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Zusammenfassung

Jiingste experimentelle Fortschritte in der Herstellung von Nanostrukturen werfen ver-
mehrt Fragen zum Nichtgleichgewichtsverhalten niedrigdimensionaler Systeme auf. Von
besonderem Interesse sind dabei die stark wechselwirkenden eindimensionalen Elektro-
nensysteme, deren Physik jenseits des thermischen Gleichgewichts man erst langsam zu
verstehen beginnt. Die vorliegende Arbeit tragt zu diesem Verstdndnis bei und diskutiert
grundlegende Elementarprozesse in der Nichtgleichgewichtsphysik eindimensionaler
Elektronensysteme.

Wenn ein niederenergetisches Elektron in eine eindimensionale Luttingerfliissigkeit
tunnelt, werden seine Ladung und Energie in gegenldufige Anregungen aufgeteilt. In
dieser Doktorarbeit wird die bisher noch nicht verstandene Energieaufteilung untersucht.
Es stellte sich dabei heraus, dass sich Ladung und Energie génzlich unabhéngig vonein-
ander aufteilen und sich sogar gegenldufig ausbreiten konnen. Ein weiterer wichtiger
Unterschied besteht in ihrer experimentellen Zuganglichkeit. Im Gegensatz zur Ladung
kann die Energieaufteilung in Gleichstromexperimenten nachgewiesen werden und wir
schlagen experimentelle Geometrien zur Steuerung und Messung der Energieaufteilung
in eindimensionalen Systemen vor.

Bei hoheren Anregungsenergien wird es notwendig den Kriimmungseffekt der Elek-
tronendispersion mit in Betracht zu ziehen. Ein weiterer Teil der vorliegenden Arbeit
diskutiert die Auswirkung von kriimmungsinduzierten Dreiteilchenstreuprozessen auf
die Relaxation in Quantendrihten. Dies ist insbesondere deshalb hochinteressant, weil
das Standardmodell eindimensionaler Systeme (Luttingermodel) integrabel ist und so-
mit keine Thermalisierung zuldsst. In einer wohldefinierten Storungstheorie jenseits des
Luttingermodels bestimmt diese Arbeit die Energierelaxationsraten dieser Dreiteilchen-
streuprozesse. Dabei stellt sich heraus, dass der Elektronenspin und die langreichweitige
Coulombwechselwirkung von zentraler Wichtigkeit fiir die Relaxation sind. Unter Be-
trachtung dieser liefern wir eine quantitative Beschreibung eines kiirzlich durchgefiihrten
Experiments.

Im weiteren Verlauf der Arbeit werden die Auswirkungen der Dreiteilchenstreupro-
zesse auf die Energierelaxation in Quanten-Hall Randzustdanden untersucht. Dabei wird
insbesondere der Effekt einer wechselwirkungsinduzierten Randrekonstruktion betrachtet.
Letztere fiihrt zu einer Beschleunigung der Energierelaxation, die insbesondere dann stark
ausgepragt ist, wenn die Rekonstruktion zusatzliche gegenldufige Randzustdande erzeugt.

Im abschlieffenden Teil der Arbeit wird ein weiteres System untersucht, bei dem Nicht-
gleichgewichtseffekte eine entscheidende Rolle spielen. Die sogenannten nanoelektro-
mechanischen Systeme weisen eine Kopplung von mechanischen und elektronischen
Freiheitsgraden auf. Ein elektrischer Strom kann somit die mechanische Bewegung be-
einflussen, was eine Reihe von interessanten Anwendungen ermdoglicht. Vorangehende
theoretische Untersuchungen mit Hilfe von Nichtgleichgewichts-Greenfunktionen haben
gezeigt, dass sich die strominduzierten Kréfte letztendlich durch intuitive Streumatrixaus-
driicke beschreiben lassen. Diese Arbeit gibt nun tiefere Einblicke in diesen Zusammen-
hang und liefert eine vollstindig streutheoretische Beschreibung der strominduzierten
Kréfte.
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Abstract

Recent advances of experimental nanofabrication techniques draw increasing attention
to the non-equilibrium behavior of low dimensional systems. Of particular interest are
the strongly interacting one dimensional systems whose description in out of equilibrium
situations remains a theoretical challenge. This thesis contributes to the understanding
of important elementary processes in the non-equilibrium physics of one dimensional
electron systems.

Tunneling of an electron into a Luttinger liquid leads to partitioning of its charge and
energy into counter-propagating modes. This thesis studies the partitioning of the energy
which had previously remained unexplored. It turns out that energy partitioning is
essentially independent of the charge partitioning and one can even reach conditions such
that energy and charge propagate in opposite directions. Another important difference is
their experimental accessibility. In contrast to the charge, energy partitioning provides
a measurable characteristic of the tunneling process even in dc setups and we propose
experimental geometries that allow for tuning and detecting energy partitioning.

