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Abstract

Constraint-based analysis of genome-scale metabolic networks has become in-
creasingly important for describing and predicting the cellular behavior of
living organisms. The steady-state constraints provide a reliable framework
without the need for additional kinetic details of the system. As the num-
ber of metabolic network reconstructions and their level of detail continually
increases, many computational tools for their analysis become unpractical to
use. This invites for more e�cient algorithms and tools for the analysis of
metabolic networks.

We have a two-fold aim with this work. On one hand side, our goal is
to design new algorithms that improve the e�ciency of some of the existing
methods. Secondly, we aim to create additional tools that �ll in gaps in our
toolbox for metabolic network analysis. These methods will provide additional
insight into the structure of metabolic networks and ultimately broaden our
understanding of cellular systems.

In the �rst part of the thesis we focus on improving �ux coupling analysis
(FCA). We prove that solving certain linear programs to feasibilty is su�cient
to correctly deduce most coupling information. As a result of this and other
re�nements we design the FFCA algorithm that improves the e�ciency of
existing algorithms in the literature. FFCA is further developed by proving
that all fully coupled reactions can be computed algebraically, without the
need to solve linear programs (LP). Additionally, we show how utilizing the
transitive nature of the coupling relations and reusing existing LP solutions
can dramatically decrease running-time. Using these improvements we create
the F2C2 algorithm, which is orders of magnitude faster than FFCA.

Traditionally FCA is performed on the unconstrained steady-state �ux
space, hence the FCA relations are generic to the underlying network. In order
to derive additional coupling information from the metabolic networks, we
extend the concepts of FCA to the constrained �ux space, where any number
of additional linear constraints can be imposed on the reactions. Constrained
�ux coupling analysis (CFCA) is proven to reveal coupling information that is
only visible under special environmental conditions. We study the relationship
between the FCA and CFCA relations and present an e�cient algorithm to
compute the latter.

In our next e�ort we study whether relations similar to FCA could also
be applied for metabolites. We introduce the concept of metabolic activity
coupling (MAC), which �nds implicative relations between the momentary
production and consumption of di�erent metabolites.

Elementary �ux modes (EM) are a canonical representation of the steady-
state �ux space and are important for the structural analysis of metabolic
networks. The complete enumeration of EMs is closely related to the enumer-
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ation of vertices of polyhedra, thus a hard problem. Our novel method for
�nding EMs containing several prede�ned reactions can be used to identify
pathways that synthesize a desired target from one or more source metabolites,
and also to compute EMs that cross through several prede�ned intermediary
reactions. While the problem solved belongs to the class of NP-hard problems,
we show that for current-generation networks the method is still applicable in
practice.

EMs are most importantly used as a steady-state chain of reactions be-
tween sources and products. Without the manual analysis of individual EMs,
little is known about their interior topology. For this purpose, we introduce
and explore several concepts of ordering for the set of reactions of an EM.
The purpose of these concepts is two-fold as they aid not only in the visual
representation, but also in providing additional insight into the structure of
the analyzed EM. We present graph-theoretic algorithms with which the pre-
sented notions can be computed e�ciently.

To deal with the combinatorial complexity of an exhaustive EM enumera-
tion, a trend in metabolic network analysis is the study of isolated subnetworks
of the system. We show that such methods may result in undesired artifacts,
and as an alternative solution, we present a method that aims at projecting
the �ux space onto lower dimension, while preserving key features of the net-
work. We show that in certain cases such methods can be applied in situations
where an exhaustive EM enumeration would otherwise fail.
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Zusammenfassung

Constraint-basierte Analyse von genomweiten metabolischen Netzwerken ist
zunehmend immer wichtiger geworden, um das Zellverhalten von Lebenswe-
sen zu beschreiben und vorherzusagen. Die sogenannten 'steady- state' Bedin-
gungen bieten einen verlässlichen Rahmen, ohne zusätzliche kinetische Einzel-
heiten des Systems zu brauchen. Da die Anzahl des Wiederaufbaus des Stof-
fwechselnetzwerks und deren Detaillierungsgrad fortwährend steigt, sind viele
Rechenmitteln für deren Analyse ungeeignet. Dies gibt Anlass für e�zientere
Algorithmen und Mitteln für die Analyse von metabolischen Netzwerken.

Wir haben mit dieser Arbeit ein zweifaches Ziel. Auf der einen Seite ist es
unser Ziel neue Algorithmen zu gestalten, die die Laufzeit von einigen beste-
henden Verfahren verbessern. Auf der anderen Seite streben wir an zusätzliche
Werkzeuge zu erstellen, die die Lücken in unserem Werkzeugkasten für Stof-
fwechselnetzwerkanalyse erfüllen. Diese Verfahren werden zusätzlichen Ein-
blick in die Struktur des metabolischen Netzes geben und schlieÿlich unser
Verständnis der zellulären Systeme erweitern.

Im ersten Teil der Arbeit konzentrieren wir uns darauf, die Flusskop-
plungsanalyse (FCA) zu verbessern. Wir beweisen, dass es ausreichend ist,
bestimmte lineare Programme zur Ausführbarkeit zu lösen, um die meisten
Verkopplungsinformationen richtig herzuleiten. Als Ergebnis dieser und an-
derer Verfeinerungen entwickeln wir den FFCA Algorithmus, der die E�zienz
der in der Literatur bestehenden Algorithmen verbessert. FFCA wird weiter
entwickelt, indem wir beweisen, dass alle vollständig gekoppelten Reaktionen
algebraisch berechnet werden können, ohne das lineare Programme (LP) gelöst
werden müssen. Zusätzlich zeigen wir, wie durch die Anwendung der Tran-
sitivität der Koppelbeziehungen und die Wiederverwendung der bestehenden
LP, die Laufzeit sich drastisch vermindern kann. Indem wir diese Verbesserun-
gen verwenden, scha�en wir den F2C2 Algorithmus, der um Gröÿenordnungen
schneller als FFCA ist.

Herkömmlich wird FCA auf der uneingeschränkten stillstehenden �ux
space durchgeführt, demzufolge sind die FCA Beziehungen auf dem zugrunde
liegenden Netzwerk typisch. Um zusätzliche Kopplungsinformationen aus den
metabolischen Netzwerken ableiten zu können, erweitern wir die Vorstellun-
gen der FCA auf die eingeschränkte �ux space, in welchem eine beliebige An-
zahl von zusätzlichen linearen Einschränkungen auf die Reaktionen zur Folge
haben kann. Eingeschränkte Flusskopplung Analyse (CFCA) ist erwiesen,
um die Kopplungsinformationen zu o�enzulegen, die nur unter besonderen
Umweltbedingungen sichtbar ist. Wir untersuchen die Beziehung zwischen
den FCA und CFCA Beziehungen und stellen einen e�zienten Algorithmus
dar, um letztere zu errechnen.

In unserem nächsten Versuch untersuchen wir, ob Beziehungen, die ähn-
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lich der FCA sind, auch für Metaboliten angewendet werden könnten. Wir
stellen das Konzept der Sto�wechselaktivität Kopplung (MAC) vor, das im-
plicative Beziehungen zwischen der derzeitigen Herstellung und Verbrauch von
verschiedenen Metaboliten �ndet.

Elementare Flussmoden (EM) sind eine anerkannte Darstellung der
'steady-state' Flussraum und bedeutend für die Strukturanalyse von
metabolischen Netzwerken bedeutend. Die vollständige Zählung der EM-en
ist eng mit der Zählung von Eckpunkte der Polyeder verbunden und somit
ein schwieriges Problem. Unsere neue Methode, um EM-en, die mehrere
vorde�nierten Reaktionen beinhalten, zu �nden, kann auch verwendet werden,
um Wege, die ein gewünschtes Ziel aus einem oder mehreren Quellmetabo-
liten zu synthetisieren, zu identi�zieren, und auch EM-en zu berechnen, die
sich durch mehrere vorde�nierte Vermittlerreaktionen kreuzen. Während das
gelöste Problem zur Art der NP- harten Probleme gehört, zeigen wir, dass für
die current-generation Netzwerke das Verfahren in der Praxis noch anwendbar
ist.

EM-en werden vor allem als Kette von Reaktionen zwischen Quellen und
Produkten verwendet. Ohne die manuelle Analyse zu den einzelnen EM-en ist
unser Wissen über ihre innere Topologie begrenzt. Zu diesem Zweck stellen
wir mehrere Konzepte für den Abruf dieser Reihe von Reaktionen eines EM
vor und erforschen diese. Der Zweck dieser Konzepte ist zweifach, da sie nicht
nur in der visuellen Darstellung helfen, sondern auch zusätzliche Einsicht in
die Struktur des analysierten EM geben. Wir stellen graphentheoretische
Algorithmen dar, mit denen die vorgestellten Entwürfe e�zient berechnen
werden können.

Um mit der kombinatorischen Komplexität einer erschöpfenden EM
Aufzählung umzugehen, ist es bei der Sto�wechselnetzwerkanalyse die Ten-
denz, die isolierten Teilnetze des Systems zu untersuchen. Wir zeigen, dass
solche Methoden zu unerwünschten Artefakten führen können und als eine al-
ternative Lösung präsentieren wir einen Weg, der anstrebt, den Flussraum auf
die untere Dimension zu projektieren, während die wichtigsten Features des
Netzwerks beibehalten werden. Wir zeigen, dass in bestimmten Fällen solche
Verfahren in Situationen eingesetzt werden können, wo eine erschöpfende EM
Aufzählung sonst scheitern würde.
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Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Mathematical notations and preliminaries . . . . . . . . . . 2

1.2.1 Linear algebra and set theory . . . . . . . . . . . . . . . . . . 2

1.2.2 Polyhedral theory . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Linear and mixed integer programming . . . . . . . . . . . . 5

1.3 An overview of metabolic networks . . . . . . . . . . . . . . . 6

1.3.1 Metabolic network modeling . . . . . . . . . . . . . . . . . . 8

1.3.2 The steady-state �ux cone . . . . . . . . . . . . . . . . . . . . 11

1.3.3 Elementary �ux modes . . . . . . . . . . . . . . . . . . . . . . 12

1.3.4 Minimal metabolic behaviors . . . . . . . . . . . . . . . . . . 14

1.3.5 Flux coupling analysis . . . . . . . . . . . . . . . . . . . . . . 15

1.3.6 Elementary �ux patterns . . . . . . . . . . . . . . . . . . . . 16

1.3.7 Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . 17

1.1 Motivation

Of all the existing matter, living organisms are arguably the most interesting
ones to study. Systems biology allows researching them with mathematic
rigour. Advances in molecular biology allowed a more precise reconstruction
of biological systems, thereby increasing the popularity of systems biology.
An integral part of systems biology is the study of metabolic systems.

There are many rewards and bene�ts associated with the proper under-
standing of the metabolism of living cells. It has the potential to increase our
quality of life via the design and development of new, more e�cient, and less
harmful drugs. It can have a positive impact on economy by allowing the pro-
duction of key strategic resources, such as ethanol, propanol or (bio)butanol.
These resources may be produced cheaper and in a higher quantity than with
traditional methods. Last but not least it serves the purpose of elucidating
the understanding of our surrounding, feeding a drop to the everlasting human
thirst for knowledge.
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1.2 Mathematical notations and preliminaries

In this section we present the essential mathematical concepts used in the
main chapters of the thesis.

1.2.1 Linear algebra and set theory

We denote with N the set of natural number, with Z the set of integers and
with R the set of real numbers. R+ represents the non-negative halfspace,
while Rn represents the n-dimensional vector space over R. Any vector v ∈ Rn

is a column vector, while vt represents the transposed row vector. We reference
the ith coordinate (where i ∈ {1, ..., n}) of vector v as vi.

Let C ⊆ Rn. The orthogonal space of C is de�ned as C⊥ := {x ∈ Rn |
∀y ∈ C,

∑n
i=1 yixi = 0}.

The support of a vector is the set of indices (or coordinates) in which the
vector di�ers from zero.

De�nition 1.1. Let v ∈ Rn. The support of v is supp(v) = {i ∈ {1, . . . , n} |
vi 6= 0}.

Let S be a set with n elements (i.e., |S| = n) and let I ⊆ {1, ..., n} with
k := |I| ≤ n. Then SI will denote the subset of S consisting of elements
{si1 , si2 , ..., sik}. We will use a similar notation for vectors. Let v ∈ Rn

and I ⊆ {1, ..., n} with k := |I| ≤ n and k > 0. Then vI ∈ Rk with
vI := (vi1 , vi2 , ..., vik).

The indexing of matrices is de�ned as follows. Let A ∈ Rm×n be a matrix
and i, j ∈ N with 0 < i ≤ m and 0 < j ≤ n. Then Aij represents the entry of
the matrix corresponding to the ith row and jth column. For I ⊆ {1, 2, ...,m}
and I ⊆ {1, 2, ..., n} with 0 < k = |I| ≤ m and 0 < l = |J | ≤ n, the matrix
AIJ corresponds to the submatrix of A where rows in I and columns in J have
been selected (i.e., (AIJ)uv = Aiujv).

De�nition 1.2 (Linear, a�ne, conic and convex combination). Let
{v1, v2, ..., vk} ⊂ Rn. Then

• x :=
∑k

i=1 λiv
i for some λ1, λ2, ..., λk ∈ R is a linear combination of the

vectors.

• x :=
∑k

i=1 λiv
i for some λ1, λ2, ..., λk ≥ 0 is a conic combination of the

vectors.

• x :=
∑k

i=1 λiv
i for some λ1, λ2, ..., λk ∈ R with

∑k
i=1 λi = 1 is an a�ne

combination of the vectors.

• x :=
∑k

i=1 λiv
i for some λ1, λ2, ..., λk ≥ 0 with

∑k
i=1 λi = 1 is a convex

combination of the vectors.
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De�nition 1.3 (Linear independence). A set of vectors {v1, v2, ..., vk} ⊂ Rn

are linearily independent if 0 ∈ Rn cannot be written up as their linear com-
bination, unless λ1 = λ2 = ... = 0.

De�nition 1.4 (Linear subspace). S ⊆ Rn is a linear subspace if the following
two conditions hold:

• if u,w ∈ S then also u+ w ∈ S.

• if u ∈ S and c ∈ R then also c · u ∈ S.

De�nition 1.5 (Kernel). Let A ∈ Rm×n be a matrix. The kernel (or null
space) of A is de�ned as kern(A) := {x ∈ Rn | Ax = 0}. The kernel of A is
a linear subspace of Rn.

De�nition 1.6 (Basis). Let S ⊆ Rn. A set of vectors B := {b1, b2, ..., bk} ⊂
Rn is a basis of S if and only if the following conditions hold:

• For any v ∈ S, v can be written as a linear combination of the vectors
in B.

• The vectors in B are linearily independent.

De�nition 1.7 (Dimension). Let S ⊆ Rn and B a basis of S. Then the
dimension of S is dim(S) := |B|.

In the following we recall a few notions from set theory.

De�nition 1.8 (Relation). Let X, Y be two sets, and G ⊆ X×Y . The triple
R := (X, Y,G) is a relation. If (x, y) ∈ G then we say that 'x is related to
y' and the shortened notation xRy can be used. If X = Y we will simply say
that R is a relation over X.

De�nition 1.9 (Re�exivity). Let R be a relation over X. R is re�exive if for
all x ∈ X, xRx holds.

De�nition 1.10 (Irre�exivity). Let R be a relation over X. R is irre�exive
if for all x ∈ X, xRx is false.

De�nition 1.11 (Transitivity). Let R be a relation over X. R is transitive
if for all x, y, z ∈ X with xRy and yRz, then xRz.

De�nition 1.12 (Antisymmetry). Let R be a relation over X. R is antisym-
metric if for all x, y ∈ X if xRy and yRx, then x = y.

De�nition 1.13 (Symmetry). Let R be a relation over X. R is symmetric if
for all x, y ∈ X, xRy implies yRx.

De�nition 1.14 (Totality). Let R be a relation over X. R is total or complete
if for all x, y ∈ X, either xRy or yRx (or both) holds.
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De�nition 1.15 (Partial order). A relation R over X is said to be a partial
ordering relation if it is re�exive, transitive and antisymmetric. X is said to
be partially ordered under R.

De�nition 1.16 (Total order). A relation R over X is a total ordering rela-
tion if it is a partial ordering relation and in addition R is total.

1.2.2 Polyhedral theory

De�nition 1.17 (Convex cone). Let C ⊆ Rn with C 6= ∅. C is a convex cone
if for all x, y ∈ C, any conic combination of x and y is an element of C.

De�nition 1.18 (Equivalent rays). Let C be a convex cone. A non-zero
element x ∈ C is called a ray. Two rays x, y ∈ C are equivalent, written
x ∼= y, if x = λy, for some λ > 0.

De�nition 1.19 (Extreme ray). A ray x in C is extreme if there do not exist
rays y, z ∈ C, y 6∼= z such that x = y + z.

De�nition 1.20 (Polyhedron). A set P = {x ∈ Rn | Ax ≤ b} with A ∈ Rm×n

and b ∈ Rm is a (convex) polyhedron.

De�nition 1.21 (Polyhedral cone). A set C = {x ∈ Rn | Ax ≤ 0} with
A ∈ Rm×n is a polyhedral cone.

Therefore, a polyhedral cone is a special type of polyhedron, where the
right-hand side of the inequality constraints is 0 ∈ Rm.

De�nition 1.22 (Lineality space). Let C = {x ∈ Rn | Ax ≤ 0} be a polyhe-
dral cone. The lineality space of C is lin.space(C) = {x ∈ Rn | Ax = 0}.

De�nition 1.23 (Pointed cone). A polyhedral cone C is pointed if
lin.space(C) = {0}.

De�nition 1.24 (Finitely generated cone). A convex cone C is �nitely gen-
erated if there exist vectors g1, g2, ..., gk, called generators, such that C =
{λ1g1 + ...+ λkg

k | λ1, ..., λk ≥ 0}.

Theorem 1.25 (Farkas-Minkowski-Weyl). A convex cone is polyhedral if and
only if it is �netely generated.

De�nition 1.26 (Face). Let P be a polyhedron and F ⊆ P . F is called a face
of P if F = P or F = P ∩ {x ∈ Rn | atx = b} and P ⊆ {x ∈ Rn | atx ≥ b}

De�nition 1.27 (Minimal face). Let P be a polyhedron and F 6= ∅ a face. F
is a minimal face if there is no face F ′ 6= ∅ of P with F ′ ( F .
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De�nition 1.28 (Dimension). Let C be a polyhedral cone and F a face. The
dimension of F is equal to the dimension of its linear span, i.e., dim(F ) =
dim({x ∈ Rn | x can be written up as the linear combination of elements in
F}).

De�nition 1.29 (Minimal proper face). Let C be a polyhedral cone and F 6= ∅
a face of C. F is a minimal proper face if dim(F ) = dim(lin.space(C)) + 1.

Proposition 1.30 (Farkas' Lemma). Let A ∈ Rm×n and b ∈ Rm. Then
exactly one of the following is true:

• There exists x ∈ Rn such that Ax = b and x ≥ 0.

• There exists y ∈ Rm such that ytA ≥ 0 and ytb < 0.

For a proof of the Farkas' Lemma we refer the reader to [100].

1.2.3 Linear and mixed integer programming

De�nition 1.31 (Linear program). Let A ∈ Rm×n, b ∈ Rm and c ∈ Rn.
The problem of computing argmin/argmax{ctx | Ax ≤ b} is called a linear
program (LP). We will use the shortened notation of min/max{ctx : Ax ≤ b}

De�nition 1.32 (Feasible solution). Let max{ctx : Ax ≤ b} be a linear
program. Then x′ ∈ Rn is a feasible solution if Ax′ ≤ b holds.

De�nition 1.33 (Optimal solution). Let max{ctx : Ax ≤ b} be a linear
program. Then a feasible solution x∗ ∈ Rn is an optimal solution if for all
feasible solutions x′ ∈ R, ctx∗ ≥ ctx′ holds.

A linear programming problem can be solved to optimality using the
Ellipsoid-method in polynomial time [100], although this is very slow when
implemented in practice. The fastest LP solving algorithms employ Simplex-
based or Interior point methods [100].

De�nition 1.34 (Mixed integer program). A linear programming problem
with the additional constraint that some or all variables need to belong to the
set of integers (Z) is called a mixed integer (linear) program (MIP).

The computational complexity of solving MIPs is NP-hard [36]. However,
there are a number of tools that use branch-and-cut algorithms together with
di�erent heuristics that are able to solve MIP problems 'e�ciently' in practice
(i.e., Gurobi [41]). For further reference on linear and mixed integer program-
ming we recommend [100].
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Figure 1.1: Ingredients of a metabolic network model.

1.3 An overview of metabolic networks

Metabolic networks describe a collection of biochemical reactions that occur
on a cellular level, where most of the reactions are enzymatic in nature (i.e.,
catalyzed by enzymes). Each metabolic reaction acts on metabolites in a way
that converts one or more reactant metabolites into one ore more product
metabolites. Reactions that involve common metabolites are adjacent, there-
fore forming an interconnected network. Figure 1.1 illustrates an example
metabolic network with its typical components:

• The system boundary is represented by the dashed rectangle. The objects
within the system boundary are considered to be internal, while the ones
outside it are consider to be external to the modeled cell.

• Metabolites are denoted by the circles in the �gure. We classify metabo-
lites as either external (blue) or internal (orange) to the system. Typ-
ically, we are interested in the metabolites internal to the system, thus
the external metabolites are only drawn symbolically for completeness
of the �gure. Formally, for a system with m metabolites we denote with
M⊂ N, where |M| = m, the total set of internal metabolites. Typically
M = {1, 2, ...,m}.

• Reactions are the directed hyper-edges in the drawing, with the arrows
pointing in the direction of the metabolites produced by the reaction.
We distinguish internal reactions (i.e., those which are only adjacent
to internal metabolites) from transport reactions (i.e, those which are
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adjacent to both internal and external metabolites). A transport reaction
is either producing internal metabolites or consuming them, but not
both.

De�nition 1.35 (Metabolic reaction). LetM be the set of internal metabo-
lites and let X, Y ⊆ M. Then r := (X, Y ) is a metabolic reaction in the
system if and only if X ∪ Y 6= ∅ and X ∩ Y = ∅. X is called the set of
reactants and Y is the set of products.

Assuming the metabolic network contains nmetabolic reactions, we denote
the total set of reactions with R = {r1, r2, ..., rn}. For simplicity and conve-
nience, we will refer to 'reaction ri' as 'reaction i' in cases when this does
not introduce ambiguity. In fact, the set of reactions will be often denoted as
R = {1, 2, ..., n}.

Throughout the thesis n and m represent natural numbers, therefore the
setsM and R are �nite.

The relationship between a reaction and its incident metabolites is fur-
thermore characterized by the stoichiometric coe�cient. This is a scalar
number, representing the relative amount produced or consumed from the
given metabolite by the reaction in relation to the other metabolites adjacent
to the same reaction. For example, looking at reaction '2' in the previous
�gure, it consumes two 'A' metabolites while it produces two 'B' metabolites
and a 'C' metabolite. Therefore the stoichiometric coe�cient of reaction '2'
in metabolite A is -2, in metabolite B it is 2, while in metabolite 'C' it is 1.
The general consenus is that unitary stoichiometric values are not explicitly
represented in �gures and we will use this notation throughout the �gures of
the thesis. If a reaction does not consume nor produce a metabolite then its
stoichiometric coe�cient is zero.

In order to show the importance of the stoichiometric coe�cients consider
the following example. Assume that metabolites 'A', 'B' and 'C' correspond
to the chemical species' H2O, H2 and O2. Then reaction 2 simply denotes the
well known reaction 2H2O → 2H2 +O2.

We note that by Def. 1.35 no reaction represented in a metabolic model
will both consume and produce the same metabolite. If there was such a
reaction, it could be represented with a simpler reaction by considering the
net di�erence of its sources and products. For example, let us assume we
had the following reaction 2A + B → A + C. Then the simpli�ed reaction
A + B → C would result in the same e�ect on the concentration levels of
metabolites 'A', 'B' and 'C' as the previous one.

We can write all the stoichiometric coe�cients of a metabolic network in
a concise form by considering the stoichiometric matrix S.

De�nition 1.36 (Stoichiometric matrix). Let S ∈ Rm×n. Then S is the
stoichiometric matrix of the system if for all i ∈ {1, ...,m} and for all j ∈
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{1, ..., n}, sij, representing the entry in the ith row and jth column is equal to
the stoichiometric coe�cient of metabolite 'i' in reaction 'j'.

The stoichiometric matrix is very similar to the incidence matrix of graphs.
For the metabolic network in Figure 1.1, its stoichiometric matrix is summa-
rized in 1.1.

S =



r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

A 1 −2 0 0 0 0 0 0 0 0
B 0 2 0 0 −1 0 0 0 0 0
C 0 1 −1 −1 0 0 0 0 0 0
D 0 0 1 1 0 −1 0 −1 0 0
E 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 1 1 −1 0 0 0
G 0 0 0 0 0 0 0 1 −1 0
H 0 0 0 0 0 0 0 0 1 −1


(1.1)

Notice that in S the columns corresponding to the transport reactions are
always non-negative or non-positive, while columns corresponding to internal
reactions contain both positive and negative entries. This property holds in
general and it is a convenient way of �nding the transport reactions from the
stoichiometric matrix.

A second property by which reactions can be classi�ed is their irreversibilty.
Due to thermodynamic properties, some reactions are termed irreversible and
they can only function in their speci�ed direction. Opposed to this are the
reversible reactions which can function in either directions. In Figure 1.1 there
are three reversible reactions, reactions 4, 9 and 10. They can be recognized
from the �gure as the ones that have an arrowhead pointing towards each
incident metabolite. In the stoichiometric matrix, columns corresponding to
reversible reactions can be multiplied by -1 without actually changing the
topology of the network. In order to avoid confusion, for reversible reactions
we will use the term forward direction to refer to the direction that is speci�ed
in the stoichiometric matrix, while the reverse direction is the opposite sense.

De�nition 1.37 (The set of irreversible reactions). The set of irreversible
reactions is denoted with Irr ⊆ R.

Naturally, the set of reversible reactions can be deduced by considering the
set di�erence Rev := R− Irr.

1.3.1 Metabolic network modeling

There are several di�erent ways in which metabolic networks can be modeled
mathematically. In dynamic modeling, each metabolite is modeled by an ordi-
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nary di�erential equation (ODE). If we denote with C(t) : R→ RM the con-
centration function associated with the metabolites and with v(t) : R → RR
the �ux rates associated with the reactions, then we can describe the changes
in concentration for every metabolite as summarized in equation 1.2.

d

dt
C(t) = S · v(t) (1.2)

Assuming knowledge of the enzyme-kinetic rate laws (called also kinetic
parameters), as well as the initial concentration levels of every metabolite,
it is possible model the evolution and to predict the state of the system at
any given time. Unfortunately, in practice both sets of information are very
hard to measure and it is available only for a limited number of reactions [6].
Approaches have been developed that work with partial kinetic data [47, 112].

Stochastic modeling can be used to cope with non-deterministic properties
of biological networks [37]. In [69] the authors use Stochastic Logic Program-
ming to estimate the �ux rates of reactions in metabolic pathways.

Within the framework of this thesis we will use constraint-based modeling
(CBM), which gives up the idea of modeling the exact dynamic behavior of
the underlying system [20, 88]. Rather than �nding the exact trajectory of
concentration changes and �ux distributions, constraint-based methods limit
the set of possible behaviors according to our current level of knowledge about
the system. These limitations on the set of behaviors are imposed in the form
of constraints. The more we know about the system, i.e., the more constraints
we add, the narrower the total set of potential behaviours will be. In spite of
partial knowledge about metabolic systems, constraint-based methods have
been used with success to a great extent [9].

In CBM there are two very frequent sets of constraints which are typically
imposed on the system. These sets of constraints originate from the obser-
vation that in general metabolic reactions occur on a much faster timescale
than the changes in the environment or within the system itself [88, 116]. This
leads to the (quasi) steady-state assumption which assumes that the system
will reach a steady-state, where concentrations and �ux rates are constant
(over a certain amount of time). The steady-state assumption has a direct
consequence for Eq. 1.2, since its left term becomes zero. The resulting stoi-
chiometric constraints are summarized in Eq. 1.3. Note that now v ∈ Rn, i.e.,
we have an algebraic equation instead of an ODE.

0 = S · v (1.3)

A second set of constraints relates to the irreversible reactions. By def-
inition, these reactions can only take place in their forward direction, hence
any �ux value associated with these must be non-negative [87]. The thermo-
dynamic constraints in Eq. 1.4 formulate this observation mathematically.



10 Chapter 1. Introduction

vi ≥ 0,∀i ∈ Irr (1.4)

The stoichiometric constraints and thermodynamic constraints are com-
monly referred together to as steady-state constraints. Beside the steady-
state constraints, sometimes additional knowledge is known about the system
in form of reaction bounds, also known as capacity constraints [89]. When
lower and upper bounds are known for a reaction ri, then these can be simply
imposed as in Eq. 1.5. Here li ∈ R is the lower bound and ui ∈ R is the upper
bound of the reaction.

ui ≥ vi ≥ li (1.5)

As mentioned above the two most common constraints are the stoichio-
metric and thermodynamic ones. In order to impose these, one only needs to
know the stoichiometric matrix and the set of the irreversible reactions asso-
ciated with the system to be modeled. Hence we give the following de�nition
for a metabolic network model.

De�nition 1.38 (Metabolic network model). LetM be a set of m metabolies
and R be a set of n reactions. Furthermore let S ∈ Rm×n be a stoi-
chiometric matrix and Irr ⊆ R the set of irreversible reactions. Then
N := (S, Irr,M,R) is a metabolic network model.

Def. 1.38 gives a concise de�nition of a metabolic network model in
the constraint-based modeling framework. In some cases when we de�ne
metabolic networks, we will omit the sets M and R from the de�nition. In
speci�c, when the setM corresponds to {1, 2, ...,m} and the setR corresponds
to {1, 2, ..., n} then we will simply de�ne metabolic networks as N := (S, Irr).

Every subset of the reactions leads to a metabolic subnetwork.

De�nition 1.39 (Metabolic subnetwork). Let N := (S, Irr,M,R) be
a metabolic network model and let R′ ⊆ R with n′ := |R′|. N ′ =
(S ′, Irr′,M,R′) with S ′ := SMR′ ∈ Rm×n′ and Irr′ = Irr ∩R′ is a metabolic
subnetwork of N .

In practice, the stoichiometric matrix and the set of irreversible reactions
belonging to a metabolic network is the result of a process called metabolic
network reconstruction [28]. Advances in molecular biology as well as the
existence of a wide range of bibliomic data allow for the reconstruction of
genome-scale metabolic networks at a fast pace [28]. Several online databases
have been created where full genome-scale reconstructions of di�erent mi-
croorganisms are accessible. Such databases are BiGG [94] and BioCyc [14]
just to name a few. Having access to these collections of metabolic networks
is critical and invaluable when developing tools for the analysis of metabolic
networks since they allow the testing of new tools on relevant biological data.
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In the following subsections we introduce the main concepts commonly
found in the constraint-based analysis of metabolic networks. Furthermore,
we present a number of methods from the literature that were employed with
great success.

