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Abstract

The present study is concerned with measurement and modelling of neural
variability dynamics in the mammalian neocortex. The variability statistics of
cortical spike trains are analysed in the framework of renewal process theory.
The estimation of interval variability is refined so that it can be used to extract
the underlying firing rate variance from neural activity. These methods are then
applied to a cortical data set where we show that the reduction in count variability
commonly observed at the onset of stimuli can be dissected into a modulated
component of rate variance and an interval variability that remains constant. The
reduction of count variability is commonly modelled using balanced networks
of excitatory and inhibitory units where the excitatory population is divided into
clusters of stronger internal connectivity. Using the mean field description of
balanced networks of binary neurons, we analyse the stable fixed points of
these excitatory cluster networks. We find that the firing rates of the active
clusters are always close to the saturation limit. As a possible remedy we
propose to subdivide the inhibitory population into clusters as well so that each
excitatory cluster is selectively balanced and show in the mean field analysis
that this does indeed solve the problem of rate saturation. We then transfer
the concept of inhibitory and excitatory clustering of the connectivity to more
realistic models of integrate and fire neurons and show that here it conserves
the local balance of excitation and inhibition during cluster cycling dynamics.
Thereby the interval variability seen in cortical data is conserved during high
activity states of the clusters which is in contrast to previous models. Finally we
analysed a data set where monkeys executed a delayed centre out reach task
where varying information about the target direction was given. The depth of
modulation of the count variance in the monkey’s motor cortex was dependent
on how much information was given during the delay period. Using a balanced
network with inhibitory and excitatory clusters, we showed that the context
dependent modulation of variability during the delay period can be captured by
a simple probabilistic model of movement preparation.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Messung und Modellierung der
Variabilitätsdynamik im Neokortex der Säugetiere. Die Variabilitätsstatistik von
Zeitreihen kortikaler Aktionspotentiale werden aus der Perspektive der Theo-
rie der Erneuerungsprozesse analysiert. Die Schätzung der Intervalvariabilität
wurde verfeinert, so dass diese herbeigezogen werden kann um die Feuerraten-
varianz neuronaler Aktivität zu berechnen. Diese Methoden wurden dann auf
einem Satz neokortikaler Daten angewendet um zu zeigen, dass die oft beob-
achtete Reduktion der Fanofanofaktoren zu beginn der Stimuluspräsentation
einer modulierten Ratenvarianz bei konstanter Intervalvariabilität zugeschrieben
werden kann. Die Reduktion des Fanofaktors wird oft in neuronalen Netzwer-
ken simuliert, in denen exzitatorische und inhibitorische Neuronen sich das
Gleichgewicht halten (Balanced Networks), indem Gruppen (Cluster) von ex-
zitatorischen Neuronen untereinander stärker verbunden werden. Mithilfe der
Meanfield-Beschreibung binärer Netzwerke wurden die stabilen Fixpunkte sol-
cher exzitatorischer Clusternetzwerke untersucht, mit dem Ergebnis, dass hier
die aktiven Cluster in die Feuerratensättigung getrieben werden. Als mögliche
Abhilfe wird vorgeschlagen, auch die inhibitorische Population in Cluster zu
unterteilen, so dass jede exzitatorische Population von einer inhibitorischen
im Gleichgewicht gehalten wird. Die Meanfieldanalyse solcher Konfigurationen
ergab, dass hierdurch die Ratensättigung verhindert wird. Das Konzept der inhi-
bitorischen und exzitatorischen Cluster wurde dann auf Modelle bestehend aus
realistischeren Leckintegratorneuronen übertragen. Hier führte dies zu einem
lokalen Gleichgewicht der synaptischen Ströme, so dass die im Kortex beobach-
tete Intervallvariabilität auch in den aktiven Clustern erhalten blieb, ein Aspekt
den bisherige Modelle nicht abbilden konnten. Im letzten Schritt analysierten wir
kortikale Ableitungen eines Experiments bei dem Affen zur Aufgabe hatten, am
Ende eines Verzögerungsintervalls in eine bestimmte Richtung zu greifen. Die
Zielrichtung wurde dabei zu Beginn des Verzögerungsintervalls unterschiedlich
genau spezifiziert. Hierbei waren die gemessenen Fanofaktoren im Motorkortex
für die einzelnen Konditionen unterschiedlich stark moduliert. Diese konditi-
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onsabhängige Modulation der Varibilität konnte mit einem einfachen Balanced
Network Model mit exzitatorischen und inhibitorischen Clustern gut abgebildet
werden.
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Whatever the Thinker thinks, the Prover will prove.

- Robert Anton Wilson
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Chapter 1

Introduction

Neural responses in the mammalian neocortex are notoriously variable. Even
when animal behaviour is consistent across repetitions of experimental tasks,
the neuronal responses look very different each time. This variability is found on
all temporal and spatial scales. To this day it remains a matter of discussion how
the brain can cope with this variability or whether it might even be an essential
part of neural computation.

Classically, this variability has been interpreted as noise. In this view, there
is a signal in the neural activity which is buried under some noise. By averaging
over trials aligned to some experimental task, the noise is cancelled out and
the trial averaged firing rate emerges as the signal. An obvious problem of this
view is that trials are a construct imposed by the experimenter which the animal
is likely unaware of. Still, behaviour seems to work fine on a single trial basis
where averaged signals are unavailable. One might argue that averages could
be taken instantaneously over populations of neurons coding for the same entity.
If the noise carried by the individual neurons is uncorrelated, it can be eliminated
in that way. A potential source of this noise could be the thermodynamic or
quantum mechanical randomness inherent in external stimulus modalities [Faisal
et al., 2008]. But then this averaging should tend to reduce the amount of noise
with increasing distance from the sensory periphery. In fact the opposite has
been observed: cortical firing becomes more and more variable in higher brain
areas [Kara et al., 2000].

In earlier years, researchers attempted to explain this variability using
stochastic elements in detailed single neuronal models (e.g. [Stein, 1967]).
Later it was shown that single neurons can precisely reproduce the same spike
trains when repeatedly injected with identical current traces which resemble
their natural inputs [Mainen and Sejnowski, 1995].
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Arieli et al. [1996] showed that the variability in neural responses can be
greatly reduced if the activity just before stimulus onset is subtracted from the
signal in each trial before averaging. They hypothesized that there is some
background state or ongoing activity which varies on a much slower time scale
than the activity related to the experimental task. Churchland et al. [2010]
examined the spike count variance over trials in a range of datasets and found
that it was quenched at stimulus onset, i.e. variability is much lower when
the activity is aligned with respect to some experimental event than during
spontaneous activity.

Both these results indicate that variability is reduced if more factors are
controlled for. Unfortunately most of the activity in the neocortex is beyond
the control of the experimenter. Still, the interpretation is shifting in recent
years from viewing cortical activity as noise to calling it unexplained variance
[Masquelier, 2013]. Renart and Machens [2014] argue that nearly all neural
variability can either be attributed to uncontrolled external factors or uncontrolled
internal factors such as attention, mood or motivation and that more and more
of it will eventually become experimentally controllable.

Consequently, neural activity may range from being completely controlled,
as in the current injection experiments of Mainen and Sejnowski [1995], to
consisting entirely of unexplained variance as is the case for spontaneous
cortical activity. Most cortical datasets are situated at an intermediate level on
this scale with a tendency towards more control with the development of more
sophisticated experimental techniques.

An interesting development is the interpretation of spontaneous cortical
activity as a representation of experience or expectation about the world. Spon-
taneously occurring patterns tend to resemble patterns evoked by sensory input
[Kenet et al., 2003; Luczak et al., 2009] and the frequency of their occurrence
can be seen as a prior in a Bayesian sense [Berkes et al., 2011].

In the present study we adopt the view that variability is not noise and ask
what some of its characteristics are and how they could come about. This thesis
is thematically divided into three parts.

In chapter 2 we consider in detail how the variability of spike trains can
be quantified. Here we make use of the theory developed for renewal point
processes, a class of random processes that generates events with certain
interval distributions [Cox and Isham, 1980]. Note that this does not imply that
we interpret spike trains as noisy. We use refined spike statistics to dissect the
components of variability similar to previous methods [Shadlen and Newsome,
1998; Churchland et al., 2011]. The analyses are then applied to a dataset of
extracellular recordings from monkey motor cortex.

2



Chapters 3 and 4 are concerned with basic mechanistic models of cortical
variability. In chapter 3 we use the mean field theory developed for balanced
networks of binary neurons [van Vreeswijk and Sompolinsky, 1998; Renart
et al., 2010] to examine the properties of a recently proposed class of network
models which can produce stimulation-induced variability reduction [Deco and
Hugues, 2012; Litwin-Kumar and Doiron, 2012; Mazzucato et al., 2015]. In
these models, activity cycles between assemblies of excitatory units, introducing
an additional component of rate variance on a relatively slow time scale. We
show that the high firing rates often seen in the active assemblies of such
models which hamper switching between states can be overcome by introducing
inhibitory clusters as well. In chapter 4 we then apply the concept to spiking
network models and show that the introduction of inhibitory clusters causes a
local balance in the networks so that interval variability is conserved as we have
found in the cortical data set.

In chapter 5 we show that the variability in monkey motor cortex depends
on the experimental condition. We then apply a similar stimulus protocol to our
model and show that it can capture the context dependent variability modulation
– an effect that has to our knowledge not been previously explained.

Note that no detailed discussion is given in the individual chapters. The main
results are discussed in context in chapter 6.
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Chapter 2

Quantifying Neural
Variability

In order to gain insight into the nature and possible function of neural variability,
the first step must be to become clear about what one is actually measuring. This
work deals with the variability of spike trains of single neurons. Two perspectives
exist on the variance of spike trains: variability of the spike count in a certain
time frame and variability of the inter spike intervals (ISIs).

Count variance is usually measured across several time windows of equal
length. This is only meaningful, if similar conditions exist in time windows that
are compared. Usually these time windows are aligned to some repeated
experimental condition so that as many factors as possible are controlled for.
We will refer to such repeated measurements as trials. The time between
consecutive trials of the same experimental condition can be substantial, on the
order of seconds to minutes, so that count statistics across trials capture neural
variability on relatively long time scales.

Interval statistics on the other hand also capture variability on very short
time scales (10s of ms).

In the current chapter we will first deal with the intricacies of estimating
count and interval statistics in section 2.1. In section 2.2 we will then see how
interpreting neuronal firing as a doubly stochastic point process allows us to
derive the trial-to-trial variance in the underlying spiking probability from the
basic statistics. Finally in section 2.3 the analyses will be applied to physiological
recordings from monkey motor cortex.
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2.1 Measuring Count and Interval Statistics

When quantifying variability of neuronal firing, it is useful to compare the statis-
tics to those of simplified models of spike generation to guide the interpretation
of the results. The simplest model of neuronal firing that is often employed is
the Poisson process. The Poisson process belongs to the family of renewal
point processes where intervals between events are independently drawn from
some distribution [Cox and Isham, 1980]. In the Poisson case the intervals
are exponentially distributed. For ISIs longer than about 10ms, experimentally
determined ISI-histograms are well described by this model [Dayan and Abbott,
2001]. For shorter intervals however, a discrepancy arises because refractori-
ness causes short intervals to be less likely than the Poisson model predicts. A
more flexible model for neuronal activity is the Gamma process, of which the
Poisson model is a special case. It has an additional parameter that controls the
regularity of firing and although it does not explicitly account for refractoriness, it
can be well fitted to experimental data and has frequently been used to model
neural firing (e.g. [Stein, 1967; Reich et al., 1998; Baker and Gerstein, 2001;
Dayan and Abbott, 2001]).

For a Gamma process, the intervals are independent and identically dis-
tributed (iid) according to the probability density function (p.d.f.):

fα,ρ(x) =

 1
Γ(α)ρ

αxα−1 e−ρx , x ≥ 0

0 , x < 0
(2.1)

Γ(s) =
∫∞

0
ys−1 e−y dy is the Gamma function and α and ρ are denoted shape

and rate parameters respectively. The resulting mean interval of the distribution
is:

µ = E[x] =
α

ρ
(2.2)

Note that for α = 1 equation 2.1 becomes the exponential distribution, resulting
in a Poisson process.

Where simulated gamma processes are shown throughout this work, we
drew ISIs according to equation 2.1. The resulting intervals were then con-
catenated to spike trains and binned with a resolution of 1ms. Inhomogeneous
processes, i.e. processes with varying firing rates, were generated following
the time warping method [Nawrot, 2003; Brown et al., 2001]. We also ensured
equilibrium conditions for all simulated processes by either including a warm-up
time in the simulation for non-stationary processes or by drawing the first interval
from a modified length biased distribution Fα,ρ(x) which was modelled as the
product two independently drawn random variables UY , where Y was drawn
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from fα+1,ρ(y) and U was uniformly distributed in [0, 1] [Nawrot et al., 2008].

The Fano Factor (FF ) was originally used to estimate the statistical fluctua-
tions of ionization in gases subject to radiation [Fano, 1947]. In neuroscience, it
is used to quantify the dispersion of spike counts across trials.

FF =
σ2
c

µc
, (2.3)

where σ2
c and µc are the variance and mean count over repeated observations.

The estimation of the FF is biased towards unity for small estimation windows
∆. This bias however quickly becomes negligible when ∆ is several multiples of
the mean ISI [Nawrot, 2010].

Interval statistics are usually characterised by the Coefficient of Variation
(CV ) of the ISI distribution.

CV 2 =
σ2
ISI

µ2
ISI

(2.4)

Here, σ2
ISI and µISI are the variance and mean of the intervals between action

potentials. Note that we have given the squared Coefficient of Variation (CV 2).
The reason is that for Gamma processes, the CV 2 is equal to the inverse of the
shape parameter α [Cox and Isham, 1980; Nawrot et al., 2008].

CV 2
∞ =

1

α
(2.5)

The subscript ∞ here indicates that this is the theoretically predicted value,
which is not necessarily what one measures from spike trains, as we will see in
the following.

Estimating the CV 2 requires some caution, as modulations in firing rate
increase the interval variability. This problem can be overcome by a technique
called rate unwarping [Nawrot et al., 2008; Nawrot, 2010]. If repeated observa-
tions or trials of neural activity are available and one assumes that the action
potentials in each trial were generated according to some underlying firing rate
ν(t) which varies consistently in time with respect to some external reference
(i.e. experimental condition), the spike trains can be projected to a new time
axis t′, where the firing rate is constant. [Nawrot et al., 2008] used the term
operational time (ot) for this transformed time axis and defined it as the unit of
the cumulative integral of the trial-averaged firing rate:

t′(t) =

∫ t

0

ν(s)ds (2.6)

Figure 2.1 illustrates how repeated trials of poisson activity with (arbitrarily
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Figure 2.1: Illustration of rate-unwarped CV 2 calculation. The lower panel shows
a raster plot of 50 of a Poisson process with modulated firing rate. The firing rate
estimated with a triangular kernel (ν) and its cumulative integral (t′) are shown in
the central panel. Dashed lines indicate how t

′ is used to project the spike trains
to a space where the average firing rate is constant (raster plot on the r.h.s.).

generated) time dependent rate ν(t) can be projected to the ot-axis using this
technique. The resulting spike trains in ot (right-hand side (r.h.s.) panel) have a
constant firing rate ν′ = 1/µISI′ = 1. In this domain, the time resolved CV 2 can
then be calculated in sliding windows of constant width expressed in units of the
average transformed ISI (i.e. units of ot). The resulting statistics can then be
projected back into the original real time domain using the inverse of t′. Note that
the back-projected values are not equally spaced in time. Where averages over
thus calculated CV 2-estimates are taken, we therefore interpolate the resulting
values to a regular time grid. The effect of this technique is shown in the top
panel of figure 2.1. The black line is the result of calculating the CV 2 in a sliding
window of 400ms width in real time. In the region where the rate is modulated,
this method strongly over-estimates the expected poissonian interval variability
of 1. The grey trace is the result of the rate-unwarped CV 2-estimation. Note
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Figure 2.2: Bias in estimating the CV 2 a) Illustration of bias due to right cen-
soring. Lighter shaded histogram shows ISI-distribution of ∼ 10

6 intervals of a
simulated gamma-process with α = 2. The darker histogram shows the effect
of a narrow observation window of ot = 1.5 (dashed line). Solid lines represent
theoretical predictions f(x) and f̂(x). b) Effect of estimation window size for
different gamma-order parameters α. Dots represent measured CV 2 from simu-
lations, solid lines are the theoretically expected values calculated from f̂(x). c)
CV

2 measured from gamma-simulations with α = 0.7
−1 before (lighter dots) and

after bias correction using equation 2.11 (darker dots). Dashed line represents
CV

2
∞. Each dot was measured from 500 trials of simulated activity.

that the line is shorter than the black one. This is due to the fact that two sliding
window operations were employed in the process. One for the kernel-based
firing rate estimation and another one for the CV 2 calculation in the ot domain.