At higher excitation energies it becomes necessary to include curvature effects of the
electron dispersion. Another part of this thesis discusses the consequences of curvature
induced three-body collisions on the relaxation in quantum wires. This is particularly
interesting due to the integrability of the Luttinger model which does not allow for
thermalization within this paradigm of one dimensional systems. In this thesis we derive
energy relaxation rates due to three-body processes beyond the Luttinger model within a
well-defined perturbative approach. It turns out that the electron spin and the long range
Coulomb interaction are important ingredients for a quantitative description of recent
experiments which we provide in this thesis.

Furthermore, we study the influence of three-body collisions on the energy relaxation
in integer quantum Hall edge states. We specifically address different interaction in-
duced edge reconstruction scenarios and find that edge reconstruction strongly enhances
the energy relaxation. This is particularly pronounced when the reconstruction creates
additional counter-propagating modes.

Finally, we discuss another system which is crucially controlled by non-equilibrium
effects. The so called nanoelectromechanical systems show a coupling between the elec-
tronic and mechanical degrees of freedom. The electron current can thus influence the
mechanical motion which leads to a number of interesting applications. Previous theoreti-
cal studies on the basis of non-equilibrium Green’s functions showed that these current
induced forces can be expressed in terms of intuitive scattering matrix expressions. This
thesis sheds considerable light on this observation by providing a much more satisfactory
and concise derivation of the scattering theory of current induced forces.
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1 Introduction

The process of "model-building", essentially
that of discarding all but essentials and
focusing on a model simple enough to do
the job but not too hard to see all the way
through, is possibly the least understood of
all the functions of a theoretical physicist.

P. W. Anderson, "BCS” and Me,
More and Different (2011)

When it comes to the problem of understanding a given system, a well-built minimal
model can be much more powerful than a description which aims to be as accurate as
possible. This curiosity driven search for an explanation of certain aspects of nature
is fascinating and important in its own right. Moreover, an understanding of relevant
mechanisms can be a promising starting point for designing new systems with desired
properties.

The main challenge for “seeing through” the behavior of a many-body system is to find
an effective way of dealing with the interactions between the vast number of (typically
10%) particles. One of our most powerful and intuitive tools for this task is Landau’s
Fermi liquid theory [Landau (1957)]. It states that, despite the interactions between the
electrons, the low energy excitations can be seen as almost free quasi-particles. This allows
us to think in an intuitive free particle picture and explains the surprising success of
the non interacting electron gas model for the description of metals. The power of the
Fermi liquid paradigm is its wide applicability (e.g. to essentially all metals). This in turn
also stimulates the search for the “rare exceptions” as non-Fermi liquid behavior is often
accompanied with new and exciting physics.

One particularly remarkable example is given by the Luttinger model® [Luttinger (1963)],
describing electrons in one spatial dimension with a linear dispersion. The ground state
of this model is a strongly correlated state, which is not compatible with a description
in terms of almost free fermionic quasi-particles. In addition the Luttinger model is also
an exception in the sense that it is one of the very few examples that allow for an exact
solution of an interacting many-body problem. The latter is possible by mapping the
original interacting fermionic system onto that of noninteracting bosons, which describe

collective density wave excitations (plasmons).

1 Also known as Tomonaga-Luttinger model due to related work by Tomonaga (1950).
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Figure 1.1: Illustration of the peculiarities of one dimensional systems. (a) Zero bias
anomaly in a quantum wire. Tunneling is strongly suppressed because it
requires a shift of all particles left and right from the injection point. (b) Spin
charge separation in an antiferromagnetic chain. Removing a particle from
the system creates a hole excitation. Subsequent electron hopping leads to a
splitting into separate spin and charge excitations.

Luttinger introduced his model as a mere proof of principle that interactions can lead to
a break down of Fermi liquid theory. Interestingly he noted at the beginning of his famous

paper:

“The model is quite unrealistic for two reasons:

it is one-dimensional and the fermions are massless.”

As it turned out, this assessment was premature and the implications of his model were
far reaching. In fact, due to its exceptional combination of complexity (strong correlations)
and simplicity (exact solubility) Luttinger’s model received much theoretical attention.
The result is known as Luttinger liquid theory [Haldane (1981)], which describes the low
energy behavior of a wide variety of one dimensional systems. Haldane argued that the
free bosons of the Luttinger model are essential for the Luttinger liquid in much the same
sense as the free electrons are for the Fermi liquid.

