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Abstract

By use of asymptotic analysis a column model for the long time evolution of
deep convective precipitating clouds is derived and validated. The analysis is
based on the three dimensional compressible flow equations coupled with a bulk
microphysics parameterization consisting of transport equations for the mixing
ratios of the moisture species water vapour, cloud water and rain water.

The asymptotically reduced model is anelastic, yet the vertical motion is “pres-
sure free”, i.e., it evolves freely in interaction with buoyancy while the horizon-

tal divergence adjusts to fulfil the anelastic constraint. The perturbation pres-
sure guaranteeing compliance with the horizontal divergence constraint obeys
a Poisson-type equation. Surprisingly, the vertical velocity plays an important
role in the horizontal dynamics through the Coriolis term. The vertical accel-
eration in a saturated column is directly determined by the buoyancy induced
by potential temperature differences relative to the background stratification.
This potential temperature deviation is a conserved quantity.

Evaporation is the only important microphysical process in the undersaturated
regime. The evaporation rate depends on the saturation deficit and the amount
of rain water present and determines the (downward) vertical velocity and the
distribution of water vapour.

The plausibility of the reduced systems of equations is checked by comparing
implications of the model for the scaling of various terms in the governing
equations with those extracted from large eddy simulation data based on the
computational model UCLA-LES1.1. This code solves an anelastic system of
equations with complete droplet based microphysics and LES closures.

We observe that the simulation data corroborate the basic assumptions of the
asymptotic analysis and the main conclusions implied by the asymptotically
reduced model.

The code output reflects the scales of space and time: The deep convective
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clouds show an anisotropic structure where the horizontal scale is considerably
narrower than the vertical scale; with a period of about 20 min, from emergence
to breakup, the life cycle of one particular deep convective cloud corresponds
exactly to the reference time of the reduced model.

The characteristic properties of dynamics as predicted by the reduced model
are also reflected in the simulation data: The horizontal flow is controlled by
the pressure field; the vertical velocity develops freely independent of pres-
sure over the depth of the convective column; the vertical velocity is directly
determined by the buoyancy induced by the potential temperature deviation
relative to the background stratification.

With respect to grid resolution we observe that refining the spatial step size
of the equidistant computational grid from 125 m to 62.5 m does not influence
the results: Even with the coarser grid the relevant physical phenomena are
sufficiently resolved.

As the Coriolis term involving vertical velocity and acting on the horizontal
(east-west) velocity component appears at leading order in the asymptotics,
we expected to find a nontrivial impact of this Coriolis effect on the horizontal
flow velocity components within columns of updrafts. However, switching the
term on and off in subsequent simulations did not sizeably affect the results.
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Zusammenfassung

Mit Hilfe der asymptotischen Analyse wird ein Säulenmodell für die Lang-
zeitentwicklung hochreichend konvektiver Regenwolken hergeleitet und vali-
diert. Die Analyse basiert auf den dreidimensionalen kompressiblen Strömungs-
gleichungen in Verbindung mit einer makroskopischen Parametrisierung der
Mikrophysik. Diese besteht aus Transportgleichungen für die Mischungsver-
hältnisse der Feuchtespezies Wasserdampf, Wolkenwasser und Regenwasser.

Das asymptotisch reduzierte Modell ist anelastisch, dennoch ist die Vertikal-
bewegung ”druckfrei“, d.h. sie entwickelt sich frei in Interaktion mit dem Auf-
trieb, während sich die horizontale Divergenz anpaßt, um die anelastische Be-
dingung zu erfüllen. Der Stördruck, der die Einhaltung der horizontalen Di-
vergenzbedingung garantiert, gehorcht einer Poisson-artigen Gleichung. Über-
raschenderweise spielt die Vertikalgeschwindigkeit durch den Coriolis-Term ei-
ne wichtige Rolle bezüglich der horizontalen Dynamik. Die Vertikalbeschleu-
nigung in einer gesättigten Säule wird direkt durch den Auftrieb bestimmt, der
durch Abweichungen in der potentiellen Temperatur relativ zur Hintergrund-
schichtung entsteht. Diese potentielle Temperaturdifferenz ist eine Erhaltungs-
größe.

Verdunstung ist der einzige bedeutende mikrophysikalische Prozeß im un-
tersättigten Regime. Die Verdunstungsrate hängt vom Sättigungsdefizit und
der vorhandenen Regenwassermenge ab und bestimmt die (nach unten gerich-
tete) Vertikalgeschwindigkeit und die Wasserdampfverteilung.

Die Plausibilität der reduzierten Gleichungssysteme wird überprüft durch den
Vergleich der Schlußfolgerungen aus dem Modell hinsichtlich der Skalierung
verschiedener Terme in den bestimmenden Gleichungen mit den Schlußfolge-
rungen, die aus Large-Eddy Simulationsdaten basierend auf dem Computer-
modell UCLA-LES1.1 extrahiert werden. Dieses Programm löst ein anelasti-
sches Gleichungssystem mit vollständiger tröpfchenbasierter Mikrophysik und
LES-Schließungen.
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Wir beobachten, daß die Simulationsdaten die Grundannahmen der asympto-
tischen Analyse und die Hauptschlußfolgerungen aus dem asymptotisch redu-
zierten Modell bestätigen.

Die Programmausgabe spiegelt die räumlichen und zeitlichen Skalierungen wi-
der: Die hochreichend konvektiven Wolken weisen eine anisotrope Struktur auf,
bei der die horizontale Ausdehnung deutlich schmaler ist als die vertikale; mit
einer Zeitspanne von etwa 20 min von der Entstehung bis zur Auflösung ent-
spricht die Lebensdauer einer einzelnen hochreichend konvektiven Wolke exakt
der Referenzzeit des reduzierten Modells.

Die charakteristischen Eigenschaften der Dynamik, wie sie durch das reduzier-
te Modell vorhergesagt werden, spiegeln sich ebenso in den Simulationsdaten
wider: Die horizontale Strömung wird vom Druckfeld kontrolliert; die Vertikal-
geschwindigkeit entwickelt sich frei unabhängig vom Druck über die gesamte
Höhe der konvektiven Säule; die Vertikalgeschwindigkeit wird direkt durch den
Auftrieb bestimmt, der durch die Abweichung der potentiellen Temperatur re-
lativ zur Hintergrundschichtung entsteht.

Hinsichtlich der Gitterauflösung beobachten wir, daß eine Verfeinerung der
Ortsschrittweite des äquidistanten Rechengitters von 125 m auf 62.5 m die Er-
gebnisse nicht beeinflußt: Auch mit dem gröberen Gitter werden die relevanten
physikalischen Phänomene genügend aufgelöst.

Da der Coriolis-Term, der die vertikale Geschwindigkeit einbezieht und auf die
horizontale (Ost-West) Geschwindigkeitskomponente wirkt, in der Asymptotik
in führender Ordnung auftritt, haben wir erwartet, einen nichttrivialen Einfluß
dieses Coriolis-Effektes auf die horizontalen Strömungsgeschwindigkeitskom-
ponenten in Aufwindsäulen zu finden. Das An- und Ausschalten dieses Terms
in aufeinanderfolgenden Simulationen hat die Ergebnisse jedoch nicht beträcht-
lich beeinflußt.
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1. Introduction

The Significance of Clouds

Clouds play a decisive role in both the daily weather pattern and the long-term
climate variation. They constitute a moisture reservoir carried by the wind
and represent the preliminary stage of precipitation. By reflection, absorption,
and transmission of electromagnetic waves in the visible and infrared spectra
they influence directly the atmosphere’s heat budget.

For theory development and computer simulation clouds pose a particular chal-
lenge since they are determined by the interaction of a multitude of individual
processes. Some of them take place in the size range of small cloud droplets
(micrometres), some in the size range of typical turbulent flow fluctuations
(metres), some in the size range of characteristical cumulus clouds (one to
ten kilometres). Large stratocumulus cloud layers above the oceans even span
several thousands of kilometres. For this reason cloud processes belong to the
class of multi scale phenomena investigated intensely by natural scientists and
mathematicians these days.

Model Derivation

Moist convection plays an important role in many atmospheric systems. Deep
convection is a thermodynamically driven process that transports momentum,
heat, and moisture and usually results in strong precipitation which interacts
with the atmosphere through evaporation. Emanuel, [2], explains that by the
net release of latent heat integrated through the depth of the troposphere
deep convection has strong effects on the dynamics and thermodynamics of
the atmospheric circulation systems in which it is embedded.

Convection occurs on a range of temporal and spatial scales. Deep convection
spans the whole depth of the troposphere. Vertical velocities in deep convective
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1. Introduction

events can reach values of 10 m/s, and the width of the convective elements
seem to be of the order of 1 km. Observations have revealed that the mean
diameter does not vary much with height and the lifetime of individual cells
typically is about 30 min. An excellent short review on deep precipitating
convection may be found in [20].

This study is motivated by the need to elucidate the character of deep convec-
tion, in particular convective elements of O(1 km) in the horizontal. While the
integral effects of these elements are very interesting, here we address the dy-
namics of the individual elements themselves with the aim of gaining physical
insight into the mechanisms involved. Such a detailed analysis will not only
add to our knowledge on how convection works but also generate new ideas
for the parameterization of convection in atmospheric models.

The objective of this work is to carry out a scale analysis of a set of flow
equations for the moist atmosphere involving the compressible flow equations
in conjunction with a bulk microphysics closure scheme for the transport of
water vapour, clouds, and rain water. A distinguished limit between the scaling
parameters of the atmospheric motion and those of the phase change and
coagulation processes is established, and the coupling and interaction of gas
dynamics and humidity transport is analysed through asymptotic analysis.

The method of deriving the asymptotic model is structured in three steps.
The first step is to write the equations in nondimensional form by referring
the dependent variables to characteristic reference values. Thus combinations
of reference values build typical dimensionless numbers, e.g. Sr, M, Fr, Ro.
These dimensionless numbers are then expressed in terms of a small parameter
ε ≪ 1. According to [14], the expansion parameter ε is identified as the cubic
root of the universal acceleration ratio, aΩ2/g, where a is the Earth’s radius,
Ω the diurnal rotation frequency and g the acceleration of gravity. In practice,
ε ∼ 1/7. In Section 2 we derive the governing equations for both the gas
dynamics and the humidity transport constituting the starting point of the
asymptotic scale analysis. As second step, length and time coordinates are
scaled with ε depending on the phenomena that are to be described by the
model. In the third step asymptotic series expansions for all the dependent
variables are introduced: Let U = (p, ̺, w,vq, θ, . . . ), then U = U(x, z, t, ; ε)
=

∑
i

εiU (i) with, e.g., U (i) = U (i)(ε−1x,x, z, t) = U (i)(ξ,x, z, t). As each

equation has to be fulfilled in every order of ε, one single equation can be
written as a series of equations arranged according to powers of ε. Each of the
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original equations has to be considered up to the order of ε that is necessary to
obtain a closed system of equations for the desired quantity in leading order.

This work is related to that of Klein and Majda, [11], in which two deep
convective multiple-scales regimes (vertical scale of 10 km) were investigated.
These were the bulk micro / convective regimes with horizontal scales of 1 km
and 10 km on a timescale of 2 min, and the convective / mesoscale regime
with horizontal scales of 10 km and 100 km on a timescale of 20 min. In this
study we deal with a deep convective regime, restriciting to a single scale in
each spatial direction, and to a single time scale. In Section 3 we consider the
long time evolution (20 min) of deep convective columns with characteristic
horizontal dimensions of 1 km. The model describing the life cycle of deep
convective columns may be used to extend the multiscale model from Klein
and Majda, [11], considering the horizontal bulk micro and convective scales
on both the short initiation time scale of 2 min and the deep convective time
scale of 20 min, resulting in a model with multiple length and time scales.
Section 4 summarises the main results of the asymptotic analysis.

Model Validation

The strategy of validation is to compare the conclusions that can be drawn
from the reduced asymptotic system of equations to simulation data based on
a detailed model. For this purpose the UCLA (University of California Los
Angeles) Large-Eddy Simulation Code UCLA-LES1.1 is used. This code solves
an anelastic system of equations with complete droplet based microphysics. In
order to confirm the plausibility of the asymptotic deep convective column
model, it has to be checked whether its features are reflected in the UCLA-
LES1.1 simulation data.

In this way, provided that the reduced model captures the essential mecha-
nisms of moist convection, its solution with efficient numerical methods using
moderate computational resources could then be used as a subgrid model of
cloud formation and precipitation in large scale numerical weather prediction
(NWP) models in the sense of superparameterization instead of a computa-
tionally intensive cloud resolving model (CRM).

So far in the superparameterization technique for each column of the coarser
grid a CRM is run explicitly on a finer grid. Detailed discussions of this method
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1. Introduction

are provided by Grabowski [4], [5], [6], Khairoutdinov and Randall [8] and in
the review paper by Randall et al. [16]. Recent publications on this topic are
provided by Majda [13] and Majda and Xing [15]. The comparison between
superparameterization and conventional subgrid models of convective clouds
for the NCAR (National Center for Atmospheric Research) climate model by
Khairoutdinov et al. [9] shows that the superparameterization technique is
very computing time consuming at present and can therefore not be applied
to weather forecast models right now. Perhaps the asymptotically reduced
model investigated in this study might be used for superparameterization in
operational weather forecast models in the future.

Section 5 presents the model equations, the parameterizations and the numer-
ical algorithm implemented in UCLA-LES1.1. This section also describes the
initial and boundary conditions used to initialise deep convection and illus-
trates the characteristics of the observed deep convective clouds. In Section 6
we explain how the asymptotic perturbation quantities are extracted from
the code-output. In order to get to know the behaviour of the code, we also
study its representation of hydrostatics and the compliance with the diver-
gence constraint in this section. Section 7 provides the detailed discussion of
the correlations between the asymptotic unknowns themselves and between
the terms in the asymptotic vertical momentum balance. This section also
discusses the simulation with higher spatial resolution and the simulation with
the horizontal Coriolis parameter. In Section 8 we draw the conclusions of the
comparison between the asymptotically reduced model and the UCLA-LES1.1
data.
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2. Governing Equations

This section provides the basic set of equations to be used in this work. These
are the three dimensional compressible flow equations including gravity and
rotation of the earth and a bulk microphysics parameterization consisting of
transport equations for the mixing ratios of water vapour, cloud water and
rain water.

