Geometric and Combinatorial Problems
of
Matching and Partitioning
Theoretical Computer Science
-

Dissertation zur Erlangung des Doktorgrades

vorgelegt am

Fachbereich Mathematik und Informatik
der Freien Universitat Berlin
Februar 2015

von

Tillmann Miltzow

Institut fiir Informatik
Freie Universitiat Berlin
Takustrafte 9
14195 Berlin
t.m@fu-berlin.de

1. Gutachter : Prof. Dr. Giinter Rote
2. Gutachter : Prof. Dr. Stefan Felsner

Datum der Disputation: 5.Juni.2015

0.1 Zusammenfassung

In dieser Arbeit betrachten wir vier Probleme der Theoretischen Informatik:

1. Disjunkte Einheitsscheiben in der Ebene und disjunkte Einheitskugeln im Raum
lassen sich durch Hyberebenen separieren. Dabei wird versucht die Anzahl der
Schnitte von der Ebene mit den Objekten zu minimieren. Obwohl erste Arbeiten
dazu in den 80°" Jahren des letzten Jahrhunderts entstanden, gab es bis dato
noch keinen optimalen deterministischen Algorithmus um solch eine Hyperebene
zu finden. Wir stellen einen exakten Algorithmus in der Ebene und einen approxi-
mativen Algorithmus in hoheren Dimensionen vor. (Dieser Teil entstand gemeinsam
mit Michael Hoffman und Vincent Kusters.)

2. Tron ist ein Computerspiel aus den 80°" Jahren, das zunéchst von Bodlaender und
Kloks auf abstrakten Graphen studiert wurde. Wir beantworten offen geblieben Fra-
gen zur algorithmischen Komplexitdt und untersuchen das maximal und minimale
Punktunteverhéltnis der beiden Spieler bei rationaler Spielweise. (Beide Spieler
erzielen im Laufe des Spieles Punkte.) Wir betrachten diese Fragen in verschiede-
nen Spielmodi.

3. Pareto Optimale Matchings kommen aus der Okonomie und Spieletheorie und be-
schreiben bestimmte "stabile" Situationen &hnlich einem Nash-Equilibrium. Sie
spielen auch in algorithmischen Problemen eine Rolle. Wir geben eine obere Schran-
ke fiir die Anzahl fiir Pareto Optimale Matchings unter einfachen Nebenbedingungen
an. Desweiteren 16sen wir eine Reihe verwandter algorithmischer Probleme. (Dieser
Teil entstand gemeinsam mit Balazs Keszegh und Andrei Asinowski.)

4. Geometrische Matchings sind kreuzungsfreie Strecken, die eine Menge von Punkten
in der Ebene verbinden. Obwohl es sehr einfach ist gefdarbten Punktmengen mit
nur einem einzigen geometrischen Matching zu finden, gelang es erst jetzt solche
Punktmengen allgemein zu charakterisieren. Weitere Fragen zu dieser Klasse von
Punktmengen wurden beantwortet. (Dieser Teil entstand gemeinsam mit Andrei
Asinowski und Giinter Rote.)

Contents

(0.1 Zusammenfassung|.o
[1__Introduction|

(1.1 Halving Balls in Deterministic Linear Time|.

M27TRON .« o o o oo e

(1.3 Pareto Optimal Matchings|

(1.4 Unique Bichromatic Matchings

2 Halving Balls|

2.1 Introductionl
[2.2 Separating balls in higher dimensions
[2.2.1 Overview of the approximation algorithm.
[2.2.2 How to find a good direction.|
2.3 An Exact Algorithm in the Plane|
[2.3.1 Point-line Duality|
[2.3.2 Overview ot the Algorithm.|
[2.3.3 Analysis of the Algorithm.
[2.3.4 Trapezoid Construction|.
[2.3.5 Counting Vertices|
[2.3.6 Bounding the Number of Vertices|
[2.3.7 Bounding the Intersections with the 1-tubel.
2.4 Conclusionsl
B_Tronl
(3.1 Introduction|
(3.2 DBasic Observations| o
[3.3 Extremal Question| oo
[3.3.1 Misere Gamelo
[3.3.2 The normal game on general graphs|.
[3.3.3 Planar Graphs| o0
[3.3.4 k-connected Visage|
[3.4 Complexity Question|
[3.4.1 Normal Play|.,
3.4.2 Misere Gamel
3.0 Conclusion|.

© 00 I N

10

11
11
13
16
17
20
20
23
28
30
31
33
34
39

[4 Pareto Optimal Matchings|

4.1 Introduction| . .

(5.2 Preliminary results| oo

(.21 Chromaticcutd o o

[5.2.2 "T'he sidedness relation between segments|

[b.3 Quasi-parallel, or linear, matchings|

[>.3.1 Characterizations of linear matchings|

[5.3.2 Proot of Theorem [5.20[by the Fishnet Lemmal

[>.4 Circular matchings|

[>.4.1 The structure of circular matchings|

[6.4.2 Proofs of Theoremsb.5landB.7

(5.5 Algorithms|. . .

[>.5.1 Testing a matching for uniqueness|.

[5.5.2 Testing for a circular matchingl

[5.5.3 Finding a balanced line}.o

[5.6 Open questions|

[Acknowledgments|

73
73
73
74
76
7
79
80
81

87
87
87
38
90
90
91
91
94
94
94
98
101
101
105
106
106
108
109
111

113

Chapter 1

Introduction

In this chapter, we will describe briefly the results of the forthcoming chapters and we
will draw some connections between them. More detailed introductions will be found at
the beginning of each chapter.

The work about Tron can be found online [55] and a preliminary version appeared at
FUN 2012 [56]. The work about Unique bichromatic matchings can be found online [I1]
and is accepted for publication in the JOCG [12]. The work on Pareto optimal matchings
can be found online [9] and a preliminary version appeared at FUN 2014 [10]. The work
about Separating balls by hyperplanes can be found online [38] and a preliminary version
appeared at ESA 2014 [39)].

The results presented here are joint work with my co-authors.
theorems are a product of collaboration and cannot be credited by only one of the authors.

Therefore, I omit the specification of credits.

Most lemmas and

1.1 Halving Balls in Deterministic Linear Time

Figure 1.1: A set of 18 disks in R? and three separators. The dashed line forms a 6-separator.
Both the solid line and the dotted line are halving lines. The solid line is preferable to the other
two lines because it separates exactly into half and half and intersects no disks.

This chapter originated during a research visit in Ziirich with Michael Hoffmann and

Vincent Kusters.

Chapter [2] is about separating balls by hyperplanes. Let D be a set of n disjoint
unit balls in R¢ and let P be the set of their center points. A hyperplane H is an
m-separator for D if each closed halfspace bounded by H contains at least m points
from P. This generalizes the notion of halving hyperplanes, which correspond to n/2-
separators. The analogous notion for point sets has been well-studied. Separators have
various applications, for instance, in divide-and-conquer schemes. In such a scheme any
ball that intersects the separating hyperplane may still interact with both sides of the
partition. Therefore it is desirable that the separating hyperplane intersects a small
number of balls only.

We will present an approximation-scheme that, with the right parameters, constructs
an an-separator for balls in R?, for any 0 < o < 1/2, which intersects at most cn(@=1/d
balls, for some constant ¢ that depends on d and «. This upper bound is asymptotically
optimal.

Next, we give a linear-time algorithm to construct a halving line in R? that intersects
O(n?%) disks, with & arbitrarily close to 2/3.

1.2 TRON

7

Figure 1.2: ALICE achieves a score of 5 and BOB achieves a score of 3.

Chapter [3| analyzes some aspects of the game, called TRON. TRON is a two player
game played on an abstract simple graph. It is motivated by the movie with the same
name and was first studied before by Bodlaender [19]. During the game, the players take
turns alternately. Each turn consists of visiting a vertex adjacent to the vertex visited
last by this player. A vertex that was already visited cannot be revisited ever again.
Thus each player forms a path(two paths in total). The game ends when both players
cannot move. The player with the longer path wins. We consider eight different game
modi: start vertices are given or not, the graph is directed or undirected and whether
we consider normal play or misére play. In misere play, the player with the shorter path
wins. The first part of the chapter deals with the question, by how much one player can
be better than the other. It turns out that for all game modi either player can get all
vertices except constantly many. The second part considers the algorithmic complexity.
We show PSPACE-completeness for all game modi. In particular Bodlaender and Kloks
conjectured PSPACE-completeness for normal play on an undirected graph without given
start vertices [20]. We prove this conjecture.

8

1.3 Pareto Optimal Matchings

A
B | O O] O] O] O]
[] [] [] [] []
1 2 3 4 5)

Figure 1.3: Here Set A consists of 3 people and set B of 5 houses. The preference lists of each
person is indicated and a matching is indicated by circles and arrows. However it is not Pareto
Optimal. Person 1 and 2 form a blocking coalition.

This is joined work with Andrei Asinowski and Balazs Keszegh.

Chapter [4] deals with combinatorial and algorithmic aspects of Pareto Optimal match-
ings in the house allocation problem.

In an instance of the house allocation problem, two sets A and B are given. The
set A is referred to as applicants and the set B is referred to as houses. We denote by
m and n the size of A and B respectively. In the house allocation problem, we assume
that every applicant a € A has a preference list over every house b € B. We call an
injective mapping 7 from A to B a matching. A blocking coalition of T is a subset A’ of
A such that there exists a matching 7’ that differs from 7 only on elements of A’, and
every element of A’ improves in 7/, compared to 7 according to its preference list. If there
exists no blocking coalition, we call the matching T an Pareto optimal matching (POM).
A house b € B is reachable if there exists a Pareto optimal matching using b. The set of
all reachable houses is denoted by E*. We show

|E*| < Z L?J = O(mlogm).
R

This is asymptotically tight. A set E C B is reachable (respectively exactly reachable) if
there exists a Pareto optimal matching 7 whose image contains E as a subset (respectively
equals E). We give bounds for the number of exactly reachable sets. Further, we give

9

complexity results and algorithms for corresponding algorithmic questions. Finally, we
characterize unavoidable houses, i.e., houses that are used by all POM’s. This yields
efficient algorithms to determine all unavoidable elements.

1.4 Unique Bichromatic Matchings

Figure 1.4: (a) An non-unique matching . (b) A linear matching. (c¢) A circular matching
(another matching for the same point set is indicated by dashed lines).

This is joined work with Andrei Asinowski and Giinter Rote.

Chapter o characterizes bichromatic point sets in the plane with exactly one geometric
matching.

Given a set of n red and n blue points in general position in the plane, it is well-
known that there is at least one bichromatic perfect matching realized by non-crossing
line segments. We characterize such point sets that have exactly one matching of this
kind. We find several geometric descriptions of such sets, and give an O(n logn) algorithm
that checks whether a given bichromatic set has this property.

Given a perfect bichromatic matching M, a chromatic-cut is a line ¢ intersecting at
least two segments A and B of M in such a way that the endpoints of A and B on one
side of ¢ have different colors, see Figure a). We will show that the existence of a
chromatic-cut implies the existence of another matching M’ and thus M was not unique.
Matchings without a chromatic cut fall into two categories. Either they are of linear or
circular type. We will characterize both of them and conclude that exactly the matchings
of linear type are unique. See Figure|l.4]b) for a matching of linear type and Figure|l.4]c)
for a matching of circular type.

10

Chapter 2

Halving Balls

Figure 2.1: A set of 18 disks and three separators. The dashed line forms a 6-separator. Both
the solid line and the dotted line are halving lines. The solid line is preferable to the other two
lines because it separates perfectly and does not intersect any disk.

2.1 Introduction

Let D be a set of n pairwise disjoint unit balls in R? and P the set of their midpoints. A
hyperplane H is an m-separator for D if each closed halfspace bounded by H contains at
least m points from P. This generalizes the notion of halving hyperplanes, which corre-
spond to [n/2]-separators. The analogous notion of separating hyperplanes for point sets
has been well studied (see, e.g, [52] for a survey). Separators have various applications,
for instance in divide-and-conquer schemes (we discuss some explicit examples below). In
such a scheme any ball that is intersected by the separating hyperplane may still interact
with both sides of the partition. Therefore it is desirable that the separating hyperplane
intersects a small number of balls only.

Alon, Katchalski and Pulleyblank [6] prove that for any set D in R?, there exists a di-
rection such that every line with this direction intersects O(y/nlogn) disks. In particular,
this guarantees the existence of a halving line that intersects at most O(y/nlogn) disks.

11

Loffler and Mulzer [50] observed that this proof gives a randomized linear-time algorithm
to find such a halving line. In this chapter, we present the following three deterministic
algorithms, each of which computes an m-separator that intersects o(n) balls for various
m.

We develop a generic algorithm in R that can be instantiated with different param-
eters to obtain Theorem [2.1] and Theorem [2.2] Theorem [2.1]is the most interesting case
and Theorem is an example for a different choice of parameters.

Theorem simply tries, in a certain manner, a constant number of directions for an
m-separator. For each direction a linear amount of time is spent.

Theorem 2.1. Given a set D of n pairwise disjoint unit balls in R? and o € (0,1/2), one
can construct in O(n/(1—2a)) time a hyperplane H that intersects O((n/(1—2a))d=1/d)
balls from D such that each closed halfspace bounded by H contains at least an centers of
balls from D. The constants hidden by the asymptotic notation depend on d only.

Theorem uses a bit more than constantly many directions and thus also a bit
more than linear time. On both halfspaces defined by the hyperplane are n/2 —o(n) balls
completely contained and thus only a sublinear number of balls are intersected.

Theorem 2.2. Given a set D of n pairwise disjoint unit balls in R and a function
f(n) € w(l)no (n'/24=1) “one can construct in O(nf(n)) time a hyperplane H such that

each closed halfspace bounded by H contains at least § — O (%) = 5 —o(n) balls from

D entirely.

Note that the statement would become trivial, if we would not require that the balls
are completely contained, but it would suffice, if they are partially contained. Note that
Theorem improves the separation of the midpoints (compared to Theorem at the
cost of increasing the running time slightly. See Theorem for full generality. We don’t
state it in this introduction, as the full generality seems to be less pleasant to read and
it adds little value. The dependence on the dimension d is unusual and we refrain from
discussing it in this introduction.

Theorem [2.3] computes a true halving line in the plane. This algorithm uses more
insights and sophisticated techniques.

Theorem 2.3. Let ¢ > 0. For any set D of n pairwise disjoint unit disks in R? one
can construct in O(n) time a line ¢ that intersects O(n?/3+¢) disks from D such that each
closed halfplane bounded by ¢ contains at least n/2 centers of disks from D.

Related work. Bereg, Dumitrescu and Pach [16] (see also [58, Lemma 9.3.2]) strengthen
the initial result of Alon, Katchalski and Pulleyblank slightly by proving that there exists
a direction such that any line with this direction has at most O(y/nlogn) disks within
constant distance. They use this lemma to prove that one can always move a set of n
unit disks from a start to a target configuration in 3n/2 + O(y/nlogn) moves. In order
to compute these moves they compute in a brute force manner one halving line as above
with few intersections. Their algorithm runs in O(n32(logn) /%) time. Theorem
improves this to O(nlogn) time.

Held and Mitchell [36] introduced a paradigm for modeling data imprecision where the
location of a point in the plane is not known exactly. For each point, we are given a unit
disk (disjoint from the other disks) that is guaranteed to contain the point. The authors

12

show that after preprocessing the disjoint unit disks in O(n logn) time, they can construct
a triangulation of the actual point set in linear time. Loffler and Mulzer [50] follow the
same model to construct the onion layer of an imprecise point set. They observed that
the proof by Alon et al. immediately gives a randomized expected linear-time algorithm
in the following fashion. Pick an angle 5 € [0, 7] uniformly at random and compute a
halving line for the disks with slope . This halving line intersects at most O(y/nlogn)
unit disks with probability at least 1/2. Loffler and Mulzer use this algorithm to compute
a (a, B)-space decomposition tree: a data structure similar to a binary space partition in
which every line is an ak-separator that intersects at most k? disks. They show that
such a (1/2 +¢,1/2 + €) space decomposition tree can be computed in randomized and
deterministic O(nlogn) time, for every ¢ > 0.

In order to compute this space decomposition in a deterministic way, they present
two algorithms. First, they present a simple deterministic linear-time algorithm that
guarantees that at least /10 of the disks are completely on each side of some axis-parallel
line. This algorithm inspired Theorem 2.1} The second algorithm is a more sophisticated,
deterministic O(nlogn) time algorithm to compute a line £ such that there are at least
n/2 — cn®® disks completely to each side of £. The algorithm uses an r-partition of the
plane [53] to find good candidate lines. Our algorithms improve the running time of those
algorithms and thus also simplify the argument that a space decomposition can be found
in O(nlogn) time.

Tverberg [67] studies a related question. He proves that for every natural number k
there is a number K (k), such that given convex pairwise disjoint sets C1, . .., Ck (), there
always exists a line with some set completely on one side and k sets completely on the
other side.

Let us also mention that geometric separation theorems can be used to find graph
separators for certain graphs with geometric representation [54].

Organization. We develop a generic algorithm to compute a separator in R¢ (where
the trade-off between the number of intersected disks and the number of disk centers
on each side is determined by a parameter) and prove Theorem and Theorem in
Section 2.2 We prove Theorem in Section [2.3] Our algorithm follows the approach
used in the linear-time ham-sandwich cut algorithm [49]. It divides the line arrangement
dual to the set of disk center points by vertical lines such that each slab (the region
bounded by two consecutive vertical lines) contains at most a constant fraction of the
vertices of the arrangement. In each iteration, the algorithm chooses a slab and discards
a linear fraction of the lines.

2.2 Separating balls in higher dimensions

In this section, we develop a generic algorithm to compute a separator for a given set
of pairwise disjoint unit balls in R?. Using this generic algorithm, we will give two
algorithms to compute an approximately halving hyperplane that intersects a sublinear
number of balls.

Besides the set D of n balls in R?, the generic algorithm has two more parameters.
First, a number b € {1,...,n} that quantifies the quality of the approximation: we will
show that the hyperplane constructed by the algorithm forms an (n — b)/2-separator
for D. The main step of the algorithm consists in finding a direction v such that we are

13

guaranteed to find a desired separator that is orthogonal to v. A second parameter k£ € IN
of the algorithm specifies the number of different directions to generate and test during
this step.

As a rule of thumb, generating more directions results in a better separation, because
b can be chosen smaller, but the runtime of the algorithm increases proportionally. The
algorithm works for certain combinations of these parameters only, as detailed in the
following theorem.

Maybe one way to read the following theorem is as follows. The user specifies k (the
number of directions to be tested) and thereafter chooses b as small as possible without
violating Condition ([2.1).

Another perspective is to choose first b and then k. Here k must be chosen large enough
such that condition is satisfied. However, the proof of the theorem yields that the
number of intersections would increase with an increase of k. This is counterintuitive and
only an artifact of the proof technique.

Theorem 2.4. Given a set D of n pairwise disjoint unit balls in R? and parameters
be{l,...,n} and a prime k that satisfy the conditions

dn < kb and (2.1)

Vi 1/d nl/d
t:= (Qd(d—Q)/Q) 12-1/d > 2, (2.2)

where Vy is the volume of the d-dimensional unit ball, one can construct in O(kn) time
a hyperplane H that intersects at most 2b/(t — 2) balls from D such that each closed
halfspace bounded by H contains at least (n — b)/2 centers of balls from D.

Assuming k to be prime is not a restriction: If k is not prime, then there is a prime
kK <k+O(k%), for a =4/5, see [42]. We can compute £’ efficiently, for instance, in O(k)
time using the Sieve of Eratosthenes.

To see the running time upper bound, first note that, we have only to consider primes
in the range U = {1,..., [v/2k]}. And we search for primes in the range W = {k,... k+
¢+ k* — 1}, for some fixed ¢. The computation costs T'(k) are upper bounded by

W ¢k
Tk) < < — a _
(k) <> < > Z, O(k*logk) = O(k),

peU i=2,...,|V2k|

where we used the harmonic series in the penultimate step.

In practice it is sufficient to store small tables of quickly growing primes E

Perhaps more interesting than Theorem in its full generality are the special cases
stated as Theorem and Theorem [2.2] above. We will now prove Theorem [2.1] and
Theorem [2.2] from the general theorem.

Proof of Theorem[2.1. Assume « € (0,1/2) is given. We define b = | (1 — 2a)n] and k a
prime with k& € [-2%- 44] We will show first that Condition (2.1)) and (2.2)) hold for

1—2a° 1—2a
these choices. The first condition holds for large enough n, which can be seen as follows.

2d >((1—2a)n—1)2d:2nd_ 2d > nd.

ko2 [(1=2a)n]3—52 2 1-2a 1-2a =

"http://stackoverflow.com/questions/4475996/given-prime-number-n- compute-the-next-prime

14

http://stackoverflow.com/questions/4475996/given-prime-number-n-compute-the-next-prime

The second condition holds for large enough n for given v and d.
t=g(d) © (nl/d(l — 2a)2_1/d) > 2

Here g is some computable function that depends only on d. The running time is O(kn) =
O(n/(1 —2a)).
The number of midpoints on each side is at least
n—b n—|(1-2a)

n| -
5 5 > an.

The number of intersected balls is bounded by

we-=0(ot i) o))

Remark 2.5. As the dependence of d on the running time is very subtle, we discuss it
here in detail. For a moment we consider a as constant, but not the dimension d. It
1s easy to see that the running time depends quadratically on d: one linear factor stems
from the fact that every primitive operation on vectors of length d takes ©(d) time; the
other linear factor comes from the choice of k = ©(d). However, n must be exponential
in d to satisfy condition . This leads to the following statement about the running
time T'(n,d):

VYd,n : n>g(d) = T(n,d)<c-d™n,

where ¢ is some fixed constant and g is some exponential function. Does this imply
T(n,d) = O(d®n)?

The answer is surprisingly no! Recall by the definition of big O notation the last statement

18 equivalent to:
Ang,do ¥d > do,n >ng : T(n,d) < c-d*n.

The difference is that in the big O notation, the inequality should hold for any n larger
than some universal constant ng. This is in contrast to the previous statement, where the
required magnitude of n depends on d as well!

The proof of the Theorem [2.2] differs mainly in some nuances from the previous one.

Proof of Theorem[2.4. Assume the slowly growing function f : N — IN is given as in
the condition of Theorem 2.2l We define b = [n/f(n)] and k some prime with k €
[df (n), 2df (n)]. We will show first that Condition (2.1]) and (2.2)) hold for these choices.

The first condition is seen as follows.
kb > df(m)[n/f(n)] = nd

The second condition holds for large enough n for given d.

t:g(d)@(#fl/d> > 2

The term g(d) depends on d only and thus is constant for constant d. Here we need that
f(n)=o0 (nl/@d*l)).

15

The running time is O(kn) = O(nf(n)). The number of midpoints on each side is at

most
n—b:n—(n/f(nﬂ:n/Z_O n_\
2 2 7
The number of intersected balls is bounded by

2M/(t —2) = O (len) f(%j/d) =0 ((nfm)' ™) =0 (%) .

Here the last equality follows from the fact that f(n) = o (n'/?¢=Y). It remains to
show that the number of balls on each side is at least n/2 — o(n). Note that the number
of balls completely contained on either side of the hyperplane is bounded by the number
of midpoints on this side minus the number of intersected balls, which equals

(G-oliim) 0 () =50 (560)

as claimed. O

2.2.1 Overview of the approximation algorithm.

Our algorithm for Theorem consists of two steps. In the first step, we find a direction
d in which the balls from D are “spread out nicely”. More precisely, for an arbitrary
(oriented) line ¢ consider the set P of points that results from orthogonally projecting all
centers of balls from D onto ¢. Denote by py,...,p, the order of points from P sorted
along ¢. We want to find an (n — b)/2-separator orthogonal to ¢. This means that the
separating hyperplane H must intersect £ somewhere in between p(,—) /2| and p|(n+s—1)/2]-

However, we also need to guarantee that not too many points from P are within
distance one of H, which may or may not be possible depending on the choice of d.
Therefore we try several possible directions and select the first one among them that
works. In order to evaluate the quality of a direction, we use as a simple criterion the
spread, defined to be the distance between p(,_y) /2 and pg,1p)/2. Given a line ¢ with
sufficient spread, we can find a suitable (n — b)/2-separator orthogonal to ¢ in the second
step of our algorithm, as the following lemma demonstrates. Note the safety cushion of
width one to interval boundary. This gap ensures that there is no interference with other
points of D.

Lemma 2.6. Given a set P of b (one-dimensional) points in an interval [(,r] of length
w=r—4{>2, we can find in O(b) time a point p € ({ + 1,7 — 1) such that at most
2b/(w — 2) points from P are within distance one of p.

Proof. We select [(w — 2)/2] pairwise disjoint open sub-intervals of length two in (¢,r).
By the pigeonhole principle at least one these intervals contains at most b/[(w —2)/2] <
2b/(w — 2) points from P. Select p to be the midpoint of such an interval.

Algorithmically, we can find the interval by just counting for each interval how many
points fall into it and storing this information in an array. However, this requires round-
ing. Here we want to show that it is also possible without rounding.

Another way is to find such an interval using a kind of binary search on the intervals:
We maintain a set of points and a range of intervals. At each step consider the median
interval I and test for every point whether it lies in I, to the left of I, or to the right

16

of I. Then either I contains at most 2b/(w — 2) points from P and we are done, or we
recurse on the side that contains fewer points per interval, after discarding all points and
intervals on the other side. The process stops as soon as the current range of intervals
contains at most 2b/(w — 2) points from P, at which point any of the remaining intervals
can be chosen. Given that we maintain the ratio between the number of points and the
number of intervals, the process terminates with an interval of the desired type. As the
number of points decreases by a constant factor in each iteration, the overall number of
comparisons can be bounded by a geometric series and the resulting runtime is linear. [J

2.2.2 How to find a good direction.

Our algorithm tries k different directions and stops as soon as it finds a direction with
spread at least ¢ (see Theorem . For a given direction the spread can be computed in
O(n) time using linear time rank selection [I8]. In the remainder of this section, we will
discuss how to select an appropriate set of directions such that one direction is guaranteed
to have spread at least t.

For this we need a bound on the number of balls simultaneously within distance
wy, . .., wy of some hyperplanes Hy,...,Hy. Below we give an easy formula based on a
volume argument. This formula in turn motivates our choice of directions, which we will
explain thereafter.

(%)
U o
1 .
1 - o \—1
// L (@, T) _
- - - - _ €9
// - g & } i
2, 5
[
2’[1)1

Figure 2.2: Illustration of Lemma

Lemma 2.7. Let ©y,...,9; € S' C R? be linearly independent directions and let
Hi, ..., Hg be hyperplanes with corresponding normal directions. Then the maximal num-
ber of pairwise disjoint unit balls entirely within distance wy, ..., wq of Hi,Ha, ..., Ha,

respectively, is bounded from above by

2%, .. wy
|det (1717...,17d) |‘/d7

where Vy denotes the volume of the d-dimensional unit ball.

Proof. For each hyperplane H; consider the region S; within distance w; of H;. We
want to count the number of balls in S := (), S;. As each ball has volume V; and
they are pairwise disjoint, it is sufficient to bound the volume of S. The volume of S
depends linearly on wy,...,wy, so we scale them all to one. We can map the linearly
independent vectors (7, ...,7;) to the standard basis (ey,...,eq) by multiplying with
the matrix (7y,...,0;)"'. The volume changes by this transformation by a factor of
1/det(vy, . ..,7;). After this transformation, S’ is a cube with side length two. O

17

The bound in Lemma depends on the determinant formed by the d direction
vectors, which corresponds to the volume of the (d — 1)-simplex spanned by them. In
order to obtain a good upper bound, we must guarantee that this volume does not become
too small. Ensuring this reduces to the Heilbronn Problem: Given k € IN and a compact
region P C R? of unit volume, how can we select k points from P as to maximize the
area of the smallest d-simplex formed by these points? Heilbronn posed this question for
d = 2, the natural generalization to higher dimension was studied by Barequet [15] and
Lefmann [47]. We use the following simple explicit construction that goes back to Erdds
in the plane and was generalized to higher dimension by Barequet. This construction is
the moment curve modulo k. This is also where we use that k is a prime.

Lemma 2.8 ([I5,62]). Given a prime k, let P = {py, ... pr—1} C [0,1]" with
1
Pi = z (i,iQmodk, e ,idmodk) :

Then the smallest d-simplex spanned by d+ 1 points from P has volume at least 1/(d'k?).

In order to obtain the desired direction vectors we proceed as follows: Use Lemma [2.§]
to generate k points po, ..., pr_1 in [0, 1]471. Then lift the points to St C R? using the
map
(xl - %7"'7$d—1 - %a%)

H($1 - %7"'73761—1 - %a%)H

fo(xy, .o xqq) —

and denote the resulting set of directions by D = {up,...,Ux_1} with ¢; = f(p;). Note
that all the vectors are on the upper hemisphere.

Figure 2.3: Illustration of the projection onto the sphere and the correspondence between the
size of the triangles and the volume spanned by the corresponding simplices.

