Fernerkundung von Wasserinhaltsstoffen in Küstengewässern mit MERIS unter Anwendung expliziter und impliziter Atmosphärenkorrekturverfahren

DISSERTATION

zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften

am Fachbereich Geowissenschaften der

Freien Universität Berlin

von

Thomas Schröder

aus

Glückstadt

Berlin, Dezember 2004

1. Gutachter: Univ.-Prof. Dr. Jürgen Fischer

2. Gutachter: Univ.-Prof. Dr. Hermann Kaufmann

Tag der Dissputation: 2. März 2005

Inhaltsverzeichnis

Inhaltsverzeichnis	Ι
Abbildungsverzeichnis	IV
Tabellenverzeichnis	IX
Verzeichnis der benutzten Symbole und Abkürzungen	XI

1	Einl	eitung		1
	1.1	Satelli	tengestützte Fernerkundung von Wasserinhaltsstoffen	4
	1.2	Stand	der Forschung	6
	1.3	Ziel de	er Arbeit	12
2	Opt	ische Ei	igenschaften der Küstengewässer	14
	2.1	Inhäre	nte optische Eigenschaften	16
		2.1.1	Reines Wasser und reines Meerwasser	17
		2.1.2	Phytoplankton und Detritus	19
		2.1.3	Anorganischer Schwebstoff	23
		2.1.4	Gelbstoff	24
	2.2	Schein	bare optische Eigenschaften	26
	2.3	Weiter	e Einflüsse auf die Spektralcharakteristik des Wasserkörpers	27
		2.3.1	Schaumbedeckung	27
		2.3.2	Direkte Sonnenreflexion an der Wasseroberfläche	28
		2.3.3	Reflexion am Untergrund der Gewässer	29
		2.3.4	Inelastische Streuung	29
		2.3.5	Spezielle Algenblüten	31

3	Opt	ische Eigenschaften der Atmosphäre	32
	3.1	Rayleigh-Streuung	33
	3.2	Streuung und Absorption an Aerosolen	34
		3.2.1 Verwendete Aerosolmodelle	34
		3.2.2 Ergebnisse der Mie-Rechnungen	37
	3.3	Absorption durch Ozon	39
	3.4	Absorption durch andere Gase	39
	3.5	Polarisation	40
4	Ent	wicklung der Inversionsverfahren	41
	4.1	Der Sensor MERIS	41
	4.2	Strahlungstransportsimulationen	43
		4.2.1 Parameterisierung der Atmosphäre	44
		4.2.2 Parameterisierung des Wasserkörpers	45
		4.2.3 Simulierte Reflektanzen in Abhängigkeit variierender Inhaltsstoffe	47
	4.3	Inversion durch künstliche neuronale Netze	49
		4.3.1 Datenaufbereitung und Training	51
5	Vali	dierung der Inversionsverfahren	56
	5.1	Validierung der Reflektanzen am Unterrand der Atmosphäre	57
		5.1.1 Vergleich mit <i>in situ</i> Messungen	58
		5.1.2 Vergleich mit MERIS-Level2-Produkten	61
	5.2	Validierung der aerosoloptischen Tiefe	65
		5.2.1 Vergleich mit <i>in situ</i> Messungen	65
	5.3	Räumliche Strukturen der Reflektanzen und aerosoloptischen Tiefen	66
	5.4	Validierung der Wasserinhaltsstoffe	68
		5.4.1 Vergleich mit <i>in situ</i> Messungen	70
		5.4.2 Vergleich mit MERIS-Level2-Produkten	74
		5.4.3 Fehlerquellen der Konzentrationsbestimmung	78
	5.5	Räumliche Strukturen der Wasserinhaltsstoffe	81
6	Sens	sitivität und Grenzen der Verfahren	84
	6.1	Generalisierungsfähigkeit für untrainierte Daten	84
	6.2	Stabilität gegenüber verrauschten Eingangsdaten	87
	6.3	Grenzen der direkten Inversion	91
7	Zus	ammenfassung und Ausblick	94

Danksagung	99
Literaturverzeichnis	100
A Tabellen der Validierungsergebnisse / Verwendete MERIS-Daten	110