A peculiar consequence of the strong correlations in one dimensional systems is that
low energy tunneling into a Luttinger liquid is strongly suppressed and the probability
of entering the system vanishes as a power law for small bias voltages. This so called
zero bias anomaly is caused by the difficulty that accommodating a new particle in a one
dimensional system requires to displace essentially all the other particles [see Fig. 1.1a].
Another hallmark of the strong interactions is the separation of spin and charge degrees
of freedom. While spin and charge are tied together in a single electron picture, their
collective dynamics are completely independent from each other in a Luttinger liquid [see
Fig. 1.1b]. In a similar sense it is possible to effectively break up the elementary charge of
the electron and to introduce fractional excitations [Pham et al. (2000)].

Modern nanofabrication techniques give access to one dimensional systems and have

led to an active and still ongoing experimental search for their remarkable properties.
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Figure 1.2: Two-body relaxation processes. (a) Typical relaxation process in two or three
dimensions by exciting a particle out of the Fermi sea. (b) Two-body relaxation
processes are not allowed in one dimension due to a finite curvature of the
dispersion.

In this way, it was possible to observe the zero bias anomaly for tunneling into carbon
nanotubes [Yao et al. (1999); Bockrath et al. (1999)], engineered quantum wires [Auslaender
et al. (2000); Tserkovnyak et al. (2003)] and fractional quantum Hall edge states [Chang
et al. (1996); Grayson et al. (1998)]. Spectroscopic measurements provide evidence for spin
charge separation in one dimensional SrCuO, [Kim et al. (1996, 2006)], quantum wires
[Auslaender et al. (2002, 2005); Jompol et al. (2009)] and even single-atom gold chains
[Segovia et al. (1999)].

This experimental availability is drawing more and more attention to the out of equi-
librium behavior of these peculiar systems. A theoretical description of non-equilibrium
effects of strongly interacting electrons is however highly nontrivial. This becomes already
evident in the fundamental question of how a non-equilibrium state relaxes towards
thermal equilibrium. The integrable Luttinger model does not provide a mechanism
for such thermalization. The reason lies in the lack of interaction between the plasmons
which leads to infinite lifetimes of the non-equilibrium state. Addressing relaxation in one
dimensional systems requires therefore new theoretical concepts and is an important part
of the active and exciting study of out of equilibrium effects in low dimensional systems.

This thesis aims to contribute to the understanding of the non-equilibrium physics of
low dimensional systems. The main focus will be on new implications of the Luttinger
model in tunneling processes as well as the necessity to go beyond its approximations to

describe thermalization in one dimensional systems.

1.1 Relaxation in quantum wires

The unusual relaxation physics in one dimensional systems already shows up in the single
particle picture. In higher dimensions, an excited quasi-particle can easily relax towards
the Fermi surface by transferring part of its excess energy and momentum to a particle
in the Fermi sea [Fig. 1.2a]. This relaxation process is one of the key ingredients of Fermi
liquid theory and leads to the famous quasi-particle relaxation rate 1/ « &2, where ¢ is
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the excitation energy. In one dimension, such a two-body process is forbidden by energy
and momentum conservation [Fig. 1.2b]. Due to the finite curvature, a relaxing particle
loses more energy per momentum than the particle from the Fermi sea gains. The only
allowed processes have either zero momentum transfer or exchange the involved particles,
which does not contribute to the relaxation of the distribution function. This problem is
circumvented in higher dimensions via the additional angular degrees of freedom.

It is already clear from this simple argument that relaxation in one dimensional systems
is not as effective as in higher dimensions. Moreover, in view of the integrability of the
Luttinger model one could even assume the complete absence of thermalization in one
dimensional systems. This emphasizes the importance of a series of recent experiments
that were able to address relaxation in one dimensional systems.

The key observable in most of these experiments is the non-equilibrium energy distribu-
tion function, which could be measured in tunneling spectroscopies of carbon nanotubes
[Chen et al. (2009)] and quantum Hall edge states [Altimiras et al. (2010a,b); le Sueur et al.
(2010)]. Interestingly, these experiments see clear signs of relaxation and equilibration by
studying the evolution of an out of equilibrium excitation of the distribution function to
its equilibrium form.

One possible starting point for a theoretical understanding of the underlying relaxation
mechanisms is to include curvature effects of the electron dispersion, that break the Lut-
tinger model’s integrability. Parts of this thesis show that curvature effects can contribute
substantially to the relaxation in quantum wires (chapter 4) and quantum Hall edge states
(chapter 5).

In the following we will discuss an inspiring experiment by Barak et al. (2010b) that

underlines the importance of these curvature effects in the relaxation of quantum wires.

1.1.1 Momentum resolved tunneling spectroscopy

A well-established method to produce extremely clean and atomically precise quantum
wires is the so called cleaved edge overgrowth (CEO) method [Pfeiffer et al. (1993)]. These
wires have a large mean free path (> 10 ym) and subband spacing (20 meV) [Yacoby et al.
(1996)] and are therefore perfectly suited to study the behavior of ballistic one dimensional
systems.