Lemma 2.9. For any d vectors vy, ..., U;, from D we have
| det (T, ..., 0i,)| > 2771 /((d — 1)1d¥2k31).

Proof. Let p; = (xj1,...,2j4-1), for j € {0,...,d}. Then
| det(Tiy, ..., 05,)| =

18

det 11 !
(§
Liy,d—1 b xid,d—l - % j=1 ||<xi],1 PR y Lij,d—1 = %7 %)H
2 : 2
xil,l Ce xid,l
d
1 1
= — |det
2 xil’d,1 Iid’dfl j=1 H(ajij,l - %7"'7xij,d—1 — %7%)”’
1 1

where the determinant on the last line describes the volume of the (d—1)-simplex spanned
by pi, - - -, Di,. According to Lemma [2.8| this determinant is bounded by 1/((d — 1)!k41)
from below. Also note that all p; are in the unit cube and so all coordinates of the vector
(%i,1 — 5, ., %i;a-1 — 3, 3) are between —1/2 and 1/2 and therefore has norm smaller

or equal to y/d/4. It follows that

B B 1 | 9d—1
| det(T,, . .., T)| > 2(d—1)!kd—1JHl T = A= D O
We are now ready to prove Theorem
Proof. The algorithm goes as follows. Compute directions 7, ..., 7, as in Lemma [2.9]
For each i € {1,...,k} consider the sequence of center points of the disks in D, sorted

according to direction ¢, and denote by S; the middle b points in this order (rank [(n —
b)/2] up to [(n+b—2)/2]). We can bound

k

kb= IS <(d—Dn+ > [S,N...N8,l,

i=1 i1 <+<ig

noting that a point that is contained in at most d — 1 sets .5; is counted d — 1 times on
the right hand side, whereas a point that is contained in @ > d sets on the left side is
counted d — 1 + (Z) > a times on the right hand side.

Denote by w; the width of S; in direction ¢; (which is the spread of #;). We claim that
w; > t, for some i € {1,...,k}.

For the purpose of contradiction assume w; < t, for all i € {1, ... k}. Together with
Lemma and Lemma [2.9| we get

k
2900+« w;
ko= Y ISI<@d-Dn+ Y ot I
=1

11 <<ig | det (ﬁiu e ,'l_/;;d) |Vd

od¢d —1)! d/271.d—1
C@-nny Y EUU-DETE

A ‘ V;l 2d—1
11 <--<1g
k\ 2t4(d — 1)!d%/2 k41
= (d—1
(m+(Q o
9(d~2)/2
< (d—1n+ ——— 721,
Vi

19

In combination with Condition ([2.1)) we get

2412/ pdp2d-1

dn < kb< (d—1)n+
Va

and so v

d n
> T
in contradiction to the definition of ¢ in Condition (2.2]). Therefore, our assumption
w; < t, forallie{l,... k}, was wrong and there is some w; > t.

Using Lemma on the set S; projected to a line in direction ¥; we obtain a hyper-
plane H orthogonal to v, that intersects at most 2b/(w; — 2) < 2b/(t — 2) balls from D.
By Lemma the hyperplane H has distance greater than one to any disk in D whose
center is not in S;, and so H is the desired separator.

Regarding the runtime bound, as stated above we can compute the spread of any
direction in O(n) time, which yields O(kn) time for k directions. The second step of
finding H can be done in O(b) = O(n) time by Lemma[2.6] Therefore the overall runtime
is O(kn). O

2.3 An Exact Algorithm in the Plane

In this section we describe a deterministic linear time algorithm to construct a halving
line ¢ for a given set D of n disks in the plane. The line ¢ bisects D perfectly (at most
[n/2] centers lie on either side) and it intersects at most O(n’) disks, where § may be
chosen arbitrarily close to 2/3.

The algorithm follows the prune-and-search paradigm and it is inspired by the prune
and search algorithm to find a ham-sandwich cut in deterministic linear time [49].

We will not consider all possible halving lines, but restrict our attention to the halving
lines with slope in a certain range. This range becomes smaller and smaller after each
iteration. We discard a constant fraction of the disks after each iteration and the disks
we discard do not intersect any halving line that we still consider. Each iteration will
take linear time, and thus the overall running time is linear as well.

The section is divided into several subsections. We first repeat some definitions re-
garding point-line duality in Section [2.3.1 In particular, we will investigate how we can
determine in the dual whether a given line intersects a unit disk. Further we will in-
vestigate what it means in the dual that a disk is intersected by some halving line with
slope within some given interval. Section [2.3.2] outlines the basic steps of our prune and
search algorithm. In particular we will summarize in the Iteration Lemma what
our algorithm performs in one iteration. In Section we will analyze the algorithm
under the assumption that the Iteration Lemma [2.15]is true. The remaining sections are
devoted to the proof of Lemma [2.15]

2.3.1 Point-line Duality.

As our algorithm works in the dual arrangement, we first briefly review this duality and
how it applies to line-disk intersections.

The standard duality transform maps a point p = (p,, p,) to the line p*: y = p,x —p,
and a non-vertical line g : y = mx + b to the point ¢g* = (m, —b). This transformation is

20

both incidence preserving (p € g <= ¢* € p*) and order reversing (p is above g <

p* is below ¢*). Given a set P of points in the plane, the dual arrangement A(P*) is
defined by the lines in P* = {p* | p € P}. In order to avoid parallel lines we assume that
no two points in P have the same z-coordinate (which can be achieved by a rotation of
the plane).

The following lemma characterizes line-disk intersections in the dual plane.

by y=mz+b+V1+m?

£: y=mz+b

Figure 2.4: When does a line £ intersect a unit disk centered at p?

Lemma 2.10. Let ¢ : y = mx + b be a non-vertical line and let p denote the center of a
unit disk D. Then D intersects £ if and only if the line p* intersects the vertical segment

s=[(m,—b—+vm?+1),(m,—b+vVm?+1).

Proof. Consider ¢ and the two lines ¢, (above) and ¢, (below) at distance 1 from ¢, see
Figure 2.4l Then D intersects ¢ if and only if p is below ¢, and above ¢,. Equivalently,
in the dual, D intersects ¢ if and only if p* intersects the vertical line segment £¢; at
x = m. It remains to calculate the y-coordinates of the endpoints of £ ¢;.

Consider a right triangle 7" for which one side determines the horizontal distance h
and another side determines the vertical distance mh between ¢ and ¢,. Denote the length
of the third side of T' by s. Then the area of T is %s = %mh? By Pythagoras we have

s? = h?(1 +m?), which together yields 1+ m? = (mh)*, and so mh = /1 + m?. O

If we view Lemma from the perspective of a unit disk D with center p, then the
set of lines that intersect D dualizes to the set of points (z,y) whose vertical distance
to p* is at most v/ 1+ 22, We call this closed region of points the (dual) 1-tube of D,
see Figure . Note that the function v/1 + 22 is strictly convex and so the 1-tube is
bounded by a strictly convex function from above and by a strictly concave function from
below.

We may assume that n is odd: If n is even, remove one arbitrary disk and observe
that any halving line for the resulting set of disks is also a halving line for the original
set.

A halving line ¢ for P corresponds to a point £* in the dual arrangement that has no
more than half of the lines from P* above it and no more than half of the lines below it.
The set of these points is referred to as the median level of the arrangement induced by
P*. Since n is odd, for any x-coordinate there is exactly one such point, and so we can
regard the median level as a function from R to R.

21

phiy=mz+n+VI+a?

p* ry=mx+n—+V1+x22

Figure 2.5: The 1-tube of the disk centered at p = (m,—n). It is bounded from below by the
function p* = p* — /1 + 22 and from above by p* = p* + V1 + 22

Definition 2.11 (M-level). For A € {0,...,n — 1} the A-level of an arrangement A(L)
of a set L of n lines is the set of points on the arrangement with exactly \ lines below it.

In the following, whenever we have given a set P of points we refer to the A-level of the
dual line arrangement of P just as A-level and implicitly assume that the underlying line
arrangement is clear from the context. In the algorithm it will be important to consider
not only the |n/2]-level. Halving lines of the original set of disks will correspond to a
M-level of the current set of disks. The value of A\ is maintained by the algorithm.

We define a A\-line ¢ of a point set P as a line through at least one point p € P with
exactly A\ points above £. The dual of a A-line is a point on the A-level. Note that by this
definition |n/2]-lines are halving lines.

Recall that the algorithm follows the prune-and-search paradigm. In the process we
will consider only halving lines with slope in a certain range. Thus in the dual only the
A-level within a range of certain x-coordinates is considered.

Definition 2.12 (Slab). Given two vertical lines, the closed region bounded by them is

called a slab. The distance between the two bounding vertical lines is the width of the
slab.

For convenience, the slab S with z-coordinates in the interval [[,r] is also denoted by
[[,7]. The width of S is simply r — [. As mentioned before, some disks will be discarded,
which do not intersect any of the potential halving lines. However the algorithm runs in
the dual and we will discard lines corresponding to midpoints of disks. To describe this
in a handy fashion we make the following definition.

Given a line arrangement A(L) in the dual, some level A\, we denote by A(x) the
function that takes as input an x-coordinate and returns the corresponding point on the
A-level. Thus A(zg)* is the dual line of the point on the A-level at x-coordinate xy. Note

22

that A\(x)* is a A-line in the primal. A line ¢ in the dual interferes within slab S = [I, 7]
and level \ if there is some z € [I, 7] such that the line A(zy)* intersects the unit disk with
midpoint ¢* in the primal, see Figure 2.6] In other words, if we want to find a halving
line with slope m € [[, 7] then any line that does not interfere with the |n/2]-level within
the slab [[,7] can be discarded.

Given a line arrangement A(L) and some A € IN, we define the 1-tube 7, of the A-level
of A(L) as the region enclosed by the functions A(z) + V1 + 22 and A\(z) — V1 + 22, see
Figure 2.6

Lemma 2.13. For a set of disks D with midpoints P and a disk D with midpoint p =
(ps, py) € P, the following statements are equivalent:

1. There is a A-line ¢ with slope m € [l,r] that intersects D.
2. The line p* interferes with the A-level within the slab S = [l,r].
3. The line p* intersects Ty within the slab S = [l,r].

Proof. By the definition of interfering Condition 1 and 2 are equivalent.

[1 = 3] By Lemma the first condition is equivalent to the fact that the vertical
distance between the line p* and the point £* in the dual is smaller or equal to vm? + 1.
Note that every A-line dualizes to a point on the A-level and this implies p* intersects 7.
Because the slope m is in [[, 7] the 1-tube 7, is intersected within the slab S = [I,7].

[3 = 1] Assume p* intersects 7). Then exists some m in the interval [l,r] such that
the vertical distance between A(m) and p* is smaller or equal to v/m? + 1. Define the
line ¢ as A(m)* and note that the disk with midpoint p is intersected by ¢ according to
Lemma 2.701 O

As we have already mentioned we cannot test directly if some line intersects 7, but
we can test some necessary criteria. To this end we will explain later how to construct
a trapezoid T containing the A-level within some slab S, see Figure [2.6| For now let us
just assume we have given such a trapezoid 7. We define the 1-tube 7 = 7 of T" as the
region with vertical distance at most /1 + 22 from T', but excluding T

Lemma 2.14. Given a line arrangement A(L), X € N and a trapezoid T in a slab
S = [l,r] that contains the X-level of T. Then a line that does not intersect T U T does
not intersect Ty

Proof. 1t is sufficient to show that 7, is contained in 7"U 7. The lower boundary of 7 has
at z-coordinate t vertical distance v/t2 + 1 from T and thus at least this vertical distance
from the A-level. The same argument works for the upper boundary. n

In order to test if a line intersects T'U 7, it is sufficient to compute where this line
intersects the vertical lines bounding 7"U 7. This can be computed in constant time.
2.3.2 Overview of the Algorithm.

The algorithm works in the dual arrangement. This means that we find a point on the
[n/2]-level of the dual line arrangement which interferes with at most O(n°) lines. We
will show that § can be chosen arbitrarily close to 2/3.

23

Xo m

Figure 2.6: The A-level; in light blue the 1-tube 7y; in gray a trapezoid T' containing the A-level,
but not necessarily 7y; in light red the 1-tube of T'. The line £ = p* and thus the disk with
midpoint p is intersected by the A-line A(zg)*. At z-cordinate m the vertical distance between
A(m) and the lower boundary of its 1-tube equals v/m?2 + 1 and the vertical distance between the
trapezoid T and the lower boundary of its 1-tube also equals v/m? + 1. Therefore, the 1-tube of
the A-level is contained in the 1-tube of the trapezoid 7" union the trapezoid. (7 C7UT)

Recall that we will follow the prune-and-search paradigm. The algorithm consists of
three phases. It starts with an initialization, then goes into some loop, and finally stops
returns an appropriate point.

Crucial for the linear runtime bound is that a constant fraction of all lines from L
will be discarded after each iteration. However, by discarding some lines also our level
of interest—which is the median level of the original set of lines—changes. Therefore
this level also appears as a parameter of the algorithm. We denote this parameter by
A€{0,1,2,...,|L| = 1}. Initially A = [|L]/2]. We will work in a slab S, which will be
narrowed in each iteration. The width of S and the number of vertices in S are two more
important parameters of the algorithm. We define a vertex as an intersection of two lines.
Two global parameters 7,¢ € (0, %) must be chosen at the start of the algorithm. These
parameters are constant for the entire algorithm. The parameter 6 above depends on
and ¢ in a way that smaller 7 and e imply 0 to be closer to 2/3.

As initialization of the algorithm the slab S = [0, 1] is subdivided into 100 slabs of
equal width, and no line is discarded. One of the slabs contains at most

1
-4 2
Y= 10012+ 22"
vertices. At the end of Section we will explain how to find this slab.

The final phase of the algorithm returns any point on the A-level of the final set of
lines.

Before we will describe a single iteration, the following lemma summarizes input and
output of one iteration.

Lemma 2.15 (Iteration Lemma). The algorithm has two global parameters, v, ¢ € (0, £).
A single iteration gets as input:

24

o A set of n lines L in general position.

o A slab S = [l,r] C[0,1] of width w = r — . The number of vertices of the line
arrangement A(L) inside S is denoted by v. (The number v might not be explicitly
known.)

o A level-parameter A € {0,...,n— 1}.
We require the Width Condition that is

400 logn
> — . WwC
> 3 (W)
The algorithm maintains the Vertex Invariant
2
i (VD)

< —
Y= 100(1/2 +)2

This means at the end and at the start of each iteration this inequality is satisfied. One
iteration of the algorithm runs in linear time and outputs:

e AslabSCSCl0,1] ofwidth@:@w

o A set of ezactlym = n — |n(3 —e)] = [(3 +¢)n] lines L C L such that no line
¢ € L\ L interferes with the \-level of L within S.

o A level-parameter X € {1,...,n} such that the A-level in L corresponds to the \-level
i L.

Note that after the initialization the Vertex Invariant of the previous lemma is
satisfied.

The iteration will repeat till the Width Condition is violated. Then we will go
into the final phase. The outline of an iteration step is given below. We put in brackets
references to sections and lemmas that give details and proofs of each step.

1. Divide S in four subslabs Si,...,Ss, such that the width of each subslab equals
w/4.

2. Let v; be the number of vertices in slab .S;. Compute an approximate number p; of
vertices in each slab, satisfying

v; < pi < i+ en?,
for ¢ = £/100.
| Lemma in Section]

3. Define S" = [I,7'] as the slab with smallest p;. We will show that for the number of
vertices v’ within this slab the Vertex Condition holds
/ n2
< —.
~ 100
This condition is tightly connected to the Vertex Invariant .

| Section |

(2.3)

v

25

4. Construct a trapezoid T C S’. T contains the A-level of A(L) within S’ and at
most half of the lines from L intersect T'. For this step we will use the Vertex-

Invariant .
| Lemma in Section]

5. Recall the y-core C, is the central (1—2v)-slab of S’, that is, C, = [I'+4+~yw’, " —~yw'].
See Figure for an illustration. We continue our search in the next iteration in
S = C,. At most en lines intersect 7 but not 7" within S’. For this step we use the

Width Condition (WC)). Intuitively this means that the width of the slab is not too
small.

[1-tube = Section Lemma in Section [2.3.7|

6. Discard ezactly |(3 — &)n] lines from L that do not intersect SN (7 UT).
| Lemma [2.13] and [2.14] = can be discarded, Lemma and = at least

(3—¢en |
7. We adjust A accordingly: decrease A by the number of lines discarded that are below
T.

(A + n/8)-level

T
L | | T)level

e N R
14 W} P

~-core C,

Figure 2.7: The Slab S’ together with the trapezoid T in light red and the 1-tube 7 in dark
green. Note the A-level is completely contained in T'. The drawing is schematic the function
V1 + 22 looks, except very close to 0, as if it is a linear function. Here, we overemphasize the
concave/convex nature.

In Section [2.3.3] we will analyze the algorithm assuming the Iteration Lemma [2.15]
The following sections are devoted to give details to the steps above and prove their
correctness. In particular this proves the Iteration Lemma Section explains
the construction of the trapezoid and shows that the A-level is always inside the trapezoid.
Section [2.3.5| shows how to count approximately vertices inside a slab. Section [2.3.6
shows why the Vertex Invariant is maintained and the Vertex Condition holds.
Section [2.3.7 shows that the number of lines intersecting 7, but not 7" is low. This part
is very technical.

In each section we may draw connections to the other sections. We will also explicitly
refer to Lemmas proven in previous sections. However, the proofs of each Section can be
read independently.

26

Each division reduces
the width. Dividing
into fewer slabs would
be better.

Dividing into more
slabs helps to reduce
number of vertices.

enough lines
are available
for discarding

Discarding more lines
might increase the num-
ber of vertices compared
to the number of lines in
the next iteration.

Once the width is too
small the loop stops.

Figure 2.8: Design decisions and properties of the algorithm are displayed as bubbles. Connec-
tions between them are indicated by arrows and commented in boxes.

27

In order to keep the notation simple, the meaning of S and n might be different in
some sections. It will be explained at the beginning of each section.

We try to sketch connections between the steps of the algorithm, see also Figure [2.8]
The problem is that we need to keep the number of vertices in our slab low and simulta-
neously the width of our slab high. If we were to divide into three slabs, it would not be
clear that the number of vertices in S is bounded sufficiently. If we were to divide into
five or more slabs the width would be divided by five instead of four in each iteration and
thus decrease more rapidly. Once the width is too small we have to stop the iteration
and cannot discard any more lines. Recall that we need to bound the number of vertices
in order to guarantee that the number of lines intersecting the trapezoid is low. The
lower bound on the width is needed to guarantee that the number of lines that do not
intersect 1" but the 1-tube 7 is limited. Only lines that intersect neither 7" nor 7 can be
discarded. The number of lines discarded per iteration and the reduction of the width
gives the overall performance bound of 2/3 + ¢ for any 6 > 0. Also note that we could
discard all lines that do not intersect T'U 7. Those are potentially much more. However,
this might increase the number of vertices in S compared to the number of lines and thus

fail the Vertex-Invariant (VI).

2.3.3 Analysis of the Algorithm.

In this section we complete the overall analysis of the algorithm, under the assumption
that the Iteration Lemma is true. We denote by n the initial total number of lines,
by n; the number of lines after the ¢-th iteration and by w, the width after the ¢-th
iteration.
To understand a little bit better what is going on, we consider an oversimplified setting
first.
For this simplified setting assume the width condition would be
1
wy > —
ny
and also w = wg = 1. Further, we assume that we always discard half of the lines and
that the width will be divided by four in each iteration. The division of the width by four
stems from the fact that we divide each slab into four subslabs in each Iteration. Then
we have

1
nt—§ and wt—E.
Assume after s iterations our simplified Width Condition fails, that is
1 28 logn
W< — = 47°<— =2 n<8 = s> &)
N n log 8
Thus, the number of remaining lines is
n n log(1/2)
Ng = 72 = ~Jogm = NN g = .n 3 = p2/3,
25 210g8

We know only the lines remaining after the last iteration can potentially interfere with
the A-level as we discarded only lines that do not interfere with the A-level.

Now we will do the calculations in a non-oversimplified way.

28

To disentangle notation, we denote a; = % +e, a0 = % + 2¢ and b = %. Note that
when ¢ and ~ is small, a; and ay is roughly 1/2 and b is roughly 1/4. We distinguish
between a; and as to take care of rounding. We start with ny = n. Recall that the
initialization splits the slab into 100 subslabs and thus we have wy = 1/100.

We have nyy1 = [ainy| > ain; by definition and we can easily conclude n;; < agny,
as follows:

i1 = [ne(1/2+¢e)] <m(1/24¢) + 1 <ny(1/2 + 2¢).

The last inequality holds as long as 1 < n,e, which is implied by the Width Condi-
tion (WC)) as follows:

400 400 1 1
logn; = —— logn,— > —.
~2e2 ~v2e € ¢

ng > nwy >

Applying these two bounds repeatedly we get
atln <n < aén.
We know about the width after ¢ iterations
w; = b'/100.
We have to satisfy the Width Condition , that is

log n,
wy > - ——.
nyg

The constant ¢ = %. Let us consider the case that after s iterations the Width Condi-

tion (WC)) will be violated the first time. It follows

log
ws < c- oen
N
ws-ns < c-logng <c-logn
b°/100-n, < c-logn
b*-ajn < 100-c-logn
b oain < nf
'~ < (1/bay)*
(1—¢)logn < s-log(1/bay)
1 _ !
= s> (1 =¢)logn 8)10gn.
log(1/bay)

The second line follows from the first by rearranging n, and the observation that
ns < n. For the third and fourth line we used the bounds on the top and multiplied both
sides with 100. For the fifth line, note that 100clogn < n" holds for every fixed & > 0
and large enough n. The seventh line follows from the previous line by taking logarithms
on both sides. Thus we have some lower bound for s. And we know in the last step n, is

29

bounded from above.

S
IA

S
asn
(1—¢') logn

log(1/baq)
2 n

VAN

(1—¢’) log al
n1+ log(1/bag)

IN

The exponent approaches 2/3, as ¢, &’ and v goes to zero, since:
loga; — —1, (1—¢")—1, logl/bay — 3.

Denote by R(n) the runtime of the algorithm for n disks. Each iteration can be
handled in time linear in the number of lines/disks remaining and so

t* t* t
1 2
R(n) < E eng < en E (5 + 8) <7 _62671 = O(n),
t=0 t=0

for some constant c.

2.3.4 Trapezoid Construction

In this section we will define the trapezoid mentioned in Section and in Step[d This
construction and the following lemma goes back to [49]. We repeat here its proof for self
containment. We will be a bit more careful with rounding, but also a bit more generous
with the constants. Note that the Vertex Condition is exactly so designed as to
satisfy the next lemma.

In this section, n denotes the cardinality of some arbitrary set L of lines. Given a
slab .S = [I,r] we will construct a trapezoid T C S. The upper left (right) corner of T' is
slightly above (XA + [n/8])-level of A(L) at x =1 (z = r). Analogously, the lower corners
of T are slightly below (A — [n/8])-level of A(L) at x =1 (z = r). (If X is below n/8
or above 7n/8, the trapezoid is unbounded.) In the following whenever we refer to the
trapezoid then this construction is meant, see also Figure 2.9

Lemma 2.16 (Trapezoid Construction [49]). Given n lines L and a slab S = [l,r] that

contains at most 1”—(;] of the vertices of A(L). Then the trapezoid T defined as above
contains the A-level of A(L) within S and at most half of the lines from L intersect T'.

Proof. First we will show that at most half the lines intersect T. Note that every line
that intersects T" does so exactly twice at the boundary of T'. The left and right boundary
is intersected by exactly 4[n/8] + 2 lines.

Consider the top segment ¢ of T and denote by t the number of lines intersecting o.
We define L as the set of lines crossing o with slope smaller than the slope of o and Lo
as the set of lines crossing o with slope larger than the slope of ¢. Whenever a line in L,
crosses o the number of lines below ¢ increases by one and whenever a line in Ly crosses
o the number of lines below o decreases by one. As the number of lines below o at [is
the same as the number of lines below o at r it follows ¢/2 := |Ly| = |Ls|. Every line in
Ly crosses every line in Lo within S, because one starts below o and ends above o and

30

»
. A
A+ [n/8] - 3 - A+ [n/8]
. -
A~ 8] 1 - A~ [n/s]

Figure 2.9: The construction of the trapezoid.

the other starts above o and ends below o. Thus we have at least (¢/2)? vertices inside
S. Thus

(t/2)* < v < n?/100.
This implies at most n/5 lines cross o. Analogously, at most n/5 lines cross the bottom
segment of T'. Thus in total the number of lines intersecting 7' is at most
4In/8] +2+2n/5
2

<n/2,

for n large enough.

Now we show that the A-level is contained in 7. Assume for the purpose of contradic-
tion that there exists some point p on the A-level outside 7. Without loss of generality
p is above 0. Then there are at most A lines below ¢ at this point. However at [and r
are A + [n/8] lines below o. This implies L; and Ly contain each at least [n/8] lines —
a contradiction. [

2.3.5 Counting Vertices

Our algorithm uses a subroutine to count the vertices of the arrangement within some
slab S in the initialization and in Step[2l This is important to construct a trapezoid that
contains the A-level in S as described in Section 2.3.4l In this section we will describe
this subroutine and prove its correctness. At the end of this section, we will show how
we can perform the initialization step.

How to count the number of vertices in a slab is known using inversion counting [23].
To count inversions in O(nlogn) time is a standard textbook exercise. However, we
want to spend only a linear amount of time, in particular for the first iterations of the
algorithm. (After 2loglogn iterations an O(nlogn) algorithm would be also affordable.)

Here we describe in detail an algorithm described briefly in [23]. However, as the
algorithm is very simple we cannot exclude that it has been used before by other authors.

Consider Figure[2.10] Given aslab S = [/, 7], we would like to know how many vertices
of the arrangement are in S. We first label the lines L = {/1,...,¢,} by ascending slope.

31

Figure 2.10: The number of vertices between two vertical lines is exactly the number of inversions
between the induced permutations.

Now note that each vertical line ¢ induces a permutation of the lines L. For example: a
vertical line to the left of all vertices induces the identity permutation. The number of
inversions corresponds exactly to the number of vertices to the left of our line ¢.

Back to our slab S = [I,7]. Let ¢, ¢, be the two vertical bounding lines of S. Then
the number of vertices in S is the difference of the number of inversions induced by the
line ¢; and /,.

Lemma 2.17 (Counting Inversions [23]). Fiz some constant ¢ > 0. Let L be a set of n
non-vertical lines and ¢; and 0, two vertical lines. Further let v be the number of vertices
between these lines.

We can compute in linear time a number p such that

p§v§p+cn2.

Proof. Let <; and <, the order of the lines in L induced by the lines ¢; and ¢, respectively.
(We do not compute this order, as it would require sorting.) We define b groups of size at
most A = |[n/(b—1)], denoted by Gj, ..., G, with the property that ¢ € G; and ¢ € G,
implies ¢ <; ¢, if i < j. Analogously, we define b groups Fi, ..., F, for the line ¢,, with
the same properties. The constant b will be chosen later appropriately independent of n.

Note that we can find b — 1 reference points on ¢; and ¢, in O(nlogb) time such that
we can determine in O(logb) for a line ¢ to which groups it belongs. We denote by t;;
the number of lines in group G; N Fj. We can compute all ¢;; in O(nlogb+ b?) time and
store them in a matrix of size O(b?). The additional b* term in the running time stems
from the matrix initialization. We define

pi= Ztijti’j/.

i<

3>j
Thus p can be computed in a naive algorithm in O(b%) time. It is easy to see that p is
a lower bound on the number of vertices. We can bound the number of inversions from
<; to <, that we omitted to count. For any pair of lines that cross in S, and that we
omitted to account for in p, these lines must be in the same group G; or F; for some 1.
The number of such pairs is upper bounded by

2
A o, () b
() <2 < .
b(2) ST "

32

Choosing b large enough, the term (e 1 becomes smaller than ¢. The total running time
is O(nlogb+ nlogb + bt). This is hnear in n.]

The Initialization Recall in the initialization of the algorithm the slab S = [0, 1] is
subdivided into 100 slabs of equal width, and no line is discarded. One of the slabs
contains at most 1
-t 2
Y=T100(1/2 + 02
vertices. We are now ready to explain how to find this slab. We compute the approximate
number of vertices p in each slab according to Lemma with ¢ = 1/200. To see that
this works, note that there exists a slab with v < n?/200 by the pigeonhole principle.
According to Lemma “ there exists at least one p with p < n?/200. Denote by v the
number of vertlces of the corresponding slab. By Lemma n it holds ¥ < p+n?/200 <

n?/100 < Wn as desired.

2.3.6 Bounding the Number of Vertices

In Section we have seen why the Vertex Condition is necessary, that is, the
number of intersection in the slab of consideration is below Wﬂ? In this section
we will explain how this is achieved. Simultaneously we will show that the algorithm
maintains the Vertex Invariant , that is, the number of vertices in the slab S is at
the start of each iteration below %. One of the major ideas is to use the bound on
the number of vertices of the previous iteration.