Abbildungsverzeichnis

1.1	Übersicht der Verfahrensschritte zur Entwicklung der in dieser Arbeit vor- gestellten Inversionen. Ein Verzeichnis der verwendeten Symbole findet	
	sich am Anfang der Arbeit.	13
2.1	Die in dieser Arbeit verwendeten inhärenten optischen Eigenschaften von Wasser. Links: Spektraler Absorptionskoeffizient a_w von reinem Wasser bis 709 nm nach <i>Pope und Fry</i> (1997) und ab 709 nm nach <i>Hale und Quer</i> -	
	ry (1973), spektraler Streukoeffizient b_w von Meerwasser (Salzgehalt 35- 39 ‰) nach <i>Morel</i> (1974) sowie die resultierende Einzelstreualbedo ω_0 . Rechts: Volumenstreufunktion von reinem Wasser für vier Wellenlängen	10
2.2	nach <i>Morel</i> (1974)	19
2.3	jeweils drei Chlorophyll-a-Konzentrationen nach <i>Bricaud et al.</i> (1995) Links: Spektraler Verlauf der in dieser Arbeit verwendeten Absorptions- koeffizienten von Phytoplankton inklusive Detritus für fünf Chlorophyll- konzentrationen $[mg m^{-3}]$ nach <i>Bricaud et al.</i> (1998). Rechts: Spektraler Verlauf der Streukoeffizienten für die gleichen Chlorophyllkonzentratio-	21
2.4	nen nach einem Modell von <i>Gordon und Morel</i> (1983)	22

der verwendeten Aerosolmodelle. Oben links: Streufunktionen der mari-	
timen Modelle (MAR70, MAR99) für 70% und 99% relativer Feuchte im	
Vergleich zur Rayleigh-Streufunktion. Oben rechts: Streufunktionen des	
kontinentalen (CONTI) und des stratosphärischen Modells (H2SO4). Un-	
ten links: Spektrale Extinktionskoeffizienten normiert auf 900 nm. Unten	
rechts: Spektrale Einzelstreualbedo. Beide unteren Abbildungen jeweils	
für die Modelle H2SO4, CONTI sowie MAR70 und MAR99	38
Direkt an der Meeresoberfläche berechnetes Transmissionsspektrum für	
eine mid-latitude summer Atmosphäre mit den spektralen Positionen der	
in dieser Arbeit verwendeten MERIS-Kanäle in gelb. Separat in rot dar-	
gestellt ist die Transmission des Ozons für einen Säulengehalt von 344	
Dobson-Einheiten.	39
Der in der Montage befindliche Satellit ENVISAT im April 2000 mit einer	
Illustration der Instrumentierung (Photo: ESA).	42
Darstellung der auf einer logarithmischen Skala gleichverteilt und sto-	
chastisch ausgewählten Konzentrationen in den Grenzen der Gleichungen	
4.1, 4.2 und 4.3	46
Spektrale Änderungen simulierter MERIS-Reflektanzen am Oberrand der	
Atmosphäre (linke Spalte) und direkt an der Meeresoberfläche (rechte	
Spalte) in Abhängigkeit jeweils eines variablen Wasserinhaltsstoffes. Die	
gestrichelten Graphen entsprechen der Reflektanz für ein Gewässer oh-	
ne Wasserinhaltsstoffe mit einem Salzgehalt von 35-38 ‰. Zu beach-	
ten ist die unterschiedliche Skalierung der Abbildungen der Reflektanzen	
am Ober- und Unterrand der Atmosphäre für die variierten Inhaltsstoffe	
Chlorophyll-a und Gelbstoff	48
Spektrale Änderungen simulierter MERIS-Reflektanzen am Oberrand der	
Atmosphäre für zwei Küstengewässer mit unterschiedlichen Konzentra-	
tionstripeln in Abhängigkeit variierender aerosoloptischer Tiefen für das	
maritime Aerosolmodell 1 der Tabelle 4.1	49
Struktur eines Mehrschicht-Perzeptrons mit einer verborgenen Zwischen-	
Struktur eines Mehrschicht-Perzeptrons mit einer verborgenen Zwischen- schicht. Die Gewichtsmatritzen W1 und W2 werden in der Lernphase mo-	
	Vergleich zur Rayleigh-Streufunktion. Oben rechts: Streufunktionen des kontinentalen (CONTI) und des stratosphärischen Modells (H2SO4). Un- ten links: Spektrale Extinktionskoeffizienten normiert auf 900 nm. Unten rechts: Spektrale Einzelstreualbedo. Beide unteren Abbildungen jeweils für die Modelle H2SO4, CONTI sowie MAR70 und MAR99 Direkt an der Meeresoberfläche berechnetes Transmissionsspektrum für eine <i>mid-latitude summer</i> Atmosphäre mit den spektralen Positionen der in dieser Arbeit verwendeten MERIS-Kanäle in gelb. Separat in rot dar- gestellt ist die Transmission des Ozons für einen Säulengehalt von 344 Dobson-Einheiten