2.1. Equations of Mass, Momentum, Potential
Temperature and Equation of State

The dimensionless equations for mass, momentum and potential temperature
and the appropriate equation of state have been derived in [11] and are:

Mass Balance

̺t + ∇x · (̺vq) + (̺w)z = 0, (2.1)

Momentum Balance (horizontal and vertical)

(̺vq)t + ∇x · (̺vq ◦ vq) + (̺vqw)z + ε(Ω̂ × ̺v)
q
+ ε−4∇xp = 0, (2.2)

(̺w)t + ∇x · (̺vqw) + (̺ww)z + ε(Ω̂ × ̺v)
⊥

+ ε−4pz = −ε−4̺, (2.3)

Transport Equation for the Potential Temperature

θt + vq · ∇xθ + wθz = Sθ, (2.4)
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2. Governing Equations

Equation of State

θ̺ = p1−Γε. (2.5)

Here the equations have been made dimensionless by typical values of the
atmospheric dynamics. The horizontal velocity component vq is scaled with
the characteristic flow velocity speed in the atmosphere uref = 10 m s−1; w
is the vertical velocity component also scaled with uref . The independent
variables length x and time t are made dimensionless with ℓref = 104 m and
tref = ℓref

uref
= 103 s. The characteristic length ℓref is equivalent to the pressure

scale height, i.e., vertical distance with significant pressure drop. The density ̺
and the pressure p have been made dimensionless with ̺ref = 1.25 kg m−3 and
the typical value for the surface atmospheric pressure pref = 105 kg m−1s−2,
respectively. The characteristic value for the potential temperature θ scaling
is chosen from the equation of state relation, i.e., θref = pref

Rd̺ref
= 273.16 K,

where Rd = 287 J kg−1 K−1 is the specific gas constant of dry air. The
small parameter ε results from a distinguished limit relating the dimensionless
parameters resulting from nondimensionalization, namely the Froude number
Fr, Mach number M and Rossby number Roℓ, as follows:

Fr =
uref√
gℓref

∼ ε2, M =
uref

cref

∼ ε2 and Rol =
uref

2 Ωlref
∼ ε−1. (2.6)

Here cref =
√

pref/̺ref =
√

gℓref is of the order of the speed of sound and is
related to the speed of the gravity wave in a barotropic atmosphere, and Ω
= 10−4 s−1 is the earth’s rotation frequency. It is worth noting that from
dimensional analysis consideration, one can consider ε in terms of properties
of the rotating earth through the dimensionless parameter

ε =

(
aΩ2

g

) 1
3

∼ 1

7
, (2.7)

where a = 6 × 106 m is the earth’s radius, g = 10 m s−2 acceleration due
to gravity and rotation frequency Ω. The product aΩ2 can be considered as
the absolute acceleration of points on the earth surface induced by its rota-
tion. Thus ε can physically be interpreted as a ratio of two accelerations.
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2.2. Cloud Microphysics Equations

Equation (2.5) is obtained from the perfect gas equation of state, which when
nondimensionalized leads to p = (̺θ)γ. The ratio γ of the thermodynamic spe-
cific heats cp and cv, at constant pressure and constant volume, respectively,(
γ = cp

cv
= 1.4

)
for air, is useful in compressible flow studies. A Newtonian

limit is introduced by setting

γ − 1

γ
∼ Γε, (2.8)

with Γ = O(1) as ε → 0. See [11] for further discussion.

Finally, the source and sink term, Sθ, appearing in (2.4) includes latent heat
release effects, moisture effects, and also addition and removal of heat by ra-
diative effects. In this study we will neither take into account diffusive and
turbulent transport mechanisms nor radiation effects.

2.2. Cloud Microphysics Equations

The cloud microphysics is introduced by considering the transport equations
for mixing ratios of water vapour rv, cloud water rc, and rain water rr. Here
we consider the bulk paramaterization equations as given by Grabowski and
Smolarkiewicz, [7], and neglect diffusive and turbulent transport mechanisms.
The equations can be written compactly as follows:

Drv

Dt
= −Cd + Er, (2.9)

Drc

Dt
= Cd − Ar − Cr, (2.10)

Drr

Dt
=

1

̺

∂

∂z
(̺vtrr) + Ar + Cr − Er, (2.11)

where D
Dt

= ∂t + vq · ∇x + w∂z is the material derivative. The term 1
̺

∂
∂z

(̺vtrr)
represents the redistribution of rain water as it falls with the terminal velocity
vt. We have assumed that the cloud water and water vapour have negligible
terminal velocities. The microphysical interactions among water vapour, cloud
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2. Governing Equations

water and rain water are represented through the rate of condensation of water
vapour into cloud water (Cd), rate of evaporation of rain in the undersaturated
environment (Er) and coagulation processes; autoconversion of cloud water
into rain (Ar) and accretion– collection of cloud water by rain (Cr). Thus,
the model also assumes that rain only develops through autoconversion and
accretion. Further, the model does not include evaporation of cloud water since
we have assumed that the cloud water evaporates instantaneously if the air is
undersaturated. The parameterizations of these interactions in their general
(dimensionless) form are:

Ar = D1 max [0, (rc − 1)] , (2.12)

Cr = D2 rc rF1
r , (2.13)

Er =
p

̺

(rvs − rv) (̺ rr)
F2 [D3 + D4 (̺ rr)

F3 ]

D5p rvs + D6

, (2.14)

vt = D7 ̺F4 rF5
r . (2.15)

Here D1 to D7 are dimensionless numbers composed by combinations of refer-
ence values and constants, F1 to F5 are constant exponents. These numbers
and exponents are given in appendix A. The saturation mixing ratio of wa-
ter vapour rvs is described in 2.3. The parameterizations for Ar and Cr do
not depend on how autoconversion and accretion are achieved, these processes
simply take place at a rate proportional to the mixing ratio of cloud water.
The parameterization for evaporation indicates that evaporation cannot take
place if the environment is saturated i.e. the rate of evaporation is proportional
to (rvs − rv), the saturation deficit. There is no explicit parameterization for
the rate of condensation, however, it is assumed that condensation takes place
when air is saturated and that the amount of condensed water vapour forms
cloud water only.

We consider two distinct regimes in this study:

• Regime I: The water vapour is saturated in the presence of cloud water,
i.e., rc > 0 ⇒ rv = rvs . In this regime, the presence of cloud water
creates the condition necessary for condensation, autoconversion and ac-
cretion. Evaporation cannot take place as the environment is saturated.
Thus Cd, Ar, Cr ≥ 0; Er = 0.
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2.2. Cloud Microphysics Equations

• Regime II: The cloud water evaporates instantaneously in undersaturated
conditions, i.e., rv < rvs ⇒ rc = 0. In this regime, the environment is
undersaturated hence evaporation takes place, but since there is no cloud
water, condensation, autoconversion and accretion cannot take place.
Thus Er ≥ 0; Cd, Ar, Cr = 0.

Finally, the nondimensionalization of the moisture transport equations requires
reference values for the mixing ratios of the moist variables. According to
[3] the water vapour mixing ratio in the atmosphere is usually smaller than
40

g
kg

. A mass of 10 g water vapour per kg dry air can be chosen as typical

value for the mixing ratios of water vapour and saturated water vapour, the
mixing ratio of rain water is assumed to be of the same order of magnitude:

rv,ref = rvs,ref = rr,ref = 10−2 kg
kg

. Further, according to [7], the autoconversion

threshold is typically between 10−4 and 10−3 kg
kg

. The arithmetic mean is cho-

sen as reference value for the mixing ratio of cloud water: rc,ref = 55 x 10−5 kg
kg

.

After nondimensionalization with these reference values together with the sub-
stitution of (2.12) to (2.15), the parameterizations for autoconversion, accre-
tion, evaporation and the terminal falling velocity of rain drops, the evolution
equations, (2.9) – (2.11), can be written as

rvt + vq · ∇xrv + wrvz + δsCd

− p

̺

(rvs − rv) (̺ rr)
( 1
2
+λε2) [B1 + B2 (̺ rr)

µε]

B3p rvs + B4

= 0,(2.16)

rct + vq · ∇xrc + wrcz + δsAcr,1 max [0, (rc − 1)]

+
1

ε

(
δsCcr,1rcr

(1−αε)
r − KvcδsCd

)
= 0, (2.17)

rrt + vq · ∇xrr + wrrz − Vr
1

̺

∂

∂z
(̺( 1

2
+βε) r(1+βε)

r ) − εδsAcr,2 max [0, (rc − 1)]

− δsCcr,2rcr
(1−αε)
r +

p

̺

(rvs − rv) (̺ rr)
( 1
2
+λε2) [B1 + B2 (̺ rr)

µε]

B3p rvs + B4

= 0.

(2.18)
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2. Governing Equations

Here we have introduced δs to distinguish between saturated and undersatu-
rated regimes i.e. δs = 1 for saturated regime and δs = 0 in undersaturated
conditions.

As
rvs,ref

tref
is chosen to be the reference value for Cd, the factor (Kvcε

−1) mul-

tiplying Cd in (2.17) is the ratio
rvs,ref

rc,ref
. Also as a result of different reference

values for rc and rr, we have different order one terms Acr,1, Acr,2, Ccr,1 and
Ccr,2 in equations (2.17) and (2.18).

2.3. Saturation Mixing Ratio

The saturation mixing ratio characterises the maximum amount of water va-
pour an air parcel can hold. The saturation mixing ratio rvs is given in terms
of the the saturated vapour pressure es by

rvs =
ǫes

p − es

, (2.19)

where ǫ = Rd

Rv
= 287.04

461.50
= 0.622 is the ratio of the gas constants of dry air and

water vapour. Experimental results show that es depends only on temperature
T and here we use the Clausius Clapeyron formula

des

dT
=

Lcond

RvT 2
es, (2.20)

where Lcond is the latent heat of condensation which we will assume to be
constant. By integrating this relation with respect to T we get

es = e∞ exp

(
Lcond

RvT0

(T − T0)

T

)
, (2.21)

where T0 = Tref = 273.16K and e∞ = 611.2kgm−1s−2, saturated vapour pres-
sure at T0.

Making the saturated pressure dimensionless with pref leads to e∞
pref

= ε2Pvs

and ǫ e∞
pref

= ε3Rvs. By defining A = Lcond

RvT0
= 19.83 = ε−1Avs and using the

reference value for rvs from section 2.2 and the relation (T−T0)
T

= 1 − T−1

10



2.3. Saturation Mixing Ratio

= 1− θ−1pΓε = 1− ̺
p
, the water vapour saturation mixing ratio can be written

as

rvs =




Rvs exp
[
1
εAvs

(
1 − ̺

p

)]

p − ε3Pvs exp
[
1
εAvs

(
1 − ̺

p

)]


 . (2.22)
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2. Governing Equations
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3. Deep Convective Columns

This section investigates the evolution of deep convective columns with char-
acteristic horizontal dimensions of 1 km on deep convective time scales or ∼
20 min. To this end, with respect to the horizontal coordinates, a new length
scale which is a factor of ε smaller than the scale height (εℓref ≈ 1 km), and
the associated horizontal stretched coordinate ξ = ε−1x are introduced. Thus
mass and momentum balances and the transport equation for potential tem-
perature – (2.1) to (2.4) – as well as the moisture transport equations – (2.16)
to (2.18) – are rewritten as:

Mass Balance

̺t +
1

ε
∇ξ · (̺vq) + (̺w)z = 0, (3.1)

Momentum Balance (horizontal and vertical)

(̺vq)t +
1

ε
∇ξ · (̺vq ◦ vq) + (̺vqw)z + ε(Ω̂ × ̺v)

q
+

1

ε5
∇ξp = 0, (3.2)

(̺w)t +
1

ε
∇ξ · (̺vqw) + (̺ww)z + ε(Ω̂ × ̺v)

⊥
+

1

ε4
pz = − 1

ε4
̺, (3.3)

Transport Equation for the Potential Temperature

θt +
1

ε
vq · ∇ξθ + wθz = Sθ, (3.4)

13



3. Deep Convective Columns

Water Vapour Transport Equation

rvt +
1

ε
vq · ∇ξrv + wrvz + δsCd

− p

̺

(rvs − rv) (̺ rr)
( 1
2
+λε2) [B1 + B2 (̺ rr)

µε]

B3prvs + B4

= 0, (3.5)

Cloud Water Transport Equation

rct +
1

ε
vq · ∇ξrc + wrcz + δsAcr,1 max [0, (rc − 1)]

+
1

ε

(
δsCcr,1rcr

(1−αε)
r − KvcδsCd

)
= 0, (3.6)

Rain Water Transport Equation

rrt +
1

ε
vq · ∇ξrr + wrrz − Vr

1

̺

∂

∂z
(̺( 1

2
+βε) r(1+βε)

r ) − εδsAcr,2 max [0, (rc − 1)]

− δsCcr,2rcr
(1−αε)
r +

p

̺

(rvs − rv) (̺ rr)
( 1
2
+λε2) [B1 + B2 (̺ rr)

µε]

B3prvs + B4

= 0.

(3.7)

Subsequently for all the dependent variables, asymptotic series expansions are
introduced. If these variables are contained in U = (p, ̺, w,vq, θ, . . . ), then
the expansion

U(ξ, z, t, ; ε) =
∑

i

εiU (i)(ξ, z, t) (3.8)

is assumed.

The system constituted by the flow and moisture equations described in this
section is obtained under the assumptions θ(0) = 1, θ(1) = 0 (see [11] for further

14



3.1. Analysis of the Mass and Momentum Balance Equations

discussion) and p
(i)
t = 0 for i = 0, . . . , 3 with the aim of deriving a closed system

of equations for the vertical velocity in leading order w(0).

3.1. Analysis of the Mass and Momentum Balance
Equations

We shall begin by analysing the mass and momentum balance equations since
they are independent of the regime under consideration. Substitute the ex-
pansion (3.8) into (3.1) - (3.3) and collect all terms multiplied by powers of ε
and equate these to zero to get:

Mass Balance

In the mass balance equation terms of order ε−1 appear and thus we obtain as
first condition

∇ξ · v(0)
q

= 0. (3.9)

We shall show later in section 3.3 that ̺(0) = ̺(0)(z). Trivial solutions to this

equation include v
(0)
q

= 0 or v
(0)
q

= v
(0)
q

(z). The solution v
(0)
q

= v
(0)
q

(z) is
appropriate when one wants to include influence of the vertical wind shear
on deep convection. The importance of the vertical shear in maintaining the
convection has been studied by [17]. However in the subsequent analysis in

the present paper we will assume that v
(0)
q

= 0 in a first step.

Next, we consider the mass equation at leading order and again make use of
̺(0) = ̺(0)(z) to obtain the equation

̺(0)∇ξ · v(1)
q

+ (̺(0)w(0))z = 0. (3.10)

This form of continuity equation constitutes the anelastic approximation. It
retains leading order density variation with height and provides a non-homo-
geneous divergence constraint for the horizontal flow. Note that in this equa-
tion the first order horizontal, but the leading order vertical velocities appear.
This is in accordance with the anisotropic spatial scales in this regime.

15



3. Deep Convective Columns

Horizontal Momentum Balance

∇ξp
(i) = 0; i = 0, . . . , 5. (3.11)

vq

(1)
t + v

(1)
q

· ∇ξv
(1)
q

+ w(0)vq

(1)
z + (w(0)Ω̂q × k) +

1

̺(0)
∇ξp

(6) = 0. (3.12)

The pressure p(6) in (3.12) is the Lagrangian multiplier corresponding to equa-
tion (3.10), i.e., it has to adjust in such a way that the divergence constraint
from the continuity equation is fulfilled. The setting here is a bit different than
in classical incompressible or anelastic flows, because here the vertical veloc-
ity is developing freely independent of the pressure, while only the horizontal
divergence is controlled by a pressure field.

A notable feature of the horizontal momentum balance (3.12) is the Coriolis

term due to vertical motion (w(0)Ω̂q × k). It is the product of the vertical
velocity in leading order and the horizontal Coriolis parameter, the horizontal
component of Earth’s rotation vector. This horizontal Coriolis parameter is
usually neglected in meteorological applications. However, this part of the
Coriolis force could account for the onset of large scale rotation within an
otherwise uncorrelated agglomeration of unstable updrafts. The value of this
term is the product of the leading order vertical velocity and the cosine of the
degree of latitude. This means that it is zero at the poles, while being maximal
near the equator.