The starting point for the fabrication of CEO wires is a two dimensional electron gas
(2DEG) which can form in a AlGaAs-GaAs heterostructure [see Fig. 1.3]. The sample
is then cleaved with atomic precision perpendicular to the 2DEG and a doped layer of
AlGaAs is grown on the cleaved surface. For suitable doping and gate voltages a one
dimensional wire forms at the edge of the 2DEG. Maximal confinement is reached by
applying a negative voltage to the top gate (which depletes most of the 2DEG) and a
strong positive voltage at the side gate which collects all the electrons at the cleaved edge.

Momentum resolved tunneling spectroscopy relies on a similarly produced double
quantum wire setup [Fig. 1.4]. With depletion top gates, a part of the upper wire is
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Figure 1.3: Schematic view of the CEO method. The quantum wire (dark blue) forms at
the intersection of the 2DEG and the cleaved edge.
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Figure 1.4: (a) Double CEO wire setup of the experiment by Barak et al. (2010b). The
dispersions of the upper (green) and lower (blue) wire are shifted by magnetic
and electric fields. (b) shows the case of injection of hot particles into the lower
wire.

separated and used as a source electrode for tunneling into the lower wire. In contrast
to local tunneling experiments, the length of this tunneling source is chosen to be long
enough (a few pym) that the tunneling can be considered as momentum conserving. By
applying a voltage V between the upper and lower wires, the dispersions of the two wires
can be shifted by the energy eV relative to each other. With a perpendicular magnetic
field B [see Fig. 1.4], the dispersions can also be shifted in momentum by k = eBd /%,
where d is the distance between the two wires. The complete control over the way the
two dispersions overlap allows for the injection or extraction of electrons with specific
energy and momentum. This makes momentum resolved tunneling spectroscopies an
ideal testbed for the study of excitations in one dimensional electron systems.

Barak et al. (2010b) used this setup to address the relaxation of hot particles and holes
injected into the quantum wire. They observed that injecting a hot right-moving particle
at energy ¢ above the Fermi energy er leads to an increased number of hot particles at
intermediate energies (e.g. ~ er + €/2) in the right drain. This is a clear signature for
the relaxation of the initial hot particle by exciting additional particles from the Fermi
sea. Interestingly, there was no similar effect for the injection of hot hole excitations
or cold particle and hole excitations injected very close to the Fermi energy. Thus, the
experiment implies a relaxation of hot particles into co-propagating excitations while the
corresponding holes do not relax on the experimentally observable length scale of a few
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Figure 1.5: Possible three-body process for the relaxation of hot particle (a) and hole (b)
excitations.

micrometers.
As we will show in the following, this strong particle-hole asymmetry follows naturally

from relaxation effects that include the finite curvature of the electron dispersion.

1.1.2 Relaxation due to curvature effects of the electron dispersion

Already Haldane (1981) realized that a finite curvature introduces interactions between
the plasmonic excitations causing them to decay over time. Although this has similarities
with the quasi-particles of a Fermi liquid, assigning a plasmon lifetime is highly nontrivial
because perturbative approaches run into divergences [Samokhin (1998)]. The reason
is that although their interaction becomes weak at low energies, the plasmon velocities
become more and more equal, making them interact for much longer times. Thus, devel-
oping a perturbative description of curvature effects within the bosonization language is a
delicate task [Aristov (2007); Pereira et al. (2006, 2007); Teber (2007)].

In order to avoid these difficulties it can be favorable to go back to the fermionic picture
when dealing with curvature effects. Indeed, the finite velocity difference Av of the hot
electron and those in the Fermi sea allows for a well-defined single particle picture. In
line with the Born approximation of quantum mechanics [Landau and Lifshitz (1977)]
the interaction can be treated perturbatively in the limit Vy < 1Av, where Vj is the g = 0
component of the Fourier transformed interaction potential.

As mentioned above, the corresponding relaxation mechanisms are however quite
different from their higher dimensional counterparts due to the absence of two-body
processes. As first pointed out by Lunde et al. (2007), the curvature induced excess energy
of a relaxing hot particle requires the excitation of an additional third particle to fix the
energy and momentum conservation laws [Fig. 1.5a].

Note that these three-body processes are indeed strongly particle-hole asymmetric for
low temperatures. Since the relaxing hole has a lower velocity than the particles at the
Fermi surface that it excites, the curvature induced energy mismatch of a two-particle

process has the opposite sign compared to the particle relaxation [see Fig. 1.5b]. Instead of
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exciting, the hole relaxation therefore needs to annihilate a counter-propagating particle-
hole pair which is impossible at T = 0.