4.6	Simulierte Strahldichten am Oberrand der Atmosphäre als Funktion des	
	Beobachterzenits θ_0 für zwei Sonnenstände θ_s bei einer Azimutdifferenz	
	von $\Delta \phi = 0^{\circ}$. Die in schwarz dargestellten unkorrigierten Werte zeigen	
	den direkten Sonnenreflex der aufwärtsgerichteten Strahldichte am Ober-	
	rand der Atmosphäre über einer rauhen Wasseroberfläche mit einer Wind-	
	geschwindigkeit von $1,5 \mathrm{ms}^{-1}$. Die rot dargestellten Verläufe zeigen die	
	Strahldichten nach Anwendung der Glint-Korrektur.	52
4.7	Rechts: Winkelverläufe der Azimutdifferenzen und Beobachterwinkel für	
	eine Zeile einer MERIS-Aufnahme senkrecht zur Flugrichtung. Links:	
	Transformierte Winkelverläufe der linken Abbildung zur Umgehung der	
	Unstetigkeiten der pixelbasierten Inversionsverfahren	53
51	Das SIMBADA-Radiometer (Photo: LOA)	58
5.2	RGB-Darstellung der verwendeten MERIS-Daten im Bereich der Nord-	50
5.2	see mit den Stationen der <i>in situ</i> Messungen zur Bestimmung der Reflek-	
	tanzen mit dem SIMBADA-Radiometer	59
5.3	Ergebnisse der Validierung des entwickelten Atmosphärenkorrekturver-	57
0.0	fahrens. Links: Vergleich von <i>in situ</i> an 4 Tagen (s. Tab. 5.1) von der	
	GKSS direkt an der Wasseroberfläche gemessenen Reflektanzen (SIM-	
	BADA) mit den durch das Verfahren dieser Arbeit (ANN) abgeleiteten	
	Reflektanzen als Streudiagramm. Rechts: Spektraler Fehlerverlauf von	
	RMSE und MAPE.	60
5.4	Vergleich der MERIS-Level2-Reflektanzen am Unterrand der Atmosphä-	
	re (links) sowie der, durch das Atmosphärenkorrekturverfahren dieser Ar-	
	beit abgeleiteten Reflektanzen (rechts), mit den in situ gemessenen Re-	
	flektanzen des SIMBADA-Radiometers für den 15.07. und 06.08.2003.	63
5.5	Durch Vergleich mit in situ Messungen ermittelte spektrale Fehlerverläu-	
	fe von RMSE und MAPE der am Unterrand der Atmosphäre abgeleiteten	
	Reflektanzen des MERIS-Level2-Produktes (blau) und des Atmosphären-	
	korrekturverfahrens dieser Arbeit (rot) für den 15.07. und 06.08.2003	63
5.6	Mit dem hier entwickelten Atmosphärenkorrekturverfahren abgeleitete	
	spektrale Reflektanzen (rot) im Vergleich zum MERIS-Level2-Produkt	
	(blau) und den in situ Messungen der GKSS (schwarz). Die Numme-	
	rierung der Stationen [S01-S15] entspricht den in Abb. 5.2 dargestellten	
	Meßorten.	64

