
Chapter 3

Incremental Constructions
along Space-Filling Curves

Summary. In this chapter we present an algorithm for incrementally con-
structing the Delaunay tessellation of a set of points. The algorithm combines
randomness and locality by inserting the points in random rounds and within
rounds in an order given by a space-filling curve.

We begin by generalizing incremental constructions con BRIO, i.e., incre-
mental constructions with a biased randomized insertion order. In particular,
we consider arbitrary configuration spaces and obtain a bound on the expected
running time depending on the degree bound of the configuration space. Fur-
thermore, we bound the expected running time for arbitrary sampling ratios.
These bounds do not depend on the point distribution.

We then analyze our algorithm, i.e., incremental constructions along space-
filling curves, for independent identically distributed points drawn uniformly
from a bounded convex region in the plane. We prove that the algorithm runs
in linear expected time in this case. Other point distributions will be analyzed in
Chapter 4 where we also describe our implementation and discuss experimental
results.

Preliminary versions of the results presented in Section 3.4 have appeared
in [22, 23].

3.1 Introduction

When devising an insertion order for the incremental construction of the De-
launay tessellation of a point set there are two seemingly conflicting goals.
Inserting points randomly from the data avoids creating many simplices during
the construction which are not part of the final Delaunay tessellation. In con-
trast, inserting points nearby allows taking advantage of geometric locality and
locality of reference.

The randomized incremental construction follows the first approach. It is
asymptotically optimal but performs poorly with modern memory hierarchies
when used for large data sets as observed by Amenta, Choi, and Rote [3]. They
showed how randomness can be reduced without changing the asymptotic per-
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32 Chapter 3. Incremental Constructions along SFCs

formance by a biased randomized insertion order : Points are randomly assigned
to rounds of insertion of increasing sizes, and within a round the order of inser-
tion can be chosen. A similar approach was proposed independently∗ by Zhou
and Jones [153].

This allows to use locality within the rounds, thus combining a local in-
sertion strategy with the randomized construction. In the algorithm presented
here the points of a round are inserted in an order given by a space-filling curve,
i.e., using the space-filling curve heuristic for the traveling salesperson problem.
For point location walking is used, i.e., the tessellation is traversed locally to
locate a point. For the analysis we assume a straight line walk. A new point
is located from the point inserted in the previous step walking from simplex to
simplex along a straight line.

Since the algorithm locates points by traversing the Delaunay tessellation,
it does not require an additional data structure for point location. Nonetheless,
such a data structure might be wanted, e.g., for locating points in the final
Delaunay tessellation or as a fallback to speed up point location. We will
therefore also discuss variants of the algorithm with an additional data structure
for point location.

We choose a space-filling curve order because it creates a short tour through
the points of the rounds, is fast to compute, and gives a good point distribution
within a round. Furthermore it combines locality of reference with geometric lo-
cality by linearizing space, adapts well to irregularities of the point distribution,
and is applicable in higher dimensions.

Our main goal is to present a theoretical argument for the strength of the
combination of local and random insertion. We do this by giving an average case
analysis of the algorithm. It runs in linear expected time for points distributed
independently and uniformly in a bounded convex region. This proves that a
biased randomized insertion order together with a local insertion scheme runs
in linear expected time on uniform points, resolving an open problem posed
by Amenta, Choi, and Rote [3]. This result complements the good practical
performance of biased randomized insertion orders [3, 79, 95, 153].

The main technical contribution in the analysis of point location by walk-
ing is the explicit analysis near the boundary of a bounded convex region in
the plane. For algorithms based on incremental construction, points near the
boundary seem difficult to handle because long and thin triangles slow down
the point location. Figure 3.1 shows a typical case of this: Near the boundary,
triangles with a large circumcircle are likely to occur in the tessellation because
a large part of the circumcircle may lie outside the region with points. The
central part of the analysis in this chapter is to prove that the boundary case
does not change the overall linearity.

Related Algorithms. Incremental constructions of Delaunay tessellations
in two dimensions running in experiments in linear time on points generated
according to a uniform distribution are given by Ohya, Iri and Murota [113, 114]
using quaternary tree bucketing and by Su and Drysdale [139] using spiral

∗S. Zhou, personal communication.
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Figure 3.1: Delaunay tessellation of uniform points in a square.

search. In both cases, the analysis does not treat the irregularities near the
boundary [114, 138]. Ohya et al. avoid the boundary case by considering points
from a Poisson point process in the analysis. We will analyze a variant of the
algorithm of Su and Drysdale in Section 4.6.

Linear expected time algorithms for constructing the Delaunay tessellation
of independent uniformly distributed points from a bounded convex region in
the plane based on other construction paradigms are known. Bentley, Weide
and Yao [12] give an algorithm for constructing the Voronoi diagram which
constructs each cell of the diagram separately by a spiral search. They prove
that their algorithm runs in linear expected time in a bounded convex region in
two dimensions. From the Voronoi diagram of linear complexity the Delaunay
tessellation can be computed in linear time. Katajainen and Koppinen [84] use
a divide-and-conquer approach for constructing the Delaunay tessellation for
points in a square.

Dwyer [57] uses an algorithm for constructing the Delaunay tessellation
based on incremental search. The algorithm constructs the Delaunay tessella-
tion of independent uniformly distributed points drawn from a ball in arbitrary
dimension in linear expected time. Incremental search starts with a known facet
of the Delaunay tessellation, e.g., by computing the convex hull and taking a
convex hull facet. Then the Delaunay tessellation is constructed by incremen-
tally finding simplices neighboring known facets. This is achieved by searching
the space near a known facet using a grid data structure. Constructing the De-
launay triangulation in the plane using incremental search has been analyzed
by Maus [100]. Constructing the Voronoi diagram using incremental search has
been considered by Tanemura, Ogawa and Ogita [145].

To obtain a linear expected running time, all of these algorithms assume
linear time bucketing as discussed in the previous chapter, i.e., n points can be
assigned to cubes in a cubical subdivision of size n in linear time. We will also
use this assumption.

Independently to the research presented here, Liu and Snoeyink [95] (cf. [79])
have considered incrementally constructing the Delaunay tessellation along space-
filling curves from a practical point of view. Instead of random sampling, they
sample points to rounds based on the bit pattern of the least significant bits
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of the point coordinates. This reduces the bit complexity of the computa-
tion. They compare their algorithm with four current implementations for
constructing the Delaunay tessellation in three dimensions. In the experimen-
tal comparison their implementation is the fastest on points representing the
coordinates of atoms in proteins and on uniformly distributed points. Amenta,
Choi, and Rote [3] use in their experiments oct-trees and kd-trees for computing
orders within the rounds of incremental constructions con BRIO. Traversing an
oct-tree yields a space-filling curve order. They report a good running time
on surface data. Zhou and Jones [153] consider hierarchical space-filling curve
orders and report a good running time on terrain data.

General Position. In the following chapters in which we discuss the con-
struction of Delaunay tessellations we will assume that the points are in general
position, i.e., no d + 1 points lie in a (d − 1)-flat and no d + 2 points lie on a
(d− 1)-sphere. For instance, in two dimensions no 3 points lie on a line and no
4 points on a circle. Under this assumption the Delaunay tessellation is a sim-
plicial complex for n > d. This assumption is not needed for the probabilistic
analysis since they are implied by the probabilistic setup, i.e., the points are in
general position with probability 1. We will assume further that the construc-
tion starts with a large bounding simplex containing all points. This simplifies
the analysis in the case that a new point lies outside the convex hull of the
points inserted so far. The techniques used in the algorithm generalize to the
case where these assumptions do not hold (see Shewchuk’s lecture notes [132]).

3.2 Preliminaries

We begin with reviewing Voronoi diagrams and Delaunay tessellations. The two
main ingredients of the algorithm presented in this chapter are partially ran-
domized incremental constructions, i.e., incremental constructions con BRIO [3],
and space-filling curve orders. We will focus on incremental constructions with-
out an additional data structure for point location, i.e., on point location by
walking.

Space-filling curve orders have been discussed in the previous chapter. In
the following we give background on the other concepts.

3.2.1 Voronoi Diagrams and Delaunay Tessellations

In Figure 1.1(b–c) we saw an example for a Voronoi diagram and the corre-
sponding Delaunay tessellation in the plane. For a point set P the Voronoi
diagram partitions the space into regions with common closest neighbor in the
point set P , while the Delaunay tessellation links points in P if their Voronoi
regions have a common face. The Voronoi diagram and the Delaunay tessel-
lation depend on the underlying distance measure. In this and the following
chapter we will use the Euclidean distance ‖x− y‖.

The Voronoi diagram was first described informally by Descartes in 1644 in
his Principia Philosophiae [44, 45]. It was for the first time formally introduced
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by Dirichlet in 1850 in two and three dimensions [54] and by Voronoi in 1908 in
higher dimensions [148]. In 1934, Delaunay obtained the Delaunay tessellation
by the empty circle property [43] (see Lemma 3.1) while Voronoi had considered
it in his study of Voronoi diagrams. The Voronoi diagram has been rediscovered
in other sciences [146, 152] and is known under various names. See [8, 59, 115]
for further background on Voronoi diagrams and Delaunay tessellations.

Voronoi Diagram. Let P be a finite set of points in Rd. The Voronoi cell
of a point p ∈ P is

Vp =
{
x ∈ Rd

∣∣∣ (∀q ∈ P ) ‖p− x‖ ≤ ‖q − x‖
}
.

Adjacent Voronoi cells share lower-dimensional parts, e.g., in two dimensions
edges and vertices. We refer to the Voronoi cells and their lower dimensional
parts as Voronoi faces. The collection of all Voronoi faces forms the Voronoi
diagram.

Delaunay Tessellation. In the plane, the Delaunay tessellation has an edge
for every pair of Voronoi cells which share a Voronoi edge. If the points are
in general position, the faces enclosed by the Delaunay edges are triangles.
Each Delaunay triangle corresponds to a Voronoi vertex. The vertices of the
Delaunay tessellation, i.e., the original point set, correspond to Voronoi cells.
In general in Rd, for every k-dimensional Voronoi face there is a corresponding
(d−k)-dimensional Delaunay face. For points in general position the Delaunay
faces are simplices. In the plane the two-dimensional faces are triangles. We
will refer to the Delaunay tessellation in the plane as Delaunay triangulation.

In the plane, the 1-skeletons of a Delaunay triangulation, i.e., the graph
formed by its vertices and edges, is a planar graph. Therefore, by Euler’s
formula its average degree is less than 6. In particular, the complexity of a
Delaunay triangulation and of a Voronoi diagram in the plane is linear in the
number of points. In higher dimensions the complexity of the Delaunay tessel-
lation and the Voronoi diagram is bounded by O(nd

d
2
e) and this bound is tight

in the worst case [86, 127].
A subset of points S ⊂ P of a point set P forms a simplex in the Delaunay

tessellation if and only if it also defines a Voronoi face. This is equivalent to
the existance of a point which has exactly the points in S as nearest neighbors.
This is the case if there is a d-ball around this point with exactly the points of
S on the corresponding sphere and no further points of P in the ball. Under
general position assumption, if there is a ball with empty interior and the points
in S on its sphere, then there is also an empty ball with exactly the points in
S on its sphere. Thus, we have the following lemma.