1.3.2 The steady-state �ux cone

In the following we consider a metabolic networkN = (S, Irr) withm internal
metabolites and n reactions. If steady-state conditions hold, i.e., there is no
net production or consumption of internal metabolites, the set of all feasible
�ux distributions de�nes a polyhedral cone [61, 117].

De�nition 1.40 (Steady-state �ux cone). For a metabolic network N =
(S, Irr), let C := {v ∈ Rn | S · v = 0, vi ≥ 0 for all i ∈ Irr}. C is called the
(steady-state) �ux cone.

De�nition 1.41 (Active reactions). Let v ∈ C. Then the reactions in supp(v)
are called the active reactions of v.

It is important to note that the structure of a metabolic network may
further constrain the reactions in the sense that some might never become
active.

De�nition 1.42 (Blocked reaction). Given the steady-state �ux cone C, let
i ∈ {1, . . . , n} be a reaction. If vi = 0, for all v ∈ C, reaction i is called
blocked, otherwise i is unblocked.

Looking again at the example from Fig. 1.1, reaction 9 is actually a blocked
reaction. Indeed, should the �ux corresponding to reaction 9 be non-zero, it
would result in violating the steady-state conditions for metabolite H.

From an algorithmic viewpoint computing all the blocked reactions in a
metabolic network is considered an easy task. Indeed, assuming we are inter-
ested whether reaction ri is blocked or not, consider the two LPs in Eq. 1.6.

oi = min {vi: Sv = 0, vIrr ≥ 0},
Oi = max {vi: Sv = 0, vIrr ≥ 0}. (1.6)

Then ri is blocked if either one of the following two points holds:

• ri is irreversible and Oi = 0.

• ri is reversible and Oi = oi = 0.

If a reaction ri is given as reversible but only one of Oi, oi is zero then ri
can essentially be treated as an irreverible reaction. In case oi is the non-zero
term it is necessary to multiply the column in S corresponding to the reaction
by -1 before changing the reaction's reversibility type to irreversible.
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Larhlimi and Bockmayr [64] show that the reversibility type of reactions
is a key concept in the analysis of metabolic networks and further re�ne it by
introducing the concepts of fully reversible and pseudo-irreversible reactions.

De�nition 1.43 (Reversibility types). A reversible reaction i ∈ Rev is called
fully reversible if there exists a �ux vector v ∈ C such that vi 6= 0 and vj = 0
for all j ∈ Irr . Otherwise, reaction i is called pseudo-irreversible.

Using the reversibility type of reactions, we can de�ne the following reac-
tion sets:

• Frev = {i | i is fully reversible},

• Prev = {i | i is pseudo-irreversible and there exist v+, v− ∈ C such that
v+i > 0, v−i < 0},

• Irev = {i | i /∈ Frev ∪ Prev and vi 6= 0 for some v ∈ C},

• Blk = {i | i is blocked}.

Note that the above reaction sets are disjoint and their union is equal to
the set of all reactions, i.e., Blk ∪ Irev ∪Prev ∪ Frev = R. Given a metabolic
network one can compute the above de�ned four reaction sets in polynomial
time (Additional �le 1 in [24]).

The uncertainty of direction associated with reversible reactions is some-
times undesirable. In such cases a common way to deal with the problem is to
replace the reversible reactions by two opposing irreversible reactions. With
this transformation one can essentially get rid of all the reversible reactions.
We will refer to this modi�ed network where all the reversible reactions have
been replaced as the recon�gured network and to the new �ux cone as the
recon�gured �ux cone. This operation, however, also has some bad conse-
quences. For one, the �ux space increases in dimension, possibly doubling the
dimension of the �ux space. Moreover, it can hide certain properties of the
network. In Chapter 2 we will discuss this aspect in more detail.

1.3.3 Elementary �ux modes

The concept of elementary �ux modes [105, 101, 104, 106, 84] was introduced
as a tool to structurally characterize steady-state �ux cones.

De�nition 1.44 (Elementary �ux mode). A �ux vector e ∈ C is called
an elementary �ux mode (EM) if there is no vector v ∈ C \ {0} such that
supp(v) ( supp(e).

According to Def. 1.45, each EM represents a minimal set of reactions that
can work together in steady-state. An alternative but equivalent de�nition
can be formulated as follows (proof in [106]).
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De�nition 1.45 (Elementary �ux mode). A �ux vector e ∈ C is called an
elementary �ux mode if there are no vectors e′, e′′ ∈ C \ {0} such that e =
e′ + e′′, supp(e′) ( supp(e) and supp(e′′) ( supp(e).

The concept of elementary modes is closely related to that of extreme
rays [115].

Proposition 1.46. Let e1, e2 ∈ C be two elementary modes. If supp(e1) =
supp(e2), then e1 ∼= e2 holds (i.e., the two rays associated with the elementary
modes are equivalent).

Proposition 1.47. Let v ∈ C \ {0} be a steady-state �ux vector. Let N ′ =
(S ′, Irr′) be the subnetwork induced by the reactions in supp(v). Then the
following are equivalent:

• v is an elementary mode.

• dim(kern(S ′)) = 1;

A proof for Prop. 1.46 and Prop. 1.47 can be found in [39]. The importance
of Prop. 1.47 is in that it gives a method for checking the elementarity of any
feasible �ux vector v. One only needs to consider a subnetwork consisting
of the active reactions of v and compute a basis for the kernel of S ′, the
stoichiometric matrix of the subnetwork. Then v was an elementary mode if
and only if the kernel of S ′ has a single generator.

In the following we denote with E the set of all pairwise non-equivalent
EMs of the system E = {e1, e2, . . . , es}.

Corollary 1.48. The number of elementary modes in E in a metabolic net-
work is �nite.

Proof. Since there are at most 2n di�erent supports and according to
Prop. 1.46 for each support there corresponds at most one non-equivalent
elementary mode, there are at most 2n elementary modes.

In [39], the author computes a tighter upper bound on the number of
elementary modes using lattice theory.

In order to provide an example, we revisit the metabolic network from
Fig. 1.1. In this network there is a total of 5 elementary modes, described
below (each row in the matrix corresponds to one elmenetary mode).

E =



r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

e1 2 1 1 0 2 1 3 0 0 0
e2 2 1 0 1 2 1 3 0 0 0
e3 2 1 1 0 2 0 2 1 0 1
e4 2 1 0 1 2 0 2 1 0 1
e5 0 0 1 −1 0 0 0 0 0 0

 (1.7)
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Proposition 1.49. Let {e1, e2, . . . , es} be the set of non-equivalent elemen-
tary modes of a metabolic network. Then for all v ∈ C \ {0} there exists
λ1, λ2, ..., λs ≥ 0 such that v =

∑s
i=1 λie

i.

Prop. 1.49 is proven in [106] and it is an exceptionally important result,
since it states that any �ux distribution can be characterized as a non-negative
linear combination of elementary modes. As consequence, the development of
methods for the computation of EMs has become an active research area over
the past years [34, 130, 118, 115, 25, 91, 92].

The computational complexity of enumerating all EMs is not known [1].
However, there exist several algorithms and software packages, for an exhaus-
tive enumeration in a given metabolic network [34, 118, 130, 115]. These
methods are mainly based on the double description method [33], and while
they work very well for small networks, due to the possibly exponential num-
ber of EMs, they may fail for medium or large genome-scale networks. One
workaround to this problem used frequently in the scienti�c literature is the
deletion of several reactions from the network [80, 102, 97, 95, 108, 111, 15, 109,
128, 129, 55, 120, 54], therefore simplifying the analyzed system. As shown
in [73] (see also Chapter 7) this can lead to the introduction of arti�cial EMs
into the system.

Alternative concepts to EMs exist in the literature, i.e., extremal cur-
rents [17] and extreme pathways [96]. For a comparison of the di�erences and
similarities between these three concepts, we refer the reader to [63].

1.3.4 Minimal metabolic behaviors

A drawback of elementary modes is that while they are a generating set, they
are not minimal. Indeed, if we look again at the elementary modes in 1.7 we
quickly realize that e1 = e2 + e5 holds. In fact having only e2, e4 and e5 would
be su�cient to generate any feasible �ux distribution of the network. To
tackle this redundancy, Larhlimi and Bockmayr [65] introduced the concept
of minimal metabolic behaviors (MMB) and the reversible metabolic space
(RMS).

De�nition 1.50 (Metabolic behavior). A metabolic behavior is a set of ir-
reversible reactions D ⊆ Irr such that D 6= ∅ and there exists a �ux vector
v ∈ C with D = supp(v) ∩ Irr.

De�nition 1.51 (Minimal metabolic behavior). A metabolic behavior D is
minimal if there doesn't exist a metabolic behavior D′ with D′ ( D.

Proposition 1.52 ([65]). The minimal metabolic behaviors of a network are
in a 1-1 correspondence with the minimal proper faces of C. Moreover, for
a minimal proper face G of C, represented by g ∈ G \ lin.space(C) its corre-
sponding minimal metabolic behavior D can be obtained as D := supp(g)∩Irr.
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Prop. 1.52 is proven in [65] and it shows a method how MMBs can be
computed in practice. In essence one can use any available tool for the com-
putation of the generators of minimal proper faces, i.e., cddTool [33], and then
simply deduce the MMB from their support vector.

Indirect applications of MMBs include but are not limited to �ux coupling
analysis [63] (see also Chapter 2) and control-e�ective �ux analysis [63].

1.3.5 Flux coupling analysis

Flux coupling analysis (FCA) is concerned with describing dependencies be-
tween reactions [12]. The stoichiometric and thermodynamic constraints not
only determine all possible steady-state �ux distributions over a network, they
also induce coupling relations between the reactions. If a non-zero �ux through
a reaction in steady-state implies a non-zero �ux through another reaction,
then the two reactions are said to be coupled.

In the following, we assume that the �ux cone is not trivial, i.e., not
all reactions are blocked. We de�ne the (un)coupling relationships between
reactions as follows.

De�nition 1.53 (Flux coupling relations). Let i, j be two unblocked reactions.
The (un)coupling relationships −→ , ←→ , ⇐⇒ and 6−→ are de�ned in the
following way:

• i−→ j if for all v ∈ C, vi 6= 0 implies vj 6= 0.

• i←→ j if for all v ∈ C, vi 6= 0 is equivalent to vj 6= 0.

• i⇐⇒ j if there exists λ 6= 0 such that for all v ∈ C, vj = λvi.

• i 6−→ j if there exists v ∈ C such that vi 6= 0 and vj = 0.

Reactions i and j are fully (resp. partially, directionally) coupled if the relation
i⇐⇒ j (resp. i←→ j, i−→ j) holds. Otherwise, i and j are uncoupled.

Note that i⇐⇒ j (resp. i←→ j) is equivalent to j⇐⇒ i (resp. j←→ i).
In addition, i⇐⇒ j implies i←→ j, which in turn is equivalent to i−→ j and
j−→ i.

The �ux coupling relations can be computed from EMs as noted in [72].
For a broader overview on the main existing approaches to FCA, we refer the
reader to Chapter 2 (Subsection 2.2).

Marashi and Bockmayr [72] further re�ne uncoupled relations and intro-
duce the concepts of mutually exclusive and sometimes coupled reaction pairs.

De�nition 1.54 (Mutually exclusive and sometimes coupled). Two uncoupled
reactions ri ∈ R and rj ∈ R are mutually exclusive if and only if for all e ∈ E,
ei ∗ ej = 0. Otherwise ri and rj are sometimes coupled.
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By the previous de�nition, mutually exclusive reactions are never simulta-
neously active in any elementary mode.

From a computational perspective, deciding between the four basic cou-
pling relations can be done in polynomial time [24], while distinguishing be-
tween mutually exclusive and sometimes coupled pairs is an NP-complete
problem [2].

FCA has been used for exploring various biological questions such as net-
work evolution [78, 82, 136], gene essentiality [78], gene regulation [79, 75] or
analysis of experimentally measured �uxes [113, 11].

1.3.6 Elementary �ux patterns

Kaleta et al. [50] introduced the concept of elementary �ux patterns (EFP) as
an alternative to elementary mode analysis. EFPs allow the study of metabolic
subnetworks in the context of the original network, without the need to delete
the reactions not belonging to it. We assume to know a metabolic network
N = (S, Irr,R,M) with an associated �ux cone C, and a subnetwork of N ,
N ′ = (S ′, Irr′,R′,M′).

De�nition 1.55 (Flux pattern). A set of reactions f ⊆ R′ is a �ux pattern if
and only if there exists v ∈ C, such that f ⊆ supp(v) and (R′−f)∩supp(v) =
∅.

De�nition 1.56 (Elementary �ux pattern). A �ux pattern f is elementary if
and only if there do not exist �ux patterns g1, g2, ..., gk (for k ≥ 2) with gi 6= f
for all i ∈ {1, ..., k}, such that ∪ki=1gi = f .

Therefore EFPs are non-decomposable subsets of reactions. The authors in
[50] show a method how to iteratively enumerate EFPs based on mixed integer
programming. Assuming the network consists only of irreversible reactions
and some EFPs have been already computed and stored in the set P, one can
compute a new EFP by solving MIP_EFP [50].

(MIP_EFP)

min
∑

i∈R′ bi
s.t. Sv = 0

bi ≤ vi ≤Mbi ∀i ∈ R′
bi − hi ≥ 0 ∀i ∈ R′∑

i∈f (bi + hi) ≤ |f | ∀f ∈ P∑
i∈R′ hi ≥ 1

v ≥ 0
bi, hi ∈ {0, 1} ∀i ∈ R′

In the previous MIP formulation,M is a 'suitably large' scalar constant. If
the MIP is infeasible then all EFPs have been computed already. Otherwise,
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for an optimal solution (v∗, b∗, h∗), e := supp(v∗) ∩ R′ is a new EFP. For a
proof of MIP_EFP we refer the reader to the Supplemental material in [50].

EFPs are in a 1-to-many relation with EMs. Therefore, from any EFP a
unique EM can be computed (the converse is not true) [50].

EFPs have been used to anwer various biological questions related to the
subnetworks of various microorganisms [50]. Indirect applications of EFPs are,
for example, the computation of �ux coupling relations (see Section 2.2.2).

1.3.7 Other methods

The spectrum of methods employed for the constraint-based analysis of
metabolic networks is certainly much larger than the few we chose to present
in this chapter [68]. There are other very successful methods that found great
interest within the scienti�c community. These include optimization-based
methods like �ux balance analysis (FBA) [127, 32] or �ux variability analysis
(FVA) [71], but also methods involving minimal cut sets (MCS) [58, 42] and
random sampling of the �ux cone [89]. If the reader is interested in learning
more about the wide range of methods we recommend the following review
articles: [10, 56, 122, 139].

1.4 Organization of the thesis

The thesis consists of an introductory chapter (Chapter 1) and six main chap-
ters containing original and collaborative research (Chapters 2-7). The content
of some chapters has already been published in peer-reviewed journals. When
this is the case, it is indicated at the beginning of the corresponding chapter.
When using material from already published papers, only those materials were
used where I appear either as �rst author, or joint �rst author.

Chapter 2 is about �ux coupling analysis (FCA). First, we give an overview
of all the methods existing in the literature. Then we devise two novel methods
for the same purpose. Our �rst method, FFCA is based on checking the
feasibility of linear programs. Although not by a large margin, FFCA is
faster than other existing approaches. While solving LP problems is fast,
solving a large number of them can hinder the performarnce of the application.
We use this observation to improve on FFCA and show that we can skip
solving LP problems for many pairs of reactions, using algebraic methods
instead. The resulting algorithm, called F2C2 is orders of magnitude faster
than FFCA, reducing the task of �ux coupling from the range of days to
the range of minutes for genome-scale networks. Both FFCA and F2C2 are
publicly available Matlab tools [24, 66].

In Chapter 3 we extend the concept of FCA to constrained �ux spaces and
de�ne constrained �ux coupling analysis (CFCA). In addition to imposing
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restrictions on individual �uxes, we also allow the introduction of any number
of linear constraints on the reactions. Thus CFCA can be looked upon as
a generalization of FCA. We present an LP based algorithm for computing
CFCA relations and using a similar analysis as in Chapter 2, we reduce the
number of LPs necessary to be solved. We study the relationship between
FCA and CFCA relations and present mathematical rules for cases in which
FCA relations determine the CFCA ones.

In Chapter 4 we explore the idea of introducing a similar concept to FCA
for metabolites instead of reactions. We de�ne metabolite activity coupling
(MAC) as the FCA counterpart for metabolites. Oddly enough, when look-
ing at the problem from a computational standpoint, it turns out that in
some cases, MAC is a much harder problem than FCA or CFCA. In speci�c,
when there are reversible reactions present in the network, we give a conjec-
ture which states that deciding between fully coupled and partially coupled
metabolites becomes a co-NP hard problem. Nevertheless, we present a hybrid
LP and MIP based method for computing MAC relations.

Elementary �ux modes are a canonical representation of the steady-state
�ux space. The complete enumeration of EMs is considered a hard problem
both in terms of runtime complexity and storage space required. Thus, a
targeted search of EMs becomes the more viable route when considering prac-
tical applications. Targeting conditions could be, for example, the inclusion
of certain reactions. Existing methods in the literature allow the enumeration
of EMs that contain a single target reaction. In Chapter 5 we generalize such
methods using the Farkas-Lemma, and provide a MIP-based solution that can
constrain any number of reactions to be included in the EMs found. Using
various mathematical results we present a formulation of the algorithm that
only needs to solve one MIP to feasibility and one LP to optimality per EM
found. The resulting Matlab tool is publicly available [23].

In Chapter 6 we continue to work with EMs and try to �nd a solution to
one of their practical weaknesses. In speci�c, the reactions of an elementary
mode do not implement a natural order, and little is known about their interior
structure. We devote this chapter to exploring various notions of ordering, as
well as applying them on EMs. Ordering based on reachability properties
leads to several options on how to represent EMs visually. We discuss the
positive and negative aspect of each.

In Chapter 7 we present and analyze various existing methods for the
analysis of metabolic subnetworks. We show that isolated subnetworks are
almost never a good idea to be used since they introduce undesired artifacts
in form of arti�cial elementary modes, as well as break up FCA relationships.
We propose a method, ProCEM, that relies on the projection of the �ux space
onto the reactions of interest, and prove why this method should be preferred
compared to the existing ones. While projection of polyhedra is a well-studied
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hard problem, we can still �nd examples where selecting a suitable subnetwork
makes performing it possible.
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2.1 Introduction

Flux coupling analysis (FCA) is concerned with describing dependencies be-
tween reactions [12]. The stoichiometric and thermodynamic constraints not
only determine all possible steady-state �ux distributions over a network, they
also induce coupling relations between the reactions. For instance, some reac-
tions may be blocked, i.e., unable to carry �ux under steady-state conditions.
If a non-zero �ux through a reaction in steady-state implies a non-zero �ux
through another reaction, then the two reactions are said to be coupled (see
Def. 1.53 for a formal de�nition). FCA has been used for exploring various
biological questions such as network evolution [78, 82, 136], gene essentiality
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[78], gene regulation [79, 75] or analysis of experimentally measured �uxes
[113, 11]. Having a time e�cient implementation of FCA is important in such
studies.

After introducing the main existing algorithms for �ux coupling analysis,
we propose in this chapter two new algorithms, which signi�cantly speed up
the calculation of �ux coupling. In our �rst algorithm (FFCA) we build on
existing improvements, and extend the method using the observation that
typically solving an LP to feasibility is faster than solving a similarly complex
one to optimality.

For the second algorithm (F2C2), we �rst reduce the stoichiometric model
as much as possible, eliminating redundancies and �nding trivial coupling
relations. In a second step, we use inference rules to dramatically reduce the
number of linear programming problems that have to be solved. We prove the
e�ciency of our algorithms by comparing them with the most recent existing
approaches. We show that FCA can now be quickly performed even for very
large genome-scale metabolic networks.

2.2 Existing approaches to �ux coupling analysis

In this subsection, we brie�y recall the main existing approaches to �ux cou-
pling analysis. For additional information and technical details on the im-
plementation of these algorithms, we refer the reader to Additional �le 1 in
[24].

2.2.1 Flux Coupling Finder algorithm (FCF)

The most widely used method for FCA is the Flux Coupling Finder (FCF)
algorithm [12]. It determines blocked reactions (see Def. 1.42) as well as
coupled reactions by solving a sequence of linear programming (LP) problems.
The FCF algorithm requires that each reversible reaction is split into two
irreversible reactions, one forward and one backward. This could hinder the
application of FCF to determine �ux coupling in large genome-scale metabolic
networks. Indeed, splitting reversible reactions results in an increase in the
number of variables (resp. constraints) by |Rev | (resp. 2|Rev |).

Assuming there are no reversible reactions, for a pair of non-blocked reac-
tions i and j, the FCF algorithm solves two LP problems (2.1) to identify the
minimum and maximum allowed �ux rate through reaction i, while the �ux
through j is set to a unit value.

Lij = min {vi: Sv = 0, vj = 1, v ≥ 0},
Uij = max {vi: Sv = 0, vj = 1, v ≥ 0}. (2.1)
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Based on Lij and Uij the �ux coupling relations are deduced as follows:

• j−→ i holds if and only if Lij 6= 0

• i−→ j holds if and only if Uij 6= +∞

• i←→ j holds if and only if Lij 6= 0 and Uij 6= +∞

• i⇐⇒ j if and only if Lij = Uij > 0.

In the following we prove the second one of the four cases above. That
is, i−→ j holds if and only if Uij 6= +∞. The proofs for the other three are
trivial.

Proof. �⇒� Assume by contradiction that i−→ j and Uij = +∞. Let us
assume that we use the Simplex algorithm to solve the maximization LP
(2.1). Since the LP is unbounded, the algorithm will terminate after �nding
an extreme ray d. That is, for all x ∈ C and for all θ > 0 we have x+ θd ∈ C.
Clearly, di > 0 and dj = 0, since otherwise for a large enough θ, the feasibility
in the j-th coordinate would be violated. For x = 0 and θ = 1 we have d ∈ C,
which is a contradiction to i−→ j.

�⇐� Assume by contradiction that Uij 6= +∞ and i 6−→ j hold. Since Uij
is �nite, let y be an optimal solution of the maximization problem (2.1). Thus
yi = Uij and yj = 1. Since i 6−→ j, then there exists x ∈ C with xi > 0 and
xj = 0. Clearly, x+ y is a feasible point, with Uij < xi + yi which contradicts
the optimality of y.

A limitation of FCF is that for reactions that originate from splitting re-
versible reactions, the computed �ux coupling relationships can be very di�er-
ent from the one existing in the original network. For example, in Fig. 2.1(left),
reactions r1 and r2 are fully coupled, while in the corresponding recon�gured
network, Fig 2.1(right), all reaction pairs are uncoupled. In order to deduce
the real couplings between the reactions, a non-trivial post-processing step is
needed, which is not detailed in [12]. We describe this post-processing step in
Additional �le 1 of [24].

On the computational side, the total number of LP problems that are
being solved in FCF is increasing quadratically with the number of reactions.
Since all reaction pairs are explored exhaustively, this can lead to a relatively
large number of LP problems. This strategy may not scale well for genome-
scale models of complex microorganisms, which involve several thousands of
reactions.

The FCF algorithm has been successfully used for �nding coupling rela-
tions in a number of metabolic networks [12, 82, 11, 79, 78, 113, 136, 75].



24 Chapter 2. Improving the E�ciency of Flux Coupling Analysis

A
1 2 A

1a 2a

1b 2b

Figure 2.1: The result of splitting reversible reactions. Left: a metabolic network

with two reversible reactions; Right: the same network when reactions are split

into a forward and a backward arc)

2.2.2 FCA based on elementary �ux patterns (EFP-FCA)

Recently, Kaleta et al. [50] introduced the concept of elementary �ux pat-
terns (EFPs) (see Def. 1.56) for the analysis of minimal active reactions in
a �subnetwork�, which account for possible steady-state �ux distributions in
a (much) larger metabolic network. They also presented a method based on
mixed-integer linear programming (MILP) to compute EFPs. Kaleta et al.
suggested that EFPs can be used for characterizing �ux coupling relations
(see Supplemental Material in [50]).

Consider a subnetwork with exactly two unblocked reactions, i and j.
Based on the EFPs of this subnetwork, we can deduce the coupling relations
as follows:

• i 6←→ j holds if and only if the EFPs of the subnetwork are {i} and {j}

• i−→ j holds if and only if the EFPs of the subnetwork are {i, j} and {j}

• j−→ i holds if and only if the EFPs of the subnetwork are {i, j} and {i}

• i←→ j holds if and only if the subnetwork has one EFP, {i, j}

Thus, from computing the set of EFPs for a subnetwork corresponding to
every pair of reactions, we can compute all �ux coupling relations.

With this method, it is not possible to distinguish between partial and full
coupling, since �ux patterns only contain the information about the activity
or inactivity of the �uxes, but not the actual �ux rates.

2.2.3 Reversibility-based �ux coupling analysis

In FCF, every reversible reaction is split into a forward and a backward
reaction. This splitting procedure results in an increase in the number of
LPs and also in the size of each LP to be solved. Moreover, a non-trivial
post-processing step is required to infer the �ux coupling relations of the
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original reversible reactions. For all these reasons, it might be better to
perform �ux coupling analysis without splitting the reversible reactions. An
alternative implementation of FCF without splitting, referred to as W-FCF,
is presented in Additional �le 1 of [24].

Larhlimi and Bockmayr [64] show that depending on the reversibility type
of the reactions (see Def. 1.43), only certain �ux coupling relations can occur.
These cases are summarized in Obs. 2.1. In every other case i 6←→ j holds.

Observation 2.1 (�Reversibility-Type pruning� (RT-pruning)). Let i and j
be two di�erent unblocked reactions. The two reactions can be coupled only if
one of the following 4 cases holds:

1. i, j ∈ Irev: In this case, i and j can be directionally, partially, fully or
uncoupled.

2. i ∈ Irev and j ∈ Prev: The only possibility is j−→ i or i 6←→ j.

3. i, j ∈ Prev: In this case, we can only have i⇐⇒ j or i 6←→ j.

4. i, j ∈ Frev: In this case, we can only have i⇐⇒ j or i 6←→ j.

We note that the statement in Obs. 2.1 is not precise. The mentioned
coupling possibilities are the �strongest� possible ones, where the �strength�
of a coupling type is de�ned by the intuitive ordering between them. That is
6←→ < −→ < ←→ < ⇐⇒ .
Consider the following two LPs, with optimal solutions v1 resp. v2.

v1 := min {vj: Sv = 0, vi = 0, vk ≥ 0, k ∈ Irr},
v2 := max {vj: Sv = 0, vi = 0, vk ≥ 0, k ∈ Irr}. (2.2)

Observation 2.2 (Flux coupling between (pseudo-)irreversible reactions).
Let i ∈ Irev and j ∈ Prev . Then the coupling relation can be decided based on
v1 and v2 (cf. 2.2) as follows:

• if v1j = v2j = 0 then j−→ i.

• otherwise i 6←→ j.

The number of LPs solved for a pair (i, j) ∈ Irev×Prev in FCF or W-FCF
is four. Obs. 2.2 reduces this number to two.

The previous two observations reduce the number of reaction pairs for
which the coupling have to be explicitly computed, as well as the number
of LPs required by each pair. Also, in many of the cases, it is enough to
determine the reversibility types of reactions i and j, and then to check if the
corresponding coupling relation is possible. We will refer to an implementation
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of W-FCF that incorporates the RT-pruning and also the improvement from
Obs. 2.2, as WR-FCF (see Additional �le 1 of [24]).

In [63] a further improvement is suggested.

Observation 2.3 (Prev/Frev-based improvement (PF-improvement)). If
i, j ∈ Prev or i, j ∈ Frev , then the following are equivalent:

• i⇐⇒ j

• For all v such that Sv = 0, vi = 0 implies vj = 0.

The importance of Obs. 2.3, is that the stoichiometric constraints uniquely
determine whether i⇐⇒ j holds, independently of the thermodynamic con-
straints. Thus, considering the following LP problem and its optimal solution
v∗

v∗ := max{vj : Sv = 0, vi = 0}, (2.3)

we can state that i⇐⇒ j holds if and only if v∗j = 0. Alternatively, a kernel
basis (see Def. 1.5) of S can be used to check whether the condition holds.

An enhanced version of FCF, which takes into account all of the above-
mentioned improvements, has been suggested in [63], but no implementation
is available. We have implemented this method and will refer to it under the
name, WRP-FCF. The di�erent versions of FCF presented in this subsection
have been compared with the other FCA approaches (see Sect. 2.3.2).

2.2.4 FCA based on minimal metabolic behaviors (MMB-FCA)

Larhlimi and Bockmayr [64, 65] have proposed a di�erent strategy for �ux
coupling analysis. In this approach, rather than solving LPs, a minimal set of
generating vectors of the �ux cone is computed.

Let us denote with G := {g1, g2, ..., gs} the set of generators for the mini-
mal proper faces (see Def 1.29) of C\lin.space(C) (one generator per minimal
proper face). Let B := {b1, b2, ..., bt} be a vector basis of lin.space(C). In
combination with the RT-pruning, the coupling relation for any pair of reac-
tion is inferred based on the co-appearance of non-zero �uxes in the generating
vectors, as follows [63]:

1. i, j ∈ Irev:

• if ∀k ∈ {1, 2, ..., s}, gk(i) 6= 0 =⇒ gk(j) 6= 0, then i−→ j holds.

• if ∀k ∈ {1, 2, ..., s}, gk(j) 6= 0 =⇒ gk(i) 6= 0, then j−→ i holds.

• if ∀k ∈ {1, 2, ..., s}, gk(i) 6= 0⇔ gk(j) 6= 0, then i←→ j holds.
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• if ∃λ ∈ R, such that, ∀k ∈ {1, 2, ..., s}, gk(i) = λgk(j), then i⇐⇒ j
holds.

• otherwise i 6←→ j holds.

2. i ∈ Irev and j ∈ Prev:

• if ∀k ∈ {1, 2, ..., s}, gk(j) 6= 0 =⇒ gk(i) 6= 0 then j−→ i holds.

• otherwise i 6←→ j holds.

3. i, j ∈ Prev:

• if ∃λ ∈ R, such that, ∀k ∈ {1, 2, ..., s}, gk(i) = λgk(j) then i⇐⇒ j
holds.

• otherwise i 6←→ j holds.

4. i, j ∈ Frev:

• if ∃λ ∈ R, such that, ∀k ∈ {1, 2, ..., s}, gk(i) = λgk(j) and ∀k ∈
{1, 2, ..., t}, bk(i) = λbk(j), then i⇐⇒ j holds.

• otherwise i 6←→ j holds.