5.7	Links: Ergebnis der Validierung der durch die Atmosphärenkorrektur die-	
	ser Arbeit abgeleiteten aerosoloptischen Tiefen, im Vergleich zu den in	
	situ Messungen der AERONET-Station auf der Insel Helgoland für einen	
	Datensatz von 12 Tagen als Streudiagramm. Rechts: Absolute und relative	
	spektrale Fehlerverläufe der abgeleiteten aerosoloptischen Tiefen.	66
5.8	RGB-Darstellung einer MERIS-Aufnahme vom 15.07.2003 über Berei-	
	chen der Nord- und Ostsee mit Beispielen der durch das Atmosphärenkor-	
	rekturverfahren abgeleiteten räumlichen Strukturen der aerosoloptischen	
	Tiefe bei 440 nm und der Remote Sensing Reflectances für die Wellenlän-	
	gen 442 und 560 nm	67
5.9	Geographische Lage der in situ Meßorte zur Validierung der Wasserin-	
	haltsstoffe. (Nordsee \clubsuit), Ostsee \heartsuit), Mittelmeer \clubsuit), Golf von Cádiz \diamondsuit).	69
5.10	Beste Ergebnisse der Validierung der 1S-Verfahren (links) und der 2S-	
	Verfahren (rechts) anhand von in situ gemessenen Konzentrationen von	
	Chlorophyll-a (oben), Gesamtschwebstoff (mitte) und Gelbstoffabsorpti-	
	on (unten). Dargestellt sind die Mediane und einfachen Standardabwei-	
	chungen für jeweils 3x3 Pixel große Datenbereiche an den Orten in situ	
	Messungen.	72
5.11	Relative Fehler der besten 1S-Verfahren (schwarz) und 2S-Verfahren (rot)	
	im Vergleich zu den in situ Messungen von Chlorophyll-a (oben), Ge-	
	samtschwebstoff (mitte) und Gelbstoff (unten) jeweils nach Konzentra-	
	tionen geordnet mit Angaben der Stationsnamen (vgl. Abb. 5.9)	73
5.12	Vergleich der 1S- und 2S-Verfahren (schwarz, rot) mit den entsprechen-	
	den MERIS-Level2-Produkten (blau) und den in situ Messungen (gelb)	
	für ausgewählte Stationen in 3 verschiedenen Datenqualitätsklassen Q1,	
	Q2 und Q3, in Abhängigkeit der Level2-Flags (s. Text) sowie Darstel-	
	lung der relativen Genauigkeit der 3 Methoden, bezogen auf die in si-	
	tu Messungen. Zum Vergleich mit dem MERIS-Level2-Produkt sind die	
	in situ Messungen des Gelbstoffs, inklusive der Absorption der nicht-	
	chlorophyllhaltigen Partikel, in orange abgebildet	77
5.13	Beispiele der durch das 2S-Verfahren für Bereiche der Nord- und Ostsee	
	abgeleiteten Konzentrationsverteilung von Chlorophyll-a, Gesamtschweb-	
	stoff und Gelbstoffabsorption bei 443 nm für eine MERIS-Aufnahme vom	
	15.07.2003 (vgl. Abb. 5.8). Die Schnittlinien der RGB-Darstellung bezie-	
	hen sich auf die Abbildung 5.14.	81

