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1 Introduction

The theory of boundary value problems for complex partial differential equa-
tions combines knowledges and methods from many fields of mathematics,
i.e. complex analysis, partial differential equations, functional analysis, equa-
tions of mathematical physics etc. Initiated by B. Riemann and D. Hilbert
the theory develops up to nowadays involving different research groups all
over the world.

One of the main aim of the theory of complex boundary value problems is
to obtain solutions in analytic or closed form. Many results in this directions
are known for for special kinds of equations, namely, for the Cauchy-Riemann
equation, the Beltrami equation, for elliptic equations with constant or an-
alytic coefficients etc., and are connected with such names as N.I. Muskhe-
lishvili, I.N. Vekua, F.D. Gakhov, J. Garnett, G.-C. Wen, A. Dzhuraev,
H. Begehr, see [5], [15], [30], [33], [34], [40], [49], [51], [52]. Boundary val-
ue problems were mostly considered in simply connected domains, i.e. unit
disk, a half plane, a corner etc.

The intention to investigate boundary value problems for multiply con-
nected domains gives rise to many additional difficulties even in the simplest
case dealing with analytic functions. There are just few results known on
this subject. Among them is the celebrated Villat’s formula for the solution
of Schwarz problem in a concentric ring domain, see e.g. [3], [39], expressed in
terms of Weierstrass ¢ -function; and the formulas obtained by V.V. Mityu-
shev and S.V. Rogosin [39] as well for the Schwarz and the Riemann-Hilbert
problems as for the Riemann problem of linear conjugacy for a multiply con-
nected circular domain in form of series with respect to the elements of a
special Schottky symmetry group. The main difficulty appeared is connected
with the single validness of solutions while passing for simply to multiply
connected domains.

The present thesis contributes to the research subject initiated by
Prof. Dr. H. Begehr and developed by his students and collaborates [1], [5]-
121], [29], [32], [37], [47], |48].

A systematic investigation of boundary value problems for complex par-
tial differential equations of arbitrary order on the base of integral represen-
tation formulas was initiated by H. Begehr. To start with, the basic boundary
value problems for model equations are observed. The differential operator
of a model equation consists of a product of powers of the complex Cauchy-

3



Riemann operator & and its complex conjugate 0,. The main methods of
the theory will be pointed on now.

The complex form of the Gauss theorem for a regular domain D on
the complex plane C and an arbitrary function w € C*(D;C) N C(D;C)
leads to the Cauchy-Pompeiu representation formula [7], [5]. This formula is a
generalization of the Cauchy formula for analytic functions. The area integral
appearing in the Cauchy-Pompeiu formula is called the Pompeiu operator.
It plays an important role in treating boundary value problems for complex
partial differential equations. The properties of the Pompeiu operator were
studied by L.N. Vekua [49]. If f belongs to L,(D;C), p > 1, then T'f
possesses weak derivatives with respect to z and Z, moreover 0T f = f,
0, Tf =: I1f, where II is a singular integral being understood in the principle
value sense. Integrals of such type are investigated in [27].

From the Cauchy-Pompeiu representation formula it follows that any
function w € CY(D;C) N C(D;C) can be found by known values on the
boundary and values of a first order derivative inside of the domain. On the
other hand, for given f € L,(D;C), p > 1, and v € C(9D;C) a new

function
w(e) = g [ 1075 - 1 [ 1O (1)

27 (—2z C—2z
oD D

can be constructed according to this formula. The boundary integral is an

analytic function, while the area integral represents the Pompeiu operator.
Using the properties of the Pompeiu operator, the function w is seen to be
a solution of the differential equation wz = f in D, being understood in
the weak sense. But the boundary values of the function defined in (1.1) in
general differ from . Therefore the function w given by (1.1) is not the
solution of the problem

ws=fin D, w=+ on 0D,

which is called the Dirichlet boundary value problem for the inhomogeneous
Cauchy-Riemann equation. This fact leads to the idea that the Cauchy-
Pompeiu representation formula has to be modified in a proper way for being
useful to treat boundary value problems.

There are three basic boundary value problems for complex partial dif-
ferential equations, namely, Schwarz, Dirichlet and Neumann problems. To
find the solutions in explicit form they are investigated in particular do-
mains, i.e. the unit disk, half planes, quarter planes, etc. For the unit disk
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the modified Cauchy-Pompeiu formula, which is known as Cauchy-Pompeiu-
Schwarz-Poisson formula (or Schwarz-Poisson formula in the case of analytic
functions), serves as the starting point in [7], where the solutions of the basic
boundary value problems to first order equations are given.

To solve boundary value problems for the inhomogeneous Cauchy-
Riemann equation ws = f the idea of [.N. Vekua is exploited, who suggested
[49] to represent the solution of these problems in the form w = ¢ +T'f, with
¢ being an analytic function. By using the properties of the Pompeiu oper-
ator the boundary value problems for the inhomogeneous Cauchy-Riemann
equation are reduced to homogeneous case (see, e.g. [7]).

Besides the three main boundary value problems listed above the Robin
boundary value problem should be mentioned. This problem is the combina-
tion of Dirichlet and Neumann ones. The solutions of the particular Robin
boundary value problem to the Cauchy-Riemann operator is given in [16].

On the next step boundary value problems for second order model equa-
tions are investigated. There are two main differential operators of second
order, namely, the Laplace operator 9.0; and the Bitsadze operator 02,
which produce the model equations of second order: the Laplace, the Pois-
son (or inhomogeneous Laplace), homogeneous and inhomogeneous Bitsadze
equations.

The Dirichlet problem for the Laplace operator (or which is equivalent,
for harmonic functions) in the unit disk

w=01in D, w=0 on 0D

has only the trivial solution, see e.g. [7]. As A.V. Bitsadze has shown [25],
this is failed for the Dirichlet problem

Wzz — 0 in ]D>, w =0 iIn aID), (12)

having constructed the infinite set of linearly independent solutions wy(z) =
(1 —|2/%)2*, k € N. The complex differential equation in (1.2) is called the
homogeneous Bitsadze equation.

The classical way to solve the Dirichlet and Neumann boundary value
problems for the Poisson equation is by using the representation formulas
via the Green and Neumann (or the Green function of second kind) func-
tions. These functions are the fundamental solutions for the Laplace opera-
tor. There are several ways to construct them for a particular domain. In the
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case of the unit disk they can be found directly, taking into account those
properties, which they have to satisfy by definition. On the other hand, the
Green and Neumann functions arise in a natural way while modifying the
Cauchy-Pompeiu representation formula of second order, see [7]. As it was
mentioned above, this formula can not be used directly to solve boundary
value problems. To get the desired representation formula e.g. for the Dirich-
let problem the first order derivatives have to be excluded. For this aim the
Gauss theorem is used, see e.g. [7], [5], [10].

In [8] different boundary value problems including those with mixed
boundary conditions are solved for complex partial differential equations of
second order in the unit disk. The solution of some problems is based on the
idea of reducing a problem to a system of boundary value problems for first
order equations, for which the results of [7] are used.

The solution of the Robin boundary value problem for the Poisson equa-
tion is found in [18].

The theory is extended by investigating boundary value problems for
higher order complex model equations. In particular the homogeneous and in-
homogeneous polyanalytic and polyharmonic equations are considered. They
consist correspondingly of powers of the Cauchy-Riemann operator, i.e. 9%,
and of powers of the Laplace operator, (0.0:)*, k > 2. Different types of
boundary conditions are prescribed for these equations. Some boundary value
problems for the polyanalytic equation are solved in [20], [8] in the case of the
unit disk. To treat boundary value problems to the polyharmonic equation
the concept of polyharmonic Green functions is developed. They are certain
fundamental solutions for the polyharmonic operator (or k- Laplace opera-
tor). One of the possible ways to construct a polyharmonic Green function is
to represent it as a convolution of two polyharmonic Green functions of lower
order. The convolution of Green functions of different kinds defines a hybrid
Green function (the denotation was introduced by H. Begehr) [11], [12]. The
results concerning boundary value problems for the polyharmonic equation
are given in [22[,[23| for the unit disk, and in [14] for the upper half plane.

The differential operator of an arbitrary model equation of higher order
can be represented as a product of polyanalytic and polyharmonic operators.
The important step in investigating boundary value problems for higher order
model equations was made by H. Begehr and G.N. Hile [19] (see also [6]), who
constructed the hierarchy of higher order Pompeiu operators 7, ,, defined
for any pair (m,n) of integer numbers m, n such that m+n > 0. Operators
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Tonn act on the space L,(D;C), p > 1, Ty, coincides with the Pompeiu
operator 1', T ; is the II operator, while 7Tp ¢ is the identical operator. In
[19] (see also [10]) the Cauchy-Pompeiu formulas of higher order are obtained.
They provide the representation of a function w € C™"(cl D;C) via the
area integral T),, (5m+nw/8zm82") and some boundary integrals of the
lower order derivatives. In the same way as the classical Cauchy-Pompeiu
representation formulas are used to solve boundary value problems for the
first order equations, the Cauchy-Pompeiu formulas of higher order serve to
solve boundary value problems for higher order model equations.

The theory of boundary value problems for complex partial differential
equations is far from being complete. Besides the working group at Free
University, Berlin (Germany) there are working groups in Ankara (Turkey),
Astana and Almaty (Kazakhstan), Caracas (Venesolana), Delhi (India), Yere-
van (Armenia), Minsk (Belarus) involved in the research. In the last years
several research works appeared concerning boundary value problems for non-
regular domains, such as the upper half plane [32], a quarter plane [1], [17].

In this thesis the main boundary value problems, namely, the Schwarz,
the Dirichlet, the Neumann and the Robin boundary value problems are stud-
ied for the homogeneous and inhomogeneous Cauchy-Riemann equation in a
circular ring domain. The main tool to treat the boundary value problems
for the Poisson equation is related Green functions. Besides the known Green
function for a circular ring domain [3] connected with the Dirichlet problem,
the Neumann (Green function of second order) and the Robin (Green func-
tion of third order) functions are found here for a circular ring. On their
basis the integral representation formulas for the solutions of the Neumann
and Robin problem for the Poisson equation are derived. The Dirichlet and
Schwarz problem for the Bitsadze equation are also solved explicitly. At last,
a biharmonic Green function is constructed for a circular ring domain lead-
ing to the solution of the respective Dirichlet problem for the biharmonic
equation. The obtained biharmonic Green function differs from the Green
function constructed in [31] for the bi-Laplace operator with a particular
Dirichlet boundary condition.



Concerning with applications, the case of multiply connected domains
represents a special interest as it appears naturally in many problems of
mechanics, especially in the filtration theory [35], [42]-[44], in hydrodynamics,
in the theory of composite materials [2], [39], etc.
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2 Boundary Value Problems for First Order
Complex Partial Differential Equations in a
Ring Domain

Four basic boundary value problems, namely, the Schwarz, the Dirichlet,
the Neumann, the Robin problems for analytic functions and more gener-
ally for the inhomogeneous Cauchy-Riemann equation are investigated in a
concentric ring domain. The representations for the solutions and solvability
conditions are given in explicit form.

2.1 Notations and technical preliminaries

Let C be the complex plane of the variable z = = + 1y, z,y € R. The
extended complex plane is denoted by C:=CuU {oc}. The complex number
z = x — 1y is called the conjugate number to z. By Rez, Im z the real and
imaginary part of z are denoted.

The complex partial differential operators of first order are defined by

1 1

A complex-valued function w = u—+iv is given by a couple of real-valued
functions v = u(x,y), v = v(x,y) and being a function of the two variables
z and Z. In the case, when u and v are differentiable and w is independent
of Z in an open set of the complex plane, the function w is said to be analytic
in the set; the functions u, v then satisty the Cauchy-Riemann system of
partial differential equations

O,u = Oyv, Oyu = —0,v,
which is equivalent to the complex homogeneous Cauchy-Riemann equation
dw = 0.

For analytic functions the Cauchy theorem is valid.

Theorem 2.1.1. Let w be an analytic function in a simply connected domain
D C C and let T' be a simple closed smooth curve, I' C D. Then

/w(z)dz ~ 0.

r
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From the Cauchy theorem the representation of an analytic function via
the Cauchy type integral is deduced. A simple closed smooth curve I'" on
the complex plane divides the plane in to two parts intI', extI', which are
internal and external domains with respect to I'. If w is analytic in int I’
and continuous in int T, then

271

1 d¢ { w(z), zeintl,
T

_— w =
(©) 0, zeextl.

If w is analytic in extI' and continuous in extI', then

2mi w(o( —z —w(z) +w(oo), z€extl.

1 ¢ { w(o0), z €int T,

T

A domain D on the complex plane is said to be regular if it is bounded
and its boundary 0D is smooth.

The fundamental tools for solving boundary value problems for com-
plex first order partial differential equations are the Gauss theorem and the
Cauchy-Pompeiu representation formulas.

Theorem 2.1.2. (Gauss Theorem, complex form) |7 Let D C C be a reqular
domain, w € CY(D;C)NC(D;C), z=x+ iy, then

/wz(z)dxdy = 2% w(z)dz (2.1.2)
D oD

and

/ w.(2)dady — —212_ / w(z)dz. (2.1.3)
D oD

From the Gauss theorem the Cauchy-Pompeiu representation formulas
can be derived.

Theorem 2.1.3. (Cauchy-Pompeiu representations) |7| Let D C C be a
reqular domain of C, w € CY(D;C)NC(D;C), ¢ =& +in. Then

w2) = 5z w075 = [ur )2 2.1.4

oD D
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and

w(e) =~ [0 -~ fu©ZL 21)

o
|
W

hold for all z € D .

Let us define the integral operator, which is used to solve boundary value
problems for the inhomogeneous Cauchy-Riemann equation.

Definition 2.1.1. [49] For f € L;(D;C) the integral operator

Tf(z) = —%/f(g)?gfdz, ceC, (2.1.6)
D

is called Pompeiu operator.

The Pompeiu operator possesses some important properties listed below.

Theorem 2.1.4. [49| Let D C C be a bounded domain. If f € Li(D;C),
then Tf is analytic in C\ D, vanishing at infinity.

Theorem 2.1.5. [49] Let D C C be a bounded domain. If f € Li(D;C),
then Tf, regarded as a function of the point z of the domain D, exists
almost everywhere and belongs to an arbitrary class Ly(D*;C), where p is
an arbitrary number satisfying the condition 1 < p < 2, and D* 1is an
arbitrary bounded domain of the complex plane.

Theorem 2.1.6. [49] If f € L1(D;C), then

/ T F(2)pu()dady + / F(2)p(2)dxdy 0, (2.17)

D

where @ is an arbitrary complex-valued function in D being continuously
differentiable and having compact support in D.

In other words, Theorem 2.1.6 states that T'f is differentiable in dis-
tributional sense with respect to Z if f € Li(D;C), moreover

OTf = f (2.1.8)

in D.
13



In the case, when f € L,(D;C), p > 1, the Pompeiu operator Tf is
differentiable in distributional sense with respect to z and

dédn
(¢ —2)*

0.T(:) = 1f(2) = — [ 10 (2.1.9)

It is a singular integral operator being understood in the Cauchy principal
sense.

Theorem 2.1.7. [49] Let D C C be a bounded domain. If f € L,(D;C),

p > 2, then Tf is a linear completely continuous operator mapping

_ —2
L,(D;C) onto C*(D;C), a=2—=.

p
Theorem 2.1.8. [49] Let D € C™*he f € C™(D;C), 0 < a < 1,
m > 0. Then T'f belongs to the class C™1(D;C) and Tf is a completely
continuous operator in C™(D;C). Moreover, IIf exists in the sense of
Cauchy principal value and belongs to the class C™*(D;C). Besides, I1Lf
represents a linear bounded operator in C™(D; C) mapping this space onto
itself.