Vertical Momentum Balance

p(i)
z = −̺(i); i = 0, . . . , 3. (3.13)

̺(0)w
(0)
t + ̺(0)v

(1)
q

· ∇ξw
(0) + ̺(0)w(0)w(0)

z + p(4)
z + ̺(4) = 0. (3.14)

Equation (3.14) is non-hydrostatic and shows that w(0) may change locally by
advection, by background pressure p(4) and buoyancy. The pressure in the
vertical and horizontal momentum equations appears in different orders, p(4)

and p(6) respectively.

Since ∇ξp
(4) = 0, the pressure p(4) is imposed on the air column by the

background flow as in boundary layer like models. This means that p(4) at

16



3.1. Analysis of the Mass and Momentum Balance Equations

any point is equal to hydrostatic environment pressure at the same level i.e.
∂p(4)

∂z
= −̺

(4)
out. Thus by making use of the expansion of the equation of state

(3.20), we can write (3.14) as

w
(0)
t + v

(1)
q

· ∇ξw
(0) + w(0)w(0)

z = θ(4) − θ
(4)
out. (3.15)

This equation implies that the vertical motion production is mostly affected
by the buoyancy term θ(4)−θ

(4)
out. Convection is enhanced if θ(4) remains higher

than θ
(4)
out at all heights.

The pressure p(5) in the pressure expansion has the same behaviour as p(4) and
does not play any role in the dynamics described here.

Combining (3.12) and (3.15), one gets an expression for the perturbation pres-
sure p(6) which obeys a Poisson type equation

∇2
ξ
p(6) = −∇ · (̺(0)v(1) · ∇v(1)) − ̺(0)∇ξ · (w(0)Ω̂q × k) − ∂

∂z
(θ

(4)
out − θ(4))̺(0),

where
v(1) ≡ v

(1)
q

+ w(0)k.

On the left hand side there is the horizontal Laplacian of p(6). The first term
on the right hand side is related to the gradient of velocity rotation and shear
terms. The second term acts to redistribute Coriolis force induced by the
motion, and the third term is due to the vertical gradient of temperature
deviation attributable to the difference in temperature within and outside the
column. It is important to note that the vertical velocity plays a significant
role in the horizontal pressure redistribution through the Coriolis term.

Equations of state and the saturation mixing ratio expansions are also valid
for both regimes under consideration, and the expansions are:

Equations of State

̺(0) − p(0) = 0, (3.16)
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3. Deep Convective Columns

̺(1) + Γ̺(0) ln ̺(0) − p(1) = 0, (3.17)

̺(2) + θ(2)̺(0) − 1

2
Γ2̺(0)

(
ln ̺(0)

)2
+ Γp(1) ln ̺(0) + Γp(1) − p(2) = 0, (3.18)

̺(3) + θ(2)̺(1) + θ(3)̺(0) +
1

6
Γ3̺(0)

(
ln ̺(0)

)3 − 1

2
Γ2p(1)

(
ln ̺(0)

)2

−Γ2p(1) ln ̺(0) + Γp(2) ln ̺(0) + Γp(2) − p(3) +
1

2
Γ

p(1)2

̺(0)
= 0, (3.19)

̺(4) + θ(2)̺(2) + θ(3)̺(1) + θ(4)̺(0)

− 1

24
Γ4̺(0)

(
ln ̺(0)

)4
+

1

6
Γ3p(1)

(
ln ̺(0)

)3
+

1

2
Γ3p(1)

(
ln ̺(0)

)2

−1

2
Γ2p(2)

(
ln ̺(0)

)2 − Γ2p(2) ln ̺(0) + Γp(3) ln ̺(0) + Γp(3) − p(4)

−1

2
Γ2p(1)2

̺(0)
ln ̺(0) − 1

2
Γ2p(1)2

̺(0)
+ Γ

p(1)p(2)

̺(0)
− 1

6
Γ

p(1)3

̺(0)2
= 0. (3.20)

Water Vapour Saturation Mixing Ratio

r(0)
vs = Rvsp

(0)AΓ−1
, (3.21)

r(1)
vs = Rvsp

(0)AΓ−1
[
Aθ(2) − 1

2
AΓ2

(
ln p(0)

)2
]

+Rvsp
(0)AΓ−2

[
p(1)

(
AΓ − 1

)]
, (3.22)
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3.2. Analysis of the Moist Thermodynamics Equations

r(2)
vs = Rvsp

(0)AΓ−1
[
Aθ(3) +

1

2
A2θ(2)2 − AΓθ(2) ln p(0)

−1

2
A2Γ2θ(2)

(
ln p(0)

)2
+

1

6
AΓ3

(
ln p(0)

)3

+
1

8
A2Γ4

(
ln p(0)

)4
]

+Rvsp
(0)AΓ−2

[
p(1)

(
A2Γθ(2) − Aθ(2) − AΓ2 ln p(0)

+
1

2
AΓ2

(
ln p(0)

)2 − 1

2
A2Γ3

(
ln p(0)

)2
)

+p(2)

(
AΓ − 1

)]

+Rvsp
(0)AΓ−3

[
p(1)2

(
1 − 3

2
AΓ +

1

2
A2Γ2

)]
. (3.23)

All the terms appearing in equations (3.16) to (3.23) are pure functions of z
except the two terms in equation of state (3.20) involving ̺(4) and θ(4) which
are functions of ξ and t in addition to z.

3.2. Analysis of the Moist Thermodynamics Equations

From the assumption p
(i)
t = 0 for i = 0, 1, 2, 3 and the hydrostatic equations

(3.13) it follows that ̺
(i)
t = 0 for i = 0, 1, 2, 3. This implies from the equations

of state (3.18), (3.19) and from the saturation mixing ratio equations (3.21) -
(3.23) that

θ
(i)
t = 0, and r(i)

vs t = 0 for i = 0, 1, 2, 3. (3.24)

Also taking the horizontal gradient of (3.13) and making use of (3.11) results
in ∇ξ̺

(i) = 0 for i = 0, 1, 2, 3 which again implies from the equations of state
(3.18), (3.19) and from the saturation mixing ratio equations (3.21) - (3.23)
that

∇ξθ
(i) = 0 and ∇ξr

(i)
vs = 0 for i = 0, 1, 2, 3. (3.25)
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3. Deep Convective Columns

Transport Equation for the Potential Temperature

By making use of (3.24) and (3.25), the expansions of the potential temperature
are:

w(0)θ(2)
z = S

(2)
θ , (3.26)

w(0)θ(3)
z + w(1)θ(2)

z = S
(3)
θ , (3.27)

θ
(4)
t + v

(1)
q

· ∇ξθ
(4) + w(0)θ(4)

z + w(1)θ(3)
z + w(2)θ(2)

z = S
(4)
θ . (3.28)

Source Term

The crucial mechanism for the development of a deep convective system is
the release of latent heat by an ascending air parcel. The source term Sθ in
equation (3.4) represents this mechanism in the following way:

Sθ = ε2Γ
θ

p
̺L(Cd − Er).

In the saturated air regime rv = rvs, then (3.5) implies that Cd = − D
Dt

rvs. In
the undersaturated air regime (Cd −Er) = −Er. Thus the source term can be
written as

Sθ = −ε2Γ
θ

p
̺L

(
δs

D

Dt
rvs

+
p

̺

(rvs − rv) (̺ rr)
( 1
2
+λε2) [B1 + B2 (̺ rr)

µε]

B3prvs + B4

)
,

(3.29)

where D
Dt

rvs = rvst + 1
ε
vq · ∇ξrvs + wrvsz, and Er has been replaced by the

corresponding parameterization.
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3.2. Analysis of the Moist Thermodynamics Equations

3.2.1. Saturated Air Regime

The perturbation expansion of (3.29) for the saturated regime and making use
of (3.24) and (3.25) lead to

S
(2)
θ = −ΓLw(0)rvs

(0)
z ,

S
(3)
θ = −ΓL

[
w(0)

(
rvs

(1)
z − Γ ln ̺(0)rvs

(0)
z

)
+ w(1)rvs

(0)
z

]
,

S
(4)
θ = −ΓL

[
w(0)rvs

(2)
z − w(0)Γ ln ̺(0)rvs

(1)
z + w(0)

(
1

2
Γ2

(
ln ̺(0)

)2 −

Γ
p(1)

p(0)

)
rvs

(0)
z − w(1)Γ ln ̺(0)rvs

(0)
z + w(1)rvs

(1)
z + w(2)rvs

(0)
z

]
.

By substituting these in (3.26)– (3.28) together with the analytical solutions
for p(0), ̺(0) and p(1), ̺(1) given by (3.41)–(3.44) and assuming that w(0) 6= 0,
the expansions for the potential temperature reduce to

θ(2)
z = −ΓLrvs

(0)
z , (3.30)

θ(3)
z = −ΓL

(
rvs

(1)
z − Γ ln ̺(0)rvs

(0)
z

)
, (3.31)

θ
(4)
t + v

(1)
q

· ∇ξθ
(4) + w(0)θ(4)

z = −ΓLw(0)

(
rvs

(2)
z − Γ ln ̺(0)rvs

(1)
z

+

(
1

2
Γ2

(
ln ̺(0)

)2 − Γ
p(1)

p(0)

)
rvs

(0)
z

)
. (3.32)

Let us assume a weak temperature gradient approximation outside the column.
For a derivation see [10]. In the weak temperature gradient approximation,
the horizontal temperature fluctuations are weak making the dominant balance
between vertical advection of potential temperature and the total heating [14],
then

w(0)(θ(4)
z )out = −ΓLw(0)

(
rvs

(2)
z − Γ ln ̺(0)rvs

(1)
z

+

(
1

2
Γ2

(
ln ̺(0)

)2 − Γ
p(1)

p(0)

)
rvs

(0)
z

) (3.33)
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3. Deep Convective Columns

since ∇ξrvs
(i) = 0 for i = 0, 1, 2 and thus

θ
(4)
t + v

(1)
q

· ∇ξθ
(4) + w(0)θ(4)

z = w(0)(θ(4)
z )out. (3.34)

This equation implies that the deviation of the potential temperature from the
background, θ(4) − θ

(4)
out, is a conserved quantity.

Finally, the description of the Saturated Air Regime is completed by the lead-
ing order transport equations of the cloud water and rain water mixing ra-
tios:

Transport Equation for the Cloud Water Mixing Ratio

Kvcw
(0)rvs

(0)
z + Ccr,1r

(0)
c r(0)

r = 0, (3.35)

Transport Equation for the Rain Water Mixing Ratio

rr
(0)
t + v

(1)
q

· ∇ξr
(0)
r + w(0)rr

(0)
z − Vr

1

̺(0)
(̺(0)

1
2 r(0)

r )z − Ccr,2r
(0)
c r(0)

r = 0. (3.36)

3.2.2. Undersaturated Air Regime

Transport Equation for the Potential Temperature

The expansion of the source term (3.29) (due to evaporation) in the undersat-
urated regime (δs = 0) leads to

S
(2)
θ =

ΓL(r
(0)
v − r

(0)
vs )(̺(0)r

(0)
r )

1
2 (B1 + B2 )

B3p(0)r
(0)
vs + B4

, (3.37)

and the following potential temperature relation from (3.28) will hold

w(0)θ(2)
z =

ΓL(r
(0)
v − r

(0)
vs )(̺(0)r

(0)
r )

1
2 (B1 + B2 )

B3p(0)r
(0)
vs + B4

. (3.38)
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3.3. Analytical Solutions and Closures

Thus the vertical velocity can be diagnosed from this weak temperature gradi-
ent equation. It depends on the leading order evaporation rate which in turn
directly depends on the leading order saturation deficit and the amount of rain
water. The evaporation rate determines the consumption of latent heat in the
undersaturated environment.

The leading order transport equations of the water vapour and rain water
mixing ratios round off the picture of the Undersaturated Air Regime:

Transport Equation for the Water Vapour Mixing Ratio

rv
(0)
t + v

(1)
q

· ∇ξr
(0)
v + w(0)rv

(0)
z =

(r
(0)
vs − r

(0)
v )(̺(0)r

(0)
r )

1
2 (B1 + B2 )

(B3p(0)r
(0)
vs + B4 )

, (3.39)

Transport Equation for the Rain Water Mixing Ratio

rr
(0)
t + v

(1)
q

· ∇ξr
(0)
r + w(0)rr

(0)
z =

(r
(0)
v − r

(0)
vs )(̺(0)r

(0)
r )

1
2 (B1 + B2 )

(B3p(0)r
(0)
vs + B4 )

(3.40)

+Vr
1

̺(0)

(
(̺(0))

1
2 r(0)

r

)
z
.

In the undersaturated Air Regime the potential temperature is only expanded
up to θ(2) (see section 4.2 for the explanation).

3.3. Analytical Solutions and Closures

As far as possible, analytical solutions for the variables in lower orders are
derived to end up with a system with as many equations as (higher order)
unknowns.

We can determine the leading order p(0), ̺(0) and first order p(1), ̺(1) from the
leading and first order momentum equations as follows. Combining equations
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3. Deep Convective Columns

(3.11, i = 0), (3.13, i = 0) and (3.16) yields an ordinary differential equation
and thus the following explicit formulas for p(0) and ̺(0):

p(0)(z) = exp (−z), (3.41)

̺(0)(z) = exp (−z). (3.42)

Also solving the ordinary differential equation formed by equations (3.11,
i = 1), (3.13, i = 1) and (3.17) provides explicit expressions for p(1) and ̺(1):

p(1)(z) = Γ

(
−1

2
z2

)
exp (−z), (3.43)

̺(1)(z) = Γ

(
z − 1

2
z2

)
exp (−z). (3.44)

Equations (3.13, i = 2), (3.18) and (3.30) provide p(2), ̺(2) and θ(2):

θ(2)(z) = θ(2)(0)︸ ︷︷ ︸
C1

−ΓLR
[
exp

(
− (AΓ − 1)z

)
− 1

]
, (3.45)

̺(2)(z) = Γ2

((
−C1

Γ2
− ALR

AΓ − 1

)
+

(
C1

Γ2
+

LR

Γ

)
z + z2 − 5

6
z3 +

1

8
z4

)

· exp (−z) + Γ2 ALR

AΓ − 1
exp (−AΓz), (3.46)

p(2)(z) = Γ2

((
− ALR

AΓ − 1
+

LR

Γ

)
+

(
C1

Γ2
+

LR

Γ

)
z − 1

3
z3 +

1

8
z4

)

· exp (−z) + Γ2

(
ALR

AΓ − 1
− LR

Γ

)
exp (−AΓz). (3.47)

Equations (3.13, i = 3), (3.19) and (3.31) yield p(3), ̺(3) and θ(3):

θ(3)(z) = θ(3)(0)︸ ︷︷ ︸
C2

+
[
a0 + a1z + a2z

2
]
exp

(
− (AΓ − 1)z

)
(3.48)

+b0 exp
(
− 2(AΓ − 1)z

)
+ c0,
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3.3. Analytical Solutions and Closures

̺(3)(z) =
[
d0 + d1z + d2z

2 + d3z
3 + d4z

4 + d5z
5 + d6z

6
]
exp (−z) (3.49)

+
[
e0 + e1z + e2z

2
]
exp (−AΓz) + f0 exp

(
− (2AΓ − 1)z

)
,

p(3)(z) =
[
g0 + g1z + g2z

2 + g3z
3 + g4z

4 + g5z
5 + g6z

6
]
exp (−z) (3.50)

+
[
h0 + h1z + h2z

2
]
exp (−AΓz) + i0 exp

(
− (2AΓ − 1)z

)
.