Another problem with estimating the CV 2 follows from finite size estimation
windows. In an estimation window of width T , only ISIs < T can be observed.
If the underlying process has non-zero probabilities for larger intervals, the CV 2

will be under-estimated. This effect is known as right-censoring [Wiener, 2003;
Nawrot et al., 2008]. In figure 2.2 a it is illustrated for a Gamma process with
α = 2. The lighter histogram was computed from ∼ 106 intervals of simulated
activity (i.e. T = 106ot). The same spike train was then cut into windows of
T = 1.5ot and the resulting intervals were plotted as the darker histogram.
[Nawrot et al., 2008] have shown that the censored version of a distribution
f(x) arising from a window-width T can be well approximated by assuming that
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very short intervals are virtually unaffected by the observation window, while
the probability of finding longer windows falls linearly to zero at x = T . I.e. the
probability of observing an interval x ∈ [0, T ] is proportional to (T − x). The
censoring-corrected distribution is then:

f̂(x|T ) =


(T−x)
η f(x) for 0 ≤ x < T

0 otherwise
(2.7)

with η =
∫ T

0
(T − s)f(s)ds being a normalisation constant.

It can be seen in figure 2.2a, that the censored distribution is well approxi-
mated by f̂(x) (solid line on darker histogram). For a known process order we
can hence calculate the coefficient of variation that would be estimated in a
window of size T as:

ĈV
2

=
σ̂2

µ̂2 (2.8)

with

µ̂ =

∫ T

0

xf̂(x)dx (2.9)

and

σ̂2 =

∫ T

0

(x− µ̂)2f̂(x)dx (2.10)

We denote the empirical estimate that we obtain from spike trians of unknown
Gamma order as CV 2′. Figure 2.2 b shows CV 2′ measured from simulations
and the theoretical prediction ĈV

2
for different Gamma orders α versus the

estimation window width T . For more irregular processes (small α), the effect
of right-censoring is more severe. For poisson processes (α = 1), the bias
disappears at window sizes of about 10ot.

It can be seen that the match between simulation and theoretical prediction
is quite close. Further, there is a one to one mapping for a given window size
between the estimate CV 2′ and process order α. Since the CV 2 is calculated
in the ot domain where the average ISI equals one, equation 2.7 has only one
free parameter α. We can hence correct for the bias due to right-censoring by
finding the underling process order α̂ as:

α̂ = argmin
α

(
ĈV

2
− CV 2′

)2

, (2.11)

the inverse of which is our bias-corrected CV 2 estimate.

Since no closed solution exists for the cumulative Gamma density function,
we solve equation 2.11 numerically. The results are shown in figure 2.2 c for
simulated processes with CV 2

∞ = 1/α = 0.7. The bias correction allows us to

10



obtain better estimates of the CV 2 for small estimation windows and will be
used throughout this work were CV 2-estimates are given.

The CV 2 lends itself to applications to Gamma processes because of its
theoretical relationship to the distribution’s parameters. There are however other
measures of interval variability which to some degree overcome the problem of
rate-change sensitivity by considering only pairs of consecutive intervals. We
will compare two of these measures to our method of calculating the CV 2. The
local Coefficient of Variation (CV2) was developed to compare the irregularity of
firing of visual neurons in the anaesthetised cat to that in vitro [Holt et al., 1996]:

CV2 = 2

〈
|τ − τ ′|
τ + τ ′

〉
(2.12)

Here, 〈...〉 denotes averaging and τ and τ ′ are consecutive ISIs. A similar
measure, the local variation (LV ) was devised to distinguish functionally different
regions in monkey motor cortex based on irregularity [Shinomoto et al., 2003]:

LV = 3

〈
(τ − τ ′)2

(τ + τ ′)2

〉
(2.13)

The factors in equations 2.12 and 2.13 are intended to ensure a value of unity
for poisson firing.

2.2 Neuronal Activity as a Doubly Stochastic Pro-
cess

In the literature, FFs of unity and above are usually reported for neocortical
data (e.g. [Scholvinck et al., 2015; Nawrot et al., 2008; Churchland et al., 2010;
Rickert et al., 2009]). Also, count variability is modulated during experimental
trials [Rickert et al., 2009; Churchland et al., 2010] while interval variability seems
to be lower and fairly constant over time (e.g. [Gur et al., 1997; Churchland
et al., 2010; Ponce-Alvarez et al., 2010; Shinomoto et al., 2009]). For renewal
processes, FF and CV 2 are equal given that the firing rate does not change
over trials [Cox and Isham, 1980]. The observation that FF > CV 2 therefore
suggests that the firing rate is not constant over trials. The nature of this firing
rate variance is not clear. [Arieli et al., 1996] have introduced the term ongoing
activity to describe variations in firing rate that take place on time scales slower
than experimental trials and may or may not be related to current behavioural
tasks.

In the frame work of point process theory, such rate variations can be
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Figure 2.3: Effect of trial-to-trial rate variance σ
2
ν on spike statistics. Dots

represent statistics from 500 trials of simulated Gamma activity. Dashed lines
are theoretically expected results. a) FF estimates in a 400ms window. b)
Comparison of CV 2 on pooled intervals and evaluated per trial. Window size
was 10ot. c) Recovery of simulated rate variance from spike trains for different
underlying firing rate distributions.

described as a doubly stochastic process [Cox and Isham, 1980; Shadlen and
Newsome, 1998] where the firing rate and spike generating mechanism are
seen as two independent random processes. The total count variance σ2

c for
such a process can then be expressed as the sum of the variance of those
components [Shadlen and Newsome, 1998; Churchland et al., 2011]:

σ2
c︸︷︷︸

total variance

= σ2
〈c〉︸︷︷︸

rate variance

+
〈
σ2
c|ν
〉

︸ ︷︷ ︸
intrinsic variance

(2.14)

The intrinsic variance, i.e. the variability in spike count c given a rate ν, cor-
responds to the variability of a point process with stationary firing rate. In
neuronal terms it can be interpreted as the variability due to the action potential
generation process and the specific connectivity a neuron receives while the
rate variance is due to changes in network state, behaviour and other external
factors.

Looking at equation 2.3, it can be seen that the total count variance σ2
c is

contained in the definition of the Fano Factor. The FF captures the intrinsic
variability as well as variance in firing rate over trials. Figure 2.3 illustrates the
effect of rate variance on the elementary statistic measures. Panel a shows
the FF calculated over 500 trials of simulated Gamma activity with CV 2

∞ = 0.5.
Rate variance has been introduced by adding a constant offset drawn from a
uniform distribution to the individual trial rates. Hence, each trial was simulated
with a different firing rate and the true rate variance was known. It can be seen
that the FF increases linearly with σ2

ν .
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When calculated in the traditional manner, i.e. by pooling ISIs from repeated
observations or trials and then applying equation 2.4, the CV 2 also increases
with rate variance (darker dots in figure 2.3 b ). It is however also plausible
to compute the CV 2 per trial and then average over these values in a given
estimation window. The effect of this can be seen in the lighter dots in figure
2.3 b. In the absence of rate variance the pooled estimates and those averaged
over trial wise values are identical. However, since the offsets producing the
rate variance are constant per trial, the per-trial estimates do not increase with
σ2
ν . Note that for small samples, as in the trial-wise estimation of the CV 2,

it becomes important to use the unbiased estimator of the sample variance

(σ2
s = 1

n−1

n∑
i

(xi − x̄)
2)1. A slight under-estimation of the theoretically expected

CV 2 can still be seen in the figure. The reason for this is not entirely understood.
For renewal processes the per-trial CV 2 is hence equal to the FF at a

constant rate ν. Substituting the equality

FFν =
σ2
c|ν
µc

= CV 2 (2.15)

into equation 2.14 we therefore get:

σ2
c = σ2

〈c〉 + CV 2µc (2.16)

Dividing by µc and rescaling by the width of the estimation window ∆, we obtain
an expression for the absolute rate variance in units of 1/s2.

σ2
ν =

µc

∆2

(
FF − CV 2

)
(2.17)

This rate variance is very similar to the quantity VarCE computed by [Churchland
et al., 2011]. It is however a quantitative improvement because the point process
variance has been estimated from the trial-wise CV 2 rather than by simply using
the lowest possible value that avoids negative variances. In figure 2.3 c we
show that the method works well in recovering the rate variance used in gamma

1There are several proofs for this (see e.g. [Barlow, 1989]) Intuitively this can be understood after
observing that the expected value of (x1 − x2)

2 equals twice the variance of the distribution if x1
and x2 are independent samples. Consider E

[
(x1 − x2)

2
]
= E

[
x
2
1

]
−2E[x1x2]+E

[
x
2
2

]
From the

definition of variance it follows thatE
[
x
2
]
= µ

2
+σ

2, where µ and σ2 are the true mean and variance

of the distribution. Also, since the samples are independent, we have E[x1x2] = E[x1]E[x2] = µ
2.

So E
[
x
2
1

]
− 2E[x1x2] + E

[
x
2
2

]
=
(
µ
2
+ σ

2
)
− 2µ

2
+
(
µ
2
+ σ

2
)
= 2σ

2 . If we now take n pairs
of samples xa, xb where a and b are drawn uniformly from [1, n], a fraction 1/n of the times we
have a = b and the quantity E

[
(x1 − x2)

2
]

will be zero. The remaining 1− 1/n of the time it will
give twice the distribution variance. We hence have to correct the estimated sample variance by a
factor n

n−1
.
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process simulations. The performance of the method is independent of the
underlying firing rate distributions.

So far we have only considered Gamma processes where the firing rate was
stationary for the duration of a trial. In vivo this is normally not the case. In the
following we therefore employ a model with variable firing rates to illustrate that
the method can also cope with more realistic spike trains. The basic assumption
of the model outlined in figure 2.4 is that there is some sort of stereotypical
firing rate response which is related to some fictitious experimental task. For
this purpose we have generated some arbitrary rate profile as shown in the
top of the figure2. The simplest configuration would then be to add a constant
rate offset to each trial to introduce some rate variance (model type I). The
reduction in FF observed in cortical data [Rickert et al., 2009; Churchland et al.,
2010] would then simply be due to a relative increase of the mean firing rate
with respect to the (constant) rate variance. This scenario is depicted in the
left-hand side (l.h.s.) of the figure. The magnitude of the rate variance has been
chosen to roughly replicate the values of FF found in our data set (see section
2.3). Time resolved FF and CV 2 were calculated from 200 trials of simulated
activity. The bottom panel shows that equation 2.17 performs well in recovering
the simulated constant rate variance.

An alternative scenario would be that σ2
ν as well as the FF are modulated

during the course of a trial (model type II). To simulate this we have generated
trial wise rate offsets that are proportional to the inverse of the average rate
profile in such a way that σ2

ν(t) varied between 30[1/s2] at trial onset and
15[1/s2] at the time of maximum mean rate deflection. This particular method of
constructing σ2

ν(t) is again arbitrary and only serves the purpose of illustrating
that the method can also cope reasonably well with modulated rate variances,
as shown in the r.h.s. bottom panel of figure 2.4.

It is interesting to note that although [Churchland et al., 2011] have stated
that their VarCE is basically equivalent to the FF , the two models type I and II
cannot be qualitatively distinguished from the time resolved estimates of FF
and CV 2 as shown in the figure. Slight differences in the magnitude of the FF
can hardly be identified in physiological data. The modulation in the estimated
time resolved rate variance however allows a clear distinction between the two
models.

Figure 2.4 has been generated with 200 trials of simulated activity. Although
not an unrealistically high number, physiological data is often available only for
smaller numbers of repetitions. In figure 2.5, the mean squared error (m.s.e.)
between the theoretical and estimated rate variances is plotted versus the

2
ν(t) = 25

[
exp
(
−(800− t)

2
/25000

)
+ 0.5 ∗ exp

(
−(1200− t)

2
/20000

)]
[1/s]
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Figure 2.4: Illustration of alternative compositions of neural variability. Top panel:
Stereotypical rate profile. Trial rates are generated by drawing rate offsets for
each tria which are either constant (l.h.s.) or reduced inversely proportional to
the mean rate (r.h.s.). 200 trials of Gamma spike trains are then generated with
α = 2. Consequently FF and CV 2 are estimated from those spike trains and
finally σ2

ν is computed according to equation 2.17 (bottom panels). Dashed lines
represent theoretically expected values.
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Figure 2.5: m.s.e. between simulated and estimated σ2
ν vs the number of sim-

ulated trials for model type II in figure 2.4. Dots represent individual simulation
results, black line is the average over 50 repetitions.

number of simulated trials. For small numbers of trials, the error is large but
quickly decays to some asymptotic value. The average m.s.e. can never go to
zero because of the finite sizes of the sliding windows in which the individual
statistics are computed. A trade-off exists between small estimation windows
with high bias and variance of estimation and wider windows which cannot finely
capture the temporal modulations of the statistics.

In the following section we will apply the methods described so far to a set
of physiological data.

2.3 Dissecting Variability Components in Monkey
Motor Cortex

The dataset used throughout this work has been kindly provided by Alexa
Riehle’s lab at Institut de Neurosciences de la Timone CNRS & Universite Aix-
Marseille, France and has been previously published in [Bastian et al., 2003]
and [Rickert et al., 2009].

Two Macaque monkeys were trained to perform a delayed centre-out reach
task. The subjects had to press one of six buttons at the end of a delay
period previous to which varying degrees of target information were given
according to one of three experimental conditions. The experimental settings
are explained in more detail in chapter 5. For the present purpose only data
from condition 1 is used, where complete target information was given as a
preparatory signal (PS), 500ms after trial start (TS) which was initiated by the
animals. After a delay of one second, the animals were prompted to perform the
movement at the response signal (RS). Correct execution was rewarded with
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fruit juice. Extracellular recordings were taken from the primary and pre-motor
areas. Only spike times resulting from online spike-sorting of successful trials
were available to us. We applied some selection criteria to exclude artefacts
which left us with 76 units for monkey 1 and 66 for monkey 2 (see appendix A
for more details).

We computed the variability statistics described in the previous sections for
each unit and direction separately. Figure 2.6 shows the results for a sample
unit for monkey 1. At PS, the direction to reach for is indicated. The unit
responds with a slight bump in the firing rate (figure 2.6a). The FF drops
from a high spontaneous value to around unity, while the CV 2 stays low and
relatively unmodulated throughout the trial. Since our calculation of the CV 2

requires some relatively strong assumptions we have included estimates of
the LV and CV2 for comparison. We confirm the result of Ponce-Alvarez et al.
[2010] that all three quantities are relatively constant while it roughly holds that
LV < CV 2 < CV2.

The estimation of σ2
ν is based on the renewal process assumption which

states that the CV 2 is constant. Having established that this is more or less
the case in the data, we use the CV 2 as calculated on the whole duration of
the trial (including rate-unwarping and bias-correction) in the calculation of the
rate variance. This has the benefits of alleviating the under-estimation of the
trial wise CV 2 seen in figure 2.3b as well as enabling us to calculate σ2

ν for the
whole duration where the FF is available.

The rate variance clearly reduces during the preparatory period (PS to
RS, panel e), suggesting that the simply type I model presented earlier is not
sufficient to explain the dynamics. The rate peak after RS in panel a indicates
that this particular unit is most involved in the actual movement execution.
This is in accordance with the fact that the FF (panel d) as well as the rate
variance (panel f) are further reduced when the trials are aligned with respect to
movement onset.

Figure 2.7 shows the same analyses but averaged over all 142 neurons
which passed our selection criteria. The results are qualitatively similar to the
sample unit in figure 2.6. Averaging over many measurements naturally yields
smoother estimates. Note that since the time-unwarping method of estimating
the CV 2 results in traces of varying lengths, we show only the range where a
minimum of 100 values were available for averaging. For the grand average, the
FF is higher and the CV 2 lower than for the single unit shown. Consequently
the average rate variance is also higher. Having many measurements available
allowed us to perform a statistical test on the modulation of σ2

ν . As reference
values we defined those estimated in a the latest window fully contained in
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Figure 2.6: Variability components for a sample unit of monkey 1. l.h.s.: data
aligned to TS. The histogram at the top shows the distribution of times to
movement onset (MO). r.h.s.: data aligned to MO a-b) Firing rate estimates with
a triangular kernel with σ = 50ms. c-d) FF , LV and CV2 estimated in 400ms
windows, CV 2 estimated in rate-unwarped window of 10ot. e-f) time resolved
rate variance estimated using equation 2.17.
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Figure 2.7: Same as figure 2.6 but averaged over all 142 units for both monkeys.
Significances in σ

2
ν are from a Wilcoxon signed rank test between e) the last

window full contained before PS and all subsequent windows not overlapping with
PS and f) the window centred on MO and all previous windows not overlapping
the window centred on MO. ∗∗∗ indicates p < 0.001 for the two-sided p-value of
the test.
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the interval before PS (centered around the light grey line in figure 2.7 e). A
Wilcoxon signed rank test was applied between these values and those from
and all subsequent time windows which did not overlap with the reference
interval (figure 2.7 e, shaded area). The reduction in rate variance was highly
significant for the whole range tested (p < 10−3). The significance was even
higher when the test was applied comparing the window centred around MO
and those contained in the preparatory period (p < 10−14, figure 2.7 f).