The algorithm relies on computing the complete set of MMBs (see
Def. 1.51) of a network, the size of which can grow exponentially with the num-
ber of reactions. In worst case, however, when every reaction is irreversible,
the MMBs are in a one-to-one correspondence with EMs (see Def. 1.45) [63].
Thus MMB-FCA is not expected to work for large, genome-scale networks.

2.3 FFCA: Feasibility-based �ux coupling analysis

2.3.1 Description of the algorithm

A linear programming problem is typically solved by iterating through a se-
quence of feasible solutions (e.g. Simplex method variants or interior point
methods) [99]. Each of the intermediate solutions has a no worse objective
value than its predecessors, and the sequence 'converges' to the optimal so-
lution. Moreover, by employing heuristic preprocessing steps, solvers can be
optimized to �nd a �rst feasible solution fast [41]. Finding a �rst feasible
solution is often referred to as �Phase I� of LP solving.

The above described reasons motivate a new approach in which we deduce
coupling relations based on testing the feasibility of LP problems, rather than
solving LP problems to optimality. The feasibility-based �ux coupling analysis
tool (FFCA) will take into account the previous improvements (Sect. 2.2.3)
as well, in particular the RT-pruning and the PF-improvement.
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Finding reversibilities and blocked reactions

In the �rst step of FFCA, we analyze the �ux capability of every reaction.
For a reaction i, consider the following two sets:

P1(i) := {v: Sv = 0, vi = 1, vk ≥ 0, k ∈ Irr},
P2(i) := {v: Sv = 0, vi = −1, vk ≥ 0, k ∈ Irr}. (2.4)

Then i ∈ Blk if one of the following two cases holds:

• i ∈ Irr and P1(i) = ∅.

• i 6∈ Irr and P1(i) = P2(i) = ∅.

The nonblocked reactions have to be further classi�ed into Irev, Prev
and Frev. This classi�cation method is di�erent to the one used in [63]. A
reaction i belongs to the set Irev if and only if one of the following holds:

• i ∈ Irr and P1(i) 6= ∅.

• i 6∈ Irr and P1(i) = ∅ and P2(i) 6= ∅.

• i 6∈ Irr and P1(i) 6= ∅ and P2(i) = ∅.

Let T := {i: P1(i) 6= ∅, P2(i) 6= ∅} and consider the subnetwork (S ′, ∅)
of the original network, where reactions not in T are removed. Let B :=
{b1, b2, ..., bt} be a basis of ker(S ′). Then a reaction i ∈ T can be classi�ed as
follows:

• i ∈ Frev if and only if ∃k ∈ {1, 2, ..., t} with bk(i) 6= 0.

• i ∈ Prev otherwise.

Deducing �ux coupling relations

1. i, j ∈ Irev: In this case, we check the feasibility of two systems of linear
inequalities:

P3(i, j) := {v: Sv = 0, vi = 1, vj = 0, vk ≥ 0, k ∈ Irr},
P4(i, j) := {v: Sv = 0, vi = 0, vj = 1, vk ≥ 0, k ∈ Irr}. (2.5)

Based on the feasibility of the sets P3(i, j) and P4(i, j) we deduce cou-
pling relations as follows:

• i 6←→ j holds if and only if P3(i, j) 6= ∅ and P4(i, j) 6= ∅
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• i−→ j holds if and only if P3(i, j) = ∅
• j−→ i holds if and only if P4(i, j) = ∅
• i←→ j holds if and only if P3(i, j) = ∅ and P4(i, j) = ∅

We note that, to distinguish between fully and partially coupled pairs in
this case, one has to use other methods, e.g. computing enzyme subsets
[87] or solving the LPs in 2.1, as in the FCF algorithm.

2. i ∈ Irev and j ∈ Prev: The only possible coupling relation is j−→ i (in
the reverse direction i 6−→ j always holds). Hence, P3(i, j) will always be
feasible and does not need to be tested. However, we need to check the
feasibility of P4(i, j). Additionally, since j can take negative values, one
more system should be checked for feasibility:

P5(i, j) := {v: Sv = 0, vi = 0, vj = −1, vk ≥ 0, k ∈ Irr}. (2.6)

The coupling relations are deduced as follows:

• j−→ i holds if and only if P4(i, j) = ∅ and P5(i, j) = ∅
• i 6←→ j holds if and only if P4(i, j) 6= ∅ or P5(i, j) 6= ∅

3. i, j ∈ Prev or i, j ∈ Frev: In this case, studying the set P6(i, j) su�ces
to compute the coupling relations.

P6(i, j) := {v: Sv = 0, vi = 0, vj = 1}. (2.7)

Based on P6(i, j) we conclude that:

• j⇐⇒ i holds if and only if P6(i, j) = ∅.
• i 6←→ j holds if and only if P6(i, j) 6= ∅.

To perform FFCA, a method is needed to check the feasibility of a system
of linear (in)equalities. In practice, this can be done by using any available
LP solver. The set of linear (in)equalities is used as the constraints of the LP
problem, together with a constant objective function. Clearly, any feasible
solution will be also an optimal solution, and therefore, the LP solver will
�nish after �nding the �rst feasible solution (i.e. after Phase I). For example,
checking the feasibility of P3(i, j) is equivalent to solving the following LP:

min {0: Sv = 0, vi = 1, vj = 0, vk ≥ 0, k ∈ Irr}, (2.8)
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In Table 2.1, we compare the characteristics of the FFCA approach to the
other FCA methods described in Subsection 2.2.3.

2.3.2 Computational results

To compare the di�erent approaches, namely FCF, MMB-FCA, EFP-FCA
and FFCA, we implemented all of them in Matlab [74]. A benchmark set
of six metabolic network models was used for the evaluation. The number
of unblocked reactions in these models ranges from 18 to 765. Table 2.2
summarizes the running times, while Table 2.3 reports on the resulting
coupling relations. One can see that in all cases FFCA is 2 to 3 times faster
than FCF and orders of magnitude faster than EFP-FCA. The table also
shows that FFCA is more appropriate for FCA in genome-scale networks.
MMB-FCA is the fastest method for the three smallest networks. However,
for the middle-sized H. pylori network and especially for the large networks
of S. cerevisiae and E. coli, FFCA proves to be faster than MMB-FCA. The
computation time required for MMB-FCA rapidly grows when the number
of reactions increases. This is due to the possibly exponential size of the set
of generating vectors which has to be computed before �nding the coupled
reactions (see Section 4.4 in [63]). EFP-FCA, which is based on solving
mixed-integer linear programs, turns out to be much slower than other
methods. Although the concept of elementary �ux patterns is very useful
in the analysis of subnetworks, its applicability in full FCA seems to be limited.

Both the FCF algorithm and the current implementation of FFCA solve
LPs for �ux coupling analysis. Here we summarize the main di�erences be-
tween the two methods:

• When an LP is solved in FFCA, �nding the �rst feasible solution is
su�cient, while the LPs should be solved to optimality in case of the
FCF algorithm.

• In the FCF method, in contrast to FFCA, every reversible reaction is
split into two (forward and backward) irreversible reactions. This step
slows down the procedure and increases the size of each LP to be solved.

• For computing the �ux coupling relations between any pair of reactions,
we always need at most two LPs in FFCA, while in FCF sometimes more
LPs have to be solved. For example, for computing the coupling relation
between an irreversible and a reversible reaction (after splitting), four
LPs are solved.
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• The RT-pruning to reduce the number of possible coupled reaction pairs
is not considered in FCF, but is in FFCA.

• The PF-improvements are not considered in FCF, but they are in FFCA.

While the above di�erences improve the run-time speed of �ux coupling,
the complexity of the two algorithms is similar. That is, O(n2 × L(n,m)),
where L(n,m) is the complexity of solving a linear problem with n variables
and m constraints. Moreover, assuming there are only irreversible reactions
in the network, the two algorithms solve the same number, n2, of LPs.

In Table 2.2 the computational running times of these methods are also
shown. As expected, the three versions of the improved FCF algorithm are
faster than the classical FCF algorithm, while they are still slower that FFCA.

Metabolic network models

Nine metabolic networks were used in this study:

• ILLUSNET network from [64]

• RBC : metabolic network of red blood cell [134]

• EC core: central metabolic network of E. coli [83]

• H. pylori genome-scale metabolic network [121]

• S. cerevisiae (yeast) genome-scale metabolic network [29]

• The 2003 genome-scale metabolic network of E. coli (iJR904) [90]

• The 2007 genome-scale metabolic network of E. coli (iAF1260) [30]

• The metabolic network of H. sapiens (Recon 1) [28]

• The metabolic network of human hepatocyte (HepatoNet1) [38]

For FCA, all uptake reactions were assumed to be able to carry non-zero
�uxes.

2.3.3 Computational properties of FFCA

Flux coupling analysis of genome-scale networks can be very time consuming.
Only recently (see e.g. [136]) FCA has been used for some of the new genome-
scale metabolic networks that contain more than 2000 reactions. To further
illustrate our approach, we have applied FFCA to three of these very large
networks. The
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Table 2.1: General comparison of di�erent approaches to �ux coupling analysis

Preprocessing Main procedure Postprocessing for

rev. reactions?

Type of linear Further distinguishing of

Method name program and solution ←→ and ⇐⇒ required?

MMB-FCA computing MMBs + reaction classi�cation n/a No No

EFP-FCA splitting reversible reactions MILP, optimal Yes Yes

FCF splitting reversible reactions LP, optimal No Yes

W-FCF n/a LP, optimal No No

WR-FCF reaction classi�cation LP, optimal No No

WRP-FCF reaction classi�cation LP, optimal No No

FFCA reaction classi�cation LP, feasible Yes No

Table 2.2: CPU running time (in seconds) required for �ux coupling analysis of the benchmark networks when CLP [18] is used as

the LP solver

no. of unblocked MMB-FCA EFP-FCA FCF W-FCF WR-FCF WRP-FCF FFCA

reactions

ILLUSNET 18 0.01 26.3 0.25 0.14 0.09 0.06 0.06

RBC 38 0.05 152 1.39 0.80 0.68 0.64 0.62

EC core 63 0.22 585 6.58 3.03 3.13 2.19 2.15

H. pylori 217 69.8 > 1 day 196 83.6 67.0 63.3 60.7

S. cerevisiae 639 > 1 day > 1 day 8.5× 103 4.0× 103 3.4× 103 3.3× 103 3.1× 103

E. coli(iJR904) 765 > 1 day > 1 day 1.2× 104 7.4× 103 6.3× 103 5.9× 103 5.6× 103
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Table 2.3: Number of �ux (un-)coupling relations for each of the benchmark networks (Table 2.2)

no. of unblocked total no. of reactions fully coupled partially coupled directionally coupled uncoupled

reactions

ILLUSNET 18 19 6 0 9 138

RBC 42 42 21 0 15 825

EC core 63 63 19 0 9 1925

H. pylori 217 480 164 3 309 22960

S. cerevisiae 639 1144 692 90 2214 200845

E. coli(iJR904) 765 930 2567 68 6208 283387

Table 2.4: Flux coupling analysis of new generation genome-scale metabolic networks

no. of unblocked total no. fully coupled partially directionally uncoupled running time

reactions of reactions coupled coupled (sec)

H. sapiens (Recon. 1) 2018 3284 1555 4 3503 2030091 1.59× 105

E. coli (iAF1260) 1878 2075 2563 143 12791 1747006 1.66× 105

Human hepatocyte 2309 2309 1463 201 1593 2661329 1.35× 105

(HepatoNet1)
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results are reported in Table 2.4. We can see that FFCA needs 37-46 hours
for each of the networks to perform a complete FCA. The numbers of the
resulting �ux coupling relations are also given in the table. Since FFCA
includes the RT-pruning and PF-improvement, it might be interesting to see
how the number of coupling relations (and also the running time of FFCA)
depends on the number of reversible reactions in a network. This problem is
studied in Additional �le 2 of [24] and it is empirically shown that the numbers
of uncoupled pairs increase (and the running times generally decrease) with
the increase in the number of reversible reactions.

2.4 F2C2: A fast tool for the computation of �ux cou-

pling in genome-scale metabolic networks

In this section we build on the performance advantage of the FFCA algorithm
and present additional preprocessing steps as well as algorithmic improve-
ments that reduce the total running time of the algorithm. The preprocessing
steps occur before using linear programming to calculate �ux coupling be-
tween reactions, and try to reduce the number of variables and constraints of
the subsequent LP problems. The network reduction is mainly based on the
removal of trivially blocked reactions and the merging of the stoichiometric
columns corresponding to trivially coupled reactions [87, 62, 35, 126]. For
computing a subset of the fully coupled reactions, one can also use the ker-
nel of the stoichiometric matrix [62]. We will prove that under some easily
satis�able conditions, all fully coupled reactions can be found. Alternatively,
one can apply some reduction rules which require only a simple parsing of the
stoichiometric matrix and are not time consuming. This alternative strategy
allows avoiding potential numerical instabilities related to the computation of
a basis of the kernel.

Once the improvements have been detailed and an outline of the F2C2
algorithm has been presented, we benchmark it against the FFCA algorithm.

2.4.1 Preprocessing

Certain metabolites, called dead-end metabolites [62], are produced (resp. con-
sumed) by some reactions without being consumed (resp. produced) by other
reactions. This concept is illustrated in Fig. 2.2 where the dead-end metabo-
lite H is produced by reaction 13 without being consumed by any of the
remaining reactions.

As stated below, reactions which are consuming or producing dead-end
metabolites are blocked.

Observation 2.4 (Dead-end metabolite). Let k ∈ {1, . . . ,m} be a metabolite.
Then, the following hold:
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Figure 2.2: Exemplary metabolic network MetNet. It consists of eight metabolites

(A, . . . ,H), and thirteen reactions (1, . . . , 13), whereof six reactions are irreversible.

Metabolites are depicted as nodes while reactions are depicted as arrows. Reversible

reactions are indicated by double arrowheads.

• If there exists a reaction i such that Ski 6= 0 and Skj = 0 for all j 6= i,
then reaction i is blocked.

• If there exists a set of reactions I ⊆ Irr such that Ski > 0 (resp. Ski < 0)
for all i ∈ I and Skj = 0 for all j /∈ I, then all reactions i ∈ I are
blocked.

In each of these cases, k is called a dead-end metabolite.

Certain metabolites are involved in exactly two reactions. For instance, in
the network MetNet depicted in Fig. 2.2, metabolite E is produced/consumed
only by reactions 8 and 9. The following observation states that the �uxes
through reactions involving such metabolites are proportional to each other.

Observation 2.5 (Trivial Full Coupling (TFC)). Let i and j be two reactions
such that, for some metabolite k ∈ {1, . . . ,m}, Ski 6= 0, Skj 6= 0 and Skl = 0
for all l 6= i, j. Then, reactions i and j are either blocked or fully coupled.

The identi�cation of dead-end metabolites and their corresponding blocked
reactions allows us to reduce the number of metabolites and reactions that
matter for identifying coupled reactions. As stated in the following obser-
vation, the removal of the rows (resp. columns) in the stoichiometric matrix
corresponding to dead-end metabolites (resp. blocked reactions) does not in-
�uence the �ux coupling between reactions.

Observation 2.6 (Reduction Rule 1). Let D be a set of dead-end metabolites
and let B be a set of blocked reactions. For convenience, suppose B = {n −
|B| + 1, . . . , n}. Let S ′ be the submatrix of S formed by the rows Sk∗ with
k /∈ D and the columns S∗l with l /∈ B. Let Irr ′ = Irr \B. Then, for all pairs
of reactions i /∈ B and j /∈ B,
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• j−→ i if and only if v′i = 0 implies v′j = 0, for all v′ ∈ Rn−|B| such that
S ′v′ = 0 and v′p ≥ 0 for all p ∈ Irr ′.

• i⇐⇒ j if and only if there exists λ′ 6= 0 such that v′j = λ′v′i, for all
v′ ∈ Rs with S ′v′ = 0 and v′p ≥ 0 for all p ∈ Irr ′.

The next observation shows that two fully coupled reactions can be repre-
sented by only one column in the stoichiometric matrix, without altering the
�ux coupling between reactions.

Observation 2.7 (Reduction Rule 2). Let k, l be two reactions such that for
all v ∈ C, vl = λvk for some λ 6= 0. For convenience, suppose l = n and
λ > 0. Let S ′ be the m× (n− 1) matrix de�ned by S ′∗p = S∗p for all p 6= k, l
and S ′∗k = S∗k + λS∗l. Let Irr ′ = (Irr ∪ {k}) \ {l} if l ∈ Irr , and Irr ′ = Irr
otherwise. Then, for all pairs of reactions i 6= l and j 6= l,

• j−→ i if and only if v′i = 0 implies v′j = 0, for all v′ ∈ Rn−1 such that
S ′v′ = 0 and v′p ≥ 0 for all p ∈ Irr ′.

• i⇐⇒ j if and only if there exists λ′ 6= 0 such that v′j = λ′v′i, for all
v′ ∈ Rn−1 with S ′v′ = 0 and v′p ≥ 0 for all p ∈ Irr ′.

Note that when applying the reduction rules of Observations 2.6 and 2.7,
further metabolites and reactions may ful�ll the conditions of Observations 2.4
and 2.5. Accordingly, we apply these reduction rules in an iterative way. As an
illustration, the reduction of the network MetNet depicted in Fig. 2.2 involves
two iterations. In the �rst one, metabolite H and reaction 13 are removed,
the pairs of reactions (1, 2) and (8, 9) are merged and metabolites A and E are
removed. In the second iteration, the equivalent reactions (11, 12) are merged
and metabolite G is removed. The preprocessed network depicted in Fig. 2.3
contains only four metabolites and nine reactions.

Certain fully coupled reactions could not be identi�ed using Observa-
tion 2.5. The following lemma proves that all fully coupled reaction pairs
can be deduced from the kernel kern(S) = {v ∈ Rn | Sv = 0} of the stoichio-
metric matrix after the removal of all blocked reactions.

Lemma 2.8. Let (S, Irr) be a metabolic network with all n reactions un-
blocked. For a pair of reactions (i, j) the following are equivalent:

• i⇐⇒ j.

• there exists λ ∈ R \ {0} such that vi = λvj, for all v ∈ kern(S).

Proof. �⇐� Immediate.
�⇒� Since i⇐⇒ j, there exists λ 6= 0 such that vi = λvj for all v ∈ C.

Assume by contradiction that there is v ∈ kern(S) such that vi 6= λvj.
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Figure 2.3: Exemplary metabolic network MetNet after preprocessing. Dead-end

metabolites and blocked reactions were removed and fully coupled reactions were

merged iteratively. This resulted in the removal of the blocked reaction 13 and the

merging of the pairs of equivalent reactions (1, 2), (8, 9) and(11, 12)

Let L = {l ∈ Irr | vl < 0}. Since every reaction is unblocked, for every
l ∈ L there exists g(l) ∈ C with g(l)l = 1.

Now let w := v −
∑

l∈L vlg
(l). Clearly, w ∈ kern(S) and wl > 0 for all

l ∈ Irr, thus w ∈ C. However, wi 6= λwj, contradicting i⇐⇒ j. The required
statement follows.

In analogy with the WRP-FCF and FFCA approaches, we identify the
reversibility type of reactions in order to apply linear programming only in
those cases where coupling relationships can occur [64]. To compute the sets
Irev, Prev, Frev and Blk we use the procedure for reaction classi�cation de-
scribed in Section 2.3.1. Note that applying the above reduction rules be-
forehand reduces the number of variables and constraints in the LP problems
used for the classi�cation of reactions.

Based on the results above, we propose to apply the preprocessing pro-
cedure given in Table 2.5 before identifying coupled reactions using linear
programming. We show later that the preprocessing step turns out to be
crucial for obtaining an e�cient �ux coupling algorithm.

2.4.2 Algorithmic improvements

In certain metabolic networks, the conversion of a set of substrates into a set
of products can be made by di�erent reactions having the same stoichiometry.
A simple example of such reactions are isoenzymes which make the same
conversion of substrates into products. This concept is illustrated in Fig. 2.2
where both reactions 4 and 5 convert C into D in the same way. This holds
also for reaction 7 and the merged equivalent reactions (8, 9) in Fig. 2.3,
showing that the network preprocessing may simplify the identi�cation of
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Table 2.5: Main steps of the preprocessing procedure

Step Rule

1. Identify dead-end metabolites and the corresponding blocked reactions.

2. Apply Reduction Rule 1 to remove the rows (resp. columns) correspond-

ing to dead-end metabolites (resp. blocked reactions) from the stoichio-

metric matrix.

3. Apply the TFC rule to determine reactions which are proportional to

each other and update their reversibility type.

4. Apply Reduction Rule 2 to keep only one column for each set of reactions

which are proportional to each other.

5. Repeat Steps 1-4 until neither a dead-end metabolite nor a pair of fully

coupled reactions can be identi�ed.

6. Update the reversibility type of each reaction and remove the columns

corresponding to blocked reactions from the stoichiometric matrix.

7. Use a basis of the kernel of the stoichiometric matrix to identify fully

coupled reactions. This step is optional as the kernel computation may

lead to numerical problems.

8. Classify reactions according to their reversibility type.

such alternative conversions. The �ux coupling of such reactions is trivial
using the following lemma.

Lemma 2.9 (Trivial Uncoupling (TUC)). Let i, j ∈ Irev and k, l ∈ Prev ∪
Frev be four reactions. Then, the following holds:

• If S∗i = αS∗j for some α > 0, then p 6−→ i and p 6−→ j for all p /∈ Blk .

• If S∗i = αS∗j for some α < 0, then i 6−→ p (resp. j 6−→ p) for all p /∈
Blk ∪ {j} (resp. p /∈ Blk ∪ {i}).

• If S∗i = αS∗k for some α 6= 0, then p 6−→ i and i 6−→ p for all p /∈ Blk
and k 6−→ q for all q /∈ Blk ∪ {i}.

• If S∗k = αS∗l for some α 6= 0, then p 6−→ k and k 6−→ p for all p /∈
Blk ∪ {l} and l 7→ q and q 7→ l for all q /∈ Blk ∪ {k}.

Proof. The proofs of the four statements are similar. We only consider the
�rst one.

Suppose S∗i = αS∗j for some α > 0 and let us prove p 6−→ i.
Let p /∈ Blk . Then there exists v ∈ C such that vp 6= 0. Let w ∈ Rn such

that wi = 0, wj = αvi + vj and wq = vq for all q 6= i, j. We have w ∈ C with
wi = 0 and wp 6= 0, so the claim follows.

The next observation states that metabolites which are involved only in
irreversible reactions and consumed or produced by exactly one reaction de�ne
trivial directional couplings between these reactions.
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Observation 2.10 (Trivial Directional Coupling (TDC)). Let k be some
metabolite such that Skl = 0 for all l ∈ Frev ∪Prev . Let P = {i | Ski > 0} and
N = {j | Skj < 0}. If card(P ) = 1 (resp. card(N) = 1), then j−→ i (resp.
i−→ j) for all (i, j) ∈ P ×N .

Since directional �ux coupling is a transitive relation, the �ux (un)coupling
between many reactions can simply be deduced from dependencies between
reactions whose �ux (un)coupling has been determined beforehand. This al-
lows us to signi�cantly reduce the total number of LP problems to be solved.
Examples of such inferred �ux (un)couplings are given in Fig. 2.3. According
to the TDC rule, we have (8, 9)−→ (1, 2). By solving the LP problems (2.1),
we obtain (8, 9) 6−→ 10. We can easily conclude that (1, 2) 6−→ 10.

Table 2.6 shows the inferred �ux (un)coupling relations we can deduce
from known relationships between reactions.

Table 2.6: Transitivity inferred �ux (un)coupling

Known �ux coupling i⇐⇒ j i←→ j j−→ i i−→ j

k⇐⇒ i k⇐⇒ j i←→ j j−→ k k−→ j

k←→ i k←→ j

k⇐⇒ j

k←→ j j−→ k k−→ j

i−→ k j−→ k j−→ k j−→ k

i 6−→ k j 6−→ k j 6−→ k j 6−→ k

k 6−→ i k 6−→ j k 6−→ j k 6−→ j

For some pairs of reactions, we need to solve at least one LP problem. The
optimal solution not only determines the �ux coupling between the considered
pair of reactions, but also allows one to determine many other uncoupled
reactions.

Observation 2.11 (Feasibility Rule). Let v ∈ C be a steady-state �ux vector
and let I = {i | vi = 0} and J = {j | vj 6= 0}. Then j 6−→ i for all (i, j) ∈
I × J .

In general, most irreversible reactions are uncoupled to each other. Accord-
ingly, the LP problems (2.1) used to determine coupled irreversible reactions
are often unbounded. This limits the use of the feasibility rule, which requires
the calculation of a feasible �ux vector. In order to optimally use the feasi-
bility rule, instead of solving the LP problems (2.1) to decide whether two
irreversible reactions i, j ∈ Irev are coupled, we propose to solve the bounded
LP problems

Lij = min {vi : Sv = 0, vj = 1, vk ≥ 0, k ∈ Irr},
Lji = min {vj : Sv = 0, vi = 1, vk ≥ 0, k ∈ Irr}, (2.9)

and to use the following scheme:
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• j−→ i (resp. i−→ j) if and only if Lij 6= 0 (resp. Lji 6= 0),

• j⇐⇒ i if and only if Lij 6= 0, Lji 6= 0 and Lij = 1/Lji.

The following observation states that removing a fully reversible reaction
does not alter the �ux coupling between (pseudo-)irreversible reactions.

Observation 2.12. Let k ∈ Frev be a fully reversible reaction. For conve-
nience, suppose k = n. Let S ′ be the m× (n− 1) matrix de�ned by S ′∗p = S∗p
for all p 6= k and let Irr ′ = Irr . Then, for all pairs of reactions i /∈ Frev and
j /∈ Frev ,

• j−→ i if and only if v′i = 0 implies v′j = 0, for all v′ ∈ Rn−1 with S ′v′ = 0
and v′p ≥ 0 for all p ∈ Irr ′.

• i⇐⇒ j if and only if there exists λ′ 6= 0 such that v′j = λ′v′i, for all
v′ ∈ Rn−1 with S ′v′ = 0 and v′p ≥ 0 for all p ∈ Irr ′.

Let S∗Rev be the submatrix de�ned by the columns in S corresponding
to the reversible reactions and let t be the dimension of kern(S∗Rev). Based
on Observation 2.12, we can remove up to t independent fully reversible re-
actions without altering the �ux coupling between (pseudo-)irreversible re-
actions. Since certain fully reversible reactions may change their reversibility
type after the deletion of a fully reversible reaction, we �rst remove a randomly
chosen reaction i ∈ Frev together with the coupled reactions with i. We cal-
culate the impact of this deletion on the dimension of kern(S∗Rev). If this
dimension decreases by 1, the deletion is maintained; otherwise the removed
reactions are restored to the network. This is repeated until t independent
fully reversible reactions and their coupled reactions are removed. We as-
sume that the �ux coupling between fully reversible reactions is determined
beforehand.

Based on the above results, we propose the Fast Flux Coupling Calculator
(F2C2) to determine coupled reactions. The main steps of the F2C2 algorithm
are given in Table 2.7.

2.4.3 Computational results and benchmarks

The F2C2 algorithm has been implemented within the Matlab [74] environ-
ment, using CLP [18] (via the Mexclp interface [70]) as the underlying linear
programming solver. For benchmarking, we analyzed the following genome-
scale metabolic networks:

• Escherichia coli, iJR904 [90]

• Saccharomyces cerevisiae, iND750 [29]

• Methanosarcina barkeri, iAF692 [31]
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Table 2.7: The main steps of the F2C2 algorithm

Step Rule

1. Apply the preprocessing procedure shown in Table 2.5.

2. Apply the feasibility rule using the feasible solutions obtained when solv-

ing the LP problems used in Step 1.

3. Apply the TDC and TUC rules to determine trivially (un)coupled reac-

tions.

4. Identify fully coupled reversible reactions by solving the LP problems

(2.3). This is not necessary if the kernel of the stoichiometric matrix is

used in Step 1.

5. Determine the dimension t of kern(S∗Rev ) and remove t independent fully

reversible reactions and their coupled reactions. This step is optional

since t is often small.

6. Determine the �ux coupling between (pseudo-)irreversible reactions by

solving the LP problems (2.2) and (2.9).

7. For each LP problem solved in Step 6, use the inference rules in Table 2.6

in combination with the feasibility rule.

• Mycobacterium tuberculosis, iNJ661 [45]

• Escherichia coli, iAF1260 [30]

• Homo sapiens, Recon1 [28]

• Escherichia coli, iJO1366 [81]

For the numerically sensitive parts, a tolerance level of 10e-6 was set. All
computations were performed using a single Intel Xeon 5160 (3.0 GHz) pro-
cessor on a 64-bit Debian Linux 6.0 system.

As pointed out in the previous section, part of the performance gain of
F2C2 over previous FCA algorithms stems from the fact that the preprocessing
steps reduce the network size. This a�ects the running time on two levels:
there are fewer reaction pairs and the LP problems to be solved have reduced
size. The dramatic e�ect of the preprocessing steps on the network size is
presented in Table 2.8.

The algorithmic improvements further reduce the number of LP problems
to be solved. A direct performance comparison between the FFCA and F2C2
algorithms (including the running times and number of LP problems solved)
is summarized in Table 2.9. In all cases, F2C2 outperformed FFCA by several
orders of magnitude. In [24] it has been shown that FFCA is more e�cient
on genome-scale metabolic networks than other �ux coupling algorithms.

For an intuitive, visual representation of the individual improvements' im-
pact on the algorithm's performance, a more in-depth analysis has been per-
formed on the recent metabolic network of E. coli, iJO1366. Four di�erent
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sets of improvements were cumulatively switched on, and the linear programs
solved were plotted for each case (Fig. 2.4). To better highlight the relevant
di�erences, the following modi�cations were applied to the results. First, 249
(out of 2582) reactions identi�ed as blocked were removed from the images.
This is a common preprocessing step in most FCA algorithms. Secondly, the
order of reactions was permuted such that the reactions in Irev , Prev and
Frev are clustered together. Additionally, in each of these three clusters, the
fully coupled reactions were moved towards the end of the segment.

Fig. 2.4(a) plots the LP problems solved in the FFCA algorithm. Applying
the simple preprocessing steps without using the kernel (Fig. 2.4(b)), several
reactions are found to be fully coupled with others, and as such can be merged
together. When Lemma 2.8 is applied (Fig. 2.4(c)), all fully coupled sets
are detected. As a consequence, the gray stripes get thicker and the LP
problems corresponding to (Prev ,Prev) and (Frev ,Frev) pairs need not be
solved anymore. The use of the algorithmic improvements (Fig. 2.4(d)) �lters
the pairs in (Irev , Irev) and (Irev ,Prev) blocks, greatly reducing the total
number of LP problems to be solved.
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Table 2.8: Genome-scale metabolic networks with the number of metabolites (]met.) and reactions (]reac.) before and after

applying the preprocessing steps

Network name
Original size Prepr. size

]met. ]reac. ]met. ]reac.