Although the existence of this unusual relaxation process is of great conceptual impor-
tance one may ask whether it has a practical significance on the experimentally observable
relaxation in one dimensional systems. In view of first calculations which resulted in
very slow relaxation rates 1/7 « &8 [Khodas et al. (2007)] it was tempting to doubt this
significance. However these slow relaxation rates where calculated under the additional
assumption of spinless electrons with only short ranged interactions. Chapter 4 of this
thesis will focus on the fact that taking into account the electron spin and long range
Coulomb interaction is crucial for much faster relaxation rates 1/t o« ¢? [Karzig et al.
(2010)] which allow us to explain the experiment of Barak et al. (2010b) quantitatively.

1.1.3 Alternative approaches for relaxation in one dimensional systems

Although, three-body collisions seem to capture the relaxation of hot particles in clean
quantum wires, they might not give the leading contribution in other experimental setups.
The above mentioned experimental observation of relaxation indeed led to a flurry of
different theoretical proposals. It is therefore beneficial to acquire an overview over other
possible sources of relaxation in one dimensional systems.

One class of proposals relies on introducing disorder and thus breaking the transla-
tional invariance of the system. Without momentum conservation two-particle relaxation
processes are again possible. In the related problem of equilibration between two v = 2
quantum Hall edge states, Lunde et al. (2010) indeed used a perturbative two-body scat-
tering approach to interpret the experimentally observed relaxation. On more general
grounds Bagrets et al. (2008, 2009) showed in a non-equilibrium bosonization study that
disorder introduces relaxation to the Luttinger model, yielding an energy relaxation length
of the order of the transport mean free path.

A complementary approach to explain the experimentally observed relaxation of
the non-equilibrium distribution function relies on dispersive effects of the plasmons
[Kovrizhin and Chalker (2011a,b); Levkivskyi and Sukhorukov (2012)]. The dispersion
of the plasmons is not necessarily completely linear. Unscreened Coulomb interactions
for example lead to a logarithmic correction to the plasmon velocity. Different plasmon
velocities then result in a broadening of the initial electron distribution. An injected non-
equilibrium double step distribution function can thus change into a broader single step
distribution, which might be interpreted experimentally as equilibration. Note however
that purely dispersive effects will never lead to a thermal equilibrium distribution function
because the lifetime of the non-equilibrium state is still infinite.

This emphasizes the conceptual importance of the effects of the curvature of the dis-
persion as they represent the only mechanism for true thermalization in translationally
invariant systems. However, the above theories show that there exist a number of possible

sources for the experimental observation of relaxation, which have to be checked on a
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Figure 1.6: Quantum Hall edge states. (a) While the electrons in the bulk are localized,
the quantum Hall edge exhibits propagating modes that can be understood
in terms of skipping orbits at the sample’s edge. (b) Typical dispersion at the
edge of the sample, including a possible chiral three-body relaxation process.

case to case basis. As a general trend, three-body collisions will dominate the relaxation of

ballistic systems at higher excitation energies.

1.2 Relaxation in quantum Hall edge states

A different class of one dimensional systems appears at the edge of two dimensional
electron gases that show the quantum Hall effect [Halperin (1982)]. While the electrons in
the bulk of the system are localized by a strong magnetic field, there exist chiral modes
that propagate ballistically along the edge of the sample (see Fig 1.6a). It is a well-known
fact that the charge transport of the edge modes leads to a quantized Hall conductance in
units of €2/ [v. Klitzing et al. (1980), see also the books by Prange and Girvin (1987); Sarma
and Pinczuk (2008)]. However, charge transport measurements alone do not provide a
full picture of quantum Hall edges.

A closer examination shows that interaction effects can lead to the emergence of neutral
(possibly counter) propagating modes which only contribute to energy transport [Kane
et al. (1994); Lee et al. (2007); Levin et al. (2007); Grosfeld and Das (2009)]. Measurements of
thermal transport properties can therefore give valuable insights into the structure of the
quantum Hall edge and have received much experimental attention recently. It was indeed
possible to detect neutral edge modes in such measurements [Bid et al. (2010); Dolev et al.
(2011); Altimiras et al. (2012)]. Interestingly, thermal transport experiments also show that
electrons cool as they propagate along the edge [Granger et al. (2009)] which again leads
to the question of relaxation and equilibration physics in these one dimensional systems.

A particularly direct observation of relaxation effects was possible in integer quantum
Hall systems at Landau level filling factor v = 2 [Altimiras et al. (2010a,b); le Sueur et al.
(2010)]. These systems host two co-propagating edge states. One of them is driven out of
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equilibrium by mixing with a third mode at a quantum point contact. The resulting non-
equilibrium distribution function is then probed downstream with a quantum-dot-based
energy spectrometer. These experiments show that the initial non-equilibrium distribution
relaxes to a stationary form which is close to a thermal distribution.