Before we indulge ourselves in tedious calculations, consider an over-simplified scenario
where we do not care about running times and are able to discard exactly half of the
lines. The Vertex Invariant . would simplify to v < 5 and after splitting our slab into

4 subslabs one of them would contain at most 7 < {620 vertlces. This implies the Vertex
Condition ([2.3)) is satisfied. Once we discard half of the lines the number of vertices
might not decrease, but it will not increase either. The number of lines thereafter equals
7 =n/2 and we have
n? (2n)* n?

V< — = = —.

~ 100 100 25
This would imply the Vertex Invariant is indeed satisfied.

v <

We consider now the non-simplified setting. By Vertex-Invariant (VI)), we know the
number of vertices v of our input slab S satisfies at the start of the iteration

7’L2

< —
Y= 100(1/2 1)2

2
100(17;—2+5)2J’ but we do
not need this stronger inequality. After splitting S into Si,...,S4, we compute the
approximate number of vertices pi, pe, p3, p4 as in Lemma [2.17] for each Slab. We have
p1+ p2 + p3 + ps < v and thus there exists a slab S; with p; < v/4 and the number of
vertices U of this slab is bounded by

Since v is a natural number, we can even conclude that v < L

< en? <ofdt —Sn? < 1 P
Pit 950 = 100 400(1/2 422 " 100) "

33

We will show indeed

It is sufficient to show
1 € 1

oy <
400(1/2 +¢)? + 100 — 100
And indeed it holds

1 e | 1
100(1/2+272 " 100 100 ((1 ¥ 20)? +5)
1 [14e44e? 4468
~ 100 1+ 4e + 4¢?
1
< —.
= 100

Thus the Vertex Condition (2.3 is satisfied and we can apply Lemma in Step [4
After the iteration m = [(5 + €)n] > (3 + €)n lines remain and also the Vertex
Invariant (VI) is satisfied, that is,

n? 2

<— < .
100 100 - (5 + 8)2

v

Here is the point where we need that we discard ezactly [(3 — e)n] lines. If the algorithm
would discard more lines it might have the trouble of having too many vertices compared
with the number of lines. This is also where our analysis is suboptimal and might be
improved. It seems likely that at least some constant fraction of the vertices in S are
removed in Step [0 when almost half of the lines are discarded. However, we do not know
how to exclude the case that all vertices discarded in this way are outside of S.

2.3.7 Bounding the Intersections with the 1-tube

In this section, we will show that the number of lines intersecting 7 within C,, but not
T within S is bounded from above. We start by clarifying the notation for this section.

Assume we are at the beginning of some iteration and we denote with n the number
of the current set of lines L. In Step |5l we have a slab denoted by S with width w <1
and C, = [l + yw,r —yw] = [I', 7] the y-core of S. The trapezoid of S is denoted by T,
it is described in detail in Section [2.3.4, Here we make use of no property of T" except its
geometric shape: being a trapezoid with two sides on the vertical boundary of the slab
S containing it, see Figure 2.13 on page [39]

As in the current iteration at Step [5| our slab has been already split into four slabs,
the Width Condition becomes the adjusted Width Condition:

1 400 logn 100 logn
w > —- = .
— 4 %2 n v2e? n

(AWC)

Before we proceed note that the adjusted Width Condition implies

100 100
nw > ﬂlogn > =52 62500
v2e v2e

34

as v, < 1/5. Since w < 1, we also get
n > 62500.

We will repeatedly use these bounds in this section.
Lemma 2.18. Given the following:

e v,e€(0,1/5);

e q set of n lines L;

e a slab S = [l,r] of width w < 1 with trapezoid T and 1-tube T as described in
Section and C, = [l + yw,r — yw| = [l',7'] the v-core of S.

We assume the adjusted Width Condition (AWC])

100 logn
=22

w

By n' we denote the number of lines intersecting T within C, but not T" within S. Then
it holds
n <en.

Before we consider the v-core, we will study 7 and the way lines are intersecting it
further. We will use an averaging argument: while 7 may be intersected by all lines from
L, on average the number of intersecting lines is sublinear. The second crucial observation
is that a line ¢ can intersect 7 only in certain ways, depicted in Figure [2.13, This will
imply that the total number of lines intersecting the y-core C, is small. Also note that
our averaging argument is in the primal.

We define with a and b the upper and lower bounding segments of 7. We want to
bound the number of lines intersecting the 1-tube of those segments. Lemma [2.19] gives
a good bound for general segments.

For a segment s = [([,b),(r,t)] we define a function g by setting gs(z) to be the
number of lines that intersect the 1-tube of s at « € [I,7]. We omit the subscript s, if
it is clear from the context which segment s is meant. The following lemma provides an
upper bound on the average number of such lines.

Lemma 2.19. Given n lines in the plane and a non-vertical segment s = [(L,b), (r,t)] of
horizontal width w = r — 1, such that the adjusted Width Condition (AWC)) is satisfied.

We have .
/ gs(z)dz < 5y/nwln(nw) .
!

(We assume 0 <[<r <1.)

Proof. We follow the approach of Alon et al. [6] but are more specific about some technical
details. We define 7; := [+ zw for ¢ = 0,...,k — 1. The number k will be specified later.

Consider the function
k—1

) =3 (@ +)

=0

(Z,i‘)/ﬂ
P b2

Po

Figure 2.11: Segment s and some equidistant points on it.

over the domain [0, w/k]. Clearly, we have

w/k

i (q:)dx:/ng(:c)d:c.

Next we bound f(z) for some arbitrary but fixed = in the domain of f. We define some
set of points p; = (z;,y;) for i =0,...,k — 1 on s with

T, = T;+xr = l+%w~|—9§,
see Figure 2.11| Consider the set of lines P* = {p{,...,p;_,}. Let D; denote the set of
disks from D that are intersected by the line p;. The value of f is the number of pairs
(d,p;) € Dx P* where dNp; # (). A (generous) upper bound for this quantity is provided
by

i<j
where the first term counts every disk that intersects only one line and the second term
counts every disk that is intersected by at least two lines. (In this way, a disk that is
intersected by c lines is counted 1+ (5) times.)

Figure 2.12: Line p; and its normal vector v;.

Let @ = (—;,1)"/4/(x;)> +1 be the (unit) normal vector to p?. By Lemma [2.7
(where d = 2, wy = wy = 2, U; = U;, and ¥, = U;) we have (using z;, < 1,V?)

1 161/(@)2 + 1/ (Z)2+ 1
DDy < 20 MOV IV
7| det(v7, Us)] T | — x4
32 32k
< = —
Ty, — x| mwl|i— |

and therefore

n+Z|DiﬂDj|§n+%Z !

— Tw —~j —1i
1<) 1<)

36

(Note this is the only place we used that 0 < I, < 1.) The sum can be bounded

using
1
Z]Tz -

1<j

k—1

k_a:k:Hk_l—(k—l)<1+k:1n(k:),
a

a=1
where the last inequality uses the well-known bound H, < 1+ In(n) for the harmonic

number. We started out by fixing a particular x, but the derived bound holds for any
arbitrary x. Altogether we obtain

32k
flz) <n+—>0+klnk)
TWw
and so

r w/k 2
/ g(z)dz = (z)da < %+3—(1+k1nk;) < %Hu{;mk. (INT)
! 0 m

The last inequality holds provided k is larger than %3{;/70 ~ 12,59... We will show
that k is always at least 120.

Before we continue our calculations, let us adress the issue of rounding. Denote the
optimal value of k with z € R, to be specified soon. Unfortunately, we cannot use z
directly, as k has to be a natural number. We set k = [z] and

L nw
V@2 Innw
with d = /6.
We show that the adjusted Width Condition [AWC] implies k > z > 120 as follows:
nw
= 2.4
: d? In nw (24)
loge nw
= 2.5
d? lognw (25)
loge 100
=\ & e (2.6)
1.44
> /== - 62500 (2.7)
> 120. (2.8)

Note we used the adjusted Width Condition (AWC]) in line ({2.6]).
With this lower bound on z we can refine the upper bound on (IN'T)) as follows:
o m2] < 2 11z + 1) In(z + 1) (2.9)
z

[2]

= % +1lzIn(z+1) +In(z + 1) (2.10)
< %+112(1nz+1/100)+z/10 (2.11)
_ %+11zlnz+11z/100+z/10 (2.12)
< % +12z1n 2. (2.13)

37

To get Equation (2.11) note that the natural logarithm Inz is strictly concave and its
derivative is 1/, thus In(z + 1) —Inz < 1 < 1/100, for z > 100.
Using our choice for z in the previous expression ([2.13)), the first term becomes

m =dvnwlnnw.

z

The second factor of the second term becomes

Inz=1In (Vnw/d2 1nnw>
= %ln (nw/d? Innw)

< =1)
5 nnw

The last inequality holds is satisfied already for nw > 3. The second term is upper

bounded by
12 2Inz < 2%, | 0 llnnw
d?>Innw 2

= dvVnwlnnw

Thus the sum is upper bounded by

2dvVnwlnnw < 5vnwlnnw .
(2d = /24 < /25 =5.) O

We are now ready to finish the proof of Lemma [2.18] that is we have to show n’ < en.
Recall n’ equals the number of lines intersecting 7 within C,, but not 7" in S.

Bounding the integral is not sufficient to bound the number of lines that intersect the
1-tube, because lines that do so for a very short interval only do not contribute much to
the integral. In principle the number of lines that intersect the 1-tube at some specific x
could be linear.

Observation 2.20. Fvery line { that intersects T within C, and does not intersect T
intersects the 1-tube of a or b over an interval of length at least yw.

Every such line intersects 7 as g3 in Figure [2.13] The way ¢; intersects 7 is not
counted, because ¢, also intersects T'. The way g intersects 7 is not possible, because of
the convex-concave nature of 7. Here is the crucial point that we used convexity of the
1-tube. We also used it to show that counting the number of lines intersecting 7 is easy.
From this observation follows directly

ywn' < / (ga(x) + gp(z)) < 2-5vVnwlnnw < 10Vnwlnn.
I

This implies

> 10vVnwlnn - 10y/nw log n

yw yw

n

)

38

Figure 2.13: Slab S is the region between the two bold vertical lines. Its core C, is the region
between the two lines between the two bold lines. The corresponding trapezoid T' is displayed
in gray and its 1-tube 7 in light red. The line g; intersects both T and 7, whereas g2 and g3
intersect 7 but not T'. Every such line intersects 7 at the boundary of the core, like g3 does. An
intersection pattern as depicted for gs is impossible for a straight line.

and thus to show n’ < en, it suffices to show

10v/nwlogn <

< en.
Yw

However, this is equivalent to
100 log n

~2e2n
which is the adjusted Width Condition (AWC]) as stated in Lemma

2.4 Conclusions

In this chapter we studied the construction of separators for balls in deterministic linear
time. The aim is to intersect as few balls as possible while (approximately) bisecting the
set of midpoints. We presented essentially two ways to compute such seperators with a
sublinear number of intersections. The first algorithm is very simple and straight-forward
to implement (we gave all constants explicitly), and obtains an arbitrarily good bisection
in combination with an asymptotically optimal number of intersections. The strength of
the second algorithm is to bisect the center points exactly, but it works in the plane only.

Throughout the chapter, we assumed the balls to be disjoint, we used this property
only in Lemma [2.7] to bound the number of balls completely contained in some set C', by
the volume of C' divided by the volume of a ball. In fact, both algorithms work as long as
we have some density upper bound on the objects under consideration and some bound
on the size of the objects. This upper bound is implicitly given if for instance the objects
satisfy some fatness condition and are disjoint or have constant ply.

Acknowledgments. We want to thank Marek Elias, Jifi Matousek, Edgardo Roldan-
Pensado and Zuzana Safernova for interesting discussions on the conjecture for higher

39

dimensions and referring us to related work. Special thanks goes to Giinter Rote for a
thorough reading and many useful comments.

40

Chapter 3

Tron

3.1 Introduction

7

Figure 3.1: ALICE receives a score of 5 and BOB receives a score of 3, thus ALICE wins.

Definition. Given a graph G = (V, E) two players ALICE and BOB take turns alter-
natingly in the following manner: in the first turn each player chooses a start vertex in
G (not both the same): thereafter, the players whose turn it is picks a vertex that is
adjacent to his or her last chosen vertex. It is not allowed to pick a vertex that has been
chosen by either of the players before at any stage of the game. Thus the vertices get
used and cannot be reused. When one player cannot move, the other player continues
alone. The game ends when both players cannot move. Each player gets a score equal
to the number of vertices picked before they could not move anymore. See Figure for
an example. Note that each player form a traverses.

We denote the score for ALICE and BOB as #A and #B. We say ALICE wins if #A >
#B; BOB wins if #B > #A; and otherwise we call a play of a game a tie. The outcome
of a play is defined as #B/#A. We say that the players play rationally if both try to
optimize the worst case outcome, i.e., ALICE minimizes and BOB maximizes the worst
case outcome.

One could also consider the difference instead of the ratio of #A and #B. We will see
that this would lead to less interesting results and strategies.

Here, we differ slightly from [19] where ALICE loses if both players receive the same
amount of vertices. We introduce this technical nuance because it makes more sense in
regard of the extremal question and is not relevant for the complexity question.

41

The extremal question is by how much can ALICE win in comparison to BOB and vice
versa. The complexity question asks for the computational complexity class of determin-
ing if ALICE has a winning strategy.

The game must end ultimately when all vertices are eaten up. And of course the
game is not loopy, as it is impossible to return to a previous state of the game. A game
is called loopy if it is possible to return to a previous state of the game. We assume that
both players have perfect information at all times. The game is defined as normal play,
that is the players try to move as long as possible, in the sense made precise above. It is
also possible to consider the variant of misére game, where the players try to be unable
to move as soon as possible. We further distinguish whether start vertices are given and
whether the graph is directed or undirected.

A problem L is PSPACE-complete if every decision problem, that can be decided with
polynomial amount of space can be reduced to L and L can be decided with polynomial
amount of space.

The decision problem TRON is the following: the input is a graph and we want to
answer the question whether ALICE has a winning strategy. We consider the decision
problem under different game modes as described above.

For convenience, we define the length of a path to be the number of vertices.

Franchise. Tron is a 1982 American science fiction movie. It was directed by Steven
Lisberger and produced by Disney Studios. After its release a whole cult originated from
the movie: several books, comics, a TV series and computer games emerged as sequels.
The movie Tron Legacy released in 2010 produced an income of over $ 400 million during
its theatrical run [69]. After the first movie several implementations of computer games

Figure 3.2: Screenshot of TRON played for a short time.

with the same name appeared. Many different game modes exist. Some are completely
unrelated to the game we consider. Nevertheless, the name TRON is usually associated
to the following game: two light cycledl] travel within a rectangle; both leave a glowing
wall behind them. A player loses when he or she hits one of the walls or the boundary of
the rectangle.

Related Work. Much work has been done to analyze games from a mathematical or
computer science perspective. A survey can be found by Demaine and Hearn [27].

Night cycles are fancy motorcycles.

42

TRON has been first studied explicitly by Bodlaender [19] and later by Bodlaender and
Kloks [20]. PSPACE-completeness was shown for directed graphs under normal play with
and without start vertices given by Bodlaender [19]. NP-hardness and coNP-hardness
was shown for undirected graphs by Bodlaender and Kloks [20]. There the focus is on
studying games where the players form a path during the game play. Among the path-
forming games consider the closely related game GEOGRAPHY. On the one hand, it is a
textbook example for a PSPACE-complete game on directed graphs [66]. On the other
hand, it is an example of a game that is polynomially decidable for undirected graphs [30].
(this is to decide if ALICE has a winning strategy.) It is applied to show that the ancient
game GO is PSPACE-hard [48)].

TRON can also be seen as a variation of the traveling salesman problem. Here two
players try to visit as many cities as possible, in the presence of a business competitor [29].
Fekete, Fleischer and Fraenkel consider the case that allows to reuse vertices; players can
even occupy the same vertex. This game is also PSPACE-complete.

Instead of the algorithmic complexity often games are analyzed more from the per-
spective by how much a player can win. TRON can be regarded as the game played
by two siblings that share some cake (Cut up in a way that the pieces form a graph.)
according to the rules above. Knauer, Micek and Ueckerdt answered this question for a
related game concerning pizzas (How to eat 4/9 of a pizza [46]). The same question was
solved with different methods by Cibulka, Kyncl, Mészaros, Stolar and Valtr [22].

Results We investigate by how much ALICE or BOB can win at most. There exists
graphs of arbitrary size such that ALICE can gather all the vertices except a constant
number. The same holds for BOB. And the graph can be chosen to be k-connected for
any fixed k. For planar graphs, we achieve a weaker, but similar result.

We consider the same question for the misére game and found planar graphs of arbi-
trary size where BOB Kkills himself within 2 turns and ALICE has to take all the remaining
vertices. Conversely, the same holds for ALICE.

We show PSPACE-completeness for TRON played on undirected graphs both when
starting positions are given and when they are not given. We also consider misére game
with the same constraints. In total all 8 different variations are considered.

Outline Section is concerned with elementary results and some general observa-
tions used later. Section explains all the extremal results mentioned above. At last,
Section gives detailed proofs of the complexity results.

3.2 Basic Observations

The aim of this section is to show some basic characteristics.

When humans play a few games of TRON on a "random" graph, one observes that
one usually ends up in a tie or one finds that one of the players made a mistake during
the game, i.e., played suboptimally. A natural first question to ask is if ALICE or BOB
can win by more than one at all. The following easy example is counterintuitive because
it is disconnected.

Example 3.1 (two disjoint paths). Let G be a graph which consists of two disjoint paths
of length n, refer to Figure [3.5. Without loss of generality: ALICE starts in the upper
graph with b — 1 wvertices to the left and a vertices to the right and b < a + 1. If BOB

43

a+b

Figure 3.3: ALICE has to minimize a/b and (a + b)/(a + 1) simultaneously.

starts next to ALICE the outcome will be a/b. If BOB starts at the beginning of the other
path, the outcome will be (a+b)/(a+ 1)).

Thus ALICE has to minimize the two possible outcomes simultaneously, which is at-
tained when (a +b) /(a + 1) = a/b. This is the definition of the golden ratio(up to the
constant 1, which can be ignored for large a and b) and hence the outcome, under rational

1+2‘/5, with n — 0. O

play, equals

Example (3.1 shows that #B — #A can get arbitrarily large. If we defined the outcome
to be the difference of the score, ALICE would choose a ~ n/3.

We modify the graph above by adding a super vertex v adjacent to every vertex of
G. When ALICE starts at v, the first vertex on the original graph G will be taken by
BoB and ALICE will take the second vertex on GG. The roles of ALICE and BOB have
interchanged. The argument holds in general and implies the following lemma.

Lemma 3.2 (Super vertex). Let G be a graph where BOB has a winning strategy and
let F' be the graph we obtain by adding a super vertex v adjacent to every vertex of G. It
follows that ALICE has now a winning strategy and can achieve an even better ratio.

Note this observation works not necessarily in the misére game. As ALICE has one
more vertex, which might make the difference between losing and winning. Also note
that some graph properties might get lost.

The other direction holds as well. Let G be a graph where ALICE wins and say she
starts at vertex v. Delete v from G to attain H. The situation in ALICE’s first turn in
H is the same as BOB’s first move in G. Conversely, BOB’s first turn in H includes the
options ALICE had in her second move in G.

Lemma 3.3. Let G be a graph where ALICE has a winning strateqy and H be the graph
we obtain by deleting the vertex where ALICE starts in an optimal play. Then it follows
that BOB has a strategy in H to obtain the inverse ratio, except that he misses one vertex.

The start vertex of ALICE in GG need not be unique, even when ALICE wins: consider
the complete graph with an odd number of vertices. As we will later see, it is probably
impossible to efficiently compute the optimal start vertex in G. However, Lemma is
about the existence of H.

In comparison to G the roles of ALICE and BOB are exchanged in H. BOB has even
more options in his first turn in H than ALICE had in her first turn in G. Nevertheless
BOB has one vertex less he can occupy.

In the misére game this trick does not help because more options can be a disadvantage

in the misére game.
Bodlaender and Kloks [20, Theorem 3.1| showed the first inequality of Lemma (3.4}

44

Lemma 3.4 (Trees). Let T be a tree. Then #4 < #B+1 and #B < 2 - #A.

Proof. We describe a strategy for ALICE and BOB explicitly.

Let v denote the start vertex of ALICE with neighbors wq,...,w; and [; the length
of the longest path from w; in T'— {v} for all i = 1,...,k. The index j is defined by
j €argmax{ [; | i=1,...,k}. If BOB chooses w; as start vertex then he obtains at least
l; vertices, while ALICE receives at most (I; + 1) vertices. This shows the first inequality.

For the second inequality, let ALICE start in the middle of a longest path. Thus she
divides the tree into smaller trees T7,...,T). BOB starts in one of them and receives at
most as many vertices as the length of the longest path in 7. ALICE will enter a different
tree, which contains one half of the longest path. Thus she receives at least half of the
longest path. O]

The first inequality is tight for paths of odd length. The second inequality is most
likely not tight.

However, BOB can achieve in some trees a linear amount of vertices more than ALICE,
as shown in the next example. To simplify the calculations we assume that BOB wants to
maximize the #B— #A. We will argue #B— #A > k/3 and this implies also that the ratio
#B/#A is larger than 1 even under the assumption that the players want to optimize the
difference.

2k +1 2k
M Vg V3 —_—
v
V4 k

Figure 3.4: BOB can attain more vertices than ALICE.

Example 3.5. The example is depicted in Figure schematically. It is symmetric
around the marked vertex v,.

If ALICE starts more than distance k from vy then BOB can easily attain at least k
more vertices than ALICE. Thus we assume ALICE starts x vertices to the right of vy,
with x € {0,1,...,k}.

We describe explicitly a strategy for BOB. (We will ignore constants.) BOB has two
different options.
Option 1: BOB starts on the adjacent vertex to the left of her and receives x+4k vertices
and ALICE receives 4k — x many vertices. In this case #B — #4 = 2x.
Option 2: BOB starts in vi. In this case ALICE has two options. FEither, she goes
towards him and he will get 4k vertices, while she gets only 3k + = vertices. Or she goes
to the right and will receive 4k — x, while BOB gets 5k vertices by using the branch at vs.
In both cases #B— #A4 >k — x.

As BOB chooses his strateqy and ALICE chooses x the outcome equals

] 2. k — ~ k/3.
pein | max { 22, k—a } ~k/

45

3.3 Extremal Question

In this section, we answer the extremal question for TRON, i.e., is there a nontrivial upper
and lower bound on the outcome as a function of the number of vertices of G. For the
misére game the question is the same, just with the difference that the players try to get
as few vertices as possible. Note that it makes no sense to consider variants of the game
with given start vertices. Further note that a directed cycle is an example of a directed
graph, where BOB receives all but one vertex. Thus in the remainder of this section we
only consider undirected graphs without given start vertices.

Subsection deals with the misére game.

For normal play we investigated several graph classes and the answer depends on the
class of graphs we consider. Subsection deals with general graphs.

The question is again by how much can ALICE win over BOB and vice versa. In
particular one would expect any non-constant lower bound how much each player receives.
Very surprisingly for every natural number n there exists a graph with n vertices, such
that #B = n — ¢ for some small constant c.

As corollary, Lemma [3.2] gives us a graph where ALICE can obtain all vertices except
a constant amount.

In Subsection we will construct planar graphs with #B/#A = O(y/n) and graphs

with #A/#B = ©(y/n).
In Subsection k-connected graphs are studied. Surprisingly, we are able to adapt
the example fron Subsection such that it becomes arbitrarily highly connected.

3.3.1 Misére Game

We remind the reader that each player tries to be unable to move in the misére game.
Nevertheless, each player has to make a turn if there exists a free adjacent vertex.

U1

V2

Figure 3.5: ALICE has to collect all but 2 vertices in the graph, called apple.

Theorem 3.6 (extremal misére game). For every natural number n and each player p
there exists a graph on n vertices such that p collects at most 3 vertices and the other
player has to collect all the remaining vertices.

Proof. We first give a proof for BOB. Refer to Figure[3.5] The construction, called apple,
is a path P = (vy,...,v,) with v3 connected to v,,. We describe explicitly every possible
turn of ALICE and BOB’s response to them.

46

Case 1 ALICE starts at v; the top vertex of the stem of the apple. Consequently, BOB
starts on the peel at v5 and goes towards the stem such that ALICE will cut him
off and she has to traverse the rest of the graph.

Case 2 ALICE starts at vy in the middle of the stem. Accordingly, BOB starts at v; and
ALICE has to traverse the rest of the graph.

Case 3 ALICE starts somewhere on the peel. BOB starts at v, in the middle of the stem
and shuts himself out. Thus ALICE is alone on the cycle and has to traverse all
the remaining vertices.

To see that the theorem also holds for ALICE add a super vertex v, which is con-
nected to every other vertex. When ALICE starts there the roles of ALICE and BOB are
interchanged as discussed after Lemma O

3.3.2 The normal game on general graphs

We study a simple example first.

Example 3.7 (big circle). We consider a cycle of length n, and a subtle change of the
rules. We assume that ALICE has to make two moves before BOB joins the game. The
analysis of this example is short: ALICE decides for a vertex and a direction and BOB
can simply start in front of her and take the rest of the cycle. This example will also
work, if only every a™ vertex is an admissible start vertex for BOB.]

overhead graph

N\

@ @ bottleneck vertices G G

big circle O

Figure 3.6: The ordinary visage on the left-hand side and the visage from Torsten Ueckerdt on
the right-hand side.

Theorem 3.8 (general extremal graphs). For every natural number n there exists an
undirected graph G on n vertices such that BOB can traverse all but a constant number
of vertices.

47

Proof. For n smaller than some constant the statement is trivial.

The construction, called wvisage, consists of three parts: an overhead graph, a big
circle, and a bottleneck, as depicted on the left-hand side of Figure [3.6, The overhead
graph can be any graph where BOB wins. The two paths in Example give us such a
graph. It suffices to take paths of length 3 for our purpose. The big circle consists of a
large cycle of length 2al. The constant a can be chosen to be 4. However, we recommend
to think of a as a large enough constant on a first reading. In contrast, [grows with n.

The last part is a bottleneck between the first two parts and consists of two non
adjacent vertices, one is marked with a square and the other with a circle in Figure |3.6]
Both bottleneck vertices are adjacent to every vertex of the overhead graph but only to
every a'” vertex of the cycle. More specifically, we alternatingly mark every a'* vertex
on the big circle with a square or a circle. The bottleneck vertices are adjacent to the
vertices on the big circle marked with the same symbol.

When either player enters the big circle via one bottleneck vertex, it can only leave the
big circle via the other. But the next bottleneck vertex is at some distance of a vertices,
when he or she is on the big circle. However, the overhead is adjacent to both bottleneck
vertices.

We give a strategy for BOB for all possible moves of ALICE to gather at least n — 10
vertices.

Case 1 ALICE starts in the overhead graph. In this case, BOB also starts in the overhead
graph and wins within the overhead graph, by construction of the overhead graph.
Thereafter, ALICE has to leave the overhead graph eventually and go to one of
the bottleneck vertices. BOB waits one more turn within the overhead graph. If
ALICE tries to go back to the overhead graph, BOB will go to the other bottleneck
vertex and trap her. Thus ALICE has to go to the big circle and once there she
will have made already two turns when BOB enters the big circle. We already
studied this situation explicitly in Example [3.7]

Case 2 ALICE starts in one of the bottleneck vertices. BOB will then again start some-
where in the overhead graph. The situation is as in [Case 1]

Case 3 ALICE starts in the big circle. In this case, BOB will start on the closest bottle-
neck vertex to ALICE and then quickly go to the other bottleneck vertex via the
overhead graph. Thus she cannot leave the big circle. Finally, he enters the big
circle on the closest vertex in front of her.]

Example 3.9 (Torsten-visage). Torsten Ueckerdt showed with a very similar construction
how to reduce ¢ to 8, as depicted on the right hand side of Figure [3.6. Here not every
vertex of the overhead graph is connected to the bottleneck. The crossing number is two:
the graph is almost planar. We omit a detailed analysis of all the possible turns of ALICE.

3.3.3 Planar Graphs

We construct a planar visage. Again, it will be more convenient to study a simpler
example first.

Example 3.10 (long path). Consider a path of length n and the change of rules that
ALICE has to make two moves before BOB starts. Assume ALICE goes along the path
and has a vertices she could reach. If BOB cuts her off, #B = a, #4 = 2, and the

48

outcome equals #B/#4 = O(a). Hence ALICE could choose a to be small. In this case
BOB chooses the other side and #B=n —a — 2, #4 = a + 2, and the outcome becomes
#B/#4 = 0O(n/a). This observation implies that ALICE’s best choice is a = O(y/n) and
thus the outcome under optimal play is ©(y/n). This example works asymptotically the
same way if only every 100th vertex is an admissible start vertex for BOB.]