Lemma 3.1 (empty circumsphere property). Let P be a finite point set in Rd

in general position. A subset S ⊂ P of points forms a simplex in the Delaunay
tessellation of P if and only if there is a d-ball through the points in S with no
further points of P inside.
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3.2.2 Randomized Incremental Construction

Incremental Construction. The basic concept of incremental construction
is simple to state: Insert the points into the Delaunay tessellation one by one,
updating the data structure after each insertion step. The time needed to
insert a point consists of the time needed for locating the point in the current
tessellation and the time for updating the tessellation. The running time of
the randomized incremental construction of the Delaunay tessellation can be
analyzed in the framework of configuration spaces (see Section 3.2.3).

Update. In the update step the algorithm updates the Delaunay tessellation
starting at a simplex conflicting with the new point, i.e., at a simplex with the
new point in its circumsphere. There are two common techniques for updating,
flipping and Bowyer-Watson updates.

Edge flips in the construction of Delaunay triangulations in two dimensions
were introduced by Lawson [89]. The triangulation is updated by first splitting
the triangle which contains the new point into three triangles. The resulting
triangulation is not necessarily the Delaunay triangulation of the point set be-
cause conflicts between triangles and vertices of the triangulation might have
been created. These can be resolved by flipping the diagonals of quadrilater-
als, i.e., of two adjacent triangles, if one of the triangles (and therefore also the
other) is in conflict with the opposite vertex of the quadrilateral. Starting at the
triangles which contain the new point, quadrilaterals at newly created triangles
are checked (and possibly updated) until there are locally no more conflicts.
Then also globally there are no more conflicts and the resulting triangulation is
the Delaunay triangulation. Flipping can be generalized to higher dimensions.
See [59] for more details on flipping.

For the Bowyer-Watson update [20, 150] the tessellation is searched locally
for conflicting simplices. These are all removed and the resulting void region is
tessellated by the simplices which are obtained by connecting the new vertex to
the lower-dimensional simplices on the boundary of the region. The resulting
tessellation is the Delaunay tessellation. See Shewchuk’s lecture notes [132] for
more details on Bowyer-Watson updates.

For both types of updates, the time needed for updating is asymptotically
linear in the number of simplices removed and added. Thus, in total it is linear
in the number of simplices occurring during the construction.

Point Location by Walking. In the point location step the algorithm de-
termines a simplex from which to start the update, i.e., a simplex which is
in conflict with the new point. A point can be located directly in the data
structure of the tessellation by walking or in an additional data structure.

Point location by walking finds a new point by locally traversing the data
structure of the Delaunay tessellation [73, 89]. For an efficient implementation
of walking, the data structure must provide access to neighboring simplices in
constant time. An example of such a data structure is the cell-tuple struc-
ture [21]. In this chapter we will consider straight line walks: Starting from a
vertex of the tessellation, the new point is located by traversing the simplices
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intersected by a straight line between the vertex and the new point. A different
walking scheme, Lawson’s oriented walk, will be considered in Section 4.6. Fur-
ther walking schemes are discussed by Devillers, Pion, and Teillaud [47]. The
time needed for walking is linear in the number of simplices traversed.

In the worst case, the number of simplices traversed for locating a point can
be linear in the complexity of the tessellation. However, for independent uni-
formly distributed points in a bounded convex region in the plane the expected
number is smaller.

Lemma 3.2 (Devroye, Mücke and Zhu [50]). The expected number of intersec-
tions between a Delaunay triangulation of points distributed independently and
uniformly in a bounded convex region C ⊂ R2 of area 1 and a fixed line segment
L that is at least a distance c0

√
log n/n from the boundary of C is bounded by

c1|L|
√
n+ c2,

where c0 is an absolute constant, and c1 and c2 depend only on geometric prop-
erties of C.

Devroye, Lemaire and Moreau [49] present a proof of this lemma for the case
of the unit square. Katajainen and Koppinen [84] give a similar bound in the
analysis of their divide-and-conquer algorithm for constructing the Delaunay
triangulation. Bose and Devroye [19] bound the number of intersections be-
tween random Voronoi diagrams and line segments. As a corresponding result
in three dimensions Mücke, Saias and Zhu [106] give a O

(
(1 + |L|)n1/3 logn

log logn

)
bound on the number of intersections in R3 for line segments with distance at
least c(log n/n)1/3 to the boundary for a constant c depending on the region C.

We will need to extend Lemma 3.2 later (Lemma 3.25) and will bound the
constants c0, c1, and c2 there. The condition of L being a fixed line segemnt
can be relaxed to L being a random line segment independent of the points in
the triangulation by using conditional probabilities.

Lemma 3.2 yields that if points are inserted by starting at a random pre-
viously inserted point (e.g., since the points are independent this might be the
point inserted last) the expected cost for point location is O(

√
n). Near the

boundary the expected cost is higher but this cost can be amortized since there
are only few points near the boundary. The expected total running time is
O(n3/2). This can be reduced to O(n4/3) by starting the point location not at
a random point but at the nearest neighbor of the new point out of a random
sub-sample of size Θ(n1/3).

To prove that the incremental construction along space-filling curves has
linear expected running time we need to prove that the expected cost of walking
along a space-filling curve tour takes expected constant time per point. For the
two-dimensional case we will use Lemma 3.2 but with a refined analysis near
the boundary.

Point Location with Data Structure. Various data structures for point
location together with a random insertion order lead to algorithms for construct-
ing the Delaunay tessellation which are asymptotically optimal for worst-case
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point sets taking the average over the insertion orders. Here we discuss the
conflict graph, the history graph, and the Delaunay hierarchy.

The conflict graph [37] is a bipartite graph with vertices for the d-simplices
of the tessellation and for points not yet inserted. The edges represent conflicts
between the points and simplices. For point location in a Delaunay tessellation
fewer edges suffice: the simplified conflict graph [37, 132] only maintains an
edge between a point not yet inserted and the simplex containing it. At the
beginning of the algorithm the graph contains an edge between each point and
the bounding simplex. During the construction the simplified conflict graph
allows to find the simplex containing a new point in constant time. Points
lying in simplices that are destroyed must be redistributed to the simplices
newly created.

An alternative to the conflict graph is the history graph, also called history
dag (directed acyclic graph) or influence graph [18, 76]. Its main advantage
over the conflict graph is that it needs to access a point not until it is inserted
while the conflict graph needs to access all points from the beginning of the
construction on (until it has been inserted). The history is a directed acyclic
graph. It has a vertex for every simplex that was created during the construc-
tion. Initially, it contains only the bounding simplex. If a simplex is destroyed
during the construction, an edge from this simplex to the simplices replacing it
is added to the history. A point is located using the history by starting with
a bounding simplex and by traversing the sequence of simplices containing the
point.

The sequence of simplices traversed for a point in the history is the same as
for the simplified conflict graph although this sequence is traversed at different
times in the two versions of the algorithm. Thus, the running time of point
location with the (simplified) conflict graph and with the history are asymp-
totically equal. When a simplex is added or removed from the tessellation then
an edge is added or removed for every point in conflict with the simplex. In
the history graph a node will be traversed whenever a point is located that is
in conflict with the simplex corresponding to the node. Both the (simplified)
conflict graph and the history can be implemented such that the total running
time for point location is asymptotically equal to the sum of the number of
conflicting points for all simplices [37]. The running time can be analyzed in
the general framework of configuration spaces (see Section 3.2.3).

A further expected worst-case optimal data structure for constructing the
Delaunay tessellation using randomized incremental construction is the Delau-
nay hierarchy [46]. It stores the Delaunay tessellations for a nested sequence of
random samples of the current point set. For a point present in the current tes-
sellation it stores a link to a simplex incident to the point in all tessellations of
sub-samples in which it is present. To insert a new point, it is first determined
to which samples it is added. If the random samples are denoted by

S = S0 ⊇ S1 ⊇ S2 ⊇ . . .

then the samples in which a new point p is included is determined by Bernoulli
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sampling

P [p ∈ Si+1 | p ∈ Si] =
1
α

for i ≥ 0 and a sampling parameter α > 1. A new point is located by succes-
sively locating its nearest neighbor in the Delaunay tessellations of the samples
starting with the smallest sample. The expected running time for construct-
ing the Delaunay tessellation using the Delaunay hierarchy is worst-case opti-
mal [46].

3.2.3 Configuration Spaces

Randomized incremental constructions can often be analyzed using the frame-
work of configuration spaces. A configuration space (cf. [35]) consists of

1. a finite set of geometric objects X,

2. a set of configurations Π(X),

3. a mapping assigning to every S ⊂ X a set of configurations T (S) ⊂ Π(X),

4. mappings D,K assigning to every configuration ∆ sets of objects in X:
D(∆) ⊂ X are called triggers of ∆, K(∆) ⊂ X are called stoppers of ∆.
The number of triggers of ∆ is called degree of ∆, the number of stoppers
is called conflict size.

For the bounds presented in this section, a configuration space must fulfill the
following conditions:

• for every configuration ∆ and every S ⊂ X it holds that ∆ ∈ T (S) if and
only if D(∆) ⊂ S and K(∆) ∩ S = ∅,

• max∆∈Π(X){|D(∆)|} is bounded by a constant δ0, called the degree bound
of the configuration space.

In our case we have the following configuration space:

1. the set X of objects is a finite set of points P ⊂ Rd,

2. the set of configurations Π(X) is the set of all simplices defined by P ,

3. the set of configurations T (S) assigned to a subset S ⊂ P is its Delaunay
tessellation DT (S),

4. the triggers of a simplex are its vertices and the stoppers are all points in
the interior of its circumsphere.

The two conditions above are fulfilled, in particular all triggers have size d+ 1
by the general position assumption.

The expected update and point location cost (using the history) for the ran-
domized incremental construction of the Delaunay tessellation can be bounded
using the framework of configuration spaces. Recall that the update cost is
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asymptotically bounded by the number of simplices occurring during the con-
struction, called total structural change and denoted here by Cu(n). Here n
denotes the size of X, i.e., the number of points in the case of the Delaunay
tessellation. The point location cost is bounded by summing up the number
of conflicting points for all simplices occurring during the construction, called
total conflict size and denoted here by C`(n).

The following bounds on Cu and C` hold (using the notions for configuration
spaces) [37]:

E [Cu(n)] ≤
n∑
i=1

δ0

i
E
[
|T (Xi)|

]
and (3.1)

E [C`(n)] ≤
n∑
i=1

δ2
0(n− i)
i2

E
[
|T (Xi)|

]
, (3.2)

where Xi denotes a random sample of X of size i for 1 ≤ i ≤ n.
Thus, if we assume the dimension d to be constant and use the worst-case

bound of id
d
2
e on |T (Xi)| this yields

E [Cu(n)] ∈ O(nd
d
2
e), (3.3)

E [C`(n)] ∈ O(n log n+ nd
d
2
e). (3.4)

We will consider point distributions for which the expected size of the Delaunay
tessellation is linear in the number of points in the tessellation. For these
distributions the inequalities (3.1) and (3.2) yield

E [Cu(n)] ∈ O(n), (3.5)
E [C`(n)] ∈ O(n log n). (3.6)

We are interested in algorithms running in linear expected time on the
distributions considered. By bound (3.5) the expected update cost is linear. For
the expected point location cost we so far only have the super-linear bound (3.6).
We will therefore focus on the point location cost.

