cohorts AD, MS and healthy were delivered in 2 x 0.5 ml 

cryo vials and stored at -80°C. Healthy donors were age-matched to the AD donor group and 

tested with CERAD test as a criterion for non-diseased. Ethic votes are existing for all 60 

donors. Patient identity is anonymous.   
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Table 2. Annotations of human AD sera. All donors were tested negative for genetic predispositions 

for neurodegenerative diseases. 

Lot Nr. Age Gender 
Weight 

[kg] 
Height 
[cm] 

Year of 
diagnosis Sort of test MRT CT Medication 

Date of 
sampling 

191491 72 m 85 180 2006 CERAD  2006 Aricept 10 mg 10.09.2009 

191492 79 f 65 165 2008 CERAD 2008 2008 Aricept 10 mg 10.09.2009 

191493 76 m 64 168 2008 CERAD 2007 2007 Aricept 10 mg 10.09.2009 

191494 80 m 80 176 2009 CERAD  2009 Aricept 10 mg 10.09.2009 

191680 87 f 64 179 2007 MMSE, CDT  2006 Aricept 5 mg 05.10.2009 

191724 72 m 80 165 2003 MMSE, CDT 2004  Aricept 10 mg 08.10.2009 

191739 76 m 69 168 2007 MMSE, CDT  2007 
Ebixa 20 mg, 

Melpiron 25 mg 12.10.2009 

191817 77 m 78 182 2008 CERAD 2008  Aricept 10 mg 26.10.2009 

191828 81 f 64 163 2005 CERAD  2005 Exelon 9 mg 27.10.2009 

191829 77 f 60 158 2007 CERAD  2008 Aricept 5 mg 27.10.2009 

191830 82 m 73 170 2008 CERAD  2008 Aricept 5 mg 26.10.2009 

191836 70 m 65 175 2009 MMSE, CDT 2009  Remenyl 16 mg 27.10.2009 

191849 86 m 62 162 2009 CERAD   Remenyl 16 mg 29.10.2009 

191862 85 f 60 160 2008 CERAD  2008 Aricept 10 mg 30.10.2009 

191863 85 f 61 165 2009 MMSE, CDT  2009 Exelon 9 mg 28.10.2009 

191865 81 f 65 168 2009 CERAD 2009  Aricept 5 mg 29.10.2009 

191866 77 f 80 152 2007 CERAD  2007 Aricept 10 mg 29.10.2009 

191868 79 f 56 159 2007 CERAD 2007  Aricept 10 mg 30.10.2009 

191874 84 f 73 164 2009 MMSE, CDT  2008 none 30.10.2009 

192010 72 f 70 163 2009 MMSE, CDT  2009 none 06.11.2009 

Table 3. Annotations of human MS sera. All donors were tested positive for MRT visible lesions.   

Lot Nr. Age Gender 
Weight 

[kg] 
Height 
[cm] 

Year of 
diagnosis Subtype VEP 

OCB in 
CSF Last relapse Medication 

170171 38 f 50 163 1998 RRMS  positive 1998 Copaxone 

170172 39 f 67 164 1992 RRMS pathologic positive 2002 Copaxone 

170175 47 f 85 170 1986 RRMS   2007 Betaferon 

170176 44 f 90 160 2000 RRMS  negative 2005 Copaxone 

170178 42 f   2005 RRMS normal positive 2007 Rebif 44 

170179 44 m 76 178 2002 SPMS   2006 Betaferon 

170180 42 f 60 170 1995 RRMS normal positive  Rebif 44 

170181 45 f 75 178 2004 RRMS normal  2006 Rebif 22 

170184 38 f 59 172 2002 RRMS pathologic positive 2004 none 

170186 53 m 80 175 1985 RRMS  positive 2004 Copaxone 

170187 45 f 63 160 2004 SPMS normal positive 2006 Rebif 44 

170192 25 f 62 168 2006 RRMS  positive 2006 Betaferon 

170195 32 f 52 158 2003 RRMS  positive 2003 Rebif 22 

170196 50 m 71 170 1985 RRMS normal positive 2007 Copaxone 

170197 47 f 80 175 1970 SPMS  positive 90’s Mitoxanthron 

170198 29 m 95 187 1999 SPMS  positive 2005 Betaferon 

170199 50 f 68 164 2007 RRMS  positive 2007 Betaferon 

170202 71 f  160 1983 SPMS pathologic positive  none 

170230 38 f 70 165 2001  pathologic positive 2007 Rebif 44 



Materials 
 

 
 

50 

170204 30 f 72 171 2004 RRMS pathologic positive 2007 Octagam 10G 

Table 4. Annotations of human Healthy sera. All donors were tested negative with the CERAD test 

and had no other diagnosed neurodegenerative diseases at donation point. 

Lot Nr. Age Gender Year of test and donation 

151002 75 m 2005 

151006 77 f 2005 

151010 75 f 2005 

151014 76 f 2005 

151015 73 f 2005 

151016 83 m 2005 

151017 87 f 2005 

151018 77 f 2005 

151022 77 m 2005 

151034 79 f 2005 

155/05 73 m 2005 

167/05 75 m 2005 

174/05 64 m 2005 

181/05 65 f 2005 

182/05 70 m 2005 

188/05 64 m 2005 

193/05 69 f 2005 

194/05 68 f 2005 

198/05 69 f 2005 

204/05 67 m 2005 

3.9. Antibodies 

Antibody Species origin Manufacturer 

Anti-GAPDH mouse, monoclonal RDI, USA 

Anti-GFP rabbit, polyclonal Invitrogen, Life Technologies, USA 

Anti-GFP native 3E6 mouse, monoclonal MP Biomedicals, USA 

Anti-GFP denatured 11E5 mouse, monoclonal MP Biomedicals, USA 

Anti-His6-HRP mouse, monoclonal Miltenyi Biotec GmbH, GER 

Anti-His6-RGS mouse, monoclonal Qiagen N.V., Hilden, GER 

Anti-human-IgA goat, polyclonal Pierce, Thermo Scientific, USA 

Anti-human-IgA-AP goat, polyclonal Sigma Aldrich, Munich, GER 

Anti-human-IgA-HRP rabbit, polyclonal DakoCytomation, Glostrup, DK 

Anti-human-IgG rabbit, polyclonal Pierce, Thermo Scientific, USA 
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Anti-human-IgG-AP goat, polyclonal Sigma Aldrich, Munich, GER 

Anti-human-IgG-HRP rabbit, polyclonal Dako Cytomation, Glostrup, DK 

Anti-M13 mouse, monoclonal Amersham Biotech, UK  

Anti-M13-HRP mouse, monoclonal GE Healthcare, Munich, GER 

Anti-mouse-HRP rabbit, polyclonal Sigma Aldrich, Munich, GER 

Anti-mouse-IgG goat, polyclonal Pierce, Thermo Scientific, USA 

Anti-pIII mouse, monoclonal MoBiTec, Göttingen, GER 

Anti-Tubulin mouse, monoclonal BioCarta, San Diego, USA  

Anti-rabbit-HRP goat, polyclonal AbCam, Cambridge, UK 

Anti-Ubiquitin mouse, monoclonal Calbiochem, Merck Millipore, GER 

Purified human IgA human, polyclonal Sigma Aldrich, Munich, GER 

Purified human IgG human, polyclonal Sigma Aldrich, Munich, GER 

3.10. Magnetic beads and affinity columns 

Product Manufacturer 

Dynabeads® MyOneTM Tosylactivated, 2 ml,  

100 mg/ml 

Invitrogen, Life Technologies, USA 

Ni-NTA Superflow Cartridges ,1 ml Qiagen N.V., Hilden, GER 

3.11. DNA and protein markers 

Product Manufacturer 

Gene Ruler 1 kb DNA Ladder Fermentas, Thermo Fisher Scientific, USA 

Gene Ruler 100 bp Plus DNA Ladder Fermentas, Thermo Fisher Scientific, USA 

Precision Plus Protein Ladder Bio-Rad Laboratories GmbH, Munich, GER 
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3.12. Kits 

Kit name Manufacturer 

AttoPhos Substrate Set Roche Diagnostics GmbH, Mannheim, GER 

CN/DAB Substrate Kit Pierce, Thermo Fisher Scientific, USA 

Human IgA ELISA Kit Dunn Labortechnik GmbH, Asbach, GER 

Human IgG ELISA Kit Dunn Labortechnik GmbH, Asbach, GER 

Nucleo Spin Extract II Macherey-Nagel GmbH, Düren, GER  

Pierce Silver Stain Kit Pierce, Thermo Fisher Scientific, USA 

Qiagen Plasmid Maxi Kit Qiagen V.N., Hilden, GER 

QIAprep Spin Miniprep Kit Qiagen V.N., Hilden, GER 

QIAquick Gel Extraction Kit Qiagen V.N., Hilden, GER 

QIAquick PCR Purification Kit Qiagen V.N., Hilden, GER 

3.13. Enzymes 

Unless stated otherwise, enzyme reactions were performed in accordant enzyme buffers, 

provided by same manufacturer.  

Enzyme Manufacturer 

Antarctic Phosphatase FastAP® NEB, Ipswich, UK 

BamHI NEB, Ipswich, UK 

BsrGI NEB, Ipswich, UK 

EcoRI NEB, Ipswich, UK 

Gateway® LR Clonase® II Enzyme Mix Invitrogen, Life Technologies, USA 

HindIII NEB, Ipswich, UK 

Lysozyme   Sigma Aldrich, Munich, GER 

NcoI NEB, Ipswich, UK 

NheI NEB, Ipswich, UK 

NotI NEB, Ipswich, UK 

Phusion Hot Start Polymerase NEB, Ipswich, UK 

PMSF Sigma Aldrich, Munich, GER 

Proteases Inhibitor Cocktail Roche, Basel, SWI 

Proteinase K Invitrogen, Life Technologies, USA 
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Recombinant Taq Polymerase In-house production, MPI-MG 

SacI NEB, Ipswich, UK 

SalI NEB, Ipswich, UK 

SfiI NEB, Ipswich, UK 

T4 DNA Ligase NEB, Ipswich, UK 

XhoI NEB, Ipswich, UK 

XmaI NEB, Ipswich, UK 

3.14. Oligonucleotides 

Unless stated otherwise, primers were produced by Eurofins MWG GmbH, Ebersberg, GER. 

They were delivered in a lyophilized form and diluted in ddH2O to an appropriate stock 

concentration.   

Primer name DNA Sequence 5’ →  3’ 

Fos_seq GCTCTGCGGTGGTTTGACCG 

LMB3 CAGGAAACAGCTATGAC 

M13UP (-21) CGACGTTGTAAAACGACGACGGCCAGT 

NcoI-AttR1-for CAGCCGGCCATGGCCACAAGT 

NcoI-CmR-back ATTTGCCCATGGTGAAAACGGGG 

NcoI-CmR-for CCGTTTTCACCATGGGCAAATATT 

NheI-pLac-for CGTTATTATGCTAGCTAGTAACACGAC 

NotI-AttR2-back TCGATTGCGGCCGCTTAACTCTA 

pHEN_seq CTATGCGGCCCCATTCA 

pIT2-DsbA-back ATATGCTATCCCATGGCCGGCTGGGCCTGCTGATGCTGAAAAAGCTAAGACTAA 

pIT2-DsbA-for GCAGTATTAAAGCTTGCATGCAAATTCTATTTCAAGGAGACAGTCATAATGAAAAAA
ATTTGGTTA 

pJuFo-3’ GTAAAACGACGGCCAGT 

pJuFo-DsbA-back-1 AGCTAATGCTAACCAAATTTTTTTCATTATGACTGTCTCCTT 

pJuFo-DsbA-back-2 CTGATGCTGAAAAAGCTAAGACTAATCCAGCTAATGCTAA 

pJuFo-DsbA-back-3 ACTAACATAGAGCTCGGCGATGGCTGCTGATGCTGAAA 

pJuFo-XmaI-for ATTGACACGCCCGGGCGACGGATC 

pJuFo-TorA-back-1 TGCCTGAAAGAGATCGTTATTGTTCATTATGACTGTCTCCTT 

pJuFo-TorA-back-2 GCCGCCGAGTTGTGCCAGAAAACGCCGACGTGATGCCTGAAAGAG 

pJuFo-TorA-back-3 TGACGGCCCCAGCATCCCGGCGACGGTTAAGCCGCCGAGTTG 
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pJuFo-TorA-back-4 TCGCGGCGTTAACAATGACGGCCCCAG 

pJuFo-TorA-back-5 CTAACATAGAGCTCGATGGCTTGCGCCGCAGTCGCACGTCGCGGCGTTAA 

pJuFo-XbaI-back AATTGTGTCTAGACCACTTTGTACAAGAAAGCTGA 

pQE65 TGAGCGGATAACAATTTCACACAG 

pQE276 GGCAACCGAGCGTTCAC 

RBS-back TATGACTGTCTCCTTGGCGACTAGCT 

3.15. Laboratory equipment 

Product Manufacturer 

Agarose gel electrophoresis chambers In-house production, MPI-MG 

ÄKTApurifier  GE Healthcare, Munich, GER 

Autoclave FNR 4336E Tecnomara, Wallisellen, SUI 

Autoclave Typ 23 Melag GmbH, Berlin, GER 

Bi-Distillation system In-house production, MPI-MG 

BioPhotometer Eppendorf AG, Hamburg, GER 

Branson Sonifier 250 Heinemann GmbH, Schwäbisch Gmünd, GER 

CCD camera  LAS 1000 Fujifilm, Düsseldorf, GER 

Centrifuge 5424 Eppendorf AG, Hamburg, GER 

Centrifuge 5810 R with cooling system Eppendorf AG, Hamburg, GER 

Digital pH-/mV-/Thermometer GMH 3510 Greisinger Electronic GmbH, Regenstauf, GER 

Electrophoresis power supply: EPS 200, EPS 
300, EPS 301, EPS 600 

GE Healthcare, Munich, GER 

Freezer -80°C Format Thermo Fisher Scientific, USA 

Gel Doc 2000 Gel Documentation System Bio-Rad Laboratories GmbH, Munich, GER  

Incubator Shaker 4430 Innova, Eppendorf AG, Hamburg, GER 

King Fisher Flex Magnetic Particle Processor Thermo Fisher Scientific, USA 

Magnet rack Dynal® MPC-S for 6 x 1.5 ml tubes Invitrogen, Life Technologies, USA 

Magnetic stirrer hot plate Stuart SM3 Stuart, Bibby Scientific Lim., Staffordshire, UK  

Magnetic stirrer Hotplate MR 3001 Heidolph, Frankfurt am Main, GER 

Microcentrifuge SD for PCR tubes Carl Roth, Karlsruhe, GER 

Microflow Laminar Flow Workstation Kendro Laboratory Products, Langenselbold, 
GER 

MicroPulserTM Electroporator Bio-Rad Laboratories GmbH, Munich, GER  

Minishaker Vortexer MS1 IKA, Staufen, GER 
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MTP reader Spectramax 200 Molecular Devices, Sunnyvale, USA 

Multichannel pipettes 5 – 50 µl, 20 – 200 µl Abimed, Langenfeld, GER 

NanoDrop ND-1000 Thermo Fisher Scientific, USA 

NANOpure DIamond Reinstwassersystem  Werner, GER 

Peltier Cooled Incubator IPP500 Memmert GmbH, Schwabach, GER 

Pipetboy acu Integra Biosciences AG, Fernwald, GER 

Pipettes 200 µl, 1 ml Eppendorf AG, Hamburg, GER 

Pipettes PIPETMAN® 2 µl, 10 µl, 20 µl, 200 µl, 
1 ml, 5 ml 

Gilson, Middelton, UK 

Plate Thermo-Shaker PST-60HL Plus BioSan, Riga, LV 

Plate Thermo-Shaker PST-60HL-4 BioSan, Riga, LV 

Polar Star Omega Microplate Reader BMG Labtech, Ortenberg, GER 

Rocky shaker Fröbel Labortechnik, Wasserburg, GER 

Roller TMR-V IDL, Nidderau, GER 

Rotator Labor-Brand, Gießen, GER 

Rotilabo® centrifuge with butterfly-rotor Carl Roth, Karlsruhe, GER 

Self-contained ice flaker 120 kg AF20 Scotsman Ice Systems, USA 

Wet blotting device for protein gels TE 70 Hoeffer Inc, Holliston, USA 

SUB universal water bath Grant Instruments, Cambridge, UK 

Thermo cycler PTC-200 MJ Research Inc., Quebeck, CAN  

Thermomixer Comfort, 1.5 ml and 2 ml Eppendorf AG, Hamburg, GER 

UVL-21 black-ray lamp  Ultra Violet Products, Keswick, AUS 

Weighing device Adventure Pro AV812 Ohaus, USA 

X Cell SureLockTM Electrophoresis Mini Cell Invitrogen, Life Technologies, USA 

X Cell4 SureLockTM Electrophoresis Midi Cell Invitrogen, Life Technologies, USA 

3.16. Software 

Product Developer 

Adobe Acrobat Adobe Systems Inc., San Jose, USA 

AIDA Image Analyzer Raytest, Berlin, GER 

BindIt 3.1 Kingfisher Remote Control Thermo Fisher Scientific, USA 

BLAST NCBI, Bethesda, USA 

Endnote X2.0.2 Thomson Reuters Inc., New York City, USA 
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GraphPad Prism 5 GraphPad Software Inc., La Jolla, USA 

Ingenuity Pathway Analyses, IPA® Ingenuity Systems, Qiagen, USA 

Microsoft Office 2007: Word, Excel, Power Point, 
Access 

Microsoft Inc., Redmond, USA 

SoftMax Pro 4.8 MindVision Software, Lincoln, USA 

TextPad  Helios Software Solutions, Longridge, UK 

Vector NTI Advance 11 Invitrogen, Life Technologies, USA 
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4. Methods 

4.1. Molecular biology based methods 

4.1.1. DNA purification 

DNA was extracted and purified by different methods, depending on experimental assay. If 

required, PCR amplicons were directly purified with the QIAquick PCR Purification Kit. 

4.1.1.1. DNA extraction from agarose gel 

Prior to ligation, PCR amplicons and cloning vectors were enzymatically digested and 

fragments were separated by agarose gel electrophoresis, as described in 4.1.4. DNA was 

visualized under UV light (254 nm) with Gel Doc 2000. DNA bands of interest were cut out 

from the gel with a clean scalpel using an UV light lamp (365 nm) and the gel piece was 

weighed. Purification was performed with the Nucleo Spin Extract II Kit according to 

manufacturer’s protocol. Finally, DNA concentration was determined on Nanodrop ND-1000.      

4.1.1.2. DNA precipitation with ethanol 

Ethanol precipitation was applied after LR recombination or ligation reactions and prior to 

transformation in E. coli, in order to purify DNA material from buffer salts and residual 

reactants. First, the following reagents were added to the reaction sample: 

• 7.5 M ammonium acetate in a 1:10 ratio    

• 2 – 3 µl Glyco Blue 

• 100% Ethanol (pure grade) in a 2.5:1 ratio 

Next, sample was snapped frozen in liquid nitrogen. The blue pellet, containing precipitated 

DNA, was centrifuged at 12,000 rpm and RT for 10 min. The pellet was washed once again 

with 20 µl 70% Ethanol (pure grade), dried and finally resuspended in TE buffer in an 

appropriate volume (usually 5 µl). 

4.1.1.3. Plasmid purification 

To propagate smaller plasmid amounts, 5 – 6 ml E. coli cultures were grown at 180 rpm and 

37°C ON. Next day, bacterial cells were pelleted by centrifugation at 4,000 rpm and RT for 

30 min. Plasmid extraction was performed with the QIAprep Spin Miniprep Kit according to 

manufacturer’s instructions. Elution volume was usually set at 50 µl. For larger plasmid 

amounts 100 ml E. coli cultures were applied. Purification was performed with the Qiagen 

Plasmid Maxi Kit according to manufacturer’s instructions. Concentration of plasmid DNA 

was measured on Nanodrop ND-1000.  
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4.1.2. DNA digestion with restriction enzymes 

Restriction of DNA was performed to prepare inserts and vector backbones for ligation, as 

well as to control cloning results. Standard restriction protocol for a 50 µl reaction: 

• 0.5 – 1 µg DNA 

• 1 – 5 U restriction enzyme 

• 5 µl accordant reaction buffer 

• 1:100 BSA (optional) 

Reaction sample was thoroughly mixed and incubated at 37°C (or another appropriate 

temperature, according to the enzyme applied) for at least 2 h, but usually ON. Cleavage 

efficiency was examined by agarose gel electrophoresis.  

4.1.3. Dephosphorylation of digested plasmids 

To prevent re-ligation of linearized vectors, dephosphorylation of the 5’-end was performed 

with the thermosensitive Antarctic Phosphatase, if needed. For this, 1 µl enzyme (5 U) was 

added to ca. 1 µg digested plasmid, mixed and incubated at 37°C for 10 min. Finally, the 

enzyme was heat inactivated at 75°C for 5 min.  

4.1.4. DNA separation in agarose gel electrophoresis 

In order to separate DNA fragments after enzymatic restriction of PCR amplicons and/or 

cloning vectors prior to ligation, agarose gel electrophoresis was performed. For this, a 1% 

agarose gel was prepared in TBE buffer (or in TAE buffer to better visualize larger 

fragments) and Ethidium bromide was added (ca. 1 µg/ml final concentration). DNA samples 

were mixed with loading dye in a 1:6 ratio and loaded in gel pockets. Electrophoresis was 

performed in the same buffer at 80 – 120 V for 20 – 40 min. Results were analyzed with Gel 

Doc 2000 under UV light. 

4.1.5. DNA amplification by polymerase chain reaction (PCR) 

PCR was applied for analytic as well as preparatory purposes on a thermal cycler. Hot start 

and heated lid were used for improved amplification efficiency. When error-free amplification 

was an issue, e.g. insert generation for cloning, the Phusion Hot Start polymerase with 

proofreading activity was applied. In all other cases, e.g. analytic PCR and sample 

preparation for NGS, the in-house purified Taq-polymerase was used. Enzymes were added 

to the reaction samples last, just prior to PCR start. Standard PCR protocol for a 50 µl 

reaction: 
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• 1x polymerase reaction buffer 

• 4 µl dNTPs (200 µM each) 

• 1 µl forward primer (10 pmol) 

• 1 µl backward primer (10 pmol) 

• 0.5 – 1 µl DNA template (50 – 100 ng) 

• 0.5 µl DNA polymerase 

Depending on primer characteristics in the accordant PCR, an appropriate annealing 

temperature was chosen, usually ranging between 50°C – 65°C. Standard PCR program for 

30 amplification cycles:  

Reaction step Time Temperature 

1. Initial denaturation (Hot Start) 3 min 95°C 

2. Denaturation 1 min 95°C 

3. Annealing 1 min 50°C – 65°C 

4. Elongation 1 min 72°C 

5. Repeat steps 2 – 4  29 cycles -  

6. Final elongation 10 min 72°C 

7. Preservation open end 4°C 

4.1.6. DNA ligation 

Ligation between a vector backbone and an insert of interest was carried out after enzymatic 

restriction of both DNA fragments with appropriate endonucleases. The vector amount was 

set at 50 ng and the insert amount was calculated by using a 1:4 ratio according to the 

following formula: 

Insert amount [ng] = 4 x Insert size [bp] x Vector amount [ng] 
             Vector size [bp] 

Ligation was usually performed at 16°C ON. Standard ligation protocol for a 10 µl reaction: 

• 1 x T4 DNA ligase buffer 

• 1 – 2 µl vector DNA 

• 1 – 5 µl insert DNA 

• 1 µl T4 DNA ligase 

All ligation experiments were accompanied by two negative controls: one sample without an 

insert, to control vector re-ligation and another sample without an enzyme, to control overall 

reaction background.    
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4.1.7. Gateway LR recombination 

To generate phagemid vectors, the Gateway® Cloning System (Invitrogen, Life Sciences, 

USA) was applied. In a rapid one-step LR-reaction two inserts, located between special 

attachment sites in two different plasmids, are recombined, i.e. change places. Thus, no 

time-consuming restriction/ligation procedures are needed and potential pitfalls, such as 

undesired restriction sites within the ORF of interest, are not an issue.     

 

Fig. 9 LR recombination. Picture source: Gateway Technology Manual, Invitrogen, Life 
Technologies, May 2010 [219]. 

Five different destination vectors (pDEST) were generated in this thesis. Two different types 

of entry clones (pENTR) were applied in different experiments. pENTR/OCAA and 

pENTR/OCAB, carrying the human full-ORF library, were obtained commercially from 

Imagenes/Source Biosciences, UK. pENTR/EGFP was previously generated in our research 

group by Miriam Baradari. 

LR reactions were performed according to manufacturer’s instructions with each of the five 

destination vectors and each of the entry clones, or entry clone pools respectively, in 

equimolar ratios: 50 – 150 fmol DNA. Standard LR reaction protocol for a 10 µl reaction: 

• 1 x LR reaction buffer 

• 1 – 2 µl pDONR vector 

• 1 – 2 µl pENTR clone(s) 

• 1 µl LR Clonase mix 

• 6 – 4 µl TE buffer 

Samples were left at 25°C ON. Next day reaction was stopped with 1 µl Proteinase K at 37°C 

for 10 min and subsequent enzyme inactivation at 75°C for 5 min. Recombinant DNA was 

purified via ethanol precipitation. Electro-competent E. coli cells of the ccdB-sensitive strain 

DH10B were finally transformed and plated on 2xYT/Glu agar plates with appropriate 

antibiotics added. All LR experiments were accompanied by two controls. For a negative 

control, no LR Clonase was added to the sample. For a positive control of the destination 

vectors, pENTR/GUS, with an insert for ß-Glucoronidase, was applied instead of the other 

entry clone(s).  
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4.1.8. DNA Sanger sequencing 

Plasmid DNA was sequenced to prove cloning accuracy of newly generated vectors and 

libraries. For this, 100 – 200 ng DNA and 10 µl of each sequencing primer (10 µM) was given 

to the in-house sequencing facility (MPI-MG, Berlin) or sent to Eurofins MWG Operon GmbH, 

Hamburg. Obtained sequencing traces were analyzed with the Contig Express software 

(VectorNTI, Invitrogen Life Sciences, USA).    

4.1.9. Preparation of electro-competent E. coli cells 

All used E. coli strains were transformed by electroporation. To produce electro-competent 

cells, an ON pre-culture was prepared first: 50 ml of 2xYT medium without additives, 

inoculated with bacterial cells from a glycerol stock. Next day, 500 ml of pre-heated 2xYT 

medium was inoculated with the ON pre-culture and grown at 37°C until OD600 of ~0.5 was 

reached. Culture was chilled on ice for 30 min and centrifuged at 4,000 rpm and 4°C for 

20 min. Bacterial pellets were gently resuspended in 125 ml ice-cold Millipore water and 

incubated on ice for further 15 min. Another centrifugation step followed, as described above. 

Now, pellets were resuspended in 50 ml ice-cold Millipore water and kept on ice again for 

15 min. After another centrifugation step, pellets were resuspended in 25 ml ice-cold 10% 

glycerol solution (in Millipore water), kept on ice for 15 min and centrifuged for the last time. 

Pellets were resuspended in overall 2 ml ice-cold 10% glycerol (in Millipore water). 50 µl 

aliquots were prepared as shot samples, ready for electroporation, and snapped frozen in 

liquid nitrogen. Aliquots were stored at -80°C until further use. 

Transformation efficiency was determined for each new preparation. For this, one aliquot 

(50 µl) of electrocompetent cells was transformed by electroporation with 1 ng pUC18 

plasmid. 50 µl cell culture were plated on 2xYT/Amp agar plates and incubated at 37°C ON. 

Next day, cell colonies were counted and transformation efficiency was calculated as 

[cfu/µg DNA]. 

4.1.10. Transformation of E. coli cells by electroporation 

One aliquot of electro-competent E. coli cells (50 µl) was ice-thawed and mixed gently with 

0.5 - 2 µl plasmid DNA (50 – 100 ng). Incubation on ice for 1 min followed. Next, cells-DNA-

mix was transferred to ice-cold electroporation cuvettes (1 mm). Electroporation was 

immediately performed on a MicroPulserTM Electroporator at 1.5 kV for 5 msec. After that, 

cell suspension was spilled out with 1 ml SOC medium (without additives) and transferred to 

a 1.5 ml Eppendorf tube. Culture was incubated at 37°C for 1 h. After regeneration, 

transformed bacteria were spread on 2xYT/Glu agar plates with the appropriate antibiotics 
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added, usually in three different dilutions: 50 µl, 100 µl and residual 900 µl (centrifuged down 

to approx. 100 µl volume, prior to plating). Cells were grown at 37°C ON. Negative controls 

from ligation and/or LR recombination reactions were treated in parallel.   

First cloning and transformation efficiencies were verified on next day by colony counting and 

colony PCR. For detailed analysis, single transformants were picked, grown up to 5 ml ON 

cultures. Recombinant plasmids were purified and analyzed by PCR, analytical restriction 

digest and Sanger sequencing.          

4.2. Protein biochemistry based methods 

4.2.1. IPTG-induced protein expression in E.coli cells 

Since all used expression vectors contained a lac promoter, recombinant expression was 

induced with IPTG. For this, 100 – 200 ml 2xYT medium with the appropriate antibiotics, but 

without glucose, was inoculated with the accordant ON culture. Bacteria were grown at 

180 rpm and 37°C until OD600 = 0.6 – 0.8 and expression was induced with 1 mM IPTG (final 

concentration). Induced cultures were further agitated at different conditions, depending on 

experimental procedure: at 16°C or 37°C and 3h or ON.  