The significant reduction in rate variance at cue presentation present in
the grand average suggests that the simple assumption of ongoing activity
which varies so slowly that it can be modelled by a constant rate offset per
trial [Nawrot, 2010] is not sufficient to explain the variability reduction. The
rate variance is modulated on time-scales matching those of the behavioural
task. One possible explanation could be the alignment to external experimental
events. Before PS, in the spontaneous phase, the monkeys are not doing
anything specific. This means that the trial-to-trial variance is computed over
arbitrary network conditions and therefore expected to be high. Movement
onset is not an experimentally dictated event but one determined by behaviour.
It is therefore no surprise that MO-aligned spike trains yield the lowest rate
variance at the time of movement initiation. The intermediate variability level
in the preparatory period between initial stimulus presentation and movement
onset could then be interpreted as an intermediate misalignment due to different
reaction times over trials. This variability may be somewhat reduced if the trial
wise times are linearly stretched so that PS and MO coincide for all trials [Riehle
and Renoult, 2006].

This view is however still based on a stereotypical rate modulation superim-
posed onto some sort of background modulation of the network states - both of
which remain unexplained by such a model. In recent years, some interesting
observations have been made in the field of attractor dynamics in neural net-
works [Deco and Hugues, 2012; Litwin-Kumar and Doiron, 2012] which provide
possible explanations for both the origin of rate variance and its task related
reduction. The average firing rates modulations can then be interpreted as the
result of probabilistic winner-less competition [Lagzi and Rotter, 2015] between
competing attractors rather than as a fixed task-related rate profile. We will
explore some aspects of those mechanisms in the following chapters.
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Chapter 3

Balanced Networks of Binary
Neurons

In chapter 2 we have seen that the activity of cortical neurons is variable on
several time scales. The observation that highly reliable firing patterns can be
induced with current injections in vitro if the statistics of the injected currents are
matched to those of synaptic input in cortex [Mainen and Sejnowski, 1995] raises
the question how such seemingly chaotic firing can be induced in networks
of deterministic units. All sensory input is intrinsically stochastic because all
stimulus modalities are either thermodynamic or quantum mechanical in nature
[Faisal et al., 2008]. This sensory noise can however only account for a small
part of variability in the brain as neural responses become more variable with
increasing distance from sensory input stages [Kara et al., 2000].

In cortex, individual neurons receive large numbers of excitatory and in-
hibitory synaptic inputs from the surrounding network. It has been shown that
a condition exists in which these neurons fire in a chaotic manner at low firing
rates. This condition was termed the Balanced State and occurs if excitation
and inhibition to each cell cancel each other on average so that spike emission
is triggered by fluctuations in the input rather than its mean [van Vreeswijk
and Sompolinsky, 1996, 1998; Brunel, 2000]. Using networks of binary units,
van Vreeswijk and Sompolinsky [1996] showed that this dynamic equilibrium
occurs without much fine tuning of the parameters if a few conditions are met.
Brunel [2000] characterised different types of firing activity in networks of leaky
integrate-and-fire neurons (LIFs) as a function of the strength of an external
drive to the network and the relative strength of excitation and inhibition.

Depending on the parameters, balanced networks can produce asynchronous
firing with CV s of unity and above [Brunel, 2000]. If synaptic strength is in-
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creased above some critical value, bursty spiking with even higher variability
can be achieved [Ostojic, 2014]. Unstructured balanced networks can however
not capture the firing rate variance observed in spontaneous cortical recordings
(see chapter 2). Although it is possible to introduce variable firing rates through
the external drive, the experimentally observed suppression of this variance
during stimulus presentation would then also have to come from outside the
network.

More recently it has been shown in a number of studies [Deco and Hugues,
2012; Litwin-Kumar and Doiron, 2012; Doiron and Litwin-Kumar, 2014; Mazzu-
cato et al., 2015] that competition between attractors can induce rate variance
in balanced networks. Attractors were introduced into the networks by defining
sub-assemblies or clusters in the excitatory populations of the networks and by
increasing the synaptic efficacies between units inside clusters relative to those
to the remaining units. If the ratio of intra-cluster weights to inter-cluster weights
is low, no change in the dynamics occurs. If the ratio is too high, the attractors
become too deep, resulting in winner-take-all dynamics where one cluster has
a high firing rate and suppresses the activity in the other assemblies [Lagzi and
Rotter, 2015]. In an intermediate range, the variance in the in the population fir-
ing rates causes the networks to switch between states where different clusters
have higher firing rates. This results in a scenario where individual units exhibit
multi-stability in their firing rates and as a results introduce variance in firing
rates that increases the trial-to-trial variability. In addition, selective stimulation
of subsets of clusters causes certain attractors to become more stable, which in
turn quenches the switching-dynamics and thereby the FF .

One problem with this family of models is that the active clusters tend to
have firing rates close to saturation, where firing becomes very regular. Also,
the range of synaptic strength ratios in which state-switching can occur is quite
narrow.

In the present chapter we will analyse the dynamics of cluster competition
and investigate possible improvements to the model. We will first recapitulate
the conditions of the balanced state using a simplified binary neuron model
for which and extensive mean field theory has been described [van Vreeswijk
and Sompolinsky, 1998; Renart et al., 2010]. We will then use the mean field
approach to analyse the attractors of clustered networks and show that the
introduction of inhibitory clustering can moderate the firing rates of the active
clusters.

We first consider networks of binary units which capture some of the features
of spiking neurons while being easier to analyse. The networks consist of NE
excitatory and NI inhibitory units with asynchronous updates. Unless stated
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otherwise, we model a total ofN = 5000 units withNE = 4NI . In each simulation
step t, one unit is randomly chosen and its state σ ∈ 0, 1 is updated according
to the rule

σi(t+ 1) = Θ

 N∑
j=1

Jijσj(t)− θi + JiXmX

, (3.1)

where Θ is the Heaviside step function, Jij is the synaptic weight between
pre-synaptic unit j and post-synaptic unit i, θi is the threshold and mX is the
rate of some external drive to the unit which is modelled as a constant (rather
than a spike source) weighted by JiX . If a unit is updated to the up-state
(σ = 1) it remains in that state until the next update. Hence the network
has an integration time scale τ equal to the average time between updates.
Since time is not explicitly modelled, we assign a value of τ = 10ms similar to
neuronal membrane time constants for illustration purposes only. Note that τ is
proportional to N .

The connection strengths J ijαβ from unit j in population β to unit i in popu-
lation α (α, β ∈ E, I) are Jαβ with probability pαβ and zero otherwise. Uniform
connection probabilities between 1 and 20 % are commonly used in the litera-
ture (e.g. [Brunel, 2000; Renart et al., 2010; Ostojic, 2014; Kriener et al., 2014;
Litwin-Kumar and Doiron, 2014]). To allow a comparison to other clustered
network studies we here adopt the approach taken by Litwin-Kumar and Do-
iron [2012] and Mazzucato et al. [2015] and set the connection probability of
excitatory to excitatory units to pEE = 0.2 and all those involving the inhibitory
population to pEI = pIE = pII = 0.5.

Conditions for the values of the remaining model parameters arise from an
analysis of the balanced state using a mean field description of the network
dynamics.

3.1 Mean Field Description and the Balanced State

The conditions for the balanced state and its stability arising from mean field
considerations are reproduced from van Vreeswijk and Sompolinsky [1998]
and Renart et al. [2010]. We do however guide the reader through some of
the derivations as the references do not show them for the specific types of
networks used here.

Since the balanced state requires that spiking is fluctuation driven, the
mean inputs to each unit need to cancel while the variance has to be on the
order of the thresholds. Hence the synaptic strengths are scaled with network
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size as Jαβ = jαβ/
√
N where jαβ is a constant. Also, the number of input

spikes required to reach the threshold needs to be small. We adopt the scaling
used in [van Vreeswijk and Sompolinsky, 1998] so that

√
K excitatory spikes

arriving during one time constant suffice to elicit a postsynaptic one, where
Kαβ = pαβNβ is the average number of connections a unit in population α

receives from population β. This condition implies:

√
pαENEJαE = θα (3.2)

To achieve balance between excitation and inhibition, we need the excitatory
and inhibitory inputs to each population to cancel. If excitatory and inhibitory
population rates are equal, this means:

0 = NEpEEJEE +
1

g
NIpEIJEI (3.3)

0 = NEpIEJIE +NIpIIJII (3.4)

Here we have introduced a factor g to control the relative strength of excitation
and inhibition to accommodate external inputs. Combining equations 3.2 and
3.3, we can now compute the excitatory weights as:

jEE =
θE√
pEEnE

(3.5)

jEI = −gjEE
pEEnE
pEInI

(3.6)

where nE = N/NE . Similarly, for the inhibitory population:

jIE =
θI√
pIEnE

(3.7)

jII = −jIE
pIEnE
pIInI

(3.8)

For large N , the central limit theorem allows the treatment of the synaptic
input to each unit as a Gaussian random variable. The dynamics of the popu-
lation rates mα(t) in networks of asynchronously updated binary units can be
described as [van Vreeswijk and Sompolinsky, 1998; Renart et al., 2010]:

τα
d

dt
mα(t) = −mα(t) + H

− µα(t)√
s2
α(t)

 (3.9)

Here, the population activity -rate is defined as the average of the instantaneous
states σ ∈ [0, 1] in population α, mα(t) = 〈σα(t)〉 and H is the complementary
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error function
H(z) =

1√
2π

∫ ∞
z

dx e−
x
2

2 (3.10)

Note that the mα is not equivalent to the firing rate να because spikes are
only counted when units update their state from 0 to 1. The population time
constant τα corresponds to the average time between successive updates of
the states. µα and s2

α are the mean and variance of the input to population α.
The population average input is:

µα(t) =
∑
β

J̄αβmβ(t) + JαXmX − θα (3.11)

where J̄αβ = jαβpαβnβ
√
N is the average weight from population β to α. Ne-

glecting correlations between fluctuations in the input currents to the populations
the variance of the input is determined by the variance in the weights J̄ (2)

αβ [van
Vreeswijk and Sompolinsky, 1998; Renart et al., 2010].

s2
α(t) =

∑
β

J̄
(2)
αβmβ(t) (3.12)

For constant weights, J̄ (2)
αβ is determined by the stochasticity in the connectivity

so J̄ (2)
αβ = pαβ

(
1− pαβ

)
j2
αβnβ .

From equation 3.9 it can be seen that the steady state rates of the populations
are:

mα = H

− µα√
s2
α

 (3.13)

However, in the balanced state both excitatory and inhibitory inputs to each unit
are much larger than the threshold. To obtain finite firing rates, excitation and
inhibition therefore need to balance [van Vreeswijk and Sompolinsky, 1998]:

J̄αEmE + J̄αImI + JαXmX = 0 (3.14)

We can hence deduct the population rates in the balanced state without solving
equation 3.13:

mE =

(
JEX J̄II − JIX J̄EI

)
J̄EI J̄IE − J̄EE J̄II

mX (3.15)

mI =

(
JEX J̄IE − JIX J̄EE

)
J̄EE J̄II − J̄EI J̄IE

mX (3.16)

Using the definition of J̄αβ and the expressions for the weights in equations
3.5 through 3.8, we can express the balanced rates in terms of the network
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parameters and the strength of the external input:

mE =
mx√

NE(g − 1)

(
JEX

θE
√
pEE

− g JIX
θI
√
pIE

)
(3.17)

mI =
mx√

NE(g − 1)

(
JEX

θE
√
pEE

− JIX
θI
√
pIE

)
(3.18)

For mE and mI to be positive and finite and assuming that θE = θI we thus
require either

g < 1,
JEX
JIX

< g

√
pEE√
pIE

(3.19)

or
g > 1,

JEX
JIX

> g

√
pEE√
pIE

(3.20)

If either equation 3.19 or 3.20 is satisfied, a fixed point with finite rates is
ensured.

To asses the stability of fixed points we need to compute the partial deriva-
tives of equation 3.9 with respect to mβ ,

∂

∂mβ

(
dmα

dt

)
= − 1

τα

(
∂mα

∂mβ

+ H′
(
−µα
sα

)
J̄αβsα − 1

2µαJ̄
(2)
αβ s

−1
α

s2
α

)
(3.21)

where

H′(x) = −e−
x
2

2

√
2π

(3.22)

The stability of a fixed point depends on the ratio of population time constants
[van Vreeswijk and Sompolinsky, 1998]. If we denote the partial derivatives in
equation 3.21 evaluated at a fixed point ~m0 as fαβ

∣∣
~m0

we can write the stability
matrix S as:

S =

[
fEE |~m0

fEI |~m0

fIE |~m0
fII |~m0

]
(3.23)

.

This matrix has eigenvalues λ1,2 = 1
2

(
TS ±

√
T2
S −4 δS

)
. Here, TS and δS

are the trace and determinant of S. If we define f ′αβ = fαβ
∣∣
~m0
τα, and set τE = 1,

we can make the dependence of the stability on the inhibitory time constant
explicit and write:

TS = f ′EE + f ′II /τI (3.24)

δS =
1

τI

(
f ′EE f ′II − f ′EI f ′IE

)
(3.25)
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The eigenvalues are hence negative and real if the following conditions are
fulfilled:

TS < 0 (3.26)

|TS | >

√
T 2
S − 4δ (3.27)

T 2
S ≥ 4δ (3.28)

Condition 3.26 is satisfied if τI < − f
′
II

f
′
EE

. Equation 3.27 is satisfied as long as
g > 1. Inserting 3.24 and 3.25 into 3.28 results in a quadratic equation in τI .
The System consequently has three bifurcations at the critical time constant
ratios:

r1 = A−
√
A2 −B2 (3.29)

r2 = −B (3.30)

r3 = A+

√
A2 −B2 (3.31)

with

A =
f ′EE f ′II −2 f ′EI f ′IE

(f ′EE)2 (3.32)

B =
f ′II
f ′EE

(3.33)

The values of those ratios depend on the specific parameters and their effect on
the fixed point is illustrated in figure 3.1a.

For τI/τE < r1, both eigenvalues are real and negative and the fixed point
is a stable node, i.e. all trajectories in its vicinity converge directly towards it
along the eigenvector corresponding to the largest eigenvalue. Above r1 the
eigenvalues become complex and the activity rates show damped oscillations
towards the fixed points. When τI/τE > r2, the fixed point becomes unstable
and the firing rates escape towards an oscillatory limit cycle with large amplitude
(see figure 3.2b). In simulations, different time constants for the populations are
achieved by scaling the probability PUα that a unit from population α is updated
so that PUE/PUI = τI/τE . The update rule results in exponentially distributed
intervals between updates (see figure 3.1 b and c). A consequence of this
fact is that interval statistics of spikes generated from this model are difficult to
interpret, as the update process is already Poissonian. An alternative possibility
would be to update every unit sequentially and then shuffle the update list before
the next round. This results in update distributions as shown in a lighter shade
in figure 3.1 b and c. In this case however, the mean field description is no
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Figure 3.1: a) Dependence of eigenvalues of the stability matrix at the fixed
point on the ratio of inhibitory and excitatory time constants. b) Distribution of
inter-update-intervals for the excitatory units of a network with NU = 1 for random
and sequential updates. c) same as b for inhibitory population. Remaining
parameters are given in table 3.1.

longer accurate (see figure 3.2 d).

The mean field theory description portrayed above shows good agreement
with network simulation for moderate values of N . Figure 3.2 shows some
characteristic examples for the parameters given in table 3.1. The activity rates
for an excitatory and an inhibitory population are plotted against each other and
arrows represent the derivatives at sample points in phase space. In panel a,
the stability condition in equation 3.20 is met and τI/τE < r1. The fixed point is
hence a stable node and the simulated network rates behave as predicted by
mean field theory and follow the flow field directly to the fixed point. In panel
b, τI/τE > r2 and the rates cycle through large amplitude oscillations. The
match between mean field theory and simulation is also good when conditions
3.19 and 3.20 are violated (panel c). When the units are updated sequentially,
the mean field description breaks down. Although the predicted steady state
rates are eventually reached, the transient trajectory of the rates differs from the
theoretical prediction.
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Figure 3.2: Comparison of mean field description and simulations for networks
with NE = 4000 illustrating various parameter settings. Dashed trajectories
are mean field theory, grey traces are network simulations. Arrows represent
derivatives ofequation 3.9. Nullclines are drawn as solid black lines. Filled (empty)
circles indicate stable (unstable) fixed points. a) g = 1.2, τI/τE = 0.5 b) g = 1.2,
τI/τE = 2 ,c) g = 0.8 d) sequential updates

Unless stated otherwise, we use the parameters summarised in table 3.1
throughout.