M. barkeri, iAF692 628 690 149 221

S. cerevisiae, iND750 1061 1266 248 446

M. tuberculosis, iNJ661 826 1025 240 418

E. coli, iJR904 761 1075 269 565

E. coli, iAF1260 1668 2382 604 1272

E. coli, iJO1366 1805 2582 651 1376

H. sapiens, Recon1 2766 3742 725 1573

Table 2.9: Performance comparison between the FFCA and F2C2 algorithms in terms of the number of LP problems solved (]LPs)

and their total running times (TRT). For the F2C2 algorithm, TRT includes the time (Prepr. RT) required for the preprocessing

step. Computation times are given in days (d), hours (h), minutes (m) and seconds (s)

Network
FFCA F2C2

]LPs TRT ]LPs TRT Prepr. RT

M. barkeri, iAF692 301975 59m 40s 774 7s 5s

S. cerevisiae, iND750 472629 1h 50m 17s 1280 21s 15s

M. tuberculosis, iNJ661 556504 3h 5m 36s 1506 22s 16s

E. coli, iJR904 655437 2h 40m 33s 1580 26s 18s

E. coli, iAF1260 4256786 4d 31m 26s 3309 2m 47s 2m

E. coli, iJO1366 4877262 4d 5h 30m 46s 3955 3m 55s 2m 45s

H. sapiens, Recon1 4566304 4d 18h 3m 37s 3903 5m 20s 4m 9s
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Figure 2.4: Visualization of the LP problems solved using di�erent algorithms.

(a) The FFCA algorithm, (b) the FFCA algorithm after applying the preprocessing

procedure given in Table 2.5 without kernel computation (Step 7), (c) the FFCA

algorithm after applying the preprocessing procedure and using the kernel of the

stoichiometric matrix to identify fully coupled reactions and (d) the F2C2 algorithm

given in Table 2.7. The dashed lines mark the boundary of the Irev , Prev and Frev

regions. Colors: Black - an LP problem is solved for the corresponding (ordered) pair

of reactions; Gray - the corresponding LP problem is not solved due to one (or both)

reactions being eliminated from the network (a preprocessing improvement); White

- corresponding LP problem does not get solved due to an algorithmic improvement.
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• All currently existing FCA methods have been reviewed.

• A new algorithm was presented, FFCA, which is based on
feasibility-checking of LPs.

• We prove that in a network with no blocked reactions, every
full coupling relation can be computed from the kernel of the
stoichiometric matrix.

• We described additional mathematical results which reduce the
number of LPs necessary for FCA.

• Using the mathematical results we have outlined a new algorithm
for FCA, called F2C2.

• We have applied FFCA and F2C2 for large, genome-scale net-
works. The computational results show that FFCA is slightly
faster than the previously described FCA methods. F2C2 is or-
ders of magnitude faster than FFCA.

Summary of the chapter
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Remark: This chapter summarizes and extends results originally pub-
lished in [22].

3.1 Introduction

The previous chapter dealt with classical �ux coupling analysis, which identi-
�es dependencies between the activity of reaction �uxes in a metabolic network
at steady-state. It can be used for exploring a large range of biological ques-
tions such as network evolution, gene essentiality, or gene regulation. While
this has found many applications, it turns out that in some cases the �ux
cone is too general, describes too many metabolic behaviours, and lacks cer-
tain desired details. With FCA, we �nd a coupling relationship between two
reactions only if these reactions are coupled to each other in all �ux vectors
belonging to the cone. Often however, biologists are interested in a particular
subspace of the �ux cone (e.g. the optimal �ux space [53]) or would like to
impose additional constraints on the reactions.

In this chapter, we generalize the concept of FCA by allowing additional
linear constraints on the reactions. We show that these constraints can
be modeled as lower and upper bounds on the reactions of an alternative
metabolic network. Based on this, we introduce constrained �ux coupling
analysis (CFCA) and prove that, in many cases, knowing the true bounds of
the reactions uniquely determines the constrained coupling relationships. An
alternative approach to this problem is presented in [40]. Here, we present a
new method to perform CFCA e�ciently.
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Figure 3.1: The intuitive interpretation of additional constraints

3.2 Methods

In constrained FCA, we would like to impose additional linear constraints
on the reactions, which are of the form α1v1 + α2v2 + · · · + αnvn ≥ β, with
α1, . . . , αn ∈ R not all zero, and β ∈ R. For algorithmic reasons, we will
realize such a constraint by considering an alternative metabolic network. It
is derived from the original one by introducing an arti�cial metabolite m+ 1
and an arti�cial reaction n+1. Every reaction i ∈ {1, . . . , n} for which αi > 0
(resp. αi < 0) will additionally produce (resp. consume) the metabolite m+ 1
with stoichiometric coe�cient αi. The reaction n + 1 will be an exchange
reaction that takes the metabolite m+1 out of the system. The mass-balance
equation for metabolitem+1 is thus given by α1v1+α2v2+· · ·+αnvn−vn+1 =
0. The additional linear constraint is now realized by imposing the lower
bound vn+1 ≥ β in the alternative network. The concept is illustrated in
Fig. 3.1. Assume we start with the metabolic network on the left and want
to impose the additional constraint v2 + v3 ≤ 10. Considering the network
on the right and imposing v6 ≤ 10 will give the desired result. A similar
transformation can also be done for equality constraints, by imposing β both
as a lower and upper bound of vn+1. We conclude that additional linear
constraints may be realized by imposing lower and upper bounds on suitably
de�ned reactions in an extended network.

3.2.1 De�nitions

For a metabolic network with n reactions (possibly after recon�guration), let
L (resp. U) ⊆ {1, . . . , n} be the set of reactions i for which a �nite lower
bound li ∈ R (resp. upper bound ui ∈ R) has been de�ned. We will consider
all �ux vectors in the (steady-state) �ux polyhedron P , de�ned by

P := {v ∈ Rn | Sv = 0, vi ≥ li, for all i ∈ L, vi ≤ uj, for all j ∈ U}. (3.1)
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Note that the standard thermodynamic constraints vIrr ≥ 0 have not been
included here, because irreversible reactions can be de�ned by having the
lower bound 0. Given the �ux polyhedron P , we can construct an associated
�ux cone by de�ning the irreversible reactions. Let IrrP := {i ∈ L | li ≥ 0}.
The �ux cone CP associated with P is de�ned as

CP := {v ∈ Rn | Sv = 0, vi ≥ 0 for all i ∈ IrrP}. (3.2)

In the special case U = ∅ and li = 0 for all i ∈ L, the �ux polyhedron P is
equal to the �ux cone C (with Irr = L). However, in general P ⊆ CP holds.

Blocked reactions are de�ned similarly to classical FCA [12]. Intuitively,
these are the reactions that never participate in a steady-state �ux vector.

De�nition 3.1 (Blocked reaction). Given the �ux polyhedron P , a reaction
i ∈ {1, . . . , n} is blocked in P if vi = 0, for all v ∈ P . Otherwise, i is
unblocked in P .

Next we de�ne the constrained coupling relations..

De�nition 3.2 (Constrained coupling relations). Given the �ux polyhedron
P , let i, j be two unblocked reactions in P . The constrained (un-)coupling
relationships −→

c
,←→

c
,⇐⇒

c
, 6−→

c
and 6←→

c
are de�ned by:

• i −→
c
j (equiv. j ←−

c
i) if for all v ∈ P , vi 6= 0 implies vj 6= 0.

• i←→
c

j if for all v ∈ P , vi 6= 0 is equivalent to vj 6= 0.

• i⇐⇒
c

j if there exists λ 6= 0 such that for all v ∈ P, vj = λvi.

• i 6−→
c
j if there exists v ∈ P such that vi 6= 0 and vj = 0.

• i 6←→
c

j if both i 6−→
c

j and j 6−→
c

i hold.

Reactions i and j are fully (resp. partially, directionally) coupled if the relation
i⇐⇒

c
j (resp. i←→

c
j, i −→

c
j) holds. Otherwise, i and j are uncoupled, i.e.,

i 6−→
c
j and j 6−→

c
i.

With i ⇐⇒ j, i←→j, i−→j, and i 6−→ j we denote the corresponding
(unconstrained) coupling relations in CP , where P is replaced with CP .

In the unconstrained case, fully coupled reactions belong to the same en-
zyme subset as introduced in [87].
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3.2.2 Preprocessing

In a �rst preprocessing step, we aim to �nd the blocked reactions in P . As
shown by computational experiments with FFCA [24] or F2C2 [66], genome-
scale metabolic networks may contain several hundreds of blocked reactions.
Eliminating these considerably reduces the network size.

Observation 3.3. If a reaction is blocked in CP , then it is also blocked in P .

Observation 3.3 holds since P ⊆ CP . Thus, non-existence of v ∈ CP with
vi 6= 0 implies the non-existence of such a vector in P . This allows us to detect
and remove some blocked reactions in P by studying CP . In particular, we
can use the concept of dead-end metabolites from F2C2 [66] and perform a
stoichiometric matrix-based search to �nd some of the blocked reactions in P .

Finding blocked reactions relates back to a more general problem. Even if
a reaction is unblocked, there is no guarantee that it is able to display all the
�uxes speci�ed by its bounds. The network structure might further constrain
reaction �uxes and prohibit them to attain their limit. This is di�erent from
the unconstrained case, where �uxes through unblocked reactions are scalable
by any positive number. Therefore, we will compute tight bounds for every
reaction, which we call the true bounds of the reaction.

De�nition 3.4 (True bounds). l∗k ∈ R∪{−∞} (resp. u∗k ∈ R∪{∞}) is called
the true lower (resp. upper) bound of reaction k if u∗k ≥ vk ≥ l∗k, for all v ∈ P ,
and if for all c ∈]l∗k, u

∗
k[, there exists v ∈ P with vk = c.

Computing the true lower and upper bound of a reaction k can be done
by solving the following two linear programs:

l∗k = min {vk : Sv = 0, vi ≥ li, for all i ∈ L, vi ≤ uj, for all j ∈ U},
u∗k = max {vk : Sv = 0, vi ≥ li, for all i ∈ L, vi ≤ uj, for all j ∈ U}.

(3.3)
Having computed the true bounds for every reaction, we can equivalently
characterize the �ux polyhedron P as

P = {v ∈ Rn | Sv = 0, u∗i ≥ vi ≥ l∗i , for all i ∈ {1, . . . , n}}. (3.4)

Trivially, if l∗k = u∗k = 0, then k is blocked in P . Since blocked reactions
can be removed from the network without altering the coupling relationships
between other reactions, we will assume for the rest of this section that the
constrained metabolic network does not contain such reactions.

Based on the true bounds (l∗k, u
∗
k), we will distinguish eight classes of (un-

blocked) reactions:

• type 1: (−∞, ∞)

• type 2: (−a, ∞) with a > 0.
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• type 3: (−a, b) with b ≥ a > 0.

• type 4: (0, ∞)

• type 5: (0, b) with b > 0.

• type 6: (a, ∞) with a > 0.

• type 7: (a, b) with b > a > 0.

• type 8: (a, a) with a > 0.

Di�erent types could appear, but by conveniently reversing the direction of
such reactions (i.e., by multiplying the corresponding column in the stoichio-
metric matrix with -1), all cases can be reduced to the previous eight. For
example, by multiplying the column of a reaction that would be of type (-∞,
0), we get the type (0, ∞). For the remainder of this chapter we assume
without loss of generality that the input network has been revised and only
contains reactions of the previous eight types.

3.2.3 Algorithmic considerations

We now describe the connection between coupling relations in the �ux poly-
hedron P and the associated �ux cone CP . As our results will show, in many
cases it is enough to compute the �ux coupling relations in CP (using classical
FCA) to obtain the constrained FCA relations for P .

Observation 3.5. Consider a �ux polyhedron P with no blocked reactions. If
for two reactions i and j, i ⇐⇒ j (resp. i ←→ j, i −→ j) in CP holds, then
i⇐⇒

c
j (resp. i←→

c
j, i −→

c
j) also holds in P .

Proof. The proof follows directly from P ⊆ CP .

Obs. 3.5 asserts that if a coupling relation exists in the unbounded network,
the same relation will be carried over to the constrained case. Thus, we only
need to check whether i 6−→ j in CP becomes i −→

c
j in P . If both i −→

c
j

and j −→
c

i hold in P , then we also have to check whether i ⇐⇒
c

j holds in

P .

Proposition 3.6. Consider a �ux polyhedron P (with no blocked reactions),
where every reaction is of type 1−7. Then there exists v ∈ P with l∗i < vi < u∗i ,
for all i ∈ {1, 2, ..., n}.

Proof. We prove the statement by constructing a point that satis�es the con-
ditions.
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For all i ∈ {1, 2, ..., n}, let ai ∈ P be a vector in the �ux polyhedron with
l∗i < aii < u∗i . By de�nition of l∗i and u∗i and since i is not of type 8, such
vectors ai always exist. Consider the convex combination of these vectors,
v := 1/n

∑n
i=1 a

i.
Clearly, v ∈ P and l∗i < vi < u∗i , for all i ∈ {1, 2, ..., n}.

Proposition 3.7. Consider a �ux polyhedron P with no blocked reactions.
Assume every reaction is of type 1 − 7. Then for any two reactions i and j,
we have i⇐⇒

c
j in P if and only if i⇐⇒ j in CP .

Proof. �⇐� Observation 3.5
�⇒� Assume that i ⇐⇒

c
j holds in P, and assume by contradiction that

i⇐⇒ j does not hold in CP . Then there λ ∈ R∗, such that, for all v ∈ P ,
vi = λvj (1), and there exists w ∈ CP with wi 6= λwj.

According to Proposition 3.6, there exists a point z ∈ P with l∗i < zi < u∗i
for all i ∈ {1, 2, ..., n}. Consider the point εw+z, with 0 < ε ∈ R, where addi-
tionally ε < min(

l∗i−zi
wi
|∀i, wi < 0 and l∗i 6= −∞) and ε < min(

u∗i−zi
wi
|∀i, wi >

0 and u∗i 6=∞).
Clearly, εw + z satis�es the steady-state constraints, and by de�nition of

ε, it satis�es the bounds for P . Thus, εw + z ∈ P .
However, εwi + zi 6= λ(εwj + zj), which is a contradiction to (1).

Proposition 3.8. Consider a �ux polyhedron P with no blocked reactions.
Assume every reaction is of type 1 − 5. Then for any two reactions i and j,
we have i −→

c
j (resp. i ←→

c
j) in P if and only if i −→ j (resp. i←→ j)

in CP .

Proof. It is enough to prove the statement for directional coupling.
�⇐� Observation 3.5
�⇒� Assume that i −→

c
j holds in P, and assume by contradiction that

i−→ j does not hold in CP . Then there exists w ∈ CP with wi 6= 0 and
wj = 0. Now let 0 < ε ∈ R such that ε < min(

l∗i
wi
|∀i, wi < 0 and l∗i 6= −∞)

and ε < min(
u∗i
wi
|∀i, wi > 0 and u∗i 6=∞).

Since all reactions are of type 1− 5 and by de�nition of ε, εw ∈ P , which
is a contradiction to i −→

c
j.

When one tries to extend Prop. 3.8 to include reactions of type 6 and 7
as well, unlike full coupling relations, directional couplings are not directly
deducible from the unconstrained �ux cone. That is, for two reactions i and
j, it is possible to have i −→

c
j in P and i 6−→ j in CP . This is most easily

demonstrated on an example. Consider the four reactions from Fig. 3.2 with
the following true bounds:

• reaction r1: l∗1 = 0, u∗1 = 1
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Figure 3.2: Illustrative metabolic network.

• reaction r2: l∗2 = 0, u∗2 = 3

• reaction r3: l∗3 = 1, u∗3 = 2

• reaction r4: l∗4 = 0, u∗4 = 1

Notice that the lower bound of reaction r3 is matching the upper bound
of reaction r1. Therefore, to carry �ux through reaction r4, reaction r2 must
be active. Hence r4 −→

c
r2 holds in P . However, in CP every pair of reaction

is uncoupled.

Together Obs. 3.5, Prop. 3.7 and Prop. 3.8 imply that if every reaction in
the metabolic network is of type 1−5, then it is enough to compute the uncon-
strained coupling relationships in CP (using classical FCA). All constrained
coupling relationships then can be obtained without solving additional lin-
ear programs. Additionally, if some reactions are of type 6 or 7, but none
of them are type 8, we can still deduce all fully coupled relations from the
unconstrained �ux cone.

Thus, the only case to be further considered is the one where at least
one reaction is of type 6 − 8. While we can easily deduce the constrained
coupling relationship between a type 6− 8 reaction and any other reaction in
the network, the e�ect these reactions will have on the remaining constrained
coupling relationships is not trivial.

Observation 3.9. For a �ux polyhedron P , let i be of type 6− 8 and let j be
an unblocked reaction in P . Then j −→

c
i holds.

Observation 3.10. For a �ux polyhedron P , let i be of type 6 − 8 and let j
be of type 1− 5. Then i 6−→

c
j holds.

Proposition 3.11. For a �ux polyhedron P , let i and j be two reactions of
type 1− 3. Then i 6−→

c
j implies j 6−→

c
i.

Proof. Note, the assumption that i and j are of type 1−3 implies that l∗i , l
∗
j < 0

and u∗i , u
∗
j > 0.



54 Chapter 3. Constrained Flux Coupling Analysis

Assume by contradiction that i 6−→
c

j and j −→
c

i both hold. Since

i 6−→
c

j, then exists v ∈ P with vi 6= 0 and vj = 0. Moreover, j −→
c

i implies

that there exist w, z ∈ P with wi 6= 0, wj > 0, zi 6= 0 and zj < 0.
Assuming sign(vi)sign(wi) = −1, we can consider the point x := αv+(1−

α)w with α := wi

wi−vi . Since α ∈]0, 1[ and v, w ∈ P , this implies x ∈ P . More-
over, xi = 0 and xj > 0 is contradicting j −→

c
i. Hence, sign(vi)sign(wi) = 1

A similar argument for the signs of vi and zi proves that sign(vi)sign(zi) =
1. Thus, the signs of vi, wi and zi are all identical.

Now consider a point y ∈ P with sign(yi)sign(vi) = −1. For yj we
distinguish two cases:

• yj ≥ 0: Let x := αy + (1 − α)w with α := wi

wi−yi . Clearly, xi = 0 and
xj > 0, contradicting j −→

c
i

• yj < 0: Let x := αy + (1 − α)z with α := zi
zi−yi . Clearly, xi = 0 and

xj < 0, contradicting j −→
c

i

Corollary 3.12. For a �ux polyhedron P , let i and j be two reactions of type
1− 3. Then i −→

c
j holds if and only if j −→

c
i holds.

Proof. The corollary follows trivially from Prop. 3.11.

Proposition 3.13. For a �ux polyhedron P , let i and j be two reactions of
type 1 − 3 and assume their type is di�erent. Then i ←→

c
j if and only if

i ⇐⇒
c

j.

Proof. �⇐� Trivial.
�⇒� Assume by contradiction that there exists v, w ∈ P with viwj 6= vjwi.
Let x := αv + (1− α)w with α := wi

wi−vi . Since, xi = 0 and xj 6= 0, this is
contradicting i ←→

c
j.

Proposition 3.14. For a �ux polyhedron P , let i be a reaction of type 1− 3,
and j a reaction of di�erent type. Then j 6−→

c
i always holds.

Proof. We prove the claim by breaking it down into several cases. Note, the
assumption that i is of type 1− 3 implies that l∗i < 0.

• If j is of type 6, 7 or 8 then for all v ∈ P , vj > 0. However, there exists
v ∈ P with vi = 0, which implies j 6−→

c
i.

• If j is of type 4 or 5, assume by contradiction that j −→
c

i. Let v ∈ P
with vj > 0, then vi 6= 0.

Let w ∈ P with sign(wi)sign(vi) = −1. Since reaction i can take both
positive and negative values, such a w always exists. Moreover, since j
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is of type 4− 5, wj ≥ 0. Let α := vi
vi−wi

and consider z := αw+ (1−α)v.
Since α ∈]0, 1[ and v, w ∈ P , this implies z ∈ P . However, zi = 0 and
zj > 0, which is contradicting j −→

c
i.

• If i is type 1 and j is of type 2 or 3, assume by contradiction that j −→
c

i.

Let v ∈ P with vj > 0, then vi 6= 0. We can assume that vi > 0. The
case vi < 0, is almost identical to prove.

Let w ∈ P with wj <
vj
vi
l∗i .

� If wi > 0, consider α :=
vj

vj−wj
and z := αw+ (1−α)v. Then zi > 0

and zj = 0, thus i 6−→
c

j. Based on Prop. 3.11, this in turn implies

j 6−→
c

i.

� If wi < 0, consider α := vi
vi−wi

and z := αw+ (1−α)v. Then zj 6= 0
and zi = 0, thus j 6−→

c
i.

• The proof of the remaining cases is similar to the previous ones.

Corollary 3.15. For a �ux polyhedron P , let i and j be two reactions of type
1− 3 and assume their type is di�erent. Then i 6←→

c
j holds.

Proof. The corollary follows trivially from Prop. 3.14.

Proposition 3.16. For a �ux polyhedron P , let i be a reaction of type 4 and
j be a reaction of type 5. Then i 6−→

c
j holds.

Proof. Assume by contradiction that i −→
c

j holds, and consider the following

linear program:

max {vi : Sv = 0, u∗k ≥ vk ≥ l∗k, ∀k ∈ {1, . . . , n}} (3.5)

Since i is of type 4, the above LP is unbounded. Hence solving it with the
Simplex algorithm results in an extreme ray d. That is, for all x ∈ P and for
all θ > 0 we have x+ θd ∈ P .

Clearly, di > 0. Also, dj = 0, since otherwise for a large enough θ, the
feasibility in the j-th coordinate would be violated.

Now let v ∈ P , such that vj = 0, and consider z := v+ d. By de�nition of
d, it follows that z ∈ P with zi > 0 and zj = 0, thus contradicting i −→

c
j.

Proposition 3.17. For a �ux polyhedron P , let i and j be two unblocked
reactions in P . If i ⇐⇒

c
j holds, then i and j are of the same type.
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Proof. • By Prop. 3.14, if one of the reactions is of type 1 − 3 and the
other is of di�erent type, then they cannot be fully coupled.

• By Obs. 3.10, if one of the reactions is of type 6− 8 and the other is of
type 1− 5, then full coupling is excluded.

• By Prop. 3.16, if one reaction is of type 4 and the other is of type 5,
then they cannot be fully coupled.

The only cases not covered yet occur if both reactions are of type 6 − 8,
and di�erent in type.

• If one of the reactions is of type 8, then the result is trivial.

• Here we prove the case when (w.l.o.g.) reaction i is of type 6 and j is of
type 7.

Consider solving the LP problem (3.5) with the Simplex algorithm.
Again, since the LP is unbounded, the solver would stop when it �nds
an extreme ray d. Following the same argument as in Prop. 3.16, we get
di > 0 and dj = 0. Now considering any point v ∈ P and v + d ∈ P ,
obviously contradicts i ⇐⇒

c
j.

The previous results are summarized in Tab. 3.1. White cells mark the
cases where the constrained �ux coupling relationship is uniquely determined
by the reaction types, whereas gray cells represent the cases where additional
linear programs have to be solved. Note that there are only two cases where
any coupling can appear. In all other cases, the coupling is either uniquely
determined or corresponds to one out of two options. The lower diagonal part
of the table was left blank for simplicity as it is reverse symmetrical to the
upper diagonal part.

For the entries in Tab. 3.1 where the coupling is not uniquely determined,
solving additional linear programs (LPs) is necessary. Consider the following
�ve LPs, where parameters i and j are two reactions and λ ∈ R∗ is a constant
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Table 3.1: Summary of the deducible constrained coupling relationships based on

the reaction type

H
HHH

HHi

j
1 2 3 4 5 6 7 8

1
i 6←→

c
j

i ⇐⇒
c

j
i 6←→

c
j i 6←→

c
j

i 6←→
c

j

i −→
c

j
i 6←→

c
j i −→

c
j i −→

c
j i −→

c
j

2
i 6←→

c
j

i ⇐⇒
c

j
i 6←→

c
j

i 6←→
c

j

i −→
c

j
i 6←→

c
j i −→

c
j i −→

c
j i −→

c
j

3
i 6←→

c
j

i ⇐⇒
c

j

i 6←→
c

j

i −→
c

j

i 6←→
c

j

i −→
c

j
i −→

c
j i −→

c
j i −→

c
j

4 any
i 6←→

c
j

j −→
c

i
i −→

c
j i −→

c
j i −→

c
j

5 any i −→
c

j i −→
c

j i −→
c

j

6
i ←→

c
j

i ⇐⇒
c

j
i ←→

c
j i ←→

c
j

7
i ←→

c
j

i ⇐⇒
c

j
i ←→

c
j

8 i ⇐⇒
c

j

value:

minLP1(i, j) = min {vi : Sv = 0, vj = 0, u∗k ≥ vk ≥ l∗k,∀k ∈ {1, . . . , n}}
(3.6)

maxLP1(i, j) = max {vi : Sv = 0, vj = 0, u∗k ≥ vk ≥ l∗k,∀k ∈ {1, . . . , n}}
(3.7)

minLP2(i, j, λ) = min {vi − λvj : Sv = 0, u∗k ≥ vk ≥ l∗k,∀k ∈ {1, . . . , n}}
(3.8)

maxLP2(i, j, λ) = max {vi − λvj : Sv = 0, u∗k ≥ vk ≥ l∗k,∀k ∈ {1, . . . , n}}
(3.9)

minLP3(i, j) = min {vi : Sv = 0, vj = 1, u∗k ≥ vk ≥ l∗k,∀k ∈ {1, . . . , n}}
(3.10)

Based on Tab. 3.1 we distinguish between the following cases:

1. If only i 6←→
c

j or i ⇐⇒
c

j is possible (entries (1, 1), (2, 2) and (3,

3)) then to �nd which coupling applies, it is enough to solve two LPs:
minLP1(i, j) and maxLP1(i, j). If the optimal solution to either LP
is nonzero then i 6←→

c
j, otherwise i ⇐⇒

c
j holds. Clearly, if the �rst
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LP already yields a nonzero optimum then solving the second LP is not
necessary.

2. If i 6←→
c

j or i −→
c

j is possible (entries (1, 4), (2, 4), (3, 4), (3, 5))

then we can �nd out the coupling relation between the two reactions by
solving the same two LPs as in the previous case. If the optimal solution
to either LP is nonzero then i 6←→

c
j, otherwise i −→

c
j holds.

3. If i 6←→
c

j or j −→
c

i are the possible couplings (entry (4, 5)) then

solving maxLP1(j, i) su�ces. If the optimal solution to this LP is 0,
then j −→

c
i, otherwise i 6←→

c
j holds.

4. When i ←→
c

j or i ⇐⇒
c

j are the only possible coupling relations

(entries (6, 6), (7, 7)), we can decide between the two cases by solving
minLP2(i, j, λ) and maxLP2(i, j, λ), where λ := l∗i /l

∗
j . If both LPs have

zero as their optimal value then i ⇐⇒
c

j, otherwise i ←→
c

j holds. For

entry (7, 7) if l∗i /l
∗
j 6= u∗i /u

∗
j , then no LP needs to be solved since the two

reactions are partially coupled.

5. For entry (5, 5) any coupling relation is possible, thus we �rst solve
maxLP1(i, j) and maxLP1(j, i). Based on the optimal solutions we
proceed as follows:

• if maxLP1(i, j) 6= 0 and maxLP1(j, i) 6= 0 then i 6←→
c

j holds.

• if maxLP1(i, j) 6= 0 and maxLP1(j, i) = 0 then j −→
c

i holds.

• if maxLP1(i, j) = 0 and maxLP1(j, i) 6= 0 then i −→
c

j holds.

• if maxLP1(i, j) = 0 and maxLP1(j, i) = 0 then either i ←→
c

j or i ⇐⇒
c

j holds. With λ := u∗i /u
∗
j , we propose solving

minLP2(i, j, λ) and minLP2(i, j, λ). If both LPs have zero as their
optimal value then i ⇐⇒

c
j, otherwise i ←→

c
j holds.

6. In the case of entry (4, 4) we proceed similarly as in the previous case
with the exception that a value for λ can't be deduced from the true
bounds of the reactions. Hence, after solving the �rst two LPs, if
the two reactions are at least partially coupled we additionally solve
minLP3(i, j) and use its optimal value for λ.

In the F2C2 algorithm, the most important single improvement was ob-
tained by the feasibility rule (Observation 6 in [66]). A similar observation
can be made in the constrained case.
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Table 2: Summary of the number of LPs to be solved in the di�erent cases of

Table 3.1

HH
HHHHi

j
1 2 3 4 5 6 7 8

1 1-2 0 0 1-2 0 0 0 0

2 1-2 0 1-2 0 0 0 0

3 1-2 1-2 1-2 0 0 0

4 2-5 1 0 0 0

5 2-4 0 0 0

6 1-2 0 0

7 1-2 0

8 0

Observation 3.18 (Constrained feasibility rule). For any v ∈ P let I = {i |
vi 6= 0} and J = {j | vj = 0}. Then i 6−→

c
j for all (i, j) ∈ I × J .

The transitive nature of �ux coupling is preserved by Def. 3.2. Thus similar
transitivity rules can be derived as for F2C2 [66]. For three reactions i, j and
k, it is sometimes possible to derive a coupling relationship between j and k,
based on the coupling relationship for reactions i and j, and reactions i and
k. Table 3.3 summarizes these inference rules.

Table 3.3: Transitivity inferred constrained �ux (un)coupling

Known �ux coupling i ⇐⇒
c

j i ←→
c

j j −→
c

i i −→
c

j

i ⇐⇒
c

k k ⇐⇒
c

j k ←→
c

j j −→
c

k k −→
c

j

i ←→
c

k j ←→
c

k

j ⇐⇒
c

k

j ←→
c

k j −→
c

k k −→
c

j

i −→
c

k j −→
c

k j −→
c

k j −→
c

k

k 6−→
c

i k 6−→
c

j k 6−→
c

j k 6−→
c

j

i 6−→
c

k j 6−→
c

k j 6−→
c

k j 6−→
c

k

The main steps of CFCA are summarized in Tab. 3.4. In the worst case,
the algorithm has to solve 2n+ n(n− 1) linear programs.
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Table 3.4: Main steps of the CFCA algorithm

Step Rule

1. Iteratively remove dead-end metabolites and incident reactions to them.

2. Classify the reactions based on their true lower and upper bounds; re-

move the remaining blocked reactions.

3. Compute the �ux coupling relationships of CP with F2C2.

4. If every reaction is of type 1-5, use Prop. 3.5, Prop. 3.7 and Prop. 3.8 to

deduce all constrained coupling relationships, STOP.

5. If every reaction is of type 1-7, use Prop. 3.5 and Prop. 3.7 to deduce all

full coupling relationships.