The space of functions with generalized z-derivatives (Z-derivatives) of
order m in Ly(D;C) are denoted by W?(D;C) (WZ""(D;C)), while
Wmte(D; C) (W2 (D;C)) is a space of functions with generalized Holder
continuous z-derivatives ( Z-derivatives) of order m in D.

Let D be the unit disk with the center at the origin on the complex plane,
ie. D={z € C:|z] <1}. The kernel

¢+z
(—z

is called the Schwarz kernel for the unit disk, while its real part

zeD, (edb,

(+z ¢ S
e = +
C—2z (—2 (—z

is the Poisson kernel for D.
In 1872 A.H. Schwarz proved [45] that for v € C(9D;R), the Poisson

kernel for the unit disk possesses the property

R _1726D7C68D7

- 7(()[ +

11m -
2| —1,)z|<1 271
¢1=1

Iy
7
S
Iy

— 1= =~(2). (2.1.10)



From (2.1.10) it follows that for v € C'(0D,;R), D, = {z € C: |z| < r},
the equality

L vKﬂ +

im ,
2| -7, |z|>r 278
I¢|=r

—1|==—7(») (2.1.11)

holds. The minus sign appears because of the changing of orientation.
For the unit disk the modification of the Cauchy-Pompeiu formula is
useful, which is obtained from (2.1.4) by using the Gauss theorem.

Theorem 2.1.9. [7| Any function w € C*(D;C) N C(clD;C), ¢ = & + in,
z €D, can be represented by

w(z) L Rew(()g+2%+1 /Imw(C)%—

~ omi (—2C @ omi ¢
cl=1 ¢l=1 (21.12)
1 we(Q) | zwe(d) .
_ ”C/ [C—z 4 1_Zz}d§dn.
<1

The representation (2.1.12) is called the Cauchy-Pompeiu-Schwarz-Poisson
formula.

For analytic functions in D, continuous up to the boundary the formula
(2.1.12) transforms into
1 ¢+ zd¢

=5 Rew(C)C_Zf—I—iImw(O), (2.1.13)
I¢|=1

and is called Schwarz-Poisson formula.
The formula (2.1.13) is the starting point in the investigation of boundary
value problems for the unit disk in |7].

2.2 Boundary value problems for analytic functions

Let R={2€C:0<r<|z] <1} be the concentric ring domain with the
center at the origin.

To solve boundary value problems for analytic functions in R the follow-
ing representation formula, analogous to (2.1.13) for the unit disk, is impor-
tant.
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Theorem 2.2.10. Let w be an analytic function in R, continuous on R

Then the representation formula

1 C+z r2z d¢
w(z) = 2—m,/Rew [ 22(7“2”C—z —TQ”zﬂ?_
/ (2.2.1)
ICI
holds.
Proof. By the Cauchy theorem we have for any fixed 2z € R and any n € N
1 - r2n¢ 2z N dC
— — = 2.2.2
271 w(z) 2<T2n€ — 2z i ¢ — 7’2”,2) ¢ 0 ( )
OR "=
2n d
C_ 0. (2.2.3)

TQ”EC

7wt | g - 2wl T

OR
By adding (2.2.2) and the complex conjugate of (2.2.3) to the right-hand side

of the Cauchy formula, applied to w in R, we get

) | dC o) 7“2nZ dC
w(z)—%/w(oc_z 2m/ ;(TZ”C—Z (—7“2”2:)?
OR "
oo TQTLZZ ,',,Qn dC
+_/ 1—zC ;(rznzZ—ﬁzZ—ﬂ”)}?
or
. 2
) = g [ RO+ 25
OR
> r2n¢ rny r?z| ¢ r'¢ dq
" ;(mng — C—r2z rzl(P - 2|CPR - TQnC)}?+
1 ¢ 2[¢)?
+% Imw(g)[C—Z_C_ZKP_‘_
OR
r2ny r?rz|¢)? r¥¢ d<
ks

o 7,2n<'
*%;@%c—z+<—r%z+ﬂwmv—c+zmv—ﬂ%
16



Dividing the boundary into the two components and performing some
simplifications lead to

=k [ nemO [ a3
n=1

- 2mi ¢ — —z (—=rz/1 ¢
¢=1
1 C+z - r2n¢ r2ny d¢
omi Rew(C)[C—z+1+2;<r2”C—z+C—fr2”z>}?+
¢l=r "
1 d¢
¢1=1

which is equivalent to

2

w(e) = 51 [ Rew@)[ 52 +2§(T2;z_”< e

OR
1 d¢ 1 ——d(¢
— [ 1 - — — —.
+or [Iu©F 5 [ 007
OR I¢l=r
. . d¢
Then the result follows if one takes into account that 5 w(C )? =0 for
T
OR
: . 1 d¢
w being analytic in R and therefore Py Im w(C)? = 0. O
7r
OR

Corollary 2.2.1. The real part of an analytic function w in R, continuous
on R can be represented in the form

1 ¢ , ¢ (T
Rew(g)_%/Rew(g){C_ZJrC_Z—1+;(T2n<_z+r%c—_z+
B) "
b (2.2.4)
2n 2n—
s +L)}%_L/Rew(g)%.

C—r¥z  (—rny
Cl=r

Schwarz boundary value problem. Find an analytic function w in R,
i.e. a solution for the homogeneous Cauchy-Riemann equation

wz =0 in R,
17



continuous on R, satistying

! a _

Rew =7 on 0R, — Imw(() c, (2.2.5)

for v € C(OR;R), ¢ € R given, and arbitrary p, r <p <1 .

Theorem 2.2.11. The Schwarz problem (2.2.5) is uniquely solvable in the
class of analytic functions in R with continuous real part on R if and only
of
1 d¢
5= [ Q)= =
G

271
Then the solution is unique and given by

OR
o) = g [ 23 (s + )| %

— r2ny
OR

! 7(()% e,

0. (2.2.6)

(2.2.7)
27

Cl=r

Proof. The formula (2.2.7) provides an analytic function in R and gives

1 q ¢ = r2n¢ rnz

R S [ —1 (

ew(z) 2m/7(() C_Z+C—Z +; 7’2nC_Z+C

_ 7n2nz
OR

(gl r*|z%¢ ¢ 1 dg
T ICE 2 AR TQ”IZ!QCH ¢ 2mi / e
¢

Then
| .1 ¢ ¢ de
Z|_1>1£€RRew(z) N Izlill,nieR 2mi / (<) {C — T c_ 2 1} c’ (2.2.8)
¢j=1
. B . 1 ¢ ¢ dg
|z|—1>17~r,geR Rew(z) = - \z|—1>17£rzl:eR 2_7TZ<_/ 7(0) [C —z + (—=z B 1} ?+
1 d
- 7(0?4_ (2.2.9)
OR

18



It can be seen that (2.2.6) represents the necessary and sufficient conditions
for the function (2.2.7) to satisfy the first condition in (2.2.5). The second
one, which is called a normalization condition, is also valid since

o [ 00T =5 [105 [ [

2T z  2mi 21 (—z
|2l=p IR |2|=p
- r2n¢ 2z dz dC
23 e
* ;TMC—ZJFC—TZ"Z z ¢
1 ac . 1 a¢c .
S V(C)?Jrzc—Q—m. ’Y(C)fJF@C-
Cl=r ¢l=1

Passing to the imaginary part verifies the normalization condition.
The uniqueness of the solution follows from the fact that the correspond-
ing homogeneous problem

1 d
wy=0in R, Rew=0 on OR, — Imw(z)—zzo,
2mi z
|2|=p
has only the trivial solution. Indeed, from wz = 0 in R, Rew = 0

on OR, one obtains that w(z) = ic, ¢ € R. Evaluating the integral

1 dz
- w(z)— = ic provides ¢ = 0 according to the normalization condi-
) z

|2l=p ]
tion.
Remark 2.2.1. The equalities (2.2.8), (2.2.9) are obtained taking into ac-
count the possibility to change as well the order of passing to the limit and
integration, as passing to the limit and summation.

Remark 2.2.2. The formula (2.2.7) follows from the representation (2.2.1).

Remark 2.2.3. This result differs from the one for simply connected domains
(see [7]) as a solvability condition appears. It excludes functions which are
not determined in a unique way by their respective boundary data. Let us
consider, for instance, the function logz. It is an analytic function, having
vanishing Schwarz data on |z] = 1 and the data logr on |z| = r. The
solvability condition is not satisfied. The function log z is multi valued with
single valued real part. One can not expect this function to be determined
by its real part on the boundary.
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Dirichlet boundary value problem. Find an analytic function w n R,
i.e. a solution to the equation

Wz = 0 n R,
continuous on R, satisfying
w=-v ondR (2.2.10)

for a given v € C(OR;C).

Theorem 2.2.12. The Dirichlet problem (2.2.10) is solvable in the class of
analytic functions in R, continuous on R if and only if for z € R

= [0 75ac =0 5 [0

271
OR OR

ZC

d¢ = 0. (2.2.11)

Then the solution is unique and given by the Cauchy type integral

w(z) = %/y(g)gdfz. (2.2.12)

OR

Proof. Let w defined by (2.2.12) be a solution to the Dirichlet problem.
Then the equality

lim w(¢) =v((), V(¢ € OR, (2.2.13)

z—(,2€R

holds. The Cauchy type integral provides an analytic function in R and
C\ R, where C = C U {oo}.

Consider for |z| < 1 the function

Iy 1 ;1 z dC 1 2[2¢ d¢
w<%>_%/7(oz§—1_2m /V(C)z—gg 2%@/7(0| \2C—ZC'

OR c=1 ¢l=r

From

271 C—2z (—=z ?_
I¢1=1
1 ¢ 27\ d¢
2mi 7(O(§ —z  |2|*¢ — z) ¢’
[Cl=r



(2.2.13) and the property of the Poisson kernel (2.1.10), the existence of
1
lim w(:) and the equality

z—(, |z|<1 zZ

_ 1
lim w(:) =0
z—C, |z|<1 z
follow.
Because w(1/Z) is analytic in |z| < 1, the maximum principle for ana-
1
lytic functions states that w(:) = 0 for |z] < 1, i.e. the first condition in

Z
(2.2.11) holds.
Consider for |z| > r the function

2

ey 1 zd¢ 1 1z[2¢ d¢
0(5) =5 [ 195 Sm =50 | Opraeo

OR ¢|=1
1 z dC
T omi W(C)C—z?’
¢l=r
and the difference
ry 1 ¢ 2]°¢ \dC
w(z) = w(5> "~ omi V(O(C —z |22 — 7“2,2)?_
¢|=1
1 ¢ ¢ d¢
" ) =T
Cl=r

Using the properties of the Poisson kernel (2.1.11), the equality

2
lim w(r—) =0

z—C, |z|>r z

follows. This implies
2

w(rt) = 0 for |z] >,
Z

due to the statement of maximum principle for analytic functions. Thus the
second condition in (2.2.11) is valid. It completes the proof for (2.2.11) to be
necessary. Sufficiency of (2.2.11) is obvious. ]
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Remark 2.2.4. The Dirichlet problem for analytic functions in more gener-
al domains is handled via the Plemelj-Sokhotsky formula. For this purpose
the boundary data required to be Holder continuous. The reason for Holder
continuity to be not necessary for circular domains is that for these domains
the Cauchy kernel is replaced by the Poisson kernel according to solvability
conditions.

To formulate the third boundary value problem we need to define the
outward normal derivative at the boundary of a regular domain. The direction
of this derivative on the unit circle coincides with the direction of the radius
vector, and on the circle |z| = r is opposite to this direction, more exactly
on the boundary of the concentric annulus R the normal derivative is given

20,4+ 70z |2|=1,
0, = z 9.2.14
. ;55 ( )

2
——0, — , |zl =
-

by the formulas

Neumann boundary value problem. Find an analytic function w in R,
i.e. a solution to the equation

wz =0 n R,

continuously differentiable on R, satisfying
AMz|O,,w =7 onOR, w(zzg) =c¢, A= {

for given v € C(OR;C), c € C, z4 € R.
For w being an analytic function in R, the boundary condition can be
rewritten in the form

zw, = on OR. (2.2.16)
Theorem 2.2.13. The Neumann problem
wz =0 in R, zw, =7 ondR, w(zp)=c (2.2.17)

is solvable in the class of analytic functions in R, continuously differentiable
on R if and only if for v € C(OR;C), c € C, 2 € R given the conditions

: 7(C) i =0, (2.2.18)

271
OR



1 zd¢
o v(¢) =0, (2.2.19)
OR

are satisfied. Moreover if v satisfies

1 ac
271 B
¢|=1

0, (2.2.20)

then the solution is a unique, single valued function given by

o -y Tor i
=1 =r
(2.2.21)

Proof. Let us introduce the new function ¢ = zw,. For w being analytic,
the function ¢ is also analytic.

The Neumann problem (2.2.17) with respect to w is equivalent to the
Dirichlet problem with respect to the analytic functions ¢. Hence from the

o) =5 [ 210 %

T o (—=z
OR

preceding result

if and only if for z € R

= [0 =5 [0 =0

omi 1—2C  2mi r2 —z(C
OR OR
Then
1 a1 ¢ 1\ d¢
walz) = 2_m/7(<)z(§ —2)  2mi / 7(C)(l —2( i ;)?_
o _ <=t (2.2.22)
1 ¢ 1y d¢

~ 5 ’Y(C)<T2_ZZ+;)f-

¢i=r
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The primitive of the function in (2.2.22) is

we) = -5 [ (Q)loglL - )T+
<= & logs i« (2.2.23)
il / ¢)log(z¢ —r? )C + i /’V(C)?,
IC\ OR
where ¢y € C.
As for any p, 7 < |p| <1,
1 1 1 (dz dC
5 | dwlz) =5 / Q)5 - ZZ?WL
|2|=p IC\—l |2|=p
Cdz d¢ 1 1 dzd¢
“3m | 700 /zz_rzﬁz—m/”@%/??—
¢|=r OR |z]=p
1 dC
¢1=1

then the function defined in (2.2.23) is single valued if and only if (2.2.20)
is satisfied. The solution to the Neumann problem (2.2.17) has the form
(2.2.21), if one defines ¢y by

1 d 1
o=ctgm [ AL 5DE ~ 5

271
¢|=1 ¢|=r

() log (25 — >%

Remark 2.2.5. The solution to the Neumann problem (2.2.17) can be written
in the form

1—2C 12d¢ 1 2 —r? 12d¢
Sl e [ ol T
(=1 Cl=r
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if the conditions

L[ o2 2] [ @ e

omi 1—2( 2mi 1—%C
c]=1 ¢l=r
1 A1 S
=30 | 05— = 3 / 1O m ¢ (2.2.25)
¢|=1 Cl=r
1 d
o ’V(C)g =0,
¢]=1

are satisfied.
Indeed, differentiating (2.2.24) with respect to Z and using one part of
(2.2.25) shows

wiz) = = [ ot 1 / (e I a—

T omi 1—2C  2mi r2 —zC
ci=1 ¢=r

That (2.2.24) satisfies the boundary condition follows as before, because
(2.2.18), (2.2.19) are included in (2.2.25).

Robin boundary value problem. Find an analytic function w in R, i.e.
a solution to the equation

wz =0 in R,
continuously differentiable on R, satisfying the boundary condition
1 =1
w+ Nz|dw =~ ondR, A= { o Ij ) (2.2.26)

for v € C(OR;C) given.
Note, that the boundary condition (2.2.26) can be rewritten in the form
w+ zw, = on OR

in the case of w being an analytic function in R.
Introducing the new function

Y =W+ 2w, (2.2.27)
the boundary problem is reduced to the following Dirichlet problem

=0 1in R, ¢ =7 ondR, (2.2.28)
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which has to be solved in the class of analytic functions in R, continuous-
ly differentiable in R, represented by formula (2.2.27) with some analytic
function w.