EGFP was recombinantly expressed as a cytoplasmic protein in BL21 Star E. coli cells from 

a vector without a leader peptide (pRSET/EGFP). Periplasmic EGFP expression was 

performed in the non-suppressor strain HB2151 from pYG phagemid vectors, containing one 

of the three leader peptides: pelB, DsbA or TorA.  

Human brain cDNA products from the hEX1 library were cytoplasmically expressed from the 

pQE30NST vector in the SCS1 E. coli strain, carrying the helper plasmid pSE111.  

Single human full-ORF proteins were available as pENTR223/hOHS clones. For expression, 

selected clones were cloned via LR recombination into the pRSET-BH6 vector and 

transformed into BL21 Star E. coli cells.     

4.2.2. Protein extraction under native and denatured conditions 

4.2.2.1. Cytoplasmic protein extraction  

For native protein extraction of cytoplasmically expressed proteins, cell pellet from a 50 ml 

expression culture was lysed in 3 ml native lysis buffer using 30 µl lysozyme (20 µg/ml). 

Proteases inhibitor cocktail in a 1:100 dilution and 1 mM PMSF (inhibitor of serine proteases, 

final concentration) were added. After 30 min of incubation on ice, suspension was sonicated 

three times for 20 sec with 20 sec intervals on ice. Lysed cells were centrifuged at 2,200 rpm 
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and 4°C for 5 min. Cell debris (pellet) was either discarded or resuspended in 8 M Urea and 

saved for further analysis. Soluble protein fraction (supernatant) was stored at 4°C until use.  

For extraction under denatured conditions, cell pellets were resuspended in 500 µl of an 8 M 

Urea solution. Suspensions were sonicated for 15 min in a water bath. Lysates were 

centrifuged as described above and soluble fractions were stored for further analysis.   

4.2.2.2. Periplasmic protein extraction  

Cells were harvested by centrifugation as described above and pellets were gently 

resuspended in ice-cold 2 ml TES buffer per 50 ml culture pellet. Next, 3 ml of water-diluted 

TES buffer (1:5) were added and left on ice for 30 min. After centrifugation at 14,000 rpm and 

4°C for 20 min, supernatants with the periplasmic fraction were separated from the 

spheroblasts in the pellets. Fractions were analyzed on a SDS gel and/or stored at 4°C until 

further use.   

4.2.3. IMAC purification of recombinant His6-tagged proteins 

Since all recombinant proteins were His6-tagged, immobilized metal ion chromatographic 

affinity purification with Ni-NTA-Agarose (for EGFP) in batch or with Ni-NTA-columns on an 

FPLC system (for cDNA products of the hEX1 library and for human full-ORF proteins) was 

performed. 

4.2.3.1. Purification with Ni-NTA-Agarose at gravity flow (batch purification) 

Soluble protein fractions were mixed with 500 µl 50% Ni-NTA-Agarose per 50 ml expression 

culture. Samples were incubated slowly rotating for one hour at 4°C for binding. Next, 

suspension was transferred to 5 ml PP columns and flow-through was collected. Protein-

bound Ni-NTA-Agarose was washed twice with 4 ml washing buffer. Aliquots of washing 

flow-through fractions were collected for later analysis. Finally, 1 ml elution buffer was added 

and mixture was incubated slowly rotating at 4°C for one hour. First 1 ml elution fraction was 

collected. Elution buffer was added further 2 – 3 times and fractions were collected. Samples 

were stored at 4°C until use.       

4.2.3.1. Purification with Ni-NTA columns on an FPLC system 

All buffers, applied at the ÄKTApurifier FPLC system, were sterile filtered, degassed and kept 

at 4°C. 1 ml Ni-NTA Superflow cartridge was washed with 15 CV (column volumes) of 0.5 M 

NaOH solution at a flow rate of 0.5 ml/min and equilibrated with 10 CV of native binding 

buffer prior to sample loading. Soluble protein fractions were additionally centrifuged to 

remove larger particles and loaded in a 10 ml loop, connected to the FPLC system and run 
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over the Ni-NTA column at a flow rate of 0.5 ml/min. After binding, the cartridge was washed 

with 2 CV washing buffer. Bound protein was eluted in gradient pH (pH 6.5 → pH 4.3) with 

elution buffer, containing 250 mM Imidazole, at a flow rate of 0.5 ml/min. Elution procedure 

was monitored by light absorption at 280 nm. All flow-through, washing and elution fractions 

were collected and stored at 4°C for further analysis.       

4.2.4. Concentrating proteins 

To concentrate protein eluates, pooled from the elution peak fractions, two different methods 

were applied. In case of purified EGFP, pooled eluates were loaded in a dialysis tubing with 

a cutoff of 3.5 kDa and put on a bed of solid PEG 6000. Liquid volume reduction was 

monitored and stopped at desired stage. Concentrated protein solution was transferred from 

the tubing into a PP tube.  

Pooled eluates of purified hEX1 cDNA products and full-ORF proteins were concentrated 

using Amicon® concentration columns with a cutoff of 10 kDa. Protein concentrations were 

measured on Nanodrop.     

4.2.5. Protein separation in SDS PAGE 

Samples of protein fractions were mixed 4:1 with Laemmli loading buffer, boiled at 95°C for 

5 min, cooled down and loaded on a self-made 12% SDS gel for general analysis or on a 

readymade NuPAGE 4% – 12% gradient gel (Invitrogen, Life Sciences), if higher resolution 

was desired. In the first case Laemmli running buffer was applied. NuPAGE gels were run in 

1 x MES buffer. Electrophoresis was performed at 200 V for 45 – 60 min.  

4.2.6. Coomassie staining 

For general visualization of overall protein content in the samples, SDS gels were stained 

with Coomassie brilliant blue R-250 dyeing solution after electrophoresis. For this, gels were 

incubated in Coomassie for 20 – 30 min under continuous linear shaking. Destaining 

followed by exchanging Coomassie with a destain solution until protein bands became visible 

and gel background pale enough. Gels were documented with a CCD camera and stored in 

water, if required. 

4.2.6. Silver staining 

For more sensitive staining of overall protein content in the samples, SDS gels were stained 

with the Pierce Silver Stain Kit according to manufacturer’s instructions and documented with 

a CCD camera.  
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4.2.8. Western blot 

For immuno-detection, proteins, separated in an SDS-PAGE, were transferred onto a 

Hybond ECL nitrocellulose membrane in a wet blotting procedure. SDS gel and membrane 

were put together and arranged between two sheets of Whatmann paper, soaked in transfer 

buffer, in a blotting clam. Clam was placed in the blotting chamber in a way to direct proteins 

from gel to membrane and from anode to cathode, accordingly. Transfer was performed at 

400 mA for 45 – 60 min. After transfer, membranes were blocked in PTM buffer at 4°C for 2 –

 3 h or ON by slowly rocking. Next, membrane was washed twice in PBS-T. Detection was 

performed with a single HRP-conjugated antibody only or a primary unconjugated and a 

following secondary HRP-conjugated antibody. All antibodies were diluted in PTM according 

to supplier’s recommendations and incubated with the membrane for one hour by slowly 

rocking. Membrane was washed twice in PBS after each incubation step. Final detection was 

performed with the CN/DAB Substrate Kit according to manufacturer’s instructions. Color 

development was stopped with water at desired stage and membrane was scanned for 

documentation.      

4.2.9. Protein ELISA  

In all steps 100 µl solution per well was applied. 96-well Maxisorp MTPs (flat polystyrene 

bottom, clear) were coated with 1 µg antigen per well. Coating was performed at 37°C for 

1 h. Washing procedure followed with 1 x PBS-T and 2 x PBS. Next, plate was blocked with 

2% PTM and/or with 0.2 mg/ml BSA at 4°C for 2 h or ON. Human sera were diluted 1:100 in 

PBS. Prior to application, diluted sera were pre-incubated with a supernatant fraction from 

non-recombinant E. coli cell lysates (approx. 450 µg/ml overall protein amount) for 1 h. Since 

recombinant expression of antigens was carried out in a bacterial host, this pre-incubation 

step was necessary to block α-E. coli sera antibodies, which were still present in the purified 

protein samples and could potentially falsify ELISA results. Hybridization was performed for 

one hour at RT and at slowly linear rocking. Another washing step followed, as described 

above. Secondary antibodies applied, were α-hu-IgG-HRP and α-hu-IgA-HRP, diluted in 

PTM according to manufacturer’s instructions. Incubation was performed for one hour at RT. 

Plate was washed one last time. ABTS-substrate-solution was prepared according to 

manufacturer’s instructions: one ABTS-tablet was solved in overall 20 ml mix of 50 mM citric 

acid and 50 mM sodium citrate and 10 µl H2O2 were added. Solution was immediately 

pipetted to the wells and color development was measured at 405 nm on ELISA reader. 

Further measurements were taken at 5, 10, 15, 30, 45, 60 and 90 min after adding the 

substrate. Meanwhile plate was kept in darkness to minimize substrate oxidation by light. 

Data was analyzed with the SoftMax Pro 4.8 software.        
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4.2.10. Determination of total immunoglobulin titers in blood sera 

Total titers of all immunoglobulin classes were determined in all 60 human blood sera. For 

this, ELISA kits, based on immunoperoxidase assays, were used (Dunn Labortechnik GmbH, 

Asbach, GER). Sera samples were diluted as follows: 1:80,000 for IgG ELISA; 1:10,000 for 

IgA and IgM ELISA; 1:2,000 for IgD ELISA and 1:200 for IgE ELISA. Assays were performed 

according to manufacturer’s instructions. 

4.3. Protein macroarray technology 

4.3.1. Protein macroarrays hybridization with human sera  

Dried protein filters with a spotted expression library were first wetted in 70% ethanol 

(technical grade) for 10 – 15 min, washed in ddH2O to remove alcohol and transferred into 

TBST buffer. Lyophilized bacterial colonies were cautiously wiped off from filter surface with 

Kimtech wipes under mild pressure. Filters were washed in 25 ml TBST by slowly rocking 

until no E. coli debris were visible and solution remained clear. Next, filters were blocked in 

50 ml blocking buffer (BP) for 3 h.  

Five human sera from each of the three cohorts were screened on protein macroarrays in 

duplicate, which is identical serum under same conditions on two different filters. 

Table 5. Human sera, screened on protein macroarrays. Lot numbers are shown. Sera No. 1 and 2 

were screened in a phage display selection as well (s. Table 6).  

No. AD MS Healthy 

1 191492 170171 151010 

2 191494 170175 151014 

3 191491 170172 151002 

4 191493 170176 151006 

5 191724 170178 151015 

All sera were diluted 1:100 in 25 ml BP. Each serum dilution was incubated with two filters, 

back to back, slow rocking at 4°C ON. Next day, serum dilutions were collected in 50 ml 

falcon tubes and frozen away at -20°C for possible reapplication. Hybridized filters were 

washed 2 times in 25 ml TBST at RT for 15 min. Incubation with the detection antibody, α-hu-

IgG-AP or α-hu-IgA-AP (1:1,000 dilution in BP), followed slow rocking at RT for 1 h. Next, 

filters were washed twice in TBST, once in TBS and transferred into AttoPhos buffer. 2.5 ml 

AttoPhos substrate (Roche) was diluted in 50 ml AttoPhos buffer and kept in darkness to 

avoid substrate oxidation by light. Each filter was incubated shortly in 7 ml AttoPhos 

substrate solution, so that smooth distribution over the whole filter surface was visible. Signal 
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detection was performed with the CCD camera LAS-1000 (Fujifilm), using a yellow filter. 

Digital images were saved in a 16-bit grayscale mode.    

4.3.2. Data analysis with AIDA Image Analyzer 

The software package AIDA Image Analyzer (Raytest) was used for array analysis. For this, 

a new grid template was constructed in collaboration with the software provider (Melanie 

Busse, Imagenes/Source BioScience). Next, clone annotations were imported in an 

appropriate format and linked to the grid template to match the 5 x 5 spotting pattern around 

the guiding ink spot. This allowed a rapid identification of positive hits by simply clicking on 

the white spots, in contrast to the background clones, which remained grey. A hit was 

considered positive only if both spots in the correct double pattern were visibly white and 

possessed a comparable color intensity. Background was defined as 10 different dots with 

the lowest intensities on the current filter and deviated from measured color intensities by the 

software. Filter evaluations were exported as result tables in an MS Excel format and saved. 

To simplify further quantitative analysis, intensities, determined by AIDA, were split in three 

categories: 1 for weak signals (lowest 33%), 2 for medium signals and 3 for strong signals 

(upper 33%).      

4.4. Filamentous phage display based methods 

4.4.1. Preparation of M13K07 helper phage 

1:10 dilution series from a M13K07 Helper phage stock (NEB) were prepared first. To 4 ml 

melt top agar 200 µl of TG1 ( in the log growth phase, i.e. OD600 ~0.6) culture and 100 µl of 

phage dilution (10-7 – 10-11) were added, mixed and distributed evenly on 2xYT agar plates. 

After incubation at 37°C ON, phage plaques in the bacterial loan became visible. Phage 

material from multiple single plaques was picked, inoculated in 4 ml liquid 2YT/Kan medium 

and grown at 30°C ON. Next day, cells were harvested by centrifugation at 4,000 rpm. For 

phage precipitation, 20% PEG 6 000/2,5 M NaCl was added to the supernatant in a 1:6 ratio 

and incubated on ice for 1 h. After a 30 min centrifugation, white phage pellet became visible. 

Supernatant was discarded and the pellet was left to dry prior resuspension in PBS. Phage 

suspension was centrifuged 5 – 7 times at 12,000 rpm to remove residual bacteria until 

supernatant became totally clear. Finally, phage concentration was determined by titration.  

4.4.2. Phage titer determination 

In order to determine phage titers, 1:10 dilution series of the newly generated phage 

suspension were prepared, mixed 1:1 with a fresh TG1 cell culture and incubated at RT for 

30 min for infection. 10 µl of each dilution step were then dropped on a 2xYT/Kan agar plate, 
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left to dry and incubated at 37°C ON. Next day, cell colonies were counted. Taking dilution 

factors into account, phage titers were finally calculated as [pfu/ml]. To analyze phage 

suspension purity and bacterial background, negative controls were also included. For 

this,10 µl uninfected cells, as well as pure PBS, were dropped in parallel and colony growth 

was monitored on next day.  

Since infection with Hyperphage leads to poor infectivity of the recombinant phages, the 

usual titration assay could not be used in the case of EGFP-presenting phages. Instead, 

phage titer was determined using a phage-capture-ELISA. 96-well ELISA Maxisorp plates 

(NUNC) were coated with 10 µg/ml unconjugated mouse α-M13 mAb (Amersham) at RT for 

1 h and then blocked with 2% PTM for another hour. Three washing steps with PBST 

followed. Meanwhile 1:10 dilution series of phage suspension were prepared. As a reference, 

a non-recombinant M13KO7 helper phage suspension with known titer was used in parallel. 

Phages were allowed to bind for 1 h, whereupon the plate was washed three more times in 

PBST. Next, second antibody was applied: HRP-conjugated mouse α-M13 mAb (GE 

Healthcare) in a 1:5,000 dilution. After an hour of incubation the plate was washed three 

times and ABTS-substrate (prepared according to the manufacturer instructions, Sigma) was 

applied. Color development was measured on an ELISA reader at a wavelength of 405 nm: 

15, 30, 45 and 60 min after applying the substrate. Data was analyzed with the SoftMax Pro 

4.8 software. 

4.4.3. Preparation of recombinant M13 phages 

LR reactions were performed with each of the five pYG destination vectors and each of the 

four full-ORF-containing pENTR-vector pools or pENTR/EGFP respectively in equimolar 

ratios (50 – 150 fmol of DNA), as described above. Electro-competent cells of the ccdB-

sensitive E. coli strain DH10B were transformed with 80 – 100 ng recombinant plasmid DNA 

using the Micropulser Electroporator and incubated in 1 ml SOC medium at 37°C for 1 h.  

Meanwhile, large NUNC-plates (24 x 24 cm) were prepared. After cleaning up with 70% 

ethanol (technical grade), 30 min sterilization under UV light followed. Sterile plates were 

filled with ~100 ml 2xYT/Glu/Amp agar per plate and left to dry under the Microflow 

Workstation. 1 – 2 ml cell suspension per one NUNC-plate were spread evenly using small 

glass beads and incubated at 37°C ON. Next day, plates were examined for absence of 

undesirable satellite colonies. Further, transformants were counted and fold coverages of the 

source libraries were estimated. Colonies were then scraped off with a lazy spreader into 

100 ml pre-warmed 2xYT/Glu/Amp medium. After a gentle agitation at 37°C for 1 h, cells 

were harvested by centrifugation and plasmids were rescued from the cell pellets using 

Qiagen® Plasmid Maxi Kit (Qiagen).  
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Next, plasmids were re-transformed into the E. coli strains XL1Blue or TG1, suitable for 

phage display, under the same conditions as described above. This time 100 µl cell 

suspension were plated per one NUNC-plate, hence 10 plates per library were generated. 

After ON incubation, transformation efficiencies and fold coverages were again estimated: 

approx. 105
 colonies per plate, if the plate was covered by almost a continuous bacterial 

lawn, hence 106 per transformed library. Colonies from one library (10 plates) were scraped 

off with lazy spreader into 500 ml pre-warmed 2YT/Glu/Amp medium and agitated for 45 min. 

Cells were centrifuged at 4,000 rpm for 30 min and cell pellets resuspended in a total of 

50 ml 2YT/Glu medium with 15% Glycerol added. 500 µl cryo vial aliquots were prepared and 

glycerol stocks were stored at -70°C until further use.  

To generate recombinant full-ORF/M13 phages, one glycerol stock aliquot of phagemid 

containing XL1Blue or TG1 cells was first resuspended in 200 ml pre-warmed 2YT/Glu/Amp 

medium and agitated at 180 rpm and 37°C until an OD600 of 0.4 – 0.6 was reached. Cell 

suspensions were distributed in four 50 ml falcon tubes. To each tube 2,5 x 1011 pfu M13K07 

helper phage was added, mixed by inverting the tube and incubated without shaking at 37°C 

for 30 min. Next, cells were harvested at 4,000 rpm for 15 min and resuspended in overall 

200 ml pre-warmed 2YT/Amp/Kan medium, containing only 0.1% glucose. Infected cells 

were grown at 300 rpm and 37°C ON. Next day, cells were harvested at 4,000 rpm for 

30 min. Phages from the supernatant were prepared and titrated as described above and 

stored at 4°C until further use.  

Recombinant EGFP/M13 phages were generated in the same way with the following 

difference: 50 ml cell culture was infected with 1010 phages of the Hyperphage M13K07∆pIII 

(Progen Biotechnik). 

4.4.4. Loading of tosyl-activated magnetic beads with human autoantibodies 

Tosylactivated Dynabeads® MyOneTM (Invitrogen, Life Technologies) were treated according 

to manufacturer’s instructions. Coupling principle is demonstrated in Fig. 10 below. 
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Fig. 10 Coupling principle of tosylactivated magnetic beads. Hydroxy groups of 

superparamagnetic polysterene beads, coated with a polyurethane layer, are activated by reaction 

with p-toluensulphonyl chloride to produce tosyl groups on bead surface. In the course of bead 

coupling the sulphonyl ester reacts with the amino group of the target ligand (e.g. antibody). As a 

result, the tosyl group is replaced with the ligand and tosylic acid is released as a by-product. Hence, 

target proteins are chemically and physically bound to the magnetic beads surface. Covalent bond 

formation is accelerated by higher temperatures and alkaline pH conditions. Picture source: modified 

from Dynabeads® MyOneTM Manual, Invitrogen Dynal, Life Technologies, 2006 [220] 

37 mg magnetic beads (375 µl) were transferred to a 1.5 ml tube and placed on a magnet 

rack. After supernatant became clear, it was carefully withdrawn without disturbing the beads 

pellet. Beads were resuspended in 750 µl coating buffer by vortexing. Initial washing step 

was repeated three more times. Beads were resuspended in a final volume of 150 µl.  

According to manufacturer’s instructions, 25 mg beads can optimally bind 1 mg antibody. 

Hence, 37 mg beads in 150 µl coating buffer were mixed with 1.5 mg pure primary antibody 

(α-hu-IgG; α-hu-IgA or α-mouse-IgG). For a total coating volume of 936 µl following standard 

protocol was applied:     

• 150 µl magnetic beads (37 mg) 

• 1.5 mg pure primary antibody  

• 312 µl (NH4)2SO4 (1 M final concentration) 

• fill up to 936 µl with coating buffer and mix by inverting 

Coating was performed with slow tilt rotation in a 37°C-room for 24 h. After incubation, tube 

was placed on a magnet rack and supernatant was withdrawn and stored at 4°C for possible 

reapplication and WB analysis. Next, coated beads were incubated in blocking buffer, again 

with slow tilt rotation in a 37°C-room ON. Next day, beads were washed three times in 

washing buffer and finally resuspended in 750 µl (cbeads = 50 µg/µl). Suspension was stored 

at 4°C until further use or loaded immediately with the secondary antibody.   
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Secondary coating was performed just prior to bio-panning procedure. 1 mg coated beads 

would optimally capture 1 – 20 µg serum antibody (manufacturer’s instructions). Accordingly, 

50 µl coated beads (2.5 mg) were placed on the magnet rack and supernatant was 

withdrawn. Coated beads pellet was directly resuspended in 500 µl human serum, diluted 

1:100 in PBS (cbeads = 5 µg/µl). Suspension was incubated with slow tilt rotation at RT for 1 h. 

Next, serum supernatant was withdrawn and stored at 4°C for further use and analysis. 

Loaded beads were washed three times and resuspended finally in 500 µl sterile PBS 

(cbeads = 5 µg/µl or 5 x 106 loaded bead particles per µl). Beads were now loaded with human 

serum auto-antibodies and ready to apply in phage display selection. Human sera were used 

for at least two coating rounds. Thus, same serum aliquot was applied once with α-hu-IgG-

coated beads and once again with α-hu-IgA-coated beads. Cross-reactivities of the 

commercially obtained α-human antibodies were tested previously.   

For positive controls, beads were coated with primary α-mouse-IgG antibody, as described 

above. Secondary antibodies applied were α-GAPDH, α-Tubulin and α-Ubiquitin. All three 

antibodies were monoclonal and produced in mouse. 50 µl coated beads (2.5 mg) were 

resuspended in 500 µl with 1 µl secondary antibody (1:500 dilution).  

Coating efficiency was verified in a WB procedure after each coating step. For this, coated 

and/or loaded beads (2 – 3 µl) were mixed with SDS-loading buffer, boiled for 5 min and 

pipetted directly into the SDS-gel pockets. For comparison, supernatants from the accordant 

coating steps were loaded on the gel as well.        

4.4.5. Bio-panning procedures 

Prior to selection, full-ORF phage libraries were pre-absorbed with magnetic beads, coated 

only with the primary antibodies α-hu-IgG and α-hu-IgA. For this, 1.5 ml phage library 

suspension were mixed with 1.5 ml 2 x PTM, containing 2% BSA. 10 µl accordant beads 

were added and incubation was performed with slow tilt rotation at RT for 1 h. Finally, beads 

were withdrawn with a magnet and pre-absorbed phage supernatant was applied in the 

following bio-panning procedure.      

4.4.5.1. Semi-automated selection on a magnetic particle processor  

Four selection rounds were performed with each of the five phage libraries against two 

autoantibody classes (IgG and IgA), captured from two blood sera from each donor cohort 

(AD, MS and healthy), respectively. All sera, shown in Table 6 below, were screened on 

protein macroarrays as well (s. Table 5).     
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Table 6. Human sera, screened with phage display. Serum lot numbers are shown.  

No. AD MS Healthy 

1 191492 170171 151010 

2 191494 170175 151014 

Bio-panning was conducted in a semi-automated manner on the Kingfisher Flex magnetic 

particle processor, depicted in Fig. 11 below.  

 

Fig. 11 KingFisher Flex magnetic particle processor. Picture source: modified from Thermo 

Scientific KingFisher Flex User Manual, Thermo Scientific, 2010 [221].  

First, 96-well PP NUNC-plates with the interacting partners were prepared according to the 

pipetting schema in Fig. 12. MTP well volume was set at 200 µl. Plates were placed in the 

accordant station positions on the turning table of the KingFisher processor and a program 

for the 1st selection round was started. 

Table 7. Program protocol for the 1st selection round on the KingFisher magnetic particle 
processor.  

Station Plate  Charging Protocol step Time [min] 

1 Bead plate Beads, loaded with human sera autoantibodies in 1 x PTM Blocking beads  60 

2 Phage plate Pre-absorbed full-ORF/pYG phage libraries in 1 x PTM Beads-phages interaction  60 

3 Wash plate PBST Washing beads with bound phages  10 

4 Release plate PBS Waiting position  max. 120 

5 E. coli plate XL1 Blue cell culture with OD600 = 0.5 – 0.7 Infection with selected phages 60 

With each subsequent selection round, one additional washing step in PBST was included. 

E. coli plate had to be prepared during antecedent steps in a way to match temporally the 

required growth stage of the bacteria with the release step of the beads-bound phages. Also 

positive and negative controls were included to monitor selection procedure. Fig. 12 below 

shows the resulting interaction schema, upon which preparation of plates was based. 
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Fig. 12 MTP loading schema during selection on the KingFisher particle processor. A circle 

represents one MTP well. AD1 is AD serum No. 1, which is 191491, and so forth (s. Table 5). 

C = control samples. Positive controls were beads loaded with: mouse α-GAPDH (Glyceraldehyde 3-

phosphate dehydrogenase), mouse α-TUB (Tubulin) or mouse α-UBI (Ubiquitin) antibodies. Negative 

controls were pure E. coli cultures without any beads or phages. A. Bio-panning with pYG-LZ phage 

libraries. Each full-ORF/pYG-LZ phage library (upper identifier) contained both clones with and 

without stop codons. Example: in well A1 (upper left corner) pYG-LZ-pelB phages, presenting the full-

ORF library OCAA (clones with and w/o stops), encountered magnetic beads, loaded with IgG 

autoantibodies from the AD1 (hence 191491) human serum. B. Bio-panning with pYG-fusion phage 
libraries. In these vector constructs only clones without C-terminal stop codons were applied. Hence, 

each full-ORF/pYG-fusion phage library contained clones w/o stops from both OCAA and OCAB. 

Example: in well A1 (upper left corner) pYG-fusion-pelB phages, presenting the full-ORF libraries 

OCAA and OCAB (clones w/o stops), encountered magnetic beads, loaded with IgG autoantibodies 

from the AD1 (i.e. 191491) human serum. 

After 60 min incubation of beads-bound phages in bacterial culture for infection, the E. coli 

plate was removed from the KingFisher robot. Next steps were performed manually. 20 µl of 

10 x Amp/Glu solution per well were added and plates were incubated in a plate 

thermoshaker at 37°C for 2.5 h. Next, 200 µl of pre-warmed 2xYT/Amp/Glu medium per well 

was added and mixed. Half of the volume, hence 200 µl, were transferred to a new MTP and 

incubated in a plate thermoshaker (back up culture MTP) at 30°C ON. Original MTP with the 

residual 200 µl per well was infected with M13K07 helper phage to further propagate 

selected recombinant phages. For this, 1010 cfu M13K07 per well were added and incubated 

without shaking at RT for 30 min. Next, plate was centrifuged at 2,000 rpm for 3 min. 

Supernatants were withdrawn and the cell/bead pellets were resuspended in 220 µl fresh 

2xYT/Amp/Kan medium, containing only 0.1% glucose, per well. Finally, culture plate was 

incubated in a plate thermoshaker at 30°C ON.    



Methods 
 

 
 

74 

Next day, all 200 µl from the back up MTP were transferred to PCR stripes. 20 µl 10 x HMFM 

solution were added per tube and stripes were stored at -70°C until needed. On the other 

hand, ON culture plate was centrifuged at 2,000 rpm for 3 min. Supernatants, now containing 

propagated recombinant phages from the 1st round, were processed further. 95 µl were 

transferred to another MTP for later ELISA analysis and stored at 4°C until use. 10 µl were 

transferred to PCR-tubes for later titration analysis and also stored at 4°C. Remaining 90 –

100 µl were transferred to a new NUNC plate and mixed with 100 µl 2 x PTM, now ready for 

the 2nd selection round (Phage plate). Prior to bio-panning start, loaded beads were rotated 

slowly for one hour at RT for resuspension and equilibration. 2nd selection round was 

performed in analogy to the 1st round, yet with one additional washing step in PBST. 3rd and 

4th selection rounds were performed subsequently in the following days according to the 

described protocol gradually increasing rounds of washing.  

4.4.5.2. Polyclonal phage ELISA 

Polyclonal phage ELISAs were performed to monitor enrichment. To prevent bacterial 

contamination and/or proteolytic degradation, the assay was usually carried out on next day 

after the accordant selection round. Wells were filled according to the schema, depicted in 

Fig. 13. Again, MTP well volume was set at 200 µl. Plates were placed in the accordant 

station positions on the turning table of the KingFisher processor and an ELISA program was 

started.  

Table 8. Program protocol for ELISA on the KingFisher magnetic particle processor.  