The coefficients a0 to i0 of the polynomials in z are listed in [1].
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4. Summary of the Asymptotic Model

Equations

4.1. Closed System of Equations of the Saturated Air
Regime

The final system is constituted by equations (3.10), (3.12), (3.15) and (3.34)

containing the variables p(6), θ(4), v
(1)
q

and w(0).

To complete the picture of the Saturated Air Regime, the leading order trans-
port equations of the cloud water and rain water mixing ratios are needed which
are given by equations (3.35) and (3.36). These are ‘stand-alone-equations’
that can be solved by using the results of the closed system of equations men-
tioned right above.

Below all the equations describing the Saturated Air Regime are shown once
again:

Mass Balance

̺(0)∇ξ · v(1)
q

+ (̺(0)w(0))z = 0,

Horizontal Momentum Balance

vq

(1)
t + (v

(1)
q

· ∇ξ)v
(1)
q

+ w(0)vq

(1)
z + (w(0)Ω̂q × k) +

1

̺(0)
∇ξp

(6) = 0,
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Vertical Momentum Balance

w
(0)
t + v

(1)
q

· ∇ξw
(0) + w(0)w(0)

z = θ(4) − θ
(4)
out,

Transport Equation for the Potential Temperature

θ
(4)
t + v

(1)
q

· ∇ξθ
(4) + w(0)θ(4)

z = w(0)(θ(4)
z )out,

where (θ
(4)
z )out is given by (3.33),

Transport Equation for the Cloud Water Mixing Ratio

Kvcw
(0)rvs

(0)
z + Ccr,1r(0)

c r(0)
r = 0,

Transport Equation for the Rain Water Mixing Ratio

rr
(0)
t + v

(1)
q

· ∇ξr
(0)
r + w(0)rr

(0)
z − Vr

1

̺(0)
(̺(0)

1
2 r(0)

r )z − Ccr,2r(0)
c r(0)

r = 0.

From the potential temperature equation, the vertical stability of the deep
convective column can be influenced by the vertical gradient of the fourth
order potential temperature θ

(4)
z outside the column. We define f(z) as

f(z) = (θ(4)
z )out. (4.1)

We make use of the analytical expressions for p, ̺ and θ and the constants
of O(1) appearing in f(z) known from the dimensional analysis: A = 2.83,
R = 0.38, L = 1.75, Γ = 2; with C1 = θ(2)(z = 0) and C2 = θ(3)(z = 0) left as
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parameters, f(z) can be written as

f(z) = 395.12 exp (−13.98z) (4.2)

+
[
(−334.73 − 264.07C1) − 486.58z + 962.98z2

]
exp (−9.32z)

+
[
(27.42 + 118.31C1 + 24.82C1

2 + 17.54C2) + (235.05 + 176.73C1)z

+(−76.04 − 181.01C1)z
2 − 543.27z3 + 330.04z4)

]
exp(−4.66z).

To get an idea of this function’s shape Figure 4.1 shows the variation of (θ
(4)
z )out

with height where θ(3)(z = 0) is set to be 0, θ(2)(z = 0) is left as free parameter
in equation (4.2) and is varied between −2.0 and 2.0.

4.2. Closed System of Equations of the Undersaturated
Air Regime

As p and ̺ are independent of the horizontal scale in the orders appearing in
equation (3.18), it follows that θ(2) does not change in horizontal layers either,
and it is imposed by the background state. Assuming the background state to
be moist adiabatic according to equation (3.45) of the saturated case means
that equations (3.13, i = 2) and (3.18) again give the analytical solutions for
p(2) and ̺(2) (equations (3.46) and (3.47)).

In the Undersaturated Air Regime it is not necessary to expand the potential
temperature up to θ(4) because already with the transport equation for θ(2) a
closed system of equations to determine w(0) is given.

Thus the final system in the Undersaturated Air Regime is constituted by
equations (3.10), (3.12), (3.38), (3.39) and (3.40) containing the variables p(6),

r
(0)
v , r

(0)
r , v

(1)
q

and w(0). This means that unlike in the Saturated Air Regime in
this case the moisture transport equations are necessary to actually close the
system of equations. Below all the equations characterising the Undersaturated
Air Regime are shown once again:
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Figure 4.1.: Variation of (θ
(4)
z )out with height for θ(3)(z = 0) = 0 and θ(2)(z = 0)

as parameter varying between −2.0 and 2.0.
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Mass Balance

̺(0)∇ξ · v(1)
q

+ (̺(0)w(0))z = 0,

Horizontal Momentum Balance

vq

(1)
t + (v

(1)
q

· ∇ξ)v
(1)
q

+ w(0)vq

(1)
z + (w(0)Ω̂q × k) +

1

̺(0)
∇ξp

(6) = 0,

Transport Equation for the Potential Temperature

w(0)θ(2)
z = −ΓLE(0)

r ,

Transport Equation for the Water Vapour Mixing Ratio

rv
(0)
t + v

(1)
q

· ∇ξr
(0)
v + w(0)rv

(0)
z = E(0)

r ,

Transport Equation for the Rain Water Mixing Ratio

rr
(0)
t + v

(1)
q

· ∇ξr
(0)
r + w(0)rr

(0)
z − Vr

1

̺(0)

(
(̺(0))

1
2 r(0)

r

)
z

= −E(0)
r .

The evaporation term in the above equations reads as follows:

E(0)
r =

(r
(0)
vs − r

(0)
v )(̺(0)r

(0)
r )

1
2 (B1 + B2 )

(B3p(0)r
(0)
vs + B4 )

.
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4.3. Conclusions Implied by the Asymptotically
Reduced Model

The asymptotic analysis of the convective system on the horizontal bulk micro
scale of 1 km for the moist atmosphere is presented. It is characterised by
the deep convective vertical scale of 10 km and the corresponding convective
time scale of 20 min. The resulting asymptotically reduced model shows some
special features, namely:

Deep Convective Columns

• The continuity equation provides an anelastic divergence constraint for
the horizontal flow. The perturbation pressure representing the corre-
sponding Lagrange multiplier obeys a two dimensional Poisson equation.

• The horizontal momentum balance contains the product of the leading-
order vertical velocity and the horizontal Coriolis parameter, a term that
is usually neglected in meteorological applications.

• In the saturated column, the vertical velocity is directly determined by
the potential temperature deviation between inside the column and out-
side, which is a conserved quantity. In the undersaturated regime, the
vertical velocity depends on the leading order evaporation rate which in
turn is constituted by the saturation deficit and the amount of rain water
present.

From the analysis in section 3, there is some interest in determining vertical
fluxes of energy and momentum in the lower troposphere. This can be done by
considering the temperature, moisture and vertical velocity at the boundary
layer. In [1] Carqué et al. consider a shallow layer of fluid near the surface
of depth of 1 km (i.e εhsc) and a horizontal length scale of the same order of
magnitude. Hence this new coordinate system is built by ξ = ε−1Xq and η =
ε−1z. The time scale associated with the horizontal advection, i.e. τ = ε−1t,
is considered. A steady state solution of this shallow convective system can
be used to provide the physically consistent lower boundary conditions for the
deep convective column system using the ideas of matched asymptotics.
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5.1. Survey of UCLA-LES1.1

UCLA-LES1.1 [21] is a large eddy simulation (LES) model for meteorologi-
cal studies. In contrast to Reynolds averaged Navier Stokes (RANS) models,
where the underlying set of equations is ensemble filtered, in LES the filter
operation acts spatially. In this section the filtered quantities will be denoted
by an overbar. Whereas in RANS only the turbulent eddies of integral scales
are resolved, in LES also smaller eddies with length scales down to the filter
induced cut-off are taken into account.

UCLA-LES1.1 is configured to solve a spatially filtered system of anelastic
equations on the f -plane in three space dimensions x, y, z and time t. It is
written in F90/95, and is parallelised using a one-dimensional decomposition
and MPI. The grid is doubly periodic in the horizontal (x-y) and bounded in
the vertical, z. The vertical is spanned by a stretchable grid, the horizontal
by uniform squares. Prognostic variables include the three components of the
wind (ui ≡ {u, v, w}), the liquid-water potential temperature, θl, the total-
water mixing ratio, qt, and an arbitrary number of scalars, φm, in support
of microphysical processes, more sophisticated sub-grid models, or studies of
tracer transport or chemical processes. Time-stepping of the momentum equa-
tions is by the leap-frog method. Scalars are advanced using a forward-in-time
integration scheme. Scalar advection is based on a directional-split monotone
up winding method while momentum advection uses directionally-split fourth-
order centered differences.
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5.1.1. Model Equations

The form of the equations solved by the model are (in tensor notation) as
follows:

∂ūi

∂t
= −ūj

∂ūi

∂xj

− cpΘ0
∂π̄

∂xi

+
gθ̄′′v
θ0

δi3

+fk(ūj − uj,g)ǫijk +
1

ρ0

∂(ρ0 τij)

∂xj

, (5.1)

∂φ̄

∂t
= −ūj

∂ φ̄

∂xj

+
1

ρ0

∂(ρ0 γφj)

∂xj

+
∂Fφ

∂xj

δj3, (5.2)

subject to the anelastic continuity equation

∂(ρ0ui)

∂xi

= 0 (5.3)

and a constitutive equation which we take to be the ideal gas law for a perfect
mixture:

θv = θ (1 + (Rv/Rd − 1)qt − (Rv/Rd)ql) . (5.4)

In the above π̃ = (p̃/p00)
R/cp is the dynamic pressure perturbation. Fφ denotes

a flux whose divergence contributes to the evolution of φ (for instance radiation
in the case of φ = θl), fk = {0, 0, f} is the Coriolis parameter, uj,g is the
geostrophic wind, and

τij ≡ uiuj − ūiūj and γφj ≡ φuj − φ̄ūj (5.5)

denote the sub-grid fluxes. In (5.2) φ denotes an arbitrary scalar. Depending
on the level of microphysical complexity this can include θl and qt or an arbi-
trary number of additional variables, for instance to represent microphysical
habits or categories. The symbols δjk and ǫijk denote the Kronecker-delta and
Levi-Civita symbol respectively.

The anelastic approximation solves for perturbations about a hydrostatic basic
state of fixed potential temperature, i.e.,

dπ0

dz
= − g

cpΘ0

, (5.6)

where subscript 0 denotes a basic state value, which depends only on z (Θ0

being constant). In (5.1) θ̄′′v denotes the deviation of θv from its horizontal
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average (rather than from the basic-state). This ensures that no mean vertical
accelerations arise. For consistency we introduce a second pressure, π1 :

d

dz
(π0 + π1) = − g

cpθ̄v

, (5.7)

that contains the contribution of deviations from the Θ0 reference state to the
pressure. This pressure depends on time, and is updated in the code by finding
the pressure that balances the mean accelerations, such that

dπ1

dz
= Θ0w, (5.8)

with π1(z = 0) fixed at its initial value.

The model represents the First Law of thermodynamics by (5.2) with φ = θl.
Where we define θl as:

θl = Tπ exp

(
−qlLv

cpT

)
(5.9)

Hence the model satisfies an approximate form of the First Law, but one
generally consistent with the overall level of approximation. In the above
Lv, Rd, Rv, cp and p00 are thermodynamic parameters which adopt standard
values given in the code documentation [21]. Finally, g is the gravitational
acceleration.

The continuity equation (5.3) yields π̃ through the inversion of the Poisson
equation

∂

∂xi

(
ρ0

∂π̃

∂xi

)
=

1

cpΘ0

[
∂

∂xi

(
− ρ0ūj

∂ūi

∂xj

+
ρ0gθ̄′′v

θ0

δi3 + ρ0fk(ūj − ujg)ǫijk +
∂(ρ0 τij)

∂xj

)]
.

(5.10)

5.1.2. Parameterizations

Since the basic fluid equations have been spatially filtered, the net effect of
the subgrid or better subfilter scales has to be given. This is normally called
parameterization or closure. Note that this process might be very crucial
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5. The UCLA Large-Eddy Simulation Code

depending on the origin of the investigated problem. For flows dominated by
large eddies one can argue that the results are not too sensitive to a variation
of parameterization, while for small scale dominated flows the closure is the
most crucial point. In the code the following closures are used.

Turbulence

The sub-grid fluxes τij and γφj are not known explicitly and thus must be
modeled. This constitutes the model closure. The basic or default form of the
closure makes use of the Smagorinsky model, wherein

τij = −ρ0KmDij and γφj = −Km

Pr

∂φ̄

∂xj

, (5.11)

where

Dij =
∂ūi

∂xj

+
∂ūj

∂xi

is the resolved deformation, Km is the eddy viscosity, and Pr is an eddy Prandtl
number. The Smagorinsky model calculates the eddy viscosity as

Km = (Csℓ)
2S

√
1 − Ri

Pr
where Ri =

N2

S2
(5.12)

and

S2 ≡ ∂ūi

∂xj

Dij and N2 =
g

Θ0

∂θ̄v

∂z
. (5.13)

In the above Cs is the Smagorinsky constant and takes values near 0.2, and

ℓ−2 = (∆x∆y∆z)−2/3 + (zκ/Cs)
−2,

where κ = 0.35 is the von Kármán constant in the model. The geometric
averaging between a grid scale and a length scale proportional to the height
above the surface allows Km/(u∗z) to approach κ in the neutral surface layer
(the log-law).

Other options (not used in the present study) include Lagrangian averaged
scale-dependent and scale-independent models, the Deardorff-Lilly sub-grid
turbulence kinetic energy (TKE) model, and for scalars the option of having
all the dissipation carried by the numerics.
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Cloud microphysics

A variety of microphysical complexity can be included into UCLA-LES1.1. In
the standard distribution a warm-rain microphysical scheme (level 3, type 2)
is implemented following the work of Seifert and Beheng [19]. In this scheme
cloud droplets are assumed to be in equilibrium with a fixed (specified) concen-
tration. Cloud, or rain, drops defined as liquid condensate with appreciable fall
velocities are allowed to evolve under the action of the ambient flow and micro-
physical processes (auto-conversion, accretion, self-collection, sedimentation).
The representation of these processes leads to the inclusion of two additional
prognostic equations, one for rain mass the other for rain concentration.

A saturation adjustment scheme (level 2, type 0) is also implemented in the
model. This scheme has no rain category and diagnoses cloud drop mass
concentrations by assuming homogeneity on the grid-scale and equilibrium
thermodynamics. Sedimentation of cloud droplets can be implemented as a
source term in the model (level=2, type=1). For details we refer the reader to
[21].

Boundary conditions and surface fluxes

To enforce the boundary conditions, the model can either implement free slip
or no-slip boundary conditions on the grid-scale tangential velocities, with free-
slip being the default. These grid-scale quantities do, however, feel accelera-
tions, or tendencies as a result of sub-grid scale fluxes which are parameterized.
The model supports different methodologies for specifying the sub-grid fluxes
at the lower boundary. They can be prescribed, calculated based on prescribed
gradients, or prescribed surface properties. For the latter two similarity func-
tions are chosen to relate the fluxes at the surface to the grid-scale gradients
there. For details we refer the reader again to [21].

5.1.3. Numerical Algorithm

In the following we summarise the numerical procedure used in UCLA-LES1.1.
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Time-stepping

Figure 5.1.: Schematic depiction of the model time-step.