5. If the constrained coupling relationship for every pair of reactions has

been computed, STOP.

6. Select a pair of reactions i and j for which a coupling has not yet been

determined.

7. Use Tab. 3.1 and solve corresponding LPs to determine the coupling

between i and j.

8. For every feasible vector computed in step 7, use the constrained feasi-

bility rule to derive additional constrained uncoupling relationships.

9. For every new constrained (un-)coupling relation computed in steps 7

and 8, use the transitivity rules to derive additional coupling relations.

10. Goto step 5.

3.3 Results and conclusions

The CFCA algorithm has been implemented in Matlab [74], with CLP [18] as
linear programming solver. We applied CFCA to the E. coli core metabolism
[83], a network with 76 reactions and a biomass function. The glucose
uptake was set to 10mmol/(gDW · hr), and a minimum ATP production
of 7.6mmol/(gDW · hr) was required, which corresponds to the associated
non-growth maintenance cost [83]. All other irreversible reactions were con-
strained to the interval [0, 1000], while reversible reactions were limited to
[−1000, 1000].

Tab. 3.5 summarizes the coupling relations of the constrained network.
For comparison, we also performed standard FCA on the unbounded network
using F2C2.

Many of the new directional coupling relations result from the fact that the
glucose uptake and ATP producing reactions were required to have a non-zero
�ux. Hence, every other reaction will be coupled to these. After subtracting
the corresponding 2× 76 directional couplings from the total number of 401,
there still remain 249 new directional couplings between other pairs of reac-
tions.

We conclude that CFCA is a promising new tool for studying coupling
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Table 3.5: Coupling relations in the E. coli core metabolism

Flux coupling relations Directional Partial Full Blocked reac-

tions

CFCA 401 4 40 2

FCA 10 0 38 0

relations in metabolic networks under more general conditions than classical
FCA is able to do.

• We introduce the concept of Constrained Flux Coupling Analysis
(CFCA).

• Linear constraints on the reactions are shown to be equivalent
to bounds on the reactions.

• A classi�cation of reactions into 8 types is given.

• We show that in most cases, reaction types determine the con-
strained coupling relations.

• We describe mathematical results with which, under certain cir-
cumstances, one can deduce CFCA relations from FCA.

• The CFCA algorithm, to compute constrained �ux coupling re-
lations, is given.

• CFCA has been applied to a real metabolic network, and we
show that more coupling relations can be computed than with
unconstrained FCA.

Summary of the chapter
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4.1 Introduction

One of the advantages of steady-state modeling of metabolic networks is that it
does not require explicit information about the concentration levels of internal
metabolites. We ask the question whether without knowledge about metabolic
concentrations, would it be possible to characterize the implications that exist
between the activity of metabolites. In other words, if we know that a speci�c
metabolite is actively being produced and consumed (and kept in steady-
state), can we �nd a list of which other metabolites are necessarily produced
and consumed in the system. Answers to this question are not explicitly
captured by �ux coupling analysis or metabolic pathway analysis. Indeed,
looking at Fig. 4.1, we realize that in this example, all reactions in the network
are uncoupled to each other. While studying the whole set of elementary
modes could in theory answer such questions, it is often infeasible to enumerate
all elementary modes, due to their exponential number. In the small arti�cial
example in Fig. 4.1, there are 20 reactions which lead to 1024 elementary
modes. Analyzing the �gure by hand, intuitively one feels that there is a
certain structure to the metabolites that can be captured and formalized. Any
steady-state �ux vector that has metabolite A as an intermediary product, also
has metabolites B, C and D as intermediary products. In this section, in a
similar fashion to �ux coupling analysis, we will formally de�ne this type of
interdependent relationship between metabolites and we will call it metabolite
activity coupling (MAC). We then present a linear programming based method
to compute these relationships.

The term metabolic coupling appears in several di�erent contexts in the
scienti�c literature. Baldazzi et al. [5] discuss the importance of metabolic
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coupling in the context of gene regulatory networks. In contrast, Becker et
al. [7] derive metabolic coupling from the stoichiometric matrices of metabolic
networks. Their method identi�es pairs of metabolites that frequently co-
appear in the same reaction either as reactants or products. Therefore, this
method considers metabolic coupling to be a local property of the network.

The work that is closest to our intention is by Nikolaev et al. [77], who
introduce the concept of metabolite concentration coupling analysis (MCCA).
They show that in closed metabolic networks, the stoichiometric coe�cients
uniquely determine all conservation relationships for metabolite concentra-
tions (Theorem 4.2).

De�nition 4.1. A metabolic network is closed if it contains no boundary
reactions.

Theorem 4.2 ([77]). Consider an arbitrary closed metabolic network with
stoichiometric matrix S ∈ Rm×n and metabolite concentrations C(i) for all
i ∈ M . Any nonnegative linear combination of the system's metabolite con-
centrations

∑m
i=1 βiC(i) (with β1, ..., βm ∈ R+) is constant if and only if the

coe�cients βi introduce linear dependencies between rows of the system's sto-
ichiometric matrix S (i.e., satisfy linear equations

∑m
i=1 βiSij = 0 for all

j ∈ {1, 2, ..., n} with some βi 6= 0).

Proof. See Appendix A in [77].

The previous theorem is closely related to the concept of p-invariants in
Petri net theory, where p-invariants can be used to express conservations re-
lations between the metabolites of a metabolic network [43, 131].

Based on Theorem 4.2, for every pair of metabolites mi and mj, Nikolaev
et al. [77] propose solving a minimization and a maximization linear program-
ming problem as shown in (LP0):

(LP0)

min/max βj
s.t. βi = 1∑m

k=1 βkSkl = 0 ∀l ∈ {1, 2, ..., n}
βk ≥ 0 ∀k ∈ {1, 2, ...,m}

De�nition 4.3 ([77]). Let mi, mj ∈ M be two metabolites and let βminj

and βmaxj be the optimal solutions to LP0. Then the metabolite concentration
coupling (MCC) relations are de�ned as follows:

• mi and mj are fully coupled if and only if βminj = βmaxj = c, where c is a
�nite nonzero constant.

• mi and mj are partially coupled if and only if βminj and βmaxj are distinct
�nite nonzero constants.
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Figure 4.1: Example network

• mi is directionally coupled to mj if and only if βmaxj is a �nite non-zero
constant.

• mj is directionally coupled to mi if and only if βminj is a �nite non-zero
constant.

Looking at the previous de�nition, MCC relations are closely related to
FCA relations. In fact, we can obtain all MCC relations by running an FCA
tool on the modi�ed network N ′ := (ST , {1, 2, ...,m}), that is the network that
we obtain by exchanging all the reactions with all the metabolites while pre-
serving the corresponding stoichiometric values and having all new reactions
as irreversible.

While metabolic concentration coupling describes a somewhat similar re-
lationship that we intuitively intended to convey, in practice the concept that
we are about to introduce is rather di�erent. We will discuss the di�erences
more in Section 4.3, after metabolite activity coupling has been formally in-
troduced.

4.2 Methods

4.2.1 De�nitions

For the work in this chapter we return to the unbounded steady-state �ux
space. Having the set of metabolitesM = {1, 2, ...,m}, and the set of reactions
R = {1, 2, ..., n}, we assume to know a metabolic network model, given by
its stoichiometric matrix (S ∈ Rm×n) and the set of irreversible reactions
(Irr ⊆ R), the two of which de�ne the steady-state �ux cone C (see Def.
1.40).

For any reaction r, we can refer to the set of incident metabolites to it, by
looking for nonzero entries in the corresponding column of the stoichiometric
matrix.

De�nition 4.4. For a given reaction r ∈ R, let

• Met+(r) := {i ∈M | Si,r > 0}.
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• Met−(r) := {i ∈M | Si,r < 0}.

• Met(r) := {i ∈M | Si,r 6= 0}.

Met+(r) is the set of metabolites produced while Met−(r) is the set of
metabolites consumed by reaction r. Met(r) is the total set of metabolites
incident to r.

We generalize this de�nition to steady-state �ux vectors. Any metabolite
that is the intermediary product of a metabolic pathway will be called active
in the pathway.

De�nition 4.5. For a given �ux vector v ∈ C, let Met(v) :=⋃
j∈supp(v)Met(rj). Met(v) is the set of active metabolites in v.

Conversely, we can also de�ne the incident reactions to a metabolite.
We distinguish between reactions that produce (Reac+(mi)) and consume
(Reac−(mi)) said metabolite, the union of the two sets giving all incident
reactions to it (Reac(mi)).

De�nition 4.6. For a given metabolite m ∈M , let

• Reac+(m) := {j ∈ R|Sm,j > 0}.

• Reac−(m) := {j ∈ R|Sm,j < 0}.

• Reac(m) := {j ∈ R|Sm,j 6= 0}.

Note that reversible reactions might consume or produce a given metabo-
lite, depending on their sign in a particular steady-state �ux vector. Our def-
inition disregards reaction reversibility, and classi�es reactions purely based
on stoichiometric values.

In the following we will formally de�ne the concept of blocked metabolites
and metabolite activity coupling.

De�nition 4.7 (Blocked metabolite). A metabolite m ∈ M is blocked if and
only if m /∈Met(v), for all v ∈ C.

We can de�ne the directional metabolite activity coupling as follows.

De�nition 4.8. Let mi, mj ∈M be two non-blocked metabolites. The activity
of metabolite mi is directionally coupled to the activity of metabolite mj, if
for all v ∈ C, mi ∈ Met(v) ⇒ mj ∈ Met(v). We shortly say that mi is
directionally coupled to mj.

Partial metabolite activity coupling is de�ned similarly as it was for FCA,
that is, partial coupling holds if and only if the two metabolites are mutually
directionally coupled.
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Figure 4.2: Example of the four metabolite activity coupling types. Metabolite

B is directionally coupled to metabolite A. Metabolite A is partially coupled to

metabolite D. Metabolite A is fully coupled to metabolite F . Metabolites B and C

are uncoupled.

De�nition 4.9. Let mi, mj ∈M be two non-blocked metabolites. The activity
of a metabolite mi is partially coupled to the activity of metabolite mj, if mi

is directionally coupled to mj, and mj is directionally coupled to mi.

Partial coupling can be extended to full coupling if we additionally require
our metabolites to be produced and consumed proportionally to each other
over the whole �ux space.

De�nition 4.10. Let mi, mj ∈ M be two non-blocked metabolites. The ac-
tivity of metabolite mi is fully coupled to the activity of metabolite mj if and
only if there exists λ ∈ R such that for all v ∈ C,

∑
k∈Reac(mi)

|vkSik| =
λ
∑

k∈Reac(mj)
|vkSjk|.

If both metabolites are only incident to irreversible reactions (i.e.,
Reac(mi) ⊆ Irr and Reac(mj) ⊆ Irr), we can give an equivalent de�nition for
full coupling, using only the incoming (or outgoing) reactions. This is possible
since

∑
k∈Reac+(mi)

|vkSik| =
∑

k∈Reac−(mi)
|vkSik| = 0.5

∑
k∈Reac(mi)

|vkSik| for
any metabolite mi and �ux vector v ∈ C. This de�nition would not work in
general, when either of the metabolites is adjacent to at least one reversible
reaction. This can also be exempli�ed in Fig. 4.3, where we see two versions
of a metabolic network, one with irreversible reactions and one with reversible
reactions. In both cases the two internal metabolites are fully coupled with
each other. However:
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Figure 4.3: Example of two metabolic networks, where one (top) has only irre-

versible reactions and the second one (bottom) has only reversible reactions. The

forward orientation of each reversible reaction is marked with a + sign.

• In the �rst network (top)
∑

k∈Reac(A) |vkSik| = 2 ∗
∑

k∈Reac+(A) |vkSik| =
2 ∗ v1 holds, therefore we can measure the activity of metabolite A with
an expression not involving absolute values.

• In the second network (bottom)
∑

k∈Reac(A) |vkSik| does not equal to
2 ∗
∑

k∈Reac+(A) |vkSik| = 2 ∗ |v1|+ 2 ∗ |v2|. In this example, choosing re-
action r5 with reverse forward direction would have alleviated the prob-
lem. However, when only the stoichiometric matrix is given, we have
no ground on how to choose a 'correct' orientation for the reversible
reactions.

De�nition 4.11 (Metabolite activity coupling relationships). Let mi, mj ∈
M be two non-blocked metabolites. We will use the following notation for the
metabolite activity coupling relationships:

• mi −→
m

mj if mi is directionally coupled to mj.

• mi ←→
m

mj if mi and mj are partially coupled.

• mi ⇐⇒
m

mj if mi and mj are fully coupled.

• mi 6←→
m

mj if mi and mj are uncoupled (i.e., neither mi −→
m

mj nor

mj −→
m

mi holds).

Figure 4.2 gives an example of each of the above four coupling types.

4.2.2 LP and MIP based algorithms

In the following, we present linear programming based solutions to decide
which coupling type is present between two metabolites mi and mj. Two
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cases are considered. In the �rst case, both metabolites will be incident to
only irreversible reactions, while in the second case reversible reactions are
considered as well.

Finding blocked metabolites

In the �rst step of the MAC algorithm, we need to �nd which metabolites
are blocked. Using the de�nition of blocked metabolites, we can �nd these by
computing the set of blocked reactions, Blk (see Chap. 2). Then, a metabolite
mi is blocked if and only if Reac(mi)−Blk = ∅.

Finding metabolite couplings

Case 1: Reac(mi) ⊆ Irr and Reac(mj) ⊆ Irr

Notice that for any metabolite mi with Reac(mi) ⊆ Irr and any v ∈ C
we have

∑
k∈Reac(mi)

|vkSik| =
∑

k∈Reac+(mi)
vkSik −

∑
k∈Reac−(mi)

vkSik = 2 ∗∑
k∈Reac+(mi)

vkSik. Hence, when measuring the activity of a metabolite in
this case we can omit the absolute values from the sum.

Now consider the following two linear programs.

(LP1)

min
∑

k∈Reac+(mi)
vkSik

s.t. Sv = 0
vIrr ≥ 0∑

l∈Reac+(mj)
vjSjl =1

(LP2)

min
∑

l∈Reac+(mj)
vlSjl

s.t. Sv = 0
vIrr ≥ 0∑

k∈Reac+(mi)
vkSik =1

Let oij be the optimal value of LP1 and oji be the optimal value of LP2.
Based on oij and oji we can draw the following conclusions:

• mi −→
m

mj holds if and only if oji > 0.

• mj −→
m

mi holds if and only if oij > 0.

• mj ←→
m

mi holds if and only if oij > 0 and oji > 0.

• mj ⇐⇒
m

mi holds if and only if oijoji = 1.
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Figure 4.4: A possible interpretation of LP1 and LP2. Top: m1 and m2 are

metabolites incident to only irreversible reactions. Bottom: Both m1 and m2 have

been split and an arti�cial reaction joins the two parts.

Interestingly, LP1 and LP2 have an intuitive, alternative interpretation as
well. Assume we replace metabolite mi with two other metabolites, m+

i and
m−i in such a way that Reac(m+

i ) = Reac+(mi) and Reac(m
−
i ) = Reac−(mi).

Moreover, we add an arti�cial reaction rmi
that consumes m+

i and produces
m−i . If we proceed similarly for mj, then LP1 and LP2 are equivalent to the
LPs that would be solved in a standard FCA for reactions rmi

and rmj
. Figure

4.4 illustrates the procedure.

Case 2: Reac(mi) 6⊆ Irr or Reac(mj) 6⊆ Irr

Trying to apply LP1 and LP2 in this case is not feasible, since reversible
reactions do not enforce the directionality of the �uxes producing mi and mj

(i.e., if metabolite m+
i is produced, it is not forced to be consumed by reaction

rmi
, a reversible reaction incident to m+

i can consume it). Thus, an activity
for the metabolite m+

i does not imply an activity of m−i and vice versa. In
several other methods, a common way to deal with reversible reactions is to
split them into two opposite irreversible reactions. This type of solution is
not a viable option for us. As presented in Figure 4.5, assuming reversible
reactions are split, these would induce three-cycles, including the arti�cial
reaction rmi

(resp. rmj
). The arti�cial cycle then induces an uncoupling

relationship between rmi
and rmj

, hiding the real coupling that might exist
between the two.

We propose the following alternative sequence of linear programs. For
metabolite mi and every reaction k ∈ Reac(mj), solve LP3.
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Figure 4.5: An example of how splitting reversible reactions can induce 3-cycles.

Top: m1 is a reaction that has an adjacent reversible reaction - red arrow. Middle:

In the �rst step the reversible reaction is split into a forward and backward arc.

Bottom Applying LP1 and LP2 would result in splitting metabolites mi and mj ,

thus introducing a three-cycle involving metabolite mi.
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(LP3)

min/max vk
s.t. Sv = 0

vIrr ≥ 0
vl = 0 ∀l ∈ Reac(mi)

We note that for k ∈ Irr, the maximization problem su�ces.
Then mj −→

m
mi holds if and only if every linear program above has 0

as its optimal value. We can proceed similarly to verify whether mi −→
m

mj

holds.
The above solution requires to solve 2∗|Reac(mi)|−|Irr∩Reac(mi)| linear

programs to check whether mj −→
m

mi holds. It is possible to compress these

into two LPs by considering a random vector p on the n-dimensional unit
sphere (Un), chosen with uniform distribution. Let p ∈ Rn with ||p||2 = 1 and
additionally pk = 0 for all k /∈ Reac(mj).

(LP4)

min/max
∑

k∈Reac(mj)
pkvk

s.t. Sv = 0
vIrr ≥ 0
vl = 0 ∀l ∈ Reac(mi)

Theorem 4.12. Let p ∈ Rn be a point chosen randomly with uniform distri-
bution with ||p||2 = 1 and additionally pk = 0 for all k /∈ Reac(mj). Then

• a) if LP4 has non-zero optimal value then mj −→
m

mi doesn't hold.

• b) if LP4 has an optimal value of 0 then mj −→
m

mi holds with 'very

high probability'.

Proof. a) Assume by contradiction that mj −→
m

mi holds. mi /∈ Met(v)

implies mj /∈Met(v) for all v ∈ C. The last set of constraints in LP4 assures
that for any feasible solution v, mi /∈Met(v). Thus, for any feasible solution
v and for all k ∈ Reac(mj), vk = 0. Hence

∑
k∈Reac(mj)

pkvk = 0, which is a
contradiction to the non-zero optimality of LP4.
b) Assume by contradiction that the optimization problems in LP4 have an
optimal value of 0, but mj −→

m
mi does not hold. Let n′ := |Reac(mj)| and

let CX ∈ Rn′ be the projection (see Def. 7.1) of the steady-state �ux cone
C onto the subspace de�ned by the reactions in Reac(mj). Let pX be the
projection of p onto the same subspace. By our assumptions p is orthogonal
to every point v ∈ C (since the optimal value of LP4 is 0), hence pX is also
orthogonal to every point in CX .

Since C 6= {0}, it implies that CX 6= {0}, hence dim(CX) ≥ 1. It follows
that dim(CX

⊥) ≤ n′ − 1. We can measure the probabilty of pX being an
element of CX

⊥ ∩ Un′ by dividing the surface area of CX
⊥ ∩ Un′ in Rn′ with
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the surface area of Un′ . The surface area of CX
⊥ ∩ Un′ in Rn′ is 0, due to the

fact dim(CX
⊥ ≤ n′ − 1). We conclude that with 'very high probability' p is

not in C⊥ which contradicts the optimal value of LP4 being 0.

Distinguishing between partial and full coupling

While with LP3 and LP4 we can detect directional coupling, and consequently
partial coupling, the question of di�erentiating between fully coupled and
partially coupled metabolite pairs is more di�cult. We cannot answer it based
on these LPs. Moreover, we do not know a polynomial-time algorithm to solve
this problem. The di�culty lies in the exponential number of combinations
available for the orientation of reversible reactions incident to mi and mj. I.e.,
assuming there are k reversible reactions adjacent to metabolite mi results in
2k possible combinations for forward and backward orientation.

Regarding the complexity of the decision problem to tell whether two par-
tially coupled metabolites are also fully coupled, we know that it is clearly in
co-NP. If the two metabolites are not fully coupled, then there exists a �ux
vector v that does not satisfy the de�nition of full coupling. Having such a
vector v allows disproving the full coupling relationship in polynomial time.
Intuitively, the following stronger conjecture may hold.

Conjecture 4.13. Give two metabolites mi and mj with mi ←→
m

mj. De-

ciding whether mi ⇐⇒
m

mj holds is a co-NP-complete problem.

We propose MIP5 to distinguish between partial and full coupling.

(MIP5)

min/max
∑

k∈Reac(mj)∩Irr vk|Sjk|+
∑

k∈Reac(mj)−Irr(v
+
k + v−k )|Sjk|

s.t. Sv = 0
vIrr ≥ 0∑

l∈Reac(mi)∩Irr vl|Sil|+∑
l∈Reac(mi)−Irr(v

+
l + v−l )|Sil| =1
vk − v+k + v−k = 0 ∀k ∈ T

vi 6= 0 =⇒ (v+i > 0)⊕ (v−i > 0) ∀k ∈ T

where T := Reac(mj)∪Reac(mi)− Irr. The ⊕ sign in the last constraint
represents the exclusive or operator, which in the context of a mixed integer
program can be realized by introducing binary variables.

Then mj ⇐⇒
m

mi holds if and only if the optimal values of the minimiza-

tion and maximization problems of MIP5 are identical.
The idea of MIP5 is to evaluate the absolute value of the reversible reac-

tions incident to mi and mj. We do this by introducing a variable v+k and v−k
for every such reaction. The fourth set of constraints is for reversible reactions
and enforces the link between vk, v

+
k and v−k , that is vk = v+k − v

−
k . The last



74 Chapter 4. Metabolite Activity Coupling

constraint asserts that if vk is nonzero, then exactly one of v+k and v−k will be
nonzero as well. The third set of constraints ensures there is activity around
metabolite mi. This constraint is a reduced form of

∑
l∈Reac(mi)

|vlSil| = 1,
where the variables are not within absolute values anymore. This was made
possible by splitting the reversible reactions, which assured that the newly
introduced variables are non-negative. A similar formulation is used in the
objective function to measure activity around metabolite mj.

4.3 Results and discussion

In a �rst step we have implemented the metabolite activity coupling (MAC)
method presented in this chapter and applied it on networks of various sizes.
The implementation was done in Matlab [74] and the LP solver of choice was
CLP [18]. For solving MIP5 we have used Gurobi [41].

The following networks were used:

• ILLUSNET network from [64]

• RBC : metabolic network of red blood cell [134]

• EC core: central metabolic network of E. coli [83]

• H. pylori genome-scale metabolic network [121]

• S. cerevisiae (yeast) genome-scale metabolic network [29]

• The 2003 genome-scale metabolic network of E. coli (iJR904) [90]

• The metabolic network of human hepatocyte (HepatoNet1) [38]

Table 4.1 summarizes the number of metabolite activity couplings for each
network. Additionally, for comparison purposes we have included the number
of �ux coupling relationships as well. The �number of elements� column there-
fore represents the number of reactions for FCA and number of metabolites for
MAC. It is interesting to note that in all cases, FCA �nds more fully coupled
pairs, while MAC always �nds more partially and directionally coupled pairs.
The di�erence is highest in the number of directional couplings, especially
for large-scale networks. This observation hints that FCA and MAC are not
competing or alternative methods, but they should be used to complement
each other.

Regarding the running time of MAC, it is in a similar time-scale as FFCA,
and thus it is much slower than F2C2. This di�erence was expected, since LPs
are solved for every pair of metabolites. Metabolites do not have a property
that is similar to the reversibility of reactions, a metabolite's turnover is always
a nonnegative value. Thus, similar rules as the ones based on the reversibility
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of reactions in F2C2 are not available. It is important to note that, even
though MIPs have to be solved in some cases, due to the fact that typically
there are less than a dozen binary variables in each MIP, these do not slow
down the algorithm. The complexity of the MIPs allows them to be solved in
a matter of seconds.

Fully coupled reaction pairs were important in FCA because they hint at
structural features of the network. The enzymes catalyzing these reactions
often make part of the same enzyme complex and are referred to as enzyme
subsets [87]. Moreover, these pairs of reactions can be lumped together with-
out irreversibly modifying the steady-state �ux space, therefore reducing the
complexity of the network. At this point it is unclear whether a similar re-
duction is possible or not with fully coupled metabolites. But it is certainly
an interesting direction that should be studied more.

From Table 4.1 it appears that the strength of MAC is computing di-
rectional couplings. A possible application of these couplings could be the
following. Assuming the goal is to inhibit the turnover of a given metabolite
mi, then the set of reactions incident to any directionally coupled metabolite
is a candidate for drug target.
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Table 4.1: Comparison of the couplings in FCA and MAC.

Network name Method No. of elements No. of blocked Full coupling Partial coupling Directional coupling

ILLUSNET
FCA 19 1 6 0 9

MCA 18 1 1 1 10

RBC
FCA 42 0 21 0 15

MCA 30 0 9 1 63

EC Core
FCA 63 0 19 0 9

MCA 63 0 13 8 417

H. pylori
FCA 480 263 164 3 309

MCA 414 248 122 7 1260

S. cerevisiae
FCA 1144 505 692 90 2214

MCA 945 497 633 236 7263

E. Coli
FCA 930 165 2567 68 6208

MCA 618 162 2116 131 12987

Human hepatocyte
FCA 2309 0 1463 201 1593

MCA 1040 0 978 223 5365
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Figure 4.6: Example of a closed (left) and an open (right) system.

Finally we will compare metabolite concentration coupling with metabolite
activity coupling. A main di�erence between the two methods is the assump-
tions they start with. In MCCA the metabolic system considered has to be
in closed form, i.e., there should be no exchange reactions. Applying steady-
state analysis to such a system reduces the �ux-space to the conic combination
of internal cycles. Theoretically, one could look at the same system in both
closed and open forms (e.g. Fig. 4.6) and apply the corresponding coupling
analysis method. Table 4.2 summarizes the coupling relations for the example
network from Fig. 4.6.

Table 4.2: Comparison of the couplings in MCCA resp. MAC in the networks

from Fig. 4.6 left resp. Fig. 4.6 right.

Coupling relation MCCA MCA

Full couplings

E ⇐⇒
m

F A ⇐⇒
m

B

E ⇐⇒
m

D A ⇐⇒
m

C

F ⇐⇒
m

D B ⇐⇒
m

C

Directional couplings
B −→

m
A D −→

m
F

C −→
m

A E −→
m

F

As it results from Table 4.2, the two methods indeed �nd very di�erent
coupling relations.
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• We have introduced the novel concept of metabolite activity cou-
pling analysis.

• Directional coupling types can be derived by means of solving
linear programs.

• To distinguish between partial and fully coupled metabolite
pairs, a MIP approach has been presented.

• Based on computational analysis, metabolite activity coupling is
shown to be complementary to �ux coupling analysis.

Summary of the chapter
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Remark: The content of this chapter was originally published in [23] and
is independent from the related work [86].

5.1 Introduction

Elementary (�ux) modes (EMs) [105, 101, 104, 106, 84] are an important con-
cept for the structural analysis of metabolic networks, with many practical
applications (see e.g. [137] and references therein). As a consequence, the
development of methods for the computation of EMs has become an active
research area over the past years [34, 130, 118, 115, 25, 91, 92]. The compu-
tational complexity of enumerating all EMs is not known [1]. However, there
exist several algorithms and software packages for an exhaustive enumera-
tion in a given metabolic network [34, 118, 130, 115]. While these methods
work very well for small networks, due to the possibly exponential number
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of EMs, they may fail for medium or large genome-scale networks. With the
ever increasing size of genome-scale metabolic network reconstructions, EM
analysis nowadays can often be used only under additional assumptions (e.g.,
modifying the system boundary of the network, blocking a large number of
uptake reactions etc.). These extra assumptions may have the bad side ef-
fect of changing the structure of the network, sometimes introducing arti�cial
pathways [73].

One way to deal with genome-scale networks is to de�ne a subset of interest
RI of the full reaction set R, without altering the network topology. Kaleta
et al. [50] look for sets of reactions in RI , called �ux patterns, which indicate
the existence of an EM having those reactions in its support. They enumerate
a basis for this set, the elementary �ux patterns. [126] and [73] project the
steady-state �ux cone onto the subspace de�ned by RI , and enumerate the
partial EMs for this subspace.

Given the di�culty of computing and analyzing the full set of all EMs,
recent research has focused on �nding a special subset of EMs [25, 91, 92].
De Figueiredo et al. [25] describe a mixed-integer programming method to
enumerate the k shortest EMs (k ≥ 1). Their method has been extended
to �nd shortest EMs involving one reaction of choice and also to enumerate
a minimal generating set of EMs [91]. In the last paper, the authors note
that their method cannot be applied to �nd elementary modes involving two
prede�ned reactions.

The problem of �nding an EM involving two or more given reactions was
also considered by [1]. The authors give a more general formulation, in that
they not only want their EM to involve a certain set of target reactions T ⊂ R
(with |T | = t > 0), but also to avoid another set of reactions F ⊂ R (with
F ∩ T = ∅). In other words, the goal is to �nd an EM e, with ei 6= 0 for
i ∈ T , and ei = 0 for i ∈ F . The authors show that de�ning a set of reactions
F to be avoided does not add to the di�culty of the problem, and in fact
reactions belonging to F can simply be removed from the network. [2] study
the complexity and prove that the decision problem, whether an EM involving
two or more target reactions exists, is not solvable in polynomial time, unless
P = NP .

To the best of our knowledge, no algorithm for this problem has been
published so far. Here, we develop a mixed-integer programming approach for
the more general problem of computing k elementary modes (k ≥ 1) involving
a given set of target reactions T , for |T | ≥ 2. Computational experiments show
that the method can be applied even to large genome-scale networks.

5.2 De�nition of the problem

The goal of this chapter is to study the following problem (P):
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Given a metabolic network N = (S, Irr,M,R), a set of target
reactions T ⊆ R and k ≥ 1, compute a set E of EMs in N , |E| = k,
such that supp(e) ⊇ T , for all e ∈ E.

For the rest of this chapter, we assume that all reactions are irreversible,
i.e., Irr = R, and that none of the reactions is blocked. These assumptions
do not limit the applicability of our methods. Reversible reactions can be
split into a forward and backward reaction. When |T | > 1 and l ∈ {1, ..., |T |}
reactions in T are reversible, then the original problem can be reduced to 2l

subproblems by considering every combination of forward and backward arcs
for the reversible reactions in T . Each of these subproblems can be solved
independently of the others.

In general, the splitting operation may induce a number of arti�cial EMs
in the form of two-cycles. However, these two-cycles in most cases do not
increase the set of solutions for problem (P). In fact, the only case where
such two-cycles satisfy the conditions of problem (P) is for |T | = 1. In this
case, there is exactly one arti�cial EM that needs to be �ltered out from the
�nal solution set. For |T | > 1 no pairs of split reactions will be part of the
same EM.