According to Theorem 2.2.12, problem (2.2.28) is uniquely solvable if
and only if for z € R

1 zd 1 zd
o [ 10 = 5 [ 107 =0, (2.2.29)

OR OR

The unique solution is then given by the Cauchy type integral

p(z) = %M/V(C)Cd_cz. (2.2.30)

OR

Any analytic function in R is uniquely representable by a convergent
Laurent series

w(z) = Z 2" (2.2.31)
Then N
o(2) = w(z) + 2w, (2) = Z (n+1)c,2" (2.2.32)

holds, and together with (2.2.30) it leads to the equation

o0 o0 -1
1 i} 1
> (n+ e :252—/ F X g [ Om
n=—o00 = = n=—0o0 Cler
(2.2.33)
with respect to ¢,, n =0,£1,+2, ...
Comparing both sides of (2.2.33), equalities
1 1 d¢
n — 5 7 =0,1,2,..;
o+ 12m W(C)C”“ "
¢=1
11 d¢
. — B =32,
- + 12mi V(C)C”“ "
I¢l=
and the condition |
— d¢ =0 2.2.34
5 [ (QdC (2.2.34)
I¢l=
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are deduced, while the coefficient ¢_; may take arbitrary values from C. So
w(z) has the form

o0 d _
_ Z — (2m / y(g)gni)w n 071+
n= ¢l=1
S | ac N
+ Z n+1(% / 7(C)<n+1)z =
n=-o0 ¢=r
= _izim ¥(¢) log(1 — 2C)d¢ + =2 + —— / ¢)log(1 — —)dC
¢i=1 i

For the uniqueness of the solution one has to pose an additional condition,
e.g. of the type
ixW(2fix) = ¢
for some fixed point z5, € R, ¢ € C. So the following theorem has
been proved.
Theorem 2.2.14. The Robin boundary value problem

wz =0 in R, w+zw,=7v ondR, zgw(zs) =-c

for v € C(OR;C), c € C, zf, € R given is solvable in the class of analytic
functions in R, continuously differentiable on R if and only if conditions
(2.2.29), (2.2.34) are satisfied. Then the solution is unique and given by

wz) = S= 2o [ Qo= 0dc+ 1o [ @) os( - Sdc+
¢=1 i
(2.2.35)
11 — 11 ¢
+;% 7(¢) log(1 — 25, ¢)dC — P 7(¢) log(1 — %)dﬁ-
¢=1 ¢=r

Remark 2.2.6. The general Robin boundary value problem for analytic
functions in R, continuously differentiable on R, deals with the more com-
plicated boundary condition aw + zw, =~ on OR, where a € C(OR;C).
Here only the above special kind of Robin problem has been considered.
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2.3 Boundary value problems for the inhomogeneous
Cauchy-Riemann equation

The Schwarz, the Dirichlet, the Neumann, the Robin boundary value prob-
lems for the inhomogeneous Cauchy-Riemann equation in the concentric ring
R={2€C:0<r <|z| <1} are solved in this section. Using the defini-
tion and properties of the Pompeiu operator, the problems are reduced to the
homogeneous case, or which is equivalent, to the boundary value problems
for analytic functions.

Theorem 2.3.15. The Schwarz problem for the inhomogeneous Cauchy-
Riemann equation in R

= / Imw(()%:c, (2.3.1)

2mi

I¢l=p
for f € L,(R;C), p>2, ~ve CORR), ceR, r<p<1 given is
solvable by a function from Wzl’p(R; C) with continuous real part on R if
and only if

ws=f im R, Rew=+~ ondR,

ZLm' v(g)% - %/(f(g) + %<)>d§dn. (2.3.2)
OR

If the condition (2.3.2) is satisfied, then the solution to the problem (2.3.1)
15 unique and given by

w(z) = L-/’Y(C)[C+Z +K1(Z,Q}%_L / %

271 C—z ¢ 2m ¢
OR ¢l=r
L [fQr¢+=
5 T_(_Z+K1(Z,C)]d€d77—
R

I (2.3.3)
1 O+ 2C
%R/ - _I_ZE+KQ(z,<)}d§dn+

L / (f(f)_ %C)>d§dn+z’c,

where

Kl(z,():2i< S ) (2.3.4)

ron —z  (—rngz



o T2n TQHZE
2, 0) =2 ;(r% =t r2nzZ)' (2.3.5)

Proof. Let us introduce the new unknown function ¢ = w —T'f, where T'f
is the Pompeiu operator. Then (see (2.1.8))

d¢

1
w==0 inR, Rep=~—ReTf ondR, Dy / Im [ip( C)—I—Tf(C)]C

ICl=p

i.e. ¢ is a solution to the Schwarz boundary value problem for analytic
functions. By Theorem 2.2.11,

C,

d
o(2) = 502 000~ ReTHON[E 4 K1 (2.0)] B
OR
(2.3.6)
o [ (O RO i
Gl=r
if and only if ) "
57 | (NG = ReTf(C)> c =0 (2.3.7)
OR
where ¢ = — / Im o( )dCC
IC\ =p

Calculating the integral

27?2 ReTf(C)dCC 27172/ 277/f @ %/f dfdn)df

OR OR R g
1 ~ 1 d¢ dC
= — | £(O)=— —dEdi + — ()= dédiy =
2 J QWZa{—C(C _ C) 27 ! 2%284 C(C C)
1O O e
_%/( s z)dﬁdn,
R

shows that the solvability condition (2.3.7) get the form (2.3.2).
In the same way, one can find that

1 d¢ 1 (f(C) (€)

- ITf(C)C 5

ICl=p p<|¢|<1




therefore

Pt an / (f(go— %C))dédn.

p<|¢|<1

Applying the result of the following calculations

+ Ki(z ;C)}%:

(+ 2
-z

ReTf(C)]

2m

/f 2772/ : )[C—i— +K1(Z,C)}dfdgdﬁ+

C_
+_/—~271m/ 1 [gtszKl(Z,C)}dCdgdﬁ:

-0
- QL/ 271 / - gi—z T 22(742;?3 2 + c i%:jnz)] %dgdﬁ-i-
R
2
2i/ 27m
R

L e (e e
1=
2n 2n "
_ 271”2/ e 23 (i + ) ) =

FOT¢+2 -
=5 T[C_;Kl( )| e+
/ 1+Z§+Kz< 0] déi-
R 1_ZC
p- dfdn f
dgd
2 [10F -1 [
and . - .
i eT(C /f 2m/ (¢ — 5)577—
¢|=r cl=r

%R/m%/@ -dEdi] = - /f dediy — R/@dgdﬁ,



and the expression for ¢ to the formula (2.3.6) and using then the definition
of the Pompeiu operator in the formula w = ¢+T'f, the solution is obtained
in the form (2.3.3).

If the solvability condition (2.3.2) is satisfied, then (2.3.3) gives the solu-
tion to (2.3.1), since

1 ¢ ¢ —/ ¢ P2y
27T@|C| 1 V(C)[C—Z—FC—Z _1+;<TQ”C—z+C—r2”z+

Rew(z) =

TQHZ T2n|Z‘QC dC 1 C C
ran—|z\2g+z_r2n\z|2€)}f—%/7(C)[<_2+<_Z—1+
cl=r

o r2n r2n T2(n+1)2 T2(n—1) ~|2 d
+Z< 2 : T ony T a0t D) Yl 2 —|1’C2 )}_C_
e\ -z (P Ptz — 22C z —r2n=D|z12¢/ 1 ¢

1 ___/f C+z z+|z\2<j+

- 2mi z—|z|%¢

|C|
m M2
reny rhz | z|*C
2 ( )}d dn—
+ Z 7«2n<’ — z — o, + P2y — 2] + 2 — 2|2 &dn

1) z<+\zl2 14 2¢
47r/ ENER

2n 2n| |2 2n 2n -
Lo Z( r22C LT || A ZC_)}dﬁdn.

r2nz( — 2|2 20 —r2z]2 -z 1 —1r?2(

Then Rew(z) tends to v(z) as |z2| — 1, z € R, due to the property of
Poisson kernel for the circle || =1, and Rew(z) tends to vy(z) as |z| — r,
z € R, because of the property of the Poisson kernel for the circle |(| = r
and the solvability condition (2.3.2).

The uniqueness of the solution follows from Theorem 2.2.11. ]

Theorem 2.3.16. The Dirichlet problem for the inhomogeneous Cauchy-
Riemann equation in R

z=f inR, w=7 ondR, (2.3.8)
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W. ’p(R;C)ﬂC’( C) if and only if for ZER

1 zd(
o [ 10T - /f — 239
OR
1 zd{
5 7(¢) /f dﬁdn. (2.3.10)
OR
Then the solution is unique and expfressed by
1 d 1 déd
we) =5 (1075 =1 [HOFET s
OR R

Proof. If the problem is solvable, then the formula (2.3.11) follows from the
Cauchy-Pompeiu representation (2.1.4). The uniqueness of the solution is a
consequence of Theorem 2.2.12.

Introducing the new unknown function

p=w—-Tf
we arrive at the following boundary value problem
wz:=01inR, @=~—Tf onoR, (2.3.12)

equivalent to (2.3.8).
By Theorem 2.2.12 the solvability conditions for (2.3.12) are

1 zd(

5 | 0O = THO) = =0
OR
1 zd(¢
5 | (O - THO) 7o =0
OR

They coincide with (2.3.9), (2.3.10), if one takes into account that

1 2dC 1 [~ 1 T A -
—- Tf(C)l_EC—;/f(C)Qm/1_Z<C i =
R (2.3.13)

/ Gh ngﬁdn,




1 de 1 Zde o~
3w | T = [ 1 zm/ —wCc g
R f (2.3.14)

1
- / ngdn
T

The formula (2.3.11) determines the solution to (2.3.8) under the solvabil-
ity conditions (2.3.9), (2.3.10) due to the properties of the Pompeiu operator
and

: C }%_2%/7(0[@“1 +1—zg]d4_
cl=1 Cl=r

——/f ] dedn

which tends to v(z) as |z] = 1, z € R, or

! 1 z 1 ¢ ¢ d¢
we) =5 [ 1O [ 10— T
¢l=1 [C=r
1 1 z
[ 1O+ ] dean
R
which also tends to y(z) as |z| = r, z € R. 0

For the proof of the next theorem the following lemma is used.

Lemma 2.3.1. For |z|,[C| > r

1 log(z¢ — r?)
: d¢ = 0.
2”ZC/T (2 = Q)

Proof. Consider the integral




as a function of two parameters z, C, |z|,|¢| > r. Differentiation with respect

to Z gives

_= 1 ¢dg

0z1(Z,¢) = = = =
2’/TZC/T (zc o 7“2)(7“2 _ CC)2
1 d¢
= & — = O7

C(ch/r (ZC Tz)(CC 7“2))

hence

1(z,0) = I, 0). (2.3.15)

Let us consider a new function of one parameter z

1 [l - 1 VT
I(Z)_Qm/ ZC—12 ¢ 2mir? /log(zq—r)<§<_r2—z>d§_

Cl=r [Cl=r
1 _ 1 1
" 2rir? / (log’z +log(¢ = CO))(C — Go B Z>dc -
Cl=r
1 1
Cl=r
2
where (o = > ol < 7.
Evaluating
\d d d
L / log(¢ — o) = C _ 2i / log ¢ +log 1——)]% s 10g<f€
\CI |=r I¢l=r

as



and furthermore

2m
1 d 1 .

Py log C?C =5 / log(re!**™)ide = logr + i(2k + 1),

[Cl=r

dC to+2m d ( )
1 1 : r(t

L ] . _ 1 ¢ i(t+2km) (_ dt):
omi | 1086 T = o / og(r(t)e W T

Cl=r to

Lo o 2
= 5 llog”r(to + 2m) —log™r(to)]+

t()+27'(' d ( )

1 r(t

— | (logr(t)dt + (t + 2k (¢ + 2km)dt) =
—|—27T/<ogr() + (t + 7r)r<t)+z(+ )

to
= logr +i(2k + 1),
the equality IA(E) = 0 is valid for any z, |z| > r.
Observing that
~ 1 1 log(z¢ — r?)
O =o0n | lGeomr ™ ooz 1%
[Cl=r
1 log(z¢ —r?) L
= —— d¢ = —1
271 (Z¢ — r?)? ¢ (z.2),
I¢l=r

from I (z) = —I(z,%), 1(z) =0 the identity I(z,Z) = 0 is obtained. This
completes the proof due to (2.3.15). ]

Theorem 2.3.17. The Neumann problem for the inhomogeneous Cauchy-
Riemann equation in R

L, ‘Z| =1,
—1, |z =,
(2.3.16)
for f € C*(R;C), 0 <a <1, vye€ COR;C), cecC, Zfy € R given is
solvable by a function from W2XT*(R;C) with continuous weak z-derivative
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on R if and only if for z € R

1 d¢ 1 dfdn
5 [v(¢) — Cf(C)] CJF%/f(C)m—Oa (2.3.17)

OR

R

1 d¢ 2 dédn

3 (DO -+ = [ 102 —0. (319
OR R

Moreover if v and f satisfy the condition

1 _de

5 [v(¢) —Cf(C)]f

¢l=1

=0 (2.3.19)

then the solution is a unique, single valued function represented by

1—2C dC
el 2_m / () (1 - Zﬁxg) % (2.3.20)
(=1
1 = 2C—12 \dC 1 z— 2fig
o | DOZIO a2 5% WR/ M= ™™

Proof. To reduce the problem to the homogeneous case the new function

p=w-Tf

is introduced. It satisfies

pz=0, in R, 20, =7—2IIf =Zf on R, ¢(24x) = ¢ — T f(25x)-
(2.3.21)
For f € C%R;C), IIf € C*R;C) (see [49]). Therefore the right-
hand side of the boundary condition in (2.3.21) is a continuous function.
Theorem 2.2.13, applied to (2.3.21), gives

P) = e~ Tfe) = 5 [ 0O = CAO) ~TFC) 1og(11_—zz<z)%+
- (2.3.22)

1 2 — 12 \dC

"o J 4(6) = IO = Lo 5) 7
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if and only if

2—m V() = CILf(C) — Cf(C)]l_zC—O, (2.3.23)
d¢
271/[7 — (TLf(Q) = C(O)- 5 =0 (2.3.24)
! g
57 | Q) = CILf(¢) — Cf(C)]? : (2.3.25)
OR

From the relations

1

(0ot~ 0c =~ [ 1(0) 57 [ 25 =2 e -
R [S

i _
ZICI 1 =1 ¢ =0
(2.3.26)
1 ~ 1 log(1 — zC)dC
=—= [ f(Q) == dédi = 0,
T 2
s [ QT =t = [ @) o [ S -
¢|=r R IC]=r
(2.3.27)

1 ~ 72 log(z¢ — r?)d¢ ~
=—— [ f(0) 5= d&dn = 0,
7TR/ 27T’LC/T ( CC)

where the result of the previous lemma has been used, the formula (2.3.22)
and the definition of the Pompeiu operator, it follows that (2.3.20) gives the
solution to the problem (2.3.16).

