Hochmolekulares Kininogen – ein neuartiger Faktor in der Regulation der Apoptose von glatten Gefäßmuskelzellen

Dissertation

zur

Erlangung des akademischen Grades des Doktors der Naturwissenschaften

(Dr. rer. nat.)

Eingereicht am Fachbereich Chemie, Biologie, Pharmazie der Freien Universität Berlin

von

Nicole Dörfel

aus Berlin

Juli 2007

1. Gutacher: Prof. Dr. Thomas Unger

2. Gutachter: Prof. Dr. Burkhard Kleuser

Disputation am 30. Juli 2007

Danksagung

Für die Planung und Durchführung von molekularbiologischen und zellexperimentellen Versuchen ist neben einer hervorragenden Laborausstattung ein hohes Maß an Expertise und Erfahrung erforderlich.

Ich möchte mich bei Herrn Prof. Unger für sein entgegengebrachtes Vertrauen bei der Überlassung und Durchführung dieses Projektes und seine exzellente Betreuung bedanken.

Desweiteren gilt mein tiefempfundener Dank meiner direkten Betreuerin Frau Dr. Elena Kaschina für ihre Hilfsbereitschaft, ihr stets freundschaftliches Verhältnis und die Bereitschaft, ihre Erfahrungen mit mir zu teilen.

Bei Herrn Prof. Kleuser möchte ich mich herzlichst für seine Bereitschaft bedanken, auch sehr kurzfristig meine Betreuung der Arbeit am Fachbereich Pharmazie der Freien Universität Berlin übernommen zu haben. Gleichermaßen gilt mein Dank Herrn Prof. Borchert, dem ich hiermit die besten Genesungswünsche übermitteln möchte.

Die Mitglieder der Arbeitsgruppe Unger waren mir während meiner Zeit am CCR eine große Unterstützung und kreierten ein angenehmes, stets positives Arbeitsklima. Ich möchte besonderen Dank an Manuela und Melanie, für ihre anfängliche experimentelle Unterstützung, an Kristin, Jan, Jens und Heiko, für ihre ständige Hilfsbereitschaft bei schwierigen Fragestellungen, und an Uwe, für den regen Gedankenaustausch über unser kleines Projekt, aussprechen.

Ebenso gilt mein herzlichster Dank meinen Eltern, meiner Schwester und Steffen, die mich über den gesamten Zeitraum unterstützt und zusammen mit meinen Freunden einen erholsamen Gegenpol zu meiner wissenschaftlichen Arbeit geschaffen haben. Ein extra Dankeschön möchte ich gegenüber Kristin, Cindy und Gunnar aussprechen.

Ganz besonders möchte ich mich an dieser Stelle bei Lucas bedanken, der mir während meiner gesamten akademischen Laufbahn sowohl im privaten als auch wissenschaftlichen Alltag unterstützend und mit regem Ideenaustausch zur Seite stand.

1.	EINLEITUNG	1
1.1.	APOPTOSE	1
1.1.1.	CASPASEN – AUFBAU, WIRKUNG UND AKTIVIERUNG	1
1.1.2.	DIE EXTRINSISCHE APOPTISCHE KASKADE	4
1.1.3.	Fas und FasLigand – Schlüssel und Schloß zur extrinsisc	HEN
	APOPTOTISCHEN KASKADE	6
1.1.4.	STICKSTOFFOXID - INVOLVIERUNG IN APOPTOTISCHEN MECHANISMEN	7
1.1.5.	DIE INTRINSISCHE APOPTOTISCHE KASKADE	8
1.1.6.	Die Bcl-2 Familie – Mit- und Gegenspieler der intrinsisc	HEN
	APOPTOTISCHEN KASKADE	9
1.1.7.	DIE PHYSIOLOGISCHEN CYSTEIN-PROTEASEN-INHIBITOREN	12
1.2.	KININOGEN	14
1.3.	VASKULÄRE GLATTE GEFÄßMUSKELZELLEN	17
1.3.1.	Das abdominelle Aortenaneurysma	19
1.4.	DAS BN-BN/KA-RATTENMODELL	22
1.5.	HYPOTHESE UND ZIELSETZUNG	22
2.	MATERIAL UND METHODEN	24
2.1.	Material	24
2.1.1.	CHEMIKALIEN UND SUBSTANZEN	24
2.1.2.	Kits	25
2.1.3.	Nukleinsäuren und Nukleotide	25
2.1.4.	Molekulargewichtsmarker	27
2.1.5.	RESTRIKTIONSENDONUKLEASEN UND MODIFIZIERENDE ENZYME	28
2.1.6.	Antikörper	28
2.1.7.	Medien und Zusätze für die Kultur eukaryotischer Zellen	29
2.1.8.	Versuchstiere, Bakterien und Zelllinien	29
2.1.9.	Ausgewählte Geräte und Zusatzmaterialien	30
2.1.10.	Medien für die Produktion kompetenter E.coli-Stämme	UND
	TRANSFORMATION	31
2.1.11.	Puffer und Lösungen	32