The model uses a hybrid time-stepping strategy. At the top of the timestep
velocities are given at time level n and n + 1 and scalars are given at time
level n. The scalars are then marched forward using an Euler forward step to
time-level n + 1. Velocities from time-level n are then taken forward using a
leapfrog step to time-level n + 2 which concludes a single step. On a timestep
tendencies are accumulated in a tendency array and then applied at the end
of the step. An exception to this are the subgrid fluxes, which involve a
diffusion operation. The vertical component of this operation is solved semi-
implicitly which requires a sparse matrix solve (a tri-diagnonal solver). The
new velocity is then differenced with the old velocity to define an effective
forward tendency which is accumulated like the other forcings in the tendency
array. Mathematically, if the time-level is indicated by a superscript, then

(
∂φ

∂t

)

sgs

=
φ̃n+1 − φn

∆t
where φ̃n+1 = φn + ∆t

∂

∂z

(
Kn ∂φ̃n+1

∂z

)
, (5.14)

where K ≡ Km/Pr is the eddy diffusivity. Another exception is the pressure
gradient term which is solved so as to ensure that the discretized version of

∂

∂xi

(ρ0ūi) = 0 (5.15)

is satisfied to machine precision.

Computational Grid

The model uses the Arakawa-C grid, which means that u(k, i, j) lies a distance
of ∆x

2
to the right of θl(k, i, j). To state this more generally, velocities are
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Figure 5.2.: Schematic depiction of the model grid and where variables locate
on it.

staggered half a grid point up-grid (in the direction of the specific velocity
component) of the thermodynamic and pressure points. Also note that the grid
indexing has the z dimension first. This k, i, j indexing is chosen in realisation
of the fact that many of the operations in the model are done column-wise.
The grid configuration, and some height variables that are commonly used in
the code (i.e., zm, zt, dzm, and dzt ) are illustrated in a schematic drawing in
figure 5.2.

Pressure Solver

Pressure is solved by a fractional step method so as to ensure that the velocities
at the end of the timestep satisfy (5.3) to machine accuracy. The solver takes
advantage of the periodicity in the horizontal to use 2-D FFTs to transform
the Poisson-equation to a second order ODE in the vertical. Schematically

∂2π

∂x2
i

−→ (l2 + m2)
d2π

dz2
, (5.16)

where l and m denote the horizontal wave-numbers. The resultant ODE is
then solved using a tri-diagnonal solver.
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5.2. Setting of the Simulations

In our simulations the extent of the computational domain amounts to 32 km
in the horizontal and 15 km in the vertical. This volume is discretised by
an equidistant grid with a spacing of 125 m. Thus the resolution results in
256 x 256 x 120, so almost 8 million grid points. At the beginning of the com-
putation the temporal step size is 2.0 s which is adaptively reduced to values
between 1.0 s and 1.5 s during the run so that the CFL number always stays
smaller than 0.8. A time period of 21600 s =̂ 6 h is simulated. The UCLA-LES-
Code is run in parallel on 32 processors and performs about 16800 time steps
in a total of about 20 h.

The parallel high performance computing is carried out on the IBM p655 Clus-
ter with a total of 240 IBM Power4 CPU at the Potsdam Institute for Climate
Impact Research (PIK). The cluster is run under the AIX5 operating system
and uses the IBM Load Leveler batch queuing system. For more information,
see [25].

5.2.1. Basic State

In order to initialise deep convective events, constant surface fluxes of sensible
heat (100 W/m2) and latent heat (400 W/m2) are prescribed. The potential
temperature θ and relative humidity U profiles for the initial sounding are
defined following the paper by Weisman and Klemp [27] also used by Seifert
[18] to simulate deep convective clouds:

θ(z) =





θ0 + (θtr − θ0)
(

z
ztr

)(5/4)

: z ≤ ztr

θtr exp
[

g
cpTtr

(z − ztr)
]

: z > ztr

(5.17)

U(z) =

{
Umax − (Umax − Umin)

(
z
ztr

)(5/4)

: z ≤ ztr

Umin : z > ztr

(5.18)

In the above equations ztr = 12 km, θtr = 343 K and Ttr = 213 K represent
the height, potential temperature and actual temperature, respectively, at the
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tropopause, θ0 = 300 K is the surface potential temperature. Relative humidity
takes values between Umin = 0.25 and Umax = 1.00.

Preprocessing is done using the numerical computing environment MATLAB
R2007a from The MathWorks, Inc. [23]. The potential temperature and rela-
tive humidity profiles are visualised in figures 5.3 and 5.4.
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Basic State: Potential Temperature

Figure 5.3.: Potential temperature of the initial sounding.

When converting the relative humidity into the water vapour mixing ratio dis-
tribution needed for the code’s input file a maximum mixing ratio of 12 g kg−1

near the ground is fixed to describe the well mixed boundary layer. Even
though a higher mixing ratio in the boundary layer moves the lifting conden-
sation level upwards computations by the authors showed no influence on the
location of the cloud top. Figure 5.5 shows the water vapour mixing ratio
profile of the basic state.

As for the simulations discussed in this work the atmosphere is at rest, i.e.
there is no wind profile prescribed, u = v = 0 ms−1.
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Figure 5.4.: Relative humidity of the initial sounding.
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Figure 5.5.: Water vapour mixing ratio of the initial sounding.

5.2.2. Reference Run

After three hours of simulated time the first deep convective columns can be
observed. All of them are characterised by the spatial anisotropic structure
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that is consistent with the scaling chosen for the asymptotic analysis.

In the following we illustrate this with a column whose dimensions and velocity
values are representative for the clouds occuring throughout the computation.
This column around the local maximum of vertical velocity after three hours
and fifty minutes of simulated time provides the basis for the detailed discus-
sion in section 7.

Postprocessing of the netCDF1-data is done using the NCAR Command Lan-
guage (NCL) from the National Center for Atmospheric Research (NCAR)
[24]. Figure 5.6 shows the contour plot of vertical velocity for the region of
that specific column on a vertical slice through the maximum of vertical ve-
locity.

We observe an isotropic region around the maximum vertical velocity of 21 ms−1

reached at a height of about 5 km. This region is characterised by steep spatial
(vertical and horizontal) gradients of vertical velocity. In contrast, the vertical
velocity varies much more slowly with height through the lower part of the
column.

To visualise the depth of the convective towers, figure 5.7 shows the corre-
sponding vertical slice of the whole domain.

Figure 5.8 presents the contour plot of vertical velocity in a horizontal slice
through the maximum of vertical velocity for the deep convective cloud from
figure 5.6.

We observe the nearly cylindrical cross section of the tower and the nearly
axisymmetric velocity distribution with steep spatial gradients inside the col-
umn. Outside the column the region of compensating downward motion with
negative vertical velocity can be identified.

In figure 5.9 the corresponding horizontal slice through the whole domain is
displayed. It illustrates the distribution of deep convective events over the
computational area at one particular instance in time.

1netCDF (network Common Data Form) is a set of software libraries and machine-
independent data formats that support the creation, access, and sharing of array-oriented
scientific data [26].
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Figure 5.6.: Vertical velocity of a vertical slice through the deep convective
column.
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Figure 5.7.: Vertical velocity of a vertical slice through the whole domain.

Figure 5.8.: Vertical velocity of a horizontal slice through the deep convective
column.
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To visualise the horizontal flow, we plot in figures 5.10 to 5.15 the stream-
lines for different horizontal slices through the deep convective column, the
background colour indicates the absolute value of horizontal velocities.

The first three graphs (figures 5.10 to 5.12) show cross sections at 375 m, 250 m
and 125 m below the maximum vertical velocity, respectively, illustrating the
air flow that moves towards the cloud centre to compensate the upwards mass
transport. The following three graphs (figures 5.13 to 5.15) represent cross sec-
tions at 125 m, 250 m and 375 m above the maximum vertical velocity, respec-
tively, where the air is displaced outwards. The absolute value of horizontal
velocities continuously rises over this part of the cloud.

Figure 5.9.: Vertical velocity of a horizontal slice through the whole domain.

The vertical slice in figure 5.16 displays the usual surface bubbles of warm and
moist air building due to the prescribed surface fluxes of sensible and latent
heat.

Figures 5.17 to 5.21 describe the entire life cycle of the deep convective column.
The graphs in all the figures are to be read row by row, each with the sequence
from the left to the right. The colour code changes from graph to graph.
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Figure 5.10.: Streamlines and absolute value of horizontal velocities for the
cross section of the cloud at 375 m below wmax.

Figure 5.11.: Streamlines and absolute value of horizontal velocities for the
cross section of the cloud at 250 m below wmax.
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Figure 5.12.: Streamlines and absolute value of horizontal velocities for the
cross section of the cloud at 125 m below wmax.

Figure 5.13.: Streamlines and absolute value of horizontal velocities for the
cross section of the cloud at 125 m above wmax.
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Figure 5.14.: Streamlines and absolute value of horizontal velocities for the
cross section of the cloud at 250 m above wmax.

Figure 5.15.: Streamlines and absolute value of horizontal velocities for the
cross section of the cloud at 375 m above wmax.
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Figure 5.16.: Bubbles of warm and moist air near the surface.
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Figure 5.17.: Part of the cloud life cycle without rain (I).
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Figure 5.18.: Part of the cloud life cycle without rain (II).
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Figure 5.19.: Part of the cloud life cycle without rain (III).
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Figure 5.20.: Part of the cloud life cycle with rain (I).
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Figure 5.21.: Part of the cloud life cycle with rain (II).
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In all the figures the graphs follow each other in one minute intervals. The
passage from figure to figure also accounts for a one minute interval.

Thus from emergence to breakup the life cycle of the deep convective cloud
covers a period of 18 min. This is in perfect accordance to the reference time
of about 20 min the reduced asymptotic model is based on.

In figure 5.17 we see that at some point the bubble raises and loses contact
with the boundary layer. It then rises independently of the surface fluxes,
i.e. it is not continously fed from below but by the latent heat release due to
condensation. The first picture of the second row in figure 5.18 is the same as
figure 5.6. It represents the moment of the maximum vertical velocity in the
tower.

In figures 5.20 and 5.21 negative values of vertical velocitity do not only occur
at the edges of the cloud where air moves downwards for continuity reasons.
We also observe regions of negative vertical velocity in the inner of the column
indicating falling rain drops.

In order to demonstrate that the region of positive vertical velocity perfectly
correlates with the region of positive cloud water content, figures 5.22 and
5.23 present the contour plots of cloud water mixing ratio on the vertical and
horizontal slices through the tower, respectively.

Figure5.24 represents a three dimensional snapshot of the whole computational
domain at an arbitrary moment during the last three hours of simulated time.2

White colour denotes the cloud water mixing ratio, dark blue colour stands
for the rain water mixing ratio. Displayed are values greater than or equal to
2 gkg−1. The maximum values amount to 8 gkg−1 for both quantities at that
particular point in time. In grey coloured regions dark blue rain water shows
through the white cloud water.

This snapshot illustrates impressively the transition from cloud water to rain
water. Moreover it communicates a good impression of the distribution of
deep convective towers over the computational domain. Those are indeed very
concentrated and separated from each other which is in agreement with the
basic assumptions of the theory.

23D-graphics and movies are produced using the visualisation and graphical analysis tool
VISIT from the Lawrence Livermore National Laboratory (LLNL) [22].
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Figure 5.22.: Cloud water mixing ratio of the vertical slice through wmax.

Figure 5.23.: Cloud water mixing ratio of the horizontal slice through wmax.
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Figure 5.24.: Cloud water and rain water mixing ratios for values greater than
or equal to 2 gkg−1.

In order to obtain an overview over several single deep convective events, ta-
ble 5.1 summarises characteristic velocities and dimensions of clouds occuring
throughout the last three hours of simulated time.

For each point in time the cloud around the local maximum of vertical velocity
is listed. Their locations in the computational area differ completlely one from
the other. Table 5.1 provides the maximum velocities wmax, umax, vmax, the
height of the maximum vertical velocity hwmax

and the extensions of the deep
convective cloud ∆zcloud, ∆xcloud, ∆ycloud. The last row yields the averaged
values of the table’s sample.
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t wmax umax vmax hwmax
∆zcloud ∆xcloud ∆ycloud[

h : min
] [

ms−1
] [

ms−1
] [

ms−1
] [

km
] [

km
] [

km
] [

km
]

3 : 00 15.376 4.341 4.076 3.875 4.625 1.000 1.125

3 : 10 19.243 7.646 7.097 4.125 4.750 1.000 1.250

3 : 20 21.742 12.105 11.657 6.125 7.750 2.375 2.000

3 : 30 18.778 10.786 15.263 4.125 5.125 1.125 1.000

3 : 40 20.493 9.654 9.973 4.250 3.875 1.125 1.125

3 : 50 20.999 10.186 9.839 4.875 4.250 1.125 1.125

4 : 00 20.750 9.975 9.629 8.000 8.375 1.625 2.375

4 : 10 22.456 12.138 11.267 5.875 4.375 1.375 1.375

4 : 20 18.842 10.827 12.493 5.750 5.500 5.125 2.250

4 : 30 25.624 11.105 13.090 8.125 5.500 2.500 1.750

4 : 40 22.735 10.492 8.070 6.250 7.000 1.875 1.250

4 : 50 30.993 13.856 12.591 5.875 10.375 2.375 2.125

5 : 00 20.323 9.976 10.595 7.875 5.000 4.125 1.625

5 : 10 21.232 10.557 15.415 7.750 4.625 2.875 3.500

5 : 20 18.890 11.727 11.383 4.125 3.500 1.125 1.500

5 : 30 26.219 13.915 11.946 8.750 8.250 3.375 2.625

5 : 40 23.254 12.119 15.560 6.250 5.125 3.125 1.875

5 : 50 20.380 11.027 12.570 9.500 7.125 2.125 3.125

6 : 00 18.796 10.132 8.531 5.750 5.750 2.625 1.375

Ø 21.428 10.661 11.108 6.171 5.836 2.211 1.809

Table 5.1.: Characteristic velocities and dimensions for the simulation with a
spatial step size of 125 m.
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Figures 5.25 and 5.26 again show contour plots of w on vertical and horizon-
tal slices through the maximum vertical velocity, respectively. This time we
display the cross sections for the cloud around the global maximum of ver-
tical velocity occuring throughout the whole computation. When examining
the reference run with an output frequency of 10 min this global maximum
of w amounting to 31 ms−1 is registered after four hours and fifty minutes of
simulated time at a height of about 6 km (cp. table 5.1).

It can be seen that not all the towers are as compact as the one chosen for
detailed analysis (cp. figures 5.6 and 5.8). On the other hand a compact
column is not an exception either.

We round this section off with contour plots of w on vertical and horizontal
slices through wmax of two other columns chosen arbitrarily. Figures 5.27 and
5.28 show the plots for the tower around the local maximum vertical velocity
after four hours of simulated time, figures 5.29 and 5.30 show the plots for the
tower around the local maximum vertical velocity after six hours of simulated
time.
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Figure 5.25.: Vertical velocity of a vertical slice through the tower around wmax

of the whole computation.

Figure 5.26.: Vertical velocity of a horizontal slice through the tower around
wmax of the whole computation.
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Figure 5.27.: Vertical slice. t = 4 h, wmax = 20.750 ms−1, hwmax
= 8.000 km.

Figure 5.28.: Horizontal slice. t = 4 h, wmax = 20.750 ms−1, hwmax
= 8.000 km.
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Figure 5.29.: Vertical slice. t = 6 h, wmax = 18.796 ms−1, hwmax
= 5.750 km.

Figure 5.30.: Horizontal slice. t = 6 h, wmax = 18.796 ms−1, hwmax
= 5.750 km.
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6. How to Compare Equations to Data?