ALICE start

*—o—0 *—o—o Case 1

OO ()7

Case 3

Case 2

Figure 3.7: left: planar visage for BOB right: planar visage for ALICE

Theorem 3.11 (planar extremal graphs). For every natural number n there exists an
undirected planar graph G on n vertices such that the outcome is ©(y/n).

Proof. The planar visage in Figure differs from the visage on the left of Figure [3.6]
only in one point: the big circle is replaced by a long path. We can see from the drawing
on the left-hand side of Figure that this graph is indeed planar.

BoOB’s strategy is the same here as in the ordinary visage. Except, BOB enters a long
path, not a big circle, two turns after ALICE . O

Unfortunately, we cannot apply Lemma to obtain a planar graph where ALICE
wins. Even if we add a super vertex that is only connected to wisely chosen vertices, we
could not make it work. Instead, we construct a new overhead graph and connect the
bottleneck vertices.

Theorem 3.12. For every natural number n exists an undirected planar graph G on n

vertices such that the outcome is © (%)
n

Proof. This example is different from the previous one in two ways. Obviously, the
overhead graph has changed, as you can see on the right hand side of Figure [3.7 but
more subtly the distance between vertices adjacent to the bottleneck increased from 4 to
7. Tt is sufficient to show #A/#B = O(y/n), under optimal play.

We give an explicit strategy for ALICE. ALICE’s start vertex is marked in Figure
on the top.

Case 1 BOB starts somewhere on a path from ALICE’s start vertex to a bottleneck vertex.
ALICE can just go directly to the corresponding bottleneck vertex and trap BOB
this way.

49

Case 2 BOB starts w.l.o.g. on the o-bottleneck vertex or on the adjacent vertex on the
path between the two bottleneck vertices. ALICE will slowly go to the O-vertex,
i.e., not in one turn.

(a) BOB goes to the O-bottleneck vertex, via the short path connecting them.
ALICE reaches it earlier and BOB is trapped.

(b) BOB enters the long path. ALICE will follow him two turns delayed. The
outcome of this scenario is as in Example

Case 3 In the only remaining case BOB starts on the long path. ALICE will go to the
bottleneck vertex which is closer to BOB’s position and then to the other bottle-
neck vertex. (Because this takes longer than in the ordinary visage, the distance
between the marked vertices must be increased to seven.) Thus BOB cannot leave
the long path and ALICE enters it second at least two turns delayed. m

Remark. In both planar visages we presented, it is possible for the winning player to
cut off his or her opponent within at most 20 turns. But this might not be the optimal
strategy, as shown in Example [3.10]

3.3.4 k-connected Visage

In this subsection, we construct a k-connected visage. The essence is twofold. First, we
increase the number of bottleneck vertices, and secondly we replace paths of the big circle
by double-trees, which will be introduced shortly. Double-trees have a high connectivity,
a bottleneck and a Hamilton path.

upper tree

lower tree

Figure 3.8: A double tree of height h = 2 and degree d = 3; the edge set F3 connects these two
trees. It is colored gray.

Definition 3.13 (Double-tree). A double-tree of degree d and height h consists of two
fully balanced rooted trees with d children for each inner vertex and height h. They are
called upper and lower tree.

The upper and lower trees are connected, via their leaves, by the edge sets Fy, Fs,
and Es3, to be defined shortly. Note that we will call vertices, which were leaves in its
respective original tree, still leaves, despite the fact that they do not have degree one.

We consider a plane drawing of the double-tree as in Figure[3.9. From left to right, we
name the leaves of the upper half of the double-tree wy,us,...,u; and likewise we name

50

the leaves from the lower half of the double-tree
Wy, Wa, ..., wy, as depicted in Figure [3.9. We denote the number of the leaves with I.
Regarding the leaves, indices are read to be modulo | .

e o o

U1 Ud Ud41" - Ugd . up
[] [] []

w1 WWagr T Wad LW
e o []

Figure 3.9: All the leaves with their names and parents. The edge set E; is drawn green and
curvy. One of the cycles partitioning the set of leaves is drawn red and dotted.

We define
Elz{(ui,uiﬂ):izl,...,l—l}U{(wi,wiH):izl,...,l—l}.

In other words when they come after each other in the order given in the definition, they
are adjacent. The edges of Ey are indicated with red dotted lines in Figure [3.9 and it
holds

Ey = {(up,wp) :n=morn=m+d modl}.

At last E3, depicted in gray in Figure|3.8, connects leaves with the same corresponding
parent of the other tree, more precisely

1/d—1
by = U {(Widgyj, wigrr) : 1 < j,k < d}.
i=0
Note Fy and Es are not disjoint. B

The next lemmas show easy properties of the double-tree. We define concatenation
trees as follows: let T1,T5, ..., T, be rooted trees where each inner vertex has at least 2
children. Assume we have a drawing with all the trees crossing-free in a half plane such
that all leaves are on the boundary of the half plane. We define leaves as adjacent if and
only if the line segment connecting them does not contain any other vertex. Then this
set of trees with the described additional adjacencies are called concatenation trees.

Lemma 3.14. There exists a Hamiltonian path in the concatenation trees.

Proof. Refer to Figure for an illustration of the proof. We construct a special par-
tition of the vertex set of the trees into paths starting and ending in adjacent leaves. In
the second step we just connect these paths canonically.

51

We do the first step by induction on the maximum height of the trees under consider-
ation. If every tree is just a single vertex, we define the partition to be the collection of
all one element sets. Let 171,75, ...,T,, be some trees as described above and r the root
of T;. We assume that T; is the highest tree and consists of more than one vertex. Let
v; be the rightmost leaf of the leftmost subtree of T; and let v, be the adjacent leaf on
the boundary of the hyperplane, see in Figure Exactly one path exists from v; to
v, via the root r within 7;. We add this path to the partition set and delete it from the
trees. Inner vertices with deleted parent become new roots. We do this for all trees of
maximum height. Now all new trees have smaller height. We can partition the remaining
trees by induction.

We connect the right end of each path to the left end of the next path to get a
Hamilton path. O

v Uy

Figure 3.10: The induction step of Lemma [3.14]

Lemma 3.15. There is a Hamilton path from one root of the double-tree to the other
T00%.

Proof. We start our tour at the top root and go down to u; and from there to us. Next
we use the path constructed in Lemma to traverse the rest of the upper tree. After
ferrying over from w; to w; we traverse the other tree in reverse order to reach the root
of the other tree. In summary, we have traversed every vertex without reusing any
vertex. 0

Figure 3.11: How to connect d paths from z to y via d disjoint cycles.

Lemma 3.16. The double-tree is d-connected

52

Proof. For any two nodes we will show that there are d vertex-disjoint paths connect-
ing them. Thus by Menger’s Theorem [28, Section 3.3], we know that the graph is
d-connected.

The leaves can be partitioned into d cycles. For ¢ =1,...,d, cycle 7 is described by

Ugy Wiy Uitdy Witdy Wit-2dy Wit2ds - - - 5 Wi—d4is Wi—d+i,

see the red dotted path in Figure [3.9

It is easy to see that for every vertex v there exist d vertex disjoint paths to the d
respective cycles. For leaves these paths are very short and v lies on one of the cycles,
but this is no problem.

To construct d disjoint paths from z to y, we use d vertex-disjoint direct paths from
x to the cycles and from y to the cycles. These paths can be connected to each other,
via the cycles. See Figure 3.11

The only issue would be that a path from x to a cycle uses y. But this can only happen
once and would give us a path from x to y, which is disjoint from the other paths. O

Lemma 3.17 (Many afar leaves). For all natural numbers m,k and d > 2 there ezists
some natural number hy such that a double-tree with height h > hy and degree d has at
least m leaves which have pairuise distance at least k from each other and from the root.

Proof. Let h > [log;m]| + 2k. Then there exists at least m disjoint height k£ subtrees,
with another subtree in between. Take from each such tree any leave.

Because the height is larger than £ it is clear that the distance to the root is at least
k. Any two leaves can be either connected via a cycle as indicated in Figure [3.9 or via
the tree. For the first case, note that there are at least 2* leaves in between. For the
second case note that any common ancestor has height at least k. O

Theorem 3.18 (k-connected extremal graphs). For every natural number n there exists
an undirected k-connected graph G on at least n vertices such that BOB can traverse all
but a constant number of vertices. (The constant depends on k, but not on n.)

Proof. We construct a k-connected visage and prove later the required properties.

Refer to Figure for the following construction. It consists of three parts, namely,
the overhead graph, the bottleneck, and a modified big circle.

The bottleneck vertices are separated into two groups of k vertices each. The vertices
of the first group are drawn as a O and the vertices of the second group are drawn as a
o. Every vertex of the overhead graph is adjacent to every vertex of the bottleneck.

The big circle consists of degree k double trees that are strung together by their roots.
The height h of the double trees is chosen so that each double tree has k leaves which
all have pairwise distance at least 4k, see Lemma [3.17, The number of the trees is even
grows with n. For each double tree we mark the k£ afar leaves either all with a O or
all with a o. We alternate between the two options. The vertices in the big circle are
adjacent to the vertices in the overhead graph with the same label.

The overhead graph is composed out of 2k disjoint paths of a length longer than the
number of vertices in a double tree, which does not depend on n.

We show that the construction is indeed k-connected and BOB has a strategy to
traverse every vertex, except constantly many.

To see k-connectedness, we assume (k — 1) vertices have been deleted. We show
that the graph is still connected. We show that every vertex is connected to one fixed

93

afulafgelsfe

Figure 3.12: A 3-connected visage with 4 double-trees, the leaves depicted as a square are
connected to the square bottleneck vertices and likewise leaves depicted as a circle are connected
to the circle bottleneck vertices. For clarity of the drawing, we chose the height of the double-
trees not large enough and omitted some edges of the double-trees.

54

bottleneck vertex, say v. Any vertex of the overhead graph is adjacent to v by the
construction. Any other bottleneck vertex is connected to v via some vertex of the
overhead graph. Lemma [3.16|implies that every double-tree is k-connected. Thus every
vertex has still a path to a leaf that is connected to one of the bottleneck vertices, which
is itself connected to v.

BoB still wins within the overhead graph. However, ALICE could leave the overhead
graph go to a bottleneck vertex, return to the overhead and continue to alternate between
the two components. BOB can assure that the number of O-bottleneck vertices remains
the same as the number of o-bottleneck vertices and that he will always win within the
overhead graph. For this purpose, he will always go to a bottleneck vertex immediately
after ALICE left one. And thus, return to to the overhead graph after ALICE left the
bottleneck. See Example for a similar situation.

Eventually, ALICE is the first to enter the big circle, say w.l.o.g. via a O-bottleneck
vertex. No matter how it came to that, at least one o-bottleneck vertex and one path in
the overhead graph is unused, maybe more than one. BOB will first traverse all remaining
O-bottleneck vertices and then all remaining o-bottleneck vertices up to one. Thereafter,
BOB waits for ALICE to traverse a root of a double-tree. Once ALICE did this, it is clear
whether she traverses the big circle in clockwise or counterclockwise direction.

At last, BOB goes to the next double-tree via the last remaining bottleneck vertex and
then go to the next root, which ALICE would reach. He can reach the root faster than her
because he starts in the middle and ALICE starts on the opposite site of the double-tree.
ALICE cannot leave this double-tree because all entrances, bottleneck vertices and roots,
are taken.

Summing up, BOB can traverse all the vertices of the big circle, except maybe two
double trees. The rest of the graph has constant size. This finishes the proof. O

Adding a super-vertex as in Lemma [3.2] gives us instantly a k-connected visage that
is good for ALICE.

3.4 Complexity Question

In this section we show that Tron is PSPACE-complete, for various game modes. To do
this, it turned out to be convenient to consider variations where the graph is directed
and/or start positions for ALICE and BOB are given. We reduce quantified boolean
formula (QBF) to TRON. It is well known that it is PSPACE-complete to decide if a QBF
@ is true. A quantified boolean formula has the form ¢ = JzVaodzsVay ... : Cy AL AC)
with each C; = L;, V L;, V L;; and L;, some Literals [66, Section 8.3]. In Theorem m,
we will construct for each ¢ a directed graph G, with given start positions v; and v,
such that ALICE has a winning strategy if and only if ¢ is true. In Theorem |3.20, we will
modify this graph, such that it becomes undirected. In Theorem [3.21] we will construct
a directed overhead graph to G, which will force ALICE and BOB to choose certain
starting positions. At last in Theorem [3.22] we will construct an undirected overhead
graph. Here we will make use of the constructions of the preceding theorems.

Theorem and has already been proven by Bodlaender [19]. The proof of the
first theorem is similar to the proof that the game GEOGRAPHY is PSPACE-complete [66].
We repeat his proofs, with subtle changes. These differences are necessary for Theorems
[3.20], [3.21] and [3.22] to work. It also serves the self-containment of this work.

55

Alice Start Bob Start

1 Tl T3 2
3 73 T4 , 71
x5 T o Tg

Lmuc ;

Liy @+’ dummy-vertex

Lig

Figure 3.13: The graph G,; the edges from the clause vertices to the variable vertices are
indicated with dotted lines.

56

3.4.1 Normal Play

Theorem 3.19 (directed, given start [19]). The problem to decide if ALICE has a winning
strategy in a directed graph with given start positions is PSPACE-complete.

Proof. Given a QBF ¢ with n variables and k clauses, we construct a directed graph
G, as depicted in Figure See also Figure for a concrete example. It consists
of starting positions for ALICE and for BOB from where variable gadgets begin such
that ALICE and BOB have to decide whether they move left or right; this represents an
assignment of the corresponding variable. Thereafter, ALICE has to enter a path of length
k — 1, which we call the waiting queue. Meanwhile BOB enters the clause gadget, which
consists of k£ vertices arranged in a directed cycle each representing exactly one clause.
Thus BOB can traverse all but one clause-vertex before ALICE enters the clause gadget.
When she enters, she has only one clause-vertex to go to, which was chosen by BOB.
Now, from each clause vertex we have edges to the corresponding variables and one edge
to a dummy-vertex. Thus each player can make at most one more turn. Note if BOB and
ALICE make a turn, ALICE wins; otherwise the game ends in a tie. Thus BOB takes the
dummy-vertex, otherwise ALICE takes it. Consequently, if ¢ is true ALICE has a strategy
to assign the variables in a way that every clause becomes true and she is still able to
make one more turn and wins. Otherwise, BOB has a strategy to assign the variables
such that at least one clause is false. Thus ALICE cannot move anymore from the clause
vertex and the game ends in a tie. This shows PSPACE-hardness. As the game ends
after a linear number of turns, it is possible to traverse the game tree using linear space.
See [66] for a similar argument. O

Our approach is to take the graph G, from Theorem and convert it to a working
construction for Theorem [3.201

Theorem 3.20 (undirected, given start). The problem to decide whether ALICE has a
winning strategy in an undirected graph with given start positions is PSPACE-complete.

Proof. We replace every directed edge of G, by an undirected one. Further, we will
carry out 4 modifications and later prove, that the resulting graph G:O has the desired
properties.

In the following, the exact lengths of the described paths are not very important.
But it is important, that certain paths have the exact same length. This makes certain
options equally good, or let them differ by exactly one.

Modification 1 (slow-path). As we want that ALICE and BOB assign each variable in
order, we must prevent them from using the edge from a variable-vertex to a clause-vertex.
We achieve this via subdividing every such edge to a path of length 2k +n. See the bottom
of Figure|3.15,

Modification 2 (waiting queue). It might happen that BOB cuts off the waiting queue.
We prevent this by replacing the waiting queue by the graph depicted on the top of Fig-
ure[3.15. We again refer to this construction as a waiting queue.

Modification 3 (dummy-vertex). Another concern is that BOB might go towards the

dummy-vertex and return. To prevent this, we replace all the edges to the dummy-vertex
by the construction in Figure[3.16,

o7

Alice Start Bob Start

dummy-vertex
Figure 3.14: G, with QBF ¢ = 32,VaoIzsVay : (T1VaaVas)A(xz1 Ve Vas) A (T1VZ2VT3). The

indicated paths of ALICE and BOB correspond to an assignment of the variables 21 = 1,29 =
1,:173 = 0,.%'4 =0.

>2

k—3
.
.
.

C)Cye e+ Oy

o o o +o$i1
o o o —Q—O_KEiz
e o o —.—._‘l'i3

n + 2k

Figure 3.15: the waiting queue on the top and the slow path on the bottom.

o8

Modification 4 (spare path). It might be an advantage for BOB to go to a literal which
15 contained in two clauses, instead of going to the dummy-vertex because he then might
use the other slow path to return to a clause gadget and receive in total 4k+2n+1 vertices
after leaving the clause gadget. We attach a path of length 2n + k to each variable-vertex
and the dummy-vertex. This path is denoted in the following as spare path.

Figure 3.16: Modification of the paths to the dummy-vertex

Let us start to describe the desired scenario as depicted in Figure [3.17] on the top.
In this scenario ALICE and BOB traverse the variable vertices alternatingly. Then BOB
traverses all but one clause vertex, which ALICE occupies. At last BOB goes to the
dummy vertex and ALICE to the a free variable vertex. If such a vertex exists, ALICE
will win by 1, otherwise BOB will win by 2n + k, because he can use a spare path (to
avoid clutter the spare path is not drawn). We have to show that it is not useful for
either participant to divert from this scenario.

First, we show that after ALICE and BOB leave their respective start positions they
have to assign the variables. There are only two strategies they possibly could follow
instead. The first is to use a spare path from Modification 4. This gives at most 2n + k
vertices. The other player would just go down to the clause vertices and then to the
dummy-vertex and proceed to the spare path from the dummy-vertex. Thus using the
spare path at this stage leads to a loss.

The other option is to use a slow-path from a variable to the clause-gadget as intro-
duced in Modification 1. It takes quite a while to traverse this path and meanwhile, the
other player can just go down to the clause-gadget, traverse all the clause-vertices and
then go to the dummy-vertex. Again, it turns out that this strategy is a certain way
of losing (assuming the opponent plays optimally). See the first irrational scenario in
Figure [3.17]

So far, we have established that BOB reaches the clause gadget, ALICE reaches the
waiting queue, and they have assigned all the variables alternatingly on their way. We
would like if BOB traverses k — 1 clause vertices and ALICE goes to the clause vertex,
that BOB left her. See the desired scenario in Figure BoB could make one of two
plans to prevent this scenario. The first plan is that he might try to go to the dummy
vertex and return before ALICE has reached a clause-vertex. (It is not necessarily useful,
but we want to exclude it anyway.) But the time to return is long enough that ALICE
will have taken all the clause vertices meanwhile and BOB would receive more vertices if
he were to proceed all the way to the dummy vertex and take the spare path. The second
plan he might pursue, is to shortcut the waiting queue. Luckily, the queue splits after

99

The two paths have the exact same length. However, Bob

enters his path first. Thus the last turn of the whole game

will be performed by Alice. Alice did also the first turn. In
on the clause gad-

total she made one more turn than Bob. \\
dummy
vertex
gets.

Bob start
ob star Bob can continue af-
ter Alice got stuck.

Bob start

Alice start

Alice decides after

Bob made 2 turns

Irrational Scenario I

O

dummy

Alice start vertex

Bob start Alice.can move here
sufficiently long.

O

dummy
vertex

Alice start Bob gets stuck here.

Figure 3.17: The desired scenario and two undesired ones mentioned in the proof of Theo-
rem |3.20)

60

two vertices. Thus, when BOB enters the queue before two turns, ALICE can avoid him
by taking a different branch and the BOB himself gets trapped. If he waits two turns,
he must have determined a clause vertex for ALICE already. Hence ALICE knows which
branch to use. This particular branch cannot be reached by BOB by then. See the second
“irrational’ scenario in Figure [3.17]

In summary we have established that BOB indeed has to traverse k — 1 clause-vertices
and ALICE obviously has to go to the clause-vertex BOB left for her.

At this stage, it is BOB’s turn. One of the longest paths that remains goes to the
dummy vertex and proceeds via a spare path. So he had better take it, because otherwise
ALICE will take it and he loses.

Consider ALICE’s position. If there is a variable vertex she can reach, she also has a
path of the same length as BOB does and this would imply that she will win. If not, then
she could only go towards a variable-vertex and BoB will win.

Note that the path to the dummy vertex and to a variable vertex has the same
length. The reason ALICE has a higher score than BOB is that she will make the last
turn. Recall that ALICE starts. As the two players move alternatingly, ALICE occupied
one more vertex than BOB.

And again as in Theorem [3.19, ALICE has a winning strategy in G, if and only if é
is true.

If ALICE has a winning strategy, she will win not by more than one vertex. Conversely,
if ALICE does not have a winning strategy, BOB can win, via the dummy vertex and a
spare path, by 2n + k + 1 vertices.

We proceed to show how to force ALICE and BOB to choose certain start positions
in a directed graph. We construct a graph H(G) such that ALICE wins in H(G) if and
only if ALICE wins in G when both players start at certain positions v; and vy in G. It
follows that ALICE wins in H(G,,) if and only if ¢ is true. With a similar but different
construction, Theorem was shown in [I9]. In this chapter, we again give a slightly
different proof because it is an essential step for our proof of Theorem [3.22]

Theorem 3.21 (directed, without given start [19]). The problem to decide
whether ALICE has a winning strategy in a directed graph without given start positions
1s PSPACE-complete.

Proof. Assume we are given some directed graph G on n vertices, among them vy, vy € G.
We construct some directed graph H(G) in polynomial time such that ALICE wins in
H(G) if and only if ALICE wins in G with the predefined start positions vy, vo. We have
reduced the problem of TRON on a directed graph without start positions to the case of
TRON with given start positions.

The general idea of such an overhead graph is simple. We construct two vertices,
which are very powerful, such that ALICE and BOB want to start there, but once there,
they are forced to go to the start vertices of the original graph. The idea is also used in
Theorem [3.22

We describe the construction of H(G) as depicted in Figure in detail.

We add two vertices u; and up with attached directed paths of length 2n = 2 |V(G)]
to the start vertices v; and vy respectively. So far, the longest path starts at u; or uy and
has length [between [;,,, = 2n and [, = 3n.

Then we add two directed auxiliary paths of length [,, + 1 and vertices s; and ss.
We denote the vertices of the auxiliary paths by xy,...,zq,,+1) and y1,...,yq,,+1)- The

61

S1 82

lup - llow +2
Ul (5

lup + 1

llow -1

Figure 3.18: H(G)

vertex s; is adjacent to uy, 71 and y;. The vertex sy is adjacent to T, —1,,.,+3), Y(lup—liow+3)
and us.

We require that the first part of the auxiliary path is shorter than the second part,
which is the case as long as l,p — liow + 2 < l;oy — 1. Once one of the players is in an
auxiliary path or G, there is no way out of the respective component simply because
there is no outgoing edge.

Claim 1: If ALICE starts at s; and BOB at sy then ALICE should go to u; and BOB
should go to us.

If ALICE does not go to u;, BOB goes into the same auxiliary path as her and receive
more vertices than ALICE and thus she loses. If BOB does not go to us, he receives fewer
vertices in an auxiliary path than ALICE in G.

Claim 2: It is best for ALICE to start at s;.

Case 1 If ALICE starts in G then BOB starts at the top of an auxiliary path.

Case 2 ALICE starts in an auxiliary path. As the path is directed, BOB starts in front of
her.

Case 3 If ALICE starts in s, then BOB starts in s;. In this situation BOB can get [, + 2
vertices, via an auxiliary path, in total and ALICE at most [,, + 1 vertices, by
going to us.

These first 3 cases show Claim 2.
Claim 3: If ALICE starts in s;, BOB is always better off starting at ss.

Case 4 BOB starts in an auxiliary path. ALICE will go to the other auxiliary path and
win by at least one.

Case 5 BOB starts in G or a path from u; to G. ALICE will then just go to an auxiliary
path.

Claim 1, 2 and 3 finish the proof. O

62

We show hardness if the graph is undirected and the starting positions are not given.
We will do that by using the graph G, constructed in Theorem and an undirected
version of H(G), which we will denote by H'(G). Unfortunately, this will not work
immediately. We will, therefore, construct an overhead graph F/(H'(G)) on top of H'(G).

Theorem 3.22 (undirected, without given start). The problem to decide whether ALICE
has a winning strategy in an undirected graph without given start positions is PSPACE-
complete.

Proof. The general idea of this construction is the same as in Theorem [3.21], but because
we build up from the construction from Theorem [3.21] everything gets more involved.
However, each argument is elementary.

Let H'(G) be the graph H(G) with all directed edges replaced by undirected ones.
Further, the auxiliary paths have to be changed slightly because l;o, = 4n and [,, = 5n.
In other words, the length [of the longest path in the graph G together with the two
paths from u; and uy has between [;,,, = 4n and [,,, = 5n vertices.

Claim The following properties hold for H'(G):

pl If ALICE starts at s, and BOB starts at s, then ALICE has to go to u; and BOB to
Ua.

p2 If ALICE starts at so and BOB at s;, BOB will win.

p3 If we assume s1 and sy are forbidden to use, except when started at then the longest
path starts at si. (longest path in the sense as if only one player would exist.)

p4 Any path from s; to so can be extended using an auxiliary path.
p5 The shortest path from sy to sy has length at least 5.

Proof claim. Properties [pI] and [p2] hold for directed graphs according to the proof of
Theorem [3.21] and hold by the same arguments for the undirected case.

Property [p3| holds by the definition of the auxiliary paths. In particular, the longest
path consist of s; and an auxiliary path. The reader can check easily that all other paths
are shorter.

Property holds because any path from s; to sy uses at most one auxiliary path.
Thus the path can be extended to an auxiliary path that has not been used yet.

Because s; and sy have no common neighbors nor are adjacent, Property [p5| follows.
This proves the claim.]

We construct an overhead graph of H'(G), namely F(H'(G)), as depicted in Fig-
ure It consists of two copies of H'(G), which we denote by H® and H®. In addition,
two vertices t; and ty are part of the construction. We indicate with an upper index * or
b whether a vertex belongs to H® or H®, for example s¢ is the s; vertex in H®.

The edge set consists of all the edges in H?®, H®, and the edges

(th 3(11)7 (tlﬂ sl{)’ (th S%)? (tb Sg), (t27 85)7

(t27 Sg)? (S?a Sg)a (Sliv Sg)a (8?7 Sl{)v (‘957 Sb)'

We call ty, 53 and s4 dot-vertices and t;,s% and s box-vertices.

63

The proof splits into two situations. At first, we will assume that ALICE has a winning
strategy in G, if both players start at v; and vs. |Case 1f to [Case 4] are devoted to this
situation and cover all possible moves of BOB. We will show an explicit winning strategy
for ALICE.

In the second situation we assume ALICEdoes not win in G' and will show that BOB
can achieve at least a tie in F(H'(G)). |Case 5| to |Case 9| consider all possible moves of
ALICE and an appropriate respond of BOB.

Now, we start with the first situation. ALICE starts at t;. W.lo.g., we will only
consider movement to H® instead of H® when the situation is symmetric.

® iy

Figure 3.19: The construction of F(H’(G)) with the underlying graph H¢ and H®.

Case 1 BOB starts in H* but not in s§ or s§. BOB has distance at least 2 to either s¢
or s§, by pb. Both can be reached by ¢;. So ALICE can imprison BOB by going
to the closer vertex and then to the other vertex. BOB cannot escape, because
of p5. (If both vertices have the same distance ALICE can choose.) After that
ALICE can go to H® and wins there by p3.

Case 2 BOB starts at s¢. ALICE takes s°. Then ALICE copies every move of BOB and
thus wins, since the only move she cannot copy is to t,. But p4 shows us that
this is not a wise move for BOB.

Case 3 BOB starts at s3. ALICE goes to s¢ and s} in this order. We consider all possible
positions of BOB.

(a) If BoB is in H*, he will lose by [p3

(b) If he goes to s in his next turn, and then goes to t, he cannot move anymore
and will lose.

(c) If he goes to s% in his next turn, and then makes some other turn in H®, he
is the first to make a turn in H® and ALICE is the second to make a turn in
H®. Thus he loses by [p2}

(d) He moved to s} via t, and will lose by the assumption.

Case 4 BOB starts at ty. ALICE will go to s¢, s§ and then enter H®.

(a) BOB enters H® one turn before ALICE from s3. As in the OB
¥ [p2

makes the first turn in H? and the roles are exchanged and we appl

64

(b) He enters H® one turn after ALICE and lose by [p1|and the assumption.
(c) He enters H* and loses by [p3]

Now, we investigate the second situation and show that BOB can achieve at least a
tie. The proof goes by exhaustive case distinction.

Case b ALICE starts at t;. BOB goes to ts.

(a) If ALICE goes to s{, then BOB will go to s§. If, thereafter, ALICE enters H?,
he will as well. The only other possible turn,for ALICE, is to s§. Then he
goes to s5. In any case BOB and ALICE enter the same copy of H'(G) and
BOB gets at least a tie, by assumption together with

(b) If ALICE chooses 5% as her second move, BOB goes to s} and imitate all of
ALICE’s moves and thus gets a tie.