Station Plate  Charging Protocol step Time [min] 

1 Bead plate 
Beads, loaded with human sera autoantibodies (rows A – D) 

or only with α-human antibodies (rows E – H) in 1 x PTM Blocking beads  60 

2 Phage plate Enriched phages from the accordant selection round Beads-phages interaction  60 

3 Wash plate 1 PBST Washing beads with bound phages  10 

4 Wash plate 2 PBST Washing beads with bound phages  10 

5 Antibody plate α-M13-HRP antibody in PTM (1:5 000) Binding phage detection antibody 60 

6 ABTS plate ABTS substrate solution Releasing beads in substrate  30 

A MaxiSorp ELISA plate (ABTS plate) was prepared while steps 1 – 4 were run. First it was 

blocked with PTM for 2 – 3 h and then washed twice in PBST and once in PBS. ABTS 

substrate was prepared according to manufacturer’s instructions and plate was filled with 

200 µl per well. ABTS plate was finally placed on its position in the KingFisher robot just 

shortly before Step 6 was started. Color development lasted for 30 min. Finally, beads were 

withdrawn from solution and measurements were performed on an ELISA reader at 405 nm.  
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Fig. 13 MTP loading schema for ELISA on the KingFisher particle processor. A circle represents 

one MTP well. AD1 is AD serum No. 1, which is 191491, and so forth (s. Table 5). Rd 1 is 1st round of 

selection. Samples (rows A – D) are identical to the accordant ones during bio-panning. Negative 

controls (rows E – H, shaded) are same phage libraries, as in samples, yet with beads coated only 

with α-human antibodies (no serum autoantibodies). Equal beads-concentration in samples and 

controls wells. A. ELISA with enriched pYG-LZ phage libraries. One plate sufficed for one serum 

sample only. Thus, an example with AD1 is shown. Overall 6 ELISAs were finally performed to cover 

all samples. B. ELISA with enriched pYG-fusion phage libraries. One plate sufficed for three sera 

samples. An example with AD1, AD2 and MS1 is shown. Consequently, overall two ELISAs were 

performed to cover all samples.   

To evaluate enrichment in the three positive controls (α-GAPDH, α-Tubulin, α-Ubiquitin 

coated beads), ELISA plates were directly coated with α-GAPDH, α-Tubulin or α-Ubiquitin 

antibodies respectively (1 µg per well). Accordant phage samples from each selection round 

were added. Detection was performed with α-M13-HRP antibody. To determine real ELISA 

data, control-values (wash buffer instead of GAPDH-phage samples) were subtracted from 

sample-values, respectively. Measurements were usually carried out in duplicate.  

4.5. Next generation sequencing on Illumina Genome Analyzer  

Recombinant phage DNA from all initial pYG libraries, as well as enriched phages from the 

2nd and 4th selection rounds, were deep sequenced (NGS) on Illumina Genome Analyzer. 

4.5.1. Preparation of phage-derived full-ORF gene inserts for sequencing 

Sequencing samples were prepared using a standard open PCR protocol. For this, 107 

recombinant phages from each library were used as a template in a 100 µl reaction. 

Amplification was performed in 30 cycles and at an annealing temperature of 55°C in a 



Methods 
 

 
 

76 

thermal cycler with a Taq DNA polymerase. Used oligonucleotide pairs were: [LMB3 x 

pHEN_seq] for the pYG-fusion vectors and [Fos_seq x pJuFo-3’] for the pYG-LZ vectors.  

Amplicons were agarose gel purified using Qiaquick® Gel Extraction Kit. To eliminate 

dispensable backbone sequences, purified amplicons were digested with BsrGI and gel 

purified anew. BsrGI restriction sites are flanking closely the full-ORF inserts in all pYG 

vector constructs. Finally, DNA concentrations were measured on Nanodrop and samples 

were sent for further processing and sequencing to Source BioScience (Nottingham, UK).    

4.5.2. Processing of sequencing samples and applied NGS protocols 

Samples were processed, analyzed and finally sequenced at Source BioScience 

(Nottingham, UK) on the Illumina Genome Analyzer. First, DNA quality and quantity have 

been supervised on a MCE®-202 MulitNA Microchip Electrophoresis System (Schimadzu). 

Next, inserts have been shredded into 75 bp long fragments, adapters were ligated and 

finally, samples were loaded on an Illumina chip. Sequencing has been performed according 

to Nextera or Illumina Truseq protocols.  

4.5.2. Bioinformatical raw data processing 

Sequencing raw data was processed in collaboration with Dr. Steffen Hennig (Imagenes 

GmbH, Berlin). For hits assignment, results have been mapped to the sequences of the 

source OC libraries. Normalization was performed on target sequences length level, hence 

coverages per hit gene have been determined as well.  

4.6. Statistical analysis of final ELISA results  

Results from the final ELISA experiments with autoantigens were analyzed statistically with 

the non-parametric Wilcoxon-Mann-Whitney test applying GraphPad Prism software. This 

test is a modification of the usual t-test and more specific for non-normal, thus non-Gaussian 

distributions. Signal distribution groups (20 sera per group respectively) were analyzed 

pairwise and separately for each of the two antibody classes. The interval of confidence was 

set at 95% and two-sided P-values were estimated. Hence, P-values under 0.05 were 

considered significant. P-values of less than 0.005 were considered as especially significant.   

Another non-parametric statistical test applied, was the Kruskal-Wallis test, extended with the 

so called Dunn correction. Also this test is specific for data distributions of a non-Gaussian 

type. Thus, it is a modification of its parametric equivalent ANOVA one-way analysis of 

variance, which is usually combined with the Bonferroni correction, and an extension to 

Wilcoxon-Mann-Whitney, since it compares multiple data groups simultaneously. Both 
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corrections are applied to control the so called familywise error rate, which often occurs in 

statistical tests with multiple hypotheses. The interval of confidence was set again at 95%. 

The Kruskal-Wallis test was used to reconfirm results, previously obtained with the Wilcoxon-

Mann-Whitney test.                   
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5. Results 

5.1. Determination of total immunoglobulin titers in blood sera 

Prior to all screenings, total immunoglobulin concentrations were measured in all 60 blood 

sera. This was made to test, if there are any notable differences between the different 

cohorts. Another reason for this analysis was to ascertain that IgG and IgA titer in the 15 

sera, screened in this study, were in the normal statistical range for the accordant antibody 

class. Measurements were performed with commercially attained ELISA Ig kits, as described 

in section 4.2.10. Scatter plots in Fig. 14 below show achieved results for IgG and IgA.  

 

Fig. 14 Total IgG and IgA titer in donors’ blood sera. X-axes represent cumulative number of blood 

sera. Y-axes show determined immunoglobulin concentrations in [mg/ml]. Encircled dots represent the 

five sera from each of the three cohorts, which were screened in this study. Lines in black show the 

common range of values for the accordant Ig titer in human blood sera. A. Serum IgG titer. Common 

range for IgG concentration is between 7 – 18 mg/ml. B. Serum IgA titer. Common range for IgA 

concentration is between 0.7 – 4 mg/ml 

Serum titers of the IgM, IgD and IgE classes were determined as well (data not shown). 

Analysis showed no notable variations between cohorts. Thus, titers of all five classes and in 

all samples were in the common range for the accordant antibody or aberrated only slightly.   

5.2. High-throughput autoantibody screening on protein macroarrays 

Five sera from each of the three donor cohorts were screened separately on cDNA 

macroarrays for IgG- and IgA-specific autoantigenicity profiles. Final aim was to identify 

disease-specific autoantigens, which could be potentially useful for AD- and/or MS-diagnostic 

purposes. Here, hits are defined as arrayed cDNA fragments, showing interaction with the 

accordant serum autoantibody class. Fig. 15 below shows an example of a hybridized filter 

and the accordant spotting pattern.   
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Fig. 15 Example of a hybridized high-density protein macroarray. A hEXselect filter is shown, 

which was hybridized with the healthy human serum No. 154014 and detected with α-human-IgA-AP 

antibody. A “hit”, or a “positive clone”, is here a white signal in duplicate, arranged in a specific pattern 

around a dark guiding ink spot. The magnified detail shows a hit, which is pattern No. 4 in the 5 x 5 

arraying pattern. 

During data analysis the focus was laid on differential hits that highlighted in trials with 

diseased sera, but not with healthy ones. Thus, initial examination of overall positive clones 

was performed by plotting hits from diseased sera against those from healthy sera: AD vs. 

Healthy and MS vs. Healthy, respectively. It should be taken into consideration that no sera 

were pooled during screening. Also detections of the two different antibody classes, IgA and 

IgG, were performed separately. Consequently, four different plots were the outcome of this 

analysis, as shown in Fig. 16 below.    
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     IgA autoantigens AD/Healthy (Σ = 1,665 hits)         IgG autoantigens AD/Healthy (Σ = 677 hits) 

100 5 2   1    100 5       

80 4  7 22 6    80 4       

60 3 10 20 19 9 3   60 3 2 2  2 1  

40 2 59 73 34 10 1   40 2 32 14  1   

20 1 533 181 15 4    20 1 374 27 2    

0 0  619 33     0 0  214 5    

n 0 1 2 3 4 5  n 0 1 2 3 4 5 
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       IgA autoantigens MS/Healthy (Σ = 1,382 hits)   IgG autoantigens MS/Healthy (Σ = 1,117 hits) 

100 5 2     1  100 5       

80 4  2 1 14 18 2  80 4       

60 3 1 10 19 17 11   60 3  2 2 2  1 

40 2 44 43 41 46 3   40 2 35 8 4 1   

20 1 541 114 55 24 2   20 1 332 55 15 1   

0 0  324 41 5 1   0 0  588 65 3 3  
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Fig. 16. Summery plots of macroarray screening results. In each table positive clones from 

diseased sera (x-axes) are plotted against healthy sera (y-axes). Both upper tables show AD/Healthy 

and both lower tables show MS/Healthy plotting. Both left tables show hits from IgA screening and 

both right tables show hits from IgG screening. n is the cumulative number of screened sera. 

Accordant percentage is shown at the side. Numbers in the grid are non-redundant counts of positive 

clones. For example, the green circled grid, showing 10, means that ten different clones were found to 

be positive, hence immunoreactive, with 3 AD sera (60%) and with 2 healthy sera (40%) in a 

screening with IgA-detecting antibodies. Most interesting hits are highlighted in red, since they show 

largest differentiation between diseased and healthy samples. 

Next, the most interesting hits, highlighted in red in the tables above, were analyzed in detail. 

To filter potentially interesting genes, following criteria were considered:  

• Frame prediction: Is the positive clone annotated “in frame”? Hence, can the 

hit cDNA fragment be linked to a real gene with biological relevance? 

• Clone redundancy: How many different clones, covering the same gene, are 

spotted on the filter? And how many of these were actually hit during 

screening?  

• Clones in duplicate: Does the positive clone have a real duplicate, spotted on 

the filter? And was it hit as well? 

According to these criteria positive clones were prioritized and finally divided in three groups: 

not specific, potentially specific and highly specific for the accordant donor cohort. For 

example, a CCDC50 gene (Coiled coil domain containing 50) is represented by three 
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different clones, each spotted once on the macroarray. Two of the clones are annotated in-

frame, one is off-frame. All three clones were hit in two different AD sera, but in no healthy 

sera, in an IgA-detecting screening. Hence, on the upper left table they belong to the clones 

in grid 33, highlighted in red. Such genes were determined highly specific, in this case for 

AD. Table 9 below summarizes results from this analysis. 

Table 9. Positive clones analysis from macroarray screening. Numbers represent count of positive 

clones, assigned specific.  
 AD H vs. AD MS H vs. MS 

 IgA IgG IgA IgG IgA IgG IgA IgG 
Highly specific 11 1 2 0 13 3 1 0 

Potentially specific 9 0 20 9 9 13 12 13 

A second analysis of the screening data was performed in parallel as well. This time, all in-

frame hits were selected and assigned to the accordant genes at the beginning (total hit 

genes). Next, a differential score for each antibody class was designed in order to prioritize 

positive hit genes, based on the following formula: 

[(𝐻𝑖𝑡𝑠	  𝑑𝑖𝑠𝑒𝑎𝑠𝑒−𝐻𝑖𝑡𝑠	  ℎ𝑒𝑎𝑙𝑡ℎ𝑦)	  >0]	  ×	  𝑆𝑒𝑟𝑎	  𝑑𝑖𝑠𝑒𝑎𝑠𝑒	  𝑤𝑖𝑡ℎ	  ℎ𝑖𝑡𝑠 

Thus, the difference of all hit clones per gene between a diseased and a healthy serum was 

calculated. Thereby, it was not significant, which clones were hit, as long as they belonged to 

one gene and were in-frame. If the difference was bigger than zero, meaning that a gene is 

positive with more diseased sera than with healthy ones, it was further multiplied with the 

actual number of diseased sera, with which the accordant gene was hit. Consequently, 

genes, hit with more diseased sera, achieved a higher differential score, hence a higher 

priority. For example, if a gene was hit twice with 1 AD serum, once with 3 other AD sera and 

once with 2 Healthy sera, the accordant gene would achieve a differential score of 12:  

(5 – 2) x 4 = 3 x 4 = 12 

All genes with a score over a threshold value of two were considered potentially interesting. 

From these, the ones were further selected, which occurred in only one cohort. Hence, these 

were named “unique” for the accordant donor group. Table 10 below summarizes the results 

from this analysis. 

Table 10. Hit genes analysis from macroarray screening.  

 
Positive clones 

total 
Positive clones  

in frame 
Hit genes 

total 
Hit genes  

diff. score > 2 
Hit genes  

unique 

AD 2,036 971 378  142 88 

MS 2,737 1,125 370  170 72 

Healthy  2,469 1,113 368 
vs. AD 

177 

vs. MS 

151 

vs. AD 

12 

vs. MS 

6 
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Finally, the results from both analyses were compared to each other. Naturally, most of the 

highly specific hits from the first analysis would be present in the list of unique genes from 

the second analysis as well. Some of these most promising candidates were then selected 

for later recombinant expression and ELISA validation, as shown in chapter 5.4.    

The third kind of analysis carried out, was an examination of the interaction pathways, 

represented by the hit genes in the different cohorts. This was based on the assumption that 

in complex multifactorial diseases, such as AD and MS, it is fairly unlikely that one or few 

very prominent biomarker exist. A more plausible expectation would be to identify proteins, 

belonging to certain physiological pathways and/or interaction networks that are affected by 

particular disease conditions. To prove this hypothesis, pathway analyses were performed 

with the Ingenuity software (IPA, Qiagen). For this, unique hit genes from the three accordant 

groups were imported in the IPA software and a general pathway analysis was run with the 

three data sets. In the healthy cohort all 18 genes were imported as one data set. P-values 

for each identified pathway were calculated by the software. Pivotal criteria were the number 

of hit genes, belonging to one discrete pathway, as well as the size of the pathway itself. 

Pathways were not sorted and are therefore a mixture of biochemical, physiological and 

disease relevant interaction networks, as described in the IPA data bank. Pathways with a p-

value over 0.01 were considered significant and are depicted as pie diagrams in Fig. 17 

below.            

     

 

 

 

 

 

 

 

 

 

 



Results 
 

 
 

83 

4% 3% 3% 3% 
2% 

1% 

Alzheimer’s Disease  

processing of rRNA organization of cytoplasm M phase 

processing of RNA organization of nucleus organization of organelle 

organization of cytoskeleton mitosis of tumor cell lines formation of mitotic spindle 

assembly of microtubules microtubule dynamics mitosis 

replication of virus size of cells synthesis of protein 

replication of RNA virus M phase of tumor cell lines exit from mitosis 

mitosis of cervical cancer cell lines alignment of sister chromatids dephosphorylation of DNA fragment 

shape of cells M phase of cervical cancer cell lines assembly of filaments 

disassembly of filaments translation of protein delay in initiation of anaphase 

G1 phase of bone cancer cell lines stress response of cells arrest in mitosis 

depolymerization of microtubules polymerization of microtubules quantity of fat 

cytokinesis exit from mitosis of tumor cell lines extension of axons 

mitosis of bone cancer cell lines repair of DNA fragment sliding of myofilaments 

replication of Influenza A virus initiation of translation of mRNA initiation of translation of protein 

infection of cells extension of cellular protrusions organization of mitotic spindle 

stress response of tumor cell lines formation of filaments expression of mRNA 

splicing of RNA mitosis of embryonic cell lines polymerization of filaments 

testicular cancer proliferation of lymphoma cell lines M phase of bone cancer cell lines 

bundling of microtubules growth of microtubules infection by Marburg virus 

mitosis of epithelial cell lines mitosis of kidney cell lines organization of mitochondria 

sinusitis 

13% 

13% 
12% 

13% 
13% 

13% 

13% 

10% 

hematuria 

quantity of lung cell lines 

arrest in G2/M phase of 
cervical cancer cell lines 

association of cellular 
membrane 

excision repair of DNA 
fragment 

production of siRNA 

separation of sister 
chromatids 

cleavage of DNA fragment 

Healthy 

 

 

 

 

 

 

 

 

 

Fig. 17 IPA analyses of the results from macroarray screening. Percentage pie diagrams 

represent distribution of discrete pathways (biochemical, physiological, disease relevant, etc.) of 

unique hit genes (differential score >2) in the accordant donor cohort. Presented data are negative 

logarithms of the p-values, calculated by IPA. Only pathways with p-values >10-2 were included. 

Arrows mean same percentage in the shown direction up to the next value. Data sets: AD set with 88 

genes, MS set with 72 genes and Healthy set with 18 genes.      

With this, analyses of the macroarrays screening results were completed. From the list of the 

unique hits some most promising AD and MS biomarker candidates were selected for 

bacterial recombinant expression and further validation via antigen ELISA (chapter 5.4.). All 

interesting candidates are listed in the supplementary material.  

5.3. Semi-automated selection of human autoantigens, presented on M13 
phages 

5.3.1. Generation of human full-ORF phagemid libraries 

Prior to bio-panning, novel phagemid libraries had to be generated. These were phage 

display compatible bacterial cell stocks, transformed with phagemid vectors, containing 

human full-ORF inserts from the source OC libraries. Since the full-ORF inserts resided in 
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Gateway pENTR plasmids, ready for LR recombination, new destination vectors (pDEST) 

were created first and called pYG vectors. Two series of the pYG vectors were generated in 

a way to be applicable for both LR reaction and later for POI display on the minor pIII phage 

coat protein. The pYG-fusion series led to a direct catenation of the POI with pIII via a C-

terminal fusion. The pYG-LZ series, on the other hand, linked the POI indirectly to pIII via a 

leucine zipper structure (Fos-Jun). In this case both interaction partners were expressed and 

exported separately to the periplasmic space, where hydrophobic linkage spontaneously took 

place and bound both polypeptides without a direct peptide linkage.  

Furthermore, in both constructs two variants with two different leader sequences for 

periplasmic expression were designed: with the pelB sequence for the Sec export pathway 

and with DsbA for the SRP-dependent pathway. In the pYG-LZ series also a variant with the 

TorA leader sequence was additionally implemented, which utilizes the bacterial TAT export 

machinery. This was not possible in the pYG-fusion construct, since pIII needs the 

periplasmic space for proper folding and assembly with the other coat proteins and has to be 

exported in an unfolded state through the Sec pore. In conclusion, five different pYG 

destination vectors were generated, as shown in Fig. 18 below. 

Another major feature of the pYG destination vectors was a ccdB cassette, comprised of a 

ccdB gene and a chloramphenicol resistance gene (Cm(R)). The ccdB product, toxic for 

ccdB-sensitive E. coli strains like DH10B, is a standard selection feature in the Gateway 

system. Its functionality was important for minimizing the background of non-recombinant 

parental clones in the newly generated phage libraries after LR reaction.       
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Fig. 18 Cloning strategy for the pYG-full-ORF phage vectors. pYG-fusion and pYG-LZ destination 

vectors were constructed at first. Cloning procedures included incorporation of the leader sequences 

(red arrow boxes) in both vector types, a ccdB cassette in the pYG-fusion construct and a stop codon, 

downstream from the full-ORF POI, in the pYG-LZ construct. After validation of the pYG destination 

vectors, LR reactions with each of the pENTR-full-ORF libraries were performed. The final five pYG-

full-ORF library constructs, ready for phage display, are shown at figure bottom.     

Following chapters describe the construction of the pYG destination vectors and the 

subsequent generation of the pYG-full-ORF libraries in detail, including results from 

validating experiments. 

5.3.1.1. Construction of destination pYG-vector series 

pYG-fusion vectors originated from a pIT2 backbone with an inserted mTKIN (Thermomyces 

kinesin-3) gene between a pelB leader sequence and a truncated pIII gene. To generate 

pYG-fusion-pelB, the mTKIN insert was replaced with the ccdB cassette, flanked by LR 

attachment sites attR1 and attR2, using NcoI x NotI restriction. Since both enzymes had 

intrinsic recognition sites in the Cam(R) gene, cloning had to be performed in two 

subsequent steps. Applied primer pairs were: NcoI-AttR1-for x NcoI-CmR-back for the first 

step and NcoI-CmR-for x NotI-AttR2-back for the second.  
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Fig. 19 PCR for cloning the pYG-fusion-pelB vector. A. Analytical PCR after cloning. A PCR 

product of the complete ccdB cassette is shown amplified from the ready-made pYG-fusion-pelB 

plasmid. Primer: NcoI-AttR1-for x NotI-AttR2-back. B. Analytical digest after cloning. Restriction 

with NcoI x NotI of the pYG-fusion-pelB vector leads to four fragments, since there are two recognition 

sites for each enzyme. 

Next, the pYG-fusion-DsbA destination vector was generated. For this, the pelB leader 

sequence in pYG-fusion-pelB was replaced with the amplified fragment of the DsbA leader 

polypeptide, using the primer pairs pIT2-DsbA-for x pIT2-DsbA-back and subsequent 

restriction with HindIII x SfiI.  

 

Fig. 20 PCR for cloning the pYG-fusion-DsbA vector. PCR product of the DsbA fragment, prior to 

digestion and ligation into the pYG-fusion vector backbone is shown.  

pYG-LZ destination vectors originated from the pJuFo-B vector (reading frame B), which 

already contained all necessary features: ccdB cassette, LR attachment sites, truncated pIII 

with an N-terminal pelB and Jun sequences, as well as a pelB leader and a Fos sequence N-

terminal to the ccdB cassette. To allow expression of full-ORF inserts without a C-terminal 

stop codon, a Stop-Serine-Stop (TAG-AGT-TAA) sequence was introduced C-terminal to the 
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ccdB cassette on the pJuFo backbone. This was made applying primer pairs pJuFo-XmaI-for 

x pJuFo-XbaI-back and subsequent restriction with XmaI x XbaI. 

 

Fig. 21 PCR for cloning the pYG-LZ-pelB vector. A PCR product of the fragment, containing the 

Stop-Serine-Stop sequence prior to digestion and ligation is shown. 

To generate pYG-LZ-DsbA and pYG-LZ-TorA, the pelB leader sequence N-terminal to the 

Fos-ccdB-cassette-fragment, was replaced with inserts, containing the DsbA and the TorA 

sequences, respectively. Due to the lack of appropriate restriction sites in this vector region, 

relatively large inserts had to be amplified, containing also the promoter sequence pLac and 

the following RBS (ribosome binding site) site. Hence, the two inserts were generated in 

consecutive PCR reactions, where the prior amplicon was used as a template in the following 

reaction and so on. Forward primer in all PCR reactions was NheI-pLac-for. Sequent 

backwards primers were RBS-back, DsbA-back 1 → 4 and TorA-back 1 → 5, respectively. 

Fig. 21 below shows all TorA-fragments as an example. The complete TorA insert was the 

300 bp large amplicon No.6 on the agarose gel picture below (Fig. 22). Both DsbA and TorA 

inserts were restricted with NheI x SacI.  

 

Fig. 22 Sequent PCR for cloning the pYG-LZ-DsbA/TorA vectors. Only TorA generation is shown 

as an example. First amplicon (200 bp) served as a template for the second and so on. Final TorA 

insert (300 bp) was digested and cloned into the vector backbone. 
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All pYG destination vectors were propagated in the ccdB-resistant E. coli strain DB3.1. After 

transformation, cells were spread on 2xYT agar plates, containing both Ampicillin and 

Chloramphinicol for selection. Single transformants were analyzed applying colony PCR and 

analytical digestion. Newly generated plasmids were rescued and sequenced (Sanger). 

Special attention was paid to correct reading frames of future expression products.  

In order to generate heterogenic libraries of high quality, the background of parental non-

recombinant clones has to be as low as possible. During cloning procedures, this is ensured 

by the negative selection features, chosen in the cloning strategy. The ccdB gene codes for a 

suicide expression product, which inhibits the bacterial gyrase enzyme in sensitive strains. 

Usually, this selection system is highly efficient, providing up to 99% positive selection, and is 

therefore a standard feature in numerous systems, including Gateway®. To verify ccdB 

functionality in the newly generated pYG destination vectors, so-called ccdB-tests were 

performed with each of the five vectors. For this, same amount of pYG-plasmid-DNA was 

transformed into DH10B (ccdB sensitive) and into DB3.1 (ccdB resistant) cells of similar 

efficiencies in parallel. After incubation, same amount from both cell suspensions was spread 

on split 2xYT/Amp/Cam plates. Survival rates were monitored on next day.  

 

Fig. 23 Results of ccdB tests with pYG destination vectors. Photographic images show 

satisfactory results of ccdB functionality tests with each of the five pYG destination vectors. 
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5.3.1.2. LR reactions and phagemid library validation 

LR reactions were carried out with each of the five pYG destination vectors and each of the 

four pooled pENTR/OC libraries, respectively. Recombinant plasmids were then transformed 

in DH10B cells for positive selection and plated out completely on large 2xYT/Amp agar 

plates. On next day, transformants were counted in order to estimate achieved fold 

coverages. Table 11 below shows results from this first amplification step. 

Table 11. Amplification of pYG/OC libraries in DH10B cells. Colony counts and accordant fold 

coverages are shown for each recombinant pYG/OC library after LR recombination and subsequent 

transformation in DH10B cells. Numbers in brackets show original size of the source OC libraries. Only 

libraries without stops were recombined with the two pYG-fusion destination vectors.  

 pENTR/OCAA-w/o-stop 

 (4,929 clones) 

pENTR/OCAA-with-stop  

(6,240 clones) 

pENTR/OCAB-w/o-stop  

(1,152 clones) 

pENTR/OCAB-with-stop  

(1,200 clones) 

 Colony 
count 

Fold 
coverage 

Colony 
count 

Fold 
coverage 

Colony 
count 

Fold 
coverage 

Colony 
count 

Fold 
coverage 

pYG-fusion-pelB 3.1 x 104 6.3  –   –  4.7 x 104 41  –   –  

pYG-fusion-DsbA 3.6 x 104 7.3  –   –  2.7 x 104 23  –   –  

pYG-LZ-pelB 4.6 x 104 9.3 1.3 x 104 2.1 1.3 x 104 10.8 1.9 x 104 15.8 

pYG-LZ-DsbA 5.7 x 104 11.6 4.6 x 104 7.3 2.4 x 104 20.6 7.1 x 10 59 

pYG-LZ-TorA 1.4 x 105 28.4 5 x 104 8 4.8 x 104 41.6 8.5 x 104 70.8 

To gain a deeper insight into libraries’ quality, background and diversity, overall 130 single 

clones from two different plates were randomly picked and sequenced (Sanger):  62 clones 

from the pYG-LZ-DsbA/OCAA plate and 68 clones from the pYG-LZ-DsbA/OCAB plate. 

Sequencing results revealed that 71% of the OCAA clones were unique. 39% of the OCAB 

clones were also picked just once. Furthermore, only one clone appeared to carry an empty 

backbone without any inserts and none was found to be a parental clone, still comprising a 

ccdB cassette. All identified inserts were in the correct reading frame and without any 

mutations or other errors in the DNA sequence.  

It is known for LR reactions that although even very long fragments of up to 10 kb can be 

successfully recombined, reaction speed and efficacy decrease steadily with increasing 

insert size. Therefore, I hypothesized that one major bottleneck would manifest exactly at this 

cloning stage. To prove this, insert size distribution of the sequenced 130 clones were 

calculated and compared to the distribution in the original OC libraries. Results from this 

analysis are depicted as box-and-whiskers plots in Fig. 24 below.          
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Fig. 24 Full-ORF inserts size distributions. Two upper plots show distributions in the two 

recombined pYG-LZ-DsbA/OC libraries among sequenced 62 and 68 clones, respectively. Two lower 

plots show distributions in the two accordant OC source libraries among all clones available. Numbers 

correspond to the standard five distribution parameters: minimum value, 25% percentile, median value 

(highlighted in red), 75% percentile and maximum value.     

In conclusion, inserts size distribution analysis confirmed prior expectations. As Fig. 24 

shows, while the median values of the two source libraries inserts are about 1,248 bp, in the 

sequenced clones these amount only to approx. 340 bp.      

In the next step, pYG/full-ORF plasmids were rescued and re-transformed in XL1 Blue or 

TG1 E. coli cells, convenient for phage display. As expected, further significant multiplication 

of the fold coverages was achieved, as shown in Table 12 below. 