Motivated by these experimental observations chapter 5 of this thesis studies the effect
of three-body collisions on the energy relaxation in integer quantum Hall edge states.
The crucial difference to the processes in a quantum wire is that the chirality requires a
relaxation process that only involves co-moving particles. For finite temperatures such
a relaxation process is possible by exploiting the curvature of the dispersion close to the
chemical potential u [see Fig. 1.6b]. A hot particle (1) can then relax a small amount of its
energy by exciting and annihilating a thermal particle-hole pair.

The study of relaxation processes in quantum Hall edge states is made even richer
by possible interaction induced reconstruction effects of the edge. Indeed, the simple
picture of a spin degenerate, strictly monotonic dispersion [Fig. 1.6b] only holds for a
sharp edge [Halperin (1982)]. Smoother confinement potentials were predicted to cause
a spin [Dempsey et al. (1993); Gelfand et al. (1994); Rijkels and Bauer (1994); Stoof and
Bauer (1995); Barlas et al. (2011)] and charge [de C. Chamon and Wen (1994); Barlas et al.
(2011)] reconstruction of the edge. Also recent experiments [Barak et al. (2010a); Deviatov
et al. (2011)] point towards an important role of reconstruction effects in the quantum Hall
edge.

Accordingly, chapter 5 focuses in particular on the consequences of the different edge
reconstruction scenarios for the relaxation of hot electrons injected into quantum Hall

edge states.

1.3 Energy and charge partitioning in Luttinger liquids

In the discussions above we considered a tunneling process as a simple source of hot
particle excitations. This description only applies in the limit where curvature effects
become important (71Av > V), see section 1.1.2). In the low energy regime however, the
tunneling leads to a collective excitation of the Luttinger liquid. A full description of
the resulting non-equilibrium state is quite complex and requires an out of equilibrium
generalization of the bosonization technique [Gutman et al. (2010a)]. Chapter 3 of this
thesis shows that it is even highly nontrivial to address the simple question of how the
excess energy of the injected particle distributes over the system.

This question is inspired by the already known unusual behavior of the charge. Consider
injecting a right-moving particle into a Luttinger liquid. The strong correlations then
lead to a partitioning of its charge e into two parts eQ+ = e(1 + K)/2 (determined by
the Luttinger parameter K) that travel in opposite directions [see Fig. 1.7]. This charge
partitioning can be motivated by a relatively simple argument [Deshpande et al. (2010)].

The injected electron with momentum kr = muvr will lead to excitations of the Luttinger

liquid that distribute the charge. The crucial point is that the latter travel with a faster
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Figure 1.7: Schematic picture of charge partitioning.

velocity ¢ = vr/K than the original particle [see Section 2.1]. Since the charge transport has

to be accompanied by a corresponding mass transport we can use momentum conservation

mor = Qimc — Q_mc (1.1)
as well as charge conservation (Q+ + Q— = 1) to determine
1+K
Qi = — - (1.2)

The Luttinger parameter K varies from 1 (non-interacting) to 0 (infinitely strong inter-
actions) for repulsive interactions. In the non-interacting case the charge would only
move in the direction of the injected particle while it is equally distributed in the strongly
interacting case.

Although the electron density in a solid is a continuous quantity, the splitting of the
injected charge is often called charge fractionalization. The reason for this is the close
connection to the fractional excitations [Pham et al. (2000)] of the Luttinger liquid. The
electrons in the Luttinger model can be decomposed into right and left-moving eigen-
modes and one can think of this as if a fraction of the electron is traveling to the right while
another one travels to the left. The charge ratio between these fractions is also determined
by the ratio Q4 /Q- and one can interpret charge partitioning as a consequence of the
fractionalization of the injected electron.?

The study of the corresponding energy partitioning is an important step to complete
the understanding of the tunneling process and can also be valuable in the ongoing
experimental verification of Luttinger liquid theory. In fact the energy partitioning might
even be easier to detect than that of the charge. The reason for this is that the measuring
contacts are not Luttinger liquids and that the backscattering at the contacts completely
masks any charge partitioning effects in dc measurements. Thinking in the picture of
fractionalized excitations, only “full” electrons can enter the weakly interacting contacts.
This makes the charge partitioning ratio trivial such that injecting a right-mover into the
Luttinger liquid leads to a single electron flowing out of the right contact. The problem of
accessing the charge partitioning in dc experiments is the underlying reason why there
are currently only indirect experimental signatures of charge partitioning [Steinberg et al.

ZNote that the reverse statement that from the charge partitioning follows fractional behavior is in general
not true.
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(2008)].

This difficulty is already well-known in the context of conductance measurements. The
dc conductance of a Luttinger liquid attached to leads is simply 2¢?/h, independent of the
interaction [Maslov and Stone (1995); Ponomarenko (1995); Safi and Schulz (1995)]. On the
other hand, the interaction manifests itself in various thermal transport properties [Kane
and Fisher (1996); Fazio et al. (1998); Gutman et al. (2009)] so that thermal conductance
takes the K dependent value G = wKT /3 (1 + Kz) . Similarly, also the energy partitioning
can be addressed directly by relatively simple spectroscopies and dc measurements.