Let ks be the number of simplices in Π(P ) with exactly s stoppers and let
ps be the probability that a given simplex with s stoppers appears during the
construction. Then E [Cu(n)] and E [C`(n)] can be rewritten as

E [Cu(n)] =
n∑
s=0

ksps and

E [C`(n)] =
n∑
s=0

sksps.

The bounds (3.3 – 3.6) can also be derived directly using these equations in
combination with the following bound by Clarkson and Shor on the number Ks

of configurations in Π(X) with at most s stoppers:
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Theorem 3.3 (Clarkson, Shor [37]).

Ks ∈ O(sδ0E [|T (R)|]),

where R is a random sample of X of size b|X|/sc.

In the following we derive the bounds (3.3 – 3.6) from Theorem 3.3. A
similar derivation was given in the original analysis of incremental constructions
con BRIO [3]. Our analysis of BRIOs in Section 3.3.1 will not require such a
derivation since we give bounds for the incremental constructions con BRIO
relative to randomized incremental constructions. For completeness, we give
the derivation here.

E [Cu(n)] =
n∑
s=0

ksps

= k0p0 +
n∑
s=1

(Ks −Ks−1)ps

= k0 +
n−1∑
s=1

Ks(ps − ps+1) +Knpn

≤ k0 + c
n∑
s=1

sd+1E
[
|T (X

n
s )|
]

(ps − ps+1)

for suitable n and c, pn+1 := 0, and X
n
s a random sample of bns c points.

Consider the event that a configuration with δ triggers and s stoppers ap-
pears in a randomized incremental construction. The probability pR(δ, s) of this
event is the probability for choosing δ triggers from δ+ s triggers and stoppers
which is

pR(δ, s) =
1(
δ+s
δ

) . (3.7)

Now,

ps − ps+1 = 1

(s+d+1
d+1 ) −

1

(s+d+2
d+1 ) =

(d+ 1)!s!(d+ 1)
(s+ d+ 2)!

< 1

(s+d+2
s ) <

1
sd+2

.

Thus,

E [Cu(n)] ≤ k0 + c
n−1∑
s=1

E
[
|T (X

n
s )|/s

]
.

By the same derivation we get

E [C`(n)] ≤ k0 + c

n−1∑
s=1

sd+1E
[
|T (X

n
s )|
]

(s ps − (s+ 1)ps+1).

Since
s ps − (s+ 1)ps+1 < s(ps − ps+1) <

1
sd+1
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Algorithm 3: Incremental Construction con BRIO
Input: Point set in R3

Output: Delaunay tessellation of the point set

1 Compute BRIO:
1.1 Sample points to rounds (using coin flips),
1.2 Order points in a round (any order can be used).

2 Incrementally construct Delaunay tessellation using order from step 1:
In each step do

2.1 Locate new point,
2.2 Update Delaunay tessellation.

we get

E [C`(n)] ≤ k0 + c

n−1∑
s=1

E
[
|T (X

n
s )|
]
.

From this, the bounds (3.3 – 3.6) above follow.

3.2.4 Incremental Constructions con BRIO

Biased randomized insertion orders (BRIOs) where proposed by Amenta, Choi,
and Rote [3] for incrementally constructing the Delaunay tessellation of points in
three dimensions, see Algorithm 3. Sufficient randomness can be introduced to
the insertion order by assigning the points independently at random to rounds,
where the number of points in one round is approximately the same as the
number of points in all previous rounds.

The sampling is illustrated in Figure 3.2(a): A point is independently as-
signed to the last round with the probability of 1/2. Each of the remaining
points is assigned to the next to last round with the probability of 1/2, and so
on [3]. After a logarithmic number of rounds an expected constant number of
points remain, and we can therefore stop the sampling and assign the remain-
ing points to the first round. If p ∈ R≤i denotes that the point p is inserted
in round i or before (i ≥ 1) then the assignment can be described in terms of

1/2

Round Points

dlog2 ne − 1

dlog2 ne
dlog2 ne + 1

1

1/2

1/2

1/α

1/α

dlogα ne + 1

rounds

(a) (b)

Figure 3.2: Assigning points to rounds.
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probabilities as

P [p ∈ R≤i | p ∈ R≤i+1] =
1
2

for 1 ≤ i < dlog2 ne+ 1 and

P
[
p ∈ R≤dlog2 ne+1

]
= 1.

This yields the following distribution of points to rounds if n is a power
of 2: A point is assigned to the first round with probability 1/n, and to the kth
round with probability 2k−2/n for 2 ≤ k ≤ dlog2 ne + 1. Points are inserted
round by round. Within one round points can be inserted in an arbitrary order
without changing the asymptotic running time for insertion.

Biased randomized insertion orders were originally introduced to avoid non-
local and completely random memory access patterns. We make use of the fact
that they do not change the update cost, which is linear in our case. Therefore
we can focus on the time for point location. For us the main objective is to
balance randomness and geometric locality to speed up point location.

For many input point sets the expected complexity of the Delaunay tessel-
lation of a random sample of the point set is linear in the size of the sample.
Amenta, Choi, and Rote call this the realistic case. For incremental construc-
tions con BRIO they prove the following theorem:

Theorem 3.4 (Amenta, Choi, and Rote [3]). With incremental construction
con BRIO the expected total number of tetrahedra that are created during the
construction of the Delaunay tessellation of n points in three dimensions is
O(n2) in the worst case and O(n) in the realistic case. The expected total
conflict size (and hence the expected running time with a history) is O(n2) in
the worst case and O(n log n) in the realistic case.

3.3 Incremental Constructions con BRIO Revisited

Incremental constructions con BRIO were formulated and analyzed for con-
structing the Delaunay tessellation in three dimensions using a history or con-
flict graph [3]. For our purposes we need to extend the algorithm in several
ways.

First, we want to allow an arbitrary sampling ratios 1/α with α > 1, i.e.,
with a biased coin instead of fair coin (see Figure 3.2(b)). In the following we
will always describe the sampling ratio 1/α by the sampling parameter α. We
impose a bound of kα := dlogα ne+1 on the maximum number of rounds. Points
are assigned independently at random to rounds such that for every point p

P [p ∈ R≤i | p ∈ R≤i+1] =
1
α

for 1 ≤ i < kα and
P [p ∈ R≤kα ] = 1.

This is motivated by the observation that in our experiments the sampling
parameter 2 (as in the original construction) is not optimal. The speed-up
arises because the cost for point location by walking depends on α.
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Algorithm 4: Incremental Construction con BRIO revisited
Input: Objects from a configuration space
Output: Set of configurations corresponding to the set of objects

1 Compute BRIO:
1.1 Sample objects to rounds (using coin flips with sampling parameter

α > 1),
1.2 Order objects in a round (any order can be used).

2 Incrementally construct set of configurations using the order from step 1.

Second, we want to use the construction in arbitrary dimension. For this
we extend the analysis of incremental constructions con BRIO to arbitrary
configuration spaces, see Algorithm 4. Furthermore, we simplify the analysis
by giving bounds on the expected costs relative to the expected costs of a
randomized incremental construction instead of computing them explicitly. A
bound for the expected running time depending on the sampling parameter and
the configuration space is given in Proposition 3.7. A refined bound is given in
Theorem 3.8.

Third, we want to estimate the time needed to construct and use the history
of a single round. This is motivated by the following question. Assume we can
locate the points of the current round efficiently in the Delaunay tessellation
of the points of the previous rounds. Can they then be efficiently located with
the history in the current tessellation at the time they are inserted? We will
show in Theorem 3.9 that this is the case. Our main algorithm however will
not require the history or any other point location data structure.

Notation. We will denote the expectation of a construction with sampling
parameter α by EBRIO(α) [·] if we want to contrast it to the expectation of a
randomized incremental construction, denoted by ERIC [·]. We will also con-
sider incremental constructions con BRIO without a bound on the maximum
number of rounds, i.e., with kα = ∞. In this case we denote the expectation
by EBRIO∗(α) [·].

Consider the event that a configuration with δ triggers and s stoppers ap-
pears in the ith to last round using a BRIO without bound restriction, for i ≥ 1
where i = 1 refers to the last round. This event can occur only if the following
two conditions hold:

(1) all stoppers are in the ith to last round or later,

(2) all triggers are in the ith to last round or before, and not all triggers are
before the ith round.

Therefore the probability for the event to occur can be bounded by the prob-
ability pi(δ, s) for conditions (1) and (2) to hold. Condition (1) is necessary
because a configuration cannot occur if any of its stoppers have been inserted
previously. Condition (2) is necessary because a configuration can only occur
in the round in which its last trigger is inserted. The probability for a point to
be in the ith to last round or before is 1

αi
. Thus, the probability for condition



3.3. Incremental Constructions con BRIO Revisited 45

(1) is
(
1− 1

αi

)s, for condition (2) is
(
1− 1

αi−1

)δ − (1− 1
αi

)δ =
(
1− 1

αδ

)
αδ(1−i),

and therefore

pi(δ, s) =
(

1− 1
αi

)s(
1− 1

αδ

)
αδ(1−i). (3.8)

The probability for the configuration to appear in the total construction
using a BRIO without bound restriction is therefore bounded by

pB(δ, s) :=
∞∑
i=1

pi(δ, s). (3.9)

3.3.1 Con BRIO Generalized and Simplified

We prove that if the degree bound δ0 of the configuration space and the sam-
pling parameter α are considered as constants then the expected total structural
change EBRIO(α) [Cu(n)] and the expected total conflict cost EBRIO(α) [C`(n)]
are asymptotically bounded by the corresponding costs for a randomized incre-
mental construction. The proof proceeds in two steps: In Lemma 3.5 we bound
EBRIO∗(α) [Cu(n)] and EBRIO∗(α) [C`(n)], i.e., the costs without a bound on the
number of rounds. In Lemma 3.6 we bound the error terms due to a bound
on the number of rounds. In the proof of both lemmas we will consider for a
configuration ∆ the following events:

• Ti := {All triggers of ∆ appear in the ith to last round or before.},

• Si = {The first stopper of ∆ appears in the ith to last round.},

where i ∈ N, and i = 1 refers to the last round. For instance, S2 is the event
that all stoppers of ∆ are inserted in the last two rounds and at least one
stopper is inserted in the second to last round. The disjoint union

∑∞
i=1 Si

has probability 1. If Si holds for an i ∈ N then ∆ can only appear during the
construction if also Ti holds.

Lemma 3.5. For a sampling parameter α > 1 and a configuration space with
degree bound δ0 the following inequalities hold:

EBRIO∗(α) [Cu(n)] ≤ αδ0ERIC [Cu(n)] ,

EBRIO∗(α) [C`(n)] ≤ αδ0ERIC [C`(n)] .

Proof. It suffices to prove for all pairs of numbers of triggers and stoppers (δ, s)

pB(δ, s) ≤ αδpR(δ, s).

Then we have that pB(δ, s) ≤ αδ0pR(δ, s) since α > 1 and δ ≤ δ0. Thus, the
bounds hold by linearity of expectation.

For s = 0 we have

pB(δ, s) = 1 = pR(δ, s) ≤ αδpR(δ, s).