2.2.	METHODEN	33
2.2.1.	MOLEKULARBIOLOGISCHE METHODEN	33
2.2.1.1.	Isolation von mRNA	33
2.2.1.2.	Kontrolle der mRNA-Qualität	33
2.2.1.3.	RT-Reaktion zur cDNA-Synthese	34
2.2.1.4.	Semiquantitative Polymerase-Kettenreaktion (PCR)	35
2.2.1.5.	Agarose-Gelelektrophorese	36
2.2.1.6.	Real-Time PCR (quantitative PCR)	37
2.2.1.7.	Restriktion von DNA	41
2.2.1.8.	Ligation von DNA	43
2.2.1.9.	Herstellung kompetenter E.coli	43
2.2.1.10.	Transformation kompetenter <i>E.coli</i>	44
2.2.1.11.	Präparation von Plasmid-DNA	44
2.2.1.12.	DNA-Sequenzierung	44
2.2.2.	PROTEINBIOCHEMISCHE METHODEN	44
2.2.2.1.	Proteinisolation aus kultivierten Zellen	44
2.2.2.2.	Konzentrationsbestimmung von Proteinen	45
2.2.2.3.	Western Blotting	45
2.2.2.4.	Aktivitätsbestimmung von Proteinen	47
2.2.2.5.	Immunzytofluoreszenz	47
2.2.2.6.	Apoptotischer Index	48
2.2.2.7.	Fluoreszenzmarkierung von Proteinen	49
2.2.3.	ZELLBIOLOGISCHE METHODEN	50
2.2.3.1.	Isolierung von primären VSMC aus Aorten von Ratten	50
2.2.3.2.	Zellkultivierung von primären VSMC aus Rattenaorten	51
2.2.3.3.	Kultivierung von primären humanen glatten Gefäßmuskelzellen	52
2.2.3.4.	Apoptoseinduktion in VSMC	52
2.2.3.5.	Stimulation von VSMC mit Kininogen	53
2.2.3.6.	Transiente Transfektion von adhärenten Zellkulturen	53
2.2.3.7.	Kryokonservierung von Zellen	54
2.2.4.	STATISTISCHE BERECHNUNGEN	55
3.	ERGEBNISSE	56