The corresponding study of the partitioning of excess energies [Karzig et al. (2011)] will
be discussed in chapter 3 of this thesis. In stark contrast with the Fermi liquid behavior, the
energy will in general be partitioned into counter-propagating contributions whose ratio is
determined by the interaction as well as the injected excess momentum and energy. With
the large degree of control of momentum conserving tunneling experiments [see Section

1.1.1] it would therefore be possible to tune the energy partitioning ratio experimentally.

1.4 Current induced forces in nanoelectromechanical systems

Another area where non-equilibrium effects have recently played a prominent role is
that of nanoelectromechanical systems [Craighead (2000); Roukes (2001)]. Beyond being
interesting on their own right, these also provide a paradigm for systems in which the
electronic degrees of freedom are coupled to other collective modes. A central question in
this field concerns the forces exerted by the out of equilibrium electrons on the mechanical
mode(s), as well as the backaction on the electronic transport. In chapter 6 of this thesis we
address these questions for the case of quantum coherent transport within the framework
of a scattering matrix approach to mesoscopic conductors.

For a theoretical description of nanoelectromechanical systems it is important to com-
pare the relevant time scales of the electronic and mechanical motions. One possible limit
can be realized in transport through molecular junctions [for a review see Galperin et al.
(2007)], and considers electrons that stay much longer in the system than the inverse
frequency of the mechanical vibrations. In this thesis we will address the opposite case
where the mechanical motion is much slower than typical electronic time scales. This limit
is well-suited to describe the collective mechanical vibration of nano- and mesoscopic
systems. A prominent realization are suspended carbon nanotubes and recent experiments
[Steele et al. (2009); Lassagne et al. (2009)] indeed show that current induced forces [see
Fig. 1.8] have profound influences on these systems.

Specifically, these experiments observe that the electrons exert an average force on the
nanotube that shifts its vibrational frequency. Moreover, a current flowing through the
system leads to a dramatic change in the quality factor of the mechanical mode which is
caused by damping forces. The fluctuation-dissipation theorem then also suggests the

presence of fluctuating forces such that the equation of motion of the mechanical degree

11
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— b

source oate drain

source oate drain

Figure 1.8: Schematic picture of a nanoelectromechanical system out of equilibrium. A
charge traveling though a suspended wire is repelled by the electric field of a
gate, which leads to a mechanical distortion of the wire.

of freedom X, can be cast into a Langevin equation

.. ou .
MoKy + o = B = Y s X + & (1.3)
X, -

Here the left hand side of the equation describes the purely mechanical motion and the
right hand side includes (from left to right) the average, damping, and fluctuating force
that is exerted by the electrons. The corresponding dynamics is especially rich when
considering multiple mechanical modes (x = 1, ..., N) out of equilibrium [Lii et al. (2010);
Bode et al. (2011, 2012)]. In this case, the electron current can lead to non conservative
average forces. Moreover, the asymmetric part of the damping matrix 7, gives rise
to Lorentz-like forces which stem from the electronic Berry phase [Berry and Robbins
(1993)] and can cause cyclic motions of X. Note that also the symmetric part of 7,5 can be
qualitatively changed out of equilibrium such that it becomes negative and leads to the
possibility of amplifying certain mechanical modes.

Theoretical studies of these forces applied Green’s function approaches [Mozyrsky et al.
(2006); Pistolesi et al. (2008); Lii et al. (2010)] as well as hybrid Green’s functions/scattering
theories that derive scattering matrix expressions within the Keldysh technique [Bode
et al. (2011, 2012)]. The beauty of a scattering approach [e.g. the book by [Blanter (2010)]
lies in its conceptual simplicity as transport can be described by the intuitive picture of
reflection and transmission amplitudes of the electronic waves [Landauer (1957, 1970);
Biittiker (1992)]. It also provides a powerful tool to use the symmetries of a system which
directly determine the structure of the scattering matrix.

In this spirit it is highly desirable to obtain a scattering theory of current induced forces.

12
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So far scattering descriptions of nanoelectromechanical systems were only applied to
special cases [Kindermann and Beenakker (2002); Bennett et al. (2010, 2011)]. Chapter 6
of this thesis provides a direct derivation of the general scattering theory of nanoelec-
tromechanical systems eliminating the need to derive this theory via Keldysh Green’s
functions.

Besides providing a streamlined and more satisfactory derivation of the expressions of
Bode et al. (2011, 2012) the scattering approach also leads to additional insights into the
underlying structure of the theory. In fact, we show that the scattering formalism gives a
natural generalization of the well-known derivation of geometric magnetism [Berry and
Robbins (1993)] to infinite (gapless) systems. The finite dwell time that an electron spends
in the scattering region leads to a well-defined limit for an infinite quantum system which

allows for a description of dissipative forces, exerted on the mechanical modes.