3.2 Clusters in the Excitatory Population

Having established the conditions for the balanced state, we turn to introducing
clustered connectivity in the excitatory population. Amit and Brunel [1997]
modelled working memory and persistent activity in attractor networks but did
not consider variability dynamics. Their model consisted of an unstructured
background population and a number of attractor assemblies which were formed
by increasing the weights between units belonging to the same assembly by
a factor J+ while across-cluster weights were decreased by a factor J− to
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Parameter Value
N 4000(E), 1000(I)
θ 1
τI 0.5τE
pEE 0.2

pEI , pIE , pII 0.5
g 1.2

JEX
√
pEENE

JIX 0.8
√
pEENE

mX 0.03

Table 3.1: Summary of parameters used in the binary network simulations

Figure 3.3: Network architecture for Q = 2 showing all connection types. a)
EE-clustering: Two excitatory assemblies and a single unstructured inhibitory
population. b) EI-clustering: Each excitatory cluster has an associated inhibitory
population.

maintain overall balance. A similar approach was taken by Mazzucato et al.
[2015] and Deco and Hugues [2012] although the latter did not explicitly model
the background or inhibitory populations. [Litwin-Kumar and Doiron, 2012]
on the other hand increased the synaptic strength as well as the connection
probabilities within clusters.

Since a background population is not necessary for the clustering effects
(see figure 3.5) and a simultaneous adjustment of synaptic strengths and con-
nection probabilities adds unnecessary confusion we choose in the present
work to divide the excitatory population into Q equally sized clusters with uniform
connection probabilities. Connections between units in the same cluster are
multiplied by a factor J+ > 1 and to maintain a balance of weights, connections
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Figure 3.4: Average variance of the instantaneous mean cluster activity rates
σ
2
m of 20 trials of 1000ms duration for different values of the excitatory cluster

strength J+. The line shows the average over 20 network realizations. Insets
show sample trials of spiking activity.

between units belonging to different clusters are multiplied by a factor

J− =
Q− J+

Q− 1
(3.34)

Consequently J+ = 1 leads to homogeneous connectivity while at J+ = Q the
populations are completely decoupled. A schematic depiction of a network with
Q = 2 excitatory clusters and all occuring connections between populations is
given in figure 3.3 a.

Due to the random update process, the FF of spike trains from binary
networks has no meaningful interpretation. When the activity rates saturate,
i.e. when units fire each time they are updated, the FF is unity while for lower
rates FF > 1. To quantify the effect of clustering on the network dynamics we
therefore calculate the instantaneous variance in the mean cluster activity rates
and average this quantity over time and clusters (σ2

m). Figure 3.4 shows this
variance for different values of the cluster strength J+ for networks with Q = 20

clusters. At low values of J+, the dynamics are not influenced by the clustered
connectivity and σ2

m does not change much compared to the unstructured case
at J+ = 1. Around J+ ∼ 2, there is a sharp increase in rate variance. This
is due to random activations of individual clusters in a winnerless competition
regime, as can be seen in the more structured looking raster plots in figure 3.4.
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After a sharp peak σ2
m quickly drops again as clustering becomes so strong that

clusters tend to remain active for increasingly long times, effectively producing
winner-take-all dynamics (right-most raster plot). Note that the location of the
peak with respect to J+ depends on the number of clusters as well as on the
size of the network [Litwin-Kumar and Doiron, 2012]

To gain a better understanding of the underlying mechanisms, we employ
the mean field approach to examine the stationary rate points of the clustered
network. For this purpose, for each of the Q clusters as well as for the I-
population an activity rate equation (eq. 3.9) is formed. Similar to the method
described in [Mazzucato et al., 2015], we then solve the resulting system of
equations for the stationary states and check for stability as described in section
3.1. Numerically solving such a multi-dimensional system of coupled differential
equations requires that the initial guess for the solution is close to a fixed point.
To sample the space of possible rate configurations we therefore initialised the
rates randomly between 0 and 1 and then integrated the system for a number of
time steps before finding the exact fixed points using the Nelder-Mead simplex
algorithm implemented in scipy [Jones et al., 01 ]. This process was repeated
many times to ensure that most of the existing fixed points will be found. Note
that the method can only find stable solutions of the system.

The resulting stable fixed points for different network structures are shown
in figure 3.5. The solid lines with high rates indicate the rates of the clusters in
the active states while the lower solid lines represent the rates of the remaining
populations. The numbers indicate how many populations occupy a state simul-
taneously. The activities of the inhibitory populations are drawn as dashed lines
and the dotted line represents the homogeneous state where all populations fire
at the same rate. To justify our choice of clustering method, the figure includes
the attractor landscapes for networks with 10% of the units not belonging to
any cluster (i.e. background population) as in [Mazzucato et al., 2015] (panel
a), and for clustering of the connection probabilities as in [Litwin-Kumar and
Doiron, 2012] (panel b). The clustering parameter REE = pin/pout quantifies the
ratio between connection probabilities within clusters to those across clusters.
The results are not qualitatively different from networks without background
population and cluster independent connection probabilities (panel c). As the
cluster strength increases, more stable states occur with increasing numbers of
simultaneously active clusters, resulting in multistability of the rates. At some
critical value, the base-state in which all populations share the same low firing
rate disappears. The common property of all three cases is that the up-states, i.
e. the rates of the active clusters, show high activity rates and quickly approach
the saturation value as the cluster parameter increases.
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Figure 3.5: Sampled stable fixed points of the mean field equations for networks
with 20 excitatory clusters versus the clustering parameter. a) Clustering by
weight increase with 10% of the E-units as an unstructured background popula-
tion. b) Clustering by increase in connection probability and synaptic strength. c)
Clustering by weight increase of the entire E-population. Vertical dashed lines
correspond to the clustering strength where the homogeneous state is no longer
stable.

It is evident in figure 3.5 that the state with the highest activity rate is always
that with a single active cluster. That means that this rate forms an upper bound
for the active cluster rates. We therefore carry on our analysis of the cluster
dynamics by solving only for those cases. This is achieved by constraining Q− 1

of the cluster populations to have equal rates. Also, since the above described
method of random sampling of the activity space is costly and can yield only
stable fixed points we employ a more systematic procedure for analysing the
dynamics.

For single population models, the fixed points of neural activity can be found
graphically by plotting the neurons’ gain function and the firing rates against
the synaptic input and finding the intersections of the two lines [Gerstner et al.,
2014]. When the input to the gain function depends not only on one population
rate, i.e. when there are several coupled differential equations, the approach
is no longer feasible. Mascaro and Amit [1999] describe an effective response
function (EFR) approach for multi-population models which puts one or more
populations in focus while still incorporating the full dynamics of the remaining
populations.

For a network model with P populations, the individual population rates can
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Figure 3.6: EFRs for states with a single active cluster in networks with excitatory
clustering. Filled/empty circles represent stable/unstable fixed points.a) Full EFR
for J+ = 2.1 b) Fixed points of EFRs versus cluster strength J+.

be expressed as functions of all the population rates in the network.

m1 = Φ1(m1,m2 . . . ,mP )

m2 = Φ2(m1,m2 . . . ,mP )

...

mP = ΦP (m1,m2 . . . ,mP )

For the present case Φ takes the form of equation 3.13. The EFR-approach
works by treating the rate of a focus population as a parameter. I.e. we fix
m1 = m̄1 and solve the P − 1 equations for the remaining rates.

m2 = Φ1(m̄1,m2 . . . ,mP )

...

mP = ΦP (m̄1,m2 . . . ,mP )

The solution m′(m̄1) to those equations will drive the rate of the focus population
to a value m1out given by

m1out = Φ1

(
m̄1,m

′(m̄1)
)

= Φeff(m̄1) (3.35)

Mascaro and Amit [1999] called the resulting input-output relation for the
focus population the EFR. When m1out = m̄1, i.e. when the EFR intersects the
diagonal, m1out is a fixed point of the system. If the slope of the EFR at the
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intersection is larger than unity, the fixed point is unstable. For slopes smaller
than unity, the fixed point is stable for m1out given m′(m̄1). Since this is a one
dimensional representation of potentially multi dimensional systems and since
the stability of fixed points depends additionally on the ratios of population time
constants which are not captured by the EFR, those points are not generally
globally stable for the whole system [Mascaro and Amit, 1999]. We therefore
assess the stability of fixed points by examining the eigenvalues of the stability
matrix.

Figure 3.6 illustrates the EFR for Q = 20 clusters and q = 1 unconstrained
cluster (corresponding to the line labelled 1 in figure 3.5 c). Panel a shows the
full EFR for J+ = 2.1 where equation 3.35 has been evaluated on a dense grid
for the whole range of activity rates. This representation reveals an additional
unstable fixed point between the low rate attractor where all excitatory popula-
tions have the same firing rate and the up-state of the focus population. In panel
b, the EFR has been calculated for different cluster strengths and only the fixed
points of the system are plotted versus J+. At J+ = 1, the EFR is simply a flat
line. I.e. an increase in min has no significant effect on mout. As J+ increases,
the self amplification of the focus population causes mout to increase with min

until the EFR touches the diagonal. At this point (J+ ∼ 1.8) a stable up-state
with an intermediate unstable fixed point arises.

To switch between up-states of different populations, the variance in the
population activities has to be sufficient to cross the unstable fixed point. It can
be seen in panel b that this becomes increasingly less likely as the separation
between fixed points widens with increasing J+. The peak of σ2

m in figure 3.4
occurs in the narrow range where stable up-states exist at rates below the
saturation limit. A potential solution to the problem of high firing rates could be
to simply increase the strength of inhibition. Changing the relative inhibition
parameter g has however not yielded qualitatively different attractor structures.
Since inhibition is global, an increase in firing rate of a single population leads
only to a small rise inhibitory activity, so that the self excitation of the active
cluster is not balanced and the rate saturates.

We therefore propose, that to reduce the firing rates of active clusters it is
necessary that inhibition is also cluster specific so that a rate increase in an
excitatory cluster is balanced by a corresponding inhibitory population. This
idea will be explored in the following section.
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3.3 Clustering E and I Populations

We have seen in the previous section that excitatory clusters in networks with
global inhibition lead to rate saturation in active clusters which impedes state
switching because the attractors of different cluster states are very far apart.
We will now show how this problem can be overcome by introducing structure in
the inhibitory connections as well. Litwin-Kumar and Doiron [2012] briefly de-
scribe how clustering the inhibitory units leads to stimulation-induced variability
reduction in the inhibitory units. For this purpose, they segmented the inhibitory
population into an equal number of clusters and assigned one inhibitory cluster
to each excitatory one. The variability modulation in the inhibitory units was then
induced by increasing the connection probabilities (pIE) from an excitatory clus-
ter to its inhibitory counterpart with respect to the remaining I-units. Although
Litwin-Kumar and Doiron [2012] did not address the effect of this alteration on
the firing rates of the active clusters, it is clear that it is not sufficient for our
present purpose.

We require that an E-population selectively excites its corresponding I pop-
ulation which in turn selectively inhibits the E units. It is therefore necessary to
close the loop and cluster both the EI and IE synapses. Like the E-population,
the inhibitory units are equally divided into Q clusters, resulting in a total of
2Q populations. We rename the clustering factor for the excitatory population
as JE+. For simplicity, all connections involving the inhibitory population are
lumped into a single cluster parameter JI+. Balance is again maintained by
rescaling across-cluster connections according to equation 3.34 so that the av-
erage row sum remains constant in each quadrant of the connectivity matrix. An
overview over the possible connections is given in figure 3.3 b for Q = 2, where
within/across cluster connections are denoted by the superscript in/out. So we
have J inEE = JE+JEE , J

out
EE = JE−JEE and J inαβ = JI+Jαβ , J

out
αβ = JI−Jαβ for

αβ ∈ (EI, IE, II).

Since we have seen before that the highest up-state rates (mup) are always
reached by a single active cluster, we again constrain the population equations
so the Q − 1 excitatory as well as their corresponding inhibitory populations
have the same rate, resulting in a total of four distinct equations to solve. To
examine the effect of inhibitory clustering, we start by keeping JE+ fixed at 2.9

(the first point in figure 3.6 where the homogeneous state is unstable) and then
increase JI+. The resulting fixed points are shown in figure 3.7 a.

For low values of JI+, mup is again at the saturation limit. As the inhibitory
cluster strength increases however, the active cluster rates decrease and the
stable homogeneous state reappears. When JI+ increases further a bifurcation
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occurs and the active cluster state no longer exists. This can be understood
intuitively. An increase in JI+ strengthens the coupling between the active
cluster and its corresponding inhibitory population. When the coupling becomes
too strong this selective inhibition prevents the focus population from attaining
higher firing rates. It can therefore be concluded that low firing rates in active
clusters can be obtained if the inhibitory cluster strength is present but smaller
than the excitatory parameter.

Having established that the inhibitory clustering needs to be weaker than
that of the E population, we introduce a proportionality factor RJ , so that

JI+ = 1 +RJ(JE+ − 1) (3.36)

I.e. when RJ = 0 the inhibitory connections are un-clustered and for RJ = 1

we have JE+ = JI+. Having defined a relationship between the excitatory and
inhibitory cluster parameters, we can now examine the fixed point landscape
for different values of RJ . This is shown in figure 3.7 b through f. Here, JE+ is
varied over a wide range. It can be seen in the sequence of plots that increasing
RJ has three effects. Firstly, it moves the appearance of up-states to higher
values of JE+. Secondly, it causes the up-states to become unstable when both
RJ and JE+ are high. Finally, an increase in RJ leads to a gradual decrease
in the maximum rates reached by the active clusters. For RJ close to one, the
regime where stable up-states exists becomes increasingly narrow and when
JE+ = JI+ the active cluster states vanish as before (figure 3.7 f).

We have hence shown that increasing excitatory and inhibitory cluster
strength proportionally can yield the desired effect of preventing the active
cluster rates from saturating and consequently reducing the gap between up
and down states which should in turn facilitate spontaneous switching between
active clusters.

Figure 3.8 illustrates that this is indeed the case. Panel a shows sampled
fixed points of a network with 20 clusters and RJ = 3/4 as before for the case
without inhibitory clustering in figure 3.5 c. This time we have increased JE+

all the way to Q, at which point the inter-cluster connections of the excitatory
populations vanish. It can be seen that over the whole range of cluster strengths,
the maximum rates do not exceed 0.7. Also, even when the excitatory clusters
are fully decoupled, there are still multiple different configurations of active
clusters. The dashed lines below the up-states represent the inhibitory counter-
parts to the active clusters. This selective increase in inhibition is what prevents
the active states from saturating.

Panel b shows the corresponding rate variance plot with sample raster plots.
Compared to the equivalent plot for excitatory clustering only in figure 3.4,
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the peak of σ2
m has shifted to higher clustering strengths while its amplitude

and width have at the same time increased significantly. The useful range
for computation is likely to lie in the rising branch of the σ2

m curve but for
illustration purposes, the whole range is shown. At JE+ = 4, the point where the
homogeneous state becomes unstable, the activity cycles through the clusters
with moderate firing rates as desired. For higher cluster strengths, the activities
of the down-state clusters become increasingly suppressed and the active
clusters remain in the up-states for increasingly long times. The sample raster
plots show however, that switching between states still occurs even when the
excitatory clusters are fully decoupled at JE+ = 20.

In figure 3.9 two cases with and without inhibitory clustering are compared
in more detail. Since inhibitory clustering shifts the onset of cluster dynamics
to higher values of JE+, we compare the dynamics at the point where the
homogeneous state has just become unstable. The left panels of the figure
show the case where JE+ = 2.9 and RJ = 0. On the r.h.s. RJ was 3/4 and
JE+ = 4.

Since the homogeneous state is unstable for the parameters chosen the
activity quickly moves from the random initial state to an active cluster in both
cases. In the raster plot in panel a it is evident that the network remains in that
state for the remainder of the simulation period for EE-only clustering. The
firing rate plot in panel c confirms that the active cluster immediately goes into
rate saturation. Since this increases the rate of the inhibitory population, all
other E-populations experience a reduction in rate, which further widens the
gap between the high and low cluster states. In the EI-clustered network on
the other hand, the activity cycles happily between different attractors. It can
be seen that the inhibitory clusters closely follow the rate excursions of their
excitatory counter parts. Although all cluster have equal sizes and the weight of
the same type (i.e. within or across populations) are all identical the switching
between active clusters seems to occur at random.

The firing rates for the EI-clustered network also seem to follow the pre-
dictions obtain from the mean field model (panel d). To illustrate this we have
plotted the distributions of instantaneous maximum cluster activity rates for 100
repeated network simulations in the bottom of figure 3.9. The dashed lines and
dots represent the stable up-states predicted by the mean-field model. For the
E-only cluster model the theory predicts three different stable configurations
(one, two and three active clusters respectively). However, in 100 separate simu-
lation runs almost exclusively the state with a single saturated active cluster was
reached (panel e). For the EI-case the theory yielded two stable configurations.
The maximum rates obtained from network simulations had a wider distribution
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but the shape coincides with the theoretical fixed points. The configuration with
two active clusters at lower rate seems to occur more frequently than the higher
rates of individual clusters. Maximum rates were higher than the stable points
predicted by the model. Note however that the probability of finding activity
rates higher than ∼ 0.7 was zero, i.e. rate saturation occurred in none of our
simulations.

As mentioned above, the update mechanism used for the binary neuron
simulations does not permit us to analyse the variability dynamics of these
networks. We will however show in the following section that the rate dynamics
resulting from the introduction of EI-clustered connectivity transfer well to
networks of more realistic LIF units where variability analyses become feasible.
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Figure 3.7: EFR fixed points for a single active population. Filled/empty circles
represent stable/unstable fixed points. a) mup vs JI+ with JE+ held constant at
the value where the homogeneous fixed point becomes unstable if JI+ = 1. b-f)
Proportional increase of JE+ and JI+ for different strength ratios RJ .