One can deduce conditions (2.3.17)—(2.3.19) from (2.3.23)—(2.3.25), since

_ 1 S _
i | WO = 1055 | g

_ L[ o dedn

- W!f(C)(lzZ)Q’ (2.3.28)

37



2mi / CILFC

5L e
dédn =
/f(@)zm/(C PR

:——/f dwn (2.3.29)
1
2mi / B __/f Qm / _~) dédi=0.  (2.3.30)
¢l=1
O

Remark 2.3.7. The solution to the Neumann problem (2.3.16) can be written
in the form

1 - 1—2C 12d
wie) =5 [ 0O -TrONos| 7= F
I¢]=1 x
1 - 2 —1r? 12dC
+ 20 [”O‘Cﬂo“%thz_ﬂ'—
o (2.3.31)
— “fix dfdﬁ
/f 1_Z< 1_Zﬁxo
— Zfix dfdﬁ Z — zﬁX dfdn
__/f ZC T2_Zﬁx€ __/f _Zﬁx)
if for z € R the conditions
! dgdn
57 V() —Cf 1_Z< /f T
¢[=1
1 _
=5 h(()-(f(()]l_zg —
I¢l=
1 _ ¢ (2.3.32)
- [V(C)—Cf(é)]ﬂ_zg
I¢]=1
_ 1 dgdn
== [ Lo -¢s _wc—_/j B



L / ()~ THONIE = 0 (2.3.33)

are satisfied.
As before, the problem (2.3.16) is reduced to the homogeneous case. One
can apply the formula (2.2.24) to solve the corresponding problem (2.3.21).
Then the solution to the problem (2.3.21) is given by

o S B = 1 — 2 |2d¢
e T~ g / () = CA(Q) ~ T og ;|
(2.3.34)
1 — 2 —r? 12d¢
+%| J Q) = S = GO og] | 2
Cl=r
under the solvability conditions
1 _ d¢
5 [V(C)—Cﬂf(f)—Cf(C)]l_—_C
I¢I=1
1 = ¢ _
=57 | Q= A1) ~THOl = =
I¢l=r
(2.3.35)
1 e de
=55 | DO = Q) -5 -
¢I=1
1 _ d¢
=5 [V(C)—Cnf(C)—Cf(C)]ma
I¢l=r
1
3 [ Q) = A0 - THO)1F = (2.3.36)
OR

The formula (2.3.31) follows from (2.3.34), using (2.3.26), (2.3.27), if one
takes into account that

1 B _ZC)dC =
2mi LL7(Q) log(1 = Z¢)dc = __/f 2mi / C) =
¢=1 Ic1=1
:_%/ﬂé@mgl ) o_gdédi = = /f ~%®:
R
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1

Cl=r [Cl=r (€= O
_ 1 b@Z—CP+k%r%K =
- /f %Q/ (- e
1 ~ 12 log(z— dfdn
—;R/f(é)%/ o “ dgdi ———/f T

_ 1 2d¢ ~
5 Hf( )10g\zC—r2|2dC /f 27m/ Og‘ZC | gfn_

Solvability conditions (2.3.32), (2.3.33) are obtained from (2.3.35),

(2.3.36), where

1 ¢dg T
27?2/<Hf 1—_C_ /f 2772/ (¢ — 5)2(1_3C)d€dn

¢1=1 ¢1=1
L[~ déd
=——/ﬂouf;)
o | = [ e - / 7 = / - g)ifi_md{dﬁ:
:_/f (?Z
2m/<f1—’2L/ —zg =0

[Cl=r

Theorem 2.3.18. The Robin boundary value problem for the inhomogeneous
Cauchy-Riemann equation in R

L, |2| =1,
= fin B, w200 =7 on O, zgav(zg) = c. ::{—a,pw=n
(2.3.37)

for f € C*(R;C), 0 <a <1, vye COR;C), cecC, Zfiy € R given is
solvable by a function from W2T*(R;C) with continuous weak z-derivative
on R if and only if for z € R the conditions

1 szC
o ) ) =l —g /f dfdn =0, (2.3.38)

OR




i. Q) = ¢f /f ZCdC dgd =0, (2.3.39)

— / (C) ¢)ld¢ =0, (2.3.40)
f=r

are satisfied. Then the solution is unique and given by

wz) =%~ [ 1O - T og(1 — Dydct
¢I=1
[ B0~ T os(1 ~ S)c
¢l=
F o [ O ~ T8 — 2 Q)i 2.3.41)
¢I=1
- 1%{ () SO g1 — e~

Proof. By introducing the new function
p=w-TF, (2.3.42)
the problem (2.3.37) is reduced to

pz=0in R, ptzp, =7=Tf—z2lf—Zf on OR, zx,p(2ix) = c—T f(2gix)-
(2.3.43)
The function ¢ is analytic in R, hence it is represented by the Laurent series

oo

p(z) = Z ez, ¢ € C.

n=—oo

Consider the function ¢ + z¢,. It is also analytic in R with

(.¢]

0(2) + zp,(2) = Z (n+ 1)c,2". (2.3.44)

n=—oo

41



On the other side, any analytic function in R can be represented by the
Cauchy integral according to its boundary values, i.e.

_ 1 _ B - d¢
w(zHZ%(Z)zm'a{ (1O = TH(Q) = CIAQ) = Q)
under the conditions
o / (<) - CILFQ) = O 2 =
s [ =150 ~ (0~ O =
OR

(see Theorem 3.2). Using (2.3.13), (2.3.14), (2.3.28), (2.3.29) these conditions

can be rewritten in the form

1 T T —2§dg B
5 [BO - T+ /f [ —aeydedn =0,
OR
1 _ de ‘QQ"dC B
OR
what is equivalent to (2.3.38), (2.3.39).
Evaluating

27”/ Tf(¢ /f(Z)QiZ/(C_:;fC Z)czgdn_o

2m/<ﬂf =——/f Qm/ T

one obtains

1 — d¢
o)+ 200 = 5 [BO-THOZ2S (2349
OR
To find the constants ¢,, n = 0, +1, +2, ..., we have to solve the equation
> e = (o [ 0 X (o [ 0)=
B " ¢l=1 ¢l=r
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which is the result of comparing (2.3.44) with (2.3.45). Then

11 N
¢I=1
1 1 — d¢
[Cl=r

and the condition

L o - erlde =0

271
[¢|=r
are obtained, while c_; remains undetermined. To find it the last relation in

(2.3.37) is used. Inserting (2.3.46), (2.3.47) into (2.3.44) we get the function
@ in the form

d _
#z) = n 277@ /[’y §”§Fl>zn+%+
" ¢I=1
¢ \ .,
* Z n+1 2mi /h C”H)Z N
[Cl=r
—;% /[7 10%(1—22)dé+%+
¢1=1
¢
z2m /[’y log(l—;)d(.
I¢|=r

To find c_; the last condition in (2.3.43) is exploited. Thus the function ¢ is
defined. Using the definition of the Pompeiu operator and equality (2.3.42),
one gets the initially unknown function in the form (2.3.41). O
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3 Boundary Value Problems for Second Order
Complex Partial Differential Equations in a
Ring Domain

There are two basic second order partial differential operators: the Laplace
operator 0,0; and the Bitsadze operator 92. The third one 9? is the complex
conjugate to the Bitsadze operator. All results for this operator are derived
from the corresponding results for the Bitsadze operator.

In order to treat boundary value problems for second order complex par-
tial differential equations special kernel functions have to be constructed.
The most important among them are Green, Neumann and Robin functions.
All of them are certain fundamental solutions to the Laplace operator. The
Green, the Neumann and the Robin functions are used to solve the Dirich-
let, the Neumann and the Robin boundary value problems for the Poisson
equation via corresponding integral representation formulas for solutions.

3.1 Green function for a circular ring domain

1
Definition 3.1.1. |5] A real-valued function G(z,() = 5 G1(z, () inaregular

domain D C C is called the Green function of D, or more exactly the Green
function of D for the Laplace operator, if it possesses for any fixed ( € D
as a function of z the following properties:

1°. G(z,() is harmonic in D \ {(},

2°. G(2,¢) +1og|¢ — z| is harmonic in D,

3°. ZEIgDG(z,C) =0.

The Green function has the additional properties |5]:

4°. G(z,¢) >0,

5°. G(2,() = G(C, 2).

6°. It is uniquely determined by 1° — 3°.

Not any domain in the complex plane has a Green function. The existence

of the Green function for a given domain D C C can be proved in the case
when the Dirichlet problem for harmonic functions is solvable for D (see,

e.g. [5]).
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The procedure of constructing the Green function for a circular ring {z €
C:0 < 1/r <|z| <r} is described in |28]. In our case, dealing with the
circular ring R={z € C:0 <r < |z] < 1}, it is given below (see also [3]).

Any harmonic function can be represented as the real part of an analytic
function. The desired Green function is sought in the form

~Re {log £(2)} = 1 log|£(2)

with the function f(z) being analytic in R, having a simple zero in, say c,
with modulus 1 on the boundary. Without loss of generality, ¢ is assumed to
be real and positive. In order to find enough function-theoretical properties
to construct f(z) explicitly, it is extended beyond the two circles |z|

S

1, |z| = r by setting f(z) = f(z*), where z* = %, for |z| > 1 or 2" =
for |z| <.

If z approaches a boundary point, the corresponding point z* does ap-
proach it also. The function f(z) may be considered as a real function tak-
ing complex conjugate values at complex conjugate points. This implies that

1 2
f(z)f(—) or f(z)f(r—) approaches the positive real value | f(z)[?, when-
z z
ever z tends to zyp € JR. On the other hand, f(z) has modulus 1 on the
boundary. Thus the functional equations

f(z)f(l) _ 1 (3.1.1)

z

7“2

f(z)f<—) —1, (3.1.2)

z
hold identically.

Since ¢ is a simple zero of f(z), applying (3.1.1), (3.1.2) successively,
shows that the function f(z) has simple zeroes at the points

c c
2 4 2k
cC, cr, p, cr,...,Ccr -, er,...,
and simple poles at the points
1 72 1 1 r2k 1
¢ c et ¢’ et ¢ r2ke’

Thus it coincides in its zeroes and poles with the function

F(z) = c—2z H((z—r c)(c—rFz) (3.1.3)

1 —ecz o (ex =) (1 = r2kcz)’
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The relation

is valid.
From the other side,

r? 1 1 —r2k-Dey 1 = 2 — ke
ror(2)-
2 z 1 —cz H 1—r¥cz z—rl H 2 — P2

oo 1oz — p2E) L 2k,
X(CZ_T)H oo — 2k (C_Z)HC_TQ(k—l)Z:
k=1 k=1
(CZ o T2(k+1))(c . 7“%2) )

— i
b (1 —r2kcz)(z — r2k+l)e)

The function F'(z) does not satisfy (3.1.2).
Let us define

=C.

f(2) = a2"F(2),

a,b € R. Equations (3.1.1),(3.1.2) determine a system of equations with

|
ogc. Let us choose

respect to a and b. Its solutions are a = £1, b = —

a =1. Then

logr

f(Z) _ Z—logc/long(z).
Now instead of the real ¢ € R one can take an arbitrary ¢ € R (see [28]).
Then the Green function for R is represented by G(z,() = —log|f(2)| =

%Gl(z, ¢) with

_ log |z[*log [¢]*
B log r?

G1(27C>

S G (SO T

_1og‘ 1—2C 0 (2¢ = 720) (1 — r#%()

The Green function, defined in (3.1.4), satisfies clearly the properties

1°, 2°, 5°. Its boundary behavior is

20— |2yl ==

52(1 — EC) Pie) zE — r2k

lim Gi(z2,{) =— lim log‘

|z|—1,z€R |z|—1,2€eR

—r 2k )2

2P
1—17r2zC
47
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lim  Gi(z,¢) =log|¢|* — lim lim log‘(c H| A - T%ZC

|z| =71, z€R n—00 |z| -7, zER TZkZC

C—r z ‘ 9 ‘ — piny
=1 —1 1 -

The next theorem gives the representation formula for a certain class of

‘_0

functions via Green function and is used to solve the Dirichlet boundary
value problem for the Poisson equation.

Theorem 3.1.1. Any function w € C?*(R; C)NCY(R; C) can be represented
by

a¢ 1
47T2/|C|8V<G1 Jw(¢ )C ;/wgg(C)Gl(zaC)dﬁdn. (3.1.5)

R

Proof. Let z € R and € > 0 be so small that B.(z) C R,

B.(z)={CeC:|(—z| <e}.

Let us denote R. = R\ B:(z) and consider

= [wl0)Gi (= e =
R

1

27r
R,

— we(Q)Ghe(2, Q) — wr(Q)Gic(z, €) | dedn =
— i [ G QO — wr(O)dC) -

10 [we ()G (2,0 + O [we (G (=, €)=

1

27r
R,

~ 20, G (2, w() | dédn =

:—ifj“a@me@—wwﬁk

479,
|(—z|=¢

[0 (Q) Gl O] + () G2 )l
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-~ [wooi c>d<—GI<<z,<)dZ] -

4772
d
L / G1(2.O[(¢ ~ () + (€= Fuel0)] 72~
|(—z|=¢
1 ¢ dc¢
— 0, & G —
47TZ-8R ( )K’(K' ¢+ |C~| C) 1(27C) ¢ +
1 — d
tam [ €= 96100+ 26 0w 72
|(—2[=¢
Introducing polar coordinates ¢ = z + ee? leads to
d
= [ 6020 - C=2ur(0] = -
|(—z|=e
] 2
= | ele"welQ) + e wel(Q))Gh (2, )b

0
which tends to zero as ¢ — 0.
From the property 2° of the Green function the representation

Gi(z,¢) = —log|¢ — z|* 4+ hi(z,¢)

holds, with hi(z,() being harmonic in R as a function of z for any ¢ € R.
Using this formula and polar coordinates gives

1 dg

= [(g — 2)Gr¢(2,0) + (C = 2)Gy (=, O}“’(Og .

¢~zl=

:_/ [6’98 +e o 07| ha(z, z+ee?) — Z}w(ersew)dH.

It tends to —w(z) as € — 0. Hence

lim = [ w e (Q)Ga(z, Qdedn = / €] 8, G (2, Qw(0) 2 — w(©).

e—0 7T C
R,

This proves (3.1.5). 0
49



3.2 Neumann function for a circular ring domain

1
Definition 3.2.2. [5] A real-valued function N(z,() = B Ni(z,¢) in a reg-

ular domain D C C is called Neumann function of D (for the Laplace
operator) if it satisfies as a function of z the following properties:

1°. N(z,() is harmonic in D \ {(},

2°. N(z,() +log|¢ — 2| is harmonic in D,

3°. 0,,N(z,() is constant on any boundary component of D for any
¢eDbD.

Remark 3.2.1. The Neumann function is not uniquely defined by 1° — 3°
(see, e.g., [5]).
Lemma 3.2.1. Let D be a reqular domain in the complex plane C, 0D =

ULy, I'yCintly, 1 <j<n, ne NU{0} fized. The Neumann function

7=0
(2,¢) of D is uniquely defined by asking

1

27
Iy

N(z,Q)ds, =0, for all¢ € D, ds, = |dz|. (3.2.1)

Proof. Let N(;(z,(), N)(2,¢) be two Neumann functions of D. Consider

U(z) == Nuy(2,¢) — Nigy(z,¢) for any fixed ¢ € D.

(¢]

Using the properties 1° — 3° of the Neumann function, it follows that U(z)
is harmonic in D and 0,.U(z) = 0.
Applying the Green formula (real form)

/ (u(, ) A ol y)+ grad ulz, y), grad v(z, y) - )dady = / ul(z, )80z, y)ds
D oD

for u(z,y) =v(x,y) = U(x,y), where x = Rez, y = Im z, one obtains

/

D

2
gradU (z, y)‘ dxdy = 0,

hence U(x,y) = const.
The formula (3.2.1) immediately provides this constant to be zero. O

o0



Proposition 3.2.1. The Neumann function of the Laplace operator for the
1
ring domain R is given by N(z,() = 5]\71(2,() with

Ni(2,¢) = 1og\ )(1 - 20)x

) H (=~ r%o(zc Pt p (32
IZ 2I¢[? |
Proof. The properties 1° —3° of the Neumann function have to be checked.