All blocked reactions can be identi�ed in polynomial time, by solving a
linear number of linear programs. Afterwards, they can be removed from the
network without altering the underlying �ux cone.

5.3 Methods

In the following, we divide the general problem (P) into three subproblems
and discuss them individually: the one-reaction case, the two-reaction case
and the general t-reaction case (where t = |T | > 2). The underlying details
vary in each case, but there is a general concept followed by all three methods.
In every case, we aim to incrementally �nd an alternating sequence N1, e1,
N2, e2, ..., Nk, ek, of subnetworks and EMs of the input network N with the
following properties for all i ∈ {1, ..., k}:
1. The target reactions r1, ..., rt are part of every subnetwork N i.

2. In every subnetwork N i, reaction r1 is directionally coupled to the reac-
tions r2, ..., rt.

3. No subnetwork N i has as �ux mode any of the EMs el for l < i.

4. ei is an EM in N i involving r1.

Clearly, the main di�culty in �nding such a sequence of subnetworks is in
imposing condition (2). In turn, once a new subnetwork N i = (Si,Ri,M,Ri)
has been found, a corresponding EM ei can be computed by solving the linear
program LP(N i) [1].
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LP(N i): min 0
s.t. Siv = 0,

vr1 ≥ 1,
vj ≥ 0, ∀j ∈ Ri.

Using a Simplex-based method, we can compute a basic feasible solution ei of
LP(N i), which corresponds to a vertex of the truncated �ux cone of N i (resp.
an extreme ray of the �ux cone of N i), and thus de�nes an EM in N i [34],
which involves r1. Due to the conservation property of EMs (see e.g. Lemma 1
in [72]), ei is also an EM in N . The set Ei := {e1, ..., ei}, i ≥ 1, contains EMs
of the original network N that involve every target reaction. Terminating the
search after k EMs have been found provides a solution to problem P.

5.3.1 The one-reaction problem

If the set of target reactions consists of only one reaction, condition (2) is
trivially satis�ed for every subnetwork satisfying condition (1). Assuming
N1, e1, N2, e2, ... N i, ei have already been computed, we can determine a
new subnetwork N i+1 by solving the following mixed-integer linear program
(MILP1).

MILP1(Ei) :
min 0
s.t. Sv = 0,

vr1 ≥ 1,
al ≤ vl ≤ Mal, ∀l ∈ R,∑

l∈supp(eu) al ≤ |supp(eu)| − 1, ∀u ∈ [1..i],

vl ≥ 0, ∀l ∈ R,
al ∈ {0, 1}, ∀l ∈ R.

The constraints in (MILP1) are the same as for the computation of the
so-called shortest EMs in [25]. There are two groups of variables: v represents
the steady-state �ux values of the reactions, while the 0-1 vector a models
the support of v (i.e., vl > 0 ⇔ al = 1). The variables vl and al are linked
by the 3rd constraint, using a suitably large constant M > 0. An important
di�erence to [25] is the objective function (see also Sect. 5.4.2). We do not
try to �nd the smallest set of reactions satisfying the constraints of (MILP1).
Instead computing any feasible solution is su�cient. This turns out to be
enough to derive a subnetwork that satis�es conditions (1-3). Indeed, given a
feasible solution (v′, a′) of (MILP1), de�neN i+1 by the set of reactionsRi+1 :=
{l ∈ R | a′l = 1}. This subnetwork N i+1 clearly satis�es conditions (1) and
(2), while the 4th constraint in (MILP1), the so-called no-good constraints,
guarantees condition (3). By solving LP(N i+1), we obtain an EM ei+1.



5.3. Methods 83

Table 5.1 summarizes the method for the one-reaction case. The two con-
ditional exit points of the algorithm are Step 2 and 6. If the algorithm termi-
nates at Step 2, Prop. 5.1 assures all EMs will be found. In contrast, if the
exit occurs at Step 6, we enumerate k EMs.

Table 5.1: Algorithm 1 for the one-reaction case.

Step Action

0. Initialize i := 1, E := ∅.
1. Try to �nd a feasible solution (v′, a′) of

MILP1(E).

2. If MILP1(E) is infeasible, then STOP.

3. Otherwise, use (v′, a′) to derive subnet-

work N i.

4. Find a basic feasible solution ei of LP(N i).

5. Let E := E ∪ {ei} and i := i+ 1.

6. If i > k then STOP.

7. Go to Step 1.

Proposition 5.1. For any EM e /∈ E and su�ciently large M > 0, there is a
�ux mode v′ in N such that (v′, supp(e)) is a feasible solution for MILP1(E).

A formal proof of Prop. 5.1 is omitted here. It can be easily obtained by
suitably scaling the vector e.

We note that it is possible to initialize N1 := N , thus avoiding the need
to solve the very �rst mixed-integer program. The computationally hard part
is Step 1 of the algorithm, while the other steps can be done in polynomial
time.

5.3.2 The two-reaction problem

A natural idea to �nd a shortest EM involving a pair of reactions {r1, r2} ⊆ R
would be to extend the previous method by forcing both r1 and r2 to be active,
while minimizing the total number of active reactions:

(MILP2) : min
∑

l∈R al
s.t. Sv = 0,

vr1 ≥ 1,
vr2 ≥ 1,

al ≤ vl ≤ Mal, ∀l ∈ R,
vl ≥ 0, ∀l ∈ R,
al ∈ {0, 1}, ∀l ∈ R.



84

Chapter 5. Computing Elementary Flux Modes Involving a Set of

Target Reactions

A B C D
1 2 3 4 5

6 7

Figure 5.1: Example network. Thick arrows represent the optimal solution of

(MILP2)

(MILP2) indeed �nds a shortest �ux mode containing r1 and r2. However, it
may fail to produce an EM. As illustrated by Fig. 5.1, if we apply (MILP2)
for reactions 1 and 5, a non-elementary �ux mode will be found, involving
the reactions 1,6,7,5. However, an optimal solution (v∗, a∗) of (MILP2) still
has interesting properties, which will turn out to be useful for re�ning our
method. These are described in the following propositions.

Proposition 5.2. Let v∗ =
∑s

i=1 λie
i, with λi > 0, be any decomposition

of an optimal solution (v∗, a∗) of (MILP2) into s EMs in N . Then for all
i ∈ [1..s], eir1 > 0 or eir2 > 0. There exists i ∈ [1..s] with eir1 > 0 and eir2 > 0,
if and only if s = 1.

Proof. Suppose there exists i ∈ [1..s] such that eir1 = 0 and eir2 = 0. Let
p := min{v∗j/eij | j ∈ supp(ei)} and v′ := v∗ − pei. Then there exist λ > 0
and a′ ∈ {0, 1}R such that (λv′, a′) is a feasible solution of (MILP2), with∑

l∈R a
′
l <
∑

l∈R a
∗
l , in contradiction to the optimality of v∗.

From s = 1, we get v∗ = λ1e
1, λ1 > 0, and therefore eir1 > 0 and eir2 > 0.

Conversely, suppose there exists i ∈ [1..s] such that eir1 > 0 and eir2 > 0. Up
to scaling, ei is a feasible solution of (MILP2) with supp(ei) ⊆ supp(v∗). From
the optimality of v∗, we get supp(ei) = supp(v∗), which implies s = 1.

Prop. 5.2 shows that any EM participating in a decomposition of v∗ must
contain at least one of the two target reactions. The only case when an EM
contains both r1 and r2 is when the optimal solution v∗ itself is an EM.

The result can be formulated in a stronger form, extending it to the whole
subnetwork N∗ = (SMR∗ ,R∗,M,R∗) de�ned by v∗ (with R∗ = supp(v∗)).
Every EM e in this subnetwork will satisfy er1 > 0 or er2 > 0. If v∗ is itself
an EM, then also the subnetwork N∗ will have only one EM, namely v∗. The
following corollary summarizes our previous results.

Corollary 5.3. In the subnetwork N∗ de�ned by v∗, the reactions r1 and r2
are either fully coupled or mutually exclusive.

Our next proposition shows that any �ux mode using the reactions r1 and
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r2 can be scaled by a positive factor so that it becomes a feasible solution of
(MILP2).

Proposition 5.4. Let v ∈ C with vr1 > 0 and vr2 > 0. Then for su�ciently
large M > 0, there exists a feasible solution (v′, a′) of (MILP2), such that
v′ = λv, for some λ > 0.

Proof. Let λ := 1/min{vi | i ∈ supp(v)} and M := max{vi/vj | i, j ∈
supp(v)}. Now consider v′ := λv and let a′l := 1, for all l ∈ supp(v), and
a′l := 0, for all l ∈ R \ supp(v). For all l ∈ supp(v), v′l = vl/min{vi |
i ∈ supp(v)} ≥ 1. Thus, v′r1 ≥ 1 and v′r2 ≥ 1. By de�nition of a′, for all
l ∈ supp(v), a′l = 1 ≤ v′l = vl/min{vi | i ∈ supp(v)} ≤ max{vi/vj | i, j ∈
supp(v)} = M = Ma′l. Since v

′ ∈ C also holds, we conclude that (v′, a′) is a
feasible solution of (MILP2).

In general, when decomposing an arbitrary steady-state �ux vector into
EMs, the number of participating EMs ranges from only one to many. More-
over, a decomposition does not necessarily have to be unique. It turns out
that in our special case, a decomposition is much more constrained. In fact,
no decomposition can contain more than two EMs. As direct corollary of this
result, we will also get the uniqueness of the decomposition.

Proposition 5.5. Let (v∗, a∗) be an optimal solution of (MILP2) and let
v∗ =

∑s
i=1 λie

i, with λi > 0, for all i ∈ [1..s], be a decomposition of v∗ into s
EMs with pairwise di�erent support. Then s ≤ 2.

Proof. Assume s > 2. From Prop. 5.2 it follows that there exist i, j ∈ [1..s]
such that ei and ej both contain r1 or both contain r2. Without loss of
generality, we assume that ei and ej both contain r1. Then, since s 6= 1, both
ei and ej do not contain r2. LetRdiff := supp(ej)\supp(ei). Since ei is an EM,
we have Rdiff 6= ∅. Let p := min{v∗r/ejr | r ∈ Rdiff }. The vector v′ := v∗ − pej
satis�es supp(v′) ( supp(v∗). However, it need not be feasible for (MILP2)
because it may violate some constraint vr ≥ 0. Let V := {r ∈ R | v′r < 0} ⊆
supp(ej) ∩ supp(ei). If V 6= ∅, de�ne q := min{v′r/eir | r ∈ V } < 0, otherwise
q := 0. Then v′′ := v′ + (1 − q)ei ≥ 0, v′′r1 > 0, v′′r2 > 0, and we still have
supp(v′′) ( supp(v∗). By Prop. 5.4, this implies the existence of a feasible
solution for (MILP2) with a smaller objective function value than v∗, which
is a contradiction.

Corollary 5.6. Any decomposition of v∗ into EMs is unique.

Proof. The result is trivial if v∗ is itself an EM. Thus we only have to consider
the case s = 2. Assume by contradiction that v∗ = λ1e

1 +λ1e
2 = µ1e

3 +µ2e
4,

where at least three of e1, e2, e3, e4 have pairwise di�erent support. Clearly,
then v∗ = (λ1e

1 + λ1e
2 + µ1e

3 + µ2e
4)/2, which contradicts the result of

Prop. 5.5.
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The previous results show that an optimal solution v∗ of (MILP2) either
is an EM (good case), or the sum of two EMs (bad case). Of special interest
is Cor. 5.3, which asserts that in the subnetwork N∗ de�ned by v∗, r1 and
r2 are either fully coupled or mutually exclusive. Thus, to make the optimal
solution of (MILP2) an EM, it is enough to add constraints that exclude the
second case. These additional constraints must forbid the existence of an EM
in N∗ involving exactly one of r1 and r2. This can be achieved by requiring
that r1 should be directionally coupled to r2 in N∗ (or alternatively that r2 is
directionally coupled to r1). To formulate this mathematically, we delete r2
from N∗ and require that r1 is blocked in the resulting subnetwork N ′. More
formally, if S ′ := S∗,supp(v∗)\{r2} is the stoichiometric matrix of N ′, then the
following system should be infeasible:

S ′z = 0,
zr1 = 1,
z ≥ 0.

By applying Farkas' Lemma (see e.g. [100]), this infeasibility requirement can
be turned into a feasibility condition in the dual space. Let y ∈ Rm, x ∈ R.
Then the following system in y and x should be feasible:

(S ′)Ty + ur1x ≥ 0,
x ≤ −1.

Here ur is the r-th unit vector (with an entry 1 for component r, and 0
otherwise) and .T denotes transposition of a matrix.

This formulation inherently uses S ′, the stoichiometric matrix of the new
subnetwork. Naturally, information about it is not derivable independently.
Thus the �rst constraint set needs to be reformulated to dynamically adjust
itself according to the current solution (v, a) of (MILP2). This leads to the
following constraints:

STy + ur1x ≥ −M(1− a+ ur2),
x ≤ −1,

DirC(r1, r2)

where 1 denotes a vector all whose components are 1.
By using a large enough constant M , the �rst constraint becomes trivially

satis�able for inactive reactions (al = 0) and for r2, where the right-hand
side simpli�es to −M . In contrast, for active reactions (al = 1) di�erent
from r2, the right-hand side sums up to 0, thus e�ectively activating the con-
straint. The inequalities DirC(r1, r2) are called directional coupling constraints
for r1 implying r2. Extending (MILP2) with DirC(r1, r2), allows computing
a shortest EM through r1 and r2. The following Prop. 5.7 summarizes our
construction. It guarantees that by adding the constraints DirC(r1, r2), any
feasible solution of (MILP2) de�nes a subnetwork in which condition (2) is
satis�ed.
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Proposition 5.7. Let (v′, a′) be any feasible solution of (MILP2) augmented
with the directional coupling constraints DirC(r1, r2). Then in the subnetwork
N∗ de�ned by supp(v′), reaction r1 is directionally coupled to reaction r2.

Proof. Let (v′, a′) be a feasible solution of (MILP2) augmented with
DirC(r1, r2). Assume by contradiction that in the subnetwork N∗ de�ned
by supp(v′), r1 is not directionally coupled to r2. Then there exists a �ux
mode w in N∗ with wr1 > 0 and wr2 = 0. Since (v′, a′) is feasible, there exist
y′ ∈ Rm, x′ ∈ R such that

STy′ + ur1x′ ≥ −M(1− a′ + ur2),
x′ ≤ −1.

Let N ′ be the subnetwork obtained from N∗ by deleting reaction r2, with cor-
responding stoichiometric matrix S ′. Removing the inequality corresponding
to r2, we get the feasible system

(S ′)Ty′ + ur1x′ ≥ 0,
x′ ≤ −1.

Applying the Farkas' Lemma, we can now derive that the system

S ′z = 0,
zr1 = 1,
z ≥ 0.

is infeasible. This is a contradiction to the existence of w. We conclude that in
the subnetwork N∗ de�ned by supp(v′), r1 is directionally coupled to r2.

By iteratively adding no-good constraints corresponding to already found
EMs, we are able to enumerate any number of EMs in an increasing order
of length. The resulting mixed-integer linear program can be expected to
work for smaller-scale network models, but due to the di�culty of proving
optimality in mixed-integer linear programs, the algorithm will most likely
turn impractical for larger models. The reason for the bottle-neck is clearly
that in every iteration we aim to �nd the shortest EM not yet discovered.
Similar to the one-reaction case, we next trade the optimality condition on
the length for an easier to solve program. The �nal form of our method is
given in the mixed-integer linear program (MILP3). Tab. 5.2 summarizes the
algorithm in the two-reaction case.



88

Chapter 5. Computing Elementary Flux Modes Involving a Set of

Target Reactions

MILP3(Ei) : min 0
s.t. Sv = 0,

vr1 ≥ 1,
vr2 ≥ 1,

al ≤ vl ≤ M0 al, ∀l ∈ R,
STy + ur1x ≥ M1(a− 1− ur2),

−x ≥ 1,∑
l∈supp(eq) al ≤ |supp(eq)| − 1, ∀q < i,

vl ≥ 0, ∀l ∈ R,
al ∈ {0, 1}, ∀l ∈ R,

x, ym ∈ R, ∀m ∈M.

Table 5.2: Algorithm 2 for the two-reaction case.

Step Action

0. Initialize i := 1, E := ∅.
1. Try to �nd a feasible solution (v′, a′) of

MILP3(E).

2. If MILP3(E) is infeasible, then STOP.

3. From (v′, a′) derive subnetwork N i.

4. Find a basic feasible solution ei of LP(N i).

5. Let E := E ∪ {ei} and i := i+ 1.

6. If i > k then STOP.

7. Go to Step 1.

5.3.3 The general t-reaction case

Although this problem seems to be much harder at �rst sight, it turns out
that the previous results provide all the ingredients necessary to tackle this
general case. We propose two strategies for building a mixed-integer linear
program that can be used in a similar fashion to (MILP3).

In the cascade method, we extend (MILP2) with DirC(r1, r2), DirC(r2, r3),
..., DirC(rt−1, rt). Based on Prop. 5.7 and the transitivity of directional cou-
pling [66], in any feasible solution of this new MILP, reaction r1 will imply
reactions r2, ..., rt, thus satisfying condition (2). Similarly, in the hub method,
DirC(r1, r2), DirC(r1, r3), ..., DirC(r1, rt) are added to (MILP2).

Alternative coupling strategies can be thought of. Indeed, by constructing
any spanning tree on the vertices r1, r2,... rt, with r1 being the root of the tree,
and taking the union of the directionality constraints corresponding to each
edge, we create the conditions for a subnetwork where every desired reaction
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is directionally coupled to r1. At this time, it is unclear whether there is a
practical advantage in choosing one of these methods compared to the others.
In all cases, the total number of constraints (and variables) is the same and
grows linearly with t.

5.3.4 Flux uncoupling

The computational complexity of the problem to decide for a pair of uncou-
pled reactions whether they are sometimes coupled or mutually exclusive [72]
is NP-complete [2]. However, this problem can be seen as a special case of
Sect. 5.3.2. Indeed, rather than enumerating some (or all) EMs involving
these two reactions, we are merely interested in the existence of any. For this
purpose, it is enough to execute Step 1 of Algorithm 2. If MILP3(∅) is fea-
sible (resp. infeasible), we can conclude that our two reactions are sometimes
coupled (resp. mutually exclusive).

While this works for any pair of reactions, the above solution might not
be optimal if our goal is to �nd all uncoupling relations. For a given pair of
reactions, rather than stopping after Step 1 of Algorithm 2, one could continue
executing Steps 2-7 and potentially compute an EM, if one exists. This EM
can then be used to decide not only about the uncoupling relation for the
current pair of reactions, but for other pairs as well. More speci�cally, once
an EM e has been computed for two reactions i and j, this EM can also be
used to show that other pairs of reactions in supp(e) are sometimes coupled.
This may greatly reduce the number of pairs for which solving an MILP is
necessary. Moreover, by performing FCA [24, 66] as a heuristic presolving
step, many uncoupling pairs can be deduced without having to solve an MILP.

5.3.5 Choosing big-M values

One issue that we have not addressed so far is the importance of choosing right
values for M0 and M1. From the theoretical side, we are assured about the
existence of M0 and M1 values for which the algorithm behaves as intended.
However, when implementing these algorithms, it becomes crucial to choose
correct values. On one hand, we are inclined to select large constants to
guarantee the correctness of the solutions. If we select constants that are
not large enough, we risk cutting o� feasible solutions corresponding to EMs
we may interested in. On the other hand, the larger these values are, the
less numerically stable the MILPs become. In the following, we analyze how
setting M0 and M1 a�ects the output of the algorithms.

We note that every feasible solution (v, a) of (MILP3) satis�es vi ∈ [1,M0]
for ai = 1. Thus, M0 represents the largest ratio vi/vj that can occur for
non-zero �uxes vi and vj.
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M1 appears only in the directional coupling constraints. For any �ux
vector that contains r1 but not r2, the directional coupling constraints will
be infeasible, regardless of the choice of M1. Thus the only bad case occurs
when an EM containing both r1 and r2 that should be feasible is rendered
infeasible by the directional coupling constraints. This happens ifM1 is chosen
not large enough, such that some of the constraints that should be trivially
satis�ed become unsatis�able. Let v′ be an EM for which this case occurs,
i.e., v′r1 ≥ 0, v′r2 ≥ 0, with infeasible DirC(r1, r2) constraints. Let a ∈ {0, 1}n
be a vector corresponding to the support of v′. We investigate the following
LP-relaxation of (MILP3).

min 0
STy + ur1x ≥ M1(a− 1− ur2),

−x ≥ 1.

Its corresponding dual LP reads

max w −M1

∑
i∈{i|ai=0}∪{r2} vi

Sv = 0,
vr1 − w = 0,

v, w ≥ 0.

Note that the null vector 0 is always dual feasible. Since in our assumption
the primal is infeasible, the dual must be unbounded. We conclude that the
primal is infeasible because w = vr1 > M1

∑
i∈{i|ai=0}∪{r2} vi. In order to avoid

this problem, we recommend over-approximating M1 with M1 ≥ vr1/vi, i ∈
R \ {r1}.

5.4 Results and Discussion

The above described methods have been implemented in Matlab. The MILP
solver of choice was Gurobi 5.0. In the following, we present several use-case
scenarios that have been performed on di�erent real-world networks. These
tests were aimed at validating the correctness of the methods, and also to
motivate their existence, by applying them on networks where an exhaustive
EM enumeration would fail. Furthermore, we ran benchmarking tests to mea-
sure the running time of the algorithms and other statistical properties. All
computations were performed using a single Intel T2600 (2.16 GHz) processor
on a 32-bit Windows 7 system, with a maximum memory of 640MB allocated
to Matlab.

Checking the correctness of the resulting �ux vectors is easy. A simple
rank test as in [52] can prove the EM property, while checking for non-zero
entries in the target reactions assures that we are indeed using them. Due to
the nature of the algorithms, the EM property never gets violated. Indeed,
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because the last step of every method presented involves solving an LP to
optimality using a Simplex-based method, the result will be a vertex of the
truncated �ux cone.

5.4.1 Use-case scenario 1

In [26], the authors compare graph-based pathway enumeration with EM anal-
ysis in the context of discovering pathways producing G6P (KEGG entry
C00668) from AcCoA (KEGG entry C00024). The underlying network was
based on the human Krebs-cycle with two possible con�gurations, one of which
was able to display the required phenotype, while the other was not. Answer-
ing this type of questions is a perfect use-case scenario for our method. Indeed,
we ran our algorithms, trying to �nd EMs containing the required reactions,
and in both con�gurations we were able to replicate the answers presented by
the authors.

It is important to mention that the network used in the previous study is
quite small (20 metabolites and 26 reactions). EM enumeration tools work
very well for models of this size. Thus, we performed the same analysis for
a genome-scale reconstruction of the human metabolic model [28]. In [51] a
similar analysis has been performed with the use of elementary �ux patterns.
A crucial di�erence between analyzing the small and the genome-scale models,
beside their size, is that in the latter network, the two metabolites we were
interested in are internal to the model. This is important for two reasons.
First, the number of adjacent reactions to each metabolite can be more than
one, making the selection of a pair of reactions involving G6P and AcCoA
non-unique. Indeed, after eliminating the blocked reactions from the network,
we still had 63 viable pairs of reactions.

Secondly, and more importantly, for two internal reactions r1 and r2, one
cannot easily �nd out whether reaction r1 is a predecessor of r2 or vice-versa.
In the case of boundary reactions, it is very natural to claim that in an EM,
uptake reactions precede outgoing reactions. We could say that the products
of the outgoing reactions are obtained from the substrates of the uptake re-
actions. A similar statement for internal reactions is not trivial. Deciding
whether one internal reaction precedes another one is an unsolved problem.
While our method can still identify EMs with internal reactions, the interpre-
tation of these EMs has to be done with care.

For these reasons, two arti�cial transport reactions were added to the
network, one importing AcCoA and the other secreting G6P. The biological
interpretation of our method applied to this modi�ed system would be the fol-
lowing. �Assuming we can inject AcCoA into the network and have a method
to secret G6P. Can the underlying network convert AcCoA into G6P?�. Al-
lowing one hour of running time, we could identify 6 EMs with the desired
property, which can be found in the supplementary material. The number of
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reactions taking part in these EMs ranged from 53 to 267.
In a similar way, a possible usage of the tool would be to enumerate EMs

that produce biomass, allowing the system to grow, but at the same time also
produce one or more by-products (e.g. biofuels or toxic compounds). Such a
set of EMs gives us insight into the growth-coupled production capabilities of
a microorganism. Alternatively, these EMs could also be used as an input for
other methods, such as constrained cut set computation [42].

5.4.2 Use-case scenario 2

While the main novelty of the chapter is Algorithm 2, Algorithm 1 provides
an alternative method for computing EMs through a single given reaction.
Compared to methods like [25], our algorithm improves running time at the
cost of computing not necessarily the shortest EMs. While shorter EMs are
more likely to represent biological phenotypes that occur in practice, it is
unclear if only the shortest ones should be of interest. Rezola et al. [91]
introduced the concept of generating �ux modes (GFMs) and compared the
100 shortest EMs with the 100 shortest GFMs producing lysine in the E. coli
iAF1260 model [30]. The authors argued that even though GMFs are longer
and take more time to compute, they present a more varied description of
the total solution set. We extended their experiment by also considering
Algorithm 1. We enumerated 100 EMs producing lysine and compared their
statistical properties with the other two methods. The results are summarized
in Table 5.3.

Table 5.3: Comparison between shortest EMs, shortest GFMs and Algorithm 1.

(NoR) - total number of reactions involved in any of the computed modes. (LI) -

length interval of the modes. (AHD) - Average Hamming distance. '*' indicates

numbers taken from [91].

Method NoR LI AHD

shortest EM* 54 25-26 12.79

shortest GFMs* 132 25-37 16.21

Algorithm 1 272 25-57 26.082

It becomes clear from Table 5.3 that Algorithm 1 computes a broader
range of pathways that can be used for lysine production. While it still �nds
some representatives of the shortest EMs, it also detects more advanced EMs.
Fig. 5.2 presents the length distribution of the EMs obtained by Algorithm 1.

Even if we extend our interest beyond the set of shortest EMs, one might
still want to avoid unreasonably long ones (i.e., those involving more than
L reactions, for some L ≥ 1). This can easily be achieved by adding the
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Figure 5.2: Histogram of the length of EMs found by Algorithm 1

constraint
∑

l∈R al ≤ L to the MILP formulation.
In our next experiment, we compared Algorithm 1 with the method of

[25] for computing shortest EMs. As input we used the metabolic network of
S. cerevisiae iND750 [29] with ethanol (R_ETOH) being the target reaction,
required to be active in all EMs. For various M values and choosing the �ux
variables to be either integer or continuous, 20 EMs were computed in each
case. Table 5.4 summarizes the results.

Table 5.4: Comparing Algorithm 1 with the computation of shortest EMs (Running

time in secs).

Integer variables Continuous variables

Method Length Time Length Time

M = 10
Shortest 6-10 1719s 6-10 2074s

Algo. 1 6-15 16s 6-23 15s

M = 100
Shortest 6-10 8158s 6-10 3421s

Algo. 1 6-21 21s 6-31 18s

M = 1000
Shortest 6-10 14362s 6-10 7780s

Algo. 1 6-31 16s 6-50 29s
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Table 5.4 highlights the main di�erences in the two methods. Algorithm 1
�nds EMs much quicker at the expense of individual EMs' length. As ex-
pected, in almost every case, the higher the constant M was chosen, the more
expensive the computation becomes. De Figueiredo et al. [25] remark that
using continuous �ux variables, the MILPs might be more time consuming
to solve. However, when computing the shortest EMs in this particular net-
work, we do not consistently observe this behavior. Indeed, while forM = 10,
choosing the �ux variables as continuous proved to be slightly more expensive,
in all other cases continuous variables led to shorter running times.

In every iteration of Algorithm 1, the MILPs to be solved become more
complex, since they contain additional constraints. Over time, these con-
straints are expected to slow down the solving of (MILP2). Hence, the rate
at which new EMs are computed is expected to decrease, the more EMs we
enumerate. To study this e�ect, we enumerated 1000 EMs in the network of
S. cerevisiae iND750 [29], with ethanol (R_ETOH) being the target reaction.
The �ux variables were chosen as continuous, while a value for M of 1000 was
used. The total running time was 4350 seconds. For reference, in the same
time frame we could compute only 16 EMs with the method presented by [25].
We measured the time ti required for the computation of the i-th EM, for all
i ∈ {1, ..., 1000}. In order to study how the lengths of consecutive EMs vary,
we also measured the length li of the i-th EM, for all i ∈ {1, ..., 1000}. In
Fig. 5.3, we display the evolution of the mean times t̄i := (

∑i
j=1 tj)/i together

with the mean lengths l̄i := (
∑i

j=1 lj)/i.

5.4.3 Statistical analysis and �ux uncoupling

The main bottleneck of the method are cases when EMs of the required type
do not exist. While �nding an EM if it exists seemed to work well in practice,
proving their non-existence (i.e., showing (MILP3) to be infeasible) is rather
hard and time-consuming. Intuitively, one can think of the MILP search-tree.
Depending on how many feasible solutions there are, the solver might �nd one
without traversing the whole tree. For proving the non-existence, the whole
search-tree must be traversed.

In the next experiment, we tried to compute an EM for every pair of reac-
tions. A maximum time of 60 seconds was allocated for each pair. Reaching
the timeout meant that we were unable to compute if this pair shared an EM
or not. The test has been performed on two small to medium-sized real world
networks, the central metabolism of E. coli (ECC) [83] and the H. pylori
(HP) [121] genome-scale metabolic network. For the constants M0 and M1,
the value of 10000 was chosen, while the feasibility tolerance was set to 10−6.
The total running time in the case of ECC was approximately 3 hours, while
the algorithm took close to 3 days in the case of HP.

Table 5.5 empirically sheds light on the nature of real-world networks.
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Table 5.5: Summary of the correct computational results

Netw. Reac. Pairs EM found Mean length No EM

ECC 90 8010 7691 24.36 176

HP 269 72092 66749 46.57 1862

One can observe in these networks that most pairs of reactions share at least
one EM, and the algorithm presented in this chapter is able to �nd them.

Table 5.6: Summary of the bad instances

Network Timed out Numerical error

Absolute Relative Absolute Relative

ECC 78 0.97% 65 0.81%

HP 2078 2.88% 1403 1.94%

From Table 5.6, it becomes clear that (although not many) there are cases
where the algorithm does not produce a relevant result, either by not �nishing
before its time-out, or by producing an erroneous result. The latter cases are
attributed to the incorrect choice of M0 and M1 and numerical imprecisions
in the MILP solver.