Table 12. pYG/OC libraries amplification in XL1 Blue/TG1 cells. Colony counts and accordant fold 

coverages are shown for each recombinant pYG/OC library after re-transformation in XL1 Blue or TG1 

cells. Numbers in brackets show original size of the source OC libraries. Only libraries without stop 

codons were comprised in the two pYG-fusion destination vectors.  

 pENTR/OCAA-w/o-stop 

 (4,929 clones) 

pENTR/OCAA-with-stop  

(6,240 clones) 

pENTR/OCAB-w/o-stop  

(1,152 clones) 

pENTR/OCAB-with-stop  

(1,200 clones) 

 Colony 

count 

Fold 

coverage 

Colony 

count 

Fold 

coverage 

Colony 

count 

Fold 

coverage 

Colony 

count 

Fold 

coverage 

pYG-fusion-pelB 2 x 106 405  –   –  8.6 x 105 747  –   –  

pYG-fusion-DsbA 4 x 106 811  –   –  2.3 x 106 1,997  –   –  

pYG-LZ-pelB 9 x 105 183 9 x 105 144 106 868 106 833 

pYG-LZ-DsbA 9.7 x 105 197 106 160 9.5 x 105 825 106 833 

pYG-LZ-TorA 106 203 106 160 106 868 106 833 
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To produce full-ORF containing phages, recombinant XL1 Blue or TG1 cells were infected 

with the M13K07 helper phage. These initial libraries were PCR amplified, using phage DNA 

as template, and deep sequenced on an Illumina platform. Thereby, the pYG-fusion-pelB 

library was produced once in TG1 and once in XL1 Blue cells. Both phage preparations were 

sequenced. For all other libraries only the XL1 Blue preparations were sequenced for 

analysis. Approximate read numbers, achieved by NGS usually ranged between 1.5 Mio and 

7.5 Mio reads per library and selection stage. From both pYG-fusion libraries the initial (pre-

selection) stage, as well as the 2nd and the 4th selection rounds were sequenced. From the 

three LZ libraries, beside the initial stage, only the 4th selection round was sequenced.     

Analysis of the gene coverage in the initial libraries, i.e. how many genes from the original 

OC library could be re-identified in phage DNA by NGS, revealed following results:  

 
Fig. 25 Gene coverages in initial pYG/OC libraries. Stacked bar chart shows how many genes in 

total were hit by NGS (left y-axis) in the single libraries and in overall in general (last bar). Further, 

which percentile ratio of the original source OC genes was covered (right y-axis and secondary line in 

red). For example, 5,087 genes were identified by NGS in all pYG/OC libraries in total (dark grey area 

of the “all together” bar). Since the source OC library consists of overall 6,119 genes, 1,032 genes 

were not found (light grey area). Thus, overall gene coverage in the initial phage libraries accounted 

for 83% (red triangle) of the source library.    

The initial libraries were analyzed in two further aspects as well: overall distribution of the full-

ORF insert size (Fig. 26) and distribution of inserts’ native cellular compartments in a 

eukaryotic cell (Fig. 27). Intended purpose for this kind of analysis was to test, if cloning 

procedures had any undesired impact on libraries composition and diversity. On the other 

hand, it was interesting to see, if there are any noticeable differences between the five vector 
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systems applied. For example, if a certain leader peptide or one of the pIII-fusion construct 

types would lead to any biases. All five libraries were compared to each other and to the 

source OC library.      

 
Fig. 26 Full-ORF inserts size (bp) distributions in all pYG/OC initial libraries. Box-and-whiskers 

plots show all five pYG/OC libraries and the source OC library (upper plot) in comparison. Numbers 

correspond to the standard five distribution parameters: minimum value, 25% percentile, median value 

(highlighted in red), 75% percentile and maximum value. 
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Fig. 27 Distribution of predicted native subcellular localizations of the full-ORF proteins. 

Percentiged stacked bar chart shows distributions in all five pYG/OC libraries and the source OC 

library (first bar on the left) in comparison. Annotations source was the UniProt Knowledgebase 

UniProtKB, version from September 2011 [222]. 

With this, analysis of the initial pYG/full-ORF libraries on genetical scale was accomplished. 

Next task, prior to selection, was to test expression efficiencies of the pYG-vectors and the 

functionality of the polypeptides, presented on phage surface. For this a well-studied model 

protein was chosen: EGFP (enhanced green fluorescent protein).  

5.3.1.3. Phagemid libraries evaluation with EGFP 

GFP and its variants can fold correctly and attain fluorescence only if allowed to mature in 

cell cytoplasm [223]. Thus, periplasmic expression functions well when using the TAT 

secretion pathway of E. coli. However neither Sec-, nor SRP-pathways are suitable in this 

case, since they would export the unfolded GFP-polypeptide to the periplasm, which would 

be therefore non-functional and hence, non-fluorescent. To demonstrate the validity of these 

findings for the pYG vector system as well, EGFP was expressed from all five vectors in the 

non-suppressor E. coli strain HB2151 (supE-). Thus, the Amber codon (TAG) between the 

insert and the pIII-protein in the two pYG-fusion-vectors was read as a translational stop 

signal, allowing the expression of a single EGFP polypeptide.  

As expected, EGFP was strongly expressed from all five vectors: expression products were 

found in cell lysates, periplasm fractions and a good deal in the spheroblasts. After 

centrifugation of the induced ON cultures first differences between the five samples could be 

visually observed: only the pYG-LZ-TorA cell pellet was bright green. While the periplasm 

fraction was only slightly greenish, the spheroblasts of this sample remained intensive in 
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color. The other four samples did not show any visible color changes at any stage of the 

expression or periplasm extraction processes.  

 

Fig. 28 Western blot analysis of EGFP expression in E. coli periplasm. EGFP was expressed 

from each pYG-vector and extracted from periplasmic space. Same sample volume was loaded per 

lane. Detection was performed with α-GFP 11E5 antibody (mouse) and subsequent HRP-conjugated 

α-mouse antibody.   

Fluorescence measurements of the periplasm fractions finally confirmed previous 

observations: significant fluorescence could be detected in the TorA-sample only, as pictured 

in Fig. 29 below. All fluorescence measurements were performed in triplicate on an Omega 

Star microplate reader. Standard errors were calculated from standard deviations divided by 

the square root of the sample size.  

 
Fig. 29 Fluorescence measurements of EGFP periplasm fractions. Arbitrary fluorescence units 

(AFU) are assigned on the y-axis. Recombinant EGFP (4.56 µg/ml), expressed in E. coli and IMAC 

purified (Ni-NTA-agarose) served as a positive reference (first bar on the left). Next, measurements in 

EGFP periplasm extractions, expressed from all five pYG vectors are shown (bars 3 – 7). Periplasm 

fraction of non-recombinant E. coli XL1 Blue culture (bar 8) and accordant buffers (bars 2 and 9) 

served as background or negative controls, respectively.    

Given the results from periplasmic EGFP expression, I assumed that this scenario will recur 

also when presenting EGFP on phage surface. Thus, all five pYG/EGFP vectors were 
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transformed in the suppressor E. coli strain XL1Blue (supE), suitable for phage display. To 

achieve multivalent presentation of EGFP, infection was performed with Hyperphage, which 

led to up to five EGFP molecules per phage particle and virtually no wild type pIII on the 

recombinant phages [189]. Resulting EGFP-pIII-constructs were first analyzed on western 

blots under reducing and non-reducing conditions, applying SDS loading buffer with and 

without the reducing agent 2-Mercaptoethanol (Fig. 29).  

 
Fig. 30 Western blot analysis of EGFP presenting pYG phages. Samples on the left were treated 

with 2-Mercaptoethanol (+) prior to boiling and samples on the right were not (-). Lane 6 in the middle 

was charged with non-recombinant Hyperphage for comparison. Approx. 108 phage particles were 

loaded per lane. Detection was performed with a primary mouse α-pIII antibody and a secondary 

HRP-conjugated α-mouse antibody.   

Thus, EGFP could be successfully presented on phage surface, expressed from all five pYG 

constructs. As expected, 2-MeEtOH treatment had no influence on band patterns in the two 

pYG-fusion samples: the pIII-EGFP polypeptide migrated steadily at ca. 78 kDa. On the 

contrary, the three pYG-LZ samples showed a clear shift from ca. 33 kDa (recombinant pIII 

alone) when using 2-MeEtOH, to a ca. 67 kDa band (pIII-EGFP LZ linkage) in a non-reducing 

loading buffer, where the leucine zipper structure remained intact. 

After having proved that EGFP was expressed and presented on all five phage type 

surfaces, the question still remained, if according to my hypothesis EGFP was properly 

folded and thus functional on the pYG-LZ-TorA phages, but not in the other four constructs. 

For this purpose EGFP-phages were further analyzed by ELISA- and fluorescence-assays.  
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Fig. 31 ELISA analysis of EGFP presenting pYG phages. Y-axis shows absorbance at 405 nm. In 

all three measurements first five bars correspond to the five pYG constructs. Approx. 5x108 phages 

were loaded per well. Non-recombinant Hyperphage (bar 6) and PBS (bar 9) were used as negative 

controls. Purified EGFP (4.56 µg/ml) served as a positive control and was loaded in both denatured 

(EGFP denat., bar 7) and native (EGFP nat., bar 8) forms. A. EGFP detection with a polyclonal α-
EGFP antibody, which recognizes both denatured and native EGFP. B. EGFP detection with a 

monoclonal α-EGFP antibody, which recognizes only the conformational epitope 3E6 and thus only 

the folded EGFP form. C. Phage detection with monoclonal α-pIII antibody.      

As expected, the polyclonal EGFP antibody (Fig. 31/A) was able to recognize both EGFP 

forms, denatured (EGFP denat.) and native (EGFP nat.). Also phage-bound EGFP gave 

strong signals with this antibody, demonstrating once again the availability of the molecule on 

the surfaces of all five phage types. Yet, pYG-fusion-DsbA and pYG-LZ-DsbA produced 

distinctly weaker signals, compared to the other three phage samples, with both α-EGFP 
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antibodies. The monoclonal α-EGFP antibody (Fig. 31/B), which recognizes the 

conformational epitope 3E6, bound just as good to the native EGFP control sample, as the 

polyclonal one and virtually not at all to its denatured counterpart. This result, also 

demonstrated recently by Velappan et al. [224], validated the usage of this advantageous 

antibody for the EGFP-phage-samples. All five phage samples revealed well detectable 

signals, yet pYG-LZ-TorA had the strongest one, about three times higher as the other four. 

Hence, the epitope was obviously present in its native state in all five samples and 

sufficiently exposed to be recognized by the antibody. However, the TorA-sample seemed to 

comprise much more molecules with the correctly built epitope. The presence of the correct 

3E6-epitope would not necessarily mean that the overall polypeptide is properly folded or 

even functional and fluorescent. To further prove my hypothesis, fluorescence rates of the 

five EGFP-phage-samples were measured next.  

 
Fig. 32 Fluorescence measurements of pYG/EGFP phage suspensions. Arbitrary fluorescence 

units (AFU) are assigned on the y-axis. Recombinant EGFP (0.456 µg/ml), expressed in E. coli and 

IMAC purified (Ni-NTA-agarose) served as a positive reference (first bar). Next, measurements in 

EGFP presenting pYG-phage suspensions shown (bars 2 – 6). Non-recombinant Hyperphage (bar 7) 

was used as a background control. Measurements in triplicate. 

As shown in Fig. 32 above, only the pYG-LZ-TorA/EGFP phages showed significant 

fluorescence compared with the residual four samples, which only had a background 

fluorescence signal, comparable to the WT-Hyperphage sample.  

Taking all four EGFP-assays together (Fig. 29 – 32), it could be concluded that the pYG-LZ-

TorA vector was the only one in the pYG series, able to produce strongly fluorescent bacteria 

and fluorescent phages.   
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5.3.2. Autoantigens selection procedures 

Potential disease-relevant autoantigens from the human full-ORF OC library were selected 

according to a semi-automated bio-panning protocol on a KingFisher Flex magnetic particle 

processor. For this, prior to selection, tosyl-activated magnetic Dynabeads were loaded with 

human IgG and IgA autoantibodies in a two-step coating procedure. A four round selection 

was finally performed with the full-ORF presenting pYG phages. For better demonstration, 

Fig. 33 below shows schematically the overall structure of the developed bait-target (human 

full-ORF library – human autoantigens) construct. 

 

Fig. 33 Schematic representation of the bait-target construct during bio-panning. Commercially 

obtained α-human IgG and IgA antibodies are coated on magnetic beads. In a subsequent secondary 

coating process human IgG and IgA antibodies are captured from patient sera (AD, MS and healthy 

controls). During the phage display selection human autoantibodies (target) encounter human full-ORF 

proteins (bait), presented via pIII-fusions on the surface of M13 bacteriophages. Source of picture in 

the upper left corner: www.picture-alliance/dpa  

5.3.2.1. Loading magnetic beads with human autoantibodies 

Tosyl-activated MyOne® Dynabeads were used as a solid phase to immobilize serum 

autoantibodies from the three donor cohorts AD, MS and Healthy. Autoantibodies of the IgG 

and IgA classes were applied separately. To capture immunoglobulins from the blood sera 

samples, magnetic beads were first coated with primary anti-human antibodies: α-hu-IgG 

(rabbit) and α-hu-IgA (goat). Another fraction was coated with α-mouse-IgG (goat) for 

positive control of enrichment of GAPDH, Tubulin and Ubiquitin during selection. All three 

polypeptides were present in the initial OC libraries. In a second loading step, which was 

performed just prior to selection start, sample beads fraction was further coated with the 
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accordant human IgG and IgA autoantibodies from donors’ blood sera. The beads fraction for 

the positive controls was coated with the mouse antibodies α-GAPDH, α-Tubilin and α-

Ubiquitin.  

Coupling efficiency of the primary antibodies was monitored in a western blot procedure, as 

shown exemplary in Fig. 34 below. For this, coated beads were treated with reducing SDS 

loading buffer, boiled and pipettet directly into the gel pockets. During electrophoresis, 

uncoupled antibodies migrated into the gel, while blank bead particles remained in the gel 

pockets.  

 

Fig. 34 Western blot analysis of beads coating efficiency with the primary antibody. An example 

is shown of beads, coated with mouse α-hu-IgA antibodies. Beads were loaded in lane 1 (50 µg). Lane 

2 was loaded with 5 µl of the supernatant, left after beads withdrawal from coating solution. Lane 3 

was loaded with 5 µl of the supernatant from subsequent washing step. Detection was performed with 

HRP-conjugated α-mouse antibody, recognizing both heavy and light chains of mouse IgG. Values in 

brackets indicate expected approximate molecular size.  

This kind of qualitative analysis was performed after each new coating procedure to assure 

sufficient beads loading with capture antibodies. As expected, a small fraction of uncoated 

antibodies remained in the supernatant and a further small amount was lost during 

subsequent washing steps. Nevertheless, the bulk of conjugates obviously remained bound 

to the beads and in this case coating was considered satisfactory. 

Coated beads were also analyzed after the second loading step, i.e. incubation of beads, 

coated with primary α-human antibodies, in human serum. Samples for WB were treated in 

the same way as described above. This time, however, serum autoantibodies were detected 

with appropriate counterparts. Also cross-reactivity of the primary antibodies was tested.    
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Fig. 35 Western blot analysis of coating beads with human serum autoantibodies and cross-
reactivity test of the primary α-human antibodies. Beads, coated with α-hu-IgA (A. and B.) or α-hu-

IgG (C.) antibodies were incubated in a human serum to capture accordant autoantibodies. A. 

Detection with HRP-conjugated α-hu-IgG antibody. No IgA autoantibodies could be detected in the 

bead samples, but naturally in the serum control (last lane). B. Detection with AP-conjugated α-hu-

IgA antibody. Same blot was used as in A. to demonstrate successful loading with IgA 

autoantibodies. C. Detection with AP-conjugated α-hu-IgG antibody. Also loading with IgG 

autoantibodies proved successful.  

In conclusion, magnetic beads coating was considered satisfactory and ready to be applied 

as bait in phage display. Since the applied antibodies showed no cross-reactivity towards the 

other immunoglobulin class, reliable discrimination between IgG- and IgA-derived 

autoantigens during selection was expected.        

5.3.2.2. Polyclonal phage ELISA 

After each of the four bio-panning rounds, selection process was monitored in each sample, 

applying polyclonal phage ELISA, as described in section 4.4.5.2. Fig. 36 – 38 below 

illustrate achieved results. 
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Irrespective of vector system, antibody or blood serum, enrichment became visible usually in 

the 4th selection round. In ca. 25% of cases, it could already be observed in the 3rd round. 

Finally, 8% of the samples showed stronger signals in the 3rd than in the 4th round.  

The three positive selection controls with α-GAPDH, α-Tubulin and α-Ubiquitin mouse 

antibodies could not be validated in the same phage ELISA set up. Since the only 

commercially available α-M13-HRP antibody originated from mouse as well, cross-reactivity 

with the primary α-mouse antibody was to be expected. Furthermore, enrichment was 
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monitored exemplary only for the GAPDH control sample. First, open PCR reactions with a 

vector-specific forwards primer (Fos_seq) and an insert-specific backwards primer 

(GAPDH_back) were performed. Templates were two randomly chosen initial libraries and 

their correspondent E. coli colonies from each of the four selection rounds. Furthermore, 

recombinant human GAPDH was detected on a western blot in order to test the α-GAPDH 

antibody, prior to its application in phage ELISA. Results from these two preliminary 

experiments are shown in Fig. 39 below.    

 

Fig. 39 Preliminary tests for GAPDH enrichment validation. A. Colony PCR with Fos_seq x 
GAPDH_back primers. Initial library I: pYG-LZ-pelB/OCAA. Initial library II: pYG-LZ-TorA/OCAB. 

Selection I and selection II correspond to initial libraries respectively. Numbers represent selection 

rounds. B. Western blot of recombinant human GAPDH, expressed in HEK293 cells. Detection 

antibodies: mouse monoclonal α-GAPDH and α-mouse-HRP. This western blot experiment was 

performed by Sunniva Förster during her diploma thesis, which she completed in our research group 

under my supervision [225].  

Thus, the presence of the GAPDH gene in phages of the initial libraries, as well as in cells 

from the bio-panning process was confirmed and general functionality of the α-GAPDH 

antibody was approved. Next, phage ELISA was performed to visualize probable GAPDH 

enrichment in the pYG libraries and to validate overall selection procedure. For this, E. coli 

cultures from selection back up plates were grown up and infected with Hyperphage to 

produce GAPDH-presenting phages. In this case, ELISA plates were coated with the mouse 

α-GAPDH antibody (0.5 µg/well), incubated with GAPDH-presenting Hyperphages 

(50 µl/well) and finally detected with the HRP-conjugated mouse α-M13 antibody. Fig. 40 

below shows achieved results.  
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Fig. 40 Validation of the GAPDH enrichment process. Results from polyclonal phage ELISA with 

GAPDH-presenting phages are shown. Identifiers on the left represent accordant phage library. Rd1 – 

Rd4 represent bio-panning selection rounds. Bar charts show arbitrary absorbance units, measured at 

405 nm (y-axis). Sample are shown as black bars and represent average values from double 

measurements. All measured background values were nearly 0 and therefore not visible. 

GAPDH was also found per NGS with a relatively small amount of reads in all initial libraries: 

13 reads in pYG-fusion-pelB, 2 reads in pYG-fusion-DsbA, 145 reads in pYG-LZ-pelB, 7 

reads in pYG-LZ-DsbA and 24 reads in pYG-LZ-TorA. As Fig. 40 shows, in all selections, 

with the exception of pYG-fusion-DsbA, GAPDH-presenting phages should have been 

produced during the bio-panning process. Enrichment could be observed in all pYG-LZ 

libraries, whereas both pYG-fusion libraries demonstrated the lowest ELISA signals and no 

visible enrichment. Furthermore, it should be taken into consideration that overall signals 

were 1.5 – 2 times lower than in bead ELISAs with serum antibodies (s. Fig. 36 – 38). Still, in 

conclusion, the bio-panning process could be assumed as successful.          

5.3.3. Preparation of DNA samples for sequencing on Illumina Genome Analyzer 

Full-ORF DNA inserts were amplified in an open PCR reaction, as described in section 4.5.1. 

Applied templates were phages of the initial libraries and E. coli cells from the 4th selection 

round. Both PCR primers bound on vector backbone, thus generating ORF-inserts, flanked 

by vector sequences of 100 bp and 160 bp, respectively. In order to get rid of these 

unnecessary DNA pieces, which could potentially hamper sequencing process, restriction 

with the BsrGI endonuclease was performed after each amplification round. Finally, samples 

were loaded anew on an agarose gel and run very shortly to minimize the size of gel pieces 

to be cut out. The whole DNA material with a size between 200 bp and 4 kb was finally 

eluted. Fig. 41 below demonstrates an example of an NGS sample preparation process.  
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Fig. 41 DNA sample preparation for Illumina sequencing. A. PCR amplification results of three 
initial libraries: pYG-LZ-pelB (Initial library I), pYG-LZ-DsbA (Initial library II) and pYG-LZ-TorA (Initial 

library III). B. Same three initial libraries as in A. after digestion with BsrGI. Both ORF-flanking 

regions are clearly visible. C. PCR amplification results of 12 enriched libraries from the 4th 
selection round. Shown examples are all 6 pYG-LZ-libraries, enriched against IgG and IgA 

autoantibodies from the MS-Serum 170171 (s. Fig. 12.A). DNA was eluted between ca. 200 bp and 

ca. 4 kb. 

Final DNA concentration in the eluted samples ranged between 20 ng/µl and 90 ng/µl. 

Median value was estimated at 43 ng/µl. 30 µl of each eluate was sent to Source 

BioScience/Imagenes for further sample processing and subsequent sequencing on an 

Illumina platform.  

5.3.4. Enrichment analysis of NGS results 

Achieved read numbers per library ranged between one thousand and 17.9 million reads with 

a median value of 2.3 million reads. To cull genes, which should have been enriched during 

selection, a cut off of minimum 100 reads per gene was fixed in the results from the 4th 

selection round. Next, read numbers per gene between the initial library and the 4th round 

were compared. Genes with a higher number of reads in the 4th round than in the initial 

library were considered potentially enriched. Finally, genes with a difference of at least 1,000 

reads between the initial library and the accordant 4th round were designated truly enriched 
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and thus, highly interesting for further analysis. Table 13 below summarizes NGS analysis 

results up to this point for each donor cohort. 

Table 13. Analysis of enriched genes in phage display. Shown numbers are cumulative gene 

numbers in the accordant cohort, non-redundant in respect of pYG-library and screening antibody. 

“Uniques” represent genes, identified only in one cohort with an enrichment of over 1,000 reads. All 

uniques with an enrichment of over 1 000 reads are listed in the supplementary material.   

 
4th round ≥  

100 reads 

Reads 4th round >  

Reads initial library 

[Reads 4th round –  

Reads initial library] ≥ 1,000 

Uniques with enrichment 

≥ 1,000 reads 

AD 910 753 190 74 

MS 782 602 155 12 

H 571 363 104 9 

Thus, a comparable number of enriched genes could be identified with NGS in each of the 

three cohorts. Next analysis step was to take a closer look at the enriched genes and finally 

to select appropriate biomarker candidates for expression and re-validation in ELISA assay.     

5.4. Validation of identified biomarker candidates 

5.4.1. Selection of biomarker candidates for recombinant bacterial expression 

Criteria, applied for selecting potentially interesting candidates for single expression and re-

validation from the phage display screening were the following:  

• Unique genes: Only genes, enriched in one of the three cohorts and in none of 

the residual two respectively, were considered. 

• High degree of enrichment: Only the top 20 unique genes with the highest 

difference of read numbers between initial library and accordant 4th round 

library were further analyzed. 

• Biological coherence in the accordant disease context: Each of the unique Top 

20 genes was examined in regard of any known publications, suggesting its 

functional correlation to the correspondent disorder (Sources: Pub Med, 

UniProt). Beside direct disease-linkage also indications such as 

neurodegeneration, neurological and mental disorders, age, 

neuroinflammation, immunological context in general and autoimmunity in 

particular were taken into consideration. 

• Positive sera number: Was the hit gene positive, hence enriched, in one or in 

both screened sera?  
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• Correlation to the macroarray screening: Is the hit gene also expressed on the 

macroarray filter? If yes, is it annotated in frame and how did it perform in the 

macroarray screening? 

Also hit antigens from the macroarray screenings were selected for further validation. 

Priorities were set as already described in chapter 5.2. Finally, candidates for expression and 

re-validation were selected from the “Highly specific and unique” group, listed in tables 19 – 

21 in the supplementary material.     

Following Table 14 summarizes potential biomarker candidates, which were finally chosen 

from both screenings according to the priority criteria, described above. These were 9 

antigens from Alzheimer’s screening (AD) and 3 antigens from Multiple Sclerosis screening 

(MS).  

Table 14. Potential biomarker candidates, chosen for re-validation.  

Biomarker candidate Screening platform Disease Cohort Screening autoantibody No. positive sera 

CCDC50 Macroarray AD IgA 2 

PRDX1 Macroarray AD IgA 2 

TANK Macroarray AD IgA 2 

TRAF4 Macroarray AD IgG 2 

ANXA2 Phage Display AD IgA 1 

DTNBP1 Phage Display AD IgA 1 

GDI1 Phage Display AD IgA 1 

NDRG4 Phage Display AD IgA 1 

PAX6 Phage Display AD IgA 1 

ANKHD1 Macroarray MS IgA 2 

DEAF1 Macroarray MS IgA 2 

IMPACT Macroarray MS IgA 2 

5.4.2. Recombinant bacterial expression, IMAC purification and antigen ELISA of 
selected biomarker candidates 

Frame and construct accuracy were confirmed for all 12 constructs via Sanger sequencing 

prior to expression. This was then performed in the appropriate E. coli strain, as described in 

chapter 4.2.1. Since expression products could be presumably very diverse in regard of 

polypeptide length, folding characteristics, expression and degradation rate and/or possible 
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toxic effects on the host, three different expression conditions after IPTG induction were 

tested for each of the candidates, in order to ascertain the most optimal one. These were: 

I. 3 h at 37°C and 220 rpm 

II. ON at 37°C and 200 rpm 

III. ON at 16°C and 200 rpm 

CCDC50 was the only gene, which could not be expressed under any of the three conditions. 

GDI1 and PAX6 showed only slightly better expression yields under condition I (3h/37°C) 

compared to condition II (ON/37°C). The residual 10 genes were expressed best under 

condition II (ON/37°C). PRDX1, TRAF4, ANXA2 and DTNB1 could be successfully 

expressed under condition III (ON/16°C) as well, but with a much worse performance than 

under I or II. Extensive degradation products were observed only in the case of IMPACT 

under all three conditions. Thus, it was concluded that under condition II (ON/37°C) the best 

or at least very good results could be reached for all 12 expressible antigens. Consequently, 

this condition was used in all following large-scale expression assays. 

All antigens were expressed in the cytoplasm and cell lysis was performed under denaturing 

conditions applying 8 M Urea buffer. Next, expression and purification results for 10 

autoantigens will be presented in detail: 8 from AD screenings and 2 from MS screenings. 

CCDC50 (AD candidate) was excluded, since no expression could be achieved at all. 

IMPACT (MS candidate) was excluded, because of massive degradation products, already 

visible in cell lysates prior to purification (data not shown).  

Antigen ELISAs were performed with all available 60 human sera (20 sera per donor group). 

1 µg antigen was coated per well and 100 µl filling volume, respectively (s. Chapter 4.2.9. for 

details). Measurements were made at 405 nm every five minutes in a time scale between 

5 min and 60 min after adding the ABTS substrate. However, preliminary antibody tests 

showed best performances at the 60 min point (s. Chapter 5.4.3.). All measurements were 

made in duplicate on two separate ELISA plates. Wells, coated with purified human IgG or 

IgA served as positive controls. Wells, coated with an antigen and directly incubated with the 

detecting HRP-antibody, i.e. without human serum, served to determine general ELISA 

background. Both controls were performed anew on each ELISA plate. All following graphs 

show adjusted signal values, resulting from subtracting the ELISA background and 

subsequent estimation of the average value from the double measurement.            

5.4.2.1. PRDX1 

The PRDX1 (peroxiredoxin 1) gene is represented by 20 different cDNA fragments on the 

macroarray filters. 15 clones are annotated “in frame” and 5 are annotated “off frame”, 

respectively. 6 “in frame” clones were hit positive with two different AD-sera in an IgA-
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screening. 2 “off frame” clones were hit positive with the same AD-sera, but also with one 

MS-serum, again in an IgA-screening. Thus, PRDX1 was assigned “highly potential” in the 

macroarray screening. The PRDX1-full-ORF could be identified in the initial phage display 

libraries, but no enrichment was observed in any of the cohorts.  

Peroxiredoxins are an essential part of the oxidative stress pathway and broadly expressed 

in brain tissues. Elevated expression levels have been shown in several neurodegenerative 

diseases, including Alzheimer’s [226]. Furthermore, special rat neurons, resistant to Aß-

toxicity, demonstrated elevated PRDX1 expression levels as well. But also in post mortem 

cortical tissues of AD-patients increased levels of PRDX1 have been estimated [227]. These 

findings suggest a potential role of peroxiredoxins and PRDX1 in particular in possible 

neuroprotective mechanisms in the course of AD.   

Accordingly, PRDX1 was chosen in this study for recombinant expression and further re-

validation as a potential biomarker candidate for Alzheimer’s disease. The selected cDNA 

clone consisted of the whole mRNA sequence, including also the 5’-UTR region. Thus, the 

330 bp long 5’-UTR region, the 117 bp long CDS region and the 36 bp long His-tag 

sequence amounted to a 483 bp long insert, resulting in a ca. 18 kDa big expression product. 