The function N(z,() is harmonic and satisfies 2°. The boundary behavior
is observed from

8 N ( C) ZNlZ(Z,C) ‘i‘ENlZ(ZaC)v |Z‘ = 17
v, Z, = & <
1 ——NlZ(Z,C) — _le(Z7C>a |Z‘ =T,
r T
where
ZNlZ(ZJC) - - + ZC =
C—z2 1—2( 393
_i( G S A ~2) o
Az =0 (% (= 1y |
Then for all ( € R
0y.N1(2,¢) = =2, on|z| =1,
&/ZNl(Z?C) - O’ on |Z‘ =T
The normalization condition (3.2.1) reads for R
dz
Ni( 2.
27i / 1z C (826)

|2|=1

In order to check it let us consider

1 dz 1 ¢
g | M0T =55 [ [loslc— = +loglt - TP+
= |z|=1
N gl G PO = ) — ) (1= 1) 2 de
+Zlog‘ 2[2|C]2 ‘ }?_

ol



1 —o N 2% +12 = 2k2
—5 / {210g|1—z§| —|—Z(log|z—r C|* + log |2¢ — r=¥|*+

. k=1
2% |2 2%k 7|2 2\ 142
+log |¢ — " z]* +log |1 — r*"2(]* — 2log |C| ﬂ?,
with
1 - 1 —.d
— / log |1 — ZC\Q_Z = 2Re [— / log(1 — z()—z} =0,
271 z 2mi z
|z|=1 |z|=1
1 d 1 —od
— log |z — r?F¢ 2= - — log |1 — rgsz|2—Z =0,
271 2 2mi z

|z|=1 |z|=1
1 — d 1 d
1 / log |2C — 122 = — / log ¢ — 12222 — log |¢[2.
271, z 271, z

|2]=1 |z]=1

This completes the proof. 0

There is an analog of the representation formula (3.1.5), which involves
the Neumann function instead of the Green function.

Theorem 3.2.2. Any function w € C?*(R; C)NCY(R; C) can be represented
by the formula

i
A4 / \C|8VCN1 47TZ / <19 O ¢ N
(32.7)
—+ [ v @M. dgan
R

Proof. Let z € R and ¢ > 0 be so small that B.(z) C R,

B.(z) ={CeC:|(—z <&}
We denote R. = R\ B.(z) and consider

> [u@mitz. Qasan =

T
R,

= o= [ [ QN (2, O + 0 [ O M2, )

R.
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—w< Nic(2,€) = welQ)Nic(2,C) | dédn =
== / Ny (2, Q) e (O)dC — ()} -

1

o {&[@WWAAOL+%W@MW4%OF

R,
— 20N (2, Qu(Q) | dédn =

- ﬁ [ Wi Olec(€)d6 - () dC)-

OR
4m / Nl dC wé(o dZ]_
|{—2|=¢
, _
— = | WO Niclz OdC = Nyl(z,Q)de] =
OR.
1 ¢, ¢ <
_ RalNl(z,C)K(Eaﬁ K|8?> w(C) c
d
4m / Ni(z — 2)we(C) + (¢ — Z)wg‘(o} ¢ _CZ_
|(—2|=¢
1 ¢ de
- w(C )K‘(K‘aﬁ- f |&)N1(Z,C)?—I—
OR
. L d
tam [ €= AN 0+ E AN O]u() %
|¢—z|=¢

This gives formula (3.2.7), letting ¢ tend to zero, by the same arguments
as have been used in the proof of Theorem 3.1.1. O

Integral representation formula (3.2.7) is used to solve the Neumann prob-
lem for the Poisson equation.
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3.3 Poisson and Bergman kernels for a circular ring do-
main

Definition 3.3.3. Let D be a regular domain with a Green function G(z,() =

%Gl(z, ¢). The Poisson kernel for D is defined by

gl(Z,C) - _%8% Gl('va)a z € D7 C € 0D. (331)

The Poisson kernel for R can be evaluated explicitly and has the form

[ Rem0. =1, ,
9(z0) = %m@@omq:n o
with
R _log|z|? C Zq
1(27C) T 10g7”2 - C_z - 1 —zc—l_
> r2kz¢ Z( S r
+Z<r2k2< —1 2 —r%  (—r%z (- Z)

k=1

Using the Poisson kernel the representation formula (3.1.5) can be rewritten
in the form

w2) = 5= [ Kl 0wOF ~ - [wO Gtz Qdsan. (333)
OR

(s
R

1
Lemma 3.3.2. Let G(z,() = EGl(z,C) be the Green function for R, de-
fined by (3.1.4). Then the formulas

log |2|? 1 1
Gie(z,C) = i’fg‘rl ;KGO K(%,C), (3.3.4)
1 2 1 2
hold, where

2k

1 - 2k r¥z 1 ~
K(Z7C):E_i_;(T?kC—Z_‘_C(C—TQkZ)) :C_—Z—I—K(Z, )

Proof. Formulas (3.3.4), (3.3.5) are proved by direct calculation. O
o4



The Poisson kernel for R possesses the following important property.

Theorem 3.3.3. Let g1(2,() be the Poisson kernel for R, defined by (3.3.2).
For any w € C(OR;C)

im — [ gz Quw)

z—20,2€E R 27'('2 C
OR

= w(2p), 20 € OR. (3.3.6)

Proof. From the definition of the Poisson kernel and the normal derivative
the equalities

d
L / Gl (OF = -4 / G0+ T0,)Gal=, () =
111 d —d
e / OG1(2.w(Q) ¢ + 51 [ COG = uie) e
OR OR
follow.
Transformations of the integral
27i /CﬁCGl
B 1 log | 2|2 ¢ z( ~, = ~ 1 d¢
5 [ — s~ s~ RO+ R G Owl0Z =
OR
1 r ¢ ] 2 ~ ~ 1 d
5 [ ==+ (RGO + R 0w F
I¢|=1
1 rlog|z]? 1 1 | 2|2 S |
5 | oarr e e02 T iope =5~ K0+ K, 0] w(de
ICl=r
(3.3.7)
or
i /CaCGl
1 log\z|2 ¢ Z(
T om {( log r?2 - )_C—z_l—EC_
OR
~ ~ 72 d
- R0+ R 0w -



1 log | 2|? Z( Z(
_ — — 1 — _
270 / K log r? ) Z¢ — |2)? i Z¢ —r?

- R+ CRE 0w %
_ (3.3.8)

2
i | (Cr ) - (s 1)-
Cl=r
- R0 +REOJwo%

are the results of applying formulas (3.3.4), (3.3.5) respectively.
The function K(z,() is uniformly continuous on z, |z| > r for any fixed
( € OR, what is observed from the estimations

K(1,0) = Kz, O’ - )Z T%((r%c—iiiigw—@) + <<—r2k2>_<§2—r%zl>)’ =
k=1

= 2k 1 1 —
21— 2 ,;7’ ((|zl|—r%><|zQ|—r%> * (1—T2k|21)(1—7“2’“|22)>’ =1

< =
. 2k 1 1 _
ol (e + A ) I =7,

1 1 |21—ZQ|
= ((1—r)2 * (1—7“2)2) 1—r2" va, e R

Hence

A - 1
lim  K(2,¢) — K(Z,() = =1 3.
hm K(2,0) — K(2,0) =0, |zl =1, (3.3.9)
~ ~ 7“2
lim  K(2,¢) — K(=,¢) = = 3.1
Jlim  K(2,0) = K(5,0) =0, || =7, (3.3.10)

7“2‘

1
as |z — =| tends to zero, when z — 2z, |20| = 1, and |z — approaches
z Z

zero, when z — zg, 20| = 7.
The statement of the theorem follows from (3.3.9), (3.3.10) and the prop-
erties of the Poisson kernel (2.1.10), (2.1.11) taking the limit of (3.3.7),

when z tends to 2o, |20| = 1 and the limit of (3.3.8), when z approach-
es 2o, |20| =1 O]
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Definition 3.3.4. [5| For a domain D C C with Green function G(z,() the
function

— 2
k(Z, C) = T sz (27 C)
is called the Bergman kernel function of D.

The Bergman kernel k(z, () is analytic in z and ¢ for z, ¢ € D, having
a singularity at z = (.

From the symmetry of the Green function the property of the Bergman
kernel

k(z,¢) = k(¢,2)
follows immediately. The Bergman kernel possesses the so-called reproducing
property in the space of bounded analytic function

Theorem 3.3.4. |5] For any bounded analytic function w in D the repre-
sentation formula

w(z) = / w(O)k(z.Q)dedn, = € D,
D
holds.

Proposition 3.3.2. The Bergman kernel for the ring R is expressed by

2k 2k

11 1 - r r
0= Sl )

k=1

3.4 Robin function for a circular ring domain

Definition 3.4.5. Let D C C be a (regular) domain of the complex plane.
Then a function R, 3(2,¢) from D x D into R U {400} is called Robin
function for D with the parameters a and [ if for any ( € D

1°. Rap(-, ¢) is harmonic in D \ {(}, continuously differentiable in
D\ {¢},

2°. Rap(2,¢) +log|¢ — z| is harmonic in z in the neighborhood of (,

3°. aRap(%,() + 0, Rap(z,¢) =0 for z € dD.

Parameters a and 8 may be given continuous real functions on 9D, not
vanishing simultaneously. Here o, 3 € R is assumed. If a = 0 and the third
condition is replaced by

0y, R10(2,() = —0o(s) for z=z(s) € 9D,
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where s is the arc length parameter of 0D and o is a real valued function

of s with finite mass [ o(s)ds, then Ry1(z,() is the Neumann function

aD
N(z,¢). If =0, then Ri(z,¢) is the Green function G(z,(). Instead of

Ras(z,¢) the notation Ri.45(2,() = 2Ra(2,¢) is used as in the cases of
Green and Neumann functions.

The representation formula via the Robin function of an arbitrary regular
domain D for a proper class of functions is given in the following theorem.

Theorem 3.4.5. For a # 0 any w € C*(D;C) N CY(D;C) can be repre-

sented as
w(z) = = o [[00(O) + B0 w(Q)0 Rz s~
0D
= [ O Rz, O, o
D
Proof. Writing
Ri.ap(2,¢) = —log|C — 2> + hi(2,¢) (3.4.2)

with a harmonic function hi(-, () satisfying
ahi(2,¢)+80,.h(z,¢) = alog|C—z[*+530,, log |(~2|* for z € 9D, ( € D,

and applying the complex Gauss theorem (Theorem 2.1.2) for w €
C%(D;C) N CY(D;C) then as 9c0zhi(z,¢) = 0 it follows

= [wlOR sz, e =
D
0[O R, O)] + 0 [ ORucas(, )|+
-5 [ (ool | o |
Q) [ == = (=, O + el [ — (2, Q)] ety =
- = / Rz Qe (Q)dC = wel Q)T+

+or / (Z@ + Z”C_(O = Ofw(€)dn (2 O = [ = )] ) dn.
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Using the Cauchy-Pompeiu formulas (2.1.4), (2.1.5) and the Gauss theorem
again gives

l/wCC(C)Rl;a,g(z,C)dﬁdn = —w(z) + %/Rl;aﬂ(z,g)aycw(g)dqu

™

D oD
1 1 1 _
+ g | O[5 o O dc - | =~ o =,)| C),
oD
Thus
w(2) = 1= [ [Rucaslz: 00,000 = 0 Ros(z. i) dsc-
oD
(3.4.3)
-+ [ WO Ry sz )ddn
D
For a # 0 this is
w(2) = = o [ [awl€) + 50,0(0)| 00 Rz, s~
oD
~ [ wOR sz C)dcan
D

and for 8 #0

1
= —ﬁ { —|— ﬁaycw ]Rl;aﬂ(Z, C)d8<—
(3.4.4)
1
o %/wCC(C)Rl;a,B('%C)dgdn'

D

Hence, if a #0, 8 #0

[ 10w(Q) + 0O [0 Ru(2:€) = 50, Rz, dsc-
oD

w(z) =

[ wgORuaalz ey (3.45)
D

99



The representation (3.4.1) suggests the solution to the Robin problem for
the Poisson equation, which will be considered in the next section.

The Robin function can be shown to be symmetric by using its three
main properties from the definition.

Proposition 3.4.3. The Robin function of a reqular domain D possesses
the symmetry property

Rl;a,ﬂ(z7 C) = Rl;a,ﬂ(Ca Z):

if it is assumed to be also harmonic in ¢ € D\ {z}.

Proof. The difference

h(Z, C) - Rl;a,ﬂ(z7 C) - Rl;aﬂ(ga Z)

is a harmonic function in both variables. It satisfies for z € 9D

Oéh(Z, C) + Bal/zh(zn C) = _&Rl;aﬁ(Ca Z) - Bgyle;Oé,ﬁ(g7 Z),
and for ¢ € 9D

ah(z,€) + B0, h(2,C) = aRp0p(2, C) + B0, R as(2, C).

As the Green function is known to be symmetric, 3 # 0 may be assumed.
By formula (3.4.4) the function h(z,() can be represented as

1

h(z,Q) = "I
oD

[ Rl;mﬁ(g E) + 58V5R1;a,ﬂ(67 g)} Rl;a,ﬂ(z, E)dsg

and

1 ~ ~ ~
h(Z, C) = m / [aRl;a,ﬂ(Za C) + ﬁaVZRl;a,ﬂ(Z7 C)i| Rl;a,/@(g7 C)ng
oD

Adding them gives

~ ~ ~ ~

h<za C) = 8L7T / {Rl;a,ﬁ(ga C)aVZRl;a,ﬁ(Za C) - Rl;a,ﬁ(za C)az/gRl;a,ﬂ(Ca C)} dSE

oD

~ ~ ~ ~

= % / |:R1§0475<Za C)Rl;a,ﬁ(g7 C) - Rl;a,ﬂ(Ca C)Rl;aﬂ(Z, C)i| ng =
oD

= 0. L]
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To find the Robin function for the ring R={2€ C: 0 <r < |2| < 1}
the Schwarz problem for analytic functions needs to be solved, i.e. the result
of Theorem 2.2.10 is applied for this aim.

Theorem 3.4.6. The Robin function for the circular ring R in case

a,# 0 is
Rl;aﬂ(’z C) = (27C)+
2k 2k

¢)F
+25Z{ OH—Bk +a—1ﬁk<(zg)k+(;Q)k)]1—1r2k+

23 25 1 28 XL
+ 2 BT toglef —tog o], 7 § ¢
(3.4.6)
k
Rl;a,ﬁ(Z7C) +2ﬁ Z 1S§n7"2k Zgoz—l—ﬁ(ZC)
k=—o0,
ke£ko
L _ —
- % [(0) log(=0) + (=) log(0)| +

(B

log |2]? — log |¢|2], if a+ Bk =0,k €Z,
a  «alogr?la

(3.4.7)

where Z. denotes the set of integer numbers. For a = 0 there is no Robin
function. For B =0 the Robin function coincides with the Green function.

Proof. The harmonic function

hi(2,¢) = Ria5(2,¢) +log ¢ — 2|
satisfies for z € OR, ( € R

z Z
ahy(z,¢) + 0, h(z,¢) = alog|C — z|* — — . (3.4.8)
C—z (—z
It is representable as the real part of an analytic function in R. This analytic
function may be multi valued as long as its real part is single valued. Instead

of looking for such a proper multi valued analytic function and because of

symmetry it is appropriate to find hi(z,¢) in the form

h(z,¢) = alog |2|? + alog|¢[* + blog |=[*log ¢ [ + Re (=, ()
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with a single valued analytic ¢(z,() in R. Then the boundary condition
(3.4.8) on OR turns into the Schwarz problem

Re (p(2,0) + f2p.(2,()) = —aalog sf> — aalog|¢[* — ablog |+ log| ¢

—Zﬁa—Qﬁblog\C\2+@log|C—2\2—ﬁ[ I }for 2 € OR.