Case 6 ALICE starts in H* but not s{ or s“i. BOB cuts her off and enters the other copy

of H'(G) via %, see [p3] [p5] and [Case 1]
Case 7 ALICE starts at s§. Then BoB will start at ¢;.

(a) ALICE goes to s%. BOB will go to s5. Now ALICE has to enter H® and BoB
acquires at least a tie by assumption and [pI]

(b) ALICE goes this time to s¢. BOB will then go to s. Thus ALICE has to
enter H* and BOB can enter H® via s} and thus wins by (Unless ALICE
goes to ty and is immediately stuck.)

Case 8 ALICE starts on s§. Then BoB will start at ;.

(a) ALICE goes to s, BOB can go to s% and imitate her moves as in .

(b) ALICE goes to s3, BOB takes s§ then ALICE can make a last move to t, or
enter H°. In the second case, BOB goes to H® via s{ and wins by .

(c) ALICE goes to to. Then BOB goes to s and wins.

Case 9 ALICE starts at t5. BOB goes to t; and follows her in the sense that if she goes
to sg, he will go to s{. Thus either ALICE enters H® via s and BOB will enter
H? via s¢ and thus wins by p2, or the same happens with H® one turn later.

]

3.4.2 Misére Game

In this section the misére game is considered. As stated in the introduction in the misére
game the players want to have a lower score than their opponent. Again four variants
are considered, namely, when start positions are given or not and whether the graph is
directed or undirected.

We use the expressions that a player dies or kills himself or herself in some vertex
and so on. This is a short-hand phrase to say that a player has no possible move from
this vertex or in this situation.

Note players are not allowed to kill themselves by going to an already occupied vertex.
Both players must go to an free vertex if available in the misére game.

65

Theorem 3.23 (directed, without given start, misére). The problem to decide whether
ALICE has a winning strategy in a directed graph with or without given start positions
is PSPACE-complete.

Proof. We reduce from the decision problem of TRON on a directed graph under normal
play as in Theorem [3.21]

Figure 3.20: G denotes the graph for which we want to decide if ALICE or BOB has a winning
strategy under normal play.

For the following refer to Figure [3.20 Let G be a directed graph for which we want
to decide if ALICE has a winning strategy under normal play. We construct a new graph
H(G) with the following property:

ALICE has a winning strategy in G under normal play
< ALICE has a winning strategy in H(G) under misére play.

We describe the construction of H(G) and the desired property will become apparent.
The graph H(G) consists of G itself, a directed cycle of length k& and all edges (v,w),
where v is a vertex of G and w a vertex of the cycle. The construction can be clearly
made in polynomial time.

What ever player p visits a vertex of the cycle first will lose because the other player
q will go to the vertex before p on the cycle. Therefore, ¢ will finish and p still has to
traverse k — 2 vertices.

This implies both players want to start in G and whoever loses the normal play in G
will lose the misére game in H(G).

The proof works when start positions are given and when they are not.

66

Theorem 3.24 (undirected, with given start, misére). The problem to decide whether
ALICE has a winning strategy in an undirected graph G with given start positions is
PSPACE-complete.

Figure 3.21: G denotes the graph for which we want to decide if ALICE or BOB has winning
strategy under normal play.

Proof. We reduce from the decision problem of TRON on an undirected graph under
normal play as in Theorem [3.20]

For the following refer to Figure [3.2I] Let G be an undirected graph for which we
want to decide if ALICE has a winning strategy under normal play. We construct a new
graph H(G) with the following property:

ALICE has a winning strategy in G under normal play
< ALICE has a winning strategy in H(G) under misére play.

First, we describe the construction of H(G), and then the desired property will be
explained.

The graph H(G) consists of G itself, a special vertex w, and a path from every vertex
of G to w of length 10.

At some point one of the players, say ALICE will enter a path to w. Thereafter, BOB
has a winning strategy by also going to w via some other path immediately one turn after
ALICE. Clearly, ALICE will arrive at w one turn before BOB. This means BOB dies and
ALICE has to choose one of the remaining vertices to return to G and thus move at least
another 3 vertices.

If ALICE has a winning strategy in G with the start vertices v; and vy in G under
normal play, BOB has to enter a path first. Otherwise ALICE has to enter a path first.
This finishes the proof. 0

Theorem 3.25 (undirected, without given start, misére). The problem to decide whether
ALICE has a winning strategy in an undirected graph without given start positions is
PSPACE-complete.

Proof. We reduce from the decision problem of TRON on an undirected graph with given
start positions under misére play as in Theorem [3.24] We constrain the input graphs to
those graphs where no player can finish the game within 10 turns. This is a property of
the graphs of Theorem that no player can kill herself/himself within 10 turns. This
is because the length of the paths to w is 10, see the proof of Theorem [3.24] On the other

67

ALICE START
Y

Figure 3.22: a) The graph H(G) and its labels. b) We will show that BOB goes to vy and ALICE
goes to vy these are the start vertices of G. We will exclude all other possible moves of ALICE
and BoB . ¢) Consider the two bridge paths ajay and biby from the left to the right and vice
versa. It is clear that those paths cannot be traversed in the wrong direction because of the the
cycle of length 2n attached to a1 and by. Also note that if both players use the bridge paths the
player coming from the right will be able to kill itself in wy. The other player cannot kill itself
in us. Thus if the player on the left is at w3 before the player on the right is at us then the
player on the left will not use the bridge path. d) Consider the situation that ALICE and BOB
will go towards v; and vy respectively. Then BOB loses if he tries to use the bridge path.

68

Figure 3.23: a)If BOB goes from = to w; ALICE wins. b) Claim 4: ALICE loses if she uses the
edge (y,ws). ¢) and d) Claim 5: ALICE loses if she uses the edge (y, w2).

69

hand, it is obvious that one can Kkill oneself within n turns in G, if n specifies the number
of vertices of G.

For the following, refer to Figure and Figure[3.23] Let G be an undirected graph
with start vertices v; and v, for which we want to decide if ALICE has a winning strategy
in the misére game. We construct a new graph H(G) with the property that under
optimal play ALICE and BOB will go to v; and vy respectively.

For the construction of H(G), see Figure a). The vertices wy, woy, uy, aj, by and
us are connected via an edge to a cycle of length 2n. This makes it difficult to die in
these vertices, because it is always possible to enter the cycle, where one has to traverse
2n more vertices. As a matter of fact, if a player enters one of these cycles, he or she
will lose because the other player can kill herself or himself faster in G. To kill yourself
in G do not use one of the paths to w for 3 turns. Then go to w and from w take a path
to one of the vertices already visited in G. After less than 30 turns you are stuck. We
will assume that neither player ever goes into one of these cycles, unless there is no other
move.

Claim 1: ALICE has to start at the top vertex labeled ALICE START or she will lose.

If ALICE starts at vertex y, BOB kills himself with one turn. If ALICE starts anywhere
else, BOB will start at y and kill himself in two turns and win.

Claim 2: BOB has to start at one of the vertices x, wq, wq, uq, or us; otherwise, ALICE
can kill herself at z.

The moves for ALICE to kill herself are y, wy, uq,z. As there are no quick deaths in
the remaining graph, ALICE can win this way. This shows Claim 2.

We show that BOB will lose unless he starts at . We consider the cases that BOB
starts at w; and wy. The other cases are similar.

Case 1 BOB starts at w;. Thereafter BOB has to go to x. ALICE will go to us and BOB
has to enter a cycle at u; and thus lose.

Case 2 BOB starts at ws. Thereafter he has to go to w;. ALICE goes to x and BOB
imprisons her by going to u;.

This shows BOB has to start in z.

Before we exclude all possible moves of ALICE and BOB further, we want to mention
already the paths ALICE and BOB have to take, see Figure b). BOB goes from z
to u; and further down to v, and ALICE goes to w; and further down to v;. Thus they
arrive at the start vertices of G. In the following, we will exclude all other options.

Consider the two bridge paths ayas and biby from the left to the right and vice versa.
It is clear that those paths cannot be traversed in the order asa; or byb,. because cycles
of length 2n are attached to a; and b;. When w3 or uy is already occupied one would
need to go into the cycle and loose by the discussion above. Also note that if both players
use the bridge paths the player coming from the left will be able to kill itself in w4. The
other player cannot kill itself in us quick enough, because of the long cycle attached to
it. The other player cannot kill itself in G quick enough either. Thus we will assume that
the player on the left will not go to the right if the player on the right already went to
the left or still has this option.

Claim 3: BOB has to go to u; and further to vs.

In case BOB goes to w; the sequence of moves, that lead to a win for ALICE is depicted
in Figure a).

70

Claim 4: ALICE loses if she uses the edge (y, ws).

In case ALICE uses the edge (y,ws) the sequence of moves, that lead to a win for BoB
is depicted in Figure b).
Claim 5: ALICE loses if she uses the edge (y, usg).

In case ALICE uses uses the edge (y, u2) the sequence of moves, that lead to a win for
BOB is depicted in Figure c) and d).

This shows ALICE and BOB indeed have to move as in Figure b), because we
excluded all other cases. O]

3.5 Conclusion

This chapter deals with the question by how much one player can win over the other and
the constructions give an intuition about the conditions when this happens.

The results also suggest that no optimal algorithm can be found to play the game.

From the study of these results, we can learn general techniques how to make reduc-
tions for these kind of games. TRON is interesting for its mathematical simplicity and its
popularity. The game might be a motivation for students to learn graph theory or getting
a better intuition for complexity. But we admit that there are already many examples
found for these purposes, which might be more suitable. Another aspect of TRON is its
suitability to study the performance of learning algorithms.

However in most computer implementations of TRON you play on an empty grid.
Good strategies might be much easier. It remains an open question to get more insight
into these situations. In particular, we want to ask: What is the complexity of TRON on
a planar graph? NP-hardness and co-NP-hardness follows easily from [20].

The most Fun question we want to pose is about trees. By how much can BOB win
on a tree at most. Recall that Lemma [3.4]is not tight. We also think the question about
trees is easiest to attack and might be a nice project for a bachelor/master thesis. The
techniques used in this chapter will not work. New fresh ideas are needed to solve this
problem.

Acknowledgements We thank Justin Iwerks for suggesting this research topic and ini-
tial discussions. For proofreading and general advice, I want to thank Rafel Jaume,
Tobias Keil, Wolfgang Mulzer, Lothar Narins and Michael Payne. For the visage on the
right-hand side of Figure [3.6]T thank Torsten Ueckerdt. I also want to thank the reviewers
for all their many comments and apologize for my bad English. Special thanks goes to
Giinter Rote for a thoroughly reading and for finding a mistake in the construction in
the original proof of Theorem [3.25]

71

72

Chapter 4

Pareto Optimal Matchings

4.1 Introduction

4.1.1 Definitions

The house allocation problem is motivated by the following setup: a set of people is
interested to be allocated to a certain set of houses. Each person has a ranking over the
set of houses and wants to be assigned to the house with her highest preference. As soon
as two people have the same favorite house this is not possible. Motivated by this picture
we abstract the set up and start with some definitions.

In an instance of the house allocation problem two sets A and B are given. The set
A represents applicants and the set B represents houses. We denote by m and n the size
of A and B respectively. In the house allocation problem, we assume that every a € A
has a preference list over the set B. A preference list can be formally defined as a total
order of B. We call an injective mapping 7 from A to B a matching. A blocking coalition
of 7 is a subset A’ of A such that there exists a matching 7’ that differs from 7 only
on elements of A’, and every element of A’ improves in 7/, compared to 7 according to
its preference list. If there exists no blocking coalition, we call the matching 7 a Pareto
optimal matching (POM).

We represent the preference lists by an m x n matrix. Every row represents the
preference list of one of the applicants in A, i.e., in a given row r corresponding to some
applicant a € A, the leftmost house is the one that a prefers most, etc., house b is left to
by in r if and only if a prefers b; over by. Note that no row contains an element from B
twice. We usually denote this matrix by M and following this interpretation we usually
denote the applicants of A by 71,79, ...7,, and the houses of B by 1,2, ..., n. Because of
this matrix representation, we usually refer to applicants of A only as rows and to houses
of B as elements (of the matrix).

To illustrate the notion consider the following matrix and observe that the matching
indicated by circles is indeed Pareto optimal.

1) 5 3 2 4
3 1 (4) 5 2
1 (3) 5 42

The image set of 7 corresponds to the set of houses of B in these positions. Thus, we say
that 7 selects some position p of M (resp. some element b of B), if p is in 7 (resp. b is

73

in the image set of 7). Similarly, we say that a row a selects a position P in row a (resp.
element b) if this holds for the matching 7 under consideration.

In a POM the positions after the m-th column will never be assigned, because at least
one of the previous m elements in that row is preferred and not assigned to any other
element on A. Therefore it is sufficient to consider only m x m square matrices.

If some POM 7 assigns p (resp. b), then it is a reachable position (resp. reachable
house). More generally, a set E C B is (exactly) reachable if there exists a POM 7
with £ C s(7) (E = s(7)). In this case we also say that 7 reaches E. An element b is
unavoidable if it belongs to the set s(7) for every Pareto optimal matching 7 of M and
avoidable otherwise. A set E is avoidable if there exists a POM 7 with s(7) N E = @.
Note that for a set |E| = m it is exactly reachable if and only if B\ E is avoidable. We
will also study matrices with fewer than m columns, precise definitions will be given in
Subsection [4.1.4] In this case preference lists are shorter and it can happen that some
elements of A are not assigned.

4.1.2 Results
Enumerating reachable elements and sets

In Section we deal with enumerative problems related to reachable elements. Our
main result here is the following.

Theorem 4.1. Let M be an m x m matrix and E* be the set of all reachable elements.
Then

m

|E*| <> Im/i] <m(lnm + 1),

i=1

This improves the trivial upper bound of m? which appears in [37]. In [37] the authors
also showed a lower bound construction which has asymptotically as many reachable
elements as is implied by our upper bound. Thus Theorem is asymptotically tight.

Denote by £(M) the family of all (exactly) reachable m-element sets of M. For
example, if all the elements in the first column of M are distinct, then |E(M)| = 1. With
Theorem [4.1] we can bound (M),

Corollary 4.2. For any matriz M, we have |E(M)| < (m(lnmﬂ))‘

m

This is the only non-trivial upper bound that we found, improving ("j) of [37]. As an
important consequence, our upper bound also improves the upper bound on the pattern
matching problem regarded in [37]. The best known lower bound is ([m”}ﬂ) [37]. The
construction in that paper is a matrix where in the first |m /2] columns the i-th column
contains only element ¢ and in the (|m/2] + 1)-st column there are m different elements
which are also all different from 1,2,...[m/2].

Characterization of avoidable elements and sets

Section [4.3| concentrates on the notion of avoidable elements. Let = be the element suspect
to be avoidable. Given some set of rows R we denote by E,(R) the set of elements left
of z in the rows R (i.e., y is in E,(R) if and only if there exists a row r € R in which y
appears to the left of x; if x does not appear in r then all elements in r are regarded to

be left of).

74

Theorem 4.3. An element x of a matrix M is avoidable if and only if for every set R
of rows of M, we have:

|Ex(R)| = |R|

Extremal results and algorithmic results in connection to avoidable elements are in-

cluded in Section [4.3] as they follow from the proof of Theorem We prove that:

Corollary 4.4. Deciding if an element b is avoidable can be done in
O(m?y/m +n) and also in O(m?3) time. Listing all unavoidable elements can be done in
O(m*n/m +n) and also in O(m®) time.

Both results follow from an easy reduction to matchings in a bipartite graph.

Complexity of reachability

Computational questions about reachable elements are considered in Section [£.4 We
considered all reasonable computational questions connected to the notions we considered.
The problems are defined as follows:

Problem 1. (Deciding Reachability)
Input: A matriz M and a set D C B.
Question: Is D reachable?

Problem 2. (Deciding Exact Reachability)
Input: A matrix M and a set E C B
Question: Is E exactly reachable?

Problem 3. (Counting Reachable Sets)
Input: A matriz M.
Question: How many sets D C B are reachable?

Problem 4. (Counting Ezactly Reachable Sets)
Input: A matriz M.
Question: How many sets E are exactly reachable?

Problem 5. (Counting Ezactly Reachable Supersets)
Input: A matriz M and some set D C B.
Question: How many sets E with D C E C B are exactly reachable?

The next table summarizes our findings about algorithmic questions. The general case
is always the same as with 3 column matrices. Problems 1 and 2 are already complete
if D contains exactly 1 element. It was already observed by Henze, Jaume and Keszegh
that Problem 1 is NP-complete [37]. Our contribution among others is to show NP-
completeness also for matrices with only 3 columns. The running time of Problem
follows from the discussion in Section and Corollary [£.4]

Problem 2 columns proof 3 columns proof
1 polynomial (Thm [4.12) | NP-complete (Thm [4.9)
2 polynomial (Cor 4.4 polynomial (Cor (4.4)
3 explicit formula (Thm [4.13 ?
z #P-complete (Thm 4.14) | #P-complete (Thm (4.14)
5 #P-complete (Thm [4.14)) | #P-complete (Thm [4.9))

75

It remains an open question whether Problem [3| is hard for general matrices. We
conjecture it is already #P-complete for 3 column matrices.
Problem H] is a special case of Problem [5| for the case that D = &.

4.1.3 Motivation and related work

One-sided matchings have natural practical uses, e.g. consider the house-allocation prob-
lem where the set A consists of people and the set B consists of houses, see for instance [1].

A recent book on matchings under preferences is by David Manlove [51]. In this
chapter we tried, whenever applicable, to follow the notation therein.

A field that evidently seems to be related to our topic is that of stable matchings.
This field is very broad and belongs to economic game theory. The seminal work Gale
and Shapley is the starting point for this field [31]. Some work in this field and different
variations of the problem can be found in the phd thesis of Sandy Scott [64], recent papers
can be found in the proceedings of the Second International Workshop on Matching
Under Preferences called MATCH UP [I7]. In these works there are many different
concepts of preferences and stability and they ask for efficient computable solutions that
maximize the outcome for the participants in one way or the other. Readers interested
more broadly in the topic of algorithmic game theory are referred to the book edited by
Nisan, Roughgarden, Tardos and Vazirani [57].

In contrast to most research done in these areas, our question is more combinatorial
in nature. The underlying algorithmic question of computing a Pareto optimal matching
is trivial. Thus, instead of existence questions, rather the enumerative questions become
interesting. However, for the original definition of stability many authors have tried to
upper and lower bound the number of stable matchings and some combinatorial structures
have been unfolded. See [51], Section 2.2.2] for an overview of results in this direction.

Further some complexity results similar to ours have been found earlier. The first
dates back to 2005 [2]. Their main result is an efficient algorithm to compute a POM
with maximum cardinality. Here the preference lists are incomplete. Further they show
hardness to compute a minimum maximal POM. This result has already some ideas of the
proof of Theorem[4.3] Further the proof of Theorem [4.14]implies hardness of computation
about minimum maximal matchings. Although they show an easy 2-approximation, it is
open whether there exists a PTAS for a minimum maximal POM.

We are aware of 4 more papers that considered similar results to our complexity
results [63] [I3] [14] [21]. All appeared in 2013 three of them in December. Their main
motivation is to study the behavior of the randomized serial dictatorship also called
randomized priority allocation. The randomized serial dictatorship picks a permutation
at random and thereafter computes the corresponding greedy matching.

The first is by Saban and Sethuraman [63]. Their results, reformulated in our context,
is NP-hardness of Problem 1} for arbitrary matrices. Aziz, Brandt and Brill [I3] show #P
hardness for a variant of Problem [5| for arbitrary matrices. We improve these results, as
we can show this holds also for matrices with only 3 columns. Aziz and Meske show that
constraint versions are solvable in polynomial time [I4]. At last Cechlarova et al. [21]
consider a generalized setting. However they show NP-hardness of computing a minimum
maximal matching even for matrices with 2 columns by an elegant reduction from vertex-
cover very similar in spirit to the proof in Theorem

Another important connection is that this work is originally motivated by a work
that was presented at the EuroCG 2012 in Braunschweig [37]. The authors considered

76

a generalisation of Voronoi diagrams under the assumption that not just one point, but
many points are matched injectively in a way that minimizes the sum of the squares
of distances between matched points. From the definitions in their paper, the Pareto
optimality comes as a natural property. They asked explicitly for the number of exactly
reachable sets, as it gives an upper bound on the number of Voronoi cells in the above
setting. Motivated by this, they gave lower and upper bounds on the number of exactly
reachable stable sets. To do this, first they gave lower and upper bounds for the number
of reachable elements. In this chapter we improve their upper bound for the number of
reachable elements and by that we prove that their lower bound is asymptotically correct.
This also yields a significant improvement on the previous upper bound on the number
of exactly reachable stable sets, although in this case our new upper bound still does not
meet the lower bound they had.

Their work is based on a work by Rote presented at the EuroCG 2010 (2 years earlier)
in Dortmund [61].

4.1.4 Preliminaries

As we also want to study matrices with fewer than m columns, we need to define what
we mean by a matching under these assumptions. There are two equivalent ways. First
we could say that every row, for which all elements are already picked by other rows just
do not get assigned to anything. A nicer way is to add columns, with all elements in one
column being the same and not appearing before. If we want to know if some set F is
exactly reachable in the first way, we construct £’ from F by adding the elements from
the first m — |E| additional columns (and vice versa). The following is an example of a
2 column matrix.

1 4 1 4 C1 Co
2 1 2 1 C1 C9
2517125 a o
4 3 4 3 C1 Co

We use the first approach. However, using the second approach, some hardness results
will carry over from 2 or 3 column matrices to & column matrices (2 < k£ < m). In such
a case, we will point this out again at the appropriate places.

To see the correspondence between matchings in a graph theoretical sense and in our
context we define the bipartite row element graph G as follows. The vertices are defined
as the set of rows and elements; an element e is adjacent to some row r if and only if e
appears in r. See an example for the special case of a matrix with only 2 columns.

EESENCICES

@
1
1
3

®

@

The circled POM corresponds to the dashed matching on the right side.
If there is no blocking coalition of size < 4, we call the matching an ¢-Pareto optimal
matching (i-POM). In particular this implies that every POM is an i-POM. We call a

7

matching 1-POM if there is no blocking coalition of size one. The next matching is
one-Pareto optimal but not Pareto optimal.

1 (5) 3
5 1 (&)
5 (D 1

Observation 4.5. If 7 is a POM and T selects position p in row a, then T selects every
element that appears in row a left of p.

This observation also holds for 1-POMs. A matching 7 is greedy if there exists a
permutation m of A such that the matching can be generated in the following manner:
we process the rows of M in the order determined by 7, and in each row we pick the
leftmost element that was not picked earlier. Given some permutation m we call the
corresponding greedy matching 7.

Lemma brings all the introduced notions together, showing that POM, 1-POM
and greedy matchings select exactly the same sets. The equivalence of POM and greedy
matchings was already proved in [37].

For the proof of the next lemma we need an equivalent definition of POM. We say
71 i better than 7o if every element a € A is matched in 77 to a better or equally good
element than in 75, according to the preference list of a. And we require 7, # 75. Note
POM are exactly the maximal elements to this better relation.

Lemma 4.6. Let E C [n| with |E| = m. The following statements are equivalent.
1. E is (exactly) reachable, i.e. there exists a POM T with s(1) = E.
2. There exists a permutation T such that for the greedy matching 7, we have s(7,) = E.
3. There exists an one-Pareto optimal matching (1-POM) T with s(1) = E.

Proof. [1 = 2] Let 7 be a POM matching such that s(7) = E. We construct a permuta-
tion 7 inductively. If possible take as the next row, in the order of our permutation, the
one that has a position of 7 in its first entry. Delete the element a at this position from
all other rows and continue. We show that at each stage there must be such a row. For
the purpose of contradiction assume such a row does not exist. Take any row, denoted
by ¢ and let e; be some element which is left to the element selected by 7 in row ¢;.
Because 7 is Pareto optimal, there exists some row 75 selecting e;. Let ey be any element
left to e; in row r5. In this way we can define a sequence (e;) and (r;). As we have only
finitely many elements, at some point we get a first e; that appears earlier in the sequence
e; = e;, 1 < j. This implies that in the rows r;,...r; we can improve simultaneously (i.e.,
it is a blocking coalition), which is a contradiction to the assumption that 7 is Pareto
optimal.

[2 = 3] As every row picks the best element, not yet selected, it is clear that no single
row can improve.

[3 = 1] Let 7y be some 1-Pareto optimal matching and E = s(7p). Observe that all
the elements left to the elements picked by 7y are in E. The set of matchings that are
better or equal to 7y is non-empty as it contains 7y and the set is of course finite, so there
exists a best matching 7 among them, i.e. one for which there is no better matching.
This must be a POM and by Observation 4.5 s(71) C s(79) = E, and the size of s(7y) is
also m. This implies s(1y) = E. O

78

Note that this lemma implies that also for any i, i-POMs select the same sets as
POMs/1-POMs. Note also that the proof of Lemma implies that actually every POM
matching is greedy. The inverse is also true and left as an exercise, as we will not use it
later.

4.2 Counting reachable elements and sets

We start with a discussion of reachable positions. For every row r, there exists a reachable

position p, furthest to the right in that row, we call such a position last reachable. However

note, that not all positions left of the last reachable position must be reachable. Consider
the following matrix together with the matching 7 indicated by circles.

(5) 4
5
1 @
2 1

ot 00 O W

2

7

9
The matching 7 is a Pareto optimal and thus the circled position in the bottom row with

element 4 is the last reachable position in that row. However, it is easy to check, that
the two positions left to this circled position (with elements 1 and 5) are not reachable.

Theorem 4.1. Let M be an m x m matriz and E* be the set of all reachable elements.
Then

|E*| < Z Im/i] < m(lnm +1).

The proof of the theorem uses the following lemma.

Lemma 4.7. Let T be some set of k POMs. We denote by E(T) the set of elements
reached by at least one POM of T'. Then

7)) <> lmfil.

proof Lem. [4.71 The proof goes by induction on k. The base case k = 1 is true as one
POM selects exactly m different elements.

Consider now a set T of £k > 2 POMs and the set of positions reached by 7. Among
these positions we denote by p; the position furthest to the right in row ¢ and we denote
F ={p1,...,pm}. We say that an element e (resp. position p) is uniquely reachable by
some 7 if 7 is the only POM in T that reaches e (resp. selects p). Consider the set G C F
of those rightmost reachable positions that are reachable by exactly one POM of T'. By
the pigeon-hole principle there exists a POM 7 in T that reaches at most 1/k portion of
G. Denote the set of elements in these positions by H (|H| < [m/k]).

By the definition of H all elements s(7) \ H are not selected uniquely by 7, i.e. some
other matching of T also selects it.

Let us explain this in more detail. Consider and element e € s(7) \ H and denote by
p the position of e. As p & G there exists another matching 7" # 7 that either also selects
p or 7’ selects a position further to the right of p in the same row. In both cases we have:
7' must select e by Observation [4.5]

79

Thus the rest of the reached elements are also reachable by 7' — 7. By induction we
get

E(T) < E(T\ 1) + |m/k| < (Z_: Lm/ij) + lm/k] =Y [mil.

i=1 i=1

IN O

proof Thml[].1 Let 7; be a POM selecting the last reachable position p; in row i (1 <4
m) (these matchings are not necessarily different.).

Let e be some element that can be reached by some POM. We show e is selected by
one of the POMs 7,...,7,. Indeed, if e is at some last reachable position then this is
clear. Otherwise, e appears in some row r not at the last position p.. By Observation
[4.5] e must be picked by 7. Thus the matchings 7 ..., 7, reach together all reachable
elements. As ..., 7, are m POMs, the first inequality follows from Lemmal[4.7] Finally,
it is well-known that the harmonic series is bounded by In m+1, thus the second inequality
holds as well.]

Asymptotic tightness of Theorem [4.1]follows from the following construction by Henze,
Jaume and Keszegh [37].

Example 4.8 ([37]). For each k, a matriz My with m = 2% rows and (m/2)log4m =
(k +2)2%=! reachable elements is constructed recursively as follows.

Mo=(1);
and, for k>0,
1
D M
2k
M1 = =TT |

s M
2k ’

where M, and M] are relabelings [[] of Mj, with no common element and all elements
different from 1,2, ...,2%. The undefined entries of the matriz can be filled arbitrarily.

4.3 Characterization of avoidable elements

In this section we characterize avoidable elements and sets. Recall that we define E,(R)
as the set of elements left of = in the rows of R (i.e., y is in E,(R) if and only if there
exists a row r € R in which y appears to the left of z; if x does not appear in r then all
elements in r are regarded to be left of z)

Theorem 4.3. An element x of a matrix M is avoidable if and only if for every set R
of rows of M, we have:

|Ew(R)| = |R|

! A matrix M’ is a relabeling of a matrix M if there is a bijective function between the elements (not positions!)
of M and M’ such that applying this function to the elements in all the positions of M we get M’. Clearly two
matrices that are relabelings of each other are equivalent from our perspective.