Assume ∆δ,s is a configuration with δ triggers and s > 0 stoppers. Then,
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pB(δ, s) ≤ P

[ ∞∑
i=1

(Si ∩ Ti)
]

=
∞∑
i=1

P [Si ∩ Ti] =
∞∑
i=1

P [Si] P [Ti]

where the last equality holds by the independence of Si and Ti for i ∈ N. Now,

P [Ti+1] = P [Ti+1 ∩ Ti] = P [Ti+1 |Ti] P [Ti] =
1
αδ

P [Ti]

by the sampling condition. Therefore,

pB(δ, s) ≤
∞∑
i=1

αδP [Si] P [Ti+1] = αδP

[ ∞∑
i=1

(Si ∩ Ti+1)

]
,

i.e., pB(δ, s) is bounded by αδ times the probability that all triggers are inserted
in rounds strictly after the stoppers. The probability for all triggers to be
inserted in rounds strictly after the stoppers does not depend on the order
within rounds. Consider an incremental construction con BRIO with random
order within rounds. This gives a randomized incremental construction. The
event that all triggers appear in rounds before all stoppers is included in the
event that all triggers appear before all stoppers. Thus, we get

P

[ ∞∑
i=1

(Si ∩ Ti+1)

]
≤ pR(δ, s) (3.10)

and therefore pB(δ, s) ≤ αδpR(δ, s).

In the last step in the proof above, i.e., inequality (3.10), we could alter-
natively argue directly that the probability is bounded by 1/

(
s+δ
δ

)
in the same

way as for pR(δ, s) (equation (3.7)). Note that equation 3.10 does not hold with
equality, but we will see (Theorem 3.8) that the bound is asymptotically tight
up to a factor 1√

δ
.

Lemma 3.6. For a sampling parameter α > 1 and a configuration space with
degree bound δ0 the following inequalities hold:

EBRIO(α) [Cu(n)] < EBRIO∗(α) [Cu(n)] + e,

EBRIO(α) [C`(n)] < EBRIO∗(α) [C`(n)] + en,

where e denotes Euler’s constant.

Proof. Let ∆ be a configuration with δ triggers and s stoppers. As in the
previous proof we can bound the probability pB(δ, s) of ∆ occurring during the
construction by

p(δ, s) ≤
kα∑
i=1

P [Si] P [Ti]
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where the sum now only runs to kα = dlog n/ logαe+ 1. All summands except
the last can be bounded as before. For the last summand we get

P [Skα ] P [Tkα ] ≤ P [Tkα ] ≤ 1
αdloga ne+1

≤ 1
nδ

=: p′(δ, s).

For a degree δ ≤ δ0 there are at most
(
n
δ

)
≤ nδ

δ! configurations. A configuration
appearing during the construction contributes 1 to the total structural change
and at most n to the total conflict size. Thus, the expected additional structural
change induced by the event Skα ∩ Tkα is bounded by

δ0∑
δ=0

(
n

δ

)
p′(δ, s) <

∞∑
δ=0

1
δ!

= e

and the expected additional conflict size is bounded by

δ0∑
δ=0

n

(
n

δ

)
p′(δ, s) < en.

Combining Lemmas 3.5 and 3.6 gives the following proposition.

Proposition 3.7. For a sampling parameter α > 1 and a configuration space
with degree bound δ0 the following inequalities hold:

EBRIO [Cu(n)] < αδ0ERIC [Cu(n)] + e,

EBRIO [C`(n)] < αδ0ERIC [C`(n)] + en,

where e denotes Euler’s constant.

3.3.2 Refined Analysis and Cost of Building the History

In the following we give a refined bound for the probability pi(δ, s) that a
configuration with δ triggers and s stoppers appears in the ith to last round.
As before, we bound this probability and the worst case probability pB(δ, s) of
the configuration to appear in the construction con BRIO without bound on
the number of rounds relative to the probability pR(δ, s) that the configuration
appears in the randomized incremental construction. The motivation for this is
twofold. First, this allows to tighten the bounds obtained above. Second, this
gives an estimate for the cost of building the history of a single round.

Consider the following point location scheme. At the beginning of a round
all points of the round are located in the Delaunay tessellation of the points
of the previous rounds – how this is achieved will be discussed later. Then
within the round the points are located starting from this location using the
history of this round. By doing this in every round, we build the history of the
complete construction. We prove that the expected cost of building the history
of the last round (including the cost of using the history for point location) is
asymptotically bounded by the expected update cost.

The main results of the refined analysis are the following two theorems.



48 Chapter 3. Incremental Constructions along SFCs

Theorem 3.8. For a sampling parameter α > 1 + 1
δ and a configuration space

that has only configurations of degree δ > 0 the following inequalities hold:

EBRIO∗ [Cu(n)] <
αδ√
δ
cα,δ ERIC [Cu(n)]

EBRIO∗ [C`(n)] <
αδ√
δ
cα,δ ERIC [C`(n)] ,

with cα,δ := e13/12√
2π

(
1− 1

αδ

)
α+1
α−1 · δα−1

δ(α−1)−1 and where e denotes Euler’s constant.

For incremental constructions con BRIO let C1
` (n) be the sum of the conflict

sizes of all configurations appearing in the last round or existing at the beginning
of the last round. Thus, C1

` (n) counts all configurations that have all stoppers
in the last round weighted by the number of stoppers they have.

Theorem 3.9. For a sampling parameter α > 1 and a configuration space that
has only configurations of degree δ > 0 the following inequality holds:

EBRIO∗
[
C1
` (n)

]
< αδ+1

√
δ + 1 cα,δ ERIC [Cu(n)] ,

with cα,δ := e1/12√
2π

(
α
α−1

) 3
2 ( δ+1

δ

) 1
2 and where e denotes Euler’s constant.

Theorem 3.8 will follow from Lemma 3.14. Theorem 3.9 will follow from
Lemma 3.11, Lemma 3.12 and Observation 3.13.

For large α, the bounds in Theorem 3.8 improve the bounds in Proposi-
tion 3.7 by a factor 1/

√
δ. We will see that the bounds in Theorem 3.8 and in

Theorem 3.9 are best possible, in the sense that for sufficiently large α and up
to a constant factor no better bounds can be proved based on a comparison of
pB(δ, s) and pR(δ, s), and s p1(δ, s) and pR(δ, s), respectively. This will follow
from Lemmas 3.11 and 3.12.

For Delaunay tessellations, Theorem 3.9 bounds the expected cost of build-
ing the history of the last round after locating the points of the last round in
the Delaunay tessellation of the points of the previous round. By Theorem 3.9
the expected cost of building the history of the last round is asymptotically
bounded by the update cost of a randomized incremental construction (up to
a constant depending on α and δ) and therefore by the expected complexity
of the tessellation. If the expected complexity of the Delaunay tessellation is
linear in the number of points then by the linearity of expectation the expected
total cost of building the history in this way, i.e., building the history in all
rounds, is linear. Thus, Theorem 3.9 implies the following corollary.

Corollary 3.10. Let P ⊂ Rd be a set of n points such that the expected com-
plexity of the Delaunay tessellation of a random sample is linear in the size of
the sample. In an incremental construction con BRIO of the Delaunay tessel-
lation of P the expected cost of building the history and locating points in the
history is in O(n), if before each round the points of the round are located in
the current Delaunay tessellation.
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Probability of Appearing in a Round. We start with bounding the prob-
ability that a configuration appears in a round relative to the probability that
it appears in a randomized incremental construction. For the analysis, we con-
sider the parameter s of the probabilities pR(δ, s), pB(δ, s), and pi(δ, s) for i ≥ 1
as real number, and denote the generalized probabilities by p̄R(δ, s), p̄B(δ, s),
and p̄i(δ, s) (using formulas (3.7)-(3.9)).

Lemma 3.11. For α > 1, δ ≥ 1, and i ≥ 1 holds

max
s>0

p̄i(δ, s)
p̄R(δ, s)

=
αδ√
δ
cα,δ,i

where

cα,δ,i ≥
(

αi

αi − 1

) 1
2
(

1− 1
αδ

)
e
− 1

12

(
1+ 1

δ(αi−1)

)
√

2π
and

cα,δ,i ≤
(

αi

αi − 1

) 3
2
(

1− 1
αδ

)
e

1
12√
2π
.

The maximum is attained by an s in [δ(αi − 1) − 1, δ(αi − 1)] and this is the
only maximum.

Proof. The positive real s0 maximizing the quotient

p̄i(δ, s)
p̄R(δ, s)

=
(
δ + s

δ

)(
1− 1

αi

)s(
1− 1

αδ

)
αδ(1−i) (3.11)

also maximizes the logarithm of this quotient. Writing the binomial coefficient
as (s+ 1) · . . . · (s+ δ)/δ! we obtain

∂

∂s

[
log

p̄i(δ, s)
p̄r(δ, s)

]
=

δ∑
j=1

1
s+ j

+ log
(

1− 1
αi

)
.

The second derivative is negative, thus we obtain the maximum as the solution
of

0 =
δ∑
j=1

1
s+ j

+ log
(

1− 1
αi

)
,

which is equivalent to

log
αi

αi − 1
=

δ∑
j=1

1
s+ j

. (3.12)

By approximating the sum by integrals, we get

log(s+ δ + 1)− log(s+ 1) ≤
δ∑
j=1

1
s+ j

≤ log(s+ δ)− log s. (3.13)
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By inserting equation (3.12) into inequalities (3.13) and applying the exponen-
tial function, we obtain that the solution s0 fulfills

s+ δ + 1
s+ 1

≤ αi

αi − 1
≤ s+ δ

s
(3.14)

which is equivalent to

δ(αi − 1)− 1 ≤ s ≤ δ(αi − 1).

Recall that by Stirling’s approximation [124]

n! =
√

2π nn+ 1
2 e−n rn

with e
1

12n+1 < rn < e
1

12n . Inserting the upper bound of δ(αi − 1) on s0 in
equation (3.11), Stirling’s approximation yields(

δ + s0

δ

)
≤
(
αiδ

δ

)
=

1√
2π

δ−
1
2

(
αi

αi − 1

)(αi−1)δ+ 1
2

αδi rα,δ,i (3.15)

with rα,δ,i = rαiδ
rδ r(αi−1)δ

.

Thus,

rα,δ,i <
e

1

12αiδ

e
1

12δ+1 · e
1

12(αi−1)δ+1

≤ e
1
12

1 · 1
and

rα,δ,i >
e

1

12αiδ+1

e
1

12δ · e
1

12(αi−1)δ

≥ 1

e
1
12 · e

1

12(αi−1)δ

= e
− 1

12

(
1+ 1

δ(αi−1)

)
.

For the upper bound in the lemma, we insert the bound 3.15 on the binomial
coefficient at s0 into equation 3.11. The remaining part of the right hand side
of equation 3.11 is monotone decreasing in s and we therefore insert the lower
bound δ(αi − 1)− 1 on s0 from equation 3.14 for this part. This yields

p̄i(δ, s)
p̄R(δ, s)

<
1√
2π
δ−

1
2

(
αi

αi − 1

)δ(αi−1)+ 1
2

αδirα,δ,i

(
αi − 1
αi

)δ(αi−1)−1(
1− 1

αδ

)
αδ(1−i)

≤ αδ

δ
1
2

(
αi

αi − 1

) 3
2
(

1− 1
αδ

)
e

1
12√
2π
.