(—z (—z
According to Theorem 2.2.10 this problem is uniquely solvable if
1 dz
vl (2,¢ )? =0,
OR

where v(z, () denotes its right-hand sides.

As

1 dz 2 2 2 2

py— ”y(z,C)?:aalogr + ablogr©log|C|” — alog|C|”+ 26 (3.4.9)
OR

this implies
aalogr? +264 =0, blogr’—1=0,

and

43 log | 2|? log |2|? log |¢|?
+2 —
o log r? log 12 log 12

+ozlog\§—z|2—|—ﬂ{<_ +Ci2} for z € OR.

Re (ap(2,€) + B2pa(2,0) ) =

Hence, see (2.2.7),

wotei 0+ 820 =g [1€.09(.0F
oR

~

1 ~ ..d
5 7(C7C)T< for Z?CERv
2mi ¢
[Cl=r
where the imaginary additive constant is chosen as 0, and the function

2nz

S(z, C +z "2 Z [rQ”C St (3.4.10)

represents the Schwarz kernel for R.
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From

1 ~d¢
¢
S(z, )C

2m

—/logm S(z = log 2,

—/1og|g |28 (z, )CC—2log(1—ZC)+log\<\+

2n 2n

=) ree(1- )

+2 Z [log —r#"%() 10g<1 — ch) — log<1 —

|

~

1 ; c ~de 2
2m'84[g ¢ g_C}S(z,g)? R

00 T’an r2ny TQ"zZ 2
+2;|:7~2n(_z + C—T2n2’ + 1 —T’2nzz+ T’Qn_ZZ]’

1 [dC . 1 2 g_ 2
i ?_1’ 2 ng q = log|C|",

= =

1 ¢ ¢ 1dC
o - = —+ - 0’
27m|a: {C ¢ C_C} C
finally

2

ap(z, Q) + Pzp:(2, () = kl 5 + 2alog(1 — 2C) + 26 +

alogr 1—2C

2n 2n 2n
+ 2« Z [log —r?2() — log (1 —

TZC> +10g(1 — Z—Z) —log(l — rcz”

2n 7"22 7“2712_ T2n
+z@z[ ‘<4 TR S

2 —z =1z 12yl 2

432 Q —i— kB r* 1 a—kB (CF i
ozlogr2+ B+ Z 1 — 2k (k k1 —r2k
2%

_QZ{&+kﬁ1 a—kﬁgk}lr Lk

k — r2k
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As an analytic function in R being single valued, ¢(z, () is representable
as a Laurent series

p(z,¢) = i cr2",
which converges in R. Thus o
ap(z,C) + Bzp.(z,() = f: (o + Bk)epz
k=—00

Comparing coefficients shows

acy = 20 + 4al§;r2’

ot B =2 T L o1,

(o e = o [ ] ks

as long as o + Bk ¢ Z. Hence, then

20 /20N\2 1 1 1 refzh - r
#l2:0) = E+(E> logr2+QZE1 —7“2’“{ ck * 2k _(Zg)k_(zZ)k}
k=1

C)k 7“%
+4 3.4.11
521— [ + Bk (a— BE)(2C) } ( )
Therefore
281log|z|? +log|C|* log|z|?log|C(]? 28 20 1
) = 2B+ log P g sPlog G 26 29y2 1
Q log r log r Q log r
1 1 p2hok p2hgh o 2kek o 2KEk
+;El—r2k[ o T TR T

(z0F ()

+262 7“%{ 04+6(ZC) * (oziﬁk:) (( %)k + (Zi)’f)] B

2ﬁlog|z\2+log|<\2 log|z[log [¢|* | 28 & (28?1
e LT LNE
o log 12 log 12 o log r2
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122 (z = 1) |
—2a0) (o6 — )

N Qﬁz G D GO

+log |1 — 2| —10gH‘

a+ An a— fOn
so that
2687, log|z|* 4 log|(|? 20N\2 1
wpl(z,0) = , — 11— —
Rl, 7ﬂ<z C) Gl(z C)—i_ a [ 10gr2 } +<C¥> 10g7"2

pag3 L TEDNHE D GO

— p2n a4+ On a — [n

If a+ Bko=0 for some kg € Z, then ¢(z,() is looked for in the form

o

0(2,0) = >z’ + o2 log(20),

k=—00
where ¢y, turns out to be determined as
4

— ko
Cko (1 - 7’2ko> C
Then
23 log |2|? + log [¢|? 20N% 1
Rl;a,ﬂ(za C) = G1(27 C) +— |:1 o 1Og 72 } + (E) 10g r2
= sgnn (20)"+(Z C)
2
a—&—ﬁn;ﬁO

+ % (20 log (=) + (2¢)** log (=)

]

Remark 3.4.2. In the case a+ ko = 0 the function ¢(z, () is multi valued.
But as 2™ is a solution to the equation ap(z, () +Bzp.(2,¢) = 0, this multi
validness does not influence the boundary behavior of Ri., (2, (). Moreover,
©(z,¢) can be altered adding an arbitrary multiple of z* leading to another
Robin function with the same properties. The Robin function then is multi

valued and not unique as multiples of [(2¢)* + (2¢)*] may be added.

For o = 0 the solvability condition (3.4.9) is not valid as # # 0. Thus in
this case there is no Robin function. But as mentioned before the Neumann

function exists.
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3.5 Boundary value problems for second order equa-
tions

The second order differential operators, i.e. the Laplace operator 0.0 and
the Bitsadze operator 0%, determine second order partial differential equa-
tions, namely, the Laplace, the Poisson (i.e. inhomogeneous Laplace), the
Bitsadze and inhomogeneous Bitsadze equations. Different boundary value
problems can be formulated for these equations.

3.5.1 Dirichlet, Neumann and Robin problems for the Poisson
equation

The Dirichlet and Neumann problems for the Poisson equation are well-
known in the literature, see e.g. [36], [50]. Here explicit solutions for these
problems are specified for a ring domain. A Robin problem for the Poisson
equation is posed and its solution is found in explicit form.

Theorem 3.5.7. The Dirichlet problem for the Poisson equation in R
=fimR, w=rvyoniR, (3.5.1)

for [ € Ly(R;C) N C(R;C), v € C(OR;C) given is solvable in the space

C%(R;C)NC(R;C). The solution is unique and expressed by

4m/\C\8y<G1 ———/f O)Gi(z,¢)dédn.  (3.5.2)

Proof. The representation formula from Theorem 3.1.1, the properties of
the Poisson kernel (Theorem 3.3.3) and the Green function immediately
provide the solution to the Dirichlet problem (3.5.1), expressed by (3.5.2),
see e.g. [36, p. 84|, |50, p. 324].

]
Theorem 3.5.8. The Neumann problem for the Poisson equation in the
ring R
: |z| =1,
wer = fin By M|0w(z) =y ondR, A=q | (353)
1 dz
o — = 5.4
271 w(z) PR (3:54)
|z]=1



for f € Loy(R;C)NC(R;C), v € C(OR;C), c € C given is solvable in the
space C?(R;C) N CYH(R;C) if and only if

o [ 10T =2 R/ (e (3.55)

271
OR

Then the solution is unique and given by

w@) =t g [AOMEOE 1 [ FOMEQddn (350)
R

47y,
OR

Proof. If w is a solution to (3.5.3), then formula (3.5.6) is obtained from
the representation (3.2.7), where (3.2.4), (3.2.5) are used.

That (3.5.6) is the solution to the Poisson equation follows from the
properties of the Neumann function.

To see that (3.5.6) satisfies the differential equation in (3.5.3), the bound-
ary integral is observed to be harmonic, while the area integral is a particular
solution to the inhomogeneous equation, see e.g. [36], [50].

The boundary and normalization conditions have to be checked.

Let us find

2Ni:(2,) + ZNix(2,0) = 2Re | ——— + s

¢—z l—zf_

i( r2k¢ . 2k 2k r2k ¢ )}
z—=1C (=2 =1y 12/ )

k=1
for z,( € R.
From (3.5.6) it follows that

1 d¢

.(2) + Zus(2) = 7 [ HOlMu(z:0) + 2Nis(e, )

OR
_% / FO[2N1(2,C) + ENi=(2, O)]dédn.
R

Then

li z ZWz —
|Z|_>1$€R[zw (2) + Zwz(2)]
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1 d¢

= s [ QRN O+ ZNis(z, ()7 -

OR

/?@WNMao+wamouwm
R

) 1
—  lim -
|z|—1,zeéR T

what is for |z| =1 equivalent to
BT ! ¢ ¢ dg
Owle) = 1 o / 710) (C T 1) I
d'é'l , (3.5.7)
WG+ [ Frdean
OR R

1

- 2mi

taking into account (3.2.4) and that for |(| =1

i (2810 + 2Vis(e,0) -2 (4 == - 1) | -

|z|]—1,zeR C — 2z C —
li 2R Ni.(z, () 2 +1
= lim e |zN1,(2,() — =
|z|—1,z€R ! C -z
=— lim 2Re [ ¢ — % —
|2|]—1,2€R C—z 1—2(
-2k 2k 72k 72k 7
T <Z_T§k<+ C— ok (—qpky 1 2/§Z) =2,
k=1 6T Ttz
and for |(| =7

lim  [2N1.(z,¢) + ZNiz(z, )] = —2.

|z|—1,2€R
The equality (3.5.7) shows that the boundary condition is valid on |z| =1

if and only if the solvability condition (3.5.5) holds.
Let us consider

lim [2w,.(2) + Zwz(z)] =

|z| =7, zER
— lm —— v<<>[lez<z,o+lez<z,<>}%—

|z|—r, zER 471
OR

1
— lim -—
|z|—r, zER T

[ FOEN( Q)+ 2Nis(, Oldgan
R
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what for |z| = r transforms into

e = tm om0 (Ao e -1) T 69

|z|—r, z€R 271 —Z C —Zz
Cl=r

by using (3.2.5) and observing that for || =1
lim [2N1.(2,() +ZNiz(2,()] = 0,

|z| -7, z€ER
and for |(| =7
lim [lez(z,C) +ZN1z(2,() — 2 < ¢ + < — 1)] =
|z|—r, zER C— z C— z
li 2Re |zN1.(2, Q) % +1
= lim e |zN1.(z,() — =
|z| =71, z€R ! C —Z
=— lim 2Re [ ¢ % =+
|z| =7, z€R C —Z 1— ZC
2k 12k 2k 2k 7
+Z(z—r§k§+ ¢ — % (—r2ky 1 _ 25?)]0
— 2(—r r2kz
From (3.5.8) the validity of the boundary condition on |z| = r follows im-
mediately.
Evaluating
1 dz 1 1 dz d¢
— e — — N -
271 w(z) > T 7(<)27ri / 1(2:6) z ¢
|z|=1 OR |z|=1
1 1 dz
- — — N —d&d
7T/f<g>27TZ / 1(276) B g ,
R |z|=1
the normalization condition is checked to be true due to (3.2.6). O

Theorem 3.5.9. The Robin problem for the Poisson equation in R

w,z = fin R, aw+ B9, w =" on IR, (3.5.9)
for f € Ly(R;C) v € C(OR;C), a, BE€R, a#0 given is solvable in the
space C?(R;C) N CY(R;C). The solution is unique and given by

w(z) - ! /’Y(C)ﬁuCRl;a,ﬁ(z, C)dSC - %/f(g)Rl;a,ﬁ(Z, C)dfdn
R

 Amia
OR
(3.5.10)
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Proof. Uniqueness follows right away from the representation (3.4.1). Thus
existence has to be shown. Obviously, the boundary integral in formula
(3.5.10) provides a harmonic function. Decomposing Ry., 3(2, () via (3.4.2)
and observing hy( -, () being harmonic shows

0.0:u(z) = 0.0:[ - [og|c — 27(0)]agan

R

According to, e.g., [36], [50], w(z) is a solution to the differential equation
in (3.5.9).

At last the boundary behavior has to be verified. From the property of
the Green function G1(z,() =0 for ¢ € dR it follows 0, G1(z,() = 0 for
¢ € OR. Also ﬁl(z,g“) = Ry.45(2,()—G1(z, () satisfies (Gyc—ﬁyz)/f\zl(z,o =
0 for z and ¢ on OR, see Lemma 3.5.3 below. Thus for z and ¢ on R

aVC aRl;a,B('za C) + ﬁaqul;a,ﬁ(z7 C)} -
= a0 Ruza0(2:€) = 0 Raza(2.€)|
= a[0,G1(2,Q) + Dy (,.0) = Dl (2.)| = 00, Ga (=€),

This implies for zp € OR

awlz) + 00,0(z) = lim [~ [ 100,612 0F

=zl A ¢
OR
= [ FOaR - c(2:0) + B0, Rap(a: i)
T 1; 2,0\ %y v, IV a,6\ < Ui
R

Lemma 3.5.3. For z,( € OR the harmonic function

~

hl(za C) - Rl;a,ﬂ(27 C) - Gl(zv C)

satisfies

~

Ouchi(2,C) = By ha ().
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Proof. The function /fil(z,(’) is a harmonic function of z in R for any
¢ € R satisfying as well the Dirichlet condition

hy(2,¢) = Ri.ap(2,C) for z € OR, ¢ € R,
as the Robin condition
ahy(z,C) + 80, hi(z,0) = —30,.G1(z,¢) for z € OR, ( € R.

Hence as well

~ ~ ~ . d
(2.0 = g [ Rias€00,61C 2%
OR

as, according to (3.4.4),

~ ~ ~d
(2.0 = =37 [ 061 ORuasl OF
OR

hold. Applying 0,. to the first and 9, to the second expression on OR and
observing the boundary behavior of Ry, 3(%,() shows for z and ¢ on OR

<al/z - al/g)/ﬁl (Z, C)

1 ¢ c ~ - \d
= — [ (9 R10s(C. 00 G1(C, 2) = 0 R, 00, G (€, ) ?C
OR
¢ c ~ -~ \d
— 47flﬂ /(Rl;a,ﬁ(zy C)ayZGl(Ca C) - Rl;a,ﬁ(c, C)aVEGl(C’ Z))?C — 0 D
OR

Remark 3.5.3. In the proofs of Theorem 3.5.9 and Lemma 3.5.3 the
special configuration of the domain being a circular ring is not used. The
same results hold for any regular domain. The only attention has to be turned
on the classes of initial data of the problem (3.5.9). Namely, for a general
regular domain D the function 7 has to be taken from the space C*(9D; C),
0 <A

3.5.2 Dirichlet and Schwarz problems for the Bitsadze equation

The Dirichlet problem for the Bitsadze equation is different from the one for
the Poisson equation. It is taken in such a formulation that it can be treated
by reducing it to a system of first order partial differential equations.
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Theorem 3.5.10. The Dirichlet problem for the inhomogeneous Bitsadze
equation i R

=fin R, w=", ws= ondR, (3.5.1)

for f e L,(R;C), p>2 v, € C(OR;C) given is solvable by a function
from W2P(R; C)NC(R; C) with continuous weak Z -derivative on R if and

only if

Z d Z 2% d
= %«31j2<:2ihfvxof; = ;jjﬁn@>f

R (3.5.2)

__/f +_/f \dedn

OR OR 3 53)
z dgdn
-2 [ ners = asin+ = [ si¢
=y
1 zd¢ 1 zdedn
o | WO =7 [ 1022 (35.4)
OR R
1 zd¢ 1 zdedn
o | 1O =1 [ O (355
OR R

The solution is unique and expressed by

1 d¢ 1 ¢ 2 ¢
w(z) = QWZ/VO(g)C—Z a QWi/Wl(C)C a6~ 2mz/%(<)?+
OR OR OR

1 Jdsd
+;/f( —dfd —/f e (3.5.6)

R
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Proof. The problem is reduced to the system
>=pin R, w ="y, on IR, (3.5.7)

=finR, o=, on OR (3.5.8)

of Dirichlet problems for the inhomogeneous Cauchy-Riemann equation. Us-
ing the result of Theorem 2.3.16, one obtains

w@y:£§/6m05¥z—§/¢@§?ﬁ, (3.5.9)
OR

o) =g [ 0722 [HOF @50
OR

under the solvability conditions

1 ;1 Zdédn
Q—M.aR 70(6)7 e ;R/SO(C)ﬁa (3.5.11)

1 zd¢ 1 Zded
o [ 0T =1 [0 (3.5.12)

OR R

1 zd( 1 zd&dn
2_7”8R T (C)l % ;R/f(C)ﬁ, (3.5.13)

1 . 1 Zdédn
o | O = [ 102 (35.14)

OR
Inserting (3.5.10) into (3.5.9) gives
1 oL ded -

w(z):%/ (—=z 2m/ / 577

(3.5.15)

——/lef %“_dﬁﬁ,
with

1 dédn 1 dédn d&dn
2 s = — B . 3.5.16
”!k(—@@—w) C—w{”!C—C }%CJ ( }
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The Cauchy-Pompeiu integral representation (2.1.4) is used to evaluate
the integral
dédn  _ 1 Cd¢ r?