40



Figure 3.8: Network dynamics with Q = 20 and RJ = 3/4 with excitatory cluster
strength varied from JE+ = 1 to full excitatory decoupling at JE+ = Q. a) Stable
rate fixed points of the unconstrained mean field equations of the system. b)
Instantaneous variance in mean cluster activity rates averaged over 20 network
realisations.
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Figure 3.9: Comparison of cluster dynamics with JE+ = 2.9, RJ = 0 (left) and
JE+ = 4, RJ = 3/4, (right). a) and b) Sample raster plots of E and I spiking
activity. c) and d) Mean cluster activity ratesmc for the trial shown above. Dashed
lines show cluster rates smoothed with a Gaussian kernel with σ = 75ms. e) and
f) Distributions of instantaneous maximum cluster activity rates mcmax for 100
random network realisations. Fixed points from mean field theory are indicated
as dashed lines.

42



Chapter 4

Cluster Dynamics in Spiking
Network Models

In the previous chapter we have seen how inhibitory as well as excitatory
clustering reduces the distance between the up and down states for binary
networks. This had the effect of facilitating cluster cycling. We now investigate
whether this can be transfered to spiking networks. Although it is possible to treat
attractor dynamics in networks of leaky integrate-and-fire neurons (LIFs) using
a mean-field description [Amit and Brunel, 1997; Mazzucato et al., 2015] we
limit ourselves here to reproducing the findings from chapter 3 in simulations. All
spiking neuron simulations in this work were performed using the NEST-simulator
[Gewaltig and Diesmann, 2007].

We model linear units with exponential synaptic currents where the sub-
threshold evolution of the membrane potential V is described by the differential
equation

dV

dt
=
−(V − EL)

τm
+
Isyn + Ix
Cm

(4.1)

In the absence of input, the membrane potential decays exponentially to the
resting potential EL with time constant τm. The synaptic input is represented by
the current Isyn and Ix is an externally injected current. Cm is the membrane
capacitance. If the potential reaches the threshold Vth a spike is emitted and
V is clamped to a reset voltage Vr for an absolute refractory period τr. The
synaptic current to a neuron i evolves according to the equation

τsyn
dIisyn
dt

= −Iisyn +
∑
j

Jij
∑
k

δ
(
t− tjk

)
(4.2)
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where tjk is the time of the arrival of the kth spike from presynaptic neuron j and
δ is the Dirac delta function.

To allow comparison to other clustering results, we use parameters similar
to those given in [Litwin-Kumar and Doiron, 2012; Mazzucato et al., 2015] (see
table 4.1). The synaptic strengths are however, as is commonly the case, just
given without explanation. For clarity, we will briefly explain how the parameters
used here were derived in the following.

4.1 Calibration of the Balanced State

We follow the same approach as for the binary networks by requiring that√
K excitatory action potentials arriving within a short time suffice to drive the

membrane potential form EL to Vth and hence elicit a spike. For that purpose
we need to compute the deflection in the membrane potential caused by a
presynaptic spike.

According to equation 4.2, a spike arriving at t = 0 leads to a postsynaptic
current of the form

Ipsc(t) = Je−t/τsyn Θ(t) (4.3)

where J and Θ are again the synaptic efficacy and step function respectively. In-
serting this into equation 4.1 and integrating with V = 0 at t = 0 the postsynaptic
potential is obtained:

PSP (t) = J
τmτsyn
τm − τsyn

(
e−t/τm − e−t/τsyn

)
Θ(t) (4.4)

The maximal deflection of the PSP , PSPmax occurs at t =
log

τsyn
τm

(1/τm−1/τsyn)
.

Note that the PSP amplitude depends on the the synaptic as well as the
membrane time constants and is therefore different for each synapse type
(PSPEEmax, PSPEImax,...). The scale-free weights are then constructed in the
same way as for the binary networks (equations 3.3 - 3.8) but weighted by the
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respective PSP amplitudes:

jEE =
Vth − EL√
pEEnE

1

PSPEEmax
(4.5)

jEI = −gjEE
pEEnE
pEInI

PSPEEmax

PSPEImax
(4.6)

jIE =
Vth − EL√
pIEnE

1

PSP IEmax
(4.7)

jII = −jIE
pIEnE
pIInI

PSP IEmax

PSP IImax
(4.8)

where g is again the relative strength of inhibition. The final weights Jαβ are
again obtained by dividing by

√
N .

Since we consider variability dynamics the external inputs are modelled
as constant currents to ensure all variability arises deterministically inside
the network rather than stemming from externally generated Poisson input.
In analogy to the threshold rate of [Brunel, 2000] the external current Ix is
expressed in terms of the current required to reach the threshold in the absence
of synaptic input:

Ith =
Vth − EL

τm
Cm (4.9)

A complex interplay exists between the E and I firing rates and the magnitude
of the external currents to the populations. The tuning of the injected currents
required to obtain the desired firing rates for 3 and 5 spikes per second for the E
and I populations respectively was therefore achieved by modelling single units
with Poissonian inputs mimicking the network input at the target firing rates. The
external inputs could then be increased until the modelled units fired on average
at the required rates.

Before introducing structured connectivity we now ensured that the network
configuration was operating in the asynchronous-irregular (AI) regime. Irregu-
larity was measured using the CV 2 as described in chapter 2. Synchrony of
measures such as the instantaneous firing rate or the membrane potential in
neural networks can be quantified according to [Golomb and Hansel, 2000] as:

χ =

√√√√ σ2
pop〈
σ2
i

〉 (4.10)

here σ2
pop is the variance of the the population average and

〈
σ2
i

〉
is the aver-

age over the individual units’ variances. The measure gives unity for totally
synchronised activity and for asynchronous activity in networks of size N , one
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Parameter Unit Value
N - 4000(E), 1000(I)
EL mV 0
Vth mV 20
VR mV 0
Cm pF 1
τm ms 20(E), 10(I)
τsyn ms 3(E), 2(I)
τr ms 5
pEE - 0.2

pEI , pIE , pII - 0.5
g - 1.2

JEE pA 0.33
JEI pA −0.89
JIE pA 0.25
JII pA −1.34
Ix pA 2.13Ith(E), 1.24Ith(I)

Table 4.1: Summary of parameters used in the spiking network simulations

expects χ ∼ O
(

1√
N

)
. Since recording all membrane potentials in simulations is

computationally expensive, we computed χ on spike counts measured in bins
of 20ms.

It can be seen in figure 4.1 that the networks show the usual characteristics of
the balanced state. When excitation dominates, synchronous-regular firing near
the saturation rate 1/τr is observed. The AI state occurs when g is sufficiently
large for inhibition to dominate (figure 4.1a). As in section 3, we chose g = 1.2,
where χ = 0.02 ∼ 1/

√
N and CV 2 = 0.73 (panel b). The raster plot shows no

discernible structure (panel c) and the average firing rate is low and constant
over time (panel d). The synaptic currents from excitatory and inhibitory inputs
and the external current Ix cancel so that the net input fluctuates about zero
(panel e). Hence the membrane potentials fluctuate at low values and only
occasionally reach the threshold to produce a spike (panel f). The parameters
used for all simulations in this chapter are summarised in table 4.1.

It is worth noting that the synaptic delay had to be set equal to the sim-
ulation time step (0.1ms) in order to avoid synchronous oscillations. This is
not biologically realistic and usually synaptic delays between 0.5 and 2ms are
used in network simulations (e.g. [Kriener et al., 2014; Ostojic, 2014; Pernice
et al., 2011; Morrison et al., 2007]). Synaptic delays are known to play a role
in synchronous oscillations [Brunel, 2000; Bose and Kunec, 2001]. We did not
conclusively investigate the origin of those oscillations. It is however likely that
it is due to the dense connectivity employed in our model which we chose to
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Figure 4.1: Spiking network in the balanced state. Parameters as in table 4.1. a)
CV

2, χ and normalised excitatory firing rate versus relative inhibitory strength
g. b) Pooled ISI distribution for the E population. c) Raster plot of one second
of spiking activity. d) E population rate histogram computed in 10ms bins. e)
Synaptic currents of a randomly selected E unit. f) Membrane potential for same
unit as in e. Vertical bars above the threshold (dashed line) represent action
potentials
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enable comparisons to [Litwin-Kumar and Doiron, 2012] and [Mazzucato et al.,
2015] who presumably did the same as no mention is made of a synaptic delay
in either reference.

Hence our unstructured networks operate in the AI regime with the param-
eters given. The CV 2s are slightly lower than those usually reported for the
balanced state. This might be connected to the dense connectivity issue men-
tioned above. The irregularity can be increased by increasing the overall scale
of the synaptic weights [Lerchner et al., 2006]. We have confirmed this in our
model (results not shown) but decided to stick with the weights as given by
equations 4.5 through 4.8 as the resulting CV 2s are consistent with those found
in the data shown in chapter 2.

We will now turn to investigating the effect of clustered connectivity on these
spiking networks.

4.2 Variability Statistics during Winnerless Com-
petition

Clustered connectivity matrices were constructed in the same way as before.
As for the binary units, we compare networks with EE-only clustering to those
where the inhibitory population is also clustered with a relative strength RJ as
defined by equation 3.36. Since the LIF units do not involve random updates,
we can now compute the FF as for the physiological data before.

Figure 4.2 shows the FF in relation to the excitatory clustering strength
JE+ for RJ = 0 (panel a) and RJ = 3/4 (panel b) for Q = 20 clusters. The
statistics were computed over 20 trials of 400ms duration and averaged over 50
random network realisations. Trials were cut from continuous simulations. In
the case without inhibitory clusters, a similar effect can be observed as for the
binary networks (compare figure 3.4). For low values of JE+, the FF remains
unchanged on a level similar to that of the unstructured CV 2. At JE+ ∼ 2 an
increase in FF occurs. As for the binary case, the peak is quite narrow. It can
be seen in the corresponding inset in figure 4.2 a that the activity for this setting
looks more structured to begin with but can suddenly switch to a state with a
single active cluster. This is characteristic for the two different types of activity
occurring in different realisations at this point. I.e. winnerless competition does
occur but it is rather fragile. As JE+ is increased further states where one cluster
wins become dominant and the FF decreases below that of the unstructured
networks. The reason is that the highly active clusters fire near the saturation
rate where firing is very regular. This also regularises the input to the remaining
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Figure 4.2: FF versus JE+ for networks with Q = 20. Other parameters as in
table 4.1. FFs were computed on 20 trials of 400 ms and averaged over 50
network realisations. Insets show one second of sample spiking activity of the
excitatory populations. a) RJ = 0 b) RJ = 3/4

clusters which become increasingly quiet as cluster strength increases.

In the case with RJ = 3/4 the results of the binary networks are confirmed
and the cluster switching dynamics become more moderate and are spread over
a much wider range of JE+. With increasing cluster strength, the durations of
individual up-states become longer and their amplitudes increase. As long as the
up-state durations are not much much longer than the estimation window, this
increases the observed rate variance and thereby the FF . The behaviour
is again shown for the whole range of cluster strength until the excitatory
populations become completely decoupled at JE+ = Q. For JE+ > 5 or
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Figure 4.3: Effect of cluster parameters on variability statistics for networks with
Q = 20. Statistics are computed from 20 trials of 400ms width and averaged
over 20 network realisations. a) FF dependence on JE+ and RJ . b) Maximum
average cluster firing rate vresus JE+ and RJ . c) RJ = 3/4. FF , CV 2 and local
measures of interval variability for increasing cluster strength.

so, the average FF becomes quite noisy although it has been computed over
50 random realisations with identical parameters. For those large values the
variance over repeated simulations is high as in some cases cluster cycling is
quite violent while in others one or more cluster win, suppressing the winnerless
competition dynamics. At Q = 20 coupling between the populations exists only
through the inhibitory connections. This coupling is however still relatively strong
so that most populations are quieted by a few winners. The whole range is
again mainly shown for completeness, as the interesting dynamics take place
at relatively low values of JE+.

In chapter 2 we have used the concept of a doubly stochastic renewal
process and found that it can explain the dynamics of the variability components
in our data set. In this framework of interpretation the FF is expected to increase
with rate variance while interval statistics should remain unaffected. An increase
in cluster strength translates to more rate variance. Figure 4.3c shows the FF
as well as the interval statistics CV 2, LV and CV2 for moderate values of JE+,
again for networks with RJ = 3/4. Before JE+ is sufficiently large to increase
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the FF and therefore the rate variance, the relation between the measures of
interval variability match those found in our data and reported in [Ponce-Alvarez
et al., 2010] (LV < CV 2 < CV2, see section 2.3). This relationship does not
hold for stronger clustering although the FF does seem to increase much more
than the interval statistics. Note that the interval measures have been calculated
in windows of 400ms, using the bias correction for the CV 2 introduced in chapter
2, which assumes that spiking is well described by a Gamma process. We have
therefore again included the local measures LV and CV2 which are model-free
estimators. According to those measures, interval variability seems to decrease
with rate variance.

So far we have only considered EI-clustered networks where the cluster
strength ratio RJ was set to 3/4. As we have seen from the mean field consider-
ations for binary networks, increasing RJ seems to have the effect of shortening
the distance between up and down states in cluster switching. In figure 4.3 a
we show the FF for different combinations of RJ and JE+. As expected, for
small RJ there is only a small bump at JE+ = 2. Inhibitory clustering seems
to stabilize the winnerless competition roughly for 0.4 < RJ < 0.8. Figure 4.3
b shows the maximum cluster averaged firing rates for the same parameter
space. It can be seen that the region that produces realistic values of FF is
at the transition from lower to higher cluster rates. The EI-cluster model can
produce a wider range of Fano factors than the model with excitatory clusters
only RJ = 0.

Figure 4.4 illustrates the difference between pure excitatory andEI-clustering
on the level of individual units. The raster plot in panel a shows the activity of five
sample clusters in a network with JE+ = 2 and no inhibitory clusters. All clusters
fire at low rates until at about t = 500ms one cluster switches to the up state.
The cluster averaged instantaneous firing rates, estimated with a triangular
kernel with σ = 50ms, of the same run are shown in panel c. The firing rate of
the active cluster increases dramatically, while the rates of the other clusters
are suppressed. This is the expected behaviour as described by Litwin-Kumar
and Doiron [2012]. Panel g shows the synaptic currents for a single neuron from
the active population. It can be seen that while the excitatory current increases
due to self excitation within the cluster, the net inhibitory input remains constant.
Hence the mean current increases and spiking becomes mean-driven rather
than fluctuation driven. This means that a large portion of the units in the active
cluster synchronise and fire like clockworks at the saturation rate dictated by
the refractory period as can be seen in panel e which depicts the membrane
potential of the same unit.

The r.h.s. of the figure shows the equivalent scenario for a network with
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RJ = 3/4 and JE+ = 4, a setting where FFs around 1.2 are common. The
raster plot shows that at this mild stage of winnerless competition, the clusters
cycle between short burst of higher activity with occasional longer excursions
to the up state of one or more clusters. Panel d shows that this cycling takes
place at much lower firing rates. Panel h again shows the synaptic currents of
a sample neuron at the transition from low to higher activity of its surrounding
cluster. The effect of inhibitory clustering is that the inhibitory currents also seem
to increase their magnitude during up states, thereby increasing the variance,
but not the mean of the synaptic currents, keeping inputs balanced throughout.
Hence the units remain in the fluctuation driven balanced state with irregular
spike trains as is confirmed in panel f. Although synchrony arises also in this
case as units in the same cluster tend to have correlated rates, the tight locking
seen in panel a is not observed in the fluctuation driven case.

Having shown that the effect of inhibitory clustering on the spontaneous
dynamics in spiking networks is qualitatively equivalent to our observations in
binary networks we now turn to the quenching of variability during stimulation.
In chapter 2 we have seen that the reduction in variability at stimulus onset
reported in [Churchland et al., 2010] can also be found in our dataset. We now
inject additional external current into units belonging to some of the clusters to
mimic stimulation. It is known that this can reduce the trial-to-trial variability as
measured by the FF [Litwin-Kumar and Doiron, 2012; Deco and Hugues, 2012;
Mazzucato et al., 2015]. The effect of stimulation of clustered networks on the
interval statistics has however to our knowledge not previously been examined.

We again use a network with RJ = 3/4 and JE+ = 4. Stimulation is
simulated by applying a step increase in external current to two of the twenty
clusters. The amplitude of this current was 0.1Ith, giving an increase of less than
5% with respect to the external current during spontaneous firing. To enable a
comparison to the results from the data presented in figures 2.6 and 2.7, where
we required units to have mean counts of at least 15 spikes in the observation
interval measuring two seconds, we analysed only units exhibiting at least 7.5

spikes per second. Stimuli were applied for one second at a time and an inter
stimulus interval randomly varied between 2000 and 2500ms. This was inserted
to avoid periodic effects. A total of 200 trials were cut in windows ranging from
−1000 to 2000ms around stimulus onsets.