Following Fig. 42 below summarizes the results from PRDX1 expression in E. coli and 

subsequent FPLC purification via a His-tag. The FPLC chromatogram is shown only for this 

antigen as a  demonstration.    
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Fig. 42 PRDX1 expression and affinity purification. A. Silver stained SDS gel with fractions from 

the FPLC affinity purification via a His6-tag. Lysate flowthrough, two subsequent washing steps and 

elution fractions are shown. Accordant FPLC chromatogram overlays gel picture, corresponding 

roughly to it. Elution fractions are highlighted in red, relative protein absorption curve at 280 nm is 

shown in blue and gradually increasing elution buffer curve (i.e. decreasing pH gradient) is shown in 

green. B. Western blot with FPLC fractions, ordered in the same sequence as on the silver stained 

gel. Detecting antibodies: mouse α-His and α-mouse-HRP. 

Thus, PRDX1 could be sufficiently overexpressed and successfully purified from denatured 

E. coli lysates. Antigen purity level was estimated from sensitive silver staining and 

considered high enough to be applied as a coating agent in ELISA. Fractions under the 

elution peak were pooled together and concentrated to an overall volume of approx. 1 ml. 

Final protein concentration accounted for 940 µg/ml.  

For re-validation, ELISA plates were coated with the PRDX1 antigen. Incubation with all 

available human blood sera and detection with HRP-conjugated α-hu-IgG and α-hu-IgA, 

respectively, followed. ELISA signal distributions in the different six groups, differentiated by 

donor cohort and antibody class, were statistically analyzed pairwise with the non-parametric 

Wilcoxon-Mann-Whitney test for each of the two antibodies. Interval of confidence was set at 

95%. Two-sided P-values under 0.05 were considered significant and those under 0.01 as 

especially significant. Confirmation of statistical results was performed with the Kruskal-

Wallis test, extended with a Dunn correction. Next figure shows summarized ELISA results 

as box-and-whiskers-plots. 
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Fig. 43 Signal distribution and statistical analysis of antigen ELISA with PRDX1. Both x-axes 

show arbitrary fluorescence units (AFU), measured at 405 nm. Plot borders correspond to the 

standard five distribution parameters: minimum value, 25% percentile, median value, 75% percentile 

and maximum value. On the left side, only group pairs are shown, which yielded significant P-values in 

the Wilcoxon-Mann-Whitney test (>0.05). Pairs with a P-value between 0.05 and 0.01 (significant) are 

highlighted with one star symbol (*). Those with a P-value, smaller than 0.01 (especially significant), 

are highlighted with two star symbols (**). A. ELISA signal distributions in each cohort with each 

antibody class. Total number of values in each plot accounts for 20 signals from 20 human sera from 

the accordant cohort, tested with the accordant antibody. Arrows show signal values from the same 

five sera in the macroarray screening. Arrows, highlighted in red, are sera with hits in the macroarray 
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screening. B. ELISA signal distributions in each cohort in both antibody classes together. Total 

number of values in each plot accounts for 40 signals from 20 human sera from the accordant cohort.  

Above Fig. 43 shows distinctly that although the PRDX1 antigen was selected in an IgA-

screening, in ELISA format it obviously reacted also with IgG serum antibodies. Furthermore, 

also sera from the MS and Healthy cohorts, which showed no reactions during macroarray 

screening, were reactive in this experimental set up. Statistical analysis revealed that the 

only three pairs of data groups with a significant P-value were AD ↔ Healthy with both 

antibody classes and MS ↔ Healthy with IgA (Fig. 43/B.).  

In order to compare results from the three cohorts on a more comprehensive level, signal 

values from measurements with the particular antibody class were pooled together. This led 

to three signal distribution groups, each including 40 values (Fig. 43/B.). Interestingly, 

achieved P-values in the two pairs AD ↔ Healthy and MS ↔ Healthy were now one order of 

magnitude smaller. Hence, even more significant distinction between the pairs was observed 

with a striking differentiation between Diseased ↔ Non-diseased. On the other hand, no 

significant P-values were estimated in the pairs AD ↔ MS. 

5.4.2.2. TANK 

The TANK (TRAF family member-associated NFκB activator) gene is represented by only 

one “in frame” cDNA clone on the macroarray filter, which is spotted twice as a real 

duplicate. Both identical clones were hit positive with two different AD-sera in an IgA-

screening. Thus, also TANK was assigned “unique and highly potential” in the macroarray 

screening. Interestingly, this clone has been also hit positive in an earlier IgA-screening in 

our research group with pooled sera from patients with Primary Glomerulonephritis, which is 

an autoimmune disorder. The TANK-full-ORF is not present in the source library.  

So far, TANK has not been found to be correlated directly to AD or any other 

neurodegenerative disease. However, as regulator of the TRAF-proteins it is part of the 

NFκB-pathway, thus playing a co-role in numerous immune response processes, such as 

inflammation and apoptosis [228]. Furthermore, as a modulator of synaptic plasticity and 

function, NFκB has been implemented in memory and learning [229, 230]. Finally, TANK was 

very recently shown to be ubiquitously expressed in mouse DRG sensory neurons and to 

have elevated transcription and translation levels after peripheral nerve injury [231]. Thus, 

there are evidences available, confirming the potential role of TANK in neurological and 

possibly psychiatric processes as well.  

The TANK cDNA clone included a 669 bp long piece from the C-terminal CDS region, 

representing approx. 52% of it. Thus, the expected molecular mass of the expression product 
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was approx. 26 kDa. Following Fig. 44 summarizes the results from TANK expression in 

E. coli and subsequent FPLC purification via a His6-tag.  

 

Fig. 44 TANK expression and affinity purification. A. Silver stained SDS gel with fractions from the 

FPLC affinity purification via a His6-tag. Lysate flowthrough, subsequent washing steps and elution 

fractions are shown. B. Western blot with FPLC fractions, ordered in the same sequence as on the 

silver stained gel. Detecting antibodies: mouse α-His and α-mouse-HRP. 

Thus, TANK could be overexpressed and successfully purified from denatured E. coli 

lysates. Antigen purity level was estimated from sensitive silver staining and considered high 

enough to be applied as a coating agent in ELISA. Fractions under the elution peak were 

pooled together and concentrated to an overall volume of approx. 500 µl. Final protein 

concentration accounted for only 21 µg/ml. Subsequent attempts to gain more expression 

product and to increase purification efficiency did not bring desired results. Therefore, TANK 

was excluded from ELISA re-validation.       

5.4.2.3. TRAF4 

The TRAF4 (TNF-receptor associated factor 4) gene is represented by nine different cDNA 

clones on the macroarray filters. 6 clones are annotated “in frame” and 3 are annotated “off 

frame”. 2 “in frame” clones were hit positive with two different AD-sera in an IgG-screening 

and once with same serum in an Ig-screening. Thus, TRAF4 was assigned “highly potential” 

for IgG in the macroarray screening. The TRAF4-full-ORF could also be identified in the 

initial phage display libraries in a very low number of reads: between 5 and 25 reads per 

library. In one of the sequencing rounds a slight enrichment in both AD sera could be 

estimated in the 2nd selection round: 228 and 243 reads per serum. In the 4th round only one 

single read was identified for the TRAF4 gene. In selections with MS and Healthy sera no 

reads were found at any stage.    

TRAF4 belongs to the TRAF-protein family and with this to the NFκB signaling pathway, 

analog to TANK, as described above. In CNS tissues TRAF proteins have been shown to 

interact with neurotrophin receptors and to play important role in neuronal growth and 
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apoptosis [232]. Furthermore, TRAF proteins are major modulators in the JNK signaling 

pathway as well. Like the NFκB pathway, it is a central regulatory mechanism in numerous 

processes, related to cell cycle and inflammation. These are in particular: apoptosis, T cell 

differentiation, cellular stress response, cell growth and proliferation, cytokine production and 

several others [233, 234]. Finally, the JNK pathway has been recently directly related to tau 

pathology in AD [235].   

The TRAF4 cDNA clone included a 1,326 bp long piece from the C-terminal CDS region, 

representing approx. 94% of it. However, Sanger sequencing validation revealed that only 

the first 300 bp of the insert were in the correct reading frame. Then a frame shift followed, 

leading to 27 random base pairs and finally a stop codon. Thus, the expected size of the 

expression product was approx. 13 kDa, taking the N-terminal His-tag into consideration. 

Following Fig. 45 summarizes the results from TRAF4 expression in E. coli and subsequent 

FPLC purification via a His6-tag.  

 

Fig. 45 TRAF4 expression and affinity purification. A. Western blot with lysates from two clones, 

overexpressing the TRAF4 construct, prior to purification. Detecting antibodies: mouse α-His and α-

mouse-HRP. B. Silver stained SDS gel with fractions from the FPLC affinity purification via a His6-tag. 

Lysate flowthrough, subsequent washing steps and elution fractions are shown. 

Thus, TRAF4 gene fragment could be successfully overexpressed in E. coli. Yet purification 

was considered insufficient. As demonstrated in Fig. 45/B, elution fractions still contained 

plenty of other proteins and/or di-/trimers of the TRAF4 polypeptide. Consequently, this 

antigen was excluded from ELISA validation.  

5.4.2.4. ANXA2 

The ANXA2 (annexin A2) full-ORF was found strongly enriched in an IgA-selection with one 

of the AD sera. Only 46 reads were identified in the initial library, 6,074 reads were found 

after the 2nd selection round and finally 37,873 reads were found after the 4th round. No other 

serum showed any enrichment effects. The gene is represented by 3 clones on the 
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macroarrays, all of them being annotated “in frame”. None of them was hit positive in any of 

the macroarray screenings.  

Proteins of the annexin family are Ca2+-dependent phospholipid-binding polypeptides with a 

general role in cellular growth, shape and motility. Further intracellular functions are 

organization and transport of vesicles, exo-/endocytosis and ion channel formation [236]. In 

the extracellular space, annexins are involved in signal transduction during apoptosis and 

inflammation [237]. Very recently, annexin A5 was shown to have elevated protein levels in 

blood plasma of Alzheimer’s and Dementia with Lewy Bodies patients, suggesting its 

potential as a biomarker [238]. Also ANXA2 has already been directly correlated to 

neurodegeneration [239]. 

The full-ORF ANXA2-gene could be identified as a transcript variant 2 (RefSeq analysis). 

The cloned gene was 1,020 bp long. Together with the N-terminal Avi-His6-tag (66 bp) and 

the following LR-linker (57 bp) it made up to a 1,143 bp long insert or a 42 kDa big 

expression product. Following Fig. 46 summarizes the results from ANXA2 expression in 

E. coli and subsequent FPLC purification via a His6-tag.    

 

Fig. 46 ANXA2 expression and affinity purification. A. Silver stained SDS gel with fractions from 

the FPLC affinity purification via a His6-tag. Lysate flowthrough, subsequent washing steps and elution 

fractions are shown. B. Western blot with FPLC fractions, ordered in the same sequence as on the 

silver stained gel. Detecting antibodies: mouse α-His and α-mouse-HRP. 

Thus, ANXA2 could be overexpressed and successfully purified from denatured E. coli 

lysates. Antigen purity level was estimated from sensitive silver staining and considered high 

enough to be applied as a coating agent in ELISA. Fractions under the elution peak were 

pooled together and concentrated to an overall volume of approx. 1 ml. Final protein 

concentration accounted for 1,626 µg/ml.      
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ELISA re-validation with ANXA2 as coating antigen was performed as described above. 

Achieved signals were again statistically analyzed under same conditions. Next figure shows 

summarized ELISA results as box-and-whiskers-plots. 

Fig. 47 Signal distribution and statistical analysis of antigen ELISA with ANXA2. Both x-axes 

show arbitrary fluorescence units (AFU), measured at 405 nm. Plot borders correspond to the 

standard five distribution parameters: minimum value, 25% percentile, median value, 75% percentile 

and maximum value. A. ELISA signal distributions in each cohort with each antibody class. Total 

number of values in each plot accounts for 20 signals from 20 human sera from the accordant cohort, 
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tested with the accordant antibody. Arrows show signal values from the same two sera in the phage 

display screening. Arrows, highlighted in red, are sera with enriched antigens in the phage display 

screening. B. ELISA signal distributions in each cohort in both antibody classes together. Total 

number of values in each plot accounts for 40 signals from 20 human sera from the accordant cohort.  

Above Fig. 47 shows distinctly that although the ANXA2 antigen was selected in an IgA-

screening, in ELISA format it not only reacted with IgG serum antibodies, but signals were 

even stronger as with IgA and overall more sera were IgG- than IgA-reactive. Furthermore, 

also sera from the MS and Healthy cohorts, which showed no enrichment in phage display, 

were reactive in this experimental set up. Statistical analysis revealed that none of the 

compared pairs could achieve a significant P-value, smaller than 0.05. Also comparison of 

consolidated data (Fig. 47/B.) did not reveal any statistically significant differences between 

any of the data pairs.   

5.4.2.5. DTNBP1 

The DTNBP1 (dystrobrevin binding protein 1, also known as dysbindin) full-ORF was found 

strongly enriched in an IgA-selection with one of the Alzheimer sera: 465 reads were 

identified in the initial library, 3,668 reads after the 2nd selection round and finally 97,316 

reads after the 4th round. Also after the 4th round of an IgA-selection with the second AD 

serum 1,624 reads of the DTNBP1 gene were found. Both healthy sera showed no 

enrichment. The gene is represented by only 1 “in frame” clone on the macroarrays and was 

not hit positive in any of the screenings. 

DTNBP1 is strongly expressed in brain and neuronal tissues, being responsible for 

morphological extension of neurites (dendrites and axons), trafficking of synaptic vesicles, 

neurotransmitter release and other neuron functions, related to information forwarding [240, 

241]. The gene gained much attention with the discovery that genetic defects lead to altered 

glutamatergic transmission in brain and was associated with susceptibility to schizophrenia 

[242]. No direct linkage of DTNBP1 to AD has been established so far. However, recently it 

was associated with variations in hippocampal and prefrontal grey matter volume in humans 

[243], altered cognitive abilities [244] and psychosis [245].  

The full-ORF DNTBP1-gene could be identified as a transcript variant 1 (RefSeq analysis). 

The cloned gene was 1,053 bp long, which results in a protein of 39.5 kDa. Together with the 

N-terminal tag-sequence it made up to a ca. 44 kDa big expression product. Following Fig. 

46 summarizes the results from DTNB1 expression in E. coli and subsequent FPLC 

purification via a His6-tag.   
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Fig. 48 DTNBP1 expression and affinity purification. A. Silver stained SDS gel with fractions from 

the FPLC affinity purification via a His6-tag. Lysate flowthrough, subsequent washing steps and elution 

fractions are shown. B. Western blot with FPLC fractions, ordered in the same sequence as on the 

silver stained gel. Detecting antibodies: mouse α-His and α-mouse-HRP. 

Thus, DTNBP1 could be overexpressed and successfully purified from denatured E. coli 

lysates. Antigen purity level was estimated from sensitive silver staining and considered high 

enough to be applied as a coating agent in ELISA. Clean fractions under the elution peak 

were pooled together and concentrated to an overall volume of approx. 1 ml. Final protein 

concentration accounted for 557 µg/ml.      

ELISA re-validation with DTNBP1 as coating antigen was performed as described above. 

Achieved signals were again statistically analyzed under same conditions. Next figure shows 

summarized ELISA results as box-and-whiskers-plots. 
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Fig. 49 Signal distribution and statistical analysis of antigen ELISA with DTNBP1. Both x-axes 

show arbitrary fluorescence units (AFU), measured at 405 nm. Plot borders correspond to the 

standard five distribution parameters: minimum value, 25% percentile, median value, 75% percentile 

and maximum value. A. ELISA signal distributions in each cohort with each antibody class. Total 

number of values in each plot accounts for 20 signals from 20 human sera from the accordant cohort, 

tested with the accordant antibody. Arrows show signal values from the same two sera in the phage 

display screening. Arrows, highlighted in red, are sera with enriched antigens in the phage display 

screening. B. ELISA signal distributions in each cohort in both antibody classes together. Total 

number of values in each plot accounts for 40 signals from 20 human sera from the accordant cohort.  



Results 
 

 
 

121 

Above Fig. 49 shows distinctly that although the DTNPB1 antigen was selected in an IgA-

screening, in ELISA format it not only reacted with IgG serum antibodies, but signals were 

even stronger as with IgA and overall more sera were IgG- than IgA-reactive. Furthermore, 

also sera from the MS and Healthy cohorts, which showed no enrichment in phage display, 

were reactive in this experimental set up. Surprisingly strong were in this case especially 

signals in IgG-ELISA with healthy sera. Statistical analysis revealed that none of the 

compared pairs could achieve a significant P-value, smaller than 0.05. Also comparison of 

consolidated data (Fig. 49/B.) did not reveal any statistically significant differences between 

any of the data pairs.   

5.4.2.6. GDI1 

The GDI1 (GDP dissociation inhibitor 1) full-ORF was found strongly enriched in an IgA-

selection with one of the Alzheimer sera: 576 reads were identified in the initial library, 3,772 

reads after the 2nd selection round and finally 4,045 reads after the 4th round. Other sera 

showed no enrichment. The gene is represented by 10 clones on the macroarrays, all 

annotated “in frame”. In an IgA-screening one clone was hit positive with the same AD 

serum, with which the GDI1-full-ORF was enriched in phage selection. Another GDI1-clone 

was hit in an IgG-screening with a different AD serum. MS and healthy sera did not show any 

positive reaction in any screening.  

General function of the GDI proteins is negative regulation of the GDP-GTP exchange at 

proteins of the Rab family. In turn, Rab are small G-proteins, which are involved in 

intracellular vesicular trafficking. GDI1 is a brain specific protein, predominantly expressed in 

neural and sensory tissues [246]. Mutations in GDI1 lead to a X-linked mental retardation 

[247]. Recently its absence was also linked to a decline in synaptic plasticity and to memory 

deficit [248]. On the other hand, Rab proteins have been shown to be upregulated in 

postmortem brains of AD patients [249]. Moreover, it could be recently demonstrated that 

Rab11 vesicles are transporter of Aβ and thus central part of the intracellular Aβ clearance in 

lysosomes [250]. 

The full-ORF GDI1-gene could be identified as a transcript variant 1 (RefSeq analysis). The 

cloned gene was 1,341 bp long (51 kDa). Together with the N-terminal tag-sequence it made 

up to a ca. 55 kDa big expression product. Following Fig. 48 summarizes the results from 

GDI1 expression in E. coli and subsequent FPLC purification via a His6-tag.          
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Fig. 50 GDI1 expression and affinity purification. A. Silver stained SDS gel with fractions from the 

FPLC affinity purification via a His6-tag. Lysate flowthrough, subsequent washing steps and elution 

fractions are shown. B. Western blot with FPLC fractions, ordered in the same sequence as on the 

silver stained gel. Detecting antibodies: mouse α-His and α-mouse-HRP. 

Thus, GDI1 gene fragment could be successfully expressed in E. coli. Yet purification was 

considered unsuccessful, since aim protein could only be detected in the flowthrough and 

wash fractions, but not in the elution fractions. Consequently, this antigen was excluded from 

ELISA validation.  

5.4.2.7. NDRG4 

The NDRG4 (N-myc downstream regulated gene 4 protein) full-ORF was found strongly 

enriched in an IgA-selection with one of the Alzheimer sera: 510 reads were identified in the 

initial library, 2,747 reads after the 2nd selection round and finally 104,691 reads after the 4th 

round. With the second AD serum 2,290 reads were found after the 4th selection round. 

Reads in the 4th selection round were also identified with healthy sera (871 and 1,258 reads 

per serum), but no enrichment was visible. The gene is represented by 6 clones on the 

macroarrays, all annotated “off frame”. None of them was hit positive during screening.  

Proteins of the NDRG family belong to the α/β-hydrolase superfamily. Their exact functions 

has not been fully elucidated, yet all family members seem to play central role in cell 

proliferation, cell cycle, cell differentiation and stress response [251]. Unlike other family 

members, which are ubiquitous, NDRG4 is almost exclusively expressed in brain and heart 

tissues and predominantly in astrocytes [252]. There they are part of the cell cycle 

progression and survival mechanisms and have been correlated to glioblastoma 

development [253]. Further interesting function of the NDRG proteins is their involvement in 

inflammatory processes, in particular in allergy and anaphylaxis [254].  Finally, NDRG4 was 

shown to be elevated in AD affected brains [255]. It was also linked to neurodegeneration 
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and axon survival in response to glucocorticoids [256]. Also NDRG4 was associated with 

neuronal differentiation and neurite formation [257, 258].  

The full-ORF NDRG4-gene could be identified as a transcript variant 7 (RefSeq analysis). 

The cloned gene was 1,173 bp long (43 kDa). Together with the N-terminal tag-sequence, a 

ca. 47 kDa big expression product was to be expected. Following Fig. 51 summarizes the 

results from NDRG4 expression in E. coli and subsequent FPLC purification via a His6-tag.             

 

Fig. 51 NDRG4 expression and affinity purification. A. Silver stained SDS gel with fractions from 

the FPLC affinity purification via a His6-tag. Lysate flowthrough, subsequent two column washing steps 

and elution fractions are shown. B. Western blot with FPLC fractions, ordered in the same sequence 

as on the silver stained gel. Detecting antibodies: mouse α-His and α-mouse-HRP.  

Thus, NDRG4 could be overexpressed and successfully purified from denatured E. coli 

lysates. Antigen purity level was estimated from sensitive silver staining and considered high 

enough to be applied as a coating agent in ELISA. Clean fractions under the elution peak 

were pooled together and concentrated to an overall volume of approx. 2 ml. Final protein 

concentration accounted for 2,730 µg/ml.      

ELISA re-validation with NDRG4 as coating antigen was performed as described above. 

Achieved signals were again statistically analyzed under same conditions. Next figure shows 

summarized ELISA results as box-and-whiskers-plots. 
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Fig. 52 Signal distribution and statistical analysis of antigen ELISA with NDRG4. Both x-axes 

show arbitrary fluorescence units (AFU), measured at 405 nm. Plot borders correspond to the 

standard five distribution parameters: minimum value, 25% percentile, median value, 75% percentile 

and maximum value. On the left side, only group pairs are shown, which yielded significant P-values in 

the Wilcoxon-Mann-Whitney test (>0.05). Pairs with a P-value between 0.05 and 0.01 (significant) are 

highlighted with one star symbol (*). A. ELISA signal distributions in each cohort with each 

antibody class. Total number of values in each plot accounts for 20 signals from 20 human sera from 

the accordant cohort, tested with the accordant antibody. Arrows show signal values from the same 

two sera in the phage display screening. Arrows, highlighted in red, are sera with enriched antigens in 
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the phage display screening. B. ELISA signal distributions in each cohort in both antibody 

classes together. Total number of values in each plot accounts for 40 signals from 20 human sera 

from the accordant cohort.  

Above Fig. 52 shows distinctly that although the NDRG4 antigen was selected in an IgA-

screening, in ELISA format it not only reacted with IgG serum antibodies, but signals were 

even stronger as with IgA and overall more sera were IgG- than IgA-reactive. Furthermore, 

also sera from the MS and Healthy cohorts, which showed no enrichment in phage display, 

were reactive in this experimental set up. Again, fairly strong were especially signals in IgG-

ELISA with healthy sera. Statistical analysis revealed that only one single pair could achieve 

a significant P-value, smaller than 0.05: AD ↔ MS. However, comparison of consolidated 

data (Fig. 52/B.) did not reveal any statistically significant differences between any of the 

data pairs.   

5.4.2.8. PAX6 

The PAX6 (paired box 6) full-ORF was found strongly enriched in an IgA-selection with one 

of the Alzheimer sera: 327 reads were identified in the initial library, 3,358 reads after the 2nd 

selection round and finally 32,784 reads after the 4th round. Other sera showed no 

enrichment. The gene is represented by 3 clones on the macroarrays, all annotated “off 

frame”.  

PAX6 is a transcription factor, involved in the development of tissues of an ectodermal origin, 

such as eyes, other sensor organs, CNS, pancreas. Hence, deficiencies have been linked to 

numerous defects of the eye, as well as to mental retardation and autism [259]. It is strongly 

expressed in the fetal development stage. In adults, PAX6 expression is limited to eye and 

brain tissues. Interestingly, mutations in PAX6 have been shown to correlate with an early-

onset form of diabetes mellitus, suggesting its role in the insulin pathway as a mediator 

between the insulin receptor and its target genes [260]. One such gene is NQO1, a quinine 

oxidoreductase, responsible for detoxification of quinones. Quinones are highly redox-active 

molecules, leading to oxidative stress, and directly related to aging processes and 

Alzheimer’s Disease. Thus, NQO1 expression was also co-localized with AD pathology [261]. 

To sum up, PAX6 was shown to play a major role in the hypothetical neuroprotective 

pathway Insulin → NQO1 in aging and AD [262]. 

The full-ORF PAX6-gene could be identified as a transcript variant 1 (RefSeq analysis). The 

cloned gene was 1,266 bp long (47 kDa). Together with the N-terminal tag-sequence, a ca. 

52 kDa big expression product was to be expected. Following Fig. 53 summarizes the results 

from PAX6 expression in E. coli and subsequent FPLC purification via a His6-tag.  
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Fig. 53 PAX6 expression and affinity purification. A. Silver stained SDS gel with fractions from the 

FPLC affinity purification via a His6-tag. Lysate flowthrough, subsequent washing steps and elution 

fractions are shown. B. Western blot with FPLC fractions, ordered in the same sequence as on the 

silver stained gel. Detecting antibodies: mouse α-His and α-mouse-HRP. 

Thus, PAX6 gene fragment could be successfully, yet insufficiently, expressed in E. coli. 

Accordingly, also purification was considered insufficient, since target protein could only be 

detected in the flowthrough and wash fractions and not in the elution fractions. Consequently, 

this antigen was excluded from ELISA validation.  

5.4.2.9. ANKHD1 

The ANKHD1 (ankyrin repeat and KH containing 1) gene is the first of three antigens, 

identified as highly potential MS biomarkers in macroarray screenings. It is represented by 

four different cDNA fragments on the macroarray filters. 3 clones are annotated “in frame” 

and 1 is annotated “off frame”, respectively. 1 “in frame” clone was hit positive with two 

different MS-sera in an IgA-screening. The ANKHD1-full-ORF is not available in the source 

library. 

ANKHD1 contains multiple ankyrin repeats in its polypeptide structure and may therefore 

play a role as a scaffold protein. It is ubiquitously expressed with highest expression levels in 

brain, cervix and spleen. It has been linked to several cancer types, being highly upregulated 

in acute leukemia [263]. Evidence exists that ANKHD1 may have an antiapoptotic function in 

cell survival processes [264]. No correlation to MS, neurodegeneration or inflammation in 

general could be estimated so far. 

The ANKHD1 cDNA clone included theoretically a 2,262 bp long piece from the CDS region, 

which together with the N-terminal His-tag would lead to a 84 kDa big expression product. 

However, Sanger sequencing was not able to sequence through the whole insert. Thus, it 

could not be confirmed, if eventually a downstream stop codon would generate a smaller 

polypeptide. Expression analysis finally revealed a product of approx. 65 – 70 kDa. Following 
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Fig. 54 summarizes the results from ANKHD1 expression in E. coli and subsequent FPLC 

purification via a His6-tag.     

 

Fig. 54 ANKHD1 expression and affinity purification. A. Silver stained SDS gel with fractions from 

the FPLC affinity purification via a His6-tag. Lysate flowthrough, subsequent washing steps and elution 

fractions are shown. B. Western blot with FPLC fractions, ordered in the same sequence as on the 

silver stained gel. Detecting antibodies: mouse α-His and α-mouse-HRP. 

Thus, ANKHD1 could be theoretically expressed and purified from denatured E. coli lysates. 

Antigen purity level was estimated from sensitive silver staining and considered high enough 

to be applied as a coating agent in ELISA. Clear elution fractions were pooled together and 

concentrated to an overall volume of approx. 1 ml. Final protein concentration accounted for 

163 µg/ml.    

ELISA re-validation with NDRG4 as coating antigen was performed as described above. 

Achieved signals were again statistically analyzed under same conditions. Next figure shows 

summarized ELISA results as box-and-whiskers-plots. 
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Fig. 55 Signal distribution and statistical analysis of antigen ELISA with ANKHD1. Both x-axes 

show arbitrary fluorescence units (AFU), measured at 405 nm. Plot borders correspond to the 

standard five distribution parameters: minimum value, 25% percentile, median value, 75% percentile 

and maximum value. A. ELISA signal distributions in each cohort with each antibody class. Total 

number of values in each plot accounts for 20 signals from 20 human sera from the accordant cohort, 

tested with the accordant antibody. Arrows show signal values from the same two sera in the phage 

display screening. Arrows, highlighted in red, are sera with enriched antigens in the phage display 

screening. B. ELISA signal distributions in each cohort in both antibody classes together. Total 

number of values in each plot accounts for 40 signals from 20 human sera from the accordant cohort. 
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Above Fig. 55 shows distinctly that although the ANKHD1 antigen was selected in an IgA-

screening, in ELISA format it not only reacted with IgG serum antibodies, but signals were 

even stronger as with IgA and overall more sera were IgG- than IgA-reactive. Furthermore, 

also sera from the MS and Healthy cohorts, which showed no enrichment in phage display, 

were reactive in this experimental set up. Again, fairly strong were especially signals in IgG-

ELISA with healthy sera. Statistical analysis revealed that none of the compared pairs could 

achieve a significant P-value, smaller than 0.05. Also comparison of consolidated data 

(Fig. 55/B.) did not reveal any statistically significant differences between any of the data 

pairs.  