3.1.	ETABLIERUNG DER VSMC PRIMÄRZELLKULTUR AUS RATTENAORTEN 5
3.2.	ETABLIERUNG EINES PHYSIOLOGISCHEN STIMULATIONSPROTOKOLL DE
	APOPTOSE IN VSMC5
3.3.	HMWK INHIBIERT DIE AKTIVIERUNG VON CASPASE-36
3.4.	HMWK REDUZIERT DEN APOPTOTISCHEN INDEX6
3.5.	HMWK REDUZIERT DIE AKTIVITÄT VON CASPASE-86
3.6.	KEINE REGULATORISCHER EFFEKT AUF DEN FAS-REZEPTOR DURCE
	APOPTOSE UND HMWK6
3.7.	HMWK INHIBIERT DIE AKTIVIERUNG VON CASPASE-9 UND DI
	FREISETZUNG VON CYTOCHROM C7
3.8.	HMWK INHIBIERT DIE FREISETZUNG VON CATHEPSIN B7
3.9.	HMWK STIMULIERT BCL-X _L ABER NICHT BCL-27
3.10.	HMWK AKTIVIERT 42/44-MAPK7
3.11.	BASALE UND STIMULIERBARE UNTERSCHIEDE IN DER MRNA VO
	CASPASE-3, CATHEPSIN B UND BCL-X _L 7
3.12.	KEINE ENDOGENE HMWK MRNA EXPRESSION IN VSMC8
3.13.	Inhibierung der Apoptose durch die Transfektion von VSMC zu
	ENDOGENEN HMWK-PRODUKTION8
3.14.	ZELLULÄRE AUFNAHME VON HMWK IN VSMC9
3.14.1.	ZEITABHÄNGIGE ZELLULÄRE AUFNAHME VON HMWK9
3.14.2.	IRREVERSIBILITÄT DER ZELLULÄREN AUFNAHME VON HMWK9
3.14.3.	KEINE BLOCKIERUNG DER AUFNAHME VON HMWK DURCH ENDOZYTOSE
	Inhibitor
3.14.4.	KOLOKALISATION VON HMWK MIT AKTIVEN APOPTOTISCHEN PROTEASEN 10
4.	DISKUSSION10
4.1.	DIE AUSWAHL DER ZELLMODELLE10
4.2.	DAS APOPTOSEINDUKTIONS-MODELL10
4.3.	KONZENTRATIONSABHÄNGIGER INHIBITORISCHER EFFEKT VON HMWI
	AUF DIE APOPTOSE10
4.4.	EINFLUB VON HMWK AUF DIE EXTRINSISCHE UND INTRINSISCH
	APOPTOTISCHE KASKADE

4.5.	INVOLVIERUNG VON HMWK IN ANTI-APOPTOTISCHEN SIGNALWEGEN .112
4.6.	MRNA Expression von apoptotischen Schlüsselproteinen und
	BASALE UNTERSCHIEDE IN VSMC VON BN UND BN/KA115
4.7.	ENDOGENE HMWK EXPRESSION IN VSMC117
4.8.	ZELLULÄRE AUFNAHME VON HMWK UND MÖGLICHER
	Interaktionsmechanismus
4.9.	AUSBLICK UND MÖGLICHE THERAPEUTISCHE ANSÄTZE119
5.	ZUSAMMENFASSUNG124
6.	ABSTRACT126
7.	LITERATURVERZEICHNIS127
8.	ABBILDUNGS- UND TABELLENVERZEICHNIS141
9.	CURRICULUM VITAE145

Abkürzungsverzeichis

AAA abdominelles Aortenaneurysma

AI Apoptoseinduktion

Apaf-1 apoptotic protease activating factor-1

BN Brown Norway

BN/Ka Brown Norway/ Katholiek

CARD caspase recruitment domain

DD death domain

DED death effector domain

DISC death-inducing signalling complex

EC Endothelzellen

ECM extrazelluläre Matrix (extracellular matrix)

eNOS endotheliale Stickstoffoxid-Synthase

FADD Fas-associated death domain

FasL Fas Ligand

FBS fetales bovines Serum

HMWK hochmolekulares Kininogen (high molecular weight kininogen)

IFN-γ Interferon-gamma

IL-1 Interleukin-1

iNOS induzierbare Stickstoffoxid-Synthase

LMWK niedermolekulares Kininogen (low molecular weight kininogen)

LPS Lipopolysaccharide

MCP-1 Monozyten-chemotaktisches Protein-1 (monocyte chemoattractant

protein-1)

MMP Matrixmetalloproteinase

MOMP mitochondrial outer membrane permeabilization

nNOS neuronale Stickstoffoxid-Synthase

P/S Penicillin/ Streptomycin

RAS Renin-Angiotensin-System

RT Raumtemperatur

SDS Sodium-Dodecylsulfat

SDS-PAGE Sodium-Dodecylsulfat-Polyacrylamidgelelektrophorese

SNP Sodium-Nitroprussid

TIMP tissue inhibitors of metalloproteinases

 $TNF-\alpha \qquad \quad Tumornekrosefaktor-alpha$

VSMC glatte Gefäßmuskelzellen (vascular smooth muscle cells)