For the lower bound in the lemma we insert s′0 = δ(αi−1) into equation 3.11.
This gives

p̄i(δ, s′0)
p̄R(δ, s′0)

=
1√
2π
δ−

1
2

(
αi

αi − 1

)δ(αi−1)+ 1
2

αδirα,δ,i

(
αi − 1
αi

)δ(αi−1)(
1− 1

αδ

)
αδ(1−i)

≤ αδ

δ
1
2

(
αi

αi − 1

) 1
2
(

1− 1
αδ

)
e
− 1

12

(
1+ 1

δ(αi−1)

)
√

2π
.
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Conflicts of a Round. Next we bound for a configuration the probability
of appearing in a round weighted by its number of stoppers. We do this for an
arbitrary round but the interesting case is the last round, i.e., the case i = 1.

Lemma 3.12. For α > 1, δ ≥ 1, and i ≥ 1 the following holds

δ(αi − 1) max
s>0

p̄i(δ, s)
p̄R(δ, s)

≤ max
s>0

s p̄i(δ, s)
p̄R(δ, s)

≤ ((δ + 1)(αi − 1) + 1) max
s>0

p̄i(δ, s)
p̄R(δ, s)

.

Proof. If

• s0 maximizes p̄i(δ,s)
p̄R(δ,s) and

• s1 maximizes s p̄i(δ,s)
p̄R(δ,s)

then
s0
p̄i(δ, s0)
p̄R(δ, s0)

≤ s1
p̄i(δ, s1)
p̄R(δ, s1)

≤ s1
p̄i(δ, s0)
p̄R(δ, s0)

.

Thus, it suffices to prove that s1 ≤ (δ+ 1)(αi− 1) + 1. We get s1 as solution of

0 =
∂

∂s
log

s p̄i(δ, s)
p̄R(δ, s)

=
1
s

+
∂

∂s
log

p̄i(δ, s)
p̄R(δ, s)

=
δ∑
j=0

1
s+ j

+ log
αi − 1
αi

,

which is equivalent to

log
αi

αi − 1
=

δ∑
j=0

1
s+ j

.

As in the proof of Lemma 3.11 we approximate the sum by integrals which
yields

s+ δ + 1
s

≤ αi

αi − 1
≤ s+ δ

s− 1
.

This is equivalent to

(δ + 1)(αi − 1) ≤ s ≤ (δ + 1)(αi − 1) + 1.

Using Lemma 3.12 we can bound EBRIO∗
[
C1
` (n)

]
as follows. Recall that

C1
` (n) is the sum of conflict sizes of configurations with all stoppers in the last

round. If we only sum over the configurations of the last round then Lemma 3.12
directly yields a bound on the expected sum of conflict sizes. Now consider the
probability p∗1(δ, s) that a configuration with δ triggers and s stoppers has all
its stoppers in the last round. Since the probability for a point to be in the last
round is (1− 1/α), we have

p∗1(δ, s) =
(

1− 1
α

)s
= p1(δ, s)

(
1− 1

αδ

)−1

.

From this we directly get the following observation which completes the proof
of Theorem 3.9. By p̄∗1(δ, s) we denote the real function corresponding to the
probability p∗1(δ, s).
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Observation 3.13. For α > 1, δ ≥ 1, and i ≥ 1 the following holds

max
s>0

s p̄∗1(δ, s)
p̄R(δ, s)

= max
s>0

s p̄1(δ, s)
p̄R(δ, s)

(
1− 1

αδ

)−1

.

Probability of Appearing in the Construction. We want to bound for
a configuration the probability of appearing in a construction con BRIO rela-
tive to the probability of appearing in a randomized incremental construction.
Summing up the probabilities obtained in Lemma 3.11 for the individual rounds
does not yield a useful bound. The problem is that the values of s maximiz-
ing the quotient of the two probabilities is different for the individual rounds.
Instead we compute a bound for the same value of s for all rounds.

Lemma 3.14. For α ≥ 1 + 1
δ and δ ≥ 1 the following holds

max
n≥s>0

p̄B(δ, s)
p̄R(δ, s)

≤ αδ√
δ
· e

13/12

√
2π
·
(

1− 1
αδ

)
· α+ 1
α− 1

· δα− 1
δ(α− 1)− 1

.

Proof. Let β be defined by s = (β − 1)δ. Then,

p̄B(δ, s)
p̄R(δ, s)

=
(
βδ

δ

) ∞∑
i=1

(
αi − 1
αi

)(β−1)δ (
1− 1

αδ

)
αδ(1−i).

By Stirling’s approximation (cf. inequality 3.15),(
βδ

δ

)
≤ 1√

2π
δ−

1
2

(
β

β − 1

)(β−1)δ+ 1
2

βδe
1
12 .

Therefore,

p̄B(δ, s)
p̄R(δ, s)

≤ αδ√
δ

(
1− 1

αδ

)
e1/12

√
2π

β

β − 1

∞∑
i=1

(
β

αi

(
β

β − 1
· α

i − 1
αi

)β−1
)δ

We now bound the sum

∞∑
i=1

(
β

αi

(
β

β − 1
· α

i − 1
αi

)β−1
)δ

.

Each summand can be bounded by

β

αi

(
β

β − 1
· α

i − 1
αi

)β−1

=
β

αi

(
1−

(
β − αi

(β − 1)αi

))β−1

≤ β

αi
e−

β−αi
αi = e

β

αi
e−

β

αi ≤ e
αi

β
. (3.16)

For the first inequality we use that 1 + x ≤ ex for all x ∈ R. For the second
inequality we use xe−x = x2e−x 1

x ≤ 1
x .
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Each summand is maximized for β = αi. To see this, we take the derivative
in β of the summand

fαi(β) :=
β

αi

(
β

β − 1
· α

i − 1
αi

)β−1

and set it to zero.

d

dβ
fαi(β) =

(
log

β

αi
+ 1
)
fαi(β) +

(
log

αi − 1
β − 1

− 1
)
fαi(β)

= log
β

β − 1
αi − 1
αi

fαi(β).

Since fαi(β) > 0 we get that d
dβ fαi(β) = 0 if log β

β−1
αi−1
αi

= 0. This is the case

if β
β−1

αi−1
αi

= 1 which is equivalent to β = αi. This is a maximum because
fαi(αi) = 1 and fαi(β) tends to 1

αi
< 1 for β → 1 and fαi(β) tends to 0 for

β →∞ by the bound (3.16).
Thus, since each summand is maximized for β = αi and for this it is 1, each

summand is at most 1. Ignoring the exponent δ only increases the sum.
Let i0 := dlogα βe. We split the sum at i0, i.e., into summands with αi ≥ β

and αi < β, and handle these cases separately. For αi ≥ β we use(
β

β − 1

)β−1

≤ e and
αi − 1
αi

< 1

and bound the partial sum by

∞∑
i=i0

(
β

αi

(
β

β − 1
· α

i − 1
αi

)β−1
)δ

≤ e

∞∑
i=i0

β

αi
= e

∞∑
i=0

β

αi0
α−i ≤ e

∞∑
i=0

α−i = e
α

α− 1
.

For αi ≤ β we use the estimate (3.16) to bound the partial sum by

i0−1∑
i=1

(
β

αi

(
β

β − 1
· α

i − 1
αi

)β−1
)δ

≤ e

i0−1∑
i=1

β

αi
≤ e

αi0

i0−1∑
i=1

αi =
e

αi0
· αi0 − α
α− 1

≤ e

α− 1
.

Thus, we can bound the whole sum by eα+1
α−1 .

It remains to bound β
β−1 = 1 + 1

β−1 . We bound this term for β2 for which

s2 = δ(β2 − 1) maximizes p̄B(δ,s)
p̄R(δ,s) for given α and δ. By Lemma 3.11 for every

i ≥ 1 the quotient p̄i(δ,s)
p̄R(δ,s) is maximized for an s with

s ≥ δ(α−i − 1)− 1 ≥ δ(α− 1)− 1
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and p̄i(δ,s)
p̄R(δ,s) is monotone increasing for smaller s. Therefore, also s2 > δ(α−1)−1

and since α > 1 + 1
δ we have δ(α− 1)− 1 > 0. For β2 this yields

δ(β2 − 1) ≥ δ(α− 1)− 1 > 0,

and therefore
β2

β2 − 1
≤ δα− 1

δ(α− 1)− 1
.

3.4 Expected-Case Analysis for Random Points

In Section 3.3 we bounded the expected running time of incremental construc-
tions con BRIO for an arbitrary order within the rounds. In this section we
bound the expected running time for a special class of orders within rounds, i.e.,
space-filling curve orders (see Chapter 2). We formulate the algorithm for a set
of points in Rd (Algorithm 5) but in this section we will analyze the algorithm
for points in two dimensions drawn independently and uniformly at random
from a bounded convex region. The analysis also holds for pseudo-uniformly
distributed points, i.e., points with a density function bounded from above and
below by positive constants. This does not include normally distributed points
which we will consider in the next chapter.

Algorithm 5: Incremental Construction along Space-Filling Curves
Input: Point set in Rd

Output: Delaunay tessellation of the point set

1 Compute BRIO with SFC in rounds:
1.1 Sample points to rounds (using coin flips with sampling parameter

α > 1),
1.2 Order points in a round using a space-filling curve order,

for every other round use reversed order.
2 Incrementally construct Delaunay tessellation using order from step 1:

In each step do
2.1 Locate new point from the previously inserted point by walking,
2.2 Update Delaunay tessellation.

The details of the steps of the algorithm have been covered for step 1.1 in
Sections 3.2.4 and 3.3, for step 1.2 in Section 2.2.2, and for step 2.1 and step 2.2
in Section 3.2.2.

In step 1.2 we assume that the bounding cube is chosen such that its side
length either is the largest L∞-distance of two points, or if a bounded region in
which the points lie is known, it is the L∞-diameter of the region. We reverse
the space-filling curve order for every other round such that also for non-closed
space-filling curves like the Hilbert curve the concatenated curve is continuous.
The motivation for this is to have a short distance and therefore fewer walking
steps between the last point of a round and the first point of the next round.



3.4. Expected-Case Analysis for Random Points 55

This is not important for the analysis since even if the cost of the first point
location step in a round would be linear, this would not change the asymptotic
bound on the expected running time.

3.4.1 Counting Intersections

To analyze the running time of the point location by walking it suffices to
analyze the time required in the last round. This bound can then be applied to
the other rounds with the number of points being a random variable depending
on the round. Since we obtain a linear bound for one round we can further use
linearity of expectation to compute the expected total linear running time.

Assume N points are distributed independently and uniformly at random
in a bounded convex region C of area 1, where

• N = m+ n with

• n points already inserted in the Delaunay triangulation and

• m points to be inserted in the next round.

To insert the m points, a space-filling curve tour through these points is con-
structed.

The points are located by traversing the Delaunay triangulation along the
tour. Therefore, the time for locating the points is proportional to the number of
intersections between the tour and the Delaunay triangulation. We consider two
variants. In the first variant, the points of the round are located along the space-
filling curve without directly inserting them into the Delaunay triangulation.
We bound the expected number of intersections for this case first and then
extend it to the second variant. In the second variant, points are directly
inserted. Thus, the triangulation changes while the points are located along
the space-filling curve.