A sample trial is shown in figure 4.5 a. For better visibility only 10 of the
20 clusters are shown. The stimulus was applied only to the top most couple
of populations. Note that the applied stimulus is relatively weak. It increases
the probability of the stimulated clusters switching the the up-state but does
not forcefully drive them. In the trial shown, the top most cluster only hardly
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becomes active. Also, the random cycling between the other clusters observed
during spontaneous activity is reduced but not completely suppressed by the
stimulus.

The lower panels of figure 4.5 show statistics calculated for the stimulated
populations (l.h.s.) and the remaining clusters (r.h.s.) separately. The basic
parameters are still those given in table 4.1 with external inputs tuned to give
an average rate of 3 spikes per second. The higher average firing rates in the
spontaneous state are due to the selection criterium mentioned above. The non-
stimulated clusters only show a small decrease in their average firing rate during
stimulus applications, while the rate of the stimulated clusters nearly doubles.
Besides increasing the inhibitory effect on active clusters, inhibitory clustering
also decreases the suppression of the activity in the remaining clusters. The
suppression of trial-to-trial variability is however conserved. Both stimulated and
non-stimulated populations show similar reductions in FF during the stimulus
interval with a slightly stronger effect for the stimulated populations (panel e).

Interval statistics on the other hand differ between the stimulated and unstim-
ulated populations. In the non-stimulated populations the CV 2 as well as the
local measures remain fairly constant over time. The CV 2 is higher than both
LV and CV2 which is consistent with the findings shown in figure 4.3 a. In the
stimulated population the interval variability measures are slightly reduced when
the stimulus is applied. Most of the interval variability was however conserved
in contrast to networks with excitatory clustering only [Deco and Hugues, 2012;
Litwin-Kumar and Doiron, 2012].

Because of this reduction in interval variability the rate variances shown
in the bottom panels of the figure were computed using the full time resolved
estimate of the CV 2 rather than the single value calculated on the whole interval
as before when it was constant. The magnitude of σ2

ν is lower than the average
observed in the data but the model captures the stimulus induced reduction.

We have shown that the introduction of inhibitory as well as excitatory
clusters in balanced networks gives more control over the firing rates during
winnerless competition dynamics while preserving the characteristic properties
like increased rate variance and its reduction during stimulation. In the following
chapter we will see that the model of winnerless competition can explain further
observation on our dataset.
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Figure 4.4: Comparison of attractor dynamics with (r.h.s.: JE+ = 4, RJ = 3/4)
and without inhibitory clustering (l.h.s.: JE+ = 2, RJ = 0). a) and b) Raster
plots of five excitatory clusters for 1000ms of spontaneous activity. Horizontal
lines indicate cluster membership. c) and textbfd) Average firing rate of the
above clusters estimated with a triangular kernel with σ = 50ms. Dashed lines
correspond to the shaded region of interest in the upper panels. e) and textbff)
Membrane potentials with superimposed spikes for randomly chosen units during
the change from low to up-states for the region of interest indicated above. g) and
textbfh) Synaptic currents for the units shown above in the same time interval.
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Figure 4.5: Effect of stimulation on attractor dynamics. Two of the 20 clusters
have been stimulated with an additional constant current of 0.1Ith applied for
0 < t < 1000ms. a Raster plot of a sample trial for 10 clusters. Top most
populations were stimulated. b-g) Statistics from 200 simulation trials averaged
over units in the stimulated (r.h.s.) and non-stimulates clusters (l.h.s.). Vertical
dashed lines indicate the stimulation interval. b-c) Firing rates of the excitatory
units. d-e) Variability statistics computed in 400ms windows. f-g) Rate variance
computed using the time resolved CV 2. To allow comparison to the physiological
data, only units with an average of at least 30 spikes in the analysed period were
analysed.
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Chapter 5

Context Dependent
Variability Modulation in
Monkey Motor Cortex

In chapter 2 we have seen how variability statistics can be measured and how
count variance modulates during the course of experimental trials while interval
statistics remain largely constant. In chapter 4 we showed that the modulation of
count variance can be reproduced in balanced networks with clustered excitatory
connectivity and that the preservation of interval variability requires that the
excitatory units are also clustered. In the current chapter we will see that the
balanced network with EI-clustering can reproduce some other effects found in
our data set which have so far not been discussed.

In chapter 2 we showed the analyses for one of the three experimental
conditions present in the data set. The experiment involved three conditions
in which varying amounts of target information were given at the beginning of
the trials. The original publication of the data set [Bastian et al., 2003] dealt
mainly with the evolution of directional tuning during the preparatory phase. In
[Rickert et al., 2009], a supplementary figure hinted at an aspect that will form
the centre of attention of the present chapter: The magnitude of modulations in
the average Fano factors depends on the amount of target information available
to the monkey. Although variability has been shown to be different for different
reaction times in a similar experiment [Churchland et al., 2006] and has also
been found to depend on the performance history during experimental sessions
[Marcos et al., 2013], such and explicit dependence on experimental conditions
has to our knowledge not been discussed elsewhere.
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Figure 5.1: Experimental protocol of the delayed centre out reach task. 500ms
after trial start (TS) a preparatory stimulus (PS) is presented, indicating either
1,2 or three adjacent targets, depending on the condition. The response signal
(RS) follows a fixed delay of 1s after which the monkey is required to execute a
movement to the indicated target. Movement onset (MO), movement end (ME)
and the time of reward (RW) depend on behaviour and are not fixed in time.

In section 5.2 we will analyse the variability and information content of the
motor cortical spike trains during the delay period in our data set for all three
conditions and find that the FF decreases when more information is present.
In section 5.3 we will then show how a simple attractor model with winnerless
competition dynamics can reproduce those observations.

5.1 Experimental Paradigm

The experiments were conducted at Alexa Riehle’s lab at Institut de Neuro-
sciences de la Timone CNRS & Universite Aix-Marseille, France and the results
were first published in [Bastian et al., 2003]. Two Macaque monkeys were
trained to perform a delayed centre-out reach task with varying information
about the correct movement at trial start. The subjects were seated in front
of a panel featuring a hexagonal array of touch sensitive LEDs. The monkeys
initiated the trials by placing their hand on a seventh LED at the centre. 500ms

after trial start (TS), a preparatory signal (PS) was given. The PS consisted
of either one, two or three of the LEDs lighting up in red depending on the
condition,as illustrated in figure 5.1. After a a delay of 1000ms a single LED lit
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up in green representing the response signal (RS) which informed the subjects
where to move their hand. The times of MO and movement end (ME) were
recorded and if the monkey touched the correct LED, the trial was registered
as successful and a drop of juice was given as a reward. Only successful trials
were available for the present study.

The conditions of one, two or three possible targets presented at PS were
executed in blocks. In each block, 150 trials with randomised target directions
were carried out so that each of the directions appeared on average 25 times per
condition. Note that in order to obtain the same number of possible trial types
in all conditions, not all possible combinations of directions for the preparatory
stimulus were used in conditions 2 and 3. Since six combinations are possible
for condition one, only the pairs 1-2, 3-4 and 5-6 were used in condition 2 and
for condition 3, only two cases occurred (6-1-2, 3-4-5).

Extracellular recordings were taken with electrode arrays in pre-motor areas
(monkey 1: M1 close to the central sulcus, monkey 2: mainly PMd). Online
spike sorting resulted in up to seven simultaneously recorded single unit spike
trains. On each recording day, all three conditions were measured so that the
responses of individual neurons can be compared across conditions. Some
of the available units were excluded from the analyses because of suspected
artefacts. The interested reader may view the details of this procedure in
appendix A.

Since we intend to compare variability statistics across conditions, additional
precautions were taken. As in chapter 2 Fano factors are computed for each
unit and direction separately and we require that units have at least 10 spikes in
the two second interval after trial start and that at least ten trials were recorded
per direction. To enable the comparison across conditions, we only included
units and directions were those criteria were met for al conditions.

5.2 Data Analysis

The analyses for all three conditions for monkey 1 are shown in figure 5.2.
Panel a shows the firing rates, again estimated using a triangular kernel of
width σ = 50ms. When the preparatory stimulus is presented, the firing rates
increase sharply in all three conditions. However, the peak is more pronounced
for condition 1, where the complete information is given at PS. The firing rates
for all conditions remain elevated throughout the preparatory period. When the
response signal is given, the rate drops for condition 1 but rises sharply for
conditions 2 and 3 where the information required for movement initiation is only
now available.
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Figure 5.2: Analyses of the physiological data for all three experimental condi-
tions. a-e are monkey 1, f is monkey 2. a) Firing rates estimated with a triangular
kernel (σ = 50ms). b Fano factors computed in sliding windows of 400ms. ∗
indicates significance from Wilcoxon signed rank test (conditions 1-2: p = 0.007,
conditions 2-3: p = 0.03) c) Balanced accuracy of direction classification using
single unit counts in windows of 400ms. Lines show averages over 10 repetitions
of 5-fold cross validation. d) Same as c but for a pseudo-population constructed
from all available neurons. e) Distribution of reaction times (MO) for monkey 1. f)
Distribution of reaction times for monkey 2.
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Panel b shows the average FF for all units. For all conditions, the count
variability is quenched at the presentation of the PS. The FF then recovers
to different levels depending on the condition. When the complete information
is given at PS, the FF remains at a low value while for condition 2 it is higher
and still higher when three possible targets are presented. This difference
is significant with respect to a Wilcoxon signed rank test throughout most of
the preparatory period (conditions 1-2: p = 0.007, conditions 2-3: p = 0.03 at
1200ms after TS). After the response signal, the FF drops close to unity for
conditions 2 and 3 but remains more or less constant for condition 1. This may
in part be due to the fact that the movement onset times for condition 1 were
more broadly distributed than for the more difficult conditions 2 and 3 where
the monkey had to wait for the RS before he could form a decision. Hence for
conditions 2 and 3 the trials are closer to being aligned to MO (see panel e).

To asses how much directional information is contained in the single trial
counts of individual units we computed the classification performance of a
logistic regression classifier using spike counts in windows of 400ms width.
At each point in time, 10 repetitions of 5-fold shuffled cross validation were
performed. We computed the balanced accuracy of the predictions (BA) to
asses how well the classifiers performed. Balanced accuracy overcomes the
effects of unequal class sizes in the estimation of classification performance
and is simply the fraction of correctly predicted samples averaged over classes.

BA =
1

C

C∑
c=1

N c
correct

N c
total

(5.1)

All classification was done using the scikit-learn package [Pedregosa et al.,
2011].

Figure 5.2 c shows the balanced accuracy averaged over all units for the
three conditions. As expected, before PS when no information is given, the
classifiers perform at a chance level of 1/6. During the preparatory period,
the classification performance increases for all three conditions. Although the
increase is only slight because classification is performed using a single spike
count per trial, there is a clear difference between the conditions with the
performance being higher the more information is presented. At RS, the three
curves converge again at roughly the level of the full information condition. The
fact that the accuracy increases further for conditions 2 and 3 while it starts
to drop for condition 1 is again an indication that the neurons are involved in
movement preparation rather than execution.

To show that the combined information of those single units is sufficient to
reach good performance in the task, we have reproduced the approach of Rickert
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et al. [2009] and constructed pseudo-populations of all available units. This was
achieved by concatenating spike counts from randomly chosen trials for the
same directions from all units and pretending that they have been simultaneously
recorded. The performance was again calculated using 5-fold cross validation
and averaged over 10 randomly assembled populations. The resulting balanced
accuracies for the three conditions are shown in panel d. Using these pseudo
populations, which is likely to be more similar to the information the monkeys
have available than the single unit counts used before, the balanced accuracies
approach those theoretically possible given the available information. I.e. in
condition 1 where full information is available, the classification performance is
close to unity. When two possible targets are given the accuracy is close to 1/2

and in condition 3 it approaches 1/3. At RS the performance approaches one
for all conditions.

Note that panels a-d show only units recorded from monkey 1. The reason is
that the two subjects followed different strategies during the experiments. While
monkey 1 was keen to react as quickly as possible and often anticipated the RS
in condition 1 (i.e. started moving too early,see truncated distribution in panel
e) monkey 2 did not react faster in the full information condition and hence hat
similar reaction times in all cases (panel f). Although the differences between
conditions are also present for monkey 2, they are less pronounced.

It has been hypothesized that movements are prepared prior to their exe-
cution [Riehle, 2005]. This idea stems from the observation that movements
are executed faster when information about the target of movement has been
given prior to a delay period [Rosenbaum, 1980; Riehle and Requin, 1993]. A
possible interpretation of the reaction time distributions is that monkey 2 simply
did not start movement preparation prior to RS. This is a viable strategy because
faster reaction times were not specifically rewarded. Since we concentrate on
movement preparation in the following, we decided to perform the analyses in
this chapter for monkey 1 only.

Movement preparation is often associated with bringing the firing rates
in motor cortex to a certain optimal subspace [Churchland et al., 2006], or
initial condition [Afshar et al., 2011] suitable for the movement to be executed.
Alternatively, the activation associated with a movement is brought close to
threshold. All these models assume that a certain combination of firing rates
needs to be achieved before a movement can be executed and that this takes
some time. Our findings that average firing rates are similar while movement
direction can still be decoded to some degree from individual neurons and
nearly optimally from populations during the preparatory period is consistent
with this view. Achieving a suitable position in some high-dimensional firing rate
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Parameter Unit Value
N - 1200(E), 300(I)
EL mV 0
Vth mV 20
VR mV 0
Cm pF 1
τm ms 20(E), 10(I)
τsyn ms 3(E), 2(I)
τr ms 5
pEE - 0.2

pEI , pIE , pII - 0.5
g - 1.2

JEE pA 0.60
JEI pA −1.60
JIE pA 0.46
JII pA −2.44
Ix pA 1.25Ith(E), 0.78Ith(I)
Istim pA 0.15
Q - 6
JE+ - 3.3
RJ - 3/4

Table 5.1: Parameters used in the spiking network model

space prior to movement execution could explain the reduction in FF during
the preparatory period. Naturally, if the exact movement direction is known
(condition 1), a more optimal initial condition for the movement can be prepared
than when the target is ambiguous (conditions 2,3) and shorter reaction times
can be achieved. An ambiguity in initial condition could also explain the higher
rate variance in conditions 2 and 3.

In the following we propose a mechanistic model employing the circuitry
described in chapter 3 that is based on winnerless competition and can explain
the differences in count variance and information content of single units in the
preparatory period as well as the difference in reaction times.

5.3 An Attractor Model of Movement Preparation

The aim of our model is to show how winnerless competition can lead to the
condition dependent count variability and information content observed in our
data set. We therefore simplify its construction as much as possible. The
architecture is schematically shown in figure 5.3 a.

The core of the model consists of a balanced network of integrate and fire
units with Q = 6 clusters - one for each direction. Each cluster consists of
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200 excitatory units and is assigned a corresponding inhibitory cluster with 50
units. The clustering parameters JE+ and RJ were adjusted so that transitions
between clusters occurred as we have shown in chapter 4 and the Fano factors
in the spontaneous state resembled those measured in the physiological data
(see figure 5.2 b). Since the network is smaller than those used in chapter 4, the
strength of the external input currents had to be adjusted to obtain firing rates
of approximately 3 and 5 spikes per second for the excitatory and inhibitory
populations respectively. No special parameter tuning was otherwise performed.
The parameters used are summarised in table 5.1.

The physiological neurons display various types of tuning curves which can
also change over time [Bastian et al., 2003; Rickert et al., 2009]. We do not
specifically model tuning or how it arises. We simply stimulate one cluster per
direction by applying a constant current of 0.15pA to all its units. This means
that each unit in our model is sharply selective to a single direction. The same
stimulation protocol as described above for the actual experiment was applied to
our model. For each condition 150 trials were executed. In each trial one of the
six trial types was randomly chosen. The preparatory signal was applied to the
model by direct stimulation of 1,2 or three clusters depending on the condition.
Note that the amplitude of the stimulation current was identical for all conditions.
After 1000ms, i.e. at the end of the preparatory period, the PS currents were
turned off except for the one corresponding to the correct target direction. The
target current was applied for an additional 400ms to mimic the response signal
in the experiment. Trials were cut from one long continuous simulation. To allow
the network to relax to its spontaneous state again, inter-trial periods randomly
varied between 1500 and 1700ms were inserted. The variance in this relaxation
period was intended to avoid any effects of periodicity.

The decoder depicted in figure 5.3a is used to read out the movement
direction during the 400ms interval where the RS is applied. Since the directional
stimulation is applied to separate sub-populations of the network, decoding is
not really necessary in our model. The decoder is merely used to demonstrate
how a difference in reaction times emerges from our model.