C—z__z+2m' C—z:_z—'_;'
OR

Then the integral (3.5.16) can be easily found. Substituting it to (3.5.15),
the formula (3.5.6) for the solution is obtained.

The function ¢(z) is plugged into (3.5.11), (3.5.12) to get the solvability
conditions. This leads to

1 Ed(‘f ~ 1 zdé’“dn ~
OR
dgdn
déd
/f / (¢ — C (1 —-2¢) 577
and
1 zd( ~ 1 zd&dn ~
2mri %(C)TQ—ZC 277@ 7r/ (¢ — C )(r2 — %() dot
OR R
1 d&dn ~
- déd
/f W/Q (TQ—zC)gn
with

1 dédn -z 1 (C=2)d¢
— = = — =+ ~ =
ﬂ!kcouzo 1-% %m£kcouzo

:_5—z+1t/<m%ﬂow o (-
((

1 — gz ZWiaR c

(-O(1-2%) ¢ 1-%

1/ dedp (-2 1 / C=2d¢
TS =00 =) - 2m) (=) =)
__ G-z 1 / (Gr-z)d¢ 1 -
r2 —zC 277@'8 C(¢— E)(TQ — %) 2z
from what solvability conditions (3.5.2), (3.5.3) follow.
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Theorem 3.5.11.The Schwarz problem for the inhomogeneous Bitsadze
equation in R

= fin R, Rew = vy, Rews = v, on JR, (3.5.17)
1 dz 1 dz
5 mw(z) e i / m wz(2) ~ =a (3.5.18)
jel=p jel=p

for f € L,(R;C), v, 71 € C(OR;C), o, c1 € R, given is solvable by a
unction from W27P R; C) with continuously differentiable real part in R if
f f z y

and only if

271m 71(06? - / (féo f(g)>d€dn, (3.5.19)
OR
d¢ _ 1 [ _FOY 7
/[”Yo —( )(C+<:)]C %R/( c e )(C+cj)d§dn. (3.5.20)

Then the solution is unique and expressed by

w(z) =icy +i(z +Z)ce1+

+—/ho (-2 +T=2) [EE 4l B
~ o [ BolO (@€ - 2+ TN T
I¢l=
"3 P2 s e 0] - 2+ T e
o / TOLE2 seo| - et 521
+ %KC/@ [f(f) — @] (¢ — 2+ — 2)dédn+




2 2

T —|—p L
-t [ 10 - FOdedn-
p<|¢l<1
1—|—p2 L
- 2mi(1—r?) / [f(¢) = F(Oldedn+
r<|¢l<p
i 10 7O
2mi(1 —1?) / e 7 d&dn+
p<|C|<1 : :
P+ p) 1O _1©
2mi(1 —r2) / < & d&dn,
r<|Cl<p * i

where
2

o0 2n n
K1(27C) = 22(7’224- E z + C i T§n2)7
n=1

0 r2n TQnZZ
Ralz,0) = 2;(7“2” — 2 " 1— 7“2”2’?)'

Proof. Observing the formula for the solution to the Schwarz problem for
the Bitsadze equation (see [7], theorem 14) we note that an extra term in the

form of a series appears when we pass from the problem in the unit disk to
one in a circular ring domain. Formula (3.5.21) represents a generalization
of the mentioned result in the case of R. Therefore it is sufficient to show
that under conditions (3.5.19), (3.5.20) formula (3.5.21) gives the solution to
(3.5.17), (3.5.18) and to see the uniqueness of such a solution.

That (3.5.21) is a solution to the Bitsadze equation is seen from

o ¢+ 2 d¢ 1 ¢
ws(z) = %/%(C) L . +K1(Z’C)] ¢ 2mi / %(O?_
r ¢l=r

1L [ f(Q)[¢+=
_ %/T _CTZ+K1(Z’C)] d&dn—
R
1 [ fO1+2C
%R/ - _1—zZ+K2(Z’O] d€dn— (3.5.22)
1 Q) f(©) -
o C/ [ c z ]dfdnJrlCl;
r<|g|<p
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by taking Zz-derivative once again and using the properties of the Pompeiu

operator.
Let us verify the first boundary condition. Using the expression
, - _
Rew(z) = ori ['YO(C)_71(§)(<_Z+C_Z)][CEZ+gfz_1+
Cl=1
SV S e S R G RN
+ Z(mc e A
—[ ¢ ¢
Cl=r
00 T’an r2(n—1) ‘Z|2C r2n r2(n+1) » d¢
T Z(TQnC © p2(n-1) )|z|2¢ — 2 * C—r2ng 12|2¢ — r2(n+1)z>] '
—.dC
27m /[’YO —Z‘f—C—Z)]?‘}‘
Cl=r
fQ [C+z  z+]aPC ritz
i ¢ |¢—= z—|z\2C ZZ(TQ”C—Z C_T2nz+
R
T2n2 Qn‘zl C -
+r2”z 0 PC T2”|Z\2§)] (( — 24— 2)dédn+

z+z2 1+ 2C - rinyC 72| 2|2
c 2 c+22( ¢

SRR s P~ 222G — P

n=1

‘ / e
ranC

bt ) | €= s T e

one can find that
lim Rew(z) =(2)

|z|—1,z€R
and
1
|Zli£€RRew(z) =70(2) + 5 /[’YO(C) — () —2+¢— Z)]?C

OR
1 [HQ , T©
to ) ¢ T3

)(¢ = 2+ T=2)dedn,

R
7



Hence, the first boundary condition is satisfied if and only if

37 Do) = )¢ — 2+ T =
OR
-5 [ ?> (C =2+ T=2)dedn o
R
holds. In the same way
Rews(z2) = 2%2 71(C)[CEZ +C§z 1t
¢]=1
.
_ZLM %(O[Ciﬁg%_pr
¢[=r
e e SIE
- QLM 71(0%
¢[=r
el R

2n 2n

- relz relz r2|z|%C
dédn—
2( i — C_T2nz+r2nz_‘Z|2<+Z_T2n|z‘2<> &dn
1/ [z§+]|2 1+ 2
- = >+
i B
R

T’2nZC 2n|z‘2 T2n TQnZZ
+221( BE +— =t _) dédn.

r2nz¢ — 2( — r2n|z|? —2z(  1—=r2nz(

Hence

lim Rew:(2) = 7(2)

|z|—1,z€eR
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and

lim Rewz(z):%(Z)Jr%/%(o%_i/(f(o+ <C)>d§dn

|z|—r, zER C Z

are valid. This shows that the second boundary condition is satisfied if
and only if (3.5.19) holds.
Condition (3.5.23) can be rewritten in the form

o (b0 =@+ % + o [ (B + LY ¢+ yagan-

211 ¢ 2m G ¢
OR R
e +2) 55 [ 10T - 5= [(E2+ ?)dédn} ~0,
OR R

what is equivalent to (3.5.20), due to (3.5.19).
To show that the function w(z) defined by (3.5.21) satisfies the normal-

1 dz 1 dz
izati diti 3.5.18) the int ls — —, — =(2)—,
ization conditions ( ) the integrals " / w(z2) i wz(z) .

|z[=p |z[=p
have to be evaluated. For the evaluation the equalities
1 C+=z dz L, p<|¢|<1
- K e ) = 14
271 [C — 2z * 1(Z’C)] 2 { —1, r <[{] < p,
|z[=p
( 2T2C
% [g_ ‘|‘K1(Z,C)] dz = < 1_T22T2C
j2l=p | X1 Tl <,
(2 2r?
i = <<
T + Kl(’z)C) 2 9 2 2
L, 7 I e
- | = "R
1 (14 2C 1 d=
— = + K. — =1 fi R
i | [t K0 S =1 o Ce
|2|=p
1 1+ 2C | 272
— = + Ko(z, dz=———— for ( € R,
2mi ) 11—z ! C)_ (1—=72)¢ :
|2|=p
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f € R,
1—,2( 22 1— or ¢

271
|z|=p

are used. Then passing to the imaginary part verifies the normalization con-
ditions (3.5.18).

To show the uniqueness of the solution (3.5.21), the Schwarz problem
for the homogeneous Bitsadze equation with homogeneous boundary and
normalization conditions is considered, i.e.

wzz=0in R, Rew =0, Rew= =0o0n 0R,

1 dz 1 dz
- I — I z — — U.
271 mw( ) z =0, i e (Z) z ¥

|2[=p |z[=p
It is decomposed to a system of Schwarz problems for inhomogeneous and
homogeneous Cauchy-Riemann equation

1 d
=¢in R, Rew =0, on OR, — Imw(z)—Z:O,
2m1 z
|2=p
dz
w>=0in R, Rep =0, on OR, —/Imgp z)— = 0.
z

|z|=p

which have only the trivial solutions, if one takes into account the results of

Theorem 2.2.11 and Theorem 2.3.15. The proof is completed. =

Remark 3.5.4. This result differs from the one for simply connected domains
(see [7]) as solvability conditions appear. They exclude functions which are
not determined in a unique way by their respective boundary data. Let us
consider, for instance, the function log z. It is the solution for the Bitsadze
equation, having vanishing Schwarz data on |z| = 1 and the data logr on
|z| = r, while its derivative with respect to Z is identically zero. The second
condition in (3.5.20) is not valid.

The solution to the Dirichlet problem for the inhomogeneous Bitsadze
equation in a circular ring domain are found here by the decomposition
method. It should be emphasized that in principal this method can be used
to solve other boundary value problems, but it is appeared not to be always
effective. In the case of a circular ring domain such procedure leads to highly

80



complicated analysis and it is difficult to get the final result (for instance,
it happens when solving the Schwarz problem for the Poisson equation or
the Neumann problem for the inhomogeneous Bitsadze equation). Thus the
solution of certain problems needs some other approaches.

One possible way to handle such problems is to generalize the correspond-
ing formulas for the unit disk. By using this technique the Schwarz problem
for the inhomogeneous Bitsadze equation is solved here.

81






4 Biharmonic Green Function for a Ring Do-
main

This chapter is devoted to the construction of the Green function for the
biharmonic operator (9,0)% in a circular ring domain R = {z € C: 0 <
r<|z| <1}

There are two main approaches to determine a Green function for the
biharmonic operator. The first one is to define the biharmonic Green function
as a convolution of the harmonic Green function with itself, see e.g. [11], [12].
This leads to an equivalent definition of the biharmonic Green function as a
solution of a certain Dirichlet problem for the Poisson equation.

The second approach is connected with the name of Almansi, who intro-
duced a concept of polyharmonic Green functions for the unit disk [4] (see
also |11], [12], [10], [13]). The Almansi biharmonic Green function is different
from the one mentioned above in its boundary behavior.

The complex analytic approach gives the possibility to construct Green
functions in explicit form for special domains. It is used to obtain the bihar-
monic Green functions in the case of the unit disk in [11].

In this chapter the biharmonic Green function defined by convolution of
harmonic Green function with itself is constructed for R. It has appeared
that the method of the direct evaluation of the biharmonic Green function,
used in [11] for the unit disk, is not effective in the case of the circular ring as
it leads to complicated calculations. From the definition the representation
of the biharmonic Green function in the form

@2(Z7 C) - ‘C - Z|2G1(Za C) +E2(Za C)
follows, where Gi(z,() is the harmonic Green function for R and hs(z, ()

is a certain biharmonic function, which has to be defined.

4.1 Preliminaries

Definition 4.1.1. A complex-valued function w, satisfying
(0.0-)*w = 0

in an open domain D C C is called a biharmonic function in D.
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The operator (9,05)* is referred to as the complex bi-Laplace or bihar-
monic operator. The harmonic Green function serves to solve the Dirichlet
problem for the Poisson equation

0.0- w=f in D, w="on dD, (4.1.1)

where f € Ly(D;C), v € C(9D;C) are given. The solution of the problem
(4.1.1) is unique and expressed by, see e.g. [8], [21],

w(z) =~ / 0,.Ga(2, 7 (Qhds — ~ / Gi(5 O f(Qdedn.  (4.1.2)
0D D

Let us insert the Green function G1(z,() in (4.1.2) instead of f(¢) and
denote

G2, C) = —% / (2. )Gy (C. ) dediy (413)
D

Comparing this with formula (4.1.2), one observes that the introduced func-
tion Ga( -, () is the solution to the Dirichlet problem

8.0- Go(2,¢) = Gi(z,¢) in D, Ga(z,¢) =0, on D (4.1.4)

for any ¢ € D.

The function Ga(z,¢) defined in (4.1.3) is called the biharmonic Green
function of a domain D (see [12]). It satisfies for any fixed ( € D as a
function of z the following properties

1°. @2(2, () is biharmonic in D \ {(},

2°. Ga(z,¢) + |¢ — 2[*1og |¢ — z|? is biharmonic in D,

3°. gg(z,C) =0, 8265@2(2,0 =0 for z € 9D,

4°. Gy(z,() iGQ(C,Z) for z # (.

Contrary to Ga(z,() the mentioned biharmonic Green-Almansi function
Go(z, ) is not a primitive of G1(z,() with respect to the Laplace operator.
It satisfies the properties 1°,2° 4° but has different boundary behavior,
namely

Ga(2,¢() =0, 0, Ga(2,() =0 for z € 0D,( € D.

In the case of the unit disk the explicit form for @2(2, () is given in [11],
[12], [21], for Ga(z,() it is presented in [4] (see also [11], [12], [21]).
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4.2 Construction of the biharmonic Green function of
a circular ring domain

The biharmonic Green function @2(2, ¢) of a domain D can be represented
in the form

Ga(z,0) = |¢ = 2> G1(2,¢) + ha(z, ©), (4.2.1)

with 7s(z,¢) being a biharmonic function in D. This representation follows
from the second property of Gy(z,(), and the second property of G1(z,(),
according to which

Gl(zag) - _logK - 2‘2 + hl(z7§)

where hi(z,() is a harmonic function in D. Thus to get the expression for
Gs(z,¢) the function hs(z,¢) has to be found.

As @g(z,f) is the solution to the Dirichlet problem (4.1.4), it follows
that the function hs(z,¢) is the solution to the Dirichlet problem

0.0 ho(z,¢) = 2Re [(¢ — 2)0.G1(2,¢)] in D, hy(z,¢) =0o0n dD, (4.2.2)
for any ¢ € D. To find the solution of this problem formula (4.1.2) is used.