Exclusion Regions. The method used to obtain a bound on the number
of intersections can be applied to other classes of triangulations for which an
exclusion region can be defined: This is a region that can be placed around each
edge in such a way that the region is empty on one of the sides of the edge.
This is necessary (but not sufficient) for the edge to be in the triangulation. For
the Delaunay triangulation the disc with the edge as diameter is an exclusion
region.

With some weak assumptions on the exclusion region, Dickerson et al. [53]
observed that possible edges of such a triangulation of uniformly distributed
points are expected to be either short or near to the boundary. In our case this
means that endpoints of Delaunay edges intersecting the tour are either near
to the tour or near to the boundary of the bounded convex region C.

By Observation 2.1 a space-filling curve tour through m points in the unit
square has length at most cT

√
m where cT is the Hölder constant of the space-

filling curve. The following lemma and proposition are formulated more gener-
ally for traveling salesperson problem heuristics with an expected tour length
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of O(
√
m) through m points in the unit square. This holds for any expected

constant-factor approximation algorithm for the traveling salesperson problem.

Lemma 3.15. Let n+m points be distributed independently and uniformly in
a bounded convex region C in the plane of area 1. Let the n points define a
Delaunay triangulation. Let a tour through the remaining m points be given
which depends only on the m points and has expected length bounded by cT

√
m

for a constant cT . The expected number of intersections between line segments
of the tour that have distance at least c0

√
log n/n from the boundary ∂C and

edges of the triangulation is bounded by c1cT
√
mn+c2m where c0 is an absolute

constant and c1, c2 are constants depending on geometric properties of C.

Proof. We consider only line segments of the tour which have distance at least
c0

√
log n/n from the boundary ∂C where the constant c0 is the same as in

Lemma 3.2. We call these segments far from the boundary. For a given line
segment L of the tour far from the boundary Lemma 3.2 bounds the expected
number of intersections between L and the Delaunay triangulation by c1

√
n+c2

for constants c1 and c2 depending on geometric properties of C. Therefore, for a
tour through the m points of length cT

√
m the expected number of intersections

between line segments of the tour far from the boundary and the Delaunay
triangulation is bounded by c1 cT

√
nm+ c2m.

This bound also applies to the case of a tour through random points if they
are independent of the points of the triangulation. To see this, consider the
random points Y1, . . . , Ym through which the tour is taken (not yet ordered).
Let I be the number of intersections and let |T | be the length of the tour. I
is a random variable depending on the points of the tour and of the Delaunay
triangulation. |T | is a random variable depending only on the tour.

By the independence of the points of the tour and the Delaunay triangula-
tion, we have

E [I |Y1 = y1, . . . , Ym = ym] ≤ c0

√
nE [|T | |Y1 = y1, . . . , Ym = ym] + c1m

and therefore

E [I] = E [E [I |Y1, . . . , Ym]]
≤ E

[
c0

√
nE [|T | |Y1, . . . , Ym] + c1m

]
= c0

√
nE [|T |] + c1m

≤ c0c2

√
nm+ c1m.

With Lemma 3.15 we now have all necessary ingredients for a linear expected
time algorithm for constructing the Delaunay triangulation. For this, consider
the following algorithm. Use an incremental construction con BRIO and in each
round of n points inserted so far and m points to be inserted:

• Build in O(n) time a point location data structure in the triangulation
with O(log n) query time.
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• Locate the points to be inserted along a traveling salesperson problem
heuristic which can be computed in O(m) time and has expected O(

√
m)

length. As fallback use the point location data structure. For instance
this can be done by running the point location schemes in parallel, i.e., one
step of point location by walking , followed by one step of point location
in the data structure, and so on.

• Insert the points using a history with the triangulation of the n points as
first level.

A possible point location data structure is Kirkpatrick’s point location hierar-
chy [85]. Points can be inserted during the walk if the walk is performed on the
original triangulation, i.e., on the first level of the hierarchy.

Proposition 3.16. The algorithm given above constructs the Delaunay trian-
gulation of independently and uniformly distributed points in a bounded convex
region in the plane in linear expected time.

Proof. By Lemma 3.15, all points except those near the boundary can be
located by walking in O(

√
mn + m) time. The area of the boundary re-

gion is O(
√

log n/n). Thus, the expected number of points near the bound-
ary and therefore also the expected number of tour segments with an end-
point near the boundary are in O(m

√
log n/n). For each of these tour seg-

ments the point location takes O(log n) time. Thus, in total the point lo-
cation of all points of a round in the previous Delaunay triangulation takes
O(
√
mn + m + m log3/2 n√

n
) ⊂ O(m + n) time. The additional cost of using the

history is linear by Corollary 3.10.

However, we are interested in a linear expected time algorithm without point
location data structure. We will prove that the fallback to a point location data
structure for points near the boundary is not necessary. For this, we do an
explicit boundary analysis. We will also show that the history is not needed.

3.4.2 Boundary Analysis

To treat segments near the boundary we first quantify what it means that the
edges of the triangulation are likely to be short or near to the boundary in the
following lemma. The proof of Lemma 3.17 generalizes and simplifies the proof
for the case of the unit square [49].

For the purpose of the analysis in this chapter it would suffice to prove that
a Delaunay edge cannot be too long if one of the endpoints is not too close
to the boundary. Nonetheless, we prove the slightly stronger statement that a
Delaunay edge cannot be too long if there is any point on the edge, i.e., not
necessarily an endpoint, which is not too close to the boundary.

Lemma 3.17. Let n > 2 points be distributed independently and uniformly in
a bounded convex region C of area 1 in the plane. Denote by Dw,` the event that
the Delaunay triangulation of the points contains an edge which has a point on
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ℓ′

boundary of C

w

Figure 3.3: An exclusion region for a Delaunay edge with one endpoint far from
the boundary of C.

it with distance at least w to the boundary of C and which is longer than `. For
any t > 1 and ` ≥ tw

P [Dw,`] ≤ n2e−(n−2)w`
√

1−1/t2/2.

In particular, if ` ≥ 3w and w` ≥ 6
√

2 log n/(n− 2) then

P [Dw,`] ≤ 1/n2.

Proof. First consider the case of an edge with length `′ ≥ ` and an endpoint
with distance more than w to the boundary of C as shown in Figure 3.3. The
circle with the edge as diameter and the circle of radius w around the endpoint
with distance at least w to the boundary intersect since w < `. The intersection
points of the circles lie in C since the circle of radius w lies in C. The edge
together with these two intersection points form two right triangles contained
in C and these give an exclusion region for the edge. The area of one of these
triangles is bounded from below by 1/2 · w

√
`2 − w2 ≥ w`

√
1− 1/t2/2 =: a.

Therefore, the probability that the triangle is empty is bounded from above by
(1−a)n−2. The probability that both triangles of an edge are empty is bounded
by 2(1− a)n−2.

`′

w

x `′

w

x

(a) (b)

Figure 3.4: Cases if a point on the edge has distance w to the boundary.
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Next consider the situation that both endpoints of the edge are closer than
w to the boundary but a point x on the edge has distance at least w to the
boundary. There are two cases as shown in Figure 3.4. The first case is shown
in Figure 3.4(a): The circle with the Delaunay edge as diameter contains the
line segments of length w starting at x and perpendicular to the edge. Then the
resulting triangles both have area w`/2 > w`

√
1− 1/t2/2 and form an exclusion

region. The second case is shown in Figure 3.4(b): The circle with the Delaunay
edge as diameter does not contain these segments. Then the intersections of
this circle and the circle with radius w around the endpoint closer to x (dashed
circle) are in the circle around x. They are therefore in C and we can take the
same exclusion region as in the case where this endpoint has distance w to the
boundary.

There are
(
n
2

)
possible edges and thus

P [Dw,`] ≤
(
n

2

)
2(1− a)n−2 ≤ n2e−(n−2)a = n2e−(n−2)w`

√
1−1/t2/2.

In particular, for t = 3 and w` ≥ 6
√

2 log n/(n− 2) we get

P [Dw,`] ≤ n2e−(n−2)(6
√

2 logn/(n−2))
√

1−1/32/2

= n2e−4 logn =
1
n2
.

Let us note that the exclusion region was chosen with w much smaller than
` in mind. Better constants, in particular for w close to `, can be obtained
by including the whole intersection of the disk with radius w around the one
endpoint and the disk with the edge as diameter into the exclusion region. We
illustrate this by the following remark.

Remark 3.18. With the same setting as in Lemma 3.17 but with w = `, the
probability P [Dw,`] can be bounded from above by n2e−(n−2)w`π/8.

Proof. For w = ` the circle of radius w contains a circle of diameter ` halved
by the Delaunay edge of length `′ ≥ `. This gives an exclusion region for which
each side as area

a :=
`2

8
π =

w`

8
π.

Thus,

P [Dw,`] ≤
(
n

2

)
2(1− a)n−2 ≤ n2e−(n−2)a = n2e−(n−2)w`π/8.

This gives us a bound on the number of Delaunay edges that can intersect
the line segments of the tour:
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w

ℓL

boundary of C

Figure 3.5: Area for endpoints of Delaunay edges intersecting L.

Lemma 3.19. The expected number of intersections of a Delaunay triangula-
tion of n points and a tour along a Hölder-1/2 space-filling curve through m
points where the m + n points are distributed independently and uniformly in
a bounded convex region is in O(m +

√
mn) and therefore linear in the total

number of points.

Proof. For line segments of the tour not near the boundary, Lemma 3.15 gives
a bound of O(m +

√
mn) on the number of intersections with the Delaunay

triangulation. Next we consider the line segments of the tour near the boundary.
Without loss of generality, the area of C is 1.

The expected number of points near the boundary is bounded by

m′ := c0 |∂C|m
√

log n/n.

Each of these points can be adjacent to two line segments resulting in an upper
bound of k := 2m′ on the expected number of line segments with at least one
point near the boundary. Each of these line segments can contribute one further
endpoint resulting in a bound of 3m′ on the expected number of endpoints of
such line segments. These line segments are also part of a space-filling curve
tour through only these endpoints. Therefore, by Observation 2.1 and Jensen’s
inequality the expected total length of these line segments is bounded by `Σ :=
cT
√

3m′ for a constant cT depending on the space-filling curve.
For n > 2 we choose

w := (log n/(n− 2))2/3 and
` := 6

√
2(log n/(n− 2))1/3.