Inspired by previous models of perceptual decision making [Gold and Shadlen,
2007; Meckenhäuser et al., 2014], the decoder has a decision variable associ-
ated with each cluster. For each direction d a leaky integrator governed by an
equation of the form

dId(t)

dt
= −Id(t)

τI
+ Cd (5.2)

sums up the instantaneous spike counts Cd (in 1ms bins) of the corresponding
population and forgets with time constant τI . Due to the random nature of the
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Figure 5.3: a) Architecture of the model. Spiking activity is modelled in a
balanced network with parameters given in table 5.1. Each cluster is assigned
a direction for which it receives its external input. The decoder integrates the
average cluster rates and generates a decision. b-j) Raster plots showing sample
trials of the excitatory units. Preparatory stimuli of 0.15pA are applied to one
(b-d), two (e-g) or three (h-j) clusters simultaneously between 0 and 1000ms. A
response signal of the same amplitude is injected into single clusters from 1000
to 1400ms as indicated by the vertical lines.

balanced network, the firing rates of the individual clusters may vary considerably.
To enable a decision by applying a single threshold θ to all directions, a decision
variable DVd(t) is formed for all directions through normalising by the sum over
all directions:

DVd(t) =
Id(t)∑6
j=1 Ij(t)

(5.3)

This is similar to multi-class classification and the decision variable DVd(t)

expresses the probability that direction d is the correct choice at time t. The

65



decoder was armed at RS. A decision was reached when one of the decision
variables crossed the threshold in the interval where the RS was presented
(1000ms < t <= 1400ms). Threshold crossings after that period were counted
as unsuccessful trials. If a decision variable was already above threshold at
the beginning of RS, the decision was counted. The threshold θ was adjusted
so that the performance of the model was maximised. The time constant of
integration τI was set to 50ms which represents an intermediate value between
very fast reactions directly when the threshold is armed at RS and very slow
integration where the threshold was not reached during the RS-interval.

Figure 5.3 b through j shows raster plots of the excitatory populations for
sample trials generated from the model. Our interpretation is that a cluster in
the active state means that the model is prepared for a movement execution in
the corresponding direction. I.e. it occupies the optimal subspace of firing rates
for a certain movement as described by Churchland et al. [2006]. It can be seen
in panels b through d that the stimulation amplitude is fairly moderate. Rather
than forcing a direction cluster to be active the whole time it merely increases
its probability of being active. Consequently there is still considerable cycling
between clusters during the PS interval. This is consistent with our observation
in the data. Even for condition 1 the rate variance is not completely quenched by
the stimulus presentation as can be seen by the still relatively high Fano factor
in figure 5.2 b (see also figure 2.7 c,e on page 19). In condition 2, two clusters
at a time are simultaneously stimulated and competition arises between them.
Since two clusters now have to share the higher probability of being active, the
number of occurring rate configurations increases and thereby the reduction in
rate variance is weaker. The amount of rate variance in this model increases
with the number of stimulated clusters. If all clusters are stimulated at the same
time, their chances during winnerless competition are again equal and the rate
variance level of the spontaneous state is recovered. Hence for condition 3 the
variance is again higher than for condition 2.

The raster plots also reveal another central aspect of the model. In condition
1, the correct direction has a high change of already being prepared, i.e. of
the corresponding cluster being in the active state at the time of the RS. In the
ambiguous conditions 2 and 3 on the other hand the chance of currently being
unprepared is higher and a switch is often required to the target direction. A
correct movement can therefore in those conditions only be executed with a
longer reaction time.

Figure 5.4 shows the same analyses as shown for the physiological data
(fig. 5.2) computed on the spike trains generated b the model. To allow a fair
comparison the same selection conditions were applied as for the experimental
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data. Since the number of trials was the same for all units, only the minimum
count rate criterium had an effect (10 spikes in the inspected time window).
Consequently 474 of the 1200 excitatory units were included in our analysis.

The exact time course of firing rates is not captured by our simple model
(panel a). As expected, our model of probabilistic sampling of prepared di-
rections produces average rate profiles that resemble the box-shape of our
stimulus protocol. The model does however capture the condition dependent
modulation of the average FF . In the spontaneous state before the PS is turned
on, the count variance is high in all conditions. During the preparatory period
the Fano factors are differentially quenched for the three target conditions as
in the physiological data (fig. 5.2). The differences are also highly significant
with respect to a Wilcoxon signed rank test (conditions 1-2: p = 5.7 ∗ 10−9,
conditions 2-3: p = 4.8 ∗ 10−11). At the RS onset, a single stimulus is applied in
all conditions and the FFs converge to the same value. The Fano factors for
condition 2 and 3 exhibit a second strong decrease after RS in the physiological
data. This is again not captured by our model. A possible reason might be that
the distributions of reaction times are much narrower for conditions 2 and 3 (see
figure 5.2 e), producing more aligned firing rate over trials.

The probabilistic nature of switching between prepared directions does
produce average decoding accuracies for single neurons which resemble those
seen in the data (panel c). Although the balanced accuracy scores are slightly
higher in the model, the order of conditions is reproduced. When classification is
performed on the entire population of analysed units simultaneously, we recover
the optimal decoding scores of 1, 1/2 and 1/3 for the three conditions (panel d).

Finally, the operation of the decoder is illustrated in figure 5.3. The thresh-
old has been adjusted so that the balanced accuracy over all sessions was
maximised (panel b). Figure 5.3 a shows a raster plot of the excitatory activity
for a sample trial of condition 3. The PS current is applied to clusters 2,3 and
5 (counting from the bottom). The respective decision variables DV (t) are
superimposed on each direction. Due to competition between populations, all
decision variables remain below the threshold in this case as a longer period of
being in the active state is required due to the time scale of integration. When
the RS is given, the wrong cluster is currently in the active state. It takes a short
moment until the stimulus takes effect an the network activity switches to the
target cluster. An even longer time is taken for the decision variable to reach the
threshold. In this particular trial a reaction time of ∼ 200ms is thus produced.

Figure 5.3 c shows the distributions of reaction times produced by the model
for each condition. It can be seen that as in the experimental data the average
reaction times in condition 1 were much quicker than in conditions 2 and 3.
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Figure 5.4: Condition-wise analyses corresponding to figure 5.2 but for the
spiking network model. Vertical dashed lines represent stimulus events.a) Firing
rates estimated with a triangular kernel (σ = 50ms). b Fano factors computed in
sliding windows of 400ms. ∗ ∗ ∗ indicates significance from Wilcoxon signed rank
test (conditions 1-2: p = 5.7 ∗ 10

−9, conditions 2-3: p = 4.8 ∗ 10
−11) c) Balanced

accuracy of direction classification using single unit counts in windows of 400ms.
Lines show averages over 10 repetitions of 5-fold cross validation. d) Balanced
accuracy of direction classification using the counts of all units as features (10
repetitions of 5-fold cross validation).
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Figure 5.5: Illustration of decision model and Fano factor dynamics. a) Raster
plot of excitatory cluster activity for a sample trial of condition 3. Solid lines
represent the associated decision variable for each cluster. At t = 1000ms the
decoder becomes armed as indicated by the vertical dashed line. Horizontal
dashed lines show the level of the decision threshold θ. To the right, direction
numbers are indicated. During the preparatory phase, clusters 2,3 and 5 are
stimulated. Target is direction 3. The black dot indicates a successful threshold
crossing. b) Decodiung performance of the model over the possible range of θ.
c) Histograms of reaction times of the model for the three conditions. The lower
two panels show the average FF of the model units for condition 2 when aligned
with respect to stimulus presentation (e) or the time of threshold crossing (i.e. the
movement onset, panel f)
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In contrast to the experiment, anticipated responses were not penalised in
the model. If the decision variable of the correct direction was already above
threshold at RS, the trial was counted as successful. In condition 1 this was
frequently the case. The shape of the reaction time histogram for condition 1
in figure 5.2 e suggests that the monkey displayed a similar behaviour. The
difference in response times between conditions 2 in 3 is not discernible in the
model as in the data. The chance of having prepared for the wrong direction
in the model hence explains the difference in reaction times between the full
information and the ambiguous conditions. Note that the histograms in figure
5.2 look much smoother because they have been computed over many sessions
with numerous trials while in our model only one session with 150 trials per
condition was simulated.

Analogous to the experimental data, the reaction times can be used to align
the trials of simulated data to an intrinsic event - the crossing of the decision
threshold or movement onset. Figure e and f show the Fano factors of the
simulated data aligned to PS and MO respectively. As in the physiological data
(see figure 2.7 c,d on page 19) the Fano factor is lowest when aligned to MO.

Although our model is very simplified and captures only some aspects of
the observed dynamics during movement preparation, it presents a mechanistic
explanation for the models proposed by Churchland et al. [2006] and Afshar
et al. [2011]. To our knowledge, it is the first model that links attractor dynamics
to context dependent variability modulation in motor cortex and behavioural
variability in the form of reaction times.
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Chapter 6

Discussion

The current study has spanned a range of aspects of cortical variability from
basic measurement techniques to a model of a complex experimental task. In
chapter 2 we have discussed how to carefully quantify the variability in spike
counts and interval variability which has allowed us to draw some conclusions
about potential mechanisms which produce these dynamics. In chapter 3 we
have employed the mean field model of balanced networks of binary neurons
to show how clustering of the inhibitory as well as excitatory populations can
reduce the firing rates of individual clusters and therefore facilitate winnerless
competition dynamics over a wider range of parameters. In chapter 4 we have
transferred this network structure to more detailed spiking neuron models and
found that inhibitory clusters lead to cluster switching dynamics which remain
balanced even in the active states, thus conserving interval variability contrary to
previous models. Finally we employed this model to replicate some findings from
an experiment where monkeys had to perform a reaching task given various
degrees of previous information about the target direction. In the following we
will recapitulate the main results of this work and discuss some of the problems
and implications in more detail.

Relationship of Rate Variance and VarCE In chapter 2 we have seen how
the description of neural activity as a doubly stochastic point process allows
us to see aspects of cortical dynamics which would remain hidden if we only
examined average rate profiles and Fano factors. The dissection of neural
variability into rate variance and intrinsic variability is directly related to the
variance of the conditional expectation (V arCE) of spike counts introduced by
Churchland et al. [2011]. Instead of approximating the point process variance of
the spike trains with the lowest FF a neuron exhibited over time we have shown
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that the trial wise CV 2 represents this quantity. This relationship is however tied
to a number of assumptions.

Firstly, the theoretical prediction that FF = CV 2
∞ holds only for renewal

processes. This does not hold strictly for neural spike trains as indicated by
negative serial interval correlations [Nawrot et al., 2007]. The assumptions in
calculating the CV 2 are however likely to play a greater role. The rate unwarping
method for its time resolved estimation is based on the assumption that spike
trains in each trial are realisations generated by some process from an identical
intensity profile. One of the central results of chapter 2 is that firing rates
modulate over trials which is why we introduced the trial wise estimation of the
CV 2. This again assumes that the underlying rate modulations happen so slowly
that they can be regarded to be constant for the width of an estimation window.
Since we compute the CV 2 in operational time and require our estimation
windows to be at least ten intervals, the low cortical firing rates lead to estimation
windows which - if projected back to real time - in some cases correspond to
the entire length of a trial. Additionally, although we have corrected for a
systematic bias due to right-censoring of the interval distribution, the CV 2 is
slightly under-estimated if computed per trial. Our choice of making use of
the formal relationship of the CV 2 to the FF is however justified as shown by
the qualitative resemblance with the local interval statistics CV2 and LV which
do not have these problems. In our dataset all three quantities are relatively
constant over time on average.

In principle it could be possible to compute the rate variance from instan-
taneous single trial estimates of firing rate and irregularity as described by
Shimokawa and Shinomoto [2009]. Unfortunately the large number of spikes
required to achieve stable results and the computational cost associated with
the numerical solution make this approach infeasible.

Churchland et al. [2011] state that the V arCE is qualitatively similar to the
mean-matched Fano factor. Mean-matching was proposed by Churchland et al.
[2010] to avoid detecting FF reductions which are only due to an increased
mean rate while rate variance stays constant (the case on the l.h.s. in figure
2.4, page 15). It works by computing the distribution of mean counts of a
group of neurons in a range of time windows. To avoid computing the FF

for different mean counts, a common count distribution is then found and in
each time window units are randomly excluded until a satisfactory match with
this distribution is reached. The obvious drawbacks of this technique are that
it cannot be applied to single neurons and that the mean FF is potentially
computed for a different combination of units in each time step. Our method
of computing the rate variance from the raw FF and CV 2 overcomes these
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problems.

Significant Reduction in Rate Variance The simplest model that could ex-
plain the discrepancy between rate and interval variability is that of a very slowly
varying background state where rate variance is virtually constant for the du-
ration of a trial [Nawrot, 2010]. In figure 2.4 we have simulated this case by
adding a constant random offset in each trial to a fixed firing rate profile. Using
the rate variance, we have made it explicit that this effect is not sufficient. The
reduction in total variance as measured by the Fano factor is caused by a highly
significant reduction in underlying rate variance while interval variability is largely
conserved in our data (see figure 2.7).

This puts the interpretation of a somehow varying background-state or
ongoing activity onto which a task dependent firing rate profile is superimposed
into question. The observation that the variance modulates on the time scale of
the experimental task suggests that there must be at least some component of
ongoing activity that varies at a faster rate. The quenching of rate variability could
then be achieved in two ways. Either the activity in the network is temporarily
suppressed or the firing rates in individual trials become more aligned to the
experimental events.

Both of these effects can be explained by winnerless competition between
assemblies or clusters of cells [Deco and Hugues, 2012; Litwin-Kumar and Do-
iron, 2012; Lagzi and Rotter, 2015]. The rate variance caused by the switching
of these clusters between states of high and low firing rates is reduced if one
or more cluster receive some external drive and become more likely to remain
in the active state. Inhibition then causes the remaining clusters to stay mostly
in the low activity states. In an experimental set-up, the former units would
likely be identified as task related while the latter may not even be detected by
spike sorting. Also, if interpreted in this way the task dependent trial averaged
firing rate could consist of combinations of up and down state periods of the
assemblies that the observed units belong to. Rather than a stereotypical rate
profile that is in each trial disturbed by noise, the average firing rate could then
be interpreted as a correlate of the probability of certain assemblies being active
at certain times during trials.

Physiological Evidence for Inhibitory Clustering Balanced networks with
clustered connectivity in the excitatory population exhibit winnerless competition
dynamics if the parameters are chosen appropriately [Deco and Hugues, 2012;
Litwin-Kumar and Doiron, 2012; Mazzucato et al., 2015]. This usually means
adjusting the clustering parameter, in our case J+. Extensive exploration has
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shown that the cluster parameter has to be quite finely tuned to achieve cluster
switching at all. Switching of activity states is triggered by fluctuations in cluster
firing rate. Hence the probability of switching decreases when clusters become
larger because fluctuations tend to average out [Litwin-Kumar and Doiron,
2012]. Mazzucato et al. [2015] used 30 clusters of 120 units (NE = 4000, 10%
unstructured background populations) whereas Litwin-Kumar and Doiron [2012]
used 50 clusters of 80 units (NE = 4000). While fine-scale clusters have been
reported to consist of tens rather than thousands of neurons [Perin et al., 2011],
it is hard to believe that the cortical algorithm should already break down with
the clusters of 200 units used in the present study.

Further, although excitatory clustering can produce the rate variance seen
in spontaneous cortical activity and its reduction during stimulation, firing in
active clusters is more regular than observed in cortex [Litwin-Kumar and Doiron,
2012] and the CV 2 is also reduced by stimulation [Deco and Hugues, 2012]
which is in contrast with our findings in monkey motor cortex.

By analysing the stable fixed points of the mean-field equations for networks
with excitatory clusters we have shown in chapter 3 that switching is hampered
by the high rates that active clusters attain. Our proposed remedy of assigning
an inhibitory population to each cluster and to increase the strength of reciprocal
connections with respect to those connecting to other clusters solved both of
the above problems. Since inhibition is now also selective, each excitatory
population is held in check by its inhibitory counter part and hence the fixed
points of the active and passive clusters move closer together. This facilitates
switching even for larger clusters. In chapter 4 we have seen that this also
helps to maintain interval variability because the active clusters remain in the
fluctuation-driven balanced state rather than being forced into saturation. Aviel
et al. [2004] have assigned inhibitory shadow patterns to excitatory populations
to increase the capacity of an attractor based memory network. The positive
effect of local balance on winnerless competition dynamics have however to our
knowledge not been discussed previously.

In short, we have introduced inhibitory clustering to achieve a certain type of
network dynamics. But can inhibitory clusters be justified biologically?

For excitatory neurons, small world structures have been reported on many
spatial scales [Sporns and Zwi, 2004]. Bidirectional connections as well as
clustered three-neuron patterns are much more frequent than would be expected
in a random network [Song et al., 2005]. These clusters also tend to have
stronger connections.