5.14	Mit den 1S- und 2S-Verfahren abgeleitete Konzentrationsverläufe für Chlo- rophyll-a, Gesamtschwebstoff und Gelbstoff sowie der aerosoloptischen Tiefe entlang zweier Schnittlinien, im Bereich der Nord- und Ostsee. (Verläufe: 1S=gestrichelt, 2S=durchgezogen)	83
6.1	Streudiagramme der durch die 2S-Verfahren abgeleiteten Konzentratio- nen von Chlorophyll-a (links), Gesamtschwebstoff (mitte) und Gelbstoff (rechts) aufgetragen gegen die simulierten Konzentrationen für 100 000 Eingabespektren der Trainingsdatensätze (obere Reihe) und der Testda-	
	tensätze (untere Reihe)	85
6.2	Wie Abb. 6.1 nur für das 1S-Verfahren.	85
6.3	Genauigkeit des 1S- und 2S-Verfahrens zur Bestimmung von Chloro-	
	phyll-a, Gesamtschwebstoff und Gelbstoff bezogen auf die nicht gelern-	
	ten Testdatensätze mit jeweils 100 000 simulierten Spektren	86
6.4	Fehlerentwicklung in der Konzentrationsbestimmung von Chlorophyll-a	
	(oben), Gesamtschwebstoff (mitte) und Gelbstoff (unten) für unkorreliert	
	und signalabhängig verrauschte Eingabespektren der Testdatensätze des	
	1S-Verfahrens (links) und des 2S-Verfahrens (rechts)	89
6.5	Fehlerentwicklung in der Konzentrationsbestimmung von Chlorophyll-a	
	(oben), Gesamtschwebstoff (mitte) und Gelbstoff (unten) für korreliert	
	und signalabhängig verrauschte Eingabespektren der Testdatensätze des	
	1S-Verfahrens (links) und des 2S-Verfahrens (rechts)	90
6.6	Genauigkeit des 1S-Verfahrens in Bezug auf unverrauschte Modelldaten	
	für Chlorophyll-a, Gesamtschwebstoff und Gelbstoff in Abhängigkeit von	
	der aerosoloptischen Tiefe (oben), dem Beobachterzenit- (mitte) und dem	
	Sonnenzenitwinkel (unten).	92

Tabellenverzeichnis

1.1	Zur Zeit in Betrieb befindliche passive satellitengestützte Sensoren zur Gewässerfernerkundung Stand 07/2004 (<i>IOCCG</i> , 2004)	5
		0
3.1	Die in dieser Arbeit verwendeten Aerosolmodelle mit einer Aufgliede-	
	rung der einzelnen Aerosolkomponenten und deren prozentuale Antei-	
	le am Gesamtvolumen bzw. an der Teilchenanzahl. Aufgrund von Run-	
	dungsfehlern weicht die Summe der Gesamtteilchenzahl des kontinenta-	
	len Modells leicht von 100% ab. ¹) Shettle und Fenn (1979) ²) WCP (1986)	35
3.2	Verwendete Aerosolkomponenten mit Angaben der Eingabeparameter für	
	die Mie-Rechnungen zur Bestimmung der inhärenten optischen Eigen-	
	schaften der Aerosole. Die Angaben zum Real- und Imaginärteil des Bre-	
	chungsindex beziehen sich auf eine Wellenlänge von 560 nm	36
3.3	Einfluß der Gasabsorption durch Wasserdampf und Sauerstoff auf die	
	Transmission einer mid-latitude summer Atmosphäre bei einem Sonnen-	
	zenit von 30° und einer Beobachtergeometrie in Nadirrichtung nach San-	
	<i>ter et al.</i> (2002)	40
4.1	Im Strahlungstransport verwendete Aerosolmodelle und ihre vertikale Ver-	
	teilung und Variation der aerosoloptische Tiefe. Erläuterung im Text	44
4.2	In den Simulationen verwendete Konzentrationsbereiche der Wasserin-	
	haltsstoffe	45
4.3	In den Trainingsdatensätzen verwendetes signalabhängiges Rauschen	54
5.1	Verwendeter Datensatz der in situ Messungen zur Validierung der Atmo-	
	sphärenkorrektur und der Verfahren zur Bestimmung der Wasserinhalts-	
	stoffe. (AERONET ¹⁾ , GKSS ²⁾ , Informus GmbH ³⁾ , CICEM ⁴⁾) $\ldots \ldots$	57
5.2	Spektralkanäle des SIMBADA-Radiometers.	58