Then for n > 2, it is ` ≥ 3w and w` ≥ 6
√

2 log n/(n − 2). Thus, we have by
Lemma 3.17, that with probability at least 1− 1

n2 line segments are closer than
w to the boundary or shorter than l. If this event occurs, only Delaunay edges
with endpoints which have distance at most ` to one of the line segments of the
tour, or distance at most w from the boundary can intersect the space-filling
curve tour. If this event does not occur, then in the worst case a tour segment is
intersected by all edges of the triangulation, which gives O(1/n) intersections in
expectation. In total, this contributes at most O(m/n) expected intersections.
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In the case that the event occurs, Figure 3.5 shows for a single line segment
L the region in which both endpoints of an intersecting Delaunay edge must lie.
The area of this region is bounded from above by |∂C|w+π`2 +2`|L|. Therefore
the expected number of endpoints of edges that intersect a line segment L is
bounded by n(|∂C|w+π`2+2`|L|). Because of planarity there are at most three
times that many edges intersecting L. For k line segments of total expected
length LΣ this yields a bound of

3n(|∂C|kw + π`2k + 2`LΣ)

on the number of intersecting edges. Inserting the values for w, `, k, and `Σ
gives that the number of intersections near the boundary can be bounded by

3n(|∂C|2m′w + π`22m′ + 2`cT
√

3m′)
≤ 6nm′(log n/n)2/3(|∂C|+ π) + 18cT

√
6nm′1/2(log n/n)1/3

∈ O

(
m

log7/6 n

n1/6
+m1/2n5/12 log7/12 n

)
⊂ O(m+

√
mn).

Adding up the bounds for segments near the boundary and not near the
boundary gives the bound of the lemma.

As a direct consequence of Lemma 3.19 (together with Corollary 3.10), we
see that we do not need an additional point location data structure for points
near the boundary for a linear expected time algorithm for constructing the
Delaunay triangulation.

Proposition 3.20. Incremental constructions con BRIO using an order along
a Hölder-1/2 continuous space-filling curve to locate points in the Delaunay
triangulation of the previous round and using a history for further point location
runs in linear expected time.

The algorithm in the proposition still uses the history within a round. In
the following, we prove that this is not necessary.

3.4.3 Inserting Points while Walking

So far we have only considered point location in the Delaunay triangulation
of the points of previous rounds. We now discuss the case where points are
inserted during the traversal. That is, during the round walking is performed
in the Delaunay triangulation into which some points of the current round have
already been inserted.

As before, we restrict our attention to the last round. Let P1 be the set
of points before the last round, P2 the set of points to be inserted in the last
round. Let n := |P1| andd m := |P2|. Let C be the region from which the points
are drawn. If we consider a single line segment of the tour, we can bound the
number of intersections with it by the following two observations.

First, the remaining points of the tour are not independent of this segment.
The tour segment determines a part of C in which no other points lie. This is
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C

s

R(s)

x
x′

y′
y

x, x′: old/blocker
y, y′: new/only contributor

(a) Tour segment and corresponding region (b) Contributors and blockers

Figure 3.6: Illustration of density bound for tour segments and for the roles of
points in the analysis of the Delaunay triangulation.

illustrated in Figure 3.6(a). If t1 and t2 are the preimages of the tour segment s
selected by the space-filling curve heuristic with t1 ≤ t2 and R(s) := ψ ([t1, t2])
(shown in gray in the figure) then no other point of P2 lies in the region C∩R(s).
Conditional on the fact that t1t2 is a tour segment, the remaining points are
independently and uniformly distributed in Cs := C \ R(s). Their density
can be bounded from above if we assume the space-filling curve ψ to be bi-
measure preserving, i.e., µ1(A) = µ2(ψ(A)) for any Borel set A ∈ [0, 1] and
µ1(ψ−1(B)) = µ2(B) for any Borel set B ∈ [0, 1]2 where µ1 and µ2 denote the
1- and 2-dimensional measure, respectively. This allows us to work on uniform
distributions on the preimage in the unit interval and the image in the unit
square interchangeably [65]. Therefore we can bound the density of the point
distribution by the density of the distribution of the preimages. We give the
bound on the point density in Lemma 3.22.

Second, in the analysis of the boundary case (Lemmas 3.17 and 3.19) as well
as the non-boundary case (Lemma 3.2) the points of the Delaunay triangulation
occur in two different roles. On the one hand, points of P1 ∪P2 may contribute
to the number of intersections as an endpoint of an intersecting edge. On
the other hand, points of P1 may also block potential edges between points of
P1 ∪P2 because they lie in their exclusion region. We analyze the case with all
points except the two endpoints of the current tour segment as contributors,
i.e., possible endpoints of edges in the triangulation, but with only the points
of P1 as blockers.

For an illustration of the concept of contributors and blockers see Fig-
ure 3.6(b): Assume all four points are contributors but only x and x′ are
blockers, i.e., x, x′ ∈ P1 and y, y′ ∈ P2. If the edge between x and y is in
the triangulation then at least one side of the exclusion region must be empty,
i.e., one of the triangles, is “empty”. The upper triangle is not empty because
it contains x′, and x′ has been inserted in a previous round and is therefore
a blocker. But the lower triangle is considered to be empty since y′ is not
considered to be a blocker. If y′ is inserted before y then the edge xy would
not actually appear. Even if one exclusion region is empty, the edge does not
necessarily appear. We include all these (potential) edges in the analysis.
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We will extend Lemmas 3.17, 3.2, and 3.19 to the case of contributors
and blockers by Lemmas 3.23, 3.25, and 3.26, respectively. For the proof of
Lemma 3.25 we will also extend Remark 3.18 to Remark 3.24. By this we han-
dle the case of a Delaunay triangulation of a set of n points together with an
arbitrary (i.e., in particular not necessarily independent) subset of a set of m
points where the n+m points are independent, and the n points are uniformly
distributed in a bounded convex region C and the m points are uniformly dis-
tributed in an unknown but sufficiently large subset of C.

Let C be a convex region in [0, 1]2. We use µC to denote the area of C. Let
ψ : [0, 1] → [0, 1]2 be a bi-measure preserving space-filling curve. For a point
y ∈ C let ψ∗(y) be the preimage of y selected by the space-filling curve heuristic.
Furthermore, for a line segment s = (y, y′) contained in C let

µs := µ
(
[ψ∗(y), ψ∗(y′)] ∩ ψ−1(C)

)
be the length of the intersection of the interval corresponding to s and the
preimage of C.

Observation 3.21. Let m points be distributed independently and uniformly
at random in a bounded convex region C ⊆ [0, 1]2. Let ψ : [0, 1] → [0, 1]2 be a
bi-measure preserving space-filling curve. Conditional on the fact that s is a
tour segment, the points on the tour except for the endpoints of the segment are
distributed independently and uniformly in a region Cs ⊆ C depending on s of
measure µC − µs.

In the following lemma we bound the probability that the space-filling curve
tour contains a segment with large µs. This also shows that the measure of Cs is
close to the measure of C and therefore the density of the uniform distribution
on Cs close to the density of the distribution on C, i.e., close to 1/µC .

Lemma 3.22. Let m points be distributed independently and uniformly at ran-
dom in a convex region C ⊆ [0, 1]2. Let ψ : [0, 1]→ [0, 1]2 be a bi-measure pre-
serving space-filling curve. The probability of the event that a tour along ψ con-
tains a segment s with µs > 2 logm

m−1µC is bounded from above by 1
m . Conditional

on this event, the density of Cs is bounded from above by 1
µC

(1 +O(logm/m)).

Proof. For a random starting point Y of a tour segment, let At(Y ) denote the
event that an interval [ψ∗(Y ), bt] starting at ψ∗(Y ) and with µ([ψ∗(Y ), bt]∩C) ≥
t µC and bt ≤ 1 is empty. Then,

P [At] ≤ (1− t)m−1 ≤ e−t(m−1).

Therefore,

P
[
A2 logm/(m−1)

]
≤
(

1− 2
logm
m− 2

)m−2

≤ e−2 logm
m−2

(m−2) = m−2.

Summing up over all m possible starting points yields that the probability that
the tour has a segment s with µs > 2 logm

m−1µC is bounded by 1
m .
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If µs ≤ 2 logm
m−1 holds for a line segment s then the measure of the remaining

region is

µC − µs ≥ µC(1− 2
logm
m− 1

)

and the density function is bounded from above by

1

µC

(
1− 2 logm

m−1

) =
1
µC

(
1 + 2

logm
m− 1

(
1− 2

logm
m− 1

))
=

1
µC

O

(
1 +

logm
m

)
.

Lemma 3.23. Let n+m points be distributed independently with the first n > 2
points distributed uniformly in a bounded convex region C of area 1 and the
other m points arbitrarily distributed. Consider the Delaunay triangulation of
the first n points and of an arbitrary subset of the other m points. Denote by
Dw,` the event that this contains an edge which has a point on it with distance
at least w to the boundary of C and which is longer than `. For any t > 1 and
` ≥ tw

P [Dw,`] ≤ (n+m)2e−(n−2)w`
√

1−1/t2/2.

In particular, if ` ≥ 3w and w` ≥ 6
√

2 log(n + m)/(n − 2), then P [Dw,`] ≤
1/(n+m)2.

Proof. For a single point the bound remains the same as obtained in the proof
of Lemma 3.17. Instead of

(
n
2

)
≤ n2/2 possible edges, there are now

(
n+m

2

)
≤

(n+m)2/2 possible edges which yields the bound on P [Dw,l].

Remark 3.24. With the same setting as in Lemma 3.17 but with w = `, the
probability P [Dw,`] can be bounded by (n+m)2e−(n−2)w`π/8.

Next we turn to the proof of an extended version of Lemma 3.2. A bound
typically used in the probabilistic analysis of Delaunay triangulations to bound
the length of Delaunay edges (and which in this chapter we have used so far
only implicitly by using Lemma 3.2) is the following: Let P be a point set
in the plane and x ∈ P . Let the plane be subdivided into sufficiently many
cones originating at x. Assume there is a point of P with distance at most
t to x in the interior of every cone. Then there is no edge in the Delaunay
triangulation of P with x as an endpoint and longer than ct where c > 0 is a
constant depending on the number of cones. A bound on c can be computed
using exclusion regions. For instance, Katajainen and Koppinen [84] use in the
analysis of their divide-and-conquer algorithm 16 cones which allows to choose
c =
√

2.
Better bounds can be obtained by considering the tentative Voronoi cell of

a point x. Bentley, Weide and Yao [12] use this argument with 8 cones (without
explicitly computing c). We give the argument for 6 cones (see Figure 3.7): If
we have a point in every cone then x together with the closest point to x in
every cone (shown as white points in the figure) defines the tentative Voronoi
cell of x, i.e., the Voronoi cell of x in the Voronoi diagram of these points. Now,
a further point can only share a Voronoi edge (and therefore a Delaunay edge)
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x

x′

Figure 3.7: Tentative Voronoi cell of a
point x.

L `′
R1

R2

R3

Figure 3.8: Points with dis-
tance `′ to a line segment.

with x if the bisector of this point and x intersects the tentative Voronoi cell of
x. In the example of the figure, x′ cannot share a Voronoi edge with x since the
bisector of x and x′ indicated by the dashed line does not intersect the tentative
Voronoi cell. Since the angle formed by two points in the interior of neighboring
cones and with x as a base is less than 3π/2, the distance of x to any point in
the tentative Voronoi cell is at most the distance to one of the closest neighbors
in the cones. Thus, we have c = 2. In the figure, the corresponding circle
is shown, i.e., no point outside the circle can have a Voronoi edge with x in
common.