The basic idea for the comparison of the simulation data with the physical
statements of the model equations is to extract the model’s dependent variables
from the code-output. These asymptotic unknowns can be quantities of leading
order, as in the case of the vertical velocity w(0), or higher order perturbation
quantities.

6.1. Extraction of the Asymptotic Quantities from the
Code-Output

The asymptotic deep convective column model consists of two distinct systems
of equations for the saturated and the undersatureted air regimes, respectively.
In this study we concentrate on the evaluation of the saturated case while
the undersaturated case is left for future investigations based on simulations
including vertical wind shear. As the saturated setting is characterised by
strong updrafts driven by the release of latent heat due to condensation, the
vertical velocity data are used to filter the code-output. For a specific time-
level, the maximum vertical velocity is detected. Starting from there, the
vertical velocity values are checked moving horizontally outward up to the
identification of the first value less or equal to zero. This inner area defines the
horizontal extent of the cloud. In the vertical direction the cloud-subdomain
contains all the grid points of the computational domain.

Concerning a particular physical quantity, the code-output at one specific grid
point of the subdomain represents the total value of this quantity at that
location. Hence in theory an asymptotic unknown can be calculated by sub-
tracting the contributions of the lower orders of the asymptotic expansion from
the respective simulation data.

Regarding the thermodynamic variable pressure, the asymptotic expansion
reads as follows (p has to be expanded up to p(6) whereas p(5) does not appear
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in the final system of equations, see [1]):

p = p(0) + εp(1) + ε2p(2) + ε3p(3) + ε4p(4) + ε6p(6). (6.1)

Consequently the perturbation part p(6) which is the dependent pressure vari-
able in the asymptotic deep convective column model can be expressed as:

p(6) = (p − p(0) − εp(1) − ε2p(2) − ε3p(3) − ε4p(4))ε−6. (6.2)

As p(0) up to p(4) are known analytically, p(6) could be computed by subtracting
the ε-weighted analytical results from the code-output. For the purpose of the
asymptotic model’s plausibility check, however, we follow the guideline not to
mix up code-output with external analytical results.

Thus the lower order contributions to total pressure inherent to the simulation
data have to be figured out. The pressure parts p(0) to p(4) represent the hydro-
static background stratification and vary only with height, p(6) has to adjust
in such a way that the divergence constraint from the continuity equation is
fulfilled and therefore also varies horizontally.

Using code-output, the background stratification can be expressed by the pres-
sure averaged horizontally over the whole computational domain. Subtracting
this only z-dependent quantity from total pressure results in the pressure part
also varying in the horizontal directions which corresponds to p(6). The eval-
uation of the simulation data is generally done after nondimensionalisation of
the code raw data with the reference values used in the asymptotic analysis
(see [1]). The scaling is not done with a fixed ε but by making use of the
corresponding maximum Mach number of the cloud-subdomain. Hence p(6) is
computed in the following way:

p(6) =
(
pcode, subdomain − phor

code

) 1

M2
hor

. (6.3)

Analogously, the potential temperature θ(4) is extracted from the code-output:

θ(4) =
(
θcode, subdomain − θ

hor

code

) 1

M2
ver

. (6.4)

As we assume v
(0)
q

= 0 (see [1]), the horizontal velocities v
(1)
q

are accessed
via:

v
(1)
q

= vq code, subdomain

1

M
(1/3)
hor

. (6.5)
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To complete the set of asymptotic unknowns of the saturated air regime, the
vertical velocity w(0) is still needed:

w(0) = wcode, subdomain. (6.6)

In order to evaluate all the terms appearing in the asymptotic model’s bal-
ances, the basic state density ̺(0) is missing as yet. As the explicit formula is
to be avoided, ̺(0) is expressed by the ideal gas law with the definition of po-
tential temperature inserted. The hydrostatic values for potential temperature
and pressure are again represented by their horizontally averaged simulation
results:

̺(0) =
1

θ
hor

code

phor
code

(1/γ)
. (6.7)

In the model equations, the mixing ratios of the moisture species generally
appear at leading order. The values computed by the code have to be referred
to the appropriate reference values to obtain the asymptotic quantities.

6.2. Hydrostatics through Analysis, Asymptotics and
Numerics

As a preliminary step, the code’s representation of hydrostatics is examined in
order to provide a reliable basis for the described postprocessing strategy. In
three differently stratified atmospheres, the hydrostatic pressure distribution
is computed:

(a) For the hydrostatic state in a dry adiabatic atmosphere, we compare the
analytic solution of the hydrostatics equation, its asymptotic solution
and the solution by the code.

(b) For the hydrostatic state in a moist adiabatic atmosphere, the solution of
the hydrostatics equation by numerical integration with MATLAB using
an explicit fourth-order Runge-Kutta method, the asymptotic solution
and the solution by the code are compared.

(c) For the hydrostatic state in an atmosphere stratified according to the
sounding used for the simulations of this work, we compare the solution
of the hydrostatics equation by numerical integration with MATLAB and
the solution by the code.
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Case (a)

As θ is constant, the hydrostatics equation

dp

dz
= −̺ (6.8)

and the ideal gas law with the definition of potential temperature inserted

̺ =
1

θ
p(1/γ) (6.9)

result in an ordinary differential equation with p as the only unknown:

dp

dz
= −1

θ
p(1/γ). (6.10)

This ODE can be solved analytically and yields the following explicit formula
for the pressure:

p(z) =
(
1 − γ − 1

γ
αz

)(
γ

γ−1

)
. (6.11)

The dimensionless parameter α in equation (6.11) originates from the nondi-
mensionalisation process and reads as follows:

α =
lrefg

θrefRd

≈ 1.25 . (6.12)

This parameter also occurs in the asymptotic solution of equation (6.10). The
leading order pressure for the dry adiabatic case is given by1

p(0)(z) = exp(−αz). (6.13)

Based on the constant potential temperature field, the code computes its hy-
drostatic pressure distribution.

Figure 6.1 shows the analytic, the asymptotic and the code’s solution of the
hydrostatics equation in a dry adiabatically stratified atmosphere.

1For simplicity, α is set to one in equation 3.41 et seqq.
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Figure 6.1.: Pressure distribution in a dry adiabatic atmosphere as it results
from solving the hydrostatics equation analytically, asympotically
and by the code.

Case (b)

In addition to equations (6.8) and (6.9) the condition for moist adiabaticity
is needed, which is a consequence of the transport equation for potential tem-
perature:

∂θ

∂z
=

1 − γ

γ

θ̺

p
L

∂rvs

∂z
. (6.14)

Inserting the equation of state (6.9) into equation (6.14) leads to

∂θ

∂z
=

1 − γ

γ
p

(
1−γ

γ

)
L

∂rvs

∂z
, (6.15)

providing – together with equation (6.10) – a system of two ODEs with two
unknowns, namely potential temperature θ and pressure p, that is solved nu-
merically. In doing so, the saturation vapour mixing ratio rvs is given by the
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formulation in terms of the saturation vapour pressure whose temperature de-
pendence in turn is described by the Clausius-Clapeyron-equation (see section
2.3):

rvs =
R exp

[
A

(
1 − 1

θ

(
1
p

)(
γ−1

γ

))]

p − P exp
[
A

(
1 − 1

θ

(
1
p

)(
γ−1

γ

))] . (6.16)

The asymptotic solution for the pressure field determined by the system of
equations (6.10) and (6.15) is at leading order identical to that for the dry
adiabatic stratification and hence given by equation (6.13). The moisture
processes come into play from the second asymptotic order onwards.

In order to obtain the code’s solution for the pressure field, the potential tem-
perature distribution provided by numerical integration and the water vapour
mixing ratios computed with θ and p - both resulting from numerical integra-
tion of equations (6.10) and (6.15) - are passed to the code as input data.

The numerical, the asymptotic and the code-based representations of the hy-
drostatic state in a moist adiabatically stratified atmosphere are plotted in
figure 6.2.

Additionally it is checked whether the code preserves a given basic state that
is already in hydrostatic balance. For this purpose the potential temperature
and pressure fields obtained numerically are passed to the code as well as
the resultant values for rvs. Examination of the output after one time step
shows that the pressure profile is identical to the input and with it also to the
pressure distribution calculated by the code on its own starting from the moist
adiabatic θ and rvs. The velocities remain zero as well.

Case (c)

We insert the potential temperature profile used for the deep convective sim-
ulations into equation (6.10) and obtain in this way an ODE with pressure
as the only unknown. This ODE is solved by numerical integration with an
explicit fourth-order Runge-Kutta method.

The resulting pressure field is compared to that produced by the code on the
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Figure 6.2.: Pressure distribution in a moist adiabatic atmosphere as it results
from solving the hydrostatics equation numerically, asympotically
and by the code.

basis of the same potential temperature profile and the values of the water
vapour mixing ratio (see section 5.2).

In figure 6.3 the curves of the hydrostatic pressure in the backgroung stratifi-
cation of the simulations can be found; they result from fourth-order numerical
integration and from computation with the code respectively.

A comparison of the hydrostatic states in the dry adiabatic, the moist adiabatic
and the sounding’s stratifications respectively on the basis of the pressure fields
provided by the code is shown in figure 6.4. It reflects the slight difference
between the dry and the moist case already seen in the asymptotic analysis
where the contributions of the moisture processes do not occur until the second
order. The potentially unstable stratification of the sounding shows a smaller
absolute value of the pressure gradient dp/dz than both adiabatic curves.
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Figure 6.3.: Pressure distribution in an atmosphere stratified according to the
sounding used for the simulations as it results from solving the
hydrostatics equation numerically and by the code.
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Figure 6.4.: Hydrostatic pressure distribution for the dry adiabatic, the moist
adiabatic and the sounding’s stratification computed by the
UCLA-LES-Code.
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6.3. Compliance with the Divergence Constraint

During a run with the code, pressure is adjusted in such a way that the re-
sulting velocity field satisfies the discretised version of the continuity equation
to machine accuracy. This anelastic divergence constraint in its continous
formulation reads:

∇ · (̺0v) = 0. (6.17)

As the basic state density ̺0 only varies with height, equation (6.17) can
equivalently be written as:

̺0∇q · vq + (̺0w)z = 0. (6.18)

In order to check whether the compliance of the velocity field with the anelastic
divergence constraint can be reproduced during postprocessing, we use the
same discretisation for the continuity equation as in the code. Herein the
differential quotients are discretised by a second order centered finite difference
approximation.

The code uses a staggered grid where velocities are located on the cell faces
while pressure and density reside in the cell centres. Thus formulating the
product of density and vertical velocity requires the interpolation of ̺0 on the
respective w-face. The product of density and the horizontal divergence of
the horizontal velocity vector, however, can be built without any interpolation
because ̺0 does not vary horizontally. The centered difference quotients of
second order are constructed around the cell centres using the code raw data

on the cell faces, i.e. the stencil’s spacing is 2 ∆x
2 = ∆x. As the grid is

equidistant, the same spacing is valid in all three spatial directions.

The scatter plot in figure 6.5 shows the accumulated continuity equation, i.e.
the terms appearing on the left hand side of equation (6.18) are discretised in
the way described above and added up: For each height-level all the values of
the corresponding cross section of the cloud-subdomain are plotted. As the
horizontal extent of the cloud-subdomain consists of ten grid points in both
directions, one hundred values belong to each height level.

It can be seen that the divergence constraint is fulfilled to an accuracy of
2 x 10−8. In order to judge this order of magnitude, we have a look at the
normalised divergence, i.e. the sum of the terms in equation (6.18) is referred

74



6.3. Compliance with the Divergence Constraint

Figure 6.5.: Accumulated continuity equation of the cloud-subdomain; second
order discretisation with ∆x-spacing of the stencil.

to the sum of their absolute values. For the exact compliance with the diver-
gence constraint this quotient equals zero since the numerator becomes zero.
Otherwise it takes values between the minimum of −1.0 and the maximum of
+1.0.

Figure 6.6 shows that by far the largest part of the points scores lies between
−10−6 and +10−6. The whole scatter covers the interval from −9 x 10−6 to
+9 x 10−6.

Using a discretisation that is also second order accurate but different from
that used for the divergence in the UCLA-LES-Code leads to quite different
results. At first velocities are interpolated to the cell centres, then the centered
difference quotients are constructed around the cell centres using the code raw
data of the neighbouring cell centres, i.e. the stencil’s spacing is 2 ∆x.

As figure 6.7 reveals, the divergence constraint in this case is merely fulfilled
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Figure 6.6.: Accumulated and normalised continuity equation of the cloud-
subdomain; second order discretisation with ∆x-spacing of the
stencil.

to an accuracy of 2 x 10−2.

The scatter plot of the normalised divergence in figure 6.8 covers the entire
interval from −1.0 to +1.0. Only in the upper part of the atmosphere, i.e.
above the cloud top, the points scores are more concentrated around zero,
namely in the interval between −2 x 10−1 and +2 x 10−1.

Using a fourth order centered finite difference scheme to discretise the diver-
gence (spacing of the stencil: 4 ∆x) produces nearly the same results as the
second order scheme with the 2 ∆x-spacing of the stencil.

From these observations we conclude that it is essential for the reproduction
of code-results during postprocessing to use the same discretisations as in the
code. This issue emerges again during the analysis of the asymptotic momen-
tum balance (cp. section 7).
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Figure 6.7.: Accumulated continuity equation of the cloud-subdomain; second
order discretisation with 2 ∆x-spacing of the stencil.

Remark

The investigation of the continuity equation in this section is accomplished
by means of equation (6.18) in conjunction with the code raw data. In the
continuity equation of the asymptotic model (see section 4), however, velocities
appear in different asymptotic orders, gradients are built on different length
scales. As described in section 6.1, the evaluation of the asymptotic model
equations is generally done after nondimensionalisation of the code raw data
with the appropriate reference values and scaling according to the respective
powers of the expansion parameter.

In the case of the continuity equation, the scalings of the horizontal divergence
operator and the horizontal velocity vector cancel each other. Hence we are
left with a nondimensionalisation which corresponds to a multiplication of
each term in the equation by a factor of 8 x 102. For the exact compliance
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Figure 6.8.: Accumulated and normalised continuity equation of the cloud-
subdomain; second order discretisation with 2 ∆x-spacing of the
stencil.

with the divergence constraint this factor has no consequences. Concerning a
discrete divergence constraint, however, that is fulfilled to some finite accuracy
only, this factor is directly reflected in the result of the accumulated balance
equation.
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The main data basis for the discussion in this section is provided by the sub-
domain of the deep convective column shown in figures 5.6 and 5.8.

As stated in section 6.1, the nondimensionalisation of the code raw data is
done with the reference values used in the asymptotic analysis, the scaling of
the dimensionless quantities is done with the corresponding maximum Mach
number of the cloud-subdomain.

7.1. The Asymptotic Unknowns

In this section we show the distributions over height of the asymptotic per-
turbation quantities extracted from the simulation data. The graphs illustrate
that the values of the asymptotic variables in the cloud region are of O(1).

Figure 7.1 shows the distribution of the leading order vertical velocity w(0).
In order to obtain the corresponding dimensional quantity, we would have to
multiply by the reference value of 10 ms−1.

The vertical velocity profile reflects very well the cloud’s vertical extent and
structure. From the cloud base at about 2000 m upwards, the vertical velocity
continously increases up to its maximum of 21 m/s in the upper cloud part at
about 5000 m. From there vertical velocity decreases and reaches 0 m/s at the
cloud top at 6500 m.

Figure 7.2 provides the scatter plot of p(6), the pressure part guaranteeing
compliance with the divergence constraint from the continuity equation.