5.3	Unterteilung der für einen Vergleich mit den MERIS-Level2-Produkten	
	verwendeten Stationen in 3 Qualitätsklassen mit einer Angabe der An-	
	zahl relevanter Level2-Flags für die jeweiligen 3x3 Pixel großen Unter-	
	suchungsgebiete (s. Text)	76
5.4	Angabe der mittleren absoluten prozentualen Fehler (MAPE) der Verfah-	
	ren dieser Arbeit und der entsprechenden MERIS-Level2-Produkte im	
	Vergleich zu in situ gemessenen Konzentrationen für eine Unterteilung	
	der MERIS-Daten in 3 Qualitätsstufen (s. Text). Zusätzlich sind die abso-	
	luten prozentualen Fehler (APE) für die Station R tabelliert.	78
A.1	Zum Training der neuronalen Netze verwendete Rauschpegel und Trans-	
	formationen der Eingabedaten.	110
A.2	Ergebnisse der Validierung der 8 neuronalen Netzwerke zur Atmosphä-	
	renkorrektur anhand von in situ Daten in Abhängigkeit der Neuronenzahl	
	der Zwischenschicht (NZ) und der gewählten Rauschpegel (RP) - (vgl.	
	Tab. A.1)	110
A.3	Ergebnisse der Validierung der Einschrittinversionen zur Bestimmung der	
	Wasserinhaltsstoffe Chlorophyll-a (CHL), Gesamtschwebstoff (TSM) so-	
	wie Gelbstoffabsorption (YEL) anhand von in situ Daten für 24 neuronale	
	Netzwerke in Abhängigkeit der Neuronenzahl der Zwischenschicht (NZ)	
	und der gewählten Rauschpegel (RP) - (vgl. Tab. A.1).	111
A.4	Ergebnisse der Validierung der Zweischrittinversionen zur Bestimmung	
	der Wasserinhaltsstoffe Chlorophyll-a (CHL), Gesamtschwebstoff (TSM)	
	sowie Gelbstoffabsortion (YEL) anhand von in situ Daten für 24 neuro-	
	nale Netzwerke in Abhängigkeit der Neuronenzahl der Zwischenschicht	
	(NZ) und der gewählten Rauschpegel (RP) - (vgl. Tab. A.1). Die Ergeb-	
	nisse basieren auf der Atmosphärenkorrektur mit dem Netzwerk ATM8	
	(vgl. Tab. A.2)	112
A.5	Die in dieser Arbeit verwendeten MERIS-Daten mit Angabe der Prozes-	
	sorversion	113

Verzeichnis der benutzten Symbole und Abkürzungen

Symbol	Bezeichnung	Einheit
CHL	Chlorophyll-a	${ m mg}{ m m}^{-3}$
L	Strahldichte	${ m Wm^{-2}sr^{-1}\mu m}$
E	Irradianz	Wm^{-2}
M_{O_3}	Ozonsäulenmasse	cm
P	Bodendruck	hPa
T	Transmission	1
TSM	Gesamtschwebstoff (organisch + anorganisch)	${ m gm^{-3}}$
R	Reflektanz, Reflexionsvermögen	1
RL	Radiance Reflectance	1
RS	Remote Sensing Reflectance	sr^{-1}
W	Windgeschwindigkeit	${ m ms}^{-1}$
YEL	Gelbstoffabsorption bei 443 nm	m^{-1}
$m_{ m r}$	Realteil des komplexen Brechungsindex	1
$m_{ m i}$	Imaginärteil des komplexen Brechungsindex	1
$r_{ m i}$	Modalradius	$\mu { m m}$
z	Höhe	m
$a_{ m det}$	Absorptionskoeffizient Detritus	m^{-1}
a_{O_3}	Absorptionskoeffizient Ozon	m^{-1}
a_{p1}	Absorptionskoeffizient Chlorophyll-a	m^{-1}
a_{p2}	Absorptionskoeffizient anorganischer Schwebstoff	m^{-1}
$a^*_{ m ph}$	Spezif. Absorptionskoeffizient Phytoplankton	${ m m}^2{ m mg}^{-1}$
$a_{ m w}$	Absorptionskoeffizient Seewasser	m^{-1}
$a_{ m WAT}$	Gesamtabsorptionskoeffizient Küstengewässer	m^{-1}