For the analysis of the Delaunay triangulation of uniformly distributed
points in a bounded convex area such a bound can be used to bound the max-
imum edge length in a Delaunay triangulation at a point x as long as x is
sufficiently far away from the boundary. As long as t/2 is less or equal to the
distance of x to the boundary the probability p(t) that the maximum edge
length at x is larger than t is bounded by

p(t) ≤ 6(1− π(t/2)2/6)n−1 = 6(1− πt2/24)n−1 (3.17)

for n blocking points with density function 1. This bound does not depend
on the number of contributing points. We use this bound together with Re-
mark 3.24 to extend Lemma 3.2.

Lemma 3.25. Let n+m points be distributed independently with the first n > 2
points distributed uniformly in a bounded convex region C of area 1. Let L be
a random line segment independent of the first n points. Let the conditional
distribution of the remaining m points conditioned under the line segment have
a density function bounded by λm ≥ 1. Let DT be the Delaunay triangulation
of the first n points and of an arbitrary subset of the other m points.

If the distance of L to the boundary of C is more than c0

√
log(n+m)/(n− 2)

then the expected number of intersections between DT and L is bounded by

c1
n+ λmm

n
+ c2|L|

n+ λmm√
n

,

where the constants can be chosen as c0 = 4
√

6/π, c1 = 435, and c2 = 72
√

6.
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Proof. We choose

w :=
√

24/π
√

log(n+m)/(n− 2) and ` := w.

By Remark 3.24 we have with probability at least 1 − 1
n+m that the event

Dc
w,` occurs, i.e., Delaunay edges with points with distance more than w to the

boundary can have length at most `. In the case of this event we have that if L
has distance more than c0

√
log (n+m)/(n− 2) = 2` > w to the boundary then

it can only be reached by Delaunay edges of length at most `. The endpoints of
these edges then have distance more than ` = w to the boundary, and therefore
can only be reached by edges of length `.

Figure 3.8 shows the set of points with a distance `′ ≤ ` to L. Using the
bound 3.17, we can bound the probability that a point with distance `′ to L
has a Delaunay edge intersecting L by 6(1 − π`′2/24)n−1. The density of the
distribution of the first n points is 1 and therefore the probability for a single
point to reach L is bounded by

2π
∫ `

0
t6(1− πt2/24)n−1dt+ 2|L|

∫ `

0
6(1− πt2/24)n−1dt.

In Figure 3.8 the first integral corresponds to R1 and R3 (using polar coordi-
nates) while the second integral corresponds to R2. For the first integral we
have

2π
∫ `

0
t6(1− πt2/24)n−1dt =

144
n

∫ `

0

t nπ

12
(1− πt2/24)n−1dt

= −144
n

[
(1− πt2/24)n

]`
t=0

≤ 144
n
.

For the second integral we have

2|L|
∫ `

0
6(1− πt2/24)n−1dt ≤ 12|L|

∫ `

0
(1− πt2/24)n−1dt

= 12|L|
√

24/π
∫ `
√
π/24

0
(1− t2)n−1dt

≤ 24|L|
√

6/π
1√
n

since ∫ 1

0
(1− t2)n−1dt =

2 · 4 · 6 · · · · · (2n− 2)
3 · 5 · 7 · · · · · (2n− 1)

≤ 1√
n

(3.18)

and `
√
π/24 ≤ 1. The latter is the case because L has distance at least 2` to

the boundary and therefore C contains a disk with area 4π`2 and C has area
1. For (3.18) we refer to [84] but sketch how it can be derived: the equality
in (3.18) can be derived by substituting t by sinx. This gives∫ 1

0
(1− t2)n−1dt =

∫ π/2

0
cos2n−1 xdx.
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For this integral the equality in (3.18) is known (and follows by integration by
parts and induction). The inequality in (3.18) follows by induction.

Summarizing, we have in the case of the event Dc
w,` that the probability for

one of the first n points to have a Delaunay edge intersecting L is bounded by

24
√

6/π|L| 1√
n

+ 144
1
n
.

For the remaining m points we have by their density bound the same probability
with n replaced by m and an additional factor of λm. Thus, the expected
number of points with Delaunay edges intersecting L is bounded by

24
√

6π|L|n+ λmm√
n

+ 144
n+ λmm

n
.

By Euler’s formula the number of intersecting edges is therefore bounded by 3
times this value.

It remains the case that Dw,` occurs. The total number of edges in the
triangulation is bounded by 3(n + m) and P [Dw,`] ≤ 1/(n + m). Therefore
this case contributes at most 3(n+m)/(n+m) ≤ 3 to the expected number of
intersections. In total we have a bound of

72
√

6π|L|n+ λmm√
n

+ 435
n+ λmm

n
.

Thus, the constants c0, c1, and c2 can be bounded independently of C which
strengthens the statement of Lemma 3.2. Let us briefly discuss the bound on
c0 because different values for c0 have been given previously. Devroye, Mücke
and Zhu [50] give a value of c0 = 3 in Lemma 3.2 but do not provide a proof.
Devroye, Lemaire and Moreau [49] give a value of c0 = 10 for Lemma 3.2 for
the special case of the unit square. In the previous lemma we give a value of
c0 = 4

√
6/π < 5.53. By bounding P [Dw,`] only by n−1/2 we can improve this

to c0 = 4
√

5/π < 5.05.
Next we generalize Lemma 3.19.

Lemma 3.26. Let X1, . . . , Xn, Y1, . . . , Ym be independently and uniformly dis-
tributed points in a convex region C. Let π : {1, . . . ,m} → {1, . . . ,m} be
the permutation corresponding to a space-filling curve order of Y1, . . . , Ym for
a Hölder-1/2 continuous and bi-measure preserving space-filling curve. For
1 ≤ i ≤ m − 1 let Ii denote the number of intersections between the Delaunay
triangulation of X1, . . . , Xn, Yπ(1), . . . Yπ(i) and the segment of the space-filling
curve tour from Yπ(i) to Yπ(i+1). Then

E

[
m−1∑
i=1

Ii

]
∈ O(m2/n+ n)

Proof. Recall that µC is the area of C and

µs := µ
(
[ψ∗(y), ψ∗(y′)] ∩ ψ−1(C)

)
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for a segment (y, y′) of the space-filling curve tour. Without loss of generality
let the area of C be 1.

First consider the eventD that the space-filling curve tour through Y1, . . . , Ym
contains a segment s with µs > 2 logm

m−1µC . By Lemma 3.22 the probability of
this event is bounded from above by 1

m . In this case we bound for every tour
segment, the number of intersections with the Delaunay triangulation by the
number of edges in the triangulation which in turn is bounded by 3(n + m).
Thus, this event contributes less than 3n/m + 3 to the expected total number
of intersections.

Now we consider the case that this event does not occur. In this case
we have by Lemma 3.22 that if we condition under Yπ(i) and Yπ(i+1) for an
i ∈ {1, . . .m− 1} then the density function of the distribution of the remaining
points of the tour is bounded by λm ∈ O(1 + logm/m).

In the following we will consider for a tour segment (Yπ(i),Yπ(i+1)) for 1 ≤
i ≤ m − 1 the intersection with the Delaunay triangulation of the points
X1, . . . , Xn, Yπ(1), . . . , Yπ(i−1), i.e., the case that even the starting point of the
tour segment is not yet inserted. The bound obtained in this way changes when
additionally having Yπ(i) in the triangulation at most by the update cost when
inserting Yπ(i). Thus, summing over all tour segments the additional cost is in
O(m+ n) ⊂ O(m2/n+ n).

By Lemma 3.25 the expected number of intersections for a tour segment L
with distance at least c0

√
log(n+m)/(n− 2) to the boundary is bounded by

c1
n+ λmm

n
+ c2|L|

n+ λmm√
n

with c0, c1, and c2 as in Lemma 3.25. Therefore such line segments contribute
at most

c1m
n+ λmm

n
+ c2

√
m
n+ λmm√

n
∈ O

(√
mn+

m2

n

)
.

Next we consider the line segments of the tour near the boundary, i.e., line
segment with an endpoint closer than c0

√
log(n+m)/(n− 2) to the boundary.

The expected number of points on the tour near to the boundary might change
by conditioning under the event D but it can increase in this case at most by
1/P [D] ≤ m/(m− 1). Thus, the expected number of points near the boundary
is at most

m′ := c0 |∂C|
m2

m− 1

√
log (n+m)/(n− 2).

Choosing for n > 2

w := (log (n+m)/(n− 2))2/3 and
` := 6

√
2(log (n+m)/(n− 2))1/3.

gives using Lemma 3.23 (as in the proof of Lemma 3.19) as bound on the number
of intersections near the boundary
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3(n+ λmm)(|∂C|2m′w + π`22m′ + 2`cT
√

3m′)

∈ O
(

(n+m)(m(log(n+m)/n)7/6 +
√
m(log(n+m)/n)5/6)

)
⊂ O

(√
mn+

m2

n

)
with probability at least 1−1/(n+m)2. The remaining case contributes at most
O(1) to the expected number of intersections. As in the proof of Lemma 3.19
this can be seen by taking the worst-case bound of 3(n + m) intersections per
tour segment.

Theorem 3.27. Using a biased randomized insertion order and, in each round,
walking along a Hölder-1/2, bi-measure preserving space-filling curve, the incre-
mental construction algorithm runs in linear expected time for points distributed
independently and uniformly at random in a bounded convex region, assuming
linear time bucketing for the space-filling curve computation.

Proof. By Corollary 2.10, a space-filling curve order can be computed in linear
expected time and by Proposition 3.7 the expected update cost is linear. We
therefore only need to bound the expected time for point location.

We analyze only the last round. The overall linearity then follows from the
linearity of expectation. For analyzing the last round we use Lemma 3.26. It
remains to see for N points that the expected value of m2/n is linear in N
where n comes from a binomial distribution B with N tries and probability
1/α and m equals N − n. The expected value of m2/n is

E
[

(N −B)2

B

]
= N2 E

[
1
B

]
− 2N − E [B] .

By Jensen’s inequality and by inserting E [B] = N/α we obtain

E
[

(N −B)2

B

]
≤ N2

N/α
− 2N −N/α = (α+ 1/α− 2)N.

Finally, it is necessary to take into account that the starting point of each
line segment walk is a vertex of the Delaunay triangulation and we therefore
need to bound its degree to find the first triangle stabbed by the line segment.
This can be bounded by the update cost which is expected to be linear [3].

Conclusion

The two main results of this chapter are a generalized analysis of incremental
constructions con BRIO and the linear expected running time of incremental
constructions con BRIO when used with a space-filling curve order on indepen-
dent uniformly distributed points in a convex region in the plane.

The first result describes the worst-case behaviour of incremental construc-
tions con BRIO in terms of the degree of the configuration space and the sam-
pling parameter α. The result suggests to use a small sampling parameter α,
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i.e., a large sampling ratio. We will see in the next chapter that this is not
necessarily the case because further trade-offs have to be taken into account.

The second result describes the average-case behaviour of the algorithm on
uniformly distributed points in the plane. In the next chapter we will analyze
the running time of the algorithm on uniformly distributed points in higher
dimension. Nonetheless, the results of the next chapter do not fully generalize
the result obtained here. First, the analysis here holds for arbitrary convex
regions while the analysis of the next chapter applied to uniformly distributed
points holds for points in a d-cube. Second and more important, the analysis of
this chapter also holds for other traversals of the points than space-filling curve
orders. An open problem is to obtain a similar result in higher dimensions.