This pressure profile is characterised by the sharp changes of sign of the ver-
tical gradient before and after the maximum of vertical velocity discussed in
figure 7.1.
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Figure 7.1.: Leading order vertical velocity w(0) of the cloud-subdomain.

In figure 7.3 the absolute value of the first order horizontal velocity vector v
(1)
q

is plotted. In order to obtain the corresponding dimensional quantity, we would
have to multiply by the scaled reference value of M

(1/3)
hor ·10 ms−1 = 0.3·10 ms−1

= 3 ms−1.

The maximum of the absolute value of horizontal velocities arises shortly above
the maximum of vertical velocity where pressure attains its maximum (cp.
figure 7.2), and the air is displaced outwards. Above the maximum there is a
very steep negative gradient leading to a region with little horizontal motion
at the cloud top.

Below the maximum of vertical velocity the absolute value of horizontal ve-
locities is also relatively large. This is physically consistent because at that
level a considerable air flow has to move towards the cloud centre in order to
compensate the mass transport upwards which is reflected in the minimum of
pressure.
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Figure 7.2.: Asymptotic perturbation pressure p(6) of the cloud-subdomain.

These observations underline clearly that pressure controls the horizontal flow,
one of the conclusions of the reduced asymptotic model.

Figure 7.4 represents the asymptotic model’s potential temperature θ(4).

It can be seen that potential temperature continously increases because of the
latent heat release due to condensation. Once all the water vapour has been
condensed there is no more heating and hence no vertical acceleration. This
level corresponds to the height of the vertical velocity maximum.

The distribution of leading order vertical velocity w(0) in figure 7.1 perfectly
correlates with the potential temperature deviation from the background strat-
ification represented by θ(4). This approves another result of the asymptotic
analysis: In the saturated column vertical velocity is directly determined by
the buoyancy induced by potential temperature differences between inside the
column and outside.
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Figure 7.3.: Absolute value of the asymptotic horizontal velocity vector v
(1)
q

of
the cloud-subdomain.

Figure 7.5 shows the distribution over height of the leading order vertical
velocity w(0) in conjunction with the perturbation pressure part p(6).

As discussed above, horizontal velocities directly follow the shape of the pres-
sure profile.

Figure 7.5 illustrates impressively that the leading order vertical velocity, how-
ever, is developing freely independent of pressure over the whole depth of the
convective column, one of the main statements of the reduced asymptotic
model; only the horizontal divergence is controlled by a pressure field.

Pressure fluctuations of order
̺w2

p would be the fluctuations normally expected

if vertical velocity inertia was comparable to the pressure fluctuation gradients.
That would mean variations of p(4) = O(1), i.e. pressure variations by ε−2

larger than those actually observed.
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Figure 7.4.: Asymptotic perturbation potential temperature θ(4) of the cloud-
subdomain.
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Figure 7.5.: Leading order vertical velocity w(0) and asymptotic perturbation
pressure p(6) of the cloud-subdomain.
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7.2. The Asymptotic Vertical Momentum Balance

The asymptotic column model analysed in this study represents a closed system
of equations for the leading order vertical velocity in deep convective clouds.
In this section we have a detailed look at the terms in the asymptotic vertical
momentum balance.

Figures 7.6 and 7.7 show the individual terms of the vertical momentum bal-
ance.

In order to demonstrate the structure of each term, the plots do not have
the same scales. Spatial gradients are approximated using a second order
discretisation with a ∆x-spacing of the stencil (cp. section 6.3).

The scatter plots in figure 7.6 display the time derivative, vertical and hor-
izontal advection and buoyancy, i.e. the terms contained in the asymptotic
vertical momentum balance.

The asymptotic model does not include the physical process of turbulent fric-
tion.1 The turbulence term representing the sub-filter scale contribution to
momentum, however, is an inherent part of the momentum equations solved
by the code. As we reconstruct the vertical momentum balance with quanti-
ties extracted from the code output, we have to complete the balance by the
respective turbulence term. The distribution over height of this term is shown
in the first plot of figure 7.7.

In order to judge the possible influence of the pressure deviation from the
background on the evolution of vertical velocity, the second plot of figure 7.7
yields the vertical gradient of p(6) where the scaling is done by the vertical
Mach number.

It can be seen that the time derivative and advection terms are of the same
order of magnitude that is by a factor of ten larger than the order of magnitude
of the buoyancy, turbulence and pressure gradient terms.

1This process could be considered by including a turbulence parameterization in the set of
equations for the asymptotic analysis, i.e. in the same way as microphysics is accounted
for.
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7. Discussion of the Results

Figure 7.6.: Individual terms of the vertical momentum balance. First row:
Time Derivative: w

(0)
t , Vertical Advection: w(0)w

(0)
z . Second row:

Horizontal Advection: v
(1)
q

· ∇ξw
(0), Buoyancy: θ(4) − θ

(4)
out.
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7.2. The Asymptotic Vertical Momentum Balance

Figure 7.7.: Individual terms of the vertical momentum balance: Turbulence:
1
̺0

∇ · (̺0
~~τ ), Pressure Gradient: p

(6)
z .

In figures 7.8 and 7.9 the terms of the asymptotic vertical momentum balance
– i.e. the individual plots of figures 7.6 and 7.7 – are added up successively.

In order to judge the contribution of each term to the whole balance, all
the plots have got the same scales. We observe that the sum of the terms
is smaller than the time derivative and advection terms themselves. As the
discrete balance is not fulfilled exactly but only to some finite accuracy, nondi-
mensionalisation is directly reflected in the result of the accumulated balance
equation (see remark at the end of section 6.3). In this case looking at the
dimensional form of the equation would result in a sum that is by a factor of
10−2 smaller.

Figures 7.10 to 7.12 compare the accumulated vertical momentum balance
for three different discretisations of the advection terms: Two second order
discretisations (one with a ∆x- and one with a 2 ∆x-spacing of the stencil)
and one fourth order discretisation with a 4 ∆x-spacing of the stencil.

We observe that all three discretisations produce nearly the same results, the
shape of the scatter becomes somewhat more compact with growing spacing
of the stencil and higher accuracy. As the code does not use the same dis-
cretisation for divergence constraint and momentum advection, it cannot be
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7. Discussion of the Results

Figure 7.8.: Vertical momentum balance, added up successively. First row:
w

(0)
t and w

(0)
t +w(0)w

(0)
z . Second row: w

(0)
t +w(0)w

(0)
z +v

(1)
q

·∇ξw
(0)

and w
(0)
t + w(0)w

(0)
z + v

(1)
q

· ∇ξw
(0) − (θ(4) − θ

(4)
out).

88



7.2. The Asymptotic Vertical Momentum Balance

Figure 7.9.: Vertical momentum balance, added up successively: w
(0)
t +

w(0)w
(0)
z + v

(1)
q

· ∇ξw
(0) − (θ(4) − θ

(4)
out) − 1

̺0
∇ · (̺0

~~τ ) and w
(0)
t +

w(0)w
(0)
z + v

(1)
q

· ∇ξw
(0) − (θ(4) − θ

(4)
out) − 1

̺0
∇ · (̺0

~~τ ) + p
(6)
z .

Figure 7.10.: Accumulated vertical momentum balance of the cloud-
subdomain; second order discretisation with ∆x-spacing of the
stencil.
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7. Discussion of the Results

Figure 7.11.: Accumulated vertical momentum balance of the cloud-
subdomain; second order discretisation with 2 ∆x-spacing of the
stencil.

Figure 7.12.: Accumulated vertical momentum balance of the cloud-
subdomain; fourth order discretisation with 4 ∆x-spacing of the
stencil.
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7.2. The Asymptotic Vertical Momentum Balance

expected that the second order finite difference scheme with the ∆x-spacing
of the stencil that leads to high accuracy concerning the compliance with the
divergence constraint during postprocessing also produces comparable results
with regard to momentum advection.

Figure 7.13 shows time derivative and vertical advection of the vertical momen-
tum balance as individual terms along the centreline of the cloud, i.e. along
the vertical line through the maximum of vertical velocity.

In figure 7.14 the sum of these two terms is displayed.

On the centreline of the cloud time derivative and vertical advection of vertical
velocity nearly balance each other. This means that the dynamics on the cen-
treline can approximatively be described by the inviscid Burgers’ equation:

w
(0)
t + w(0)w(0)

z = 0. (7.1)

Although we observe simple wave propagation the potential for shock forma-
tion is hence given [12] (and indeed, steep gradients of w near the cloud top
do arrise).

To round this section off, we present the analysis of a cloud different to that
used for discussion so far. By means of the accumulated vertical momentum
balance we show that the result does not differ considerably when we examine
another deep convective column than that of figures 5.6 and 5.8. Exemplarily
we analyse the column of figures 5.25 and 5.26. This is the column around
the global maximum of vertical velocity of the whole computation, the global
wmax column.

In analogy with figure 7.10 the spatial gradients for the scatter plot of the
global wmax column are approximated using the second order discretisation
with the ∆x-spacing of the stencil. Figure 7.15 reflects the shape of the global
wmax column. The range of the main part of the points scores is of the same
order of magnitude as for the column analysed before.
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7. Discussion of the Results

Figure 7.13.: Time derivative (w
(0)
t ) and vertical

advection (w(0)w
(0)
z ) of the vertical

momentum balance on the centreline
of the cloud.

Figure 7.14.: Sum of time derivative and vertical
advection (w

(0)
t +w(0)w

(0)
z ) of the ver-

tical momentum balance on the cen-
treline of the cloud.
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7.2. The Asymptotic Vertical Momentum Balance

Figure 7.15.: Accumulated vertical momentum balance for the global wmax col-
umn of the reference run.
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7. Discussion of the Results

7.3. Simulation with Higher Spatial Resolution

For the discussion in this section we perform a computation with half the grid
size, i.e. the equidistant step size amounts to 62.5 m in all directions. Besides
this, the setting is the same as described in section 5.2.

It has to be emphasised that changes in the spatial resolution of the compu-
tational grid influence the stochastic behaviour of cloud formation. Therefore
no direct comparison between low and high resolution is possible because the
same columns as in the usual setting do not occur any more.

We investigate the deep convective column forming around the global maxi-
mum of vertical velocity, the global wmax column. In the computation with
higher spatial resolution the global maximum of vertical velocity amounts to
29.395 ms−1 and is observed after five hours and forty minutes of simulated
time (output frequency: 10 min) at a height of 7.063 km.

At first we follow the question whether a higher resolution has an impact on the
result of the accumulated balance. Figure 7.16 provides the scatter plot of the
accumulated vertical momentum balance for the highly resolved simulation.

The corresponding scatter plot for the global wmax column of the simulation
with a spatial step size of 125 m is figure 7.15. Both plots do not show consider-
able differences regarding the order of magnitude of the accumulated balance.
We conclude that the higher spatial resolution during the computation does
not lead to a more accurate approximation of the spatial gradients during
postprocessing.

Figures 7.17 and 7.18 show the usual contour plots of w on vertical and hor-
izontal slices through the cloud region, respectively. (For comparison: The
contour plots of the global wmax column for the simulation with low resolution
are figures 5.25 and 5.26).

Even if this particular convective tower is quite frayed table 7.1 proves that
the typical values of velocities and dimensions are comparable to those for the
towers in the simulation with lower resolution.

In analogy with table 5.1 concerning the simulation with the 62.5 m step size,
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7.3. Simulation with Higher Spatial Resolution

Figure 7.16.: Accumulated vertical momentum balance for the global wmax col-
umn of the simulation with a spatial step size of 62.5 m.

table 7.1 lists the columns around the local maxima of vertical velocity for
the simulation with the 125 m step size. The table contains the maximum
velocities wmax, umax, vmax, the height of the maximum vertical velocity hwmax

and the extensions of the deep convective cloud ∆zcloud, ∆xcloud, ∆ycloud. The
last row yields the averaged values of the table’s sample.

The sample of table 7.1 shows somewhat smaller values with respect to the
maximum vertical velocity and the spatial extensions of the cloud compared
to the simulation with lower resolution. The characteristic scales and orders
of magnitude in the deep convective events, however, do not change with the
refinement of the computational grid. This means that the spatial step size of
125 m is probably sufficient for resolving the relevant physical phenomena.
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7. Discussion of the Results

Figure 7.17.: Vertical slice of the global wmax column from the computation
with a spatial step size of 62.5 m.

Figure 7.18.: Horizontal slice of the global wmax column from the computation
with a spatial step size of 62.5 m.
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7.3. Simulation with Higher Spatial Resolution

t wmax umax vmax hwmax
∆zcloud ∆xcloud ∆ycloud[

h : min
] [

ms−1
] [

ms−1
] [

ms−1
] [

km
] [

km
] [

km
] [

km
]

3 : 00 14.186 8.618 7.683 4.688 4.813 1.313 1.250

3 : 10 17.000 11.853 11.266 5.688 8.250 1.000 1.313

3 : 20 17.478 9.662 10.004 6.125 3.563 1.625 1.125

3 : 30 14.936 10.612 10.073 6.125 4.250 1.188 1.000

3 : 40 15.498 9.602 8.659 3.563 2.375 0.875 0.250

3 : 50 21.415 8.738 10.207 5.000 4.188 0.750 0.875

4 : 00 14.939 10.404 9.581 5.000 3.438 0.688 0.688

4 : 10 19.004 12.099 13.151 6.313 3.625 3.563 1.375

4 : 20 16.975 9.589 8.661 4.313 5.813 1.125 1.313

4 : 30 19.277 10.087 9.640 3.813 4.938 1.750 1.125

4 : 40 20.110 11.647 11.882 4.500 3.938 1.063 1.875

4 : 50 20.652 9.996 10.628 4.313 3.750 2.125 1.625

5 : 00 17.737 13.583 12.593 9.000 6.813 2.563 2.875

5 : 10 21.500 14.584 10.593 6.000 3.875 2.625 1.438

5 : 20 13.568 9.990 11.431 3.563 2.813 1.313 0.813

5 : 30 21.070 11.696 10.527 4.125 4.938 1.000 1.250

5 : 40 29.395 20.148 19.736 7.063 5.938 1.500 3.313

5 : 50 12.741 9.240 8.938 3.563 3.188 1.125 2.625

6 : 00 13.405 7.782 8.420 3.125 2.250 1.500 0.813

Ø 17.941 11.049 10.720 5.046 4.355 1.510 1.418

Table 7.1.: Characteristic velocities and dimensions for the simulation with a
spatial step size of 62.5 m.
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7. Discussion of the Results

7.4. Simulation with the Horizontal Coriolis
Parameter

To remind the reader of the role of the different Coriolis Forces, the momentum
balances are stated as they are given by Etling [3]:

∂u
∂t

+ u∂u
∂x

+ v∂u
∂y

+ w∂u
∂z

− fv + f ∗w = −1
̺

∂p
∂x

∂v
∂t

+ u∂v
∂x

+ v∂v
∂y

+ w∂v
∂z

+ fu = −1
̺

∂p
∂y

∂w
∂t

+ u∂w
∂x

+ v∂w
∂y

+ w∂w
∂z

− f ∗u = −1
̺

∂p
∂z

− g

In the above equations f = 2Ω sin φ and f ∗ = 2Ω cos φ represent the vertical
and the horizontal Coriolis parameters, respectively, where Ω is the earth’s
rotation frequency and φ is the geographical latitude.

The horizontal Coriolis parameter f ∗ is usually neglegted in meteorological
applications. It is not implemented in the standard version of UCLA-LES1.1
either whereas the vertical Coriolis parameter f is.

