
Generation und Rekombination von Ladungsträgern in CuInS₂-basierten Dünnschicht-Solarzellen

Dissertation

zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.)

> von Joachim Reiß

eingereicht im Fachbereich Physik der Freien Universität Berlin

angefertigt am Hahn-Meitner-Institut, Berlin

November 2002

Arbeit eingereicht am: 22. November 2002

Gutachter: 1. Prof. Dr. M. Ch. Lux-Steiner

2. Prof. Dr. J. Luther

Datum der Disputation: 27. Januar 2003

Inhaltsverzeichnis

1	Emertung	J
2	Grundlagen	5
2.1	Sulfid-basierte Chalkopyrit-Solarzellen	5
2	Materialeigenschaften der Chalkopyrit-Verbindungshalbleiter	4
2	Aufbau und Wirkungsweise der Dünnschicht-Solarzellen	
2	2.1.3 Präparation der Chalkopyrit-Solarzellen	11
	2.1.3.1 Sequentieller Präparations-Prozess von CuInS ₂ -Absorberschichten	12
	2.1.3.2 PVD-Präparation von Cu(In,Ga)S ₂ -Absorberschichten	13
2.2	Elektrischer Transport in Chalkopyrit-Solarzellen	14
2	2.2.1 Transport in einem pn-Übergang	14
2	2.2.2 Transport in Hetero-Übergängen	18
2	2.2.3 Bandverlauf des Hetero-Übergangs	22
2	Rekombinations-Mechanismen in Dünnschicht-Solarzellen	27
	2.2.4.1 Thermisch aktivierte Rekombination	
	2.2.4.2 Tunnelunterstützte Rekombination	
	2.2.5 Generation in Dünnschicht-Solarzellen	
2	2.2.6 Ladungsträger-Transport über Korngrenzen	41
3	Kennlinien-Analyse	47
3.1	Fehlerdiskussion	51
4	Rekombination und Transport	53
4.1	Ladungsträger-Transport in CuInSe ₂ – und CuGaSe ₂ –basierten Solarzellen	53
4.2	Dioden-Charakteristika in CuInS ₂ -basierten Solarzellen	57
4	-2.1 Einfluss der Absorber-Präparation	58
4	2.2.2 Dotierung des CuInS ₂ -Absorbers	62
4	Bandlücken-Variation in Cu(In,Ga)S ₂ -basierten Solarzellen	65
4	-2.4 Vergleich und Diskussion der Dioden-Charakteristika	69
4.3	Parallel- und Serienwiderstand	76
4	Physikalische Ursachen des Serienwiderstandes	7
	Einfluss der Korngrenzen auf die Transporteigenschaften	
4.4	Diskussion der Transporteigenschaften	87
4.5	Zusammenfassung	91

5	Strom-Spannungs-Charakteristika unter negativen Spannungen	95
5.1	Beobachtung des Durchbruchverhaltens von Chalkopyrit-Solarzellen	95
5.2	Numerisches Modell von CdS-Kanälen durch den CuInS ₂ -Absorber	97
5.3	Morphologie-Unabhängigkeit des Strom-Spannungs-Verhaltens	102
5.4	Separation der Variablen Temperatur und Spannung	104
5.5	Beleuchtungs-Abhängigkeit des exponentiellen Anstiegs der Stromdichte	107
5.6	Relation der Transport-Eigenschaften unter positiven und negativen Spannunger	ı112
5.7	Generations-Tunnel-Modell	115
5.8	Verbessertes Abschattungs-Verhalten von Solarmodulen	122
5.9	Zusammenfassung und Folgerungen	126
6	Zusammenfassung	129
An	hang A: Quantenausbeute	133
An	hang B: Kelvinsonden-Kraftmikroskopie	135
	hang C: Fallbetrachtungen zu den dominierenden Rekombinations- echanismen	139
An	hang D: Symbole und Abkürzungen	145
Lit	eraturverzeichnis	151
Lel	benslauf	161
Pul	blikationen	163
Dai	nksagung	165