Seeing the high probability for the existence of an EM containing two
randomly chosen reactions, the question arises whether solving (MILP2) would
su�ce. If it correctly �nds an EM in most cases, this would motivate using
(MILP2) as a heuristic approach to the problem. Unless the two reactions are
blocked, (MILP2) is always feasible, and the optimal solution is characterized
by Cor. 5.3 which asserts that we either get an EM or a false positive. We
performed the same experiment as before, and attempted to compute a �ux
vector for every pair of reactions. We decided about the EM property of the
computed �ux vectors by applying the rank test [34, Lemma 2]. For every
instance, a maximum of 60 seconds was allowed. Table 5.7 summarizes these
results.

Table 5.7: The performance of (MILP2) on metabolic networks

Network EM found False positive Timed out

ECC 5212 2686 202

HP 206 9213 62673
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It turns out that in the case of the small E. coli network, (MILP2) per-
forms reasonably well. In 67% of the cases where EMs exist, it correctly �nds
one. However, for the medium-scale H. pylori network, solving (MILP2) to
optimality almost never terminates in the allocated time. Based on this em-
pirical evidence we conclude that (MILP2) may not be a viable approach for
medium- to large-scale metabolic networks.

5.5 Conclusion

We have presented novel methods to compute EMs involving any number of
prede�ned target reactions. These algorithms can also be used to distinguish
between mutually exclusive and sometimes coupled reactions. From the ap-
plication on genome-scale metabolic networks, we conclude that the methods
work as intended and are fast enough for practical use. They should become
a valuable asset for constraint-based analysis of metabolic networks.

A prototype implementation in Matlab is available for download at https:
//sourceforge.net/projects/caefm.

• We presented several novel methods for computing EMs involv-
ing a prede�ned set of terget reactions.

• The methods developed within the chapter were successfully
benchmarket against real-world genome-scale metabolic net-
works.

• A number of use-case scenarios were discussed o�ering potential
practical usage for the methods.

• We analyzed how to choose suitable parameters for the MILP
methods.

• Di�erent statistical analyses have been performed in order to
gain insight about the properties of the method, as well as about
EMs in general.

Summary of the chapter

https://sourceforge.net/projects/caefm
https://sourceforge.net/projects/caefm
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6.1 Introduction

In the previous chapter we have seen that one of the limits for the practical
usability of �nding elementary modes with certain prede�ned reactions comes
from the fact that there is no inherent order among the reactions participat-
ing in an elementary mode. From a very super�cial perspective, elementary
modes are vectors, and on their own they carry little explicit information
about the topology of the �ux they describe. In directed graphs, elemen-
tary modes would correspond to simple paths and minimal cycles, thus every
acyclic elementary mode has an ordering of the reactions by de�nition. In con-
trast, a similar notion of ordering in hypergraphs is not trivial. Elementary
modes that are not an internal cycle nor a simple path as de�ned in graphs
will have branching traits (e.g. Fig. 6.2) or cyclic traits (e.g. Fig. 6.1). In
such elementary modes not every two reactions can be compared and decided
which needs to 'happen �rst'.

As shown in Figure 6.1, reactions 2 and 3 both need products of each-
other in order to take place, thus at the �rst look they are incomparable. By
individually studying elementary modes, in some cases it is possible to deduce
a partial or even full ordering between the reactions. For example, in the �gure
before we can claim that reaction 1 de�nitely occurs before reaction 4. We aim
to devise a general method that can analyse any elementary mode and extract
ordering information, with some or all properties of a partial ordering (see
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Figure 6.1: A small example where reactions 2 and 3 both need products produced

by the other reaction. Hence, an ordering is not trivial to make.

Def. 1.15), by creating an ordering matrix. An ordering matrix is similar to
the adjacency matrix of a graph in that the reactions (or edges) will represent
the rows and columns of the matrix, and an entry (i, j) in the matrix is equal
to 1 if and only if reaction i can be said to occur before reaction j. Having
such an ordering, not only would lead to better understanding of individual
elementary modes, but it would also aid in creating a visual representation of
them. In this chapter, we will explore di�erent notions of ordering and present
methods to compute them for arbitrary elementary modes.

6.1.1 Hyperpaths versus elementary modes

An alternative way of modeling metabolic networks is through disregarding
the stoichiometric coe�cients and treating the metabolic model as a directed
hypergraph [13, 93]. This modeling is not limited by the binary edges of
a directed graph modeling (i.e., as in [16]), while at the same time preserves
some of its advantages. In speci�c, the notion of paths in directed hypergraphs
is similar to that of paths in a directed graph.

Let V = {v1, v2, ..., vn} be the set of vertices (or equivalently, metabolites).

De�nition 6.1 (Hyperarc). An ordered pair e := (X, Y ) is called a hyperarc,
where X, Y ⊆ V and X ∩ Y = ∅. X is the set of reactants and Y is the set of
products for reaction e.

For a hyperarc e, Xe will represent its set of reactants while Ye will denote
its set of products.

De�nition 6.2 (Hypergraph). H := (V,E) with E a set of hyperarcs, E :=
{e1, e2, ..., em} is called a hypergraph.

Next, we give a slightly modi�ed de�nition of hyperpaths to the one de�ned
in [13]. In both the original and our de�nition, the hyperpath de�nes a total
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ordering (see Def. 1.16) of the hyperedges participating in the hyperpath. The
di�erence is that in [13] the authors allow any starting set of metabolites for
the hyperpath to begin with and any terminal set of metabolites to end with.
In the de�nition we are about to present, a hyperpath always has to start
with boundary import reactions and end with boundary export reactions.
Therefore the de�nition in [13] can be thought of as a generalization of the
de�nition we are using.

De�nition 6.3 (Hyperpath). A non-empty set of hyperarcs P ⊆ E with
p := |P | > 0 is a hyperpath if the following two conditions hold

• there is a bijective mapping σ : {1, ..., p} → P such that for ∀k ∈
{1, ..., p}, Xσ(k) ⊆ ∪j<kYσ(j).

• ∪i∈PYi ⊆ ∪i∈PXi

In the previous de�nition, the �rst condition assures that we can order
the reactions in such a way that for any reaction its predecessors will produce
all of its reactants, allowing the reaction to take place. The second condition
is necessary to guarantee that all the produced metabolites are consumed as
well. In fact, as a consequence of the two conditions, ∪i∈PYi = ∪i∈PXi will
always hold, while Xσ(1) = ∅ is also satis�ed. It is possible to generalize the
above de�nition for hyperpaths producing certain sets of metabolites [13].

De�nition 6.4 (Minimal hyperpath). A hyperpath P is said to be minimal
if no proper subset P ′ ⊂ P is a hyperpath.

In [13] the authors present a fast algorithm to compute hyperpaths pro-
ducing given desired metabolites.

While this modeling does provide an inherent order inside every hyperpath,
questions arise about the practical meaning of it. The de�nition of a hyperpath
presumes the existence of an ordering, but does not require the uniqueness
of it. Indeed, the same hyperpath may admit several di�erent orders for the
reactions. This proves that one cannot pick a single ordering as it would lead
to contradicting and meaningless results. For example, in Figure 6.2 both
[1, 2, 3, 4] and [1, 2, 4, 3] are valid orderings. If we would only know about one,
e.g. the �rst ordering, then claiming that reaction 3 occurs before reaction 4
would be incorrect. In order to derive meaningful results, one would need to
study all possible orderings.

Minimal hyperpaths and elementary modes intuitively seem closely re-
lated. However, these two concepts are completely independent. As it is
demonstrated by the �gures, there exist sets of reactions that are elementary
modes but not hyperpaths (e.g. Figure 6.1), hyperpaths that are not elemen-
tary modes (e.g. Figure 6.3), and there are sets of reactions that are both
(e.g. Figure 6.2).
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Figure 6.2: An example of an elementary mode that is also a hyperpath.
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Figure 6.3: Example of 4 reactions that form a hyperpath, but not an elementary

mode. In fact, from the steady-state condition of metabolites A and B it follows

that reaction 1 is a blocked reaction.
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In the following we will focus on de�ning an ordering relationship, similar
to the one for hypergraphs, but for a pair of reactions within an elementary
mode.

6.2 Methods

One of the advantages of studying an ordering within an elementary mode
as opposed to within a genome-scale metabolic network is that in an ele-
mentary mode, if the �ux rate of a reaction is given, then all other �ux-
rates are uniquely determined. For this reason, we can study elementary
modes as stand-alone metabolic networks where every reaction is irreversible,
even if some of the originating reactions were reversible. For the remain-
der of this chapter, we will assume that our input is a metabolic network
N := (S, Irr, R,M) (with m = |M | metabolites, n = |R| reactions) that is
a single elementary mode (i.e. dim(kern(S)) = 1) and a �ux vector e∗ rep-
resenting the elementary mode in N . Note, that unless Irr = ∅, one can
compute an equivalent elementary mode to e∗ directly from S [52]. If Irr = ∅
(i.e., there are only reversible reactions), the method in [52] computes an el-
ementary mode e that is equivalent to either e∗ or −e∗. However, since e∗

is given and it uniquely determines the direction of all reversible reactions,
we can consider all reactions to be irreversible. Under these assumptions, the
only necessary input is the stoichiometric matrix S.

6.2.1 Ordering based on simple reachability

The intuitive idea of ordering that we will try to capture in our de�nition is
similar to the one for hypergraphs. Two reactions are ordered if one is reach-
able from the other, but not vice-versa. First, we formally de�ne reachability.

De�nition 6.5 (Reachable). Let r1, r2 ∈ R. Then reaction r2 is reachable
from reaction r1 in N if and only if there exists a bijective mapping of σ :
{1, ..., n} → R such that:

• σ(1) = r1

• For every i < σ−1(r2), Yσ(i) ∩Xσ(i+1) 6= ∅

Intuitively, one can think of reachability as the existence of a directed path-
way over the branches of reactions. This is ensured by the second condition
which requires that any two consecutive reactions in the pathway must share
at least one metabolite in such a way that the �rst reaction produces it, while
the following reaction consumes it.

As an example. let us have a look at Fig. 6.3. Here reaction r4 is reachable
from reaction r3 since σ(1) = r3, σ(2) = r2, σ(3) = r4, σ(4) = r1 satis�es both
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required conditions. However, reaction r3 is not reachable from reaction r4
since there is no σ that would satisfy the second condition. In fact, no other
reaction is reachable from r4.

Checking whether one reaction is reachable from another can be computed
in linear time in R. In fact, Algorithm Reachable computes all the reactions
that are reachable from a given reaction r1. Note that, for simplicity, in the
algorithm we have reused the de�nitions of Met (see Def. 4.4) and Reac (see
Def. 4.6) from Chapter 4. In the previous algorithm, the while loop is executed
at most n times, thus the algorithm terminates.

Algorithm Reachable

Input

r - a reaction of interest

S -the stoichiometric matrix of the network

Output

V - the set of reachable reactions from r

1. V := {r}
2. V ′ := ∅
3. while V 6= V ′

4. V ′ := V

5. V := V ∪Reac−(Met+(V ))

6. end while

Based on the reachability de�nition, we distinguish the following three
cases of ordering.

De�nition 6.6 (Ordering). Two reactions r1 and r2:

• directionally ordered if r1 = r2 or if r2 is reachable from r1 but not vice-
versa. We will note this relation as r1 ≤ r2.

• ambiguously ordered if both r2 is reachable from r1 and r1 is reachable
from r2.

• unordered if neither r2 is reachable from r1 nor r1 is reachable from r2.

Executing Algorithm Reachable once for r1 and once for r2 gives us the
necessary information to classify the order relationship between them accord-
ing to the previous three cases. In general, performing the algorithm n times,
once for every reaction, is su�cient to classify every pair of reactions. While
this would be a valid solution to determine all the orderings between reactions,
it is not the most e�cient way to do it.

In the following we will show an alternative way of computing the same in-
formation, based on the Levi-graph [67] and computing its strongly connected
components.
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Figure 6.4: Example of the Levi-graph corresponding to Figure 6.1. Note that the

blue nodes, originating from external metabolites, are part of the Levi-graph.

De�nition 6.7 (Incidence structure). Let P and L be two sets of entities (e.g.
P are points and L are lines). Then I ⊆ P×L is an incidence relation between
the two sets of entities and C := (P,L, I) is called an incidence structure.

Clearly, a hypergraph or a metabolic network can be looked at as an inci-
dence structure between the metabolites M and the reactions R. In speci�c,
let I := {(i, j) | with Sij 6= 0}. Then C = (M,R, I) is an incident structure.

De�nition 6.8 (Levi-graph). For an incident structure C = (P,L, I), the
graph G := (P ∪ L, I) is called the Levi-graph of C [67].

The Levi-graph is a bipartite graph and it is closely related to Petri nets
[85]. Given a metabolic network, the size of its Levi-graph will be |M | +
|R|+ |B(R)| nodes and NNZ(S) + |B(R)| edges. Here NNZ(S) denotes the
number of nonzero elements of S and B(R) represents the set of boundary
reactions. Note the importance of adding |B(R)| to both the set of nodes and
the set of edges. This results from the fact that in the stoichiometric matrix
boundary reactions have a 'hidden' branch. The 'part' of the reaction that
crosses the system boundary is not represented by any value in S. Hence we
include the external metabolite corresponding to each boundary reaction into
new set of nodes, which also allows including all the edges by the Levi-graph.
Transforming a metabolic network into its Levi-graph representation can be
done in polynomial time.

The advantage of having the Levi-graph representation is that classical
graph-theoretical algorithms can be applied to it. In speci�c, the strongly
connected components (SCC) of this graph are computable in polynomial
time with a number of existing algorithms (i.e., Tarjan's algorithm [114] or
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Figure 6.5: Strongly connected components of the graph from Figure 6.4

Kosaraju's algorithm [19]). The strongly connected components form a di-
rected acyclic graph (DAG). Since we were starting with a metabolic network
that is an elementary mode, this guarantees that the DAG will be connected.

The following observation provides the connection between the strongly
connected components and the ordering of reactions.

Observation 6.9. The strongly connected components of the Levi-graph
obtained from a metabolic network corresponding to an elementary mode
uniquely determine the orderings for every distinct pair of reactions. In spe-
ci�c, two reactions r1 and r2 with r1 6= r2 are:

• directionally ordered if there is a directed path from the SCC containing
r1 to the SCC containing r2.

• ambiguously ordered if r1 and r2 belong to the same SCC.

• unordered if there is no directed path from the SCC containing r1 to the
SCC containing r2.

We note that Obs. 6.9 cannot be extended to the case when r1 = r2, since
in this case the 'two' reactions belong to the same SCC. Nevertheless, this is
not a problem since by using Def. 6.6 we don't need to compute the ordering
in such cases by an algorithm. Once the strongly connected components
are computed, a topological sorting algorithm [19] can be applied to �nd
the ordering between the di�erent SCCs. As an example, Figure 6.5 depicts
the DAG obtained after computing the SCCs of Figure 6.4. The strongly
connected components include both the reactions and metabolites (since both
of these entities were represented by nodes in the Levi-graph). As such, a post-
processing step is needed to remove the metabolites. Generally, the extra
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Figure 6.6: Example network

preprocessing step, transforming the hypergraph into a Levi-graph as well
as the post-processing step required by this approach are not necessary and
can be eliminated. Algorithm computeSCCs presents a modi�ed Tarjan's
algorithm [114] to compute the SCCs directly from the stoichiometric matrix.

Observation 6.10. The set of reactions R with relation < (directionally or-
dered) forms a partially ordered set.

The re�exivity and antisymmetry follow directly from De�nition 6.6. Tran-
sitivity follows from the fact that if r2 is reachable from r1, and r3 is reachable
from r2, then we can construct a directed path from r1 to r3 by concatenating
the two paths. The concatenated path might contain duplicate nodes, which
we can lump together and delete any edges between them. Repeating this
step until all duplicate nodes are removed results in a directed path from r1
to r3 satisfying the requirements, thus r1 ≤ r3.

The above de�nition and algorithm of ordering perform well for reactions
that do not belong to the same SCC. The question arises whether it is possible
to de�ne a weaker ordering within the reactions of an SCC. This becomes par-
ticularly important since we will show that, in some cases, almost all reactions
of an elementary mode belong to one SCC.

6.2.2 Ordering based on pathway reachability

Analysing the elementary mode from Figure 6.6 with the previous method,
one would get three SCCs. There would be one containing reaction {r1}, one
containing reactions {r2, r3, r4, r5} and lastly, one containing reaction {r6}.
Intuitively however, one could argue that there is still some sense of ordering
not captured by the method. In speci�c there is a weak ordering ≤w between
the reactions of the second SCC in the form of r2 ≤w r3 ≤w r4 ≤w r5.
This information 'gets destroyed' by the feedback arcs of reaction r2 and r5
through metabolite B. In this subsection we will extend the previous method
to account for these subtle ordering relations.
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Algorithm computeSCCs

Input

S -the stoichiometric matrix of the network

Output

SCC - the set of strongly connected components in the Levi-graph

corresponding to the network

1. depth := 0, U := ∅, SCC := ∅
2. visited[R] := false

3. for each r ∈ R do

4. if not visited[r] then

5. visit(r)

6. end if

7. end for

8.

9. function visit(r)

10. visited[r] := true

11. depth[r] := depth

12. ancestor[r] := depth

13. depth := depth +1

14. push(U , r)

15. N := getNeighbors(r)

16. for each r′ ∈ N do

17. if not visited[r′] then

18. visit(r′)

19. ancestor[r] := min(ancestor[r], ancestor[r′])

20. else if r′ ∈ U then

21. ancestor[r] := min(ancestor[r], depth[r′])

22. end if

23. end for

24. if ancestor[r] = depth[r] then

25. C := ∅
26. repeat

27. s := pop(U)

28. push(C, s)

29. until s = r

30. SCC := SCC ∪ {C}
31. end if

32. end function

33.

34. function getNeighbors(r)

35. N := ∅
(to be continued)
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Algorithm computeSCCs (continued)

36. for each i ∈M with Sir > 0 do

37. for each j ∈ R with Sij < 0 do

38. N := N ∪ {j}
39. end for

40. end for

41. return N

42. end function

Clearly, the reason why the described problem occurs is because cycles
induce SCCs. Thus, we will modify our previous de�nition of reachability so
that it reduces the e�ect imposed by cycles. Rather than de�ning reachability
as the existence of an arbitrary directed path between two reactions, we want
this directed path to be extensible into a larger pathway that has boundary
reactions at its two ends. That is, the extended pathway should start with an
incoming boundary arc of any reaction, then somewhere inbetween visit the
two reactions we are interested in and �nally end with an outgoing arc of a
boundary export reaction. Note, that the extended larger path is not allowed
to have duplicate nodes or edges. We will give an example after the de�nition.

De�nition 6.11 (Pathway reachability). A reaction r2 is pathway reachable
from a reaction r1 if there exists a bijective mapping σ : {1, ..., n} → R and a
bijective mapping π : {1, ...,m} →M such that:

• σ(1) ∈ B+(R)

• σ−1(r1) < σ−1(r2) ≤ σ−1(rk) ≤ m

• For every i < σ−1(rk), π(i) ∈ Yσ(i) ∩Xσ(i+1)

with rk = argmin{σ−1(rj) | rj ∈ B−(R)}

In the previous de�nition, B+(R) := {j ∈ R | ∀i ∈ M,Sij ≥ 0} represents
the set of boundary incoming, while B−(R) := {j ∈ R | ∀i ∈ M,Sij ≤ 0}
the set of boundary outgoing reactions. The reaction rk is the �rst outgoing
boundary reaction in the ordering of σ. The �rst condition in the de�nition
assures that we start the pathway with an incoming boundary reaction. The
second condition guarantees that we will visit reactions r1, r2 and rk (the �rst
outgoing boundary reaction) in the proper order. The third condition enforces
the pathway's connectedness as well as the existence of a unique metabolite
between each two reactions (i.e. excludes the existence of an internal loop).

Using Fig. 6.6 as an example, we note that r5 is reachable from r2, and
r2 is reachable from r5. Now, r5 is also pathway reachable from r2 since σ =
(1, 2, 3, 4, 5, 6) satis�es the conditions of Def. 6.11. In speci�c, r1 is a boundary
incoming reaction. Moreover σ−1(r1) = 2, σ−1(r2) = 5 and σ−1(rk) = 6,
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thus the second condition of the de�nition is also satis�ed. Lastly, using
π = (A,C,D,E, F,B) satis�es the third condition. In speci�c, metabolite A
is produced by reaction σ(1) = 1 and consumed by reaction σ(2) = 2. Then
metabolite C is produced by reaction σ(2) and consumed by reaction σ(3) = 3
and so on.

In contrast, r2 is not pathway reachable from r5 as no σ and π exist that
satisfy Def. 6.11.

Based on pathway reachability we can de�ne the pathway ordering very
similarly to the previous ordering.

De�nition 6.12 (Pathway ordering). Two reactions r1 and r2 are direction-
ally pathway ordered if r1 = r2 or if r2 is pathway reachable from r1 but not
vice-versa. We will note this relation as r1 ≤w r2.

By de�nition, pathway ordering is re�exive and antisymmetric, however,
as we will see it later it is not a transitive relation.

There are several ways to compute the pathway ordering between two
reactions. In the following we will present two methods for this purpose. The
basis of both methods is the enumeration of all transport pathways (cf. p.7).

We start with the Levi-graph of an elementary mode. If we choose not to
distinguish the nodes corresponding to reactions and the nodes corresponding
to metabolites, we can look at this graph as an arti�cial metabolic network.
This metabolic network has the property that it contains no hyperedges, but
we can still apply the methods developed for general metabolic networks.
In speci�c, we can enumerate elementary modes. Acyclic elementary modes
will correspond to the transport pathways that we are seeking for. Several
methods exist in the literature for enumerating EMs (i.e., Metatool [130] or
EFMTool [118]). Once the arti�cial elementary modes are computed, �nding
the pathway ordering is a simple exercise of individually ordering each of these
acyclic EMs and using them to extract the pathway reachability information.

Algorithm pathwayReachableEM with input argument EG (the set of el-
ementary modes of the Levi-graph) describes the procedure. The constants
n and m used in the method represent the size (number of reactions and
metabolites) of the elementary mode. The algorithm implicitly assumes that,
in the Levi-graph, nodes corresponding to metabolites preserve their number-
ing, while nodes corresponding reactions will be numbered m + 1 to m + n
(the assumption is used on line 8 of the algorithm).

Having performed pathwaysReachableEM, deducing the pathway ordering
becomes trivial. In speci�c, ri ≤w rj holds if and only if Oij = true and
Oji = false.

With the method described two concerns are raised. In general, comput-
ing all elementary modes of a metabolic network is considered to be a di�cult
task to perform in practice. However, having as input the Levi-graphs of el-
ementary modes greatly reduces the number of edges, thus making this task



6.2. Methods 111

Algorithm pathwayReachableEM(EG)

Input

EG -the set of EMs of the Levi-graph associated with the network

S -the stoichiometric matrix of the network

Output

O - the pathway reachability table

1. O := {false}n×n
2. for each e ∈ EG do

3. o := �ndFirst(e)

4. if o 6= ∅ then
5. o := �ndRest(e, o)

6. end if

7. for each (i, j) ∈ [1..|o|]2 with i < j do

8. O(Met+G(o(i))−m,Met+G(o(j))−m) := true

9. end for

10. end for

11.

12. function �ndFirst(e)

13. for each r in Reac(e) do

14. if Met−(r) = ∅ then
15. return r

16. end if

17. end for

18. return ∅
19. end function

20.

21. function �ndRest(e, o)

22. for each r in Reac(e)

23. if Met−G(r) = Met+o(|o|) then
24. return �ndRest(e, [o, r])

25. end if

26. end for

27. return 0

28. end function

feasible. The second concern relates to the memory usage of the method,
as storing potentially millions of EMs can be challenging. These two issues
motivate an alternative way of computing the pathway reachability table O.
Rather than computing all transport pathways at once, one should enumerate
them one-by-one in a linear way. Each pathway computed can be used as soon
as it is computed, and discarded right after use, thus dramatically reducing
the total memory need of the algorithm at the expense of potentially longer
computation time. The algorithm pathwayReachableDFS presents the alter-
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native procedure of computing the pathway orderings. The method is based
on depth-�rst search (DFS) technique [19] and can be applied directly on the
hypergraph, skipping the need for the Levi-graph transformation.

Algorithm pathwayReachableDFS

Input

S -the stoichiometric matrix of the network

Output

O - the pathway reachability table

1. O := {false}n×n
2. U := ∅
3. for each r ∈ R do

4. if Met−(r) = ∅ then
5. visit(r)

6. end if

7. end for

8. return O

9.

10. function visit(r)

11. push(U, r)

12. if Met+(r) = ∅ then
13. for each (i, j) ∈ [1..|U |]2 with i < j do

14. O(U(i), U(j)) := true

15. end for

16. else

17. for each p ∈Met+(r) do

18. for each r′ ∈ Reac−(p) do

19. if r′ 6∈ U then

20. visit(r′)

21. end if

22. end for

23. end for

24. end if

25. pop(U)

26. end function

Applying either pathwayReachableEM or pathwayReachableDFS for Fig-
ure 6.7, the resulting pathway reachability table O is given in Table 6.1. Based
on this table we can conclude the following pathway ordering relationships in
the network: r1 ≤w r2, r1 ≤w r3, r1 ≤w r4, r1 ≤w r5, r1 ≤w r8, r2 ≤w r3,
r2 ≤w r4, r2 ≤w r8, r4 ≤w r5, r4 ≤w r8, r5 ≤w r3, r5 ≤w r6, r5 ≤w r8, r6 ≤w r2,
r6 ≤w r3 and r7 ≤w r8. For comparison purposes, we reference Table 6.2 as
well, which displays the standard reachability.

Unlike the ordering de�ned in the previous subsection, pathway ordering is
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Figure 6.7: Example network

not transitive, thus (R,≤w) is not a partially ordered set. We can demonstrate
this with a counterexample from Figure 6.7. Here r4 ≤w r5 holds and so does
r5 ≤w r6. However r4 ≤w r6 does not hold.

Table 6.1: Pathway reachability table for the network in Figure 6.7. Bullet points

represent values of 'true'.

Reaction r1 r2 r3 r4 r5 r6 r7 r8
r1 • • • • • •
r2 • • • • •
r3 •
r4 • • •
r5 • • • • •
r6 • • •
r7 • • • • • •
r8 •

6.3 Results and discussion

When studying the relationship between the two described orderings, the ques-
tion arises whether one is a subset of the other. Clearly, since the pathway
ordering can �nd relationships for reactions in the same SCC, it will contain
some pairs that the simple ordering does not. Moreover, the inclusion in the
opposite sense is also not true. In Figure 6.7, r1 ≤ r6 holds, but r1 ≤w r6 does
not. Hence the two orderings are unrelated.

The lack of transitivity certainly casts some doubt over the usefulness of
the pathway ordering. The lack of this feature is attributed to the local nature
of the pathway ordering (i.e., we order two reactions based only on a subset of
the arti�cial pathways). A possible way to deal with this would be to combine
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Table 6.2: Standard reachability table for the network in Figure 6.7. Bullet points

represent values of 'true'.

Reaction r1 r2 r3 r4 r5 r6 r7 r8
r1 • • • • • • •
r2 • • •
r3 •
r4 • • •
r5 • • •
r6 • • •
r7 • • • • • • •
r8 •

the two orderings. That is, one could use the standard ordering for reactions
belonging to di�erent SCCs in the Levi-graph, and use the pathway ordering
for reactions making part of the same SCC. The two ordering algorithms were
implemented in Matlab [74] and combined according to the aforementioned
idea. We applied the method on several elementary modes computed in Chap-
ter 5. A graphical representation of each resulting ordering was automatically
generated with the biograph function of the Bioinformatics Toolbox [74]. The
�rst two EMs we have selected to illustrate were computed in the E. Coli
Core [83], while the next two in the E. Coli iJR904 [90] network.

• Fig. 6.8 illustrates the simple ordering of an elementary mode with 26
reactions that produces ethanol from glucose. Cluster 1 represents a set
of 16 reactions that could not be ordered with the �rst method. However,
applying the pathway ordering on this subset of reactions �nds additional
ordering relations as displayed in Fig. 6.9.

• Fig. 6.10 depicts the simple ordering of an elementary mode with 17
reactions that produces lactate from glucose. The set of reactions in
Cluster 1 are further ordered with the pathway ordering and displayed
in Fig. 6.11.

• Fig. 6.12 is an example of an elementary mode that produces lysine. The
two clusters of reactions that could not be ordered with simple ordering
are presented in Fig. 6.13 and Fig. 6.14.

• Fig. 6.15 shows again an EM that is producing lysine. Most reac-
tions in Cluster 1 could not be ordered even with the pathway ordering
(Fig. 6.16).

The method can be extended to deal with general steady-state �ux vectors
that are not necessarily elementary modes. This is straight-forward to imple-
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ment as in the algorithms themselves, the requirement of having an EM as
the input network was seldom used. In fact, using the presented algorithms
with general steady-state �ux vectors is feasible as is. The only minor dif-
ference that should be considered is that in this case the steady-state �ux
vector should also be an explicitly stated input parameter. This was not nec-
essary in the case when the input network was an EM as the stoichiometric
matrix could be used to compute the EM up to a scalar multiple. Going one
step further, extending the methods for general metabolic networks with no
steady-state �ux vector de�ned is a more di�cult task. The main di�culty
comes from the undecided orientation of reversible reactions. Splitting the
reversible reactions into a forward and a backward arc might o�er a starting
point. However, this operation induces a number of two-cycles that might be
counter-productive. This problem is proposed for further research.

The main motivation for �nding an order between reactions was stemming
from the de�ciency of the method described in Chapter 5. While the current
method is able to order the reactions of an already computed elementary
mode, it does not help in �nding EMs with a speci�c ordering. For solving
this problem one would need to formulate the presented ordering de�nitions
as linear constraints with possibly integer variables. At this point it is not
clear whether this is a feasible task, hence this problem should be further
investigated.
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Figure 6.8: Graphical representation of the simple ordering of an elementary mode

that produces ethanol from glucose. Cluster 1 contains 17 reactions that cannot be

ordered.
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Figure 6.9: Pathway ordering of the reactions in Cluster 1 from Fig. 6.8



6.3. Results and discussion 117

EX_h(e) EX_lac_D(e)

D_LACt2

Cluster 1

EX_glc(e)

Figure 6.10: Graphical representation of the simple ordering of an elementary

mode that produces lactate from glucose. Cluster 1 is a set of 13 reactions that

cannot be ordered.
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Figure 6.11: Graphical representation of the pathway ordering for the reactions

in Cluster 1 from Fig. 6.10
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Figure 6.12: Graphical representation of the simple ordering of an elementary

mode that produces lysine. Cluster 1 is a set of 2, while Cluster 2 is a set of 4

reactions that cannot be ordered.
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Figure 6.13: Graphical representation of the pathway ordering for the reactions

in Cluster 1 from Fig. 6.12. No ordering is possible between the two reactions.
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Figure 6.14: Graphical representation of the pathway ordering for the reactions

in Cluster 2 from Fig. 6.12
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Figure 6.15: Graphical representation of the simple ordering of an elementary

mode that produces lysine. Cluster 1 is a set of 15 reactions that cannot be ordered.
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Figure 6.16: Graphical representation of the pathway ordering for the reactions

in Cluster 1 from Fig. 6.15. No ordering is possible between most reactions in this

set.