A first approach to judge the importance of the Coriolis term involving the
horizontal Coriolis parameter and occuring in the horizontal momentum bal-
ance for the u-velocity is to look at its order of magnitude. This is done in
the same way as for the individual terms of the vertical momentum balance
discussed in section 7.2. Based on the output of the reference run the Coriolis
term of interest is computed during postprocessing. Figure 7.19 shows the
usual scatter plot over height for the Coriolis term assuming geographical mid
latitude.

In figure 7.20 we plot the distribution over height of the time derivative from
the u-equation.

We observe a situation comparable to that of the vertical momentum balance:
In the w-equation, the time derivative term is by one order of magnitude larger
than the buoyancy term, in the u-equation, the time derivative term is by one
order of magnitude larger than the Coriolis term.

For the purpose of performing a simulation with the horizontal Coriolis pa-
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7.4. Simulation with the Horizontal Coriolis Parameter

Figure 7.19.: Dimensionless Coriolis term of the u-equation (w(0)Ω̂q × k) =
w(0) cos φ.

rameter it is implemented in UCLA-LES1.1. Besides this, we stay with the
same setting described in section 5.2. In this way we are able to compare sim-
ulation data of the computation without to that with the horizontal Coriolis
parameter.

It has to be emphasised that as soon as there are changes in the equations there
are changes in the stochastic process of cloud formation. For one fixed system
the results are deterministic and reproducible but with a different setting the
same columns as in the usual setting cannot be observed. So there is no direct
comparison possible by means of the same tower in time and space for both
cases.

We choose the deep convective column forming around the global maximum
of vertical velocity, the global wmax column, for detailed analysis. In the
computation with the horizontal Coriolis parameter the global maximum of
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7. Discussion of the Results

Figure 7.20.: Dimensionless time derivative of the first order u-velocity u
(1)
t .

vertical velocity amounts to 31.401 ms−1 and is observed after five hours and
forty minutes of simulated time (output frequency: 10 min). Figures 7.21
and 7.22 show the usual contour plots of w on vertical and horizontal slices
through the cloud region, respectively. (For comparison: The contour plots of
the global wmax column for the standard setting without the horizontal Coriolis
parameter are figures 5.25 and 5.26).

From these plots we cannot deduce an influence of the inclusion of the horizon-
tal Coriolis parameter on the dynamics of the deep convective column. Also
the scatter plot of the accumulated vertical momentum balance in figure 7.23
does not show considerable differences to figure 7.15 which is the corresponding
plot from the simulation without the horizontal Coriolis parameter.

The reduced asymptotic model suggests the prominent role of the horizontal
Coriolis parameter in the u-equation. As visualisation of the horizontal flow
streamlines are plotted for the horizontal cross section through the maximum
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7.4. Simulation with the Horizontal Coriolis Parameter

Figure 7.21.: Vertical slice of the global wmax column from the computation
including the horizontal Coriolis parameter.

Figure 7.22.: Horizontal slice of the global wmax column from the computation
including the horizontal Coriolis parameter.
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7. Discussion of the Results

Figure 7.23.: Accumulated vertical momentum balance for the global wmax

column from the computation including the horizontal Coriolis
parameter.

vertical velocity of the specific cloud. We show two examples from the reference
case without the horizontal Coriolis parameter: The column analysed in detail
in sections 7.1 and 7.2 (see slices in figures 5.6 and 5.8) whose streamlines are
displayed in figure 7.24 and the global wmax column of the reference run (see
slices in figures 5.25 and 5.26) whose streamlines are situated in figure 7.25. In
contrast, figure 7.26 presents the streamlines of the global wmax column of the
run including the horizontal Coriolis parameter (see slices in figures 7.21 and
7.22). The background colour in all three plots indicates the absolute value of
horizontal velocities.

There is no difference to observe that could be attributed to the absence or
presence of the horizontal Coriolis parameter during the computation.

The horizontal Coriolis parameter acts only on the u-velocity and not on the
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7.4. Simulation with the Horizontal Coriolis Parameter

Figure 7.24.: Streamlines and absolute value of horizontal velocities for the
column of figures 5.6 and 5.8 – computation without horizontal
Coriolis parameter.

Figure 7.25.: Streamlines and absolute value of horizontal velocities for the
column of figures 5.25 and 5.26 – computation without horizontal
Coriolis parameter.
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7. Discussion of the Results

Figure 7.26.: Streamlines and absolute value of horizontal velocities for the
column of figures 7.21 and 7.22 – computation with horizontal
Coriolis parameter.
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7.4. Simulation with the Horizontal Coriolis Parameter

v-velocity. This suggests that there should be a preferential direction among
the components of horizontal velocity in the data of the simulation including
the horizontal Coriolis parameter. Such a difference between u and v should
not be observable in the data of the simulation without the horizontal Coriolis
parameter.

To find out whether this is true, we build averages of the velocity components
themselves and their absolute values, respectively, over the deep convective
column. This means we add up all the values of the cloud-subdomain and
devide by the number of grid points contained in it. This is done for both
the simulation without (table 7.2) and with (table 7.3) the horizontal Coriolis
parameter.

For each point in time the tower around the local maximum of vertical velocity
is listed. Both tables provide the maximum velocity in the cloud wmax, the
averaged velocity components w, u, v, the averaged absolute values of the
velocity components |w|, |u|, |v| and the number of grid points in the cloud.
The last row in both tables yields the average values of the table’s sample.

There is no preferential direction to detect in the computation with the hori-
zontal Coriolis parameter (in the computation without neither). The difference
between u computed without horizontal Coriolis parameter and u computed
with horizontal Coriolis parameter is due to the slightly higher velocity level
in the sample of the simulation including the horizontal Coriolis parameter.
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t wmax w |w| u |u| v |v| # grid points[
h : min

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
−

]

3 : 00 15.376 0.805 1.084 0.003 0.421 0.008 0.438 3420

3 : 10 19.243 1.630 1.933 −0.065 0.696 0.016 0.765 3861

3 : 20 21.742 1.808 2.520 0.027 1.179 −0.066 1.174 21420

3 : 30 18.778 0.754 1.477 −0.133 0.684 −0.050 0.623 3780

3 : 40 20.493 2.227 2.874 0.044 1.040 −0.200 0.966 3200

3 : 50 20.999 1.462 2.161 −0.122 0.907 −0.014 1.021 3500

4 : 00 20.750 2.459 3.034 −0.024 1.339 0.085 1.347 19040

4 : 10 22.456 2.063 2.665 −0.154 1.178 0.170 1.255 5184

4 : 20 18.842 1.424 2.124 −0.086 1.179 −0.034 1.221 35910

4 : 30 25.624 4.026 4.567 −0.116 2.112 −0.454 2.136 14175

4 : 40 22.735 2.008 2.562 0.177 1.207 −0.055 1.165 10032

4 : 50 30.993 2.615 3.135 0.059 1.592 0.118 1.619 30240

5 : 00 20.323 2.016 2.770 0.074 1.761 −0.252 1.500 19516

5 : 10 21.232 1.957 2.501 −0.270 1.570 0.240 1.685 26448

5 : 20 18.890 2.457 3.403 0.096 2.046 0.091 1.711 3770
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t wmax w |w| u |u| v |v| # grid points[
h : min

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
−

]

5 : 30 26.219 3.124 3.710 0.061 1.917 0.038 1.767 41272

5 : 40 23.254 3.620 4.443 0.240 2.117 0.109 2.447 17472

5 : 50 20.380 3.247 3.686 −0.461 2.122 −0.342 2.384 27144

6 : 00 18.796 2.245 3.030 0.208 1.570 −0.256 1.616 12408

Ø 21.428 2.208 2.825 −0.023 1.402 −0.045 1.413 15883

Table 7.2.: Velocities averaged over the cloud-subdomain– simulation without horizontal Coriolis parameter.
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t wmax w |w| u |u| v |v| # grid points[
h : min

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
−

]

3 : 00 14.435 0.771 1.019 0.003 0.573 0.002 0.539 7020

3 : 10 19.343 1.239 1.517 0.012 0.562 0.057 0.593 4554

3 : 20 19.998 1.234 1.633 −0.019 0.637 0.055 0.591 4700

3 : 30 23.251 2.694 3.183 −0.089 1.424 0.034 1.431 10608

3 : 40 19.955 1.510 2.230 0.107 0.893 0.136 0.915 3200

3 : 50 20.749 2.793 3.434 0.080 1.328 −0.038 1.576 4920

4 : 00 17.628 1.798 2.617 −0.097 1.778 −0.081 1.582 21120

4 : 10 17.936 1.441 1.785 0.108 1.117 −0.057 1.181 6480

4 : 20 22.537 4.125 4.726 −0.276 1.903 0.210 2.614 13860

4 : 30 22.082 1.894 2.861 0.111 1.492 −0.185 1.525 6006

4 : 40 22.241 2.210 2.795 −0.043 1.456 0.278 1.373 9450

4 : 50 20.415 3.002 3.514 0.312 1.846 0.414 2.032 6840

5 : 00 28.610 2.273 2.945 −0.018 1.609 0.043 1.522 41400

5 : 10 27.534 3.805 4.579 0.108 1.898 −0.230 1.832 10208

5 : 20 22.949 3.148 3.814 0.031 2.024 0.033 2.209 34500
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t wmax w |w| u |u| v |v| # grid points[
h : min

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
−

]

5 : 30 21.016 2.802 3.266 −0.037 1.436 −0.225 1.509 8064

5 : 40 31.401 2.207 2.798 −0.023 1.491 −0.080 1.499 51842

5 : 50 29.501 3.892 4.351 0.050 2.190 0.001 2.026 23919

6 : 00 28.141 3.423 3.863 0.220 2.166 0.083 1.814 27600

Ø 22.617 2.435 2.996 0.028 1.464 0.024 1.493 15594

Table 7.3.: Velocities averaged over the cloud-subdomain – simulation with horizontal Coriolis parameter.
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8. Conclusions

The plausibility of the asymptotic column model for deep convective clouds
derived in section 3 is checked. For this purpose the physical statements of the
reduced model equations are compared to the simulation data of a detailed
computational model.

The simulation data confirm the basic assumptions of the asymptotic analy-
sis. The deep convective columns are characterised by a spatially anisotropic
structure where the horizontal scale is considerably narrower than the vertical
scale. From emergence to breakup the life cycle of one particular deep con-
vective cloud covers a period of about 20 min. The deep convective events are
concentrated towers separated from each other.

The main statements of the asymptotically reduced model are approved by the
simulation data. The pressure field controls the horizontal flow. The vertical
velocity develops freely independent of pressure over the whole depth of the
convective cloud. The vertical velocity is directly determined by the buoyancy
induced by the potential temperature deviation relative to the background
stratification.

The asymptotic perturbation quantities are extracted from the simulation
data. Their values in the cloud region are of O(1). The sum of the terms
in the vertical momentum balance equation computed during postprocessing
is considerably smaller than the large time derivative and advection terms
themselves.

Refining the spatial step size of the equidistant computational grid from 125 m
to 62.5 m does not influence the results in a qualitative sense: Even with the
coarser grid the relevant physical phenomena appear to be represented.

Analysing the streamlines reveals no preferential direction among the compo-
nents of horizontal velocity in the computation with the horizontal Coriolis
parameter.
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A. Parameters in the Microphysics

Parameterizations

D1 = 10−3 tref

tSI

rc,ref

D2 = 2.2
tref

tSI

rc,refr
F1
r,ref

D3 = 4.26 x 10−4

(
̺ref

̺SI

)(F2−1)

rF2
r,ref

tref

tSI

D4 = 8.08 x 10−3

(
̺ref

̺SI

)(F2+F3−1)

r
(F2+F3)
r,ref

tref

tSI

D5 = 5.4

D6 = 2.55 x 103 pSI

prefrvs,ref

D7 = 14.34
tref lSI

tSI lref

(
̺ref

̺SI

)(F4+0.5)

rF5
r,ref

D10 =
e∞
pref

F1 = 0.875

F2 = 0.525

F3 = 0.2046

F4 = −0.3654

F5 = 0.1346

The symbols of the above equations have the following meaning:

• A variable with the index SI stands for the SI-unit of that quantity.

• Rd: specific gas constant of dry air
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A. Parameters in the Microphysics Parameterizations

• Rv: specific gas constant of water vapour

• e∞: triple-point vapour pressure

• Lcond: specific latent heat of condensation

• cp: specific heat capacity at constant pressure for dry air
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Notation

Latin Symbols

a radius of the Earth
Acr constant of O(1) resulting from asymptotic analysis
Avs constant of O(1) resulting from asymptotic analysis
B constant of O(1) resulting from asymptotic analysis
cp specific heat capacity at constant pressure for dry air
Ccr constant of O(1) resulting from asymptotic analysis
D dimensionless number resulting from dimensional analysis
e∞ triple-point vapour pressure
f vertical Coriolis parameter
f ∗ horizontal Coriolis parameter
F constant exponent in dimensional analysis
g acceleration of gravity
h height
k vertical unit vector
Kvc constant of O(1) resulting from asymptotic analysis
l length
L constant of O(1) resulting from asymptotic analysis
Lcond specific latent heat of condensation
p pressure
Pvs constant of O(1) resulting from asymptotic analysis
r mixing ratio
R specific gas constant
Rvs constant of O(1) resulting from asymptotic analysis
S source term
Sθ source term due to latent heat release
t time coordinate
u horizontal velocity component in x-direction
v horizontal velocity component in y-direction
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Notation

v velocity vector
vt terminal falling velocity of rain drops
Vr constant of O(1) resulting from asymptotic analysis
w vertical velocity
x horizontal coordinates with respect to hsc

x̃ horizontal coordinates in dimensional form
z vertical coordinate

Greek Symbols

α constant of O(1) resulting from asymptotic analysis
β constant of O(1) resulting from asymptotic analysis
γ isentropic exponent
Γ constant of O(1) resulting from asymptotic analysis
ε asymptotic scaling parameter
θ potential temperature
λ constant of O(1) resulting from asymptotic analysis
µ constant of O(1) resulting from asymptotic analysis
ξ horizontal coordinates with respect to εhsc

̺ density
φ degree of latitude
Ω diurnal rotation frequency
Ω Earth rotation vector

Ω̂ normalised Earth rotation vector

Dimensionless Numbers

Fr Froude-Number
M Mach-Number
Ro Rossby-Number
Sr Strouhal-Number
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Mathematical Expressions and Operators

D
Dt substantial derivative

exp[·] exponential function
ln[·] natural logarithm function (to the basis e)
max[·] maximum function
sin[·] sine function
cos[·] cosine function
O(·) Landau-Symbol
(·)(i) i: order of the asymptotic expansion
(·)t differentiation with respect to t
(·)z differentiation with respect to z
∇ Nabla-Operator
∇x Nabla-Operator regarding x

∇ξ Nabla-Operator regarding ξ

∇2 = ∆ Laplace-Operator

Indices

c cloud water
cloud subdomain defining the deep convective cloud
0 surface
d dry air
hor horizontal
max maximum
min minimum
out outside the deep convective column
r rain water
ref reference
sat saturated
sc scale
SI SI-unit of that quantity
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Notation

tr tropopause
un undersaturated
v water vapour
ver vertical
vs saturated water vapour
(·)

q
horizontal part of a vector

(·)
⊥

vertical part of a vector

(·) averaged quantity
|(·)| absolute value of a quantity
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