$a_{ m y}$	Absorptionskoeffizient Gelbstoff	m^{-1}
$\widetilde{b_{\mathrm{b}}}$	Rückstreuwahrscheinlichkeit	1
$b_{ m b}$	Rückstreukoeffizient	m^{-1}
$b_{ m p}$	Streukoeffizient Gesamtschwebstoff	m^{-1}
$b_{ m w}$	Streukoeffizient Seewasser	m^{-1}
$b_{ m WAT}$	Gesamtstreukoeffizient Küstengewässer	m^{-1}
с	Extinktionskoeffizient	m^{-1}
x	Geometrieparameter	1
y	Geometrieparameter	1
z	Vertikalkoordinate, Geometrieparameter	m, 1
Φ	Strahlungsfluß	${ m W}\mu{ m m}^{-1}$
Ω	Raumöffnungswinkel	\mathbf{sr}
eta	Volumenstreufunktion	$\mathrm{m}^{-1}\mathrm{sr}^{-1}$
\widetilde{eta}	Normierte Volumenstreufunktion	$ m sr^{-1}$
$\Delta \phi$	Azimutdifferenz	\deg
δ	Depolarisationsfaktor	1
λ	Wellenlänge	nm, μm
σ	Standardabweichung	1
$ au_{\mathrm{a}}$	Aerosoloptische Tiefe	1
$ au_{ m r}$	Rayleigh-optische Tiefe	1
$ au_{ m gas}$	Gasoptische Tiefe	1
$ au_{\mathrm{O}_3}$	Ozonoptische Tiefe	1
$ heta_{ m o}$	Beobachterzenit	\deg
$ heta_{ m s}$	Sonnenzenit	\deg
ω_0	Einzelstreualbedo	1

Abkürzung	Bedeutung
1 S	Einschrittinversion
28	Zweitschrittinversion
AERONET	Aerosol Robotic Network
ANN	Künstliches neuronales Netz
APE	Absoluter prozentualer Fehler

ATBD	Algorithm Theoretical Basis Document
ATM	Atmosphäre
BOA	Unterrand der Atmosphäre
CCD	Charged Coupled Device
CICEM	Centro Experimental de Investigacion en Cultivos Marinos
CO_2	Kohlendioxid
COASTLOOC	Coastal Surveillance Through Observation of Ocean Color
COCTS	Chinese Ocean Colour and Temperature Scanner
CONAE	Comisión Nacional de Actividades Espaciales
CONTI	Kontinentales Aerosolmodell
CNSA	Chinese National Space Administration
CZCS	Coastal Zone Color Scanner
DMS	Dimethylsulfid
ECMWF	European Centre for Medium-Range Weather Forecasts
ESA	European Space Agency
ENVISAT	Environmental Research Satellite
FR	Full Resolution
H_2O	Wasser
H_2SO_4	Schwefelsäure
HPLC	High Pressure Liquid Chromatography
GKSS	Deutsche Forschungseinrichtung
GPS	Global Positioning System
IOCCG	International Ocean Color Coordinating Group
ISRO	Indian Space Research Organisation
KARI	Korean Aerospace Research Institute
LOA	Laboratoire d'Optique Atmosphérique
MAPE	Mittlerer absoluter prozentualer Fehler
MAR70,99	Maritimes Aerosolmodell (rel. Feuchte 70%, 99%)
MERIS	Medium Resolution Imaging Spectrometer
MLP	Multi-layer Perceptron
MMRS	Multispectral Medium Resolution Scanner
MODIS	Moderate Resolution Imaging Spectroradiometer
MOS	Modularer Optischer Scanner
NASA	National Aeronautic and Space Administration
NIR	Naher infraroter Spektralbereich
NSPO	National Space Program Office

O_2	Sauerstoff
O_3	Ozon
OCM	Ocean Colour Monitor
OCTS	Ocean Colour and Temperature Scanner
OSMI	Ocean Scanning Multispectral Imager
PCA	Principal component analysis
PCD	Product Confidence Data
POLDER	Polarization and Directionality of the Earth's Reflectances
PSU	Practical Salinity Units
REVAMP	Regional Validation of MERIS Chlorophyll products in North Sea
	coastal waters (EU-Projekt)
RGB	Rot-Grün-Blau
RMSE	Root mean square error
RR	Reduced Resolution
SAT	Satellit
SeaWiFS	Sea-viewing Wide Field of view Sensor
SIM	Simulation
SIMBADA	Optisches Radiometer
SNR	Signal-to-Noise Ratio
TOA	Oberrand der Atmosphäre
WCP	World Climate Project