5.4.2.10. DEAF1 

The DEAF1 (deformed epidermal autoregulatory factor 1) gene, the second MS antigen, is 

represented by 8 different cDNA fragments on the macroarray filters. 7 clones are annotated 

“off frame” and only one is annotated “in frame”, respectively. The “in frame” clone was hit 

positive with two different MS-sera in an IgA-screening. The DEAF1-full-ORF is available in 

the source library, but no reads were found in any of the initial or the selected libraries.  

DEAF1 is a transcriptional factor, regulating many different genes, expressed in various 

tissues. Two isoforms are localized intracellular in nucleus and cytoplasm and two others are 

secreted polypeptides. It has been shown to play an important role in the regulating pathway 

of serotonin production and was subsequently related to depression and suicide [265]. 

Beside cancer [266, 267], it has also been linked to other disease conditions, such as 

diabetes type I [268] and defects of the neuronal tube [269]. Recently, DEAF1 was shown to 

have a positive impact on IFNγ production and secretion as a response to viral infections 

[270]. No correlation to MS, neurodegeneration or inflammation in general could be 

estimated so far. 

The DEAF1 cDNA clone included theoretically a 960 bp long piece from the C-terminal CDS 

region, representing approx. 57% of it. Together with the N-terminal His-tag (36 bp), an 

approx. 37 kDa big expression product was to be expected. Following Fig. 56 summarizes 

the results from DEAF1 expression in E. coli and subsequent batch-purification with Ni-

Agarose via a His6-tag.            
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Fig. 56 DEAF1 expression and affinity purification. A. Western blot with cell lysate of 

overexpressed DEAF1. Detecting antibodies: mouse α-His and α-mouse-HRP. B. Silver stained SDS 

gel with fractions from the affinity batch-purification with Ni-Agarose via a His6-tag. Two elution 

fractions are shown. C. Western blot with the elution fractions, ordered in the same sequence as on 

the silver stained gel. Detecting antibodies: mouse α-His and α-mouse-HRP. 

Thus, DEAF1 could be overexpressed and successfully purified from denatured E. coli 

lysates. Antigen purity level was estimated from sensitive silver staining and considered high 

enough to be applied as a coating agent in ELISA. Both elution fractions were pooled 

together and concentrated to an overall volume of approx. 1 ml. Final protein concentration 

accounted for 324 µg/ml.      

ELISA re-validation with DEAF1 as coating antigen was performed as described above. 

Achieved signals were again statistically analyzed under same conditions. Next figure shows 

summarized ELISA results as box-and-whiskers-plots. 
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Fig. 57 Signal distribution and statistical analysis of antigen ELISA with DEAF1. Both x-axes 

show arbitrary fluorescence units (AFU), measured at 405 nm. Plot borders correspond to the 

standard five distribution parameters: minimum value, 25% percentile, median value, 75% percentile 

and maximum value. On the left side, only group pairs are shown, which yielded significant P-values in 

the Wilcoxon-Mann-Whitney test (>0.05). Pairs with a P-value between 0.05 and 0.01 (significant) are 

highlighted with one star symbol (*). Those with a P-value, smaller than 0.001 (extremely significant), 

are highlighted with three star symbols (***). A. ELISA signal distributions in each cohort with 

each antibody class. Total number of values in each plot accounts for 20 signals from 20 human sera 

from the accordant cohort, tested with the accordant antibody. Arrows show signal values from the 

same two sera in the phage display screening. Arrows, highlighted in red, are sera with enriched 

antigens in the phage display screening. B. ELISA signal distributions in each cohort in both 
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antibody classes together. Total number of values in each plot accounts for 40 signals from 20 

human sera from the accordant cohort. 

Above Fig. 57 shows distinctly that although the DEAF1 antigen was selected in an IgA-

screening, in ELISA format it obviously reacted also with IgG serum antibodies. Furthermore, 

also sera from the AD and Healthy cohorts, which showed no reactions during macroarray 

screening, were reactive in this experimental set up. Surprisingly, the AD cohort revealed 

fairly strong signals with both antibody classes. Thus, statistical analysis revealed an 

extremely small, hence significant P-value of 0.0005 in the comparison AD ↔ Healthy with 

IgA. This pair showed also a good P-value on IgG level. Also for the AD ↔ MS pair with IgA 

a significant P-value was estimated. As expected, this trend sustained also when comparing 

the consolidated cohort groups (Fig. 57/B.). Again, a very small P-value of 0.0001 was 

observed for the AD ↔ Healthy pair. The AD ↔ MS pair, but this time also MS ↔ Healthy, 

showed distinct significance.     

5.4.3. Cross-reactivity tests of HRP-conjugated anti-human antibodies 

Prior to antigen ELISA, secondary HRP-conjugated α-hu-IgG and α-hu-IgA antibodies were 

tested with commercially available pure human IgG and IgA proteins. The aim of these 

preliminary experiments was to estimate the most appropriate dilution factor, at which signals 

would be in an acceptable measurable range, as well as the appropriate time scale for 

substrate conversion. Furthermore, undesirable cross-reactivities of the detecting antibodies 

had to be excluded. Hence, two different ELISA experiments were arranged.  

For the first test, two 96-well ELISA plates were coated with 1 µg per well purified human IgG 

or IgA. Each plate was incubated with each of the HRP-conjugated α-human antibodies in a 

dilution series between 1:100 and 1:10,000. Finally, signals were measured at 60 min.  
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Fig. 58 Test ELISA with purified Ig-proteins and HRP-conjugated α-human antibodies. All 

measurements were made at 60 min after adding the ABTS substrate. Y-axes show arbitrary 

absorbance units, measured at 405 nm. X-axes show antibody dilution series. Detecting antibodies: α-

hu-IgG-HRP in dark grey and α-hu-IgA in green. ELISA background signal is shown as a light grey 

area. A. Plate coated with purified human IgG. B. Plate coated with purified human IgA.  

Thus, both HRP-conjugated antibodies showed cross-reactivities, which were strongest at 

high concentrations of the detecting antibodies (dilution < 1:1,000). However, at this dilution 

stage the accordant antibody also reached its saturation state. Thus, it could be concluded 

that a dilution factor of 1:2,000, which was also manufacturer’s recommendation, a good 

balance between the specific signal and a weak cross-reactivity background was achieved. 

After subtracting ELISA background (light gray areas on the charts) from both values at 

1:2,000 dilution, following cross-reactivity percentage ratios remained: 15% for the α-IgG-

HRP antibody and 9% for the α-IgA-HRP antibody.  

Having proved the overall functionality of the detecting antibodies with purified Ig protein, the 

question still remained, if these results will recur also with human sera. Here, it had to be 

taken into account that sera are highly heterogeneous media, where normally all antibody 

classes are present in very different proportions. Since IgG and IgA are the two most 

abundant classes in blood serum, they were most likely to provoke undesired cross-

reactivities. Also the third prevalent antibody IgM (approx. 1.5 mg/ml blood serum) could be a 

potential source of error. However, α-IgM cross-reactivities were not tested. Finally, 

reactivities against IgD and IgE were considered marginal, since their concentrations in 

serum are fairly low (approx. 30 µg/ml and 0.05 µg/ml, respectively).  

For the second test, two 96-well ELISA plates were coated with 1 µg α-hu-IgG and α-hu-IgA, 

respectively. Each plate was incubated first with a human serum from the healthy-cohort 

(diluted 1:100) and then with each of the HRP-conjugated α-human antibodies, again in a 

dilution series between 1:100 and 1:10,000. Finally, signals were measured at different time 
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points after adding the substrate: between 5 and 60 min. Next Fig. 59 shows obtained results 

at 60 min.  

 

Fig. 59 Test ELISA with serum Ig-proteins and HRP-conjugated α-human antibodies. All 

measurements were made at 60 min after adding the ABTS substrate. Y-axes show arbitrary 

absorbance units, measured at 405 nm. X-axes show antibody dilution series. Detecting antibodies: α-

hu-IgG-HRP in dark grey and α-hu-IgA in green. ELISA background signal is shown as a light grey 

area. A. Plate coated with α-hu-IgG and subsequently incubated with human serum. B. Plate coated 

with α-hu-IgA and subsequently incubated with human serum. 

The overall picture from the first ELISA test replicated also with incorporated sera incubation 

step. Interestingly, this time the α-IgA-HRP antibody showed less cross-reactivity against 

serum IgG (Fig. 59/A) than against purified IgG (Fig. 58/A). On the contrary, α-IgG-HRP was 

much more reactive against serum IgA (Fig. 59/B) than against purified IgA (Fig. 58/B). 

Especially at higher concentrations of the detecting antibody, e. g. dilution factor less than 

1:1,000, very high cross-reactivity signals were observed. These differences between the 

human serum test and the test using purified human IgG and human IgA may be explained 

by the fact that for testing human sera, additional anti-human IgG and IgA antibodies for 

coating were used, which may have different cross-reactivities than the secondary HRP 

labeled antibodies. However, for the purpose of this study, measurements at such high 

antibody concentrations were not relevant and could be therefore ignored. In the chosen 

range of 1:2,000 antibody dilution following cross-reactivity percentage ratios were calculated 

after subtracting the general ELISA background: 5% for the α-IgG-HRP antibody and 16% for 

the α-IgA-HRP antibody. 

In conclusion, both HRP-conjugated α-human antibodies were proved functional and with an 

acceptable low cross-reactivity. Thus, in case of α-hu-IgG-HRP a possible failure ratio in the 

range of 5% – 15% could be expected. In case of α-hu-IgA-HRP this was in the range of 9% 

– 16%. 
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6. Discussion 

In my thesis I identified and characterized novel potential autoantigens in human blood sera 

from Morbus Alzheimer and Multiple Sclerosis patients, which could be used as biomarkers 

for diagnostic purposes in future. For this, I applied two different screening platforms: protein 

macroarrays, which are well established and commercially available, and selections with 

human full-ORF-polypeptides, presented by M13 phages. Thereby, the full-ORF phage 

display technology was first developed in the course of this study. In detail, I generated and 

evaluated novel expression vectors and initial phagemid libraries, creating the basis for all 

further experimental procedures. Next, I performed the bio-panning in a semi-automated way 

with human autoantibodies, immobilized on magnetic beads. Enriched phage clones were 

identified with an Illumina NGS device. Finally, I selected the most interesting candidates 

from both screenings. After their recombinant expression and affinity purification, I re-

evaluated these potential biomarkers in ELISA assays with larger sera groups and analyzed 

statistically their performance.   

In this chapter, experimental results will be discussed and suggestions for further 

development of the applied methods will be made. Findings will be put into perspective, 

concerning current literature state. Finally, the two high-throughput screening platforms will 

be compared in regard to their technical capacities, advantages and limitations.   

6.1 Results from protein macroarray screening 

Five sera were chosen randomly from each of the three donor cohorts and screened on 

protein macroarrays in order to identify human antigens, immunoreactive against IgG and 

IgA autoantibodies. The AD cohort consisted of 20 sera from donors between 72 and 87 

years old. From these, the five screened sera originated from four males and one female in 

the age of 72, 79, 76, 80 and 72. Since the healthy cohort was chosen as a control group to 

AD, it was accordingly age-matched. Thus, overall healthy donors’ age ranged between 64 

and 87 and the five tested sera originated from four females and one male in the age of 75, 

77, 75, 76 and 73. Psychiatric tests have been applied to diagnose AD patients, as well as to 

exclude disorder in the healthy cohort. However, it is impossible to predict, if the healthy 

probands would show indications of Alzheimer’s or any other kind of dementia later in their 

lives. Thus, it is at least theoretically conceivable that some of the people, assigned non-

diseased, already suffered from an early AD stadium at the point of blood withdrawal. 

Furthermore, the denotation “healthy” should not be misleading, since it refers only to AD 

and means in this context merely “tested negative for Alzheimer’s”.  
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The MS cohort differed stronger from the other two, due to characteristic disease 

specification. Here overall donors’ age ranged between 29 and 71. Yet 50% of all 20 

probands were between 38 and 47 years old and the median value of the group amounted 

for 43 years. Another specific feature of this cohort was the relatively high number of female 

donors, namely 16 out of 20. In comparison, the gender ratio in AD and Healthy was more 

balanced, accounting for 11 females and 9 males in both groups. Finally, the five screened 

MS sera originated from five females in the age of 38, 39, 47, 42 and 44. All of them have 

been diagnosed with the disease subtype RRMS.       

To my knowledge, none of the 60 donors was diagnosed with any other disease at the point 

of blood withdrawal. Yet, non-symptomatic etiopathologies cannot be definitely excluded. 

Especially cancer, allergies, infectious, autoimmune, and other disorders, directly correlating 

to immune response, can have a distinct impact on autoantibody profiles and with this on 

screening results. Moreover, also past diseases can leave long-lasting immunological marks 

in blood serum. Especially in elderly people this can be a significant point of concern. 

Naturally, it is not possible to test probands for all kinds of medical aberrations. Yet, a more 

thorough characterization of donors’ overall health status and medical history prior to a 

screening trial, would undoubtedly lead to a more precise data interpretation.  

Macroarray screening results proved well reproducible and thus reliable. Screening 

replication, meaning the same serum in same dilution and with the same detecting antibody, 

but on another macroarray filter, usually showed signal overlapping of over 90%. However, 

the weakest positive hits were not trailed further, anyway. The strongest and thus, most 

interesting signals, showed steady reproducibility of nearly 100%.  

All sera were screened in a 1:100 dilution and were not adjusted to any uniform IgG or IgA 

concentration, like it has been done by Cepok, S. et al. [158]. Independently of the detecting 

antibody and donor cohort, each screened serum manifested a unique overall signal pattern. 

Thus, also sera from healthy donors were as immunoreactive, as any of the diseased sera. 

This finding was not surprising and demonstrates once more the individual and highly diverse 

nature of each immune system. Furthermore, overall serum IgG/IgA concentrations did not 

correlate with signal numbers, detected in the accordant serum during screening. Thus, for 

example, AD serum 191492 with the lowest general IgA concentration (s. Fig. 14/B, AD 

serum No. 2) showed very strong IgA-immunoreactivity with almost 800 hit clones. On the 

other hand, healthy serum 151006 with the highest general IgG titer (s. Fig. 14/A, Healthy 

serum No. 2) showed relatively moderate IgG-immunoreactivity with overall 198 positive hit 

clones. Hence, it could be concluded that no obvious correlation exists between total 

immunoglobulin titer and serum immunoreactivity against the expressed cDNA library, 
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spotted on the macroarray filters. Accordingly, normalization of serum Ig concentrations prior 

to screening would not necessarily lead to normalization of signal counts and/or intensities 

and was therefore not performed in this study. 

Another issue, often discussed in relation to high-throughput screenings, is pooling of 

samples from one comparison group. Beyond doubt, pooling sera together can be 

advantageous, since more material can be screened in one run. On the other hand, 

screening single samples is more costly in terms of labor, time and, last but not least, 

finances. Moreover, amplification of signal intensity can be theoretically expected with pooled 

samples, if presumably more sera contain antibodies against the same clone. On that 

account, published data from macroarray screenings often originate from experiments with 

pooled liquid samples, like in Erdag et al. [157], for example. However, mixing of samples 

harbors certain risks as well. As already discussed above, serum antibody patterns are 

highly individual and diverse. Thus, the risk is relatively high to include by chance a very 

immunoreactive sample to the pool, which will outshine the less reactive ones and will finally 

deliver strong signals, specific for this one serum, but not for the cohort as a whole. To 

eliminate this undesirable effect, all sera in my study were screened separately. 

Comparable numbers of positively hit clones were found in all three cohorts during the 

macroarray screening: 2,036 for AD, 2,737 for MS and finally, 2,469 for Healthy (s. 

Table 10). Approx. 45% of these positive clones in each of the three cohorts were annotated 

“in frame”, allowing their direct linkage to real genes. This ratio was expected, since also 

40% of all spotted clones on the macroarray filter are annotated “in frame” as well. Also 

numbers of positively hit genes were comparable: 378 for AD, 370 for MS and finally, 368 for 

Healthy. After prioritizing of hit genes with the formula, depicted on page 81, numbers of hit 

genes with a differential score over the cut-off of 2, still did not differ significantly between the 

three cohorts. However, the unique genes in these last analysis groups, meaning genes with 

a diff. score > 2, which were hit only in one cohort and not at all in the other two, revealed 

remarkable differences between diseased and non-diseased: 88 for AD, 72 for MS and only 

18 for Healthy. These highly interesting results finally led to the following conclusions: 

! No dissimilarities are visible in the general immunoreactivities of AD, MS and Healthy 

sera, since neither total numbers of positive clones, nor of hit genes revealed significant 

differences between the three groups. 

! After ruling out the most interesting genes and subsequently assigning unique 

ones for each cohort, in the two diseased cohorts still remained approx. four times 

more antigens, as in the Healthy group. 

! Hence, although hit autoantigen numbers were almost the same in all 

three groups, in the Healthy cohort over 90% of these was obviously non-
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specific. On the contrary, screened AD and MS sera were distinctly 

immunoreactive against cohort-specific autoantigens. For AD, 62% of the 

most interesting hit genes were cohort-unique and for MS, these were 

42%. 

Thus, this first screening result delivered a general confirmation of my hypothesis that also 

primarily non-autoimmune disorders like Alzheimer’s, harbor immunological phenomena, 

which are comparable to those in a real autoimmune disease, such as Multiple Sclerosis. 

Furthermore, since healthy sera show comparable immunoreactivities, as diseased ones, it 

should be theoretically possible to identify autoantigens, present in the non-diseased and 

absent in the diseased cohort. Such negative biomarkers can eventually prove as valuable 

as real biomarkers in diagnostics. In my study the number of screened sera was too low to 

definitely assign such an “antimarker”. Kijanka et al. [156], for example, screened much 

larger cohorts of sera from donors with colorectal cancer (43 sera) and without (40 sera) on 

the same macroarrays. They were able to identify not only 18 specific biomarkers in the 

diseased sera, but also 4 antimarkers in the healthy ones with a significant P-value (< 0.05).      

Another kind of analysis, performed with the data from macroarray screenings, was pathway 

analysis with the IPA software tool (s. Fig. 16). The idea behind, was to examine, in which 

biochemical and/or (patho)physiological pathways the hit genes are involved. It was 

interesting to see, if any distinct pathway would emerge in one particular cohort. In the 

healthy group only 8 random pathways were determined by IPA. This was not surprising, 

since the analyzed data set consisted of only 18 cohort-unique genes and no strong 

correlation between them was expected. Hence, this group was tested as a negative 

comparative group. On the other hand, the data sets of the two diseased cohorts consisted 

of a comparable number of cohort-unique genes: 88 for AD and 72 for MS. Nevertheless, 

analysis results differed strongly between them. First, the overall number of determined 

pathways in the AD group was almost exactly three times higher, as in the MS group: 61 

pathways in AD and 21 pathways in MS. Second, no overlapping of pathways between AD 

and MS was found. But also no “prominent” pathways could be estimated in any of the 

groups. In case of AD, however, a remarkably high number of pathways were determined, 

belonging to intracellular organization processes, such as organization of cytoplasm, 

organization of nucleus or organization of cytoskeleton. Another noteworthy trend in this 

group was presence of pathways, involved in cell cycle and cell development. Remarkably, 

no metabolic pathways were represented in the AD distribution. These data correlate well 

with results published recently by Manavalan et al. [271]. They determined differentially 

expressed proteins in brain-regions of AD patients, which are usually strongly affected by the 

disorder (hippocampus and parietal cortex), and assigned these to functional pathways via 
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IPA-analysis. Also their data show a high ratio of proteins, involved in cell organization and 

cell development, but a weak representation of canonic metabolic pathways. Interestingly, in 

the proteome of the cerebellum, which is assumed to remain relatively unaffected during 

disease course [272], the ratio of metabolic pathways was calculated to be 10% higher. In 

conclusion, a distinct pathways profile could be assigned to the identified AD-unique genes, 

which differs strongly from the other two cohorts. Yet, more sera have to be screened and 

analyzed in order to ascertain these findings and to render more precisely the hypothetical 

pathways involved in AD. 

An interesting aspect, implicating macroarray screening results, are hit clones assigned “off 

frame”. After all, they account for approx. 40% – 45% of all clones, spotted on the filter, as 

well as of all hit clones in the screenings. First, it should be taken into consideration that 

these frame assignments are not completely accurate. Hence, it is necessary to re-clone and 

thoroughly re-sequence hit clones of interest. In this study, this was done for all clones, 

which were chosen for further experimental work after screening. Yet, also confirmed “out of 

frame” clones harbor considerable potential and can deliver interesting findings. The 

generated polypeptides are indeed artificial and do not make any biological sense. But if they 

provoke significant immunoreactivity, they obviously present one or more epitopes, 

recognized by the tested antibody. This fact can be already a sufficient reason for 

constructing a peptides-based diagnostic assay, for example. After all, biological background 

of applied bait agents is not relevant for diagnostic purposes. Yet, deeper analyses of 

identified immunoreactive peptides can be undertaken as well, in an attempt to reveal 

possible reasons for the interaction. Thus, it often turns out that the artificial sequence forms 

an immunoreactive epitope of a real protein by chance, demonstrating a case of molecular 

mimicry. If the imitated protein is not present on the filter, such out of frame clones can finally 

expand the repertoire of the screened cDNA library. Such a case was described by Cepok, et 

al. [158]. Screening of CSF samples from MS patients on macroarrays resulted in 

identification of 21 clones, with strong immunoreactivity in at least two MS samples. Yet, half 

of them were annotated off-frame. Following epitope mapping and thorough analysis of the 

peptide sequences finally revealed two epitopes, which could be assigned to two different 

antigens of the Epstein-Barr virus (EBV). Although still not entirely understood, the 

association between MS etiology and the presence of antibodies against EBV-antigens in 

serum and CSF is well documented [273, 274]. Thus, analysis of hit off-frame clones led to 

coherent results in this case.  
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6.2 Results from phage display screening 

The idea of cloning human full-ORF libraries into five different phagemid vectors originated 

from the consideration that functional presentations of highly heterogenic libraries on phage 

surface can prove problematic. Expression and presentation hurdles are usually due to 

diversities in proteins’ features, e.g. folding characteristics, solubility, host toxicity and others 

[193]. Since presentation of the protein of interest (POI) as a fusion to the pIII phage coat 

protein requires its export into periplasmic space, an opportunity is given, to utilize the three 

different E. coli secretion pathways and thus expand the range of properly folded POIs. 

Therefore, in my newly generated pYG vector series all three pathways were implicated: 

Sec, SRP-dependent and Tat. Another variation in the series was the art of catenation of POI 

and pIII. Two vectors were cloned for a direct polypeptide-fusion (pYG-fusion) and three 

other for an indirect fusion via a leucine zipper (pYG-LZ). Thus, my vector series suggests a 

solution to the particular problematic of functional polypeptide folding in periplasmic space. 

The newly generated destination vectors were tested per Sanger sequencing after each 

cloning step. Furthermore, special attention was paid to the functionality of the ccdB-protein 

to ensure low background of parental clones and with this, high quality of the pYG-full-ORF 

libraries (Fig. 22). Finally, functionality of the pYG-vectors was tested with EGFP, which 

served in this study as an example of a full-ORF-polypeptide. These results demonstrated 

clearly the full applicability of all five vectors, both for expression, as well as for functional 

POI-presentation on M13 phage surface. EGFP was a perfect example for this purpose, 

since its fluorescence depends on the correct conformation of the chromophore, which in 

turn can be correctly formed only in the cytoplasm. Hence, I assumed to find strong 

fluorescent EGFP, only if expressed from the pYG-LZ-TorA vector, since only the Tat 

secretion pathway exports cytoplasmically folded polypeptides. Thus, I was finally able to 

confirm my hypothesis that different vector systems are required in order to encompass also 

difficult to present proteins with special folding requirements in a heterogenic ORF library. 

All five vectors exhibited strong EGFP expression levels, as expected (Fig. 27). Yet, only cell 

pellets of the pYG-LZ-TorA sample were visibly green. Also fluorescence measurements in 

the periplasm fractions confirmed this observation (Fig. 28). These results were not 

surprising, since polypeptides with a pelB leader sequence are kept unfolded in the 

cytoplasm by chaperones like secB until the actual translocation across the cell membrane 

takes place (post-translational translocation) [275]. On the other hand, translation of 

polypeptides containing a DsbA leader sequence is aborted shortly after the synthesis of the 

DsbA-peptide. The whole ribosomal complex together with the attached SRP particles 

migrates to the Sec-translocon, where protein synthesis continues in parallel to secretion (co-
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translational translocation) [276, 277]. Consequently, the pelB- and the DsbA-EGFP proteins 

have actually no chance to form properly in the cytoplasm in contrast to TorA-EGFP. Thus, 

my data confirmed previous results described earlier. The still brightly green spheroblasts 

after the periplasm extraction of TorA-EGFP were probably due to the fact that the Tat export 

machinery acts rather slowly. At least half of the overexpressed EGFP remains still in the 

cytoplasm or even stuck in the cell membrane. As shown by Thomas et al., the TAT-export 

efficiency of GFP seems to account for only about 50% [278].  

Interesting visualization of the two different catenation types between EGFP and pIII 

delivered western blot experiments with and without the reducing agent 2-Me-EtOH (Fig. 29). 

While the two different reducing conditions had no impact on the band pattern of pYG-fusion-

EGFP constructs, a clear shift was seen in case of pYG-LZ-EGFP. These findings were also 

expected, as in the pYG-LZ construct both polypeptides are expressed separately and are 

held together via a leucine zipper and not a real covalent bond like in pYG-fusion. The 

hydrophobic bonds in LZ are furthermore enforced by two disulfide bridges residing at both 

ends of the zipper, which get naturally destroyed by 2-MeEtOH. Thus, the EGFP-pIII linkage 

in pYG-LZ can only be visualized by using non-reducing conditions and hence keeping the 

leucine zipper structure intact.  

The usage of two different α-EGFP antibodies, able to distinguish between the folded and the 

denatured EGFP-forms, proved very advantageous for the ELISA experiments, shown in 

Fig. 30. Beside expected results, already described on page 95, also some other intriguing 

observations were made. Thus, in a detection with the polyclonal α-EGFP antibody, 

recognizing both EGFP states, the two pYG-DsbA constructs showed weaker signals than all 

other samples (Fig. 30/A.). Interestingly, Thie et al. [279] witnessed the same phenomenon 

when comparing ScFv-presentation on phages with PelB- and DsbA-leader sequences. On 

the other hand, Steiner et al. [198] could show higher display levels of DARPins when going 

through the SRP- instead of the Sec-pathway. As Thie et al. rightfully pointed out, DARPin 

molecules contain predominantly α-helices while the prevailing secondary structures in 

ScFvs are β-sheets. Also inner membrane proteins (IMPs), made mainly of α-helices, are 

typically targeted through the SRP-dependent translocon, for example [277, 280]. In 

conclusion, it can be speculated that the SRP-system is probably more suitable for 

polypeptides not containing β-sheets in their structure. As the tertiary EGFP structure is a β-

barrel, made of 11 β-sheets and one α-helix, our data seem to confirm the hypothesis 

discussed by Thie et al. 

Still, the presence of the correct 3E6-epitope, demonstrated by the ELISA experiments, 

would not necessarily mean that the overall polypeptide is properly folded as well or even 

functional and fluorescent. It is not well known, why GFP is not able to fold accurately in the 
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periplasm, although the formation of the chromophore is a self-catalytic process and does 

not require any cofactors or chaperones. Since there are two cystein residues present within 

its β-barrel structure (C49  and C71), it is possible that under the oxidizing conditions in the 

periplasm wrong intermolecular disulfide bonds may form, thus leading to a misfolded 

polypeptide, as suggested by Aronson et al. [281]. Yet, a properly formed β-barrel structure 

is crucial for fluorescence functionality, as it seems to shield the chromophore from the 

aqueous environment. As proposed by Reid et al. [282], the loss of fluorescence is probably 

due to quenching effects in the misfolded GFP, since the mature chromophore is rather 

stable and remains chemically intact even under denaturing conditions. Potentially, such 

molecule could possess a properly folded 3E6 epitope, recognized by the applied antibody, 

and still be non-functional. However, fluorescence measurements of the EGFP-phage 

suspensions showed that the only sample with measurable values is once again pYG-LZ-

TorA (Fig. 31). In all other samples only background fluorescence could be detected. Thus, 

in contrast to Velappan et al. [224], I did not observe any significant fluorescence in phage 

samples, based on Sec-vectors. This could be due to the fact that I used unmodified EGFP, 

since my intention was to demonstrate an example of expression and presentation of a usual 

protein from a full-ORF library. On the contrary, the superfolder GFP (sfGFP), applied by 

Velappan et al., is a much more stable and robust GFP-variant. This is certainly of 

importance in experiments aiming to show proper or rather unproper folding under different 

conditions. 

Cloning of the human full-ORF collection into the five pYG-vectors and subsequent 

propagation of the phagemid libraries in ccdB-sensitive DH10B E. coli cells brought two 

desired consequences. First, lethality of the ccdB-expression product led to positive selection 

for real transformants and elimination of parental clones’ background. Second, libraries were 

amplified, reaching fold coverages of at least 6 times per library (Table 11). This effect was 

increased further, after re-transformation of the rescued libraries into phage display 

compatible, ccdB-resistant XL1Blue and TG1 strains (Table 12). After this amplification step, 

achieved fold coverages were very high, ranging between 160 and 1 997 times per library. 