80

Proof. [=] Let 7 be a POM which does not pick x and let R be a set of rows. In each
row a different element is picked by 7, which is left of x. This shows the claim.

[<] W.lLo.g. x is present in all the rows. Consider the bipartite graph on A U B,
defined by all pairs (a,b) € A x B such that b appears in row a before z. The above
condition says, that for all subsets R C A the neighbourhood of R is larger or equal to
R in terms of size.

By Hall’s theorem, there exists a matching 7 that picks elements to the left of x. We
can modify 7 so that each row picks an element farthest to the left in M not chosen by
any other row. In other words 7 is a 1-POM. By Lemma there is a POM 7/ selecting
the same set of elements as 7, thus 7" does not choose z and so x is avoidable. O

Corollary 4.4. Deciding if an element b is avoidable can be done in
O(m?y/m +n) and also in O(m3) time. Listing all unavoidable elements can be done in
O(m*n/m +n) and also in O(m®) time.

Proof. For an element x to be avoidable is equivalent to the existence of a matching
that connects all the elements of A with elements left to . Thus, we need to find a
maximum bipartite matching. The fastest known algorithm (Hopcroft-Karp) checks this
in O(v/V E) time. In our case |V| < m+mn, |E| <m? Thus, it can be checked whether z
is avoidable in O(m?y/m + n) time. Consequently, listing of all unavoidable elements by
checking all the elements of B can be done in O(m?n+/m + n) time. The bounds without
n follow from the fact that we can limit the number of relevant elements in B easily to
m? (the number of elements in the first m columns of the matrix). O

Recall that a set X is said to be avoidable, if there exists a matching that avoids every
element of X. Note that it is possible that all elements of a set are avoidable, while the
set itself is not. Theorem extends to set X, by replacing all elements of X by the
single element x. If x is avoidable, then X was avoidable and vice versa.

4.4 Complexity of reachability

In this section we show that Problems 1 to 5 defined in the introduction lie in the indicated
complexity classes.

That Problem [2] is polynomially solvable is seen as follows: let M be a matrix and
E be a set of m elements occurring in the matrix. We define F' := B\ E, then E is
exactly reachable if and only if F' is avoidable, which can be checked in polynomial time
by Corollary [£.4]

We start with a brief and informal explanation of the class #P,. A detailed introduc-
tion is given by Arora and Barak [§].

Informally #P is a class of counting problems. Counting problems get an object and
count some other objects satisfying some condition. The only restriction is that the size
of the binary representation of the number of objects counted is polynomial in the input.
But this is given in all that follows, because we have exponential upper bounds on the
number of objects to be counted.

Famous examples of #P-complete problems are:

e How many variable assignments does a given boolean formula satisfy?

e How many perfect matchings does a given bipartite graph have?

81

Note that the decision version of the first problem is NP-hard and of the second
problem is in P.

A problem L is defined to be #P-complete if it lies in #P and there exists a polynomial
time counting reduction from all other problems in #P to L. Due to transitivity of
counting reductions, it is sufficient to reduce one #P-complete problem to L.

At last a counting reduction transforms the input of one problem to the input of a
second problem in a way that the counting problem for the first problem can be solved
via the reduction and the solution to the second problem. It will be very clear in our
context, that our reductions are indeed counting reductions.

We will use the result from Creignou and Hermann [24] that #1-in-3-SAT is #P-
complete. Here it is asked how many assignments exist such that every clause of a given
3CNF-formula has exactly one true and two false literals. We will also use later, that the
corresponding decision problem is NP-complete.

We start our discussion with Problems [Il and [l for 3-column matrices.

Theorem 4.9. Problem[]] (Deciding Reachability) is NP-complete and Problem 5] (Count-
ing Ezxactly Reachable Supersets) is #P-complete, even when D (the set we want to decide
if it is reachable) is a 1-element set and the matriz has only 3 columns.

We will give a transformation that converts 1-in-3-SAT formulas ¢ to matrices M
with the special property that the number of good assignments for ¢ equals the number
of reachable sets containing some special element x. This transformation will reduce 1-
in-3-SAT to Problem [I] and #1-in-3-SAT to Problem [5| and thus proves the essential part
of Theorem [4.9

ay 1
a; 21
an Tp
an Tp

bh o Li LY LI
bh o Ly LI LI &
Me=| b o LI LI LI &

b en L TF IF
b e L5 Lf LY Gy
b cm LP TP LT Cp
C1 O Cn =

Figure 4.1: Illustration of the matrix Mg

Lemma 4.10. Let ® be an instance of 1-in-3-SAT. Then there exists a matriz M with
some element x such that the 1-in-3-satisfying truth assignments of the variables of ® are
i one-to-one correspondence with the exactly reachable sets E with x € E.

82

Proof. Let ® be of the form C; ACy A ... AC,,. And each of the clauses C; is of the form
Lt v Ly Vv LY, where each literal Lt is one of the variables zy, ..., z, or its negation. The
matrix Mg is defined in Figure .

Here a;, b;, c; are only used where indicated. The asterisks mark that any element
could stand there. Every x; and its negation get an element named after them. The
same holds for every clause C;. The literals L] need to be replaced by the corresponding
variable element.

Let F': {xy,...,x,} — {0,1} be an assignment of the variables such that exactly
one literal of each clause in ® becomes true. We construct the corresponding matching
Tr. The matching 7 selects x; whenever F' gives it the value 1 and its negation otherwise.

There exists exactly one way to select the element C; for each ¢. To see this consider
as an example C' = x; V x5 V x3 and assume w.l.o.g. that x; is true and x5 and x3 are
false in assignment F'. Then 77 has already selected z1,73,73. Thus C' can be selected
in the following way, indicated by circles:

b ¢ o T 73 ©

®c 23 7T ™ C

In the same way all clause labels can be selected and it is possible to select x.

In this manner we get from every satisfying assignment F' a matching 75 selecting x.
It is easy to see that 7 is a 1-POM. And thus there also exists a POM selecting the same
set. In this way we get from every satisfying truth assignment a 1-POMs selecting x.

We show that we can get a satisfying truth assignment for every 1-POM 7 selecting
x. We get a truth assignment by taking x; to be true if x; is selected in the first 2n rows
and x; false if 7; is selected. 7 will always select one of x; and z;. Clearly, C4,...,C,,
are not taken by the last row. The only way to select C; is if one of its three literals is
assigned to be true and the other two are assigned to be false. Thus this assignment is
an 1-in-3-satisfying assignment.]

Let M be some matrix with the element x. We define a matrix M’ with exactly three
columns by replacing each row by a block. Let (ajas...a,,) be some row, with m > 3.
We replace it by the following block:

a1 ag 51
51 as 52

B2 (€2 B3

ﬁmf4 Ap—2 Bmf?)
ﬁmf?; Q-1 A,

The f; elements are different for every block. If 7 be a Pareto optimal matching of M,
then it is easy to see that there exists a unique Pareto optimal matching 7" in M’ that
selects in each block the same element as 7 in M. In every block at most one element
of the original row can be selected by any POM 7/. Every POM 7/ in M’ that selects in
every block exactly one element of the original row corresponds to exactly one POM 7
of M. Consider the three column matrix M’ of the matrix M in Lemma [4.10] Clearly,
the POMs selecting x in M stand in a one to one correspondence with the POMs in M’
selecting . The next lemma summarizes our discussion.

83

Lemma 4.11. Let ® be some boolean 3DNF' formula. Then there exists a three column
matriz M with some element x such that the 1-in-3-satisfying truth assignments of the
variables of ® are in one-to-one correspondence with the exactly reachable sets E with
r e l.

proof Thm[4.9. #1-in-3SAT is #P-complete. Given a 3-DNF formula ®, the reduction
above gives a 3 column matrix, such that the exactly reachable sets containing = are
in a 1-to-1 correspondence with the satisfying assignments. Thus also Counting Ex-
actly Reachable Supersets is #P-hard. And as 1-in-3SAT is also NP-complete, deciding
Reachability is also NP-hard. Membership to these classes (and thus completeness) fol-
lows from the exponential upper (2m2) bound on the number of possible sets. Thus the
binary representation is linear in the size of the input. O

The natural question to ask is, what happens, when there are only two columns.
Understanding the structure of reachability for 2 column matrices gives many interesting
results at once. We consider first Problem 1 (Deciding Reachability) and will see easily
from the algorithm, that we can find an explicit way to count all reachable sets, for 2
column matrices. The complexity of counting reachable sets for general matrices remains
open. On the other hand, we will see that it is #P-complete to count all exactly reachable
sets E already for 2-column matrices.

Theorem 4.12. Problem (Deciding Reachability) is in P for 2 column matrices.

Proof. We assume the bipartite row element graph G is connected, otherwise we treat
each component separately. Let m denote the number of rows, D the set of elements we
wish to reach, and X the set of elements of G.

It is easy to see, by induction on m, that the number of different elements in G is at
most m + 1. (This is true for m = 1 and at most 1 new element is added when a new
row is added.)

We distinguish two cases.

Case (1) |[X|=m+1
Case (2) |X| <m

In the first case we cannot reach X but we will show that for every avoidable element
x € X we can reach X \ {z}. This implies D is reachable if and only if it does not contain
all avoidable elements of this component.

In the second case we will show that X (and subsequently D) can be selected.

In the first case, there is one more element than rows and thus it is clear, that at least
one avoidable element cannot be selected. Further, the number of vertices is 2m + 1 and
the number of edges is 2m. This implies that G is a tree. Let z be any avoidable element
not in D. We orient all edges away from x in G. Clearly the in-degree of every element
is exactly one. For every edge oriented from row r to element e let r select e. As x is
avoidable it is not in the first column. As all elements, except x is selected there is no
1-blocking coalition. Thus the described matching is a 1-POM, by Lemma there is a
POM selecting D C X \ z.

Consider now case 2. As every row is incident to exactly 2 elements the number of
edges is exactly 2m and as the number of vertices is at most 2m G contains a cycle. Let
ro,€0,71,€1,...,T, € be our cycle. We assign r; to e;. In this way all elements on the
cycle are selected.

84

We will repeat in the following. Pick a row r that has at least one of the elements
already selected. Such a row exists because we assume that GG is connected. There is at
most one element which can be selected by r. Let r select this element if possible.

This procedure leads to a matching 7 that selects all elements and thus 7 is automat-
ically 1-POM, by Lemma [4.6] there is a POM selecting D C X.

All the above steps are computationally easy. O

Let M be a 2 column matrix. We assume the corresponding bipartite row element
graph has k components. Denote with a; the number of avoidable elements E; of the ¢th
component and wu; the number of unavoidable elements F;. Further y; is the indicator
variable for the event that the ith component is a tree. Recall that every subset of a
reachable set is reachable.

Theorem 4.13. With the notation and assumptions above:

k
{E : E is reachable }| = H (2% — x;) 2%

i=1
This implies Problem @ (Counting Reachable Sets) is in P for 2 column matrices.

Proof. 1t is clear that we can look at each component of the bipartite row element graph
separately. Consider the case that component i is a tree. We know from the proof of
Theorem that every proper subset of E; is reachable, i.e., at least one element must
not be chosen. These are 2% — 1 subsets. From the unavoidable elements all subsets can
be chosen. Consider now the case that component ¢ has a cycle. Then we know that all
elements from this component can be chosen at once. This leads to 2% % many reachable
subsets. As the choice is independent for each component, we take the product. O

Theorem 4.14. Problem (Counting Exactly Reachable Sets) is # P-complete already
for 2-column matrices.

We will show #P-hardness for 2-column matrices. By adding k& — 2 columns each
consisting of a single new element we get a k-column matrix with the same number of
exactly reachable sets. Thus the problem is also #P-hard for k-column matrices with
k> 2.

Proof. We reduce the problem from the #Independent Set Problem. #Independent Set
Problem is the problem of counting the number of independent sets in a given graph and
it is #P-complete. Membership to #P follows from the exponential bound (2’”2) on the
number of exactly reachable sets. More on the complexity of counting independent sets
in a graph can be found in [68] [33].

Let G = (V, E) be some connected graph. We construct a two column matrix Mg
with the property that non-empty independent sets are in one-to-one correspondence
with exactly reachable sets. The elements of My are the edges and the vertices of G. For
each edge e = (u,v) we insert two rows (e,u) and (e, v). This implies, that the edges are
unavoidable and for every edge e at most one of its vertices will be selected in the two
rows corresponding to e.

Let W C V be some non-empty independent set. The set Xy is defined as Xy =
EUV\W. We show: Xy is exactly reachable. We do this in three small steps. First we
define an orientation on G. Then we define a permutation m on Mg. At last we will argue

85

that the greedy matching 7, defined by 7 selects exactly Xy. Let T be some spanning
tree of G and let = be any element in WW. We orient every edge away from x in 7', to get
an orientation O; on T'. Note except for x every vertex has indegree 1 in 7.

We construct O, from O by changing the orientation of each edge incident to W such
that the in-degree of every vertex in W is zero and orient every remaining edge in G
arbitrarily. For this orientation we have: v € W if and only if indegree(v) = 0.

Let 7 be any permutation such that the following holds: for every edge e = (u,v)
oriented towards v, row (e,u) is before (e,v) in m. This implies that the vertices not
selected by 7, are exactly those with in-degree zero. This shows Xy is exactly reachable.

Conversely, let X be some exactly reachable set. All edge elements are unavoidable,
thus are in the set X. Further the vertex elements W not selected form an independent
set in the graph. To see this observe that two adjacent vertex elements cannot be avoided
simultaneously. Note that W can be the empty.

We have shown that every non-empty independent set W in G corresponds to an
exactly reachable set X in M. Note that the empty set is also independent in G and
would correspond to X = E'U V. However I/ UV is not necessarily reachable. We can
easily test if £ UV is exactly reachable. (We leave it as an exercise to check that this is
the case whenever G is a tree.)

Thus the number of exactly reachable sets equals the number of independent sets,
maybe minus 1. And we can determine efficiently if this "minus 1" is the case. O

This last theorem also implies #P-hardness of Problem (Counting Exactly Reachable
Supersets) for 2 column matrices with D = &.

Acknowledgments We want to thank Matthias Henze and Rafel Jaume for posing The-
orem as an open problem. We also want to thank Rob Irving, Agnes Cseh and David
Manlove for helping us to find related work to our problem. Special thanks goes to Nieke
Aerts for enjoyable and interesting discussions on attempts to improve Corollary

86

Chapter 5

Unique Bichromatic Matchings

5.1 Introduction

5.1.1 Basic notation and definitions

Let F' be a set of n blue points and n red points in the plane, such that the whole set
is in general position (that is, no three points of F' lie on the same line). Throughout
the paper, such sets will be referred to as bichromatic sets. A perfect bichromatic non-
crossing straight-line matching of F is a perfect matching of points of F' realized by
non-crossing straight segments, where each segment connects points of different colors.
In many sources, such matchings are referred to as BR-matchings. In order to simplify
the notation and the drawings, we shall instead color the points of F' white and black
and denote them by o and e.

It is well known that any bichromatic set has at least one BR-matching. One easy
way to see this is to use recursively the Ham-Sandwich Theorem; another way is to show
that the bichromatic matching that minimizes the total length of segments is necessarily
non-crossing. The main goal of our work is to characterize bichromatic sets with ezactly
one BR-matching. On the way to answering this modest-looking question, we will study
several related issues. For our main characterization of unique BR-matchings (Theo-
rem we give, besides an elementary proof by contradiction, another proof that puts
more structure on the problem in the form of the so-called Fishnet Lemma (Lemma ,
which might be of independent interest (Section .

In what follows, M usually denotes a BR-matching.

Definition 5.1. We say that a BR-matching M is a unique matching if it is the unique
BR-matching of F, the bichromatic set of its endpoints.

The convex hull of F' will be denoted by CH(F), and its boundary by OCH(F).
Consider the circular sequence of colors of the points of F' that lie on OCH(F'); a color
interval is a maximal subsequence of this circular sequence that consists of points of
the same color. For example, in Figure (a), OCH(F') has four color intervals: two
o-intervals (of sizes 1 and 2) and two e-intervals (of sizes 2 and 3).

In order to state our main results, we need the notion of a chromatic cut.

Definition 5.2. A chromatic cut of M is a line £ that crosses two segments of M so that
their e-ends are on different sides of £ (€ can cross other segments of M as well).

For example, the lines ¢; and /5 in Figure (a) are chromatic cuts. The matchings
in Figure (b) and (c) have no chromatic cuts. Aloupis, Barba, Langerman, and

87

b

Figure 5.1: (a) A matching with chromatic cuts. (b) A linear matching. (c¢) A circular matching.
Another matching for the same point set is indicated by dashed lines.

Souvaine [7, Lemma 9] proved that a BR-matching M that has a chromatic cut cannot
be unique. (They actually proved a stronger statement: in such a case there is a BR-
matching M’ # M such that M’ is compatible to M, which means that the union of
M and M’ is non-crossing.) Thus, having no chromatic cut is a necessary condition
for a unique BR-matching. However, it is not sufficient, as shown by the example in
Figure (c).

We will give a thorough treatment of BR-matchings without chromatic cuts. We shall
prove in Lemma that BR-matchings without chromatic cuts can be classified into
the following two types. A matching of linear type (or, for shortness, linear matching) is
a BR-matching without a chromatic cut such that OCH(F") consists of exactly two color
intervals (both necessarily of size at least 2). A matching of circular type (or circular
matching) is a BR-matching without a chromatic cut such that all points of OCH(F)
have the same color. The reason for these terms will be clarified below. Figure (b—c)
shows a linear and a circular matching. We shall prove that the unique BR-matchings
are precisely the linear matchings. This will be a part of our main result, Theorem
below.

The segments in M are considered directed from the o-end to the e-end. For A € M,
the line that contains A is denoted by g(A), and it is considered directed consistently with
A. For two directed segments A and B such that the lines g(A) and g(B) do not cross,
we say that the segments (resp., the lines) are parallel if they have the same orientation;
otherwise we call them antiparallel. 1f we delete the points of A from g(A), we obtain
two outer rays: the o-ray and the e-ray, according to the color of the respective initial
points.

Definition 5.3. For two (directed) segments A and B, the sidedness relation < is defined
as follows: A< B if B lies strictly to the right of g(A) and A lies strictly to the left of

9(B).

The definition implies directly that the relation < is asymmetric: A< B and B< A

cannot hold simultaneously. However, it is not necessarily transitive, as the example in
Figure [5.2] (¢) shows: We have A< B < C but not A<C. In Figure 5.2 (a) and (b), the
two edges are incomparable by the < relation.

5.1.2 The main results

Our main results are the following three theorems.

88

Theorem 5.4. Let M be a BR-matching without a chromatic cut. Then M 1is either of
linear or circular type.

Theorem [5.5| presents several equivalent characterizations of unique BR-matchings, or,
equivalently (in view of 1 < 2), those of linear matchings. The definition of bichromatic
quasi-parallel matchings in condition |5 will be given later (see Definition and Fig-
ure . They are a variation of (monochromatic) quasi-parallel matchings, introduced
in [60].

Theorem 5.5 (Characterization of unique BR-matchings). Let M be a BR-matching of
F'. Then the following conditions are equivalent:

~

. M s a unique matching.

2. M is a linear matching.

3. The relation < is a linear order on M.

4. No subset of segments forms one of the three patterns in Figure[5.3.
5

. M s a bichromatic quasi-parallel matching.

(a) (b) (c) 3-star

Figure 5.2: Forbidden patterns for quasi-parallel matchings. All patterns should be understood
up to reversal of the colors and reflection of the plane. The pattern (b) includes the case of
antiparallel segments, and the pattern (c) includes the case where three lines go through a
common point. In cases (a) and (b), a chromatic cut ¢ is shown, see Lemma

Remark 5.6. If M satisfies any of the conditions of Theorem [5.5, then any submatch-
ing of M satisfies the conditions as well. Indeed, it obvious that conditions [3 and
directly imply that they hold for all subsets. For the other conditions, it follows from the
equivalence stated in the theorem.

Theorem 5.7 (Properties of circular matchings). Let M be a BR-matching of F. Then
the following conditions are equivalent:

1. M is a circular matching.
2. The sidedness relation < is a total relation but not a linear order.

3. No two segments from M form one of the patterns in Figure (a=b), but there
are three segments in M that form the 3-star pattern in Figure (c).

89

Furthermore, if these conditions hold, then:

pl. The sidedness relation < induces naturally a circular order, explained in Section[5.4).

p2. M is not unique: There are at least two BR-matchings M' and M" of F so that
each of them is disjoint (and moreover, compatible) to M.

The following table compares linear and circular matchings with respect to the prop-
erties mentioned in Theorems [b.5 and 5.7

Linear Type Circular Type
Uniqueness M is unique M is not unique
(a) and (b) are avoided;
(c) is present
Total, not linear;
induces a circular order

Patterns from Figure [5.2[|| (a), (b) and (c) are avoided

Relation « Linear order

5.1.3 Related work

Our work belongs to the study of straight-line graph drawings. One of the directions
intensively studied in the recent years is that of straight-line matchings (monochromatic
and bichromatic).

Given a bichromatic set F', one can consider the bichromatic compatible matching graph
of F' whose nodes correspond to the BR-matchings of F', and two nodes are connected
by an edge if and only if the corresponding matchings are compatible. Aloupis, Barba,
Langerman, and Souvaine [7] proved that for any F', the bichromatic compatible matching
graph is connected. Aichholzer, Barba, Hackl, Pilz, and Vogtenhuber [3] proved that the
diameter of this graph is at most 2n (which is asymptotically tight). In our work we
study the situation when this graph is as small as possible—namely, when it consists of
a single node.

For non-colored point sets, one can speak about the (monochromatic) compatible
matching graph. Aichholzer et al. [4] showed that for any set of n points, the diame-
ter of this graph is O(logn).

A related direction of research is that of geometric augmentation, see Hurtado and
Toth [41] for a survey. The general pattern of problems can be described as follows.
Given a geometric graph, one wants to determine whether it is possible to add edges
(segments) in order to get a bigger graph with a certain property, under what conditions
this can be done, how many segments one has to add, etc. Hurtado, Kano, Rappaport,
and Toth [40] proved that any BR-matching can be augmented to a non-crossing spanning
tree in O(nlogn) time.

For monochromatic perfect matchings, Garcia, Noy, and Tejel [32] showed that the
number of such matchings is minimized among all n-point sets when the points are in
convex position. Ishaque, Souvaine, and To6th [43] showed that for any monochromatic
perfect matching, there is a disjoint monochromatic compatible matching. As for the

mazimal number of BR-matchings that a set of n blue and n red points can admit,
Sharir and Welzl [65] established a bound of O(7.61%").

5.1.4 Outline

In Section [5.2| we prove several preliminary results about chromatic cuts and the sidedness
relation <. In particular, we give a simple proof of the fact that a BR-matching which has

90

a chromatic cut is not unique. Section is devoted to linear matchings. We give several
characterizations of them, and we give two proofs that a linear matching is unique. One
proof, via the Fishnet Lemma, requires more effort to set up some additional geometric
structure, but it makes the argument more transparent (Section . Section an-
alyzes circular matchings in depth, and we prove that they are never unique. Then we
complete the proof of the main theorem about unique BR-matchings, Theorem [5.5]

In Section we turn to algorithmic issues. We describe an algorithm that recog-
nizes point sets F' which admit a unique matching, an algorithm that recognizes circular
matchings, and an algorithm that detects the existence of a chromatic cut by computing
a so-called balanced line. All these algorithms run in O(nlogn) time.

We conclude with some open problems and directions for future research in Section 5.6}

5.2 Preliminary results

5.2.1 Chromatic cuts

We start with a simple geometric description of BR-matchings that admit a chromatic
cut.

Lemma 5.8. Let M be a BR-matching of F'. M admits a chromatic cut if and only if
contains two segments A, B forming the pattern in Figure[5.9 (a) or (b), or more explic-
itly, if an outer ray of one segment crosses the second segment (a), or the intersection
point of g(A) and g(B) belongs to outer rays of different colors (b), or A and B are
antiparallel, which is a special case of pattern (b).

Proof. [«<] If an outer ray of the segment A crosses the second segment B, then, if
we rotate g(A) around an inner point of A by a small angle in one of two possible
directions, depending on the orientation of A and B, then a chromatic cut is obtained,
see Figure (a). If the e-ray of one segment and the o-ray of the second segment
cross each other, then any line through inner points of A and B is a chromatic cut, see
Figure (b). The same is true if A and B are antiparallel.

[=] Let £ be a chromatic cut of M, and let A and B be two segments that have their
e-ends on the opposite sides of £. Consider the lines g(A) and ¢g(B). If g(A) and g(B) do
not cross, they clearly must be antiparallel. If they cross, then it is not possible that the
two outer rays of the same color meet, because they are on opposite sides of /. O

A line ¢ is a balanced line if in each open halfplane determined by ¢, the number of
e-points is equal to the number of o-points. The next lemma reveals a relation between
chromatic cuts and balanced lines.

Lemma 5.9. Let M be a BR-matching. M has a chromatic cut if and only if there exists
a balanced line that crosses a segment of M.

Proof. [«<] Let ¢ be a balanced line that crosses a segment A of M. We can assume
that ¢ does not contain points from F: it cannot contain exactly one point of F’; and
if it contains two points of F' of different colors, we can translate it slightly, obtaining
a balanced line that still crosses A but does not contain points of F'. If it contains two
points of the same color, we rotate it slightly about the midpoint between these two
points.

91

Now, A has a e-end in one half-plane of ¢ and a o-end in the other half-plane. Since
¢ is balanced, there must be another segment B that crosses ¢ in such a way that ¢ is a
chromatic cut.

[=] First, let A be a segment in M, and let p be an inner point of A that does not
belong to any line determined by two points of F', other than the endpoints of A. We
claim that if there is no balanced line that crosses A at p, then g(A) is a balanced line.

Assume that there is no balanced line that crosses A at p. We use a continuity
argument. Let m = mg be any directed line that crosses A at p. Rotate m around p
counterclockwise until it makes a half-turn. Denote by m,, the line obtained from m after
rotation by the angle «; so, we rotate it until we get m,. Let ¢ (0 < ¢ < m) be the
angle such that m, coincides with g(A) (as a line, ignoring the orientations). Assume
without loss of generality that the right halfplane bounded by m is dominated by e, in
the sense that it contains more e-points than o-points. Then the right halfplane bounded
by m, is dominated by o. As we rotate m, the points of F' change sides one by one,
except at & = ¢. When one point changes sides, m,, cannot change from e-dominance to
o-dominance without becoming a balanced line. Therefore, for each 0 < « < ¢, the right
side of m,, is dominated by e, and for each ¢ < o < 7, the right side of m,, is dominated
by o. At a = ¢, exactly two points of different colors change sides. The only possibility
is that the e-end of A passes from from the right side to the left side and the o-end of
A passes from the left side to the right side of the rotated line. It follows that at this
moment the value of #(e) — #(0) in the right halfplane changes from 1 to —1, and that
m, = g(A) is a balanced line.

Now, let ¢ be a chromatic cut that crosses A, B € M so that the e-end of A and the
o-end of B are in the same half-plane bounded by ¢. Denote by p and ¢ the points of
intersection of ¢ with A and B, respectively. We assume without loss of generality that
p and ¢ do not belong to any line determined by points of F'.

If there is a balanced line that crosses A at p, or a balanced line that crosses B at g,
we are done. By the above claim, it remains to consider the case when the lines g(A) and
g(B) are balanced. Assume without loss of generality that ¢ is horizontal, p is left of g,
and the e-end of A is above /, see Figure for an illustration.

We start with the line k = g(A), directed upwards, rotate it clockwise around p until
it coincides with ¢, and then continue to rotate it clockwise around ¢ until it coincides
with g(B), directed down. As above, we monitor #(e) — #(o) on the right side of the line
k: this quantity is 0 in the initial and the final position. Just after the initial position it
is —1, and just before the final position it is +1. In between, it makes only +1 jumps,
since the points of F' change sides of the rotated line k one by one. It follows that for
some intermediate position it is 0, and thus we have a balanced line crossing one of the
edges. O

In Section |5.5.3, we discuss the algorithmic implementation of this proof.

Corollary 5.10. Let M be a BR-matching of F' with a chromatic cut. Then M 1is not
unique.

Proof. By Lemmal5.9] there is a balanced line ¢ crossing a segment A € M. We construct

matchings on both sides of ¢, and denote their union by M’. Then M’ is a matching of
F, and we have M’ # M since M’ does not use A.]

92

Figure 5.3: Finding a balanced line in the proof of Lemma[5.9

Remark 5.11. As mentioned in the introduction, Corollary[5.10 follows from the stronger
statement of [1, Lemma 9]: the existence of a compatible matching M' # M. We have
giwen a simpler alternative proof.

(a) 2 (b)

Figure 5.4: Chromatic cuts in the proof of Lemma [5.12

Lemma 5.12. Let M be a BR-matching of F' that has no chromatic cut. Then
e cither all points of 0CH(F') have the same color,

e or the points of OCH(F') form precisely two color intervals, each of which must have
size at least 2.