In network simulations, the units are commonly only divided into excitatory
and inhibitory cells while anatomical studies have identified myriads of inhibitory
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interneurons (e.g. [Markram et al., 2004; Harris and Shepherd, 2015]) and a
single excitatory neuron may make connections with several types [Markram
et al., 1998]. An intermediate level of detail is the distinction between Fast-
Spiking (FS) and non-FS inhibitory interneurons. These are usually identified in
slice preparations where intracellular recordings are taken while the surrounding
tissue is stimulated (e.g. [Yoshimura and Callaway, 2005; Holmgren et al., 2003;
Kätzel et al., 2011; Levy and Reyes, 2012; Dantzker and Callaway, 2000; Otsuka
and Kawaguchi, 2009; Watts and Thomson, 2005])

In addition to the different spiking behaviour implied by their names these
two cell types exhibit functional differences. Fast spiking cells are mainly locally
connected while non-FS neurons make translaminar connections [Dantzker
and Callaway, 2000; Levy and Reyes, 2012; Kätzel et al., 2011; Otsuka and
Kawaguchi, 2009]. On a finer scale, most connections between excitatory
and FS-interneurons are reciprocal [Holmgren et al., 2003] with inhibitory post-
synaptic currents being three times larger in reciprocal connections than for
unidirectional ones [Yoshimura and Callaway, 2005]. With distance from an
excitatory unit in a small volume, the connection probability with local inhibitory
units varies only slightly but the fraction of reciprocal connections decreases
[Holmgren et al., 2003]. Reciprocally connected cell pairs also share more com-
mon input than non-connected or unidirectionally connected pairs while non-FS
cells share little common input, connect to excitatory units with lower probability
and reciprocal connections are rare and not stronger than unidirectional ones
[Yoshimura and Callaway, 2005]. Also, interneurons of different types are fre-
quently connected with each other [Reyes et al., 1998] and inhibition can also
be exerted bisynaptically so that excitatory axons excite inhibitory cells local to
other populations [Binzegger et al., 2005].

It is hence safe to say that there is a lot of structure in the inhibitory cortical
connectivity. The strong reciprocal local inhibition of the FS-cells and the weaker
longer range connections of the non-FS interneurons could be interpreted as
an argument for the type of inhibitory clustering we have proposed. Whether
inhibition is less localised than excitation as predicted by our model cannot be
conclusively answered at this time. The current physiological evidence certainly
does not rule out the possibility.

Time scales of Variability Dynamics A recurring theme in the context of
cortical variability are the time scales on which neural activity varies. This
work is centred around the hypothesis that rate variance across trials is a
consequence of slow switching between clusters of neurons. In our model,
we we have observed that switching tends to occur less frequently when the
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clustering is stronger, thereby increasing the time that assemblies spend in the
active state. Also, larger assemblies tend to lead to slower switching [Litwin-
Kumar and Doiron, 2012].

A number of physiological results support the hypothesis that spontaneous
activity is made up of sequences of structured activity patterns which emerge
seemingly at random.

Kenet et al. [2003] used voltage sensitive dye imaging in the visual cor-
tex of anaesthetised cats to show that spontaneous activity seems to cycle
through patterns very similar to those evoked by visual stimuli and reported
that transitions between patterns occurred on a time scale of around 80ms.
Berkes et al. [2011] recorded extracellular activity using multi electrode arrays
in the visual cortex of developing ferrets. They found that over the course of
development, the spontaneous activity became increasingly similar to evoked
responses. They measured strong correlations between activity patterns for
delays up to 20ms. Ponce-Alvarez et al. [2012] fitted a hidden Markov model
(HMM) to simultaneously recorded spike trains from somatosensory and motor
cortex in monkeys. During the delay period in a perceptual decision task they
observed switching through sequences of states with transition times on the
order of 50ms. Mazzucato et al. [2015] applied a similar analysis to spontaneous
recordings from gustatory cortex in rats. Their HMM analysis yielded exponen-
tially distributed state durations with a mean of ∼ 700ms. Luczak et al. [2009]
examined evoked and spontaneous activity in the auditory and somatosensory
cortices of rats and found not only spatial patterns but temporally stereotyped
profiles with durations of ∼ 100ms.

These results point to time scales on the order of tens to hundreds of
milliseconds. Teich et al. [1997] on the other hand have found that Fano factors of
retinal ganglion cells in cats increase with counting window width for observation
intervals of several minutes. For stationary point processes, the FF depends
only weakly on window size [Nawrot, 2010]. When rate variance is added to
the equation, the Fano factor will increase with counting window size until the
window spans several periods of the periodicity of the underlying fluctuations.
Such long time scale fluctuations do not necessarily have to originate from
the cluster switching mechanisms described here. It is likely that winnerless
competition dynamics in spontaneous cortical firing will happen on time scales
related to the stimulus modalities or movements a particular region codes for.

As mentioned above, the time scales of switching in our model depend on
the setting of the cluster parameters JE+ and RJ . We have adjusted these
parameters so that the networks’ spontaneous activities would exhibit Fano
factors similar to those observed in our data set. We have not measured the
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durations that attractors spend in the active states, although a HMM analysis
similar to those by Ponce-Alvarez et al. [2012] and Mazzucato et al. [2015] could
yield estimates. Inspection of the raster plots does however suggest that the up
states in our model have similar time scales as those reported in the literature
(∼ 20− 200ms).

It would in principle be desirable to have a theoretical prediction for the time
scales of cluster switching in relation to the model parameters. Lagzi and Rotter
[2015] have described winnerless competition between two populations using a
rate model governed by Lokte-Volterra type equations. If noise is introduced,
switching can also occur in rate models. They found that the survival times of
the active states could be well approximated by an exponential distribution and
that the average time between switches grows faster than exponentially with
cluster strength.

We have used the mean-field description of our network configuration to
find the stable rate configurations. As mentioned earlier, switching between
these stable attractors is a finite size effect due to chaotic fluctuations in the
firing of individual units in the populations which is by definition not captured
by the mean field approach. The mean field theory for networks of binary units
also predicts the distribution of activity rates within populations [van Vreeswijk
and Sompolinsky, 1998]. From this it is theoretically possible to compute the
2Q-dimensional joint distribution of cluster rates. Making some assumptions
about the noise caused by the rate fluctuations within clusters it may then be
possible to make predictions about the switching dynamics. This analysis was
however beyond the scope of the current study.

Cluster Dynamics as Probabilistic Inference So far we have discussed the
dynamics of activity switching between clusters only from the perspective that it
provides a mechanistic explanation for the high rate variance observed in cortex
and its quenching by stimulation.

Traditionally, stable patterns or attractors in networks are used to model
working memory (e.g. [Hopfield, 1982; Amit and Brunel, 1997; Aviel et al.,
2004]). A network is pushed into a certain attractor by some external drive
and maintains a certain configuration of firing rates which can be read out or
retrieved at a later point. The difference between this scenario and the dynamics
of winnerless competition is simply the depth of the attractors as characterised
by the strength of clustering in the connectivity structure. This relationship lends
itself to the interpretation that the stability of attractors is related to the probability
of some variable encoded in their firing rate.

Mounting physiological indications exist for the hypothesis that some cor-
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relate of prior probability over previously observed states is encoded in the
spontaneous activity in the neocortex. Berkes et al. [2011] report that the spon-
taneous activity in the visual cortex of ferrets before eye-opening is unstructured
and becomes more and more similar to that evoked by visual stimuli during
development. They consequently interpret the spontaneous activity as the prior
probability of observing certain patterns and fit a Bayesian model to their data.
This observation is well matched by the results of Kenet et al. [2003] described
above and Luczak et al. [2009] who found that in auditory and somatonsen-
sory cortex of rats, spontaneous states resemble those evoked by sensory
stimulation.

There is also more direct evidence that these priors are actually used during
perception. Supèr et al. [2003] report that significant differences were detected
in the firing rates in monkey visual cortex between trials where monkeys correctly
reported the occurrence of a stimulus and those where they missed it. Similarly,
Hesselmann et al. [2008] found that perceptual decisions can be predicted
from ongoing activity in fMRI signals in humans 1.5 seconds prior to stimulus
presentation in a face-or-vase task. The interpretation is here that the attractor
that a network is currently in influences what decision is made.

We have applied the concept of winnerless competition to a model of move-
ment preparation with varying degrees of information. Although it is not a
perceptual decision task, the ambiguity between a small number of choices
creates a comparable situation. The preparatory signal causes the activity in
the motor cortices of the highly trained animals to be confined to a smaller sub-
space of possible dynamics. This subspace can be made smaller when more
information is available. In condition 2 for example the activity cycles randomly
between the two ideal initial conditions [Churchland et al., 2006; Afshar et al.,
2011] for movement preparation. If the correct cluster happens to be active at
the response signal, the movement can be executed with shorter reaction times.

Similar to [Supèr et al., 2003], additional evidence for or against this hy-
pothesis could have been obtained if the trials where the animals reached for
the wrong target had been available by comparing the spike counts just before
movement onset. It is clear that our model only captures some aspects of
the dynamics observed in the data. The firing rates in the physiological data
show an overshoot effect at PS for condition 1 and a strong increase at RS
for conditions 2 and 3. Also, some of the units show persistent activity in the
preparatory period [Rickert et al., 2009] which could mean that they function as
a working memory [Amit and Brunel, 1997]. While our model predicts different
Fano factors for the three conditions which are constant for the duration of the
preparatory period, the FFs in the physiological data show a sharp dip at the
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onset of the stimulus which then seems to relax to a different level for each
condition. This could possibly be explained by spike frequency adaptation (SFA).
Farkhooi et al. [2013] have proposed an alternative (possibly complementary)
model of stimulus-induced variability reduction. Their model does not include
rate variance and can therefore not capture the differential suppression of count
variance. It indicated however, that the introduction of SFA into our model
could lead to better agreement with our data. It is likely that SFA would also
influence the spontaneous dynamics of cluster switching. This effect has not
been investigated in the current study.

Rickert et al. [2009] also found that some of the neurons seem to alter their
preferred direction at certain times during the trial. In our model of random
switching, systematic changes in tuning cannot occur. Of course in real brains,
the attractors do not form randomly but are shaped by sensory input and
experience or training in the case of motor experiments. Hence the sequences
of activated clusters in spontaneous states or preparatory phases are likely to
have meaningful structure. The strict division of units into clusters assigned to
directions is of course also a strong simplification. [Litwin-Kumar and Doiron,
2012] have shown that cluster cycling and winnerless competition can also
occur when units are randomly assigned to overlapping assemblies.

Outlook Attractor networks are a popular model for cortical computation and
can capture working memory (e.g. [Amit and Brunel, 1997]), decision making
(e.g. [Albantakis and Deco, 2011] and variability dynamics (e.g. [Litwin-Kumar
and Doiron, 2012]) depending on the strength of the attractors. We hypoth-
esize that cortical circuits can switch between these functions continuously
depending on the requirements. This could be achieved through some form of
neuromodulation.

At the moment, only indirect measures can be employed to asses the validity
of the cluster switching model such as the HMM technique used by Mazzucato
et al. [2015]. In the near future it is however likely that simultaneous recordings
of large numbers of neurons in very small volumes can be made in vivo using
calcium imaging or similar techniques.

Contrary to our fixed random network connectivity, structure is shaped by
synaptic plasticity in vivo. A number of studies have recently been published,
where clusters of excitatory units form in balanced networks through spike-timing
dependent plasticity (STDP) and selective stimulation [Ocker et al., 2015; Zenke
et al., 2015; Litwin-Kumar and Doiron, 2014]. The resulting connectivities exhibit
high rate variability in the spontaneous state. In a related study, binary networks
with synchronous updates using STDP-inspired as well as homeostatic learning
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rules were shown to perform Bayesian-like inference in sequence-learning tasks
[Lazar et al., 2009].

In all the above studies, some form of inhibitory plasticity was used as a
homeostatic mechanism. This seems to be generally required for networks with
excitatory plasticity to prevent positive feedback loops [Zenke et al., 2013]. For
example [Litwin-Kumar and Doiron, 2014] use an inhibitory STDP rule for the
EI-connections, i.e. the synapses that mediate inhibition from the inhibitory
to the excitatory population to prevent winner-take-all dynamics. Our results
predict that the EI as well as the IE connections are to some extent plastic
to achieve the specificity required to obtain local balance in each assembly. It
remains a subject of further study how this can be achieved in simulations and
whether it can be found in biological circuits.
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Supèr, H., van der Togt, C., Spekreijse, H., and Lamme, V. a. F. (2003). Internal
state of monkey primary visual cortex (V1) predicts figure-ground percep-
tion. The Journal of neuroscience : the official journal of the Society for
Neuroscience, 23(8):3407–3414. 78

Teich, M. C., Heneghan, C., Lowen, S. B., Ozaki, T., and Kaplan, E. (1997).
Fractal character of the neural spike train in the visual system of the cat.
Journal of the Optical Society of America. A, Optics, image science, and
vision, 14(3):529–546. 76

van Vreeswijk, C. and Sompolinsky, H. (1996). Chaos in neuronal networks with
balanced excitatory and inhibitory activity. Science, 274(5293):1724–1726.
21

van Vreeswijk, C. and Sompolinsky, H. (1998). Chaotic balanced state in a
model of cortical circuits. Neural computation, 10(6):1321–71. 3, 21, 22, 23,
24, 25, 26, 77

88



Watts, J. and Thomson, A. M. (2005). Excitatory and inhibitory connections
show selectivity in the neocortex. The Journal of physiology, 562(Pt 1):89–97.
75

Wiener, M. C. (2003). An adjustment to the time-rescaling method for application
to short-trial spike train data. Neural computation, 15(11):2565–76. 9

Yoshimura, Y. and Callaway, E. M. (2005). Fine-scale specificity of cortical net-
works depends on inhibitory cell type and connectivity. Nature neuroscience,
8(11):1552–9. 75

Zenke, F., Agnes, E. J., and Gerstner, W. (2015). Diverse synaptic plasticity
mechanisms orchestrated to form and retrieve memories in spiking neural
networks. Nature communications, 6:6922. 79

Zenke, F., Hennequin, G., and Gerstner, W. (2013). Synaptic plasticity in neural
networks needs homeostasis with a fast rate detector. PLoS computational
biology, 9(11):e1003330. 80

89



90



Appendix A

Selection Criteria for
Physiological Data

The physiological data used in this work stems from Alexa Riehle’s lab at Institut
de Neurosciences de la Timone CNRS & Universite Aix-Marseille, France and
has been previously published in [Bastian et al., 2003] and further analysed in
[Rickert et al., 2009]. Two Macaque monkeys were trained to perform a delayed
centre-out reach task with varying information about the correct movement at
trial start (for a detailed description of the experimental paradigm see chapter
5). Conditions were recorded in separate blocks of around 150 trials where the
trial types were chosen randomly with equal probabilities.

Extracellular recordings were taken with electrode arrays in pre-motor areas
(monkey 1: M1 close to the central sulcus, monkey 2: mainly PMd). Online-spike
sorting was performed resulting in up to seven simultaneously recorded units.
The resulting action potentials as well as behavioural events were stored in 1
ms resulution for offline analysis. Only successful trials were available for the
present study (i.e. trials where the monkey pressed the correct button after the
RS). 111 and 110 neurons were available for monkeys 1 and 2 respectively.

The calculation of variability statistics sets high standards for data quality
as artefacts from recording or spike sorting procedures can have dramatic
impacts on the results. Also, reasonable amounts of spikes are required to get
meaningful statistical measures. We therefore applied strict quality criteria for
the individual neurons.

Some units showed abrupt changes in behaviour over trials in their raster
plots. Though it is theoretically possible that a unit changes its behaviour over
time, it is more likely that the change is due to a small movement in the recording
electrode or detection problems during spike sorting. Raster plots of all trials for
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Figure A.1: Illustration of selection criteria applied to the physiological data.
a)Example session of a unit excluded due to suspiciously abrupt changes in firing
behaviour. Trials are in chronological order. b) Distribution of precentage of ISIs
smaller or equal to two ms for all units. c) Disribution of firing rates in the pre-cue
interval for all units. Dashed vertical lines indicate thresholds for exclusion.

each unit in chronological order were therefore visually inspected and un-natural
looking units were excluded from the analyses. For an example of abruptly
changing firing behaviour see figure A.1 a.

The raster plot in figure A.1 a also contains some suspicious looking bursts
in which many ISIs of one or two ms occur in sequence. To exclude artefacts
of this kind we counted the number of ISIs <= 2ms for each unit. Although
most units contained some small intervals (see figure A.1 b) the problem was
particularly dramatic in some cases. We therefore decided to mistrust spike
sorting when the fraction of small ISI exceed 5% of all intervals recorded from
a unit and excluded those neurons from our analyses.

The distribution of spontaneous firing rates for all units (measured in the
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Figure A.2: Effect of neuron selection on FFs and firing rates. Left columns: all
units, right column: units that passed all tests. a-d) monkey 1 e-h) monkey 2

500ms interval between TS and PS) is shown in figure A.1 c. It can be seen
that there are some outliers with very high spontaneous rates above 50 spikes
per second. These were also excluded from the analyses. Further, we required
units to be present in all three experimental conditions and that there be at least
5 trials per direction in each condition.

This selection procedure left us with 76 units for monkey 1 and 66 for monkey
2, i.e. about a third of the recorded neurons were excluded. The effect of this
procedure on the average FFs was quite drastic. Figure A.2 shows the firing
rates and FFs for both monkeys before (l.h.s.) and after (r.h.s.) the exclusion of
suspicious units. Panel a corresponds to the figure given in the supplement of
[Rickert et al., 2009]. The difference in FF before PS is no longer present in the
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cleaned data (compare panels a and b). Also the maximum FFs are reduced
to values closer to those reported elsewhere in the literature (e.g. [Churchland
et al., 2010]). The effect of the selection on the firing rates is less pronounced.
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