Furthermore, since same amount of plasmid-DNA and cells with similar transformation 

efficiencies were used, it was not surprising that the smaller OCAB libraries showed bigger 

fold coverages as their OCAA counterparts. Finally, the multiple cloning of the library into five 

different vectors in parallel, further contributed to a significantly increased statistical 

probability of overrepresenting each gene in the final initial library, which is a desirable effect.  

Analysis of the polypeptide size distributions of the full-ORFs after the first cloning step into 

DH10B cells demonstrated that smaller inserts were slightly favored (Fig. 23 and 25). 

Apparently, this bottleneck typically appears early in the cloning process, namely in the LR 
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reaction [283]. The vector type itself did not seem to play any role. As shown in Fig. 25, DNA 

inserts in the range of 750 bp – 1,100 bp were most successful, while the median insert size 

in the source library was at 1,182 bp. This undesirable bias can be eventually overcome by 

improving LR reaction conditions, like applying smaller DNA amounts, increasing reaction 

times or changing reaction temperature.  

Native subcellular localization has a major impact on proteins` nature. Therefore, it was 

interesting to analyze, how these distributions look like in the different initial libraries. As 

Fig. 26 reveals, the distributions in the phage libraries remained very similar to the one in the 

OC source library. No unique patters were observed in the different vector types. Thus, it 

could be concluded that cloning procedures executed no significant impact or bias on 

libraries’ compositions as a whole and the complexity of the source collection was 

successfully reproduced. Here, it should be taken into consideration that different full-ORF-

clones originated from different providers and were non-systematically generated. Thus, the 

source collection reflects in no way any in vivo situation. In general, the source OC library 

represents approx. 25% of the human protein coding genome.  

To my knowledge, presentation of a preassigned human full-ORF library on M13 phages, as 

well as its selection against serum autoantibodies, immobilized on magnetic beads, was 

shown for the first time in this study. This kind of antigen phage display has grave 

advantages in comparison to cDNA presenting methods, which we recently reviewed [193]. 

Particularly the laborious and time consuming filtering for real ORFs, which naturally account 

for only one third of a cDNA library, can be avoided. However, the most important feature of 

a defined full-ORF library is certainly the presence of the whole CDS region, as well as the 

absence of undesired UTR regions, which can lead to artificial epitopes generation and 

selection of false positive binders. Furthermore, for identification of selected targets per 

sequencing, very short fragments of the inserted gene are required. This finally allowed the 

application of the Illumina NGS platform, since its methodology is based on fragmentation of 

the DNA material in ca. 75 bp long fragments, prior to sequencing. In case of cDNA, 

preferably the whole insert has to be sequenced, in order to assign thoroughly the expressed 

polypeptide. This was usually done with the 454 pyrosequencing platform from Roche [284]. 

Yet, sequencing with Illumina is still considerably cheaper and sample preparation is more 

trivial. However, it should be taken into consideration that a full-ORF library is by nature an 

artificial composition and does not reflect any in vivo situation. A cDNA library, on the other 

hand, represents a real transcriptional state of a cell or a tissue at the time point of library 

generation. This characteristic is certainly one of the strongest arguments for working with 

cDNA and with this, a limitation of the source library, applied here. 
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The usage of magnetic beads as solid phase for immobilizing sera autoantibodies allowed a 

semi-automated way of bio-panning on the King Fischer magnetic particle processor. This 

proved very advantageous in regard of simplified and rapid bio-panning, as well as polyclonal 

phage ELISA procedures and allowed simultaneous handling of multiple samples. Another 

benefit was definitely the increased results reliability and with this, the decreased risk of 

manual aberrations. Thus, it can be expected that the ongoing trend towards high-throughput 

scale analyses will also increase automation steps in screening protocols, especially in such 

well-automatable techniques, like phage display [285, 286]. 

In general, enrichment was achieved and visualized by polyclonal phage ELISA in all 

samples, hence, with all pYG/full-ORF libraries (Fig. 34 – 36). No differences were observed 

between selections against IgG or IgA autoantibodies. With the pYG-LZ libraries nearly all 

samples showed highest signals in the 4th selection round. Only two samples showed in the 

3rd round stronger signals than in the 4th selection round (Fig. 35/pYG-LZ-pelB/OCAA/AD1 

and Fig. 35/pYG-LZ-pelB/OCAB/MS2). Interestingly, ELISA results of pYG-fusion samples 

obviously differed from pYG-LZ (Fig. 36). Here, half of the samples showed strong signals 

already in the 3rd round. Six of them even had weaker signals in the following 4th round. 

Usually, four to six selection rounds are accepted as a standard in the phage display process 

[287]. However, depending on experimental intention and library characteristics also a lower 

number of rounds can be sufficient or even recommendable. Thus, in combinatorial antibody 

libraries, where presented agents are uniform in their overall structure, a more stringent 

selection procedure with many rounds can be advantageous. This is especially estimable, if 

the intention is to find a high-affinity binder with best binding characteristics. But in other 

cases excessive rounds can lead to an undesired phenomenon of “overselecting” and 

possible loss of potentially interesting candidates or simply have no additional benefit. 

Although it is difficult, to make a general recommendation, t’Hoen et al. suggest applying 

multiple selection rounds when working with smaller libraries and sequencing limited 

numbers of clones [288]. This observation correlates well with my results, given the high 

number of samples, showing enrichment in the 4th round, but not in the previous ones.  

Still, the question remains, why the pYG-fusion constructs showed earlier enrichment levels, 

as their pYG-LZ counterparts. To my knowledge, this is the first time that both pIII-catenation 

types are used in parallel and in comparison, so no published references can be given at that 

point. However, it can be speculated, if the much stronger binding of the POI to pIII in pYG-

fusion samples leads to a better retention of selected binders and thus to a more rapid 

enrichment. On the contrary, it is thinkable that the indirect fusion via a leucine zipper gets at 

times mechanically destroyed, leading to a loss of selected phage particles. Thus, more 

selection rounds may be necessary, to make enrichment with pYG-LZ-vectors visible. To 
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confirm these implications, it would be interesting to sequence phage populations from all 

four rounds, in order to determine the best point of enrichment for both constructs. In 

conclusion, the usual limitations of the phage display system, often leading to enrichment of 

false positive target candidates, should be taken into consideration as well. These were 

recently reviewed anew by Vodnik et al. [289].                       

Illumina sequencing results of the initial libraries, revealed that over 80% of all full-ORF 

genes in the original source library could be re-found in the pYG-libraries as well (Fig. 24). 

This is already a good rate, but still further improvable, since final goal is to be able to find all 

genes in the expression libraries after all cloning procedures. Since sequencing was 

performed by a company, it is difficult to say, if given results are partially artifacts or really 

reflect libraries’ state. My analysis of the final sequencing results revealed that also genes, 

not present in the initial libraries could be identified later in the selected ones. This confirms 

my speculations that a too stringent sequence and/or mapping cut-off(s) have been possibly 

set and led to artificially restricted libraries` coverage. Unfortunately, it was not possible to 

estimate a distinct error source.      

Very interesting results were gained from sequencing phage DNA from enriched libraries. 

First, as expected and already shown in the macroarray screenings, healthy sera proved as 

immunoreactive as diseased ones. Thus, overall numbers of enriched genes against IgG and 

IgA autoantibodies were comparable in all three cohorts (Table 13). Noticeable differences 

became visible after filtering out enriched cohort-unique genes: 74 in the AD group, 12 in the 

MS group and 9 in the Healthy group. Thus, as already seen in the macroarray screenings, 

Alzheimer’s sera showed a relatively high ratio of unique autoantigens, with a potential for 

good biomarker candidates. Also Healthy sera data were coherent with those from 

macroarray screenings, which is a relatively low number of enriched cohort-unique antigens. 

Surprisingly, MS data set was this time more comparable with the Healthy, as with the AD 

results. In conclusion, also from screening with the phage display sufficient number of cohort-

unique autoantigens could be identified. To prove their potential as diagnostic biomarkers, 

some promising candidates were separately expressed, affinity purified and tested in ELISA 

with all available 60 human sera.   

6.3 Results from biomarkers validation in ELISA  

In summary, overall 15 sera (5 per donor group) were screened on protein macroarrays and 

6 of these (2 per donor group) were screened in phage display as well. This is certainly not a 

statistically representative number of screened samples and with this, probably the biggest 

deficit of this study. However, estimated results demonstrate clearly the applicability and 

potential of both systems as diagnostic screening platforms. Thus, autoantigens, analyzed 
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here, have an exemplary role, showing the broad range of possibilities, which are still open 

for investigation. Furthermore, since both platforms are now well established and full-ORF-

libraries ready to use in phage display, many more sera can be screened in future. 

For recombinant expression and affinity purification overall 12 biomarker candidates were 

chosen (Table 14). From these only one originated from an IgG-screening. All others were 

identified in an IgA screening. This was not an intended effect, but resulted rather from the 

priority criteria for hit and enriched clones in general. Thus, because of the relatively low 

number of selected antigens, this finding should not be overvalued. In my opinion, not a 

sufficient number of sera was screened to be able to conclude, which of the two antibody 

classes shows more specific autoimmunreactivity and if there is any disease correlation to a 

certain Ig class. Screening for autoantigens against both IgG and IgA antibodies has been 

shown in only a few studies so far. Thus, recently Sakaguchi et al. detected strong IgG and 

IgA crossreactivities against multiple antigens in cases of bullous dermatosis and proposed 

epitope-spreading mechanisms [290]. Also Pedersen et al. [291] and Blixt et al. [292] were 

able to show that both IgG and IgA antibodies were highly specific to one combined epitope 

of an O-glycan and protein backbone in cases of colorectal cancer. In conclusion, also my 

data suggest strong immunoreactivity of serum IgA autoantibodies in AD and MS patients, on 

the one hand. On the other hand, my ELISA results clearly show that no class-specific 

antigens could be identified and thus, correlate well with findings, described by others.       

From the 12 chosen candidates, 10 could be successfully expressed and from these, 6 were 

also sufficiently purified and subsequently applied as coating agents in ELISA assays: 

PRDX1, ANXA2, DTNBP1, NDRG4, ANKHD1 and DEAF1. In case of CCDC50, in the time 

scale of my thesis, it was not possible to find out, why no expression products could be 

achieved. Yet, it was one of the most interesting macroarray hits and thus a very potential 

biomarker candidate for AD. Since Sanger sequencing of the chosen clone showed a correct 

reading frame and presence of the whole CDS-region in the cDNA fragment, it is worth 

considering re-cloning of the ORF-polypeptide in a new expression vector and repeating the 

experiments. All three available CCDC50 clones are expressed successfully in E. coli on the 

macroarray filter. Hence, no strong toxic effects for the bacterial host should be expected. 

For the four candidates, which were successfully expressed, but insufficiently purified, i.e. 

TANK, TRAF4, GDI1 and PAX6, certainly better results can be achieved. Here usual 

improvements of the affinity purification procedure are recommendable, such as slowing 

down the flow through rate, especially during sample loading and elution. Also altered 

concentrations of the eluting agent imidazole could bring desirable effects in some cases. 

Finally, changing the Ni-column to a Cd-loaded one with a lower affinity, could improve 
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purification quality. This could be advantageous especially in samples with relatively high 

unspecific background, such as in TRAF4 and GDI1.  

Coming back to the six positive results, intriguing and partly surprising results were achieved 

in the ELISA experiments. These findings demonstrate once again, the importance of larger 

sample sets in screenings. Here analyses with appropriate statistical tests could be applied 

for the first time, since each of the three cohorts contained all 20 sera available and the 

groups were large enough for reliable calculations of distributions and coherent P-values. 

Therefore, when enlarging sample groups also in macroarray and phage display screenings, 

same tests should be applied as well. I assume that for a serious assignment of a real 

disease-related biomarker a minimum of ten screened sera has to be set. However, the more 

sera in the comparison groups are screened and analyzed, the bigger the significance and 

statistical reliability of the identified biomarker would be. One of the biggest limitations is 

certainly the availability of well annotated serum material. But also time, laboratory staff and 

costs, for example for next generation sequencing, have to be taken into consideration.   

Of all tested antigens, three showed significant P-values in the pairwise group comparisons: 

PRDX1 (Fig. 43), NDRG4 (Fig. 52) and DEAF1 (Fig. 130). PRDX1 was one of the most 

promising candidates, as it was very successfully expressed and purified. Although identified 

in a screening with IgA antibodies, in ELISA it strongly reacted with the IgG antibody as well. 

This was observed by virtually all tested antigens and confirmed my conclusion that no 

explicit distinction can be made between IgG- and IgA-specific autoantigens. But, as already 

discussed above, an artificial impact, due to the very low number of screened samples, 

cannot be excluded. In order to omit this effect, distributions with all signals, summed up from 

one cohort, were calculated, i.e. without splitting by the detecting antibody (showed under B. 

in all ELISA analysis figures). As expected, estimated significances recurred in the 

summarized representations as well. Thus, significantly low P-values were estimated in the 

comparison AD ↔ Healthy, but also in MS ↔ Healthy. Since PRDX1 was identified as a 

potential AD biomarker, the second result was rather unexpected. It can be speculated, if 

presence of α-PRDX1 antibodies in patients’ sera could be an indication of 

neurodegeneration as a whole. As peroxiredoxins are an important part of the oxidative 

stress pathway, this is certainly thinkable. Yet, many more tests with larger sample groups 

and in comparison with other neurodegenerative disorders will be necessary to confirm this.  

Highly interesting results showed analysis of the ELISA tests with DEAF1. Here, the lowest 

and with this, the most significant P-values were estimated. However, these were found not 

in the expected comparative group MS ↔ Healthy, but rather in the AD ↔ Healthy group. No 

correlation of DEAF1 to neurodegeneration and/or inflammation is known so far. Hence, at 
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this stage no serious biological interpretation can be made about the presence of 

autoantibodies in patients’ sera.   

In conclusion, no autoantigenicity profiles could be compiled with the low number of analyzed 

antigens. However, the analyzed 12 antigens make up only a relatively small part of all hits, 

generated in both screenings (s. Supplementary material). Thus, many more potential 

biomarker candidates can be further recombinantly expressed and tested in ELISA, 

preferably with even larger sera sets. Another important issue is the biological correlation of 

the identified antigens. Beyond doubt, this is very interesting from a biological point of view. 

But of note, a good diagnostic biomarker does not have to be directly linked to the accordant 

disease. Technically, it only has to deliver high specificities and sensitivities, when compared 

to healthy samples. And these can only be reliably estimated in bigger cohorts. However, the 

first step of screening samples on a high-throughput scale is a very effective way to filter 

potential candidates. And both, phage display and protein arrays, are powerful and 

productive technologies for this, as successfully demonstrated in my thesis.  

A final subject of discussion is the overlap between the autoantigens found in the macroarray 

screening and the enriched ones in the phage selection. No correlation could be estimated 

by any of the identified hits in any of the three cohorts. To a great extent, the identified 

antigens from the macroarray screening were simply not present in the full-ORF library and 

vice versa. When looking at the primal overlap between the two source libraries, depicted in 

Fig. 60 below, 44% of all macroarray genes are also present in the full-ORF library and 26% 

of the full-ORF genes are also spotted on the macroarrays.  

 

Fig. 60 Intersection between shared genes spotted on the protein macroarrays and genes 

represented in the human full-ORF library. From all spotted clones on the macroarrays only clones 

in frame, hence, real genes were considered.  

In general, such a relatively minor overlap between the two source libraries is definitely 

desirable. The combination of the two screening platforms, as applied in this study, led to a 

remarkable expansion of the initial gene set. Thus, I was finally able to screen as much as 

8,109 different human genes altogether. However, it is questionable, if it can be expected to 

find shared genes as significant hits in both screening types. Then the art and nature of the 
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presented polypeptides differ considerably between the two displaying scaffolds. 

Polypeptides, linked on the macroarray filters are cDNA-products, partly also containing UTR 

regions. Furthermore, they are in a denatured form. On the other hand, full-ORF 

polypeptides are full-length proteins, which are theoretically presented in a native form by at 

least one of the five vector constructs. Thus, it can be expected that different epitopes are 

formed during the two screening types and the chance is relatively small to identify exactly 

the same hits at the end. This consideration was finally confirmed by the comparisons I made 

between the results from both screenings. In conclusion, it should be taken into consideration 

that since both platforms are based on bacterial expression systems, no posttranslational 

modifications take place. This is certainly one disadvantage of the two techniques, when 

working with eukaryotic, e.g. human proteins. To address this problem, several combined 

systems for phage display have been already introduced by others. Thus, solutions for 

phosphorylation and phosphopantetheinylation [293] as well as for glycosylation [294, 295] 

were recently proposed.  

6.4 Could I achieve the aims of my thesis? 

With the development of the novel phage display protocols for functional presentation of 

human full-ORF proteins, for semi-automated antigen selection against human 

autoantibodies and finally for identification of the selected autoantigens via NGS, I could 

successfully establish a powerful high-throughput technique for rapid screening of biomarker 

candidates in human blood sera. Generally, I could demonstrate for the first time combined 

application of preassigned human full-ORF libraries and filamentous phage display. The 

newly generated full-ORF-phagemid libraries are ready for phage generation and are a 

valuable resource that can be used with all possible kinds of sera or other body fluids, 

applicable in screening processes. 

Furthermore, I successfully applied two different screening platforms in parallel and managed 

to identify interesting and potential biomarker candidates in blood sera of AD and MS 

patients. First, I was able to confirm fully my starting hypothesis that primarily non-

autoimmune neurodegenerative disorders, such as AD, expose specific autoantigenicity 

profiles, which can be used for diagnostic purposes. Results from both screening procedures 

entirely correlate at this point. Yet, due to the restricted number of screened sera as well as 

analyzed antigens in total, no disease-specific autoantigen patterns could be estimated. In 

future, number of screened samples per cohort will have to be enlarged. In addition, more 

antigens, already identified as potential candidates in this study (listed in the supplementary 

material), can be recombinantly expressed, purified and finally tested in ELISA assays. Thus, 

together with the autoantigens, already analyzed in this study, in future it should be possible 
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to compile a set of highly potential AD biomarkers for a possible application in 

multiparametric diagnostic assays. 

Finally, I was able to identify two very promising AD biomarker candidates, PRDX1 and 

DEAF1, which performed very well in the ELISA experiments and showed significant P-

values, especially in the statistical comparison with the healthy cohort. To my knowledge, this 

is the first time that the two proteins were shown to be probable disease-specific 

autoantigens in sera of AD patients.             
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7. Summary 

Neurodegenerative diseases such as Morbus Alzheimer (AD) and Multiple Sclerosis (MS) 

affect millions of people each year. Since AD is directly related to higher age and human 

population gets constantly older, a significant increase of AD-cases is to be expected in the 

next decades. With this, also health policy costs for treatment and patients care will inevitably 

raise. Both disorders are incurable and characterized by a dramatic decline of life quality, 

causing heavy burdens to patients, family members and caretakers. Accordingly, both, 

pharmaceutical industry and academic science undertake great efforts in exploring treatment 

and diagnostic possibilities. Yet, in both cases, despite many significant achievements, major 

aspects of disease cause, risk factors or medication alternatives are still unclear.  

Particularly, differential diagnosis of AD and MS proved to be a notably difficult area. Main 

disease manifestations like dementia by AD or muscle dysfunctions by MS, are shared by 

other neurodegenerative disorders and cannot be easily assigned. In addition, biopsying 

brain or spinal nerve tissue in a living person is not executable. Hence, clinical diagnosis of 

AD still mainly relies on psychological tests and medical history by proxy. Diagnostic 

procedures for MS include also MRI and spinal liquor analysis. However, the heterogeneity 

of the manifold MS-subforms and symptoms is an additional challenge. Thus, novel 

diagnostic tools, based on biochemical information, are desperately needed. These should 

allow precise, preferably early diagnosis and with this, better prognostic and therapeutic 

chances. 

Blood serum is an ideal medium for diagnostic purposes. Withdrawal can be easily 

performed and is not harming for patients. Because of its role as a main transport system, it 

is a precious information carrier about organism’s health status. Furthermore, all major 

players of the immune system, e.g. specialized cells, antibodies and molecular messengers 

circulate there. Thus, in the field of autoimmune disorders, many diagnostic platforms are 

based on detection and analysis of serum autoantibodies. But also diseases, which do not 

have a distinct autoimmune background, can potentially lead to pathologic changes in the 

natural autoimmunity.  

According to my thesis hypothesis, AD is one such example. Although no distinct 

immunological reasons are currently known, it seems to provoke autoimmune reactions. As 

massive brain tissue degradation and progressive leakage in the brain blood barrier take 

place, it can be hypothesized that inflammatory processes lead to autoantibody production in 

order to eliminate necrotic organic material. Thus, AD patients’ blood sera could feature 

specific autoantibody patterns, distinguishable from sera of healthy individuals. On the other 
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hand, MS is a classical example of an autoimmune disorder and served here as a 

comparative reference to AD.  

Main aim of my work was to analyze AD-, MS- and Healthy blood sera for disease specific 

autoantigens that could be applied as novel biomarkers for diagnostic purposes. This was 

done using two different high-throughput screening technologies: protein macroarrays with 

spotted cDNA expression clones on the one hand and phage display of human full-ORF 

libraries in combination with a next generation sequencing platform on the other.  

Five sera from each of the three cohorts were screened on protein macroarrays for reaction 

against IgG and IgA autoantibodies. For the second screening I generated new phage vector 

series first, compatible with the Gateway cloning system. Special focus was laid on functional 

presentation of the full-ORF-polypeptides on phage surface. For this, I implemented all three 

major E. coli secretion pathways This step led to a considerable expansion of the range of 

properly folded and presented proteins. On the example of EGFP, I could finally demonstrate 

usability and functionality of the new vector series. Next, full-ORF phagemid libraries were 

generated and bio-panning with four-round selections with two sera from each of the three 

cohorts were performed in a semi-automatic way. Again, autoantigen detection was 

performed with IgG and IgA sera autoantibodies. DNA from both initial and selected phages 

was deep sequenced on an Illumina Genome Analyzer platform. In both screenings 

numerous disease-specific AD- and MS-autoantigens could be identified. Potential 

candidates with best performances were recombinantly expressed in E. coli and affinity 

purified. These were finally re-validated with an enlarged set of 20 sera from each cohort, in 

ELISA assays.  

In conclusion, my results fully confirmed my initial hypothesis that non-autoimmune disorders 

like AD evoke autoimmune interactions that are detectable in proteomics-based high-

throughput screenings. The novel disease-related autoantigens are potentially promising 

biomarker candidates for multiparametric diagnostic assays. Furthermore, I could 

demonstrate that IgA autoantibodies exhibit pronounced immunoreactivity in blood serum 

and are therefore well-suited for this kind of screenings besides IgG. Finally, I succeeded in 

adapting the phage display technology for functional presentation of full-ORF polypeptides. 

The newly generated pYG vector series and human full-ORF-phagemid libraries are valuable 

resources that can be applied in diverse selections in future.  
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8. Zusammenfassung 

Millionen von Menschen erkranken jährlich an neurodegenerativen Erkrankungen wie 

Morbus Alzheimer (AD) und Multiple Sklerose (MS). Aufgrund der direkten Relation zwischen 

AD und höherem Alter sowie der fortschreitenden Veralterung der Bevölkerung, kann in den 

nächsten Jahrzehnten eine erhebliche Zunahme an AD-Fällen erwartet werden. Folglich ist 

auch ein Anstieg der Gesundheitskosten für die Behandlung und Pflege unvermeidlich. 

Beide Erkrankungen sind nicht heilbar, charakterisieren sich durch eine dramatische 

Abnahme der Lebensqualität und verursachen schwere Belastungen für Patienten, 

Familienmitglieder und Pfleger. Entsprechend groß sind die Bemühungen in der 

pharmazeutischen Industrie und in der akademischen Forschung, neue therapeutische und 

diagnostische Ansätze zu finden. Trotz zahlreicher bedeutender Entdeckungen sind in 

beiden Fällen Krankheitsursachen, Risikofaktoren und Medikationsalternativen immer noch 

unklar.     

Vor allem die Differenzialdiagnose von AD und MS erwies sich als besonders schwierig. 

Zentrale klinische Manifestationen wie Demenz bei AD oder Muskelfunktionsstörungen bei 

MS kommen auch bei anderen neurodegenerativen Erkrankungen vor und sind daher nicht 

leicht zuzuordnen. Außerdem sind Biopsien aus dem Hirn- oder Rückenmarksgewebe 

lebender Menschen nicht durchführbar. Daher beruht die klinische AD Diagnose immer noch 

hauptsächlich auf psychologischen Tests und Angehörigenanamnese. Diagnostische 

Maßnahmen für MS beinhalten auch MRI und die Analyse der Wirbelsäulenflüssigkeit. 

Allerdings ist die Heterogenität der unterschiedlichen MS-Subformen und –Symptome eine 

zusätzliche Schwierigkeit. Somit werden neue, auf biochemische Informationen basierende 

diagnostische Werkzeuge dringend gebraucht. Diese sollen eine präzise, möglichst frühe 

Diagnose und damit auch bessere prognostische und therapeutische Perspektiven bieten 

können.    

Blutserum ist ein ideales Medium für diagnostische Zwecke. Die Entnahme ist einfach 

durchzuführen und ist nicht invasiv für Patienten. Als Haupttransportsystem ist Blut ein 

wertvoller Informationsträger für den Gesundheitsstatus des Organismus. Des Weiteren 

zirkulieren im Blut alle Hauptkomponente des Immunsystems, wie z.B. spezialisierte Zellen, 

Antikörper und molekulare Messenger. Auf dem Gebiet der Autoimmunerkrankungen 

basieren daher viele diagnostische Plattformen auf dem Nachweis und der Analyse von 

Serum-Autoantikörpern. Aber auch Krankheiten ohne erkennbaren autoimmunen 

Hintergrund können unter Umständen zu pathologischen Veränderungen der angeborenen 

Autoimmunität führen.     
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Der Hypothese meiner Dissertation zufolge ist AD ein Beispiel dafür. Obwohl bis dato keine 

deutlichen immunologischen Zusammenhänge bekannt sind, scheint AD 

Autoimmunreaktionen auszulösen. Aufgrund des massiven Abbaus des Hirngewebes und 

der zunehmenden Durchlässigkeit der Blut-Hirn-Schranke kann vermutet werden, dass 

Entzündungsprozesse zur Produktion von Autoantikörpern führen, die nekrotisches 

organisches Material beseitigen. Demzufolge könnten Blutseren von AD Patienten 

spezifische Autoantikörperprofile aufweisen, die sich von Seren gesunder Probanden 

unterscheiden lassen. MS ist andererseits ein klassisches Beispiel einer 

Autoimmunerkrankung und diente hier als Vergleichsreferenz zu AD.  

Die Hauptaufgabe meiner Arbeit war es, Blut Seren von AD-, MS- und gesunden Probanden 

auf krankheitsspezifische Autoantigene zu analysieren, die als neue Biomarker für 

diagnostische Zwecke dienen könnten. Dafür wurden zwei unterschiedliche Hochdurchsatz-

Screening Technologien eingesetzt: Protein Macroarrays mit gespotteten cDNA 

Expressionsklonen und Phagen-Display von humanen full-ORF Bibliotheken in Kombination 

mit einer Sequenzierungsplattform der nächsten Generation.  

Fünf Seren aus jeder der drei Kohorten wurden auf Protein Macroarrays auf Reaktivitäten 

gegen IgG und IgA Autoantikörper gescreened. Für das zweite Screening generierte ich 

zunächst neue, mit dem Gateway-Klonierungssystem kompatible  Phagen-Vektoren. Dabei 

wurde ein besonderer Fokus auf die funktionale Präsentation der full-ORF-Polypeptide auf 

der Phagenoberfläche gelegt. Dafür implementierte ich alle drei E. coli Hauptsekretionswege, 

was zu einer deutlichen Erweiterung der Menge an korrekt gefalteten und präsentierten 

Proteine führte. Am Beispiel mit EGFP konnte ich schließlich die Verwendbarkeit und 

Funktionalität der neuen Vektorreihe demonstrieren. Als nächstes wurden full-ORF-Phagen-

Bibliotheken generiert und Bio-Panning mit vier Selektionsrunden und zwei Seren aus jeder 

der drei Kohorten im semi-automatischen Verfahren durchgeführt. Erneut wurden die 

Autoantigene mit IgG und IgA Autoantikörpern detektiert. Die DNS von Ausgangs-, wie auch 

von selektierten Phagen wurde mittels der Illumina Genome Analyzer Platform 

durchsequenziert. Bei beiden Screenings konnten krankheitsspezifische AD- und MS-

Autoantigene identifiziert werden. Die potentiellen Kandidaten mit den besten Ergebnissen 

wurden in E. coli exprimiert und mittels Affinitätschromatographie aufgereinigt. Diese wurden 

schließlich mit größeren Sätzen von 20 Seren aus jeder Kohorte im ELISA-Experiment re-

validiert. 