In the latter case, the two boundary segments connecting points of different color neces-
sarily belong to M .

Proof. Assume that 0CH(F') has points of both colors.

If v; and vy are two neighboring points on JCH(F') with different colors, then they
are matched by a segment of M. Indeed, let ¢’ be the line through v; and vy. If v; and vy
are not matched by a segment of M, then each of them is an endpoint of some segment
of M. When we shift ¢ slightly so that it crosses these two segments, a chromatic cut is
obtained, see Figure [5.4] (a).

Therefore, if the points of OCH(F') form more than two color intervals, then at least
four segments of M have both ends on OCH(F'). At least two among them have the e-end
before the o-end, with respect to their circular order. Any line that crosses these two
segments will be then a chromatic cut, see Figure (b).

Thus, we have exactly two color intervals. If one of them consists of one point, then
this point has two neighbors of another color of OCH(F'). As observed above, this point
must be matched by M to both of them, which is clearly impossible. O

93

We recall the definition from the introduction: a linear matching is a BR-matching
without a chromatic cut such that OCH(F') consists of exactly two color intervals, both of
size at least 2; a circular matching is a BR-matching without a chromatic cut such that
all points of OCH(F') have the same color. So, we have established that a BR-matching
without a chromatic cut necessarily belongs to one of these two types, and we have thus
completed the proof of Theorem [5.4] In the next sections we study these types in more
detail.

5.2.2 The sidedness relation between segments

Now we show how the presence or absence of a chromatic cut affects some properties of
the sidedness relation <.

Lemma 5.13. Let M be a BR-matching. M has no chromatic cut if and only if the
sidedness relation < is a total relation, that is, for any two segments A, B € M, A # B,
we have A< B or B<A.

Proof. 1f two segments A and B have a chromatic cut, then the lines g(A) and ¢g(B) must
intersect as in Figure[5.2| (a) or (b), and the segments are not comparable by <; otherwise,
the lines g(A) and g(B) are parallel or intersect in the outer rays of the same color, and
then the segments are comparable. O]

Recall that the relation < is asymmetric by definition: we never have A< B and B<A.
Moreover, we will see that if M has no chromatic cut, then, in order to prove A < B, it
suffices to prove only one condition from the definition of «:

Lemma 5.14. Let M be a BR-matching without chromatic cut, and let A,B € M (A #
B). If B lies to the right of g(A), or if A lies to the left of g(B), then A< B.

Proof. If M has no chromatic cut, then we have either A< B or B < A by Lemma [5.13]
Given one of the above conditions, B < A is ruled out. n

5.3 Quasi-parallel, or linear, matchings

5.3.1 Characterizations of linear matchings

In this section we give several characterizations of linear matchings and prove that such
matchings are unique for their point sets.

Lemma 5.15. Let M be a linear matching. There exist Ay, A, € M, the “minimum”
and the “mazimum” element, such that for every B € M \ {A;} we have A; < B, and for
every C' € M\ {A,} we have C < A,,.

Proof. By Lemma [5.12] the two boundary segments connecting points of different color
belong to M. For one of them, to be denoted by A;, all other segments of M belong to
the right half-plane bounded by ¢g(A;); for the second, to be denoted by A, all other
segments of M belong to the left half-plane bounded by ¢g(A,,). Since M has no chromatic
cut, the claim follows directly from Lemma [5.14] O

Definition 5.16. A BR-matching M is (bichromatic) quasi-parallel if there exists a
directed reference line £ such that the following conditions hold:

94

(i) No segment is perpendicular to £.

(ii) For every A € M, the direction of its projection on ¢ (as usual, from o to e) coincides
with the direction of £.

(iii) For every non-parallel A, B € M, the projection of the intersection point of g(A)
and g(B) on ¢ lies outside the convex hull of the projections of A and B on (.

Figure [5.5| shows an example of quasi-parallel matching, with horizontal .

Figure 5.5: A quasi-parallel matching.

Remark 5.17. In the monochromatic setting, the notion of quasi-parallel segments was
introduced by Rote [60, [59] as a generalization of parallel segments, in the context of a
dynamic programming algorithm for some instances of the traveling salesman problem.
His definition can be obtained from our one by dropping condition (ii).

Lemma 5.18. Let M be a BR-matching of a bichromatic set F'. Then the following
conditions are equivalent:

1. M is a linear matching.

2. The relation < in M 1s a strict linear order.

3. M has no patterns of the three kinds in Figure[5.9
4. M is a quasi-parallel matching.

Proof. [1 = 2] By definition, the relation < is asymmetric, and according to Lemma [5.13]
it is total.

It remains to establish transitivity. By Lemma [5.15] there exist A;, A, € M (the
“minimum” and the “maximum” elements) such that for every B € M \ {A;} we have
A; < B, and for every C € M \ {A,,} we have C'< A,,. We define inductively A, ..., A,
as follows. Assume Ay, ..., A; 1 are already defined. Let M; = M \ {41, Ay, ..., A;1}.
Then M; is also a linear matching: indeed, it has no chromatic cut and has both colors
on the boundary of the convex hull because A, belongs to it. Denote the “minimum”
element of M; by A; and repeat until all labels are assigned. (Note that we never label
A, as A; with i < n.)

95

It follows from the construction that for all i < j, A; lies to the right of g(A4;). Thus,
by Lemma [5.14] we have i < j = A; 9 A;. This implies that < is a linear order.

[2 = 3] It is easy to check that none of the configurations in Figure is ordered
linearly by <.

[3 = 4] In this proof, we follow the idea from [60]. As a preparation, one can establish
by case distinction that any two or three segments which contain none of the patterns
from Figure are quasi-parallel (we omit the details).

Now, let M be a BR-matching without the forbidden patterns from Figure [5.2, For
each A € M, let a(A) be the arc on the circle of directions corresponding to positive
directions of lines m such that the angle between A and m is acute. (These are the lines
that can play the role of a reference line ¢ in the definition of quasi-parallel matching,
with respect to A.) Each a(A) is an open half-circle, see Figure [5.6]

Figure 5.6: The open arc a(A) for a matching segment A, used in the proof of Lemma
3=4.

We fix some segment S € M. For any segment A € M, {S, A} is a quasi-parallel
matching, and hence the intersection of the corresponding arcs a(S) N a(A) is a non-
empty sub-arc of a(S), which we denote by a’(A). Now, for any two segments A, B € M,
{S, A, B} is a quasi-parallel matching, and hence the intersection of the corresponding
arcs is non-empty. In other words, a’(A) N a/(B) # (. We apply Helly’s Theorem to
the arcs a’(A) (considering them as sub-arcs of a(S)) and conclude that there exists a
direction in the intersection of the arcs corresponding to all segments of M. A line £ in this
direction will satisfy conditions (i) and (ii) of the definition of quasi-parallel matching.
Finally, the absence of forbidden patterns implies that condition (iii) is satisfied as well.

[4 = 1] Condition (iii) in the definition of quasi-parallel matchings implies that for
any A, B € M, A # B, the lines g(A) and g(B) are either parallel, or the outer rays of
the same color cross. It follows from Lemma [5.§ that there is no chromatic cut.

A lowest and a highest (with respect to ¢) points of F' belong to the boundary of the
convex hull and have different colors. Therefore, M is of linear type. m

Remark 5.19. A similar characterization of monochromatic quasi-parallel matchings
by seven forbidden patterns was given by Rote [59]. (In the journal version [60], one of
the forbidden patterns has been inadvertently omitted.) We have fewer forbidden patterns
because avoiding certain monochromatic patterns becomes equivalent to the single pattern

from Figure (b) once colors are added.

Lemma proves the equivalence of conditions [2 [3 4 and [f] in Theorem [5.5
Condition [3| justifies the term “matching of linear type”. Now we prove that they imply
the uniqueness of M.

96

Theorem 5.20. Let M be a linear matching on the point set F'. Then M is unique, that
1s, M s the only matching of F.

Proof. By Lemma [5.18] the matching M is quasi-parallel, with reference line . We
assume without loss of generality that ¢ is vertical.

Assume for contradiction that another matching M’ exists. (In the figures below, the
segments of M are denoted by solid lines, and the segments of M’ by dashed lines.) The
symmetric difference of M and M’ is the union of alternating cycles. We now claim that
an alternating cycle must intersect itself.

Consider the alternating cycle Il = p1q1p2qap3qs - - - Pmgmp1 that consists of segments
piqi € M and ¢;p;i1;qmpr € M'. We assume that p; are o-vertices and ¢; are e-vertices.
Let B be the minimum (with respect to <) segment and let C' be the maximum segment
of M that belongs to II. Then no points of II lie left of g(B) or right of ¢(C). Since for
both B and C' the e-end is higher than the o-end, the path II must cross itself at least
once, establishing the claim, see Figure

Figure 5.7: Hlustration for the proof of Theorem [5.20} an alternating path for M crosses itself.

We now traverse the path I, starting from p;q1p2qs . .., until it crosses itself for the
first time, say, at a point r. There can be no crossing r between two segments of M or
two segments of M’. Hence, the first occurrence of r on II is on a segment p;q; of M, and
the second is on a segment ¢;p;+1 of M’, or vice versa. We consider only the first case, the
other being similar. In this case, we consider the matching N that consists of segments
TG, Pit14i+1, Pit2Gi+2, - - - Djq; (that is, N consists of the segments of M that occur on II
between the two times that it visits r, and the part of segment of M that contains r). It
is clear that N is also quasi-parallel, with respect to the same reference line /.

A=

Figure 5.8: Illustration to the proof of Theorem [5.20} an alternating path for N.

The closed path r¢;p;+1¢i+1Pi+2¢i+2 - - - pjg;r is an alternating path for V. By the choice
of r, this path does not intersect itself, see Figure which contradicts the claim proved
above that an alternating path of a quasi-parallel matching always intersects itself. [J

97

The proof of Theorem tells us that a closed alternating path cannot exist. In
contrast, it is always possible to construct at least two open alternating paths from the
minimum to the maximum element of M:

Observation 5.21. Let M be a linear matching. Then there exist two alternating paths
containing all segments of M in the order <.

Proof. Let Aq,..., A, be the segments of M, ordered by <. We proceed by induction, see
Figure Let Ry be a path from A; to A, in which the segments of M appear according
to <. We obtain Ry, by taking Ry and adding a color-conforming segment from A, to
Agy1. This is possible because there is no other segment of M between Ay and Ag.;.
The color of the starting point can be chosen and thus we have two such paths. O

Figure 5.9: Extending an alternating path in the proof of Observation

5.3.2 Proof of Theorem [5.20] by the Fishnet Lemma

Let us return to the proof of Theorem for the following restricted case. Assume
that all segments of the given matching M are vertical, and all segments of a supposed
matching M’ are horizontal. Then the alternating path as described in the proof will
be y-(weakly)-monotone. This is essentially the reason why in this case we never get a
closed alternating line.

This argument can be extended for the general case if we replace the horizontal and
vertical lines (that contain the segments in the special case) by an appropriately con-
structed topological grid. Thus we obtain another proof of Theorem [5.20, which shows
in a more clear and intuitive light why one cannot close the path. This approach will
be made precise with the following Fishnet Lemma. We will apply it only to polygonal
curves, but we formulate it for arbitrary curves, see Figure [5.10

Consider a set V = {vq,...,v,} of pairwise non-crossing unbounded Jordan curves
(“ropes”) such that the plane is partitioned into n + 1 connected regions: Ry bounded
only by vy; R;, 1 <4 <n — 1 bounded only by v; and v;,; and R,, bounded only by v,.
These curves will be called the vertical curves. In the illustrations they will be black.

Consider another set G = {g1,...,gm} of pairwise non-crossing Jordan arcs, called
the horizontal arcs and drawn in green, such that every curve g; has its endpoints on
two different vertical curves v; and v; (7 > i), has exactly one intersection point with
each vertical curve v;,viy1,Vito, ..., v, and no intersection with the other curves. See
Figure (a) for an example. We say that the curves V UG form a partial (topological)
grid.

98

V1 V2 V3 &
hy
g1
gs T
g2
ge

ho

hs

g3 hs

I

94 ha

(a)

(b)

Figure 5.10: (a) A partial grid. (b) Extension to a complete grid of ropes.

Lemma 5.22 (The Fishnet Lemma). The horizontal arcs gi of a partial topological grid
VUG can be extended to pairwise non-crossing unbounded Jordan arcs hy in such a way
that the curves H = {hy, ..., hy} together with V' form a complete topological grid VU H :
each horizontal curve hy, crosses each vertical curve v; exactly once. See Figure (b).

Proof. We prove the lemma by a construction which incrementally extends the horizontal
segments until a complete topological grid is obtained.

The bounded faces of the given curve arrangement VUG are topological quadrilaterals:
they are bounded by two consecutive vertical curves and two horizontal curves. The
bounded faces of the desired final curve arrangement V' U H are also such quadrilaterals,
with the additional property that they have no extra vertices on their boundary besides
the four corner intersections. In V' U GG, such extra vertices arise as the endpoints of the
segments g.

Let us take such a bounded face, between two vertical curves v; and v;,1, with an
endpoint of gx on one of its vertical sides, see Figure [5.11] (a)-(b). We can extend g; to
some point on the opposite vertical side, chosen to be distinct from all other endpoints,
splitting the face into two and creating a new intersection point. (The existence of such
an extension follows from the Jordan—Schoenflies Theorem, by which the bounded face
is homeomorphic to a disc.) An unbounded face between two successive vertical curves

@ W
(a) (b) (0 L =

Figure 5.11: (a) A quadrilateral face with extra vertices; the shaded face from Figure (a).
(b) Adding an edge. (c) Embedding the grid into a pseudoline arrangement.

99

v; and v; ;1 that has an extra vertex on a vertical side can be treated similarly.

We continue the above extension procedure as long as possible. Since we are adding
new intersection points, but no two curves can intersect twice, this must terminate. Now
we are almost done: each horizontal curve extends from v; to v, and crosses each vertical
curve exactly once. We just extend the horizontal curves to infinity, into Ry and R,,
without crossings. O

This lemma can be interpreted in the context of pseudoline arrangements. In an
arrangement of pseudolines, each pseudoline is an unbounded Jordan curve, and every
pair of pseudolines has to cross ezxactly once. The grid construction can be embedded
in a true pseudoline arrangement, see Figure m (c): simply enclose all crossings in a
bounded region formed by three new (blue) pseudolines and let the crossings between
vertical lines and between horizontal lines occur outside this region.

We return to the proof of Theorem [5.20]

AVWANRE

()) oo o

Figure 5.12: Applying the Fishnet Lemma.

Proof. Given a quasi-parallel matching M, we construct a set of Jordan curves V as in
Lemmal[5.22] by considering the line arrangement formed by the segments s;<- - -<s,, with
the corresponding lines g(s1),...,g(s,). We construct curve v; by starting from s; and
going along ¢(s;). At each intersection, the curves switch from one line to the other, and
after a slight deformation in the vicinity of the intersections, they become non-crossing,
see Figure [5.12] (a). These crossings lie outside the parts of the lines where the segments
lie; therefore the switchings have no influence on the left-to-right order of the segments
s;. The setup of these n non-crossing “vertical” curves gives us the possibility to establish
a common orientation and speak about “above” and “below” on each curve in a consistent
way.

Now assume there is another matching M’. M and M’ form at least one closed
alternating path. Let G = {g1,. .., gm} be the segments of M’ on such a cycle in the order
in which they are traversed. V' and G satisfy the condition of the Fishnet Lemma and thus
can be extended to a complete topological grid. Assume without loss of generality that
g1 lies above go on the common incident edge of M, see Figure (b). Since the relative
order of o-vertices and e-vertices is the same on all vertical curves, this property carries
over to successive edges: g; lies above g;,1 on the vertical curve containing their common
segment of M, for ©+ = 1,...,k — 1. Since the extended horizontal curves hq,...,hg
intersect each vertical curve in the same order, we conclude that every vertical curve

100

NS N
I\

L — [
| S

Figure 5.13: Separability by vertical translation

intersects h; above h;,;. But then g, cannot reach the starting point above g; on the
common incident edge of M, a contradiction. O]

We mention separability by translation [26] as another easy consequence of the Fishnet
Lemma: in any family of n disjoint convex (or even just z-monotone) sets in the plane,
one can find one set that can be translated vertically upward to infinity without colliding
with the others (Figure : Just draw a “horizontal” segment g; between the leftmost
and the rightmost point of each set, and vertical lines through all segment endpoints. The
Fishnet Lemma will identify a horizontal curve h; lying above all other curves, and the
corresponding set can be translated to infinity. (There is, however, an easy direct proof
of vertical separability, see Guibas and Yao [34], 35]: Among the sets whose left endpoint
is visible from above, as marked by arrows in Figure [5.13] the one with the rightmost left
endpoint can be translated to infinity.)

5.4 Circular matchings

5.4.1 The structure of circular matchings

In this section we study circular matchings in more detail. Recall that such a matching
is a BR-matching without a chromatic cut for which all points on the convex hull have
the same color. We assume without loss of generality that this color is e.

We prove that if M is of circular type, then its point set has at least two other
matchings. Moreover, we show that for a circular matching, the relation < induces a
circular order (this will justify the term “matching of circular type”), and describe such
matchings in terms of forbidden patterns.

Lemma 5.23. A BR-matching M is of circular type if and only if it has no patterns (a)
and (b) from Figure[5.3, and has at least one pattern (c) (a 3-star).

Proof. We saw in Lemma that a BR-matching has no chromatic cut if and only if it
avoids the patterns (a) and (b). By Lemma[5.12] a BR-matching without chromatic cut
is either of linear or of circular type. By Lemma [5.18] a BR-matching is of linear type if
and only if it avoids (a), (b) and (c). Therefore, a BR-matching is of circular type if and
only if it avoids (a) and (b), but contains (c). O

Theorem 5.24. Let M be a matching of circular type on the point set F'. Then there
are at least two disjoint BR-matchings on F', compatible to M.

101

Proof. By Lemma there are three segments that form a 3-star. They split the
plane into three convex regions ()1, ()2 and (3 and a triangle as in Figure (a). The
triangle is bounded (without loss of generality) by three o-rays, and no points of F' lie in
the interior of this triangle. Otherwise, if a whole segment A of M lies inside the triangle,
then the e-ray determined by A crosses a o-ray, and we have pattern (b). And if only one

endpoint of A lies inside the triangle, then A itself crosses a o-ray, and we have pattern
(a). Both cases contradict Lemma |5.23]

(a)

Figure 5.14: The three regions @1, 2, @3 and an alternating cycle in the proof of Theorem

All segments in a region (); together with the two defining segments are of linear type
(indeed, they have no chromatic cut but have both colors on the boundary of the convex
hull). Thus, by Observation in each region there is an alternating path from the
o-point of the left bounding segment to the e-point of the right bounding segment (or vice
versa), see Figure (b). The union of the three paths forms an alternating polygon
and thus we have found a different compatible BR-matching M’. If we choose the paths
in the other direction (from the e-point of the left bounding segment to the o-point of
the right bounding segment), we get another BR-matching M”. O

Remark 5.25. If M is a matching of circular type on the point set F, then F can in
fact have exponentially many BR-matchings, as the following construction shows. Let
Ay, Ag, Az be three segments so that g(Ay), g(As2), g(As) intersect at one point O that
belongs to their o-rays, and so that {Ay, Ay, A3} is a circular matching. Repeat this
construction inside the triangle bounded by the o-ends of Ay, As, A3, using the same point
O and only taking care of general position, see Figure [5.15. This can be repeated an
arbitrary number of times. Then in each “layer” we have three BR-matchings; hence, at
least 3™3 BR-matchings for the whole point set (n denotes the number of segments).

Now we study in more detail the relation < for circular matchings. In the proof of
Theorem we saw that a circular matching is a union of three linear matchings, see
Figure [5.14] (b). In the next lemma we prove that in fact it is a union of two linear
matchings.

Lemma 5.26. Let M be a circular matching, and let B be a segment of M. The match-

102

Figure 5.15: A circular matching whose point set has exponentially many BR-matchings.

mgs
Mi={Xe€M:BaX},
MET={X e M:BaX}U{B},
Mj={X € M:XaB},
MLt ={X e M:X<B}yuU{B}.

are not empty, and they are of linear type.

Proof. Consider first the matching M g+. Since it contains B, it is non-empty. Since it is
a submatching of M, it has no chromatic cut. Both the o- and the e-end of B belong to
the boundary of its convex hull; therefore MZ+ must be of linear type. Similarly, M5*
is of linear type.

If ME is empty, then MET = M, which is impossible since M is of circular type,
and ME" of linear type. Now, since ME" is of linear type, and ME is a subset of this
matching, ME is of linear type as well (this follows from 1 < 3 in Lemma . The
proof for M is similar.]

Corollary 5.27. The relation < in a matching M of circular type has neither “minimal”
nor “maximal” element:

for every B € M there exists an A € M such that A< B;
for every B € M there exists an A € M such that B < A.

Proof. Otherwise, for such an element B, M5 or ME would be empty. O

Lemma 5.28. Let M be a circular matching. Let B be any segment of M. Let A be the
minimum (with respect to <) element of ML, and let Z be the mazimum element of M%.
Then the triple {A, B, Z} is a circular matching (a 3-star).

Proof. If M is of size 3, that is, M = {A, B, Z}, there is nothing to prove. Thus, we
assume that there is at least one more segment in M. Assume without loss of generality
that ME contains at least one segment in addition to Z.

103

Let C be a segment of M such that C'< A. (Such a segment exists by Lemma [5.26])
Since A is the minimum element of M%, we have C € ME, that is, B<C.

If C = Z then Z<1A<B<Z, that is, the relation < in the triple {A, B, Z} is not linear;
therefore {A, B, Z} is of circular type.

Suppose now that C' # Z, and consider the matching {A, B,C,Z}. We have C «
A< B<C. Thus, the relation < in the matching {A, B,C, Z} is not linear; therefore,
{A,B,C,Z} is of circular type. Now, by Lemma , some segment in {A, B,C, Z}
must lie to the right of Z according to the relation <. Since B < Z and C < Z, we have
Z <4 A. Thus, Z 9 A< B<Z, and this means that {A, B, Z} is of circular type. O

We shall show that if M is a circular matching, then there exists a natural circular
order of its edges. A circular (or cyclic) order is a ternary relation which models the
“clockwise” relation among elements arranged on a cycle. A standard way of constructing
a circular order from j linear orders A;; < A < --- < Ay, Agp < A < -2 < Ay,
sy Ajp < Ajy < oo <Ay s their “gluing” we say that [X, Y, Z] (and, equivalently,
Y, Z,X] and [Z,X,Y]) if X, Y and Z appear in the order XY Z or YZX or ZXY in
the sequence

Alla A127 . ;Alila Agl, AQQ, Ce ,AQZ‘Z, ceey Ajla AJQ, . 7Ajij

We fix B € M and apply this procedure on M §+ and ME in which < is linear by
Lemma . Let Ay, As, ..., Ay, be the segments of ML labeled so that A; < Ay<-- <Ay,
and let C1,Cy,...,C,, be the segments of ME labeled so that C; «Cy < --- <9 C,,. By
Lemma we have C,,, < A;. Thus, we consider the circular order [*, *, %] induced by

B«aCi<«Cy<---<C,, A 1Ay« <A< B. (5.1)

That is, for X,Y,Z € M we have [X,Y, Z] (and, equivalently [Y, Z, X] and [Z, X, Y]) if
and only if we have in (5.1) X<---<Y <---<aZ,or Y« --<Z«---<X,0or Z<---<X<---qY.
We always have either [X,Y, Z] or [X, Z, Y], but never both.

The circular order [*, x, %] will be referred to as the canonical circular order on M.
The next results describe the geometric intuition beyond this definition: we shall see that
[X,Y, Z] means in fact that these segments appear in this order clockwise. Moreover, we
shall see that the definition of [, %, *] does not depend on the choice of B.

Lemma 5.29. Let M be a circular matching, and let XY, Z € M. Then we have
[(X,Y, Z] if and only if at least two among the following three conditions hold: X <Y;
Y<«Z,Z<X.

If all three conditions hold, then {X,Y, Z} is a 3-star; and if exactly two among the
statement hold, then {X Y, Z} is a linear matching. All possible situations for [X,Y] Z|
(with respect to <) appear in Figure [5.16]

Proof. The segment B from the definition of [, *, %] is the maximum element of M5".
Therefore, it is convenient to denote A, 1 = B. Now we have four cases.

e Case 1: X,Y,Z € M5".

In this case {X,Y, Z} is of linear type (by Lemma [5.26). Therefore either one or
two of the conditions hold. If exactly two conditions hold: assume without loss of
generality that X <Y < Z. Since A; <---< Agyy is a linear order in M4 ", we have

104

] []/O_Y'

XY Z Y 7 X Z XY A

Figure 5.16: Possible configurations of three segments that satisfy [X,Y, Z].

X =A,Y =A4;3,7Z=A, forsome 1 <a < <vy<k+1 Now we have [X,Y, 7]
by definition. If exactly one condition holds: assume that it is X <Y’; then we have
X < Z <Y, which implies “not [X,Y, Z]".

e Case 2: two edges of {X,Y, Z} belong to Mg“, and one to ME. Assume without
loss of generality that X,Y & Mé*, Z € ME and that X Y.

Then we have X = A,,Y = Ag for some o« < and Z = C, for some v, and,
therefore, [X,Y, Z].

At the same time in this case at least two of the conditions hold: indeed, assume
X <«Z Y. Then B is distinct from XY, Z (in particular, B # Y because B < 7).
Now, in the matching {X,Y, Z, B} there is a minimum element, X, but there is
no maximum element. Therefore, {X,Y, Z, B} is neither of linear nor of circular
type—a contradiction.

e Case 3: one edge of {X,Y, Z} belongs to Mg“, and two to ME and Case 4: all
edges of {X,Y, Z} belong to ME, are similar to cases 2 and 1. Therefore, we omit
their proofs. O

Corollary 5.30. The canonical circular order does not depend on the choice of B.

Proof. By Lemma [5.29, we have an equivalent definition of the circular order that only
depends on relations between triples of segments. O

Lemma 5.31. Let M be a circular matching, and let X € M. Then the immediate
successor of X in the canonical circular order is the minimum element of ME.

Proof. This is immediate for B (as in definition of [, x,*]), and, since we saw in Corol-
lary that the circular order [, x, %] does not depend on the choice of B, this is true
for all segments. O

Lemmas [5.29 and [5.31] show that the canonical circular order describes the combina-
torial structure of circular matchings in a natural way, similarly to the way in which «
describes the structure of linear matchings.

5.4.2 Proofs of Theorems [5.5] and
At this point we are ready to complete the proofs of Theorems [5.5] and [5.7]

Proof of Theorem[5.5. Equivalence of conditions 2,3,4,5 is proven in Lemma [5.18 Fi-
nally, 2 = 1 (if a BR-matching M is of linear type, then it is unique) is proven in
Theorem ; and 1 < 2 (if a BR-matching M is unique, then it is of linear type)
follows from Corollary (if M is unique, then it has no chromatic cut), Lemma [5.12)

105

(if M has no chromatic cut, then it is either of linear or circular type), and Theorem [5.24]
(if M is of circular type, then it is not unique).]

Proof of Theorem[5.7]. First we observe that the following statements are equivalent:
1. M contains no chromatic cut.
2. The sidedness relation < is a total relation.
3. No two segments from M form one of the patterns in Figure (a-b).

The equivalence 1’ < 2’ is Lemma and the equivalence 1’ < 3’ is Lemma 5.8, Each

of the three conditions 1’,2’, 3" is equivalent to the corresponding condition 1,2, 3 in the

theorem with the additional constraint that M is not of linear type, by Theorem

(conditions 2, 3,4, respectively). This establishes that the three first conditions of the
theorem are equivalent.

Property pl is explained in Lemmas[5.29 and [5.31] and p2 is proved by Theorem [5.24]

O

5.5 Algorithms

In this section we describe several algorithms. The first checks whether a given point set
F" has a unique BR-matching. This algorithm is based on yet another characterization of
unique BR-matchings. The second checks if a given BR-matching is circular. Applying
these algorithms together, we can check if a given matching has a chromatic cut. The
third algorithm finds a balanced line through one of the segments involved in a chromatic

cut (Lemma [5.9).

5.5.1 Testing a matching for uniqueness

Definition 5.32. A BR-matching M has the drum property with respect to the segments
A,Be M (A# B)if A and B are the only segments from M on 0CH(F).

Theorem 5.33. Let M = {Ay, As, ..., A,} be a BR-matching such that A1 <As<---<A,.
Then the following conditions are equivalent:

1. M s the unique BR-matching.

2. For every i < j, every subset S C {A;, Aiy1, ..., A;} with A;; A; € S has the drum
property for A; and A;.

3. For every j > 1, the set { Ay, As, ..., A;} has the drum property for Ay and A;; and
for every i < n, the set {A;, Ai1,..., Ay} has the drum property for A; and A,.