According to it

a(2,0) = == [ Rel(¢ = 00 Gr(C.OIG (=, C e

D

or equivalently

ha(.0) = 2Re[5 (€= 0:GiCOG= Qe (429

D

as the harmonic Green function Gi(z,() is real-valued.
By using the explicit form of the harmonic Green function given in (3.1.4)
for a circular ring domain R, the formula (4.2.3) can be rewritten as

~ ~ 2 Ve
o) = 2R | 2 [ Q[EEL L - s s
R

gl (-¢ -1

00 T,ZHE Z 1 r2n TN~

= — — = - — G dédn| =

3 o e e T ) I(Z’O”]
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B log |¢¢ — - 1—\C|2
— 2Re —/{bgw == (4.2.4)

> 1 — 7202 2 2n 1 — p2n
SR g (e (1
R R
according to (3.1.4).
The evaluation of the integral (4.2.4) is proceeded in five steps. The cal-

) |

culations are represented here just briefly. The main facts which are used
for getting the final results of the evaluations are Gauss theorem, Cauchy
theorem and formula (3.1.5).

1. Let us consider the integral

~

C ! EC}@( Q)dédi;

L(z,

dﬁdn =

3 |

which is related to the first part in (4.2.4).
Since

0z [22f? = (= +2) og 2] = =+ ==,
by formula (3.1.5) we get

I(2,¢) = (2¢ +20) log |22 = 2|2* = T1(2,C),

where
(e00) = o= [ [0 — (6T + 8O tow ] €101, G 2:) f
OR
B 1 ~y s T ~ o [log |2]? 1 1 z
= Re |5 [ RGP~ @+ CORs P r =~ ot
OR

= 1 2k

- z r ~
+Z(T2kzc 1 ZZ_ 2k O gy g2k Z)}dC] B

1

2

+ 1 i 3 logr2<g — zZ)}
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Then the first part in (4.2.4) is

log ‘C|2 /C ¢ Gl dﬁd } log |€|2]1( C) _

logr2 log 12
1 2 _ 1 2
= 2Re |2 < (1 2P+ 2Clog 2] — (1 — 128 i (4.2.5)
log log r?

et (E-0))]

2. In the next step we evaluate the integral

I(z,¢) = 2Re[ /ﬁ(ﬁ(zf)dgdﬂ —

1 1 T g~
_;ZL%&1+ﬂftﬁawxwwn

for any fixed n € N.
Observing that

1 /2

o[

T2n C

by formula (3.1.5) one gets

1 n 1
TQnZE -1 r2n§C -1’

+ %) log |1 — TQnZEP} =

€)= g5 (3 + 2) ot = #5C = (e 0),

- . —d
b@o:i:@+§mm—wm%@@mo§:

— + — — —
= rkz( —1 zZ(—1r2%k (—r2y r2(—;

2 J—
= —2Re[(1 - r2>r2nlffg|jl (G %) log(1 — 12"2C)
> 2(n-+k) _
—u—w%EZQ%CM41—T/ZC)—TQZkgu #H20)]

k=1
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2Re[(1=rI0P) [ e Gale, )] = (1= ) (e €) =

m)
= _2(1 ?”2n‘C|2)Re [(E _ i) lo (1 TQnZC) . (1 o 2) 2n10g ‘Z|2
r2n ¢ 2 & log \r(z )

+(1 —7?) Z(%log(l T . ) — 7"2’f1zz log(1 — r2(”+k)zf)>] :

3. The third integral is

I3(2,C) == QRe[l/ L Gl(z,g)dgdﬁ} -

T T2n

Al oo

where n € N is fixed.
As

z

0.0.[(Z + %) log |¢ — " = —(; - =t - =)
by formula (3.1.5)

By(2,€) = (5 + ) 0a T — P 4 Ty(2.0).
where
P S 47 S WSS S _
Bz ) = m@é (¢ + ) 08I0~ PG, O F =
2n "
— Re {Q—M/c(g C)(lo P - C+log\<|2—log|<;|2)><
OR
{log|z\21_ 1z N
ogr ¢ ¢z 1-%¢

2k

- r2kz Z 1 r dZ B
+Z<T2kz< — ZC—r2k  (—p2ky  g2k( — zﬂ?] B

k=1
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z r2y 2z r
= —2Re [(1—7HZlog(1 - +({—=+=)log(l ——= )+
e [( ¢ g C> <z< g) 5( zg)
z r? 1 z
-1 2 — —Z) logri—
+C0g\C| +1—T2<ZC C) ogr
2k 2(n+k) 2k 2(n+k)

_(1—7“2)§>:(7;—Zlog(1—T(ZZ )—Tczlog(l—r . Z))]

k=1

Then

2Re (57"~ [¢P2)~ / G, )] = (17"~ ()=, €) =

2n 2n

_T__ 1—Z—C> (1—r2)§log<1—rgz)+

Z

~¢[’)Re [

—lo 2> + (———)lo r24+
C glz" + T2 : T g
(n+k) 2k 2(n+k)

o kf;(_log(uzz ) -1 )) .

(4.2.7)

4. Now the integral

™

Ii(2.¢) == 2Re[ - / _ 12n< G (=, Q)dEdi]| =

1 1 o
R/[g reng ! ¢ — T%JGl(’Z’ C)dgdi,

has to be found with n € N fixed. Observing that

1 1

+ =
z—=rC g

0.0z [(z +7%)log|z — r%gﬂ —

Y

by formula (3.1.5) the equality

L(2,¢) = —(2 + ) log |2 — r¥¢|* — Tu(2,¢),
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is obtained, with

= d
B(e00) = g [ Otog = r27¢PIC101, G (2. f

OR

~ Re [i [ G+ 0) (108] P = 57| 10g1CF) x
OR

=== - ~+
logr? ¢ (—z 1-%

2k—= = 1 2k

= rehz z __" d—g =
+;<T2kzg—1+35—r2k E_T%Z 7‘2"76—2)} Z] N

= —2Re [(z + %) log(1 — 7*"2C) + (z + g) 10g<1 — T2nc> _

log |2|21 1 z
X[%V! Z

z
2

1 - 1
— (TQZ - :) log(1 —7*"2¢) — r (z — :> log r?—
Z z

1 — 72
00 2k 2(n+k) _
—(1— TQ) Z(%log(l T . C) — r2kzlog(1 — r2("+k)zg))] .
k=1
Then
2Re (11" 2, Q)dgdij| = ~2(1-r*")Re [C log|=[*~

—(1—r*)2Clog(1—r*"2()+ < g—£> (1—T2:C)+1 izﬂ (ZC C) log r*+
(4.2.8)

> — % 2Clog(1 — r2(”+k)z2)>] .

742(n+k)<'

) i(? log<1 —

k=1

5. In the last step we evaluate

Ii(,¢) = 2R [ — cl— - G Q] =
R

) %R/ L%Zl —" r%Zl - c] e e
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with n € N fixed. As

1 — 2n 20 _ 1 !
az&z m(z+z)log\7‘ Z_C| _T2n2_<‘+r2n2_§7

using again the formula (3.1.5), one gets

1 _ . 1~
I(2,0) = == (s + 2)log /™" = ¢ = —-To(2,0),

~

>~ = > ~ ~d
I5(2, () = ﬁ /(c +¢)log [r*"¢ = ¢1?[¢|8,.Gh (2, C)?g —
OR

7,2n 2

1 ~~ =
—Re |5 [ C(C+0)(log|1 -
T
OR
[log 1221 1 z

+log () x

+

—~ ~

logr> { (—2 1-%2C

+Z< r?kz N z 1 )}d_g B
17“2]“25—1 2 — 12k (— 2y p2%¢— /)¢

1 r2y r?"log | |2
2 2
= —2Re [zlogm +<z+%> log(l— : )—i—(l—r)T o r?
=/ z r2(ntk) 1 r2(ntk) 5
N S

QRe[(l—rzn) % / mg_ Gl(z,g)dgdﬂ _

R
— 2(1 ;2:271)}{6 {(g — zZ) 1og(1 — T?) +(1— 7“2)7’2”1?5;?22_ (4.2.9)
—(1—1%) i(%log(l — rQ(:gk)> — TQ%;Z 10g<1 — 7~2(ngk)z>)] :

Combining the results of all evaluations (formulas (4.2.5)—(4.2.9)), one
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obtains

log |2|?

1—[2]* + zClog |2|* — (1 — r?
(1= 1P+ Tlog |2 — (1= )35

— rn log |r[* ~ \z¢

- G122 - )
G L) (s )
(1— r2)210g<1 — T?Z)—F

P i(giglog(l ) - (1)) )

4 (1) (o ot - LB (E - 7)

— (1 = r%)2Clog(1 — r*"2C) + (ZC — z) (1 — 2:<>+

+ (1 =172 i( 2kcl g(l — T2(n:k)<) — % 2Clog(1 — r2(”+k)zZ)>)—

- (1;—2:%)((1 - r2>r2”lfgli’; + é - zZ) 1og(1 . rzn"’)—

0= 3 (Fen(1 - - (- )]

Simplifying the expression for ﬁg(z, (), using the representation (4.2.1)
and formula (3.1.4), the following main formula for the biharmonic Green
function of the circular ring domain R
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Ga(z,¢) = |¢ — 2|*x

log |z log[¢]* | (=2 7 (2 =71 —r"2) P2
g log 12 log|*— zzg (2C = r#)(1 — 7’2’“20’ ] '
+ am [USLPLogIGP | (= CP g
log r2 log r2
1— |
_ (1_7[‘) KlQ T( _’<|>Cloglz|+
| #Clogz*log |¢]* (1 —r?)log]zPlog ¢
log r2 (log r?)?
r? N2(L = [2P) (A = [¢]*) log
+ <1 — 7”2> ZZ +
—_ |2 _
41— 1) A g1 - 20)-
- z 7“2”( 1 -
- () - 20
< (r20|C]? L2 o
Bl I
o ‘Z|2 2 70271 P TQRZ
=320 ) [P a1 ) - e fres(1- )| -
— ;(1 — 7’2”) [—(‘ZF ; )¢ log(l — TZZC) —(1- TQ)ZZIOg(l — TZ”ZZ)] —
o0 _2.2n . 2 2n 0 0
_Z(l T2: ) (1 lz\ )Clog(l— T<Z> F1-Y Y x
n=1 n=1 k=1
|12 1 2(n+k)
xt ‘gn [T;C log<1 T . C) — 7“%12_ log(1 r2(n+k)zg)}
o r2k r 2(n+k) r2k T2(n+k)2
| [Zlog(l— = ) - 10g(1— : )] .

B (1 B T ) |: 2ZC (1 B 7“2 :k C) . r%zflog(l . T2(n+k)ZZ)] +

+1 ;2: 2 [( 2C log<1 r (Z"gk)) B Tsz 1og(1 _ r2(n<+k)z>] }




is obtained.

Remark 4.2.1. All series in (4.2.10) are convergent because of the properties
of the logarithmic function.

In the same way as it is with the harmonic Green function, the bihar-
monic Green function provides a representation formula for a proper class of
functions. Namely, the following result holds.

Theorem 4.2.1. 21| Let D C C be a regular domain. Any w € C*(D;C)N
C3(D;C) can be represented as

/(9 Gi(z (Q)ds¢c — /(9,,<G2 2,()0:0=w(()dsc—

2 [ Gale (02w e,

D

with G1(z,¢), Ga(z,C) being the harmonic and the biharmonic Green func-
tions of the domain D, correspondingly.

The respective result for the circular ring domain R is given below.

Corollary 4.2.1. Any w € 04(R; C)n 03(}_3; C) can be represented by

! d
o) = =g [ 100G O T - / 6104 Gl 20 () -
OR

1 [ Gale (0D w( e,

R
where Gy(z,¢) is given in (3.1.4) and Go(z,¢) is expressed by (4.2.10).

These integral representation formulas provides a solution of the Dirichlet
problem for the bi-Poisson equation in corresponding domains.

Theorem 4.2.2. |21] Let D C C be a regular domain. The solution of the
Dirichlet problem to the bi-Poisson equation in D

(82’&2’)2“}:]6 ZnDu w =", azafw:f)/l OnaD?

where f € L,(D;C), p > 2, v,m € C(OD;C) are given, is unique and
represented by
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w(z) =~ [ Al OnlQldse = 1 [ BBl (s
oD oD

2 [ Gale r(Odean.
D

Corollary 4.2.2. The solution of the Dirichlet problem to the bi-Poisson
equation in R

(82@)210 = f n Ra w = 7o, az&zw =7 on aR)

where f € L,(D;C), p> 2, v,m € C(OD;C) are given, is unique and
expressed by

1 d 1 ~ d
w(2) = ~g7 [ 160612 00(0)F = 75 [ 160Gl MO T -
OR OR
2 [ Gale r(Odean.
R

Remark 4.2.2. It should be noted that the obtained biharmonic Green
function for the ring domain R contains only elementary functions. It dif-
fers from the Green function constructed in [31] for the bi-Laplace operator
with particular Dirichlet boundary condition in terms of new transcendental
functions, which generalize the Weierstrass (-function.
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Zusammenfassung

Die Theorie von komplexen Randwertproblemen ist wegen ihrer Bedeu-
tung fiir ebene Probleme in Physik und Technik vor allem in einfach zusam-
menhéngenden Gebieten sehr eingehend untersucht. Vor allem sind es das
Riemannsche Kopplungsproblem, wo zu vorgegebener Randfunktion Funk-
tionen bestimmter Klassen — im einfachsten Fall analytische Funktionen —
zu finden sind, die auf dem Rand den vorgegebenen Sprung aufweisen, und
das Riemann-Hilbertsche Randwertproblem, dessen einfachster Fall — das
Schwarz Problem — darin besteht, zu am Rand vorgegebenem Realteil eine
analytische Funktion zu finden, deren Realteil am Rand diese Werte erreicht.

In dieser Arbeit werden Randwertprobleme in einem speziellen zweifach
zusammenhéngenden Gebiet, einem konzentrischen Kreisring, untersucht.
Zunichst werden vier grundlegende Randwertprobleme fiir analytische Funk-
tionen auf Grundlage einer modifizierten Cauchyschen Formel explizit gelost,
das Schwarzsche, das Dirichletsche, das Neumannsche und ein Robinsches
Randwertproblem. Neben den Losungen werden Losbarkeitsbedingungen
angegeben, die auch sichern, dass die Losungen einwertig sind, was fiir
mehrfach zusammenhingende Gebiete im Allgemeinen nicht zutrifft. An-
schliessend werden inhomogene Cauchy-Riemannsche Gleichungen unter-
sucht und die Ergebnisse auf diese erweitert. Schliesslich werden im Hin-
blick auf die Poissonsche Gleichung harmonische Green, Neumann und Robin
Funktionen explizit fiir den Ring konstruiert, von denen nur die Greenfunk-
tion in modifizierter Form in der Literatur bekannt ist. Diese Fundamen-
tallosungen dienen dazu, die entsprechenden Randwertprobleme fiir die Pois-
son Gleichung im Ring zu l6sen und gegebenenfalls Losbarkeitsbedingungen
zu finden. Ein Dirichlet und das Schwarz Problem werden auch fiir die Bit-
sadze Gleichung behandelt. Dies ist eine weitere Modellgleichung zweiter Ord-
nung, im Gegensatz zum Laplace Operator ist der Bitsadze Operator aber
nur schwach elliptisch, was Konsequenzen fiir Randwertprobleme hat.

Als Letztes wird eine biharmonische Greensche Funktion explizit kon-
struiert, die sich als Faltung der harmonischen Greenschen Funktion mit sich
selbst ergibt. Diese Funktion ist eine weitere biharmonische Greenfunktion,
die sich durch ihr Randverhalten von einer kiirzlich fiir den Ring konstru-
ierten anderen biharmonischen Greenschen Funktion unterscheidet.
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