Zusammenfassend bestätigen meine Ergebnisse meine Hypothese, dass auch nicht-

autoimmune Erkrankungen wie AD autoimmune Interaktionen hervorrufen können, die in 

Proteomics-basierten Hochdurchsatz-Screenings nachweisbar sind. Die neuen 10 AD und 3 
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MS Autoantigene sind vielversprechende Biomarker Kandidaten für multiparametrische 

diagnostische Tests. Des Weiteren konnte ich zeigen, dass IgA Autoantikörper eine 

ausgeprägte Immunoreaktivität im Blutserum aufweisen und somit neben IgG sehr gut für 

Screenings dieser Art geeignet sind. Schließlich gelang es mir, die Phagen Display 

Technologie für die funktionale Präsentation von full-ORF-Polypeptiden zu adaptieren. Die 

neu generierte pYG Vektorreihe und die humanen full-ORF-Phagemid-Bibliotheken sind 

wertvolle Ressourcen, die zukünftig in verschiedensten Selektionen eingesetzt werden 

können.           
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10. Supplementary  

Gene IDs in all following tables correspond to gene symbols, approved by HGNC (Human Genome 

Nomenclature Committee).  

10.1. Lists of autoantigens from protein macroarray screenings 

Table 15. Positive hits from Alzheimer’s Disease screening.  

Priority Antibody Gene ID Gene Description 

Highly specific and unique IgG TRAF4 TNF receptor-associated factor 4 

Highly specific and unique IgA CCDC50 coiled-coil domain containing 50 

Highly specific and unique IgA GCN1L1 GCN1 general control of amino-acid synthesis 1-like 1 

Highly specific and unique IgA LIG3 ligase III, DNA, ATP-dependent 

Highly specific and unique IgA MAGED2 melanoma antigen family D, 2 

Highly specific and unique IgA MYL6B myosin, light chain 6B, alkali, smooth muscle and non-muscle 

Highly specific and unique IgA PRDX1 peroxiredoxin 1 

Highly specific and unique IgA PRDX4 peroxiredoxin 4 

Highly specific and unique IgA RPL26 ribosomal protein L26 

Highly specific and unique IgA TANK TRAF family member-associated NFKB activator 

Highly specific and unique IgA TPX2 microtubule-associated, homolog (Xenopus laevis) 

Highly specific and unique IgA ZNF33B zinc finger protein 33B 

Unique IgG AGXT2L2 alanine-glyoxylate aminotransferase 2-like  

Unique IgG BBS4 Bardet-Biedl syndrome 4  

Unique IgG CRTC2 CREB regulated transcription coactivator 2  

Unique IgG DIRAS3 DIRAS family, GTP-binding RAS-like 3  

Unique IgG ELAVL1 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1  

Unique IgG PKM2 pyruvate kinase, muscle  

Unique IgG TBC1D3 TBC1 domain family, member 3  

Unique IgG THAP3 THAP domain containing, apoptosis associated protein 3  

Unique IgG WBP11 WW domain binding protein 11  

Unique IgG ZSCAN18 zinc finger and SCAN domain containing 18  

Unique IgA ALDH5A1 aldehyde dehydrogenase 5 family, member A1  

Unique IgA APC adenomatous polyposis coli  

Unique IgA BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast)  

Unique IgA C11orf31 Selenoprotein H (SelH)  

Unique IgA CACNA1H calcium channel, voltage-dependent, T type, alpha 1H subunit  

Unique IgA CALM2 calmodulin 2 (phosphorylase kinase, delta)  

Unique IgA CAPZB capping protein (actin filament) muscle Z-line, beta  
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Unique IgA CBX4 chromobox homolog 4  

Unique IgA CDC25B cell division cycle 25 homolog B (S. pombe)  

Unique IgA CEP57 centrosomal protein 57kDa  

Unique IgA CHD3 chromodomain helicase DNA binding protein 3  

Unique IgA CLIP3 CAP-GLY domain containing linker protein 3  

Unique IgA COQ4 coenzyme Q4 homolog (S. cerevisiae)  

Unique IgA DEK DEK oncogene  

Unique IgA DMTF1 cyclin D binding myb-like transcription factor 1 

Unique IgA ECHS1 enoyl CoA hydratase, short chain, 1, mitochondrial  

Unique IgA EIF4H eukaryotic translation initiation factor 4H  

Unique IgA EXOC1 exocyst complex component 1  

Unique IgA F11R F11 receptor  

Unique IgA FAU Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV) ubiquitous 

Unique IgA FSCN1 fascin homolog 1, actin-bundling protein  

Unique IgA FZR1 fizzy/cell division cycle 20 related 1 (Drosophila)  

Unique IgA GPSM1 G-protein signaling modulator 1  

Unique IgA GPX4 glutathione peroxidase 4 (phospholipid hydroperoxidase)  

Unique IgA HSPA4 heat shock 70kDa protein 4 

Unique IgA KIAA1614 KIAA1614  

Unique IgA KIF19 kinesin family member 19  

Unique IgA KIF3C kinesin family member 3C  

Unique IgA KIF4A kinesin family member 4A  

Unique IgA KPNB1 karyopherin (importin) beta 1  

Unique IgA LITAF lipopolysaccharide-induced TNF factor  

Unique IgA MAP4K5 mitogen-activated protein kinase kinase kinase kinase 5  

Unique IgA MAPT microtubule-associated protein tau  

Unique IgA MED8 mediator complex subunit 8  

Unique IgA MLLT10 myeloid/lymphoid or mixed-lineage leukemia translocated to 10  

Unique IgA NDC80 NDC80 homolog, kinetochore complex component (S. cerevisiae)  

Unique IgA NDUFA5 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5, 13kDa  

Unique IgA NOP14 NOP14 nucleolar protein homolog (yeast)  

Unique IgA NUP133 nucleoporin 133kDa  

Unique IgA PFDN5 prefoldin subunit 5  

Unique IgA POLDIP3 polymerase (DNA-directed), delta interacting protein 3  

Unique IgA POMT1 protein-O-mannosyltransferase 1  

Unique IgA PSMC5 proteasome (prosome, macropain) 26S subunit, ATPase, 5  

Unique IgA PSMD11 proteasome (prosome, macropain) 26S subunit, non-ATPase, 11  

Unique IgA RABEPK Rab9 effector protein with kelch motifs  
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Unique IgA RABGAP1L RAB GTPase activating protein 1-like  

Unique IgA RBBP6 retinoblastoma binding protein 6  

Unique IgA RDBP Negative elongation factor E (NELF-E)(RNA-binding protein RD)  

Unique IgA RPL5 small nucleolar RNA, C/D box 21  

Unique IgA RPS3 ribosomal protein S3  

Unique IgA RSBN1L round spermatid basic protein 1-like  

Unique IgA SCFD1 sec1 family domain containing 1  

Unique IgA SH3GL3 SH3-domain GRB2-like 3  

Unique IgA SLC39A7 Zinc transporter SLC39A7 (Solute carrier family 39 member 7)  

Unique IgA SPEF2 sperm flagellar 2  

Unique IgA SUV420H1 suppressor of variegation 4-20 homolog 1 (Drosophila)  

Unique IgA TMPO thymopoietin  

Unique IgA TPM4 tropomyosin 4 

Unique IgA TRBC2 T cell receptor beta constant 2  

Unique IgA UBE4A ubiquitination factor E4A (UFD2 homolog, yeast)  

Unique IgA VRK1 vaccinia related kinase 1  

Unique IgA ZFP36 zinc finger protein 36, C3H type, homolog (mouse)  

Unique IgA ZKSCAN2 zinc finger with KRAB and SCAN domains 2  

Unique IgA ZNF346 zinc finger protein 346  

Potentially specific IgA MAZ MYC-associated zinc finger protein 

Potentially specific IgA ENSA endosulfine alpha 

Potentially specific IgA RPS12 ribosomal protein S12 

Potentially specific IgA ZNF695 zinc finger protein 695 

Potentially specific IgA EBNA1BP2 EBNA1 binding protein 2 

Potentially specific IgA ADD1 adducin 1 (alpha) 

Potentially specific IgA FAM32A family with sequence similarity 32, member A 

Potentially specific IgA NUMA1 nuclear mitotic apparatus protein 1 

Potentially specific IgA SH3GL1 SH3-domain GRB2-like 1 
 

Table 16. Positive clones from Multiple Sclerosis screening 

Priority 
Autoantibo

dy Gene ID Gene Description 

Highly specific and unique IgA DEAF1 deformed epidermal autoregulatory factor 1 (Drosophila) 

Highly specific and unique  IgA H2AFY2 H2A histone family, member Y2 

Highly specific and unique IgA IMPACT Impact homolog (mouse) 

Highly specific and unique IgA NOP56 small nucleolar RNA, C/D box 86 

Highly specific and unique IgA RNF157 ring finger protein 157 

Highly specific and unique IgA RRP1 ribosomal RNA processing 1 homolog (S. cerevisiae) 

Highly specific and unique IgA HMGN2 high-mobility group nucleosomal binding domain 2 

Highly specific and unique IgA SFRS16 splicing factor, arginine/serine-rich 16 
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Highly specific and unique IgA ZFP106 zinc finger protein 106 homolog (mouse) 

Highly specific and unique IgA GTF3C1 general transcription factor IIIC, polypeptide 1, alpha 220kDa 

Highly specific and unique IgA ANKHD1 ankyrin repeat and KH domain containing 1 

Highly specific and unique IgA ATP5D 
ATP synthase, H+ transporting, mitochondrial F1 complex, delta 

subunit 

Highly specific and unique IgA C11orf2 Protein fat-free homolog (Another new gene 2 protein) 

Highly specific and unique IgG NOP56 small nucleolar RNA, C/D box 86 

Highly specific and unique IgG NOP58 NOP58 ribonucleoprotein homolog (yeast) 

Highly specific and unique IgG RPL24 ribosomal protein L24 

Unique IgG AC100771 60S ribosomal protein L17 (60S ribosomal protein L23)(PD-1)  

Unique IgG ADCY9 adenylate cyclase 9  

Unique IgG ALDOA aldolase A, fructose-bisphosphate  

Unique IgG ARFGAP1 ADP-ribosylation factor GTPase activating protein 1  

Unique IgG ATXN7L3 ataxin 7-like 3  

Unique IgG CACNA1E calcium channel, voltage-dependent, R type, alpha 1E subunit  

Unique IgG CNOT1 CCR4-NOT transcription complex, subunit 1  

Unique IgG CTSK cathepsin K  

Unique IgG DCX doublecortin  

Unique IgG DPPA4 developmental pluripotency associated 4  

Unique IgG EIF2A eukaryotic translation initiation factor 2A, 65kDa  

Unique IgG FAM192A family with sequence similarity 192, member A  

Unique IgG GRIA1 glutamate receptor, ionotropic, AMPA 1  

Unique IgG HES5 hairy and enhancer of split 5 (Drosophila)  

Unique IgG HIST1H2AC histone cluster 1, H2ac  

Unique IgG IL11RA interleukin 11 receptor, alpha  

Unique IgG LAMA4 laminin, alpha 4  

Unique IgG ME3 malic enzyme 3, NADP(+)-dependent, mitochondrial  

Unique IgG MLL3 B melanoma antigen family, member 3  

Unique IgG NMT1 N-myristoyltransferase 1  

Unique IgG OTUD5 OTU domain containing 5  

Unique IgG POLR3E polymerase (RNA) III (DNA directed) polypeptide E (80kD)  

Unique IgG PPP1R8 protein phosphatase 1, regulatory (inhibitor) subunit 8  

Unique IgG PSME1 
proteasome (prosome, macropain) activator subunit 1 (PA28 

alpha)  

Unique IgG RPL13A small nucleolar RNA, C/D box 32A  

Unique IgG RPL18 ribosomal protein L18  

Unique IgG RPL7A small nucleolar RNA, C/D box 24  

Unique IgG SFRS7 serine/arginine-rich splicing factor 7  

Unique IgG SKIV2L2 superkiller viralicidic activity 2-like 2 (S. cerevisiae)  

Unique IgG TALDO1 transaldolase 1  

Unique IgG TRIO triple functional domain (PTPRF interacting)  

Unique IgG USP1 ubiquitin specific peptidase 1  

Unique IgG ZNF238 zinc finger protein 238  

Unique IgG ZNF354A zinc finger protein 354A  

Unique IgG ZNF681 zinc finger protein 681  

Unique IgG ZNF721 ATP-binding cassette, sub-family A (ABC1), member 11  
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Unique IgG ZNHIT1 zinc finger, HIT type 1  

Unique IgA AHSA1 AHA1, activator of heat shock 90kDa protein ATPase homolog 1  

Unique IgA DCTN1 dynactin 1  

Unique IgA DHX8 DEAH (Asp-Glu-Ala-His) box polypeptide 8  

Unique IgA GABARAP GABA(A) receptor-associated protein  

Unique IgA GNL2 guanine nucleotide binding protein-like 2 (nucleolar)  

Unique IgA GPATCH1 G patch domain containing 1  

Unique IgA KIF22 kinesin family member 22  

Unique IgA LAMB2 laminin, beta 2 (laminin S)  

Unique IgA MAST2 microtubule associated serine/threonine kinase 2  

Unique IgA MPP1 membrane protein, palmitoylated 1, 55kDa  

Unique IgA NAP1L4 nucleosome assembly protein 1-like 4  

Unique IgA NCSTN nicastrin  

Unique IgA NIPSNAP nipsnap homolog 1 (C. elegans)  

Unique IgA NKRF NFKB repressing factor  

Unique IgA PODXL2 podocalyxin-like 2  

Unique IgA PTK2B PTK2B protein tyrosine kinase 2 beta  

Unique IgA SCYL1 SCY1-like 1 (S. cerevisiae)  

Unique IgA SFRS4 serine/arginine-rich splicing factor 4  

Unique IgA WDR3 WD repeat domain 3  

Unique IgA WDR73 WD repeat domain 73  

Unique IgA WHSC1 Wolf-Hirschhorn syndrome candidate 1  

Unique IgA ZNF711 zinc finger protein 711  

Potentially specific IgG AC004081 60S ribosomal protein L6 

Potentially specific IgG  EBNA1BP2 EBNA1 binding protein 2 

Potentially specific IgG FTH1 ferritin, heavy polypeptide 1 

Potentially specific IgG MAP1B microtubule-associated protein 1B 

Potentially specific IgG PHIP pleckstrin homology domain interacting protein 

Potentially specific IgG PTN Pleiotrophin 

Potentially specific IgG RPL14 ribosomal protein L14 [ 

Potentially specific IgG RPL29 ribosomal protein L29 

Potentially specific IgG RSL1D1 ribosomal L1 domain containing 1 

Potentially specific IgG SAMD14 sterile alpha motif domain containing 14 

Potentially specific IgG STMN4 stathmin-like 4 

Potentially specific IgG VRK3 vaccinia related kinase 3 

Potentially specific IgG ZNF44 zinc finger protein 44 

Potentially specific IgA CIRBP cold inducible RNA binding protein 

Potentially specific IgA MLL5 myeloid/lymphoid or mixed-lineage leukemia 5 

Potentially specific IgA RPL8 ribosomal protein L8 

Potentially specific IgA RPS12 ribosomal protein S12 

Potentially specific IgA RPS8 small nucleolar RNA, C/D box 55 

Potentially specific IgA RPS6 ribosomal protein S6 

Potentially specific IgA RSL1D1 ribosomal L1 domain containing 1 

Potentially specific IgA FTH1 ferritin, heavy polypeptide 1 
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Potentially specific IgA RPS25 ribosomal protein S25 
 

Table 17. Positive clones from screening Healthy vs. Alzheimer’s Disease 

Priority Antibody Gene ID Gene Description 

Highly specific and unique  IgA RPS15 ribosomal protein S15 

Highly specific and unique IgA RPS23 ribosomal protein S23 

Unique IgG C14orf153 kinesin light chain 1 

Unique IgG HARS histidyl-tRNA synthetase 

Unique IgG MBD3 methyl-CpG binding domain protein 3 

Unique IgA FAM50A family with sequence similarity 50, member A 

Unique IgA HMGXB4 HMG box domain containing 4 

Unique IgA PDCD6 programmed cell death 6 

Unique IgA RPS2 ribosomal protein S2 

Unique IgA PSMB5 proteasome (prosome, macropain) subunit, beta type, 5 

Unique IgA PSMA1 proteasome (prosome, macropain) subunit, alpha type, 1 

Potentially specific IgG AZGP1 alpha-2-glycoprotein 1, zinc-binding 

Potentially specific IgG BMS1 BMS1 homolog, ribosome assembly protein (yeast) 

Potentially specific IgG CD320 CD320 molecule 

Potentially specific IgG CHMP1A chromatin modifying protein 1A 

Potentially specific IgG ICA1 islet cell autoantigen 1, 69kDa 

Potentially specific IgG MORF4L1 mortality factor 4 

Potentially specific IgG MRPS24 mitochondrial ribosomal protein S24 

Potentially specific IgG RASD1 RAS, dexamethasone-induced 1 

Potentially specific IgG SARNP SAP domain containing ribonucleoprotein 

Potentially specific IgA PRAP1 proline-rich acidic protein 1 

Potentially specific IgA PIP5K1C phosphatidylinositol-4-phosphate 5-kinase, type I, gamma 

Potentially specific IgA RPS25 ribosomal protein S25 

Potentially specific IgA AC004086.1 
60S ribosomal protein L6 (Tax-responsive enhancer element-

binding protein 107) 

Potentially specific IgA AP3D1 adaptor-related protein complex 3, delta 1 subunit 

Potentially specific IgA BCCIP BRCA2 and CDKN1A interacting protein 

Potentially specific IgA CAP1 CAP, adenylate cyclase-associated protein 1 (yeast) 

Potentially specific IgA DHX9 DEAH (Asp-Glu-Ala-His) box polypeptide 9 

Potentially specific IgA GDAP1L1 ganglioside-induced differentiation-associated protein 1-like 1 

Potentially specific IgA ING4 inhibitor of growth family, member 4 

Potentially specific IgA LRRC47 leucine rich repeat containing 47 

Potentially specific IgA LUC7L LUC7-like (S. cerevisiae) 

Potentially specific IgA MAP2 microtubule-associated protein 2 

Potentially specific IgA RPL23A small nucleolar RNA, C/D box 4A 

Potentially specific IgA RPL29 ribosomal protein L29 

Potentially specific IgA RPL37A ribosomal protein L37a 

Potentially specific IgA RPS8 small nucleolar RNA, C/D box 55 

Potentially specific IgA SRGAP1 SLIT-ROBO Rho GTPase activating protein 1 

Potentially specific IgA TTC3 tetratricopeptide repeat domain 3 

Potentially specific IgA BAZ1A bromodomain adjacent to zinc finger domain, 1A 
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Potentially specific IgA RPS14 ribosomal protein S14 
 

Table 18. Positive clones from screening Healthy vs. Multiple Sclerosis 

Priority Antibody Gene ID Gene Description 

Highly specific and unique  IgA FEN1 flap structure-specific endonuclease 1 

Unique IgA ACSL3 acyl-CoA synthetase long-chain family member 3 

Unique IgA LCORL ligand dependent nuclear receptor corepressor-like 

Unique IgA TARBP2 TAR (HIV-1) RNA binding protein 2 

Unique IgA LUC7L LUC7-like (S. cerevisiae) 

Potentially specific IgG ATP9A ATPase, class II, type 9A 

Potentially specific IgG AZGP1 alpha-2-glycoprotein 1, zinc-binding 

Potentially specific IgG BMS1 BMS1 homolog, ribosome assembly protein (yeast) 

Potentially specific IgG CCDC125 coiled-coil domain containing 125 

Potentially specific IgG CD320 CD320 molecule 

Potentially specific IgG CHMP1A chromatin modifying protein 1A 

Potentially specific IgG KDM3B lysine (K)-specific demethylase 3B 

Potentially specific IgG MORF4L1 mortality factor 4 

Potentially specific IgG MRPS24 mitochondrial ribosomal protein S24 

Potentially specific IgG RASD1 RAS, dexamethasone-induced 1 

Potentially specific IgG RNASEN ribonuclease type III, nuclear 

Potentially specific IgG SARNP SAP domain containing ribonucleoprotein 

Potentially specific IgG UFC1 ubiquitin-fold modifier conjugating enzyme 1 

Potentially specific IgA PRAP1 proline-rich acidic protein 1 

Potentially specific IgA CAP1 CAP, adenylate cyclase-associated protein 1 (yeast) 

Potentially specific IgA CCDC125 coiled-coil domain containing 125 

Potentially specific IgA EHD1 EH-domain containing 1 

Potentially specific IgA LRRC47 leucine rich repeat containing 47 

Potentially specific IgA MYOZ3 myozenin 3 

Potentially specific IgA RNF216 ring finger protein 216 

Potentially specific IgA RPL23A small nucleolar RNA, C/D box 4A 

Potentially specific IgA SRGAP1 SLIT-ROBO Rho GTPase activating protein 1 

Potentially specific IgA TTC3 tetratricopeptide repeat domain 3 

Potentially specific IgA STMN4 stathmin-like 4 

Potentially specific IgA PIN4 protein (peptidylprolyl cis/trans isomerase) NIMA-interacting, 4 

10.2. Lists of autoantigens from phage display screenings 

“Enrichment” represents the difference in the read numbers per gene between the initial 

library and the accordant library from the 4th selection round. “Sera” represents the number of 

sera, in which the accordant gene was enriched.  
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Table 19. Enriched uniques from Alzheimer’s Disease screening  

Enrichement Sera Antibody Gene ID Gene Description 

8,302,857 1 IgG & IgA SLC12A3 solute carrier family 12 (sodium/chloride transporters), 3 

320,592 1 IgG & IgA LDB3 LIM domain binding 3 

194,463 2  IgA SULT1C3 sulfotransferase family, cytosolic, 1C, member 3 

192,966 1 IgG & IgA FOXH1 forkhead box H1 

174,828 1 IgG & IgA WNT3 wingless-type MMTV integration site family, member 3 

143 765 1 IgG & IgA CYP11B2 cytochrome P450, family 11, subfamily B, polypeptide 2 

134,114 1 IgG & IgA TMC2 transmembrane channel-like 2 

81,693 1 IgG & IgA SHH sonic hedgehog 

75,409 1 IgG & IgA OPRD1 opioid receptor, delta 1 

64,185 1 IgG & IgA KCNQ1 potassium voltage-gated channel, KQT-like subfamily, 1 

63,231 1 IgG & IgA HRK harakiri, BCL2 interacting protein (contains only BH3) 

59,898 2 IgA NDRG4 NDRG family member 4 

58,798 2 IgA DTNBP1 dystrobrevin binding protein 1 

49,394 1 IgA CYTH3 cytohesin 3 

48,514 1 IgG & IgA PER2 period homolog 2 (Drosophila)  

44,940 1 IgG & IgA PGGT1B protein geranylgeranyltransferase type I, beta subunit  

42,449 1 IgG & IgA APC adenomatous polyposis coli  

40,093 1 IgG & IgA IL1RAPL1 interleukin 1 receptor accessory protein-like 1 

39,680 1 IgG & IgA GLP1R glucagon-like peptide 1 receptor  

34,182 1 IgG & IgA EN1 engrailed homeobox 1  

29,576 1 IgG & IgA SPI1 
spleen focus forming virus (SFFV) proviral integration 

oncogene spi1  

28,982 1 IgG & IgA CDY2A chromodomain protein, Y-linked, 2A  

26,902 1 IgG & IgA CHRNA9 cholinergic receptor, nicotinic, alpha 9 

24,881 1 IgG & IgA MAP3K10 mitogen-activated protein kinase kinase kinase 10  

24,446 1 IgG & IgA BRDT bromodomain, testis-specific  

23,732 1 IgG & IgA SIM1 single-minded homolog 1 (Drosophila)  

19,908 1 IgA PAX6 paired box 6 

18,034 1 IgG & IgA PRKG2 protein kinase, cGMP-dependent, type II [ 

16,929 1 IgG & IgA ADAMTS2 
ADAM metallopeptidase with thrombospondin type 1 motif, 

2  

12,804 1 IgG & IgA ULK1 unc-51-like kinase 1 (C. elegans)  

12,779 1 IgG & IgA SOLH small optic lobes homolog (Drosophila)  

10,229 1 IgG & IgA NOS1AP nitric oxide synthase 1 (neuronal) adaptor protein  

9,807 1 IgG & IgA MALL mal, T-cell differentiation protein-like 

8,109 1 IgG & IgA SOX21 SRY (sex determining region Y)-box 21  

6,888 1 IgG & IgA NCAN neurocan  

6,313 1 IgG & IgA EPX eosinophil peroxidase  

5,943 1 IgG & IgA PDE6C phosphodiesterase 6C, cGMP-specific, cone, alpha prime  

5,849 1 IgG & IgA ZIC3 Zic family member 3 (odd-paired homolog, Drosophila)  

5,751 1 IgG AS3MT arsenic (+3 oxidation state) methyltransferase  

5,687 1 IgG & IgA ASB4 ankyrin repeat and SOCS box-containing 4  

5,676 1 IgG & IgA RHO rhodopsin  

5,221 2 IgG & IgA MAGOH mago-nashi homolog, proliferation-associated (Drosophila)  
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5,164 1 IgG & IgA HCRT hypocretin (orexin) neuropeptide precursor  

4,948 1 IgG & IgA GAGE1 G antigen 3  

4,628 1 IgG & IgA HCRTR2 hypocretin (orexin) receptor 2  

4,625 1 IgA ANXA2	   annexin A2 

3,867 1 IgG & IgA PPP1R3A protein phosphatase 1, regulatory (inhibitor) subunit 3A  

3,675 1 IgG & IgA FOXC2 forkhead box C2 (MFH-1, mesenchyme forkhead 1)  

3,357 1 IgG & IgA DMD dystrophin  

3,019 1 IgG & IgA TLL2 tolloid-like 2  

2,381 2 IgA GDI1 GDP dissociation inhibitor 1 

2,365 1 IgG & IgA EVC2 Ellis van Creveld syndrome 2  

2,365 1 IgG & IgA F5 coagulation factor V (proaccelerin, labile factor)  

2,300 1 IgA TCEB1 transcription elongation factor B (SIII), polypeptide 1 

2,212 1 IgG & IgA FOSB FBJ murine osteosarcoma viral oncogene homolog B  

2,019 1 IgG & IgA CLLU1OS 
chronic lymphocytic leukemia up-regulated 1 opposite 

strand  

1,944 1 IgG C14orf1 Probable ergosterol biosynthetic protein 28   

1,929 1 IgG DEFB104A defensin, beta 104A  

1,916 1 IgA FOLR3 folate receptor 3 (gamma) 

1,890 2 IgG & IgA PRRC1 proline-rich coiled-coil 1  

1,700 1 IgG & IgA RTN4 reticulon 4  

1,690 2 IgG SMCP sperm mitochondria-associated cysteine-rich protein  

1,662 1 IgA MND1 meiotic nuclear divisions 1 homolog 

1,530 1 IgG DEC1 deleted in esophageal cancer 1  

1,475 1 IgG & IgA PDX1 pancreatic and duodenal homeobox 1  

1,403 1 IgG & IgA FZD8 frizzled homolog 8 (Drosophila)  

1,392 1 IgG & IgA RNF39 Ring finger protein 39   

1,263 1 IgG & IgA ZDHHC3 zinc finger, DHHC-type containing 3  

1,258 1 IgG PMP22 peripheral myelin protein 22  

1,227 1 IgG LYRM2 LYR motif containing 2  

1,185 1 IgG PSME3 
proteasome (prosome, macropain) activator subunit 3 (PA28 

gamma; Ki)  

1,177 1 IgA RAP2A RAP2A, member of RAS oncogene family 

1,165 1 IgG IGF1 insulin-like growth factor 1 (somatomedin C)  

1,031 1 IgG CPNE8 copine VIII  
 

Table 20. Enriched uniques from Multiple Sclerosis screening  

Enrichement Sera Antibody Gene ID Gene Description 

272,328 2 IgA TOB1 transducer of ERBB2, 1 

34,619 1 IgA THAP10 THAP domain containing 10 

9,106 2 IgG & IgA  CCDC56 coiled-coil domain containing 56 

6,568 2 IgG & IgA GNG3 guanine nucleotide binding protein (G protein), gamma 3 

4,899 2 IgA COPE coatomer protein complex, subunit epsilo 

4,580 1 IgA DHFR dihydrofolate reductase pseudogene 1 

3,354 2 IgG & IgA COX7A1 cytochrome c oxidase subunit VIIa polypeptide 1 

3,194 2 IgA DUSP18 dual specificity phosphatase 18 

2,038 1 IgG SFXN2 sideroflexin 2 
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2,019 1 IgA FXYD6 FXYD domain containing ion transport regulator 6 

1,827 1 IgG EPB49 erythrocyte membrane protein band 4.9 (dematin) 

1,750 1 IgG HIGD1A HIG1 hypoxia inducible domain family, member 1A 
 

Table 21. Enriched uniques from Healthy screening  

Enrichement Sera Antibody Gene ID Gene Description 

1,802,764 1 IgA CASP4 caspase 4, apoptosis-related cysteine peptidase 

3,809 1 IgG & IgA TFG TRK-fused gene 

2,537 1 IgG & IgA MIF macrophage migration inhibitory factor  

2,179 1 IgG NDUFB7 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 7 

1,689 1 IgG & IgA C22orf39 UPF0545 protein C22orf39 

1,418 1 IgG AKR7A2 aldo-keto reductase family 7, member A2 

1,268 1 IgG NDUFA3 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 3 

1,222 1 IgG MCEE methylmalonyl CoA epimerase 

1,194 1 IgG UBE2A ubiquitin-conjugating enzyme E2A (RAD6 homolog) 
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