Recall that the relation < is not necessarily transitive. Thus, the assumption of the
theorem does not imply A; < A; for i < j.

Proof. [1 = 2] By Condition [3| of Theorem < is a linear order on M, and by Con-
dition [2] the convex hull has only two color intervals. Uniqueness of the matching, as
well as all the linear order < and the property of having two color intervals, carry over
to all subsets S of M, as mentioned in the remark after the theorem. A; and A; are the
minimal and maximal elements of S. In particular, A; < B for every B € S\ {A;}, and

106

thus, A; lies on the convex hull. Similarly, A; lies on the convex hull. Since there are
only two color intervals on the convex hull of S, there can be no other matching edges
on the convex hull. Thus, S has the drum property for A; and A;.

[2 = 3] is clear since 3 is a special case of 2.

[3 = 1]: Since {A;, As, ..., A;} has the drum property for A; and A;, all segments
Ay, ..., A;_; lie on the same side of g(A;). Since A;_; <A; by assumption, we know that
the segment A;_; lies left of A;, and hence we conclude that all segments A; lie left of
g(A;), for i < j. Similarly, from the drum property for {A;, A;+1,..., A, } we conclude
that the segments A; lie right of g(A;), for j > i. These two conditions together mean
that A;<A; for i < j. Therefore, Condition [3] of Theorem [5.5 holds, and M is unique. [

From Property [3] of Theorem we can derive a linear-time algorithm for testing
whether M is unique, once an ordering with A; < A; <--- < A, has been computed: We
incrementally compute P; := CH({4;, As, ..., A;}) for j = 2,...,n and check the drum
property as we go.

The algorithm that we shall describe proceeds similarly as the folklore linear-time
algorithm for computing the convex hull of points that are given in sorted order by x-
coordinate, but it is valid for a different reason. We start from the general paradigm
for computing convex hulls incrementally (see, for example, [44]), which is the basis for
more elaborate randomized incremental algorithms that also work in higher dimensions,
see |25, Chapter 11]. The current convex hull H is extended by a new point p as follows:

C1. Check whether p € H. If this is the case, stop.
C2. If not, find a boundary point ¢ € JH that is visible from p.
C3. Walk from ¢ in both directions to find the tangents pg; and pgs from p to H.

C4. Update the convex hull: remove the part between ¢; and ¢, that has been walked
over, and replace it with ¢;pgs.

If H is maintained as a linked list, Steps C3 and C4 take only linear time overall, because
everything that is walked over is deleted. The “expensive” steps that are responsible for
the superlinear running time of convex hull algorithms are C1 and C2. However, just
as for the linear-time hull computation of sorted points, we will see that these steps are
trivial in our case. (We extend the convex hull by inserting not a single point but two
points of A;4; at a time.)

We want to check the drum property for {Ay, Ay, ..., A;11}. If it holds, then we know
that the new points of A,;; do not lie in P;; and since A; lies on the boundary of P; but
not of Pj;;, we know that A, is visible from at least one point of A;.;. We can start
the search in Step C3 from there. This visibility assumption can be checked in constant
time, and it guarantees that A; disappears from the boundary of P;;;. The other part
of the drum property, that A; and A, lie on the boundary of Pj;4, is trivial to check
after Step C4 is completed. The overall running time is linear.

In a second symmetric step, we start from the end and compute CH({A4;, A;41, ..
A) fori=n—1,...,1.

*

Theorem 5.34. It can be checked in O(nlogn) time whether a bichromatic set has a
unique non-crossing BR-matching.

107

Proof. First we have to compute some BR-matching M = {A;, Ay, ..., A, }. It is well-
known that this can be done by recursive ham-sandwich cuts in O(nlogn) time. A
ham-sandwich cut is a line ¢ that partitions a bichromatic set such that each open half-
plane contains at most ng points of each color. If n is odd, ¢ must go through a red
and a blue point. We can match these points to each other, and recursively find a BR-
matching in the (”T’l + "T_l)—sets in each half-plane. If n is even, £ may go through one
or two points, but by shifting ¢ slightly we can push these points to the correct side such
that each half-plane contains an (g + %)—set. We recurse as above. A ham-sandwich
cut can be found in linear time [49]. Hence this procedure leads to a running time of
T(n) =0(n)+2-T(n/2), which gives T'(n) = O(nlogn).
Next, we compute an ordering such that

Al <Ay<a---<A,. (5.2)

We do this by a standard sorting algorithm in O(nlogn) time, as if the relation < were a
linear order. If, at any time during the sort, we find two segments that are not comparable
by <, we quit. Finally, we check condition in O(n) time. (This final check is not
necessary, if, for example, mergesort is used as the sorting algorithm.) This step is
guaranteed to find an ordering if the matching is unique. If < is not a linear order,
it may succeed or fail.

As the last step, we check Property [3] of Theorem [5.33] in linear time, as outlined
above. O

5.5.2 Testing for a circular matching

[
[
|
A -
K)

|
L~
-
B 7
|
|
|
|
|
|
|
|

(a) (b)

Figure 5.17: Separation of M into 6 overlapping BR-Matchings

It is also possible to determine in O(nlogn) if a BR-matching M is circular, by an
easy divide-and-conquer algorithm. Let A and B be two arbitrary segments in M. Let
M, = M5 and M, = M¥" (that is, the segments that lie to the left or to the right of A,
including A itself) and likewise Ny = M5 and Ny = ME™ (see Figure recall that the
segments are implicitly directed from white to black). M; and N; are linear matchings by
Lemmam Finally, define Ql = (MQﬂNQ)U(MlﬂNl) and Q2 = (Ml ﬂNQ)U(MQﬁNl)

Observation 5.35. A BR-matching M has a chromatic cut if and only if at least one of
the six matchings defined above has a chromatic cut.

Proof. Consider two segments in M. Then they must be both in one of the matchings
M' as defined above. If they have a chromatic cut, then M’ has a chromatic cut. The
other direction is obvious. O

108

Theorem 5.36. It can be checked in O(nlogn) time whether a BR-matching M is of
circular type.

Proof. The algorithm starts to compute the convex hull of M. If all points on 0CH (M)
are of the same color we know it is not a linear matching and it remains to check if M
has no forbidden pattern as in Figure (a—b).

We pick any segment Ay and split M along g(Ap). We compute the linear order
of both parts. This gives a potential circular order. We remember this order for the
remaining part.

The rest of the algorithm works recursively. We start by defining M; and M, as above
for any segment A. Let B be the median of the larger of the M; with respect to <. The BR-
matchings NV; and @); are also defined as above. For the BR-matchings M; and N;, it can
be checked in linear time if they are of linear type, because we have already precomputed
the order. As B is the median of the larger of the M;, n/4 < |Q;| < 3n/4 for every i.
We check recursively if () and @2 has no chromatic cut. For the running time 7'(n), we
have T'(n) < O(n) + maxy ja<a<s/a[T(an) +T((1 — a)n)]. Thus T'(n) = O(nlogn).

If any of these steps in the algorithm fails, a forbidden configuration is present. In
this case we just stop and return that M has a chromatic cut. Otherwise we return the

correct circular order. O
AQ(A)
|
_________ |
O o ! Hup
. o |
a a ok
Gup A - -
N p - - -
b _-b
mag _ - g |
® _ o : Hlow
P I
i Glo’w :
|
|

Figure 5.18: The line g(A) splits the point set F' into G and H.

5.5.3 Finding a balanced line

The last algorithm we want to present computes a balanced line as in Lemma As a
preprocessing step we need to find a point on a segment in general position with respect
to the remaining points F'.

Lemma 5.37. Let F' be a point set in the plane and A = (a, b) be a vertical segment such
that F'U {a,b} lies in general position, that is, no three points lie on a line. Then the
lowest intersection p of A with a segment formed by two points in F can be computed in
deterministic O(nlogn) time.

109

Proof. Consider the point sets G and H left and right of g(A). Let mg be the median of
the larger set (G, with respect to the order defined by a ray rotating around b. The line
k through m¢ and b defines the four sets G\p, Giow, Hup and Hoy, as in Figure m (b).
Now any two points defining the lowest intersection with C' are either in G\, and H,y,
or in two opposite sets (that is, Gy, and Hiey Or Giow and Hyp). The lowest intersecting
segment of G, and H,, is the convex hull edge of Gy, and H,, intersecting the line g(A).
It can be found in linear deterministic time with a subroutine of the convex hull algorithm
by Kirkpatrick and Seidel [45] or by an algorithm by Aichholzer, Miltzow and Pilz [5].
The second algorithm only uses order type information. The two opposite sets are treated
recursively. Note that n/4 < #(Giow U Hyp) < 3n/4 and likewise n/4 < #(Gup U Higw) <
3n/4. Therefore, for the running time we get 7'(n) = O(n)+maxy ja<a<s/a[T (an)+T((1—

a)n)|, which gives T'(n) = O(nlogn). O
Ag(4) A9(4)
N - : «
A oa) ‘.
b b

(a) ()

Figure 5.19: (a) the line arrangement formed by the points in F' and the lowest crossing with
A; (b) the cone with apex b spanned by the minimal pair of points is empty of points of F'

For the next Lemma we refer to Figure .19

Lemma 5.38. Let A be a segment and F a point set right of g(A) in general position.
Then the lowest intersection p of A with a line through two points in F' can be computed
in deterministic O(nlogn) time.

Proof. First consider the points ¢, € F which form the lowest crossing with A. We show
they are neighbors in the radial order around b. Consider the area swept by a ray from
q to r. If it contained any point s then either the line through ¢ and s or r and s would
have a lower intersection with A.

Thus we merely compute the radial order around b and for any neighboring pair the
intersection point with A. The running time 7'(n) = O(nlogn) is dominated by the
sorting procedure. O]

Theorem 5.39. Let F' be a point set in the plane and A = (a,b) be a vertical segment
such that F'U {a,b} lies in general position (that is, no three points lie on a line). Then
the lowest intersection of A with a line through two points in F can be computed in
deterministic O(nlogn) time.

Proof. Compute the lowest intersection point with a line separately for the points left
and right of A according to Lemma [5.38 and all possible intersections with A by pairs of
points on opposite sites of A according to Lemma [5.37] O

110

Corollary 5.40. Given a point set F' and a segment A without three points on a line, a
point on A in general position with respect to F' can be computed in O(nlogn) time.

Proof. Any point between the lowest intersection and the lower endpoint of A is in general
position with respect to F'. O

Lemma 5.41. Let M be a BR-matching of a point set F' in general position and A, B be
two segments as in Figure (a) and (b). Then we can compute a balanced line through
the interior of A or B in O(nlogn) time.

Proof. Let p € A and ¢ € B be points as in Corollary [5.40l We know by the proof
of Lemma [5.9] that a balanced line through p or ¢ exists. The algorithm in [5] can be
adapted to find the desired balanced line through p or ¢ in O(n) time. [

Remark 5.42. Once we have an O(nlogn) time algorithm to test whether a BR-matching
1s linear or circular we automatically get an algorithm to test if a BR-matching has a
chromatic cut in O(nlogn) time. Note that both algorithms above can be executed until
they find a forbidden configuration. Thus we are able to compute a forbidden configuration
also in O(nlogn) time. In the case of linear matchings we compute the linear order and
for circular matchings the circular order.

The remaining notions that were introduced in this paper can also be computed effi-
ciently: It is easy to construct a reference line in linear time, as in the Definition
of quasi-parallel segments. Given a forbidden configuration, it is possible to compute
in constant time a chromatic cut (that is, the actual line). Finally, given a forbidden
configuration, we can compute a balanced line intersecting one of the segments.

5.6 Open questions

Our method for testing whether a point set F' has a unique non-crossing BR-matching
starts by finding such a BR-matching M, in O(nlogn) time, by repeated ham-sandwich
cuts. This algorithm does not care whether M is unique, and it is in fact the fastest known
algorithm for finding any non-crossing BR-matching in an arbitrary point set. Is there a
faster algorithm for checking whether M is unique (without necessarily constructing M)?

Our paper can also be seen as the study of sets of segments with certain forbidden
patterns. These particular segment sets have a lot of nice geometric structure. We wonder
whether other forbidden patterns also lead to interesting geometric properties.

Consider n blue, n red and n green points in R®. By repeatedly applying ham-
sandwich cuts we know that there exists a non-crossing colorful 3-uniform geometric
matching: Each hyperedge is represented by the convex hull of its vertices. Thus we ask
for a geometric characterization of point sets with just one such matching.

Acknowledgments.

We thank Michael Payne, Lothar Narins and Veit Wiechert for helpful discussions, and
we thank Stefan Felsner for a hint to the literature. We also thank the anonymous referees
for valuable comments.

111

112

Acknowledgments

Let me start to thank first the person, who is responsible that I went into the area of
discrete mathematics/theoretical computer science. It goes back to autumn 2008, when
I attended a preliminary discussion to a seminar with the title "Ausgewahlte Kapitel der
Graphentheorie". Although I took this course only, because I thought it was an easy way
to pass my last seminar, I quickly got excited about the world of discrete mathematics,
which is due to Stefan Felsner, who later supervised my Diplom.

Next I want to thank my PHD Supervisor Giinter Rote. Among all the things that a
supervisor should do most important above all is that he gives you a feeling of trust and
encouragement, especially at times when not everything goes smoothly.

I also want to thank all my coauthors, for bearing with me. This is Oswin Aichholzer,
Andrei Asinowski, Michael Hoffmann, Balazs Keszegh, Vincent Kusters and Alexander
Pilz. Among my coauthors special thanks goes to Andrei Asinowski who also shared long
time an office with me. He taught me a lot and I enjoyed many interesting discussions
with him.

During this endeavor, I visited several researchers.

I thank Michael Hoffmann and Vincent Kusters to host me in Ziirich. I enjoyed many
games of Toggele, ice-cream, games evenings, their company in general and of course the
collaboration.

I want to thank Oswin Aichholzer and his workgroup to work with me in Graz. Even
in this difficult time, when they organized a workshop.

I also want to thank Rom Pinchasi, whom I visited in Haifa at the Technion. I learned
a lot from him, about Mathematics, live in general and Israel in particular.

I thank the workgroup, for a friendly and productive atmosphere.

And it should not be forgotten, that I spent during my phd most of my time for
teaching. Whenever I felt that students actually listened to me or even learned something
from my clumsy explanations, it made me feel excited. Thanks too all students.

At last, I thank my family and friends who went through all the up and downs of the
last years with me.

113

114

Bibliography

[1] Atila Abdulkadiroglu and Tayfun Sonmez. Random serial dictatorship and the core
from random endowments in house allocation problems. Econometrica, 66(3):689—
701, 1998.

[2] David J. Abraham, Katarina Cechlarova, David F. Manlove, and Kurt Mehlhorn.
Pareto optimality in house allocation problems. In Xiaotie Deng and Ding-Zhu Du,
editors, Algorithms and Computation, volume 3827 of Lecture Notes in Computer
Science, pages 1163-1175. Springer Berlin Heidelberg, 2005.

[3] Oswin Aichholzer, Luis Barba, Thomas Hackl, Alexander Pilz, and Birgit Vogten-
huber. Linear transformation distance for bichromatic matchings. In Proceedings

of the Thirtieth Annual Symposium on Computational Geometry, SOCG’14, pages
154:154-154:162, New York, NY, USA, 2014. ACM.

[4] Oswin Aichholzer, Sergey Bereg, Adrian Dumitrescu, Alfredo Garcia, Clemens Hue-
mer, Ferran Hurtado, Mikio Kano, Alberto Méarquez, David Rappaport, Shakhar
Smorodinsky, Diane Souvaine, Jorge Urrutia, and David R. Wood. Compatible geo-
metric matchings. Electronic Notes in Discrete Mathematics, 31(0):201 — 206, 2008.
The International Conference on Topological and Geometric Graph Theory.

[5] Oswin Aichholzer, Tillmann Miltzow, and Alexander Pilz. Extreme point and halving
edge search in abstract order types. Computational Geometry, 46(8):970-978, 2013.

[6] Noga Alon, Meir Katchalski, and William R. Pulleyblank. Cutting disjoint disks by
straight lines. Discrete € Computational Geometry, 4:239-243, 1989.

[7] G. Aloupis, L. Barba, S. Langerman, and D. L. Souvaine. Bichromatic compat-
ible matchings. Computational Geometry: Theory and Applications, 2014. Also
in: Symposium on Computational Geometry, 2013, pp. 267-276, ACM Press; and
arXiv:1207.2375 (July 2012).

[8] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.
Cambridge University Press, 2009.

[9] Andrei Asinowski, Balazs Keszegh, and Tillmann Miltzow. Counting houses of pareto
optimal matchings in the house allocation problem. CoRR, abs/1401.5354, 2014.

[10] Andrei Asinowski, Balazs Keszegh, and Tillmann Miltzow. Counting houses of pareto
optimal matchings in the house allocation problem. In Alfredo Ferro, Fabrizio Luccio,
and Peter Widmayer, editors, FUN, volume 8496 of Lecture Notes in Computer
Science, pages 301-312. Springer, 2014.

115

http://arxiv.org/abs/1207.2375

[11] Andrei Asinowski, Tillmann Miltzow, and Giinter Rote. Quasi-parallel segments and
characterization of unique bichromatic matchings. CoRR, abs/1302.4400, 2013.

[12] Andrei Asinowski, Tillmann Miltzow, and Giinter Rote. Quasi-parallel segments
and characterization of unique bichromatic matchings. Journal of Computational
Geometry, to appear.

[13] Haris Aziz, Felix Brandt, and Markus Brill. The computational complexity of random
serial dictatorship. Economics Letters, 121(3):341-345, 2013.

[14] Haris Aziz and Julian Mestre. Parametrized algorithms for random serial dictator-
ship. arXiv, 2014. arXiv:1403.0974 (March 2014).

[15] Gill Barequet. A lower bound for Heilbronn’s triangle problem in d dimensions.
SIAM Journal on Discrete Mathematics, 14(2):230-236, 2001.

[16] Sergey Bereg, Adrian Dumitrescu, and Janos Pach. Sliding disks in the plane. Inter-
national Journal of Computational Geometry € Applications, 18(5):373-387, 2008.

[17] Péter Biro, Taméas Fleiner, David Manlove, and Tamés Solymosi, editors. MATCH-
UP 2012: the Second International Workshop on Matching Under Preferences, Corv-
inus University of Budapest, Hungary, 2012.

[18] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E.
Tarjan. Time bounds for selection. Journal of Computer and System Sciences,

7(4):448-461, 1973.

[19] Hans L. Bodlaender. Complexity of path-forming games. Theoretical Computer
Science, 110(1):215 — 245, 1993.

[20] Hans L. Bodlaender and Ton Kloks. Fast algorithms for the Tron game on trees.
Technical report, Department of Computer Science, 1990.

[21] Katarina Cechlarova, Pavlos Eirinakis, Tamas Fleiner, Dimitrios Magos, loannis
Mourtos, and Eva Potpinkova. Pareto optimality in many-to-many matching prob-
lems. preprint, 2013.

[22] Josef Cibulka, Jan Kynél, Viola Mészéaros, Rudolf Stolar, and Pavel Valtr. Solution
of peter winkler’s pizza problem. In Jivri Fiala, Jan Kratochvil, and Mirka Miller, ed-
itors, Combinatorial Algorithms, volume 5874 of Lecture Notes in Computer Science,
pages 356-367. Springer Berlin Heidelberg, 2009.

[23] Richard Cole, Jeffrey S. Salowe, William L. Steiger, and Endre Szemerédi. An
optimal-time algorithm for slope selection. SIAM J. Comput., 18(4):792-810, 1989.

[24] Nadia Creignou and Miki Hermann. On P completeness of some counting problems.
Rapport de recherche RR-2144, INRIA, 1993.

[25] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Cheong. Computa-
tional Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany,
2008.

[26] Nicolaas Govert de Bruijn. Problems 17 and 18. Nieuw Archief voor Wiskunde, 2:67,
1954. Answers in Wiskundige Opgaven met de Oplossingen 20:19-20, 1955.

116

http://arxiv.org/abs/1403.0974

[27] Erik D. Demaine and Robert A. Hearn. Playing games with algorithms: Algorithmic
combinatorial game theory. In Michael H. Albert and Richard J. Nowakowski, edi-
tors, Games of No Chance 3, volume 56 of Mathematical Sciences Research Institute
Publications, pages 3-56. Cambridge University Press, 2009.

[28] Reinhard Diestel. Graph theory, volume 3 of Graduate texts in mathematics.
Springer, 2005.

[29] Sandor P. Fekete, Rudolf Fleischer, Aviezri Fraenkel, and Matthias Schmitt. Trav-
eling salesmen in the presence of competition. Theoretical Computer Science,

313(3):377 — 392, 2004.

[30] Aviezri S. Fraenkel, Edward R. Scheinerman, and Daniel Ullman. Undirected edge
geography. Theoretical Computer Science, 112(2):371 — 381, 1993.

[31] David Gale and Lloyd S Shapley. College admissions and the stability of marriage.
The American Mathematical Monthly, 69(1):9-15, 1962.

[32] Alfredo Garcia, Marc Noy, and Javier Tejel. Lower bounds on the number of crossing-
free subgraphs of K,,. Computational Geometry, 16(4):211-221, August 2000.

[33] Catherine Greenhill. The complexity of counting colourings and independent sets in
sparse graphs and hypergraphs. Computational Complezity, 9(1):52-72, 2000.

[34] L. J. Guibas and F. F. Yao. On translating a set of rectangles. In Proc. 12th Annual
ACM Symposium Theory of Computing (STOC 1980), pages 154-160, 1980.

[35] L. J. Guibas and F. F. Yao. On translating a set of rectangles. In F. P. Preparata, ed-

itor, Computational Geometry, volume 1 of Advances in Computing Research, pages
61-77. JAI Press, Greenwich, Conn., 1983.

[36] Martin Held and Joseph S.B. Mitchell. Triangulating input-constrained planar point
sets. Information Processing Letters, 109(1):54-56, 2008.

[37] Matthias Henze, Rafel Jaume, and Balasz Keszegh. On the complexity of the par-
tial least-squares matching voronoi diagram. In Proceedings of the 29th FEuropean
Workshop on Computational Geometry (EuroCG), pages 193-196, March 2013.

[38] Michael Hoffmann, Vincent Kusters, and Tillmann Miltzow. Halving balls in deter-
ministic linear time. CoRR, abs/1405.1894, 2014.

[39] Michael Hoffmann, Vincent Kusters, and Tillmann Miltzow. Halving balls in deter-
ministic linear time. In Andreas S. Schulz and Dorothea Wagner, editors, Algorithms
- ESA 2014 - 22th Annual European Symposium, Wroclaw, Poland, September 8-10,
2014. Proceedings, volume 8737 of Lecture Notes in Computer Science, pages 566—
578. Springer, 2014.

[40] Ferran Hurtado, Mikio Kano, David Rappaport, and Csaba D. T6th. Encompassing
colored planar straight line graphs. Computational Geometry, 39(1):14-23, 2008.

[41] Ferran Hurtado and Csaba D. T6th. Plane geometric graph augmentation: a generic
perspective. In J. Pach, editor, Thirty Fssays on Geometric Graph Theory, volume 29
of Algorithms and Combinatorics, pages 327-354. Springer, 2013.

117

[42] A. E. Ingham. On the difference between consecutive primes. The Quarterly Journal
of Mathematics, 8:255-266, 1937.

[43] Mashhood Ishaque, Diane L. Souvaine, and Csaba D. Téth. Disjoint compatible
geometric matchings. Discrete Comput. Geom., 49(1):89-131, 2013.

[44] Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, and Chee-Keng Yap.
Classroom examples of robustness problems in geometric computations. Computa-
tional Geometry, 40:61-78, May 2008.

[45] David G. Kirkpatrick and Raimund Seidel. The ultimate planar convex hull algo-
rithm? SIAM Journal on Computing, 15(1):287-299, 1986.

[46] Kolja Knauer, Piotr Micek, and Torsten Ueckerdt. How to eat 4/9 of a pizza. Discrete
Mathematics, 311(16):1635 — 1645, 2011.

[47] Hanno Lefmann. On Heilbronn’s problem in higher dimension. Combinatorica,
23(4):669-680, 2003.

[48] David Lichtenstein and Michael Sipser. Go is polynomial-space hard. Journal of the
ACM, 27:393-401, April 1980.

[49] Chi-Yuan Lo, Jifi Matousek, and William L. Steiger. Algorithms for ham-sandwich
cuts. Discrete ¢ Computational Geometry, 11:433-452, 1994.

[50] Maarten Loffler and Wolfgang Mulzer. Unions of onions: Preprocessing imprecise

points for fast onion decomposition. Journal of Computational Geometry, 5(1):1-13,
2014.

[51] David Manlove. Algorithmics of matching under preferences. World Scientific Pub-
lishing, 2013.

[52] Horst Martini and Anita Schobel. Median hyperplanes in normed spaces — a survey.
Discrete Applied Mathematics, 89(1):181-195, 1998.

[53] Jifi Matousek. Efficient partition trees. Discrete & Computational Geometry,
8(1):315 334, 1992.

[54] Gary L. Miller, Shang-Hua Teng, William Thurston, and Stephen A. Vavasis. Sepa-
rators for sphere-packings and nearest neighbor graphs. J. ACM, 44(1):1-29, January
1997.

[55] Tillmann Miltzow. Tron, a combinatorial game on abstract graphs. CoRR,
abs/1110.3211, 2011.

[56] Tillmann Miltzow. Tron , a combinatorial game on abstract graphs. In Evangelos
Kranakis, Danny Krizanc, and Flaminia L. Luccio, editors, FUN, volume 7288 of
Lecture Notes in Computer Science, pages 293-304. Springer, 2012.

[57] Noam Nisan. Algorithmic game theory. Cambridge University Press, 2007.

[58] Janos Pach and Micha Sharir. Combinatorial geometry and its algorithmic appli-
cations: The Alcald lectures, volume 152 of Mathematical Surveys and Monographs.

AMS, 2009.

118

[59] Giinter Rote. Two solvable cases of the traveling salesman problem. PhD thesis,
Technische Universitat Graz, 1988.

[60] Giinter Rote. The N-line traveling salesman problem. Networks, 22:91-108, 1992.

[61] Giinter Rote. Partial least-squares point matching under translations. In 26th Euro-
pean Workshop on Computational Geometry (EuroCG 2010), pages 249-251, March
2010.

[62] Klaus F. Roth. On a problem of Heilbronn. Journal of the London Mathematical
Society, 26(3):198-204, 1951.

[63] Daniela Saban and Jay Sethuraman. The complexity of computing the random
priority allocation matrix. In Yiling Chen and Nicole Immorlica, editors, Web and
Internet Economics, volume 8289 of Lecture Notes in Computer Science, pages 421—
421. Springer Berlin Heidelberg, 2013.

[64] Sandy Scott. A study of stable marriage problems with ties. PhD thesis, University
of Glasgow, 2005.

[65] Micha Sharir and Emo Welzl. On the number of crossing-free matchings, cycles, and
partitions. SIAM Journal Computing, 36(3):695-720, 2006.

[66] Michael Sipser. Introduction to the theory of computation, volume 2. PWS Publishing
Company, 1997.

[67] Helge Tverberg. A separation property of plane convex sets. Mathematica Scandi-
navica, 45:255-260, 1979.

[68] Salil Vadhan. The complexity of counting. B.S. thesis, Harvard University, 1995.

[69] wikipedia foundation. Tron franchise.
http://en.wikipedia.org/, accessed 2013.

119

	Zusammenfassung
	Introduction
	Halving Balls in Deterministic Linear Time
	Tron
	Pareto Optimal Matchings
	Unique Bichromatic Matchings

	Halving Balls
	Introduction
	Separating balls in higher dimensions
	Overview of the approximation algorithm.
	How to find a good direction.

	An Exact Algorithm in the Plane
	Point-line Duality.
	Overview of the Algorithm.
	Analysis of the Algorithm.
	Trapezoid Construction
	Counting Vertices
	Bounding the Number of Vertices
	Bounding the Intersections with the 1-tube

	Conclusions

	Tron
	Introduction
	Basic Observations
	Extremal Question
	Misère Game
	The normal game on general graphs
	Planar Graphs
	k-connected Visage

	Complexity Question
	Normal Play
	Misère Game

	Conclusion

	Pareto Optimal Matchings
	Introduction
	Definitions
	Results
	Motivation and related work
	Preliminaries

	Counting reachable elements and sets
	Characterization of avoidable elements
	Complexity of reachability

	Unique Bichromatic Matchings
	Introduction
	Basic notation and definitions
	The main results
	Related work
	Outline

	Preliminary results
	Chromatic cuts
	The sidedness relation between segments

	Quasi-parallel, or linear, matchings
	Characterizations of linear matchings
	Proof of Theorem 5.20 by the Fishnet Lemma

	Circular matchings
	The structure of circular matchings
	Proofs of Theorems 5.5 and 5.7

	Algorithms
	Testing a matching for uniqueness
	Testing for a circular matching
	Finding a balanced line

	Open questions

	Acknowledgments