120 Chapter 6. On the Order of Reactions in Elementary Modes

• We compared hyperpaths with elementary modes and argued
why ordering the reactions is necessary.

• Two distinct de�nitions of ordering are given, the simple ordering
and the pathway ordering.

• Graph-based algorithms are presented to compute both the sim-
ple ordering and the pathway ordering of reactions.

• The ordering algorithms have been successfully applied on ele-
mentary modes of real metabolic networks.

Summary of the chapter
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Remark: This chapter summarizes and extends results originally pub-
lished in [73].

7.1 Introduction

Metabolic pathway analysis is the study of meaningful minimal pathways or
routes of connected reactions in metabolic network models [61, 117]. Two
closely related concepts are often used for explaining such pathways: elemen-
tary modes (EMs) [105, 103] and extreme pathways (EXPAs) [96]. From a
mathematic perspective, EMs and EXPAs are generating sets of the �ux cone
[61, 46]. Several approaches have been proposed for the computation of such
pathways [87, 132, 35, 57, 8, 130, 118, 119].
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While EM and EXPA analysis are promising approaches for studying
metabolic networks [98, 123], due to the combinatorial explosion of the num-
ber of such pathways [60, 135], this kind of analysis cannot be performed for
�large� networks. Recent advances in the computation of EMs and extreme
rays of polyhedral cones [118, 119] have made it possible to compute tens of
millions of EMs. However, computing all of them for large genome-scale net-
works may still be impossible. Additionally, as we have seen in Chapter 5, one
is often only interested in the behavior of a subset of reactions, and not all of
them. Therefore, even if the EMs are computable, possibly many of them are
not relevant because they are unrelated to the reactions of interest.

The goal of this chapter is to introduce the new concept of Projected Cone
Elementary Modes (ProCEMs) for the analysis of substructures of metabolic
networks. The organization is as follows. Firstly, the mathematical concepts
used in the text are formally de�ned. Secondly, we review the studies which
have tried to investigate subnetwork of large-scale networks. In the next
step, we present the concept of ProCEMs and propose a method to compute
them. Finally, we compare ProCEMs with elementary �ux patterns (EFPs)
from the mathematical and computational point of view, and analyse some
concrete biological networks.

7.2 De�nitions

De�nition 7.1 (Projection). Given a set Q ⊆ X×Y = Rn, where X resp. Y
are subspaces of Rn of dimension p resp. q with p + q = n, the projection of
Q onto X is de�ned as

PX(Q) := {x ∈ X | ∃y ∈ Y, (x, y) ∈ Q}. (7.1)

In the special case, when Q = {v}, we will simply write PX(v) instead of
PX({v}).

Proposition 7.2. Let Q be a polyhedral cone. Then the projection PX(Q) is
also a polyhedral cone.

Proof. Let {a1, a2, ..., az} be a �nite conic generating set of Q. We will prove
that {PX(a1),PX(a2), ...,PX(az)} is a �nite generating set of PX(Q).

Clearly, every PX(ai) ∈ PX(Q) for all i ∈ {1, 2, ..., z}. Let x ∈ PX(Q). Then
there exists y ∈ Y with (x, y) ∈ Q. Thus, there exists α1, α2, ..., αz ∈ R+ with
(x, y) =

∑z
i=1 αiai.

Looking at the coordinates of X, we get x =
∑z

i=1 αiPX(ai).

Remark: The inverse of Prop. 7.2 is not true. Indeed, it is possible to
project an in�nitely generated cone such that the result is a polyhedral cone
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(e.g. any two-dimensional projection of an ice-cream cone is always �nitely
generated).

Now consider a metabolic network N = (S, Irr) with p + q reactions and
a subnetwork N ′ = (S ′, Irr′) given by a subset of p �interesting� reactions.
For the �ux cone C of N we assume C ⊆ X × Y, where the reactions of N ′
correspond to the subspace X. Prop. 7.2 assures that the projection of C
onto the subspace de�ned by the set of interesting reactions, PX(C), is again
a polyhedral cone. We will refer to this as the projected �ux cone on X.

De�nition 7.3 (ProCEM and PEM). Consider a steady-state �ux cone C,
and X the subspace of interesting reactions.

• An elementary mode f of the projected cone PX(C) will be called a pro-
jected cone elementary mode (ProCEM).

• For an elementary mode e of the �ux cone C, the projection PX(e) of e
to X will be called a projected elementary mode (PEM).

As we will see in Subsection 7.5.1, the two concepts of PEM and ProCEM
are closely related but di�erent.

If the subnetwork N ′ has to be analysed, PEMs might be more relevant
than EMs, as they are in lower dimension and easier to study. PEMs can
be enumerated easily if the set of all EMs is given, by following Def. 7.3.
However, continuing with the assumption that the complete set of EMs is
impractical (or impossible) to enumerate with currently existing methods,
the computation of PEMs proves to be an infeasible approach for genome-
scale networks.. As we will see in the following sections, ProCEMs provide an
interesting alternative.

7.3 An overview of related methods

As we have seen already, the set of EMs of a genome-scale network may be
large, and in general, cannot be computed with the available tools. Even
if this is possible, one cannot easily extract interesting information from it.
Therefore, a subset of EMs (or in case that we are interested in a subset of
reactions, the set of PEMs) should be computed to reduce the running time
and/or output size of the algorithm.

When the set of reactions of interest contains only a handful of reactions,
the method presented in Chapter 5 provides an interesting route to compute
corresponding EMs. However, this is only possible when such elementary
modes, containing all reactions of interest exist. With an increased number
of reactions of interest, the likelihood for the existence of such a speci�c EM
dramatically decreases (e.g. it is enough for the subnetwork to contain two
parallel reactions for no EM to exist). A workaround would be to individually
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Figure 7.1: A small metabolic network with 17 reactions. We might be interested

only in a subnetwork containing reactions {1, . . . , 9}, which are shown by red arrows.
This subnetwork will be called SuN.

study every subset of the subnetwork, which would lead to an exponential
number of MILPs to solve.

Several alternative approaches to this problem have been proposed in the
literature. These strategies can be classi�ed into four main categories:

7.3.1 Computation of a subset of EMs

The �rst strategy is to constrain the complete set of EMs (or EXPAs) to a
subset describing a phenotype space or a set of phenotypic data. For example,
Covert and Palsson [21] showed that consideration of regulatory constraints
in the analysis of a small �core metabolism� model can reduce the set of
80 EXPAs to a set of 2 to 26 EXPAs, depending on the applied regulatory
constraints.

Urbanczik [125] suggested to compute �constrained� elementary modes
which satisfy certain optimality criteria. As a result, instead of a full enu-
meration of EMs, only a subset of them should be computed, which results
in a big computational gain. The idea of reducing the set of EMs has been
used recently in an approach called yield analysis [110]. In this approach, the
yield space (or solution space) is de�ned as a bounded convex hull. Then, the
minimal generating set spanning the yield space is recalculated, and therefore,
all EMs with negligible contribution to the yield space can be excluded. The
authors show that their method results in 91% reduction of the EM set for
glucose/xylose-fermenting yeast.

7.3.2 Computation of EMs in isolated subsystems

A second strategy to focus on the EMs (or EXPAs) of interest is to select
a (possibly disconnected) subnetwork, rather than the complete metabolic
model, by assuming all other reactions and metabolites to be �external�, and
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Figure 7.2: The reduced subnetwork comprising only the nine interesting reactions

of interest from Fig. 7.1. Metabolites in the subnetwork, that do not have both an

adjacent producing and consuming reaction, are treated as external.

computing the EMs (or EXPAs) of this selected subsystem. This idea, i.e.,
cutting out subsystems or splitting big networks into several subsystems, is
broadly used in the literature (e.g., see [80, 102, 97, 95, 108, 111, 15, 109, 128,
129, 55, 120, 54]). In some of these studies, not only the system boundary is
redrawn, but also some reactions may be removed for further simplifying the
network.

Although this strategy is useful, it can result in serious errors in the com-
putational analysis of network properties [50]. For example, dependencies and
coupling relationships between reactions can be in�uenced by redrawing the
system boundaries. Burgard et al. [12] showed that subsystem-based �ux cou-
pling analysis of the H. pylori network [95] results in an incomplete detection
of coupled reactions. Kaleta et al. [50] suggest that neglecting such a cou-
pling can lead to �uxes which are not part of any feasible EM in the original
complete network. Existence of such infeasible �pathway fragments� [44] can
result in incorrect conclusions.

To better understand this problem, we consider Fig. 7.1 as an example.
Let us assume that we are interested in a subnetwork composed of reactions
1, . . . , 9. This subnetwork is called SuN. If we simply assume the �uninterest-
ing� reactions and metabolites to be the external reactions and metabolites,
we will obtain the subsystem shown in Fig. 7.2. This subnetwork has only
four EMs, two of which are not part of any feasible steady-state �ux vector
in the complete network. For example, the EM composed of reactions 5 and
7 in Fig. 7.2 cannot appear at steady-state in the original complete network,
because the coupling between reaction 1 and reaction 5 is broken. Therefore,
analysing this subnetwork instead of the original network can result in false
conclusions.
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7.3.3 Computation of elementary �ux patterns

We observed that some errors may appear in the analysis of isolated subsys-
tems. One possible solution to this problem is to compute a �large� subset
of PEMs, or alternatively, as suggested by Kaleta et al. [50], to compute the
support of a subset of PEMs. These authors proposed a procedure to compute
the elementary �ux patterns (EFPs) of a subnetwork within a genome-scale
network. A �ux pattern is de�ned as a set of reactions in a subnetwork that is
included in the support of some steady-state �ux vector of the entire network
[50]. A �ux pattern is called an elementary �ux pattern if it is not the union
of two or more di�erent �ux patterns (see Subsection 1.3.6 for more details).
Each EFP is the support of (at least) one PEM. It is suggested that in many
applications, the set of EFPs can be used instead of EMs [50].

Although EFPs are promising tools for the analysis of metabolic pathways,
they also have their own shortcomings. The �rst important drawback of EFPs
is that they cannot be used in place of EMs in certain applications [35], where
the precise �ux values are required. For example, in the identi�cation of all
pathways with optimal yield [102, 107] and in the analysis of control-e�ective
�uxes [111, 15, 138], the �ux values of the respective reactions in the EMs
should be taken into account.

Another important shortcoming of EFP analysis is that it is possible to
have very di�erent EMs represented by the same EFP, since �ux values are
ignored in EFPs. For example, consider the case that two reactions i and j
are partially coupled [12]. This means that there exist at least two EMs, say
e and f , such that ei/ej 6= fi/fj [72]. However, if we consider a subnetwork
composed of these two reactions, then we will only have one EFP, namely
{i, j}. From the theoretical point of view, �nding all EMs that correspond to
a certain EFP is computationally hard (see Chapter 5).

Every EFP is related to at least one EM in the original metabolic network.
However, one of the limitations of EFP analysis is that EFPs are activity
patterns of some EMs, not necessarily all of them. We will show this by an
example. In Fig. 7.1, the �ux cone is a subset of R17, while the subnetwork
SuN induces a 9-dimensional subspace X = R9. If G is the set of EMs in
Fig. 7.1, then the set of PEMs can be computed as P = {PX(e) | e ∈ G}. The
set of the 10 PEMs of SuN in Fig. 7.1 is shown in Table 7.1.

For the same network and subnetwork, we used EFPTools [49] to compute
the set of EFPs. The resulting 7 EFPs are also presented in Table 7.1. If we
compare the PEMs and EFPs, we �nd out that the support of each of the
�rst 7 PEMs is equal to one of the EFPs. However, for the last three PEMs
no corresponding EFP can be found in Table 7.1. This is due to the fact that
supp(p8) = E4∪E5, supp(p9) = E3∪E5, and supp(p10) = E1∪E2. Hence,
the �ux patterns corresponding to these PEMs are not elementary. Therefore,
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Table 7.1: List of elementary �ux patterns, projected cone elementary modes and

projected elementary modes of SuN. Flux through reactions 1, . . . , 9, respectively,

are the elements of the shown vectors. Zero vector and also the empty set are

excluded.

EFPs EFP set ProCEM PEM vector

E1 {9} u1 p1 (0, 0, 0, 0, 0, 0, 0, 0, 1)

E2 {8} u2 p2 (0, 0, 0, 0, 0, 0, 0, 1, 0)

E3 {1, 4} u3 p3 (1, 0, 0, 1, 0, 0, 0, 0, 0)

E4 {1, 2, 3} u4 p4 (1, 1, 1, 0, 0, 0, 0, 0, 0)

E5 {1, 5, 7} u5 p5 (1, 0, 0, 0, 1, 0, 1, 0, 0)

E6 {1, 4, 6, 7} u6 p6 (1, 0, 0, 1, 0, 1, 1, 0, 0)

E7 {1, 2, 3, 6, 7} u7 p7 (1, 1, 1, 0, 0, 1, 1, 0, 0)

− − u8 p8 (1, 1, 1, 0, 1, 0, 1, 0, 0)

− − u9 p9 (1, 0, 0, 1, 1, 0, 1, 0, 0)

− − − p10 (0, 0, 0, 0, 0, 0, 0, 1, 1)

some EMs may exist in the network which have no corresponding EFP on a
certain subnetwork. This means that by EFP analysis possibly many EMs of
the original network cannot be recovered. Informally speaking, we may ask
whether the set of EFPs is the largest set of PEM supports which can be
computed without enumerating all EMs.

7.3.4 Projection methods

A possible strategy to simplify the network analysis is to project the �ux cone
down to a lower-dimensional space of interest. In other words, if we are inter-
ested in a subnetwork, we may project the �ux cone onto the lower-dimensional
subspace de�ned by the �interesting� reactions. Note that projecting the �ux
cone is in general di�erent from removing reactions from the network.

Consider the simple network shown in Fig. 7.3A and a graphical repre-
sentation of its corresponding �ux space in Fig. 7.3C (here, the axes r1, r2, r3
correspond to reactions 1, 2, 3, thus the �ux cone is the open triangle shown in
light green). This network has two EMs, which are the generating vectors of
the �ux cone, g1 and g2. Now, if we are interested in a subnetwork composed
of reactions 1 and 2, then we can project the �ux cone to the 2D subspace
produced by these two reactions. The projected cone is shown in dark green.
When the �ux cone is projected onto the lower-dimensional space, new gen-
erating vectors may appear. In this example, g1 and g3 (in 2D space) are the
generating vectors of the projected cone. Intuitively, one can think about g3
as the projected �ux vector through reaction 1 and 3. This projected �ux



128 Chapter 7. Analysis of Metabolic Subnetworks by Projection

1

A
2 3

1

A
2

(A)

(B)

(C)

r1

r2

r3

g 3

g 2

g 1

Figure 7.3: A small metabolic network. The reactions in the interesting subnet-

work are shown as red arrows. (B): the same metabolic network as in (A), but with

reaction 3 removed. The �ux cone of this network is generated by only one vector,

namely g1. (C): The �ux cone of the network in (A), shown in light green, can be

generated by vectors g1 and g2. The projected �ux cone is shown in dark green and

is generated by g1 and g3 in a two dimensional subspace.

cone is certainly di�erent from the �ux cone of a network made by deleting
reaction 3 (Fig. 7.3B). Such a network has only one EM, and its corresponding
�ux cone can be generated by only one vector, namely, g1.

Historically, the idea of �ux cone projection has already been used in some
papers. Wiback and Palsson [134] suggested that the space of cofactor produc-
tion of the red blood cell can be studied by projecting the cell-scale metabolic
network onto a 2D subspace corresponding to ATP and NADPH production.
A similar approach was used by Covert et al. [21] and also by Wagner and
Urbanczik [133] to analyze the relationship between carbon uptake, oxygen
uptake and biomass production. All the above studies considered very small
networks. Therefore, the authors computed the extreme rays of the �ux cone
and then projected them onto the subspace of interest, without really project-
ing the �ux cone. Urbanczik and Wagner [126] later introduced the concept of
elementary conversion modes (ECMs), which are in principle the extreme rays
of the cone obtained by projecting the original �ux cone onto the subspace of
boundary reactions. They suggest that the extreme rays of this �conversion�
cone, i.e., the ECMs, can be computed even for large networks [124].

Following this idea, we introduce the ProCEM set (�Projected Cone Ele-
mentary Mode� set), which is the set of EMs of the projected �ux cone. In
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contrast to [126], we formulate the problem in a way that any subnetwork can
be chosen, not only the boundary reactions. Additionally, we compare the
closely related concepts of ProCEMs, PEMs and EFPs.

7.4 An algorithm for computing the set of ProCEMs

7.4.1 Computational procedure

For computing ProCEMs of a given subnetwork, we use the block elimination
algorithm [4], which is based on the �projection lemma� (see Section I.4 in
[76]).

Our algorithm needs three input objects: the stoichiometric matrix S ∈
Rm×n of the network N , the set of irreversible reactions Irr ⊆ {1, . . . , n},
and the set of reactions Σ ⊆ {1, . . . , n} in the subnetwork of interest, while
as an output it will return the complete set of ProCEMs. The computation
of ProCEMs is achieved in three main consecutive steps.

Step 1 - Preprocessing: The aim of this step is to remove inconsistencies
from the metabolic network and to transform it into a form suitable for
the projection in Step 2. First, based on Σ we sort the columns of S in
the form:

S̄ =
(
Ā B̄

)
(7.2)

where the reaction corresponding to the i-th column belongs to Σ i� the i-
th column is in Ā. Next, the blocked reactions [12] are removed. Finally,
each of the reversible reactions is split into two irreversible �forward�
and �backward� reactions. The �nal stoichiometric matrix will be in the
form:

S ′ =
(
A B

)
(7.3)

where the columns of A represent the �interesting� reactions after split-
ting reversible reactions and removing the blocked reactions. In the
following, we assume that A (resp. B) has p (resp. q) columns.

Given S ′, the steady-state �ux cone in canonical form will look as follows

C = {(x, y) ∈ Rp+q | G · x+H · y ≤ 0}, (7.4)

where the matrices G (resp. H) represent the columns to be kept (resp.
eliminated):

G =


−A
A
−Ip
0q,p

 , H =


−B
B

0p,q
−Iq

 (7.5)

Here Ip denotes the p× p identity matrix, and 0p,q the p× q zero matrix.
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Step 2 - Cone Projection: In this step, the �ux cone is projected, elimi-
nating the reactions corresponding to columns in H. Several methods
have been proposed in the literature for the projection of polyhedra [48].
For our purpose we chose the block elimination method [4]. This method
allows us to �nd an inequality description of the projected cone by enu-
merating the extreme rays of an intermediary cone called the projection
cone. In our case, the projection cone is de�ned as

W = {w ∈ R2m+p+q | HT · w = 0, w ≥ 0}, (7.6)

where HT denotes the transpose of H.

We enumerate the extreme rays {r1, r2, ..., rk} of W using the double
description method [33]. The projected cone is given by

PX(C) = {x ∈ Rp | R ·G · x ≤ 0}, (7.7)

where
R = (r1 . . . rk)T . (7.8)

This representation of the projected cone contains as many inequalities
as there are extreme rays in W , thus a large number of them might
be redundant [48]. These redundant inequalities are removed next (see
below).

Step 3 - Finding ProCEMs: In the �nal step, the extreme rays of the pro-
jected cone, i.e., the ProCEMs, are enumerated. Similarly as in Step 2,
the double description method is employed to enumerate the extreme
rays of PX(C).

With the block elimination algorithm, it is also possible to perform the
projection in an iterative manner. This means that rather than eliminating
all the �uninteresting� reactions in one step, we can partition these in t subsets
and then iteratively execute Step 2, eliminating every subset of reactions one
by one. By proceeding in this fashion, the intermediary projection cones,
W 1,W 2, ...,W t get typically smaller, thus enumerating their extreme rays
requires less memory. On the other side, the more sets we partition into, the
slower the projection algorithm usually gets.

7.4.2 Implementation and computational experiments

The ProCEM enumeration algorithm has been implemented in Matlab [74]. In
our implementation, polco tool v4.7.1 [118, 119] is used for the enumeration
of extreme rays (both in Step 2 and 3). For removing redundant inequalities
in Step 2, the redund method from the lrslib package v4.2 is applied [3].
All computations were performed on a 64-bit Debian Linux system with Intel
Core 2 Duo 3.0 GHz processor. A prototype implementation is available on
request from the authors.
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7.4.3 Dataset

The metabolic network model of red blood cell (RBC) [134] was used in this
study. The network was taken from the example metabolic networks associ-
ated with CellNetAnalyzer [59] and di�ers slightly from the original model.
Additionally, we studied the plastid metabolic network of Arabidopsis thaliana
(see Additional �le 1 in [73]). This network was extracted from the genome-
scale metabolic network of A. thaliana [27] by focusing on those metabolites
which appeared in the plastid compartment. Then, the subsystem of �sugar
and starch metabolism� was selected as the interesting subnetwork of the
plastid metabolic network.

7.5 Results and discussion

7.5.1 Mathematical relationships among PEMs, EFPs and Pro-
CEMs

From Table 7.1, one can observe that the set of ProCEMs in Fig. 7.1 is included
in the set of PEMs. Additionally, the set of EFPs is included in the set
of ProCEM supports. Here, we prove that these two properties are true in
general. This means that the analysis of ProCEMs has at least two advantages
compared to the analysis of EFPs. Firstly, ProCEMs can tell us about the
�ux ratio of di�erent reactions in an elementary mode, while EFPs can only
tell us whether the reaction has a non-zero value in that mode. Secondly,
enumeration of ProCEMs may result in modes which cannot be obtained by
EFP analysis.

Theorem 7.4. In a metabolic network N with irreversible reactions only, let
J (resp. P ) be the set of ProCEMs (resp. PEMs) for a given set of �interesting�
reactions. Then J ⊆ P .

Proof. We have to show that for every u ∈ J there exists an elementary mode
e ∈ C in N , such that PX(e) ∼= u.

We know that for any u ∈ J , there exists v ∈ C, such that PX(v) = u.
Any v ∈ C can be written in the form v =

∑r
k=1 ck · ek, where e1, . . . , er

are some elementary modes of N and c1, . . . , cr > 0. Thus, u = PX(v) =
r∑

k=1

ck · PX(ek).

If all the vectors PX(ek) are pairwise equivalent, u is a PEM. Otherwise,
u is a linear combination of at least two non-equivalent PEMs, which are
vectors in PX(C). Thus, u is not an extreme ray of PX(C), in contradiction
with Lemma 1 in [35] stating that in a metabolic network with irreversible
reactions only, the EMs are exactly the extreme rays.



132 Chapter 7. Analysis of Metabolic Subnetworks by Projection

Theorem 7.5. In a metabolic network N with irreversible reactions only, let
E (resp. J) be the set of EFPs (resp. ProCEMs) for a given set of interesting
reactions. Then, E ⊆ {supp(u) | u ∈ J}.

Proof. Assume by contradiction, that for some f ∈ E, there exists no v ∈ J
such that f = supp(v).

Since f is an EFP, then there exists p ∈ P (the set of PEMs), such that
f = supp(p). Thus, we have p /∈ J , but p ∈ PX(C). There exist r ≥ 2 di�erent

ProCEMs, say u1, . . . , ur ∈ J , such that p =
r∑

k=1

ck · uk, with ck > 0 for all k.

Since uk ≥ 0, for all k, we have supp(p) =
r⋃

k=1

supp(uk), with supp(uk) 6=

supp(p) for all k. Since supp(uk) is a �ux pattern for all k, this is a contra-
diction with f being an EFP. Hence, the statement follows.

7.5.2 ProCEMs inherit existing coupling relations

In Subsection 7.3.2 we have questioned whether studying isolated subsystems
produces relevant results, as it does not preserve the coupling relations from
the original network. In the following, we prove that projection, and in speci�c
the set of ProCEMs, preserves the already existing relations, while possibly
introducing new ones.

Proposition 7.6. Given a metabolic network N = (S, Irr) with an associated
steady-state �ux cone C, let i and j be two reactions present both in the original
network and the subnetwork of interest. Then i−→ j (resp.i←→ j or i⇐⇒ j)
in C implies, i−→ j (resp.i←→ j or i⇐⇒ j) in PX(C).

Proof. We will prove the statement for directional coupling. The other two
cases follow similarly.

Assume by contradiction that i 6−→ j in PX(C). Then there exists x ∈
PX(C) with xi 6= 0 and xj = 0. Thus, there also exists v := (x, y) ∈ C with
vi 6= 0 and vj = 0. This is a contradiction to i−→ j in C.

The reverse of the statements is not true. Since ProCEMs represent a
compressed set of descriptors for the steady-state �ux cone, new coupling re-
lations can appear. To exemplify this behavior, we refer the reader to Fig. 7.2.
Here, reactions r4 and r6 are directionally coupled, although in the originating
network (Fig. 7.1) the same two reactions were uncoupled.
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7.5.3 Computing the set of EFPs from the set of ProCEMs

Here, we present a simple algorithm to show that it is possible to compute
the set of EFPs when the set of ProCEMs is known. Algorithm computeEFP
summarizes this procedure.

Algorithm computeEFP

Input

J - the complete set of ProCEMs

Output

E - the complete set of EFPs

1. E := ∅
2. for each u ∈ J do

3. Z := supp(u)

4. for each v ∈ J do

5. if supp(v) ( supp(u) then

6. Z := Z − supp(v)

7. end if

8. end for

9. if Z 6= ∅ then
10. E := E ∪ {supp(u)}
11. end if

12. end for

We know that the support of every ProCEM u is a �ux pattern Z.
Moreover, Theorem 7.5 asserts that every EFP has a corresponding ProCEM.
Hence, in the procedure, we only need to check which �ux patterns are
elementary. If Z is not elementary, then it is equal to the union of some other
�ux patterns. Therefore, to check the elementarity of a �ux pattern supp(u),
one can iteratively subtract from it all other �ux patterns, which are subsets
of supp(u). Once all �ux patterns have been subtracted (excluding itself),
the result becomes the empty-set if and only if supp(u) was an EFP. This
algorithm has the complexity O(nq2), where q is the number of ProCEMs
and n is the number of reactions.

7.5.4 Comparing EFPs and ProCEMs

Analysis of subnetworks in the metabolic network of red blood cell

In order to compare our approach (computation of ProCEMs) with the enu-
meration of EFPs, we tested these methods for analysing subnetworks of the
RBC model [134]. Again, we split every reversible reaction into one forward
and one backward irreversible reaction. The resulting network contains 67
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reactions, including 20 boundary reactions, and a total number of 811 EMs.
For comparing the methods, the set of all boundary reactions was considered
as the interesting subsystem.

• Computing PEMs from EMs: A total set of 502 PEMs was computed.

• Computing ProCEMs: Using our method 252 ProCEMs were computed.

• Computing EFPs: Using both EFPTools [49] and computeEFP, a com-
plete set of 90 EFPs is determined.

The above results imply that the ProCEMs cover more than half of the
PEMs, while the EFPs cover less than one �fth of the PEMs. This provides
empirical evidence for the relevance of using ProCEMs for the analysis of
subnetworks.

In order to compare the computational runtime of EFPs and ProCEMs, as
well as the number of elements in both sets, the following task was performed
on the RBC model [134]. In each iteration, a random subnetwork containing r
reactions was selected, for which the EFPs and ProCEMs were computed. The
task was repeated for di�erent subnetwork sizes. The computational results
can be found in Fig. 7.4.

From Fig. 7.4, it results that EFP computation is faster than ProCEM
computation for small subnetworks. However, when the subnetwork size r in-
creases, computation of ProCEMs does not become slower, while computation
of EFPs signi�cantly slows down. This is an important observation, because
the di�erence between the number of EFPs and ProCEMs also increases with
r.

Analysis of subnetworks in the plastid metabolic network of Arabidopsis

thaliana

ProCEM analysis becomes important when PEMs cannot be computed. This
may happen frequently in the analysis of large-scale metabolic networks, as
memory consumption is a major challenge in computation of EMs [118]. In
such cases, cone projection might still be feasible.

As an example, the metabolic network of A. thaliana plastid was studied
(Additional �le 1 in [73]). This network contains 102 metabolites and 123
reactions (205 reactions after splitting reversible reactions). The reactions we
were interested in are the 57 reactions involved in sugar and starch metabolism
(see Additional �le 1 in [73]). Applying the presented methods, gave the
following results:
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• Computing PEMs from EMs: Using efmtool (and also polco) [118],
the computation of EMs was not possible due to running out of memory,
even with 2 GB of allocated memory. Therefore, for no subnetwork of
the plastid network, PEMs could be computed.

• Computing ProCEMs: We have computed the ProCEMs as described
in the Method and Implementation section, using a projection step size
of 5 reactions. The complete set of 1310 ProCEMs was computed in
approximately 15 minutes.

• Computing EFPs using EFPTools [50, 49]: The tool iteratively found
279 EFPs, after 4 days of running time, after which it was manually
stopped. Interestingly, already 270 EFPs were computed in the �rst two
days, proving the signi�cant slowdown e�ect the program displayed.

• Computing EFPs using computeEFP : The complete set of 1054 EFPs
was obtained in 30 seconds.

We conclude that in metabolic networks for which the set of EMs cannot
be enumerated, ProCEMs prove to be a useful concept to get insight into
reaction activities.
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• For studying the behaviour of a subnetwork or a subset of reac-
tions of interest, we introduce the concept of ProCEMs.

• We prove that the set of ProCEMs is �inbetween� the set of PEMs
and the set of EFPs.

• A possible implementation to compute ProCEMs is outlined.

• We show on real metabolic networks that in some cases it is pos-
sible to compute all ProCEMs, where enumerating the complete
set of PEMs or EFPs is not practical.

Summary of the chapter
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Appendix A

Abbreviations

CBM - constraint-based model-
ing

CFCA - constrained �ux cou-
pling analysis

DAG - directed acyclic graph

EM - elementary (�ux) mode

EFM - elementary �ux mode

EFP - elementary �ux pattern

F2C2 - fast �ux coupling calcu-
lator

FBA - �ux balance analysis

FCA - �ux coupling analysis

FCF - �ux coupling �nder

FFCA - feasibility-based �ux
coupling analysis

FVA - �ux variability analysis

LP - linear program

MAC - metabolite activity cou-
pling

MCC - metabolite concentra-
tion coupling

MCCA - metabolite concentra-
tion coupling analysis

MCS - minimal cut sets

MILP - mixed integer linear
program

MIP - mixed integer (linear)
program

MMB - minimal metabolic be-
havior

NP - non-deterministic polyno-
mial (time)

ODE - ordinary di�erential
equation

P - polynomial (time)

PEM - projected elementary
mode

ProCEM - projected cone ele-
mentary mode

SCC - strongly connected com-
ponent
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