Index of Figures

Fig. I-1	Cognitive impairment	9
Fig. I-2	Spatial overview of some key features along the length of the X chromosome	: 12
Fig. I-3	Identification rate of genes implicated in X-linked mental retardation	24
Fig. I-4	Mental retardation and the Actin cytoskeleton	30
Fig. I-5	Mental retardation, chromatin condensation and regulation of transcription	38
Fig. I-6	Mental retardation and synaptic function	46
Fig. I-7	The Ubiquitin – proteasome pathway and E3 Ubiquitin ligases	54
Fig. I-8	Overview of some positional cloning approaches	58
Fig. I-9	Some methods used in mutation analysis	66
Fig. III-1	Ideograms of 46,X,t(X;8)(p11.2;p22.3)	140
Fig. III-2	Positional cloning overview	141
Fig. III-3	Fluorescent in situ hybridisation on chromosome X narrows down the break-	
	point region	142
Fig. III-4	Southern hybridisation on chromosome X	144
Fig. III-5	Suppression polymerase chain reaction	145
Fig. III-6	Fluorescent in situ hybridisation on chromosome 8	147
Fig. III-7	Southern hybridisation on chromosome 8	148
Fig. III-8	Breakpoint-spanning polymerase chain reaction	149
Fig. III-9	Genomic organisation at the 46,X,t(X;8)(p11.2;p22.3) breakpoints	150
Fig. III-10	Genomic organisation of the hFBXO25 and mFbxo25 transcripts	151
Fig. III-11	Expression analyses of <i>hFBXO25</i> and <i>mFbxo25</i>	154
Fig. III-12	Semi-quantitative reverse transcription polymerase chain reaction	
	establishing <i>mFbxo25</i> expression levels	156
Fig. III-13	Expression of <i>mFbxo25</i> in tissues from embryonic day 14.5 and adult brain	
	$(^{33}\alpha[P]UTP$ - and digoxigenin-labelled probes)	158
Fig. III-14	Expression of <i>mFbxo25</i> in tissues from embryonic day 14.5	
	(³⁵ α[S]UTP-labelled probe)	158
Fig. III-15	hFBXO25 vertebrate homologues	160
Fig. III-16	hFBXO25 S244 is unusual, but does not define a new subclass of F-boxes	163
Fig. III-17	Subcellular localisation of hFBXO25 open reading frames 1 and 2	166
Fig. III-18	hFBXO25 is a <i>de facto</i> F-box protein	168

Fig. III-19	The serine at position 244 in the hFBXO25 F-box is crucial for its interaction	1
	with Skp1	169
Fig. III-20	Organisation of the Kiaa1202 gene, its transcripts and its protein product	176
Fig. III-21	Expression analyses of human and mouse Kiaa1202	182
Fig. III-22	Screening hKIAA1202 and its surrounding genomic region for genomic	
	rearrangements	186
Fig. III-23	Principle of the exon-skipping reverse transcription polymerase chain	
	reaction	189
Fig. III-24	Cross-species global multiple sequence alignment of hKIAA1202	
	homologues	192
Fig. III-25	Cross-species global multiple sequence alignment of PSD-95/Dlg/ZO-1	
	domains from hKIAA1202 homologues	195
Fig. III-26	Cross-species global multiple sequence alignment of APX Shroom	
	domains 2 from hKIAA1202 homologues	196
Fig. III-27	Multiple sequence alignments of domains found in APX/Shroom family	
	members	199
Fig. III-28	Titration of an α -hKIAA1202 antibody	200
Fig. III-29	α -hKIAA1202 specifically recognises several protein species in human and	
	mouse cells	202
Fig. III-30	Subcellular localisation of hKIAA1202 open reading frame I in mammalian	
	cells	204
Fig. III-31	hKIAA1202 is not a transmembrane protein	206
Fig. III-32	α-hKIAA1202 recognises native hKIAA1202-V5	208
Fig. III-33	Subcellular localisation of endogenous Kiaa1202	208
Fig. III-34	Generation of a U373 MG cell line stably expressing hKIAA1202-V5	211
Fig. III-35	hKIAA1202-V5 partially co-localises with filamentous Actin	212
Fig. III-36	Endogenous Kiaa1202 localises at cellular sites of rapid Actin remodelling	214
Fig. III-37	Endogenous mKiaa1202 co-localises with the most prominent spots of	
	filamentous Actin staining in the neurites of differentiating Neuro-2A cells	216
Fig. III-38	Endogenous hKIAA1202 seems to co-localise with filamentous Actin in	
	networks of interlinked differentiating SH-SY5Y cells	216
Fig. III-39	hKIAA1202 can redirect the subcellular localisation of filamentous Actin	218
Fig. III-40	Putative interaction between hKIAA1202, and Actin and Vimentin	220

Fig. III-41	Auto-activation assay of hKIAA1202 yeast two-hybrid constructs	223
Fig. III-42	Putative homo-oligomerisation of hKIAA1202	224
Fig. III-43	Endogenous Kiaa1202 partially co-localises with Vimentin	228
Fig. III-44	Endogenous mKiaa1202 co-localises with Vimentin in differentiating	
	Neuro-2A cells	228
Fig. III-45	Putative interaction between hKIAA1202 and Vimentin	230
Fig. IV-1	Microanatomical features of dendritic anomalies in epileptic patients	239
Fig. IV-2	hFBXO25 S244 is structurally equivalent with hFBXW1a D165	242
Fig. IV-3	Stocco dos Santos X-linked mental retardation syndrome	261
Fig. V-1	Future studies on hKIAA1202 will involve the identification of interaction	
	partners and placing them in a pathway	276
Fig. VII-1	Extraterrestrial Fanny	294
Fig. IX-1	X chromosome inactivation occurs in a stepwise fashion	302
Fig. X-1	A pictorial history of classical and molecular genetics	308