1.5 Outline

This thesis will be structured as follows. In chapter 2 we introduce the basic notions of the
Luttinger model which represents the standard description of the low energy behavior
of one dimensional systems. Building on this, chapter 3 discusses energy partitioning
effects in tunneling into a Luttinger liquid. In the following we will then depart from the
Luttinger model and address relaxation effects in quantum wires (chapter 4) and quantum
Hall edges (chapter 5), which rely crucially on the nonlinearity of the electron dispersion.

Chapter 6 addresses the non-equilibrium behavior of nanoelectromechanical systems
and provides a scattering theoretical description of current induced forces.

We conclude our findings in chapter 7 and provide an outlook to further interesting
questions that are related to this thesis.

Throughout the main text of the thesis we will set the reduced Planck constant (7 = 1)

and the Boltzmann constant (kg = 1) to unity.
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2 The Luttinger model

In this chapter we will discuss basic aspects of the Luttinger model and the bosonization
technique which will be needed in the course of the thesis. The literature on Luttinger
model is extensive [for reviews see e.g. Voit (1995); Giamarchi (2004); Giuliani and Vignale
(2005)] and a complete derivation of all the required properties is not within the scope
of this thesis. We will therefore concentrate on the central ideas and the properties that
will be required in the remaining part of this thesis. The Luttinger model is motivated by
the low energy behavior of one dimensional electrons. The latter is essentially controlled
by a small region around the two Fermi points, where the electron dispersion is linear to

leading order [see Fig. 2.1].

2.1 Luttinger model Hamiltonian

As a starting point we will discuss spinless electrons in one dimension. The corresponding

Hamiltonian takes the form

H = Ho+ Hint (2.1)

1
= Zskc,tck + oL Z ch,qucZ/_qck/ck, (2.2)
k kK g #0

where the g = 0 term is excluded because it cancels against the positive background in a
charge neutral system. The mapping to the Luttinger model can now be performed by

€L

>
k

Figure 2.1: Comparison of the Luttinger model dispersion with that of non-interacting one
dimensional electrons.
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2 The Luttinger model

dividing the electrons into independent right and left-moving branches
cx = O (k) ckr + O(—k)cxe (2.3)
with linear dispersions (7 = 1)
exr = vr (Thk —kr) . (2.4)

Here O(k) is the Heaviside step function and we used T = +1,—1 = R, L for brevity.
By this seemingly harmless manipulation one introduces an infinite number of occupied
states below the Fermi energy. Although these states do not alter the low energy physics
they lead to divergences due to the infinite overall particle number. This problem is a
generic feature of relativistic theories and can be circumvented by focusing on deviations
from the “vacuum state” as already pointed out by Dirac (1930). In this case the vacuum
state is a filled Fermi sea with occupation numbers (CI,TCk,HO = O (kp — 7k) and one
should only discuss the normal ordered Hamiltonian with respect to this vacuum.
Another consequence of the infinite number of particles is that the commutator of
two density operators p;r = Y cf_ ¢-Ckr With opposite values of g does not vanish.
Interestingly this fact was overlooked by Luttinger (1963) as pointed out by Mattis and
Lieb (1965) who provided the first correct solution of Luttinger’s model. Indeed, by
separating o, - into normal ordered and vacuum parts one obtains the important relation

TL
[qupfq/,r’] = T;éqq’(sr‘r’- (2.5)

Thus, up to a prefactor the density operators obey bosonic commutation relations. This
allows one to define boson creation and annihilation operators which take the form

2
by = L@(@(q)pw+®<—q>pm- (2.6)

It was shown in a beautiful proof by Haldane (1981) that this bosonic basis is complete
and can therefore be used instead of the original Fermions. The great advantage of this
bosonization is that the interaction part of the Hamiltonian is quadratic in the densities
and therefore also in the newly introduced bosons. Moreover, one can also show that
b} (by) increases (decreases) the energy of an energy eigenstate of Hy by f:vf|q|. This leads
to the remarkable result that also the kinetic energy is quadratic in the densities, a result
which is true only for the linear dispersion. It is therefore possible to rewrite the complete

Hamiltonian in a quadratic form of the boson operators (see Appendix A.1 for details)

_ Vl(q) + VZ({]) 1t
H_’;JKvvazn lalbiby + =2 Flal (b3 g +b-gby )| , 2.7)

where V;(q) and V;(q) depend on the interaction V; and can be taken as Vi(q) = V2(q) =
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2 The Luttinger model

(Vo — Vi) /27 in the case that the Coulomb interaction is screened at some scale and Vj
remains finite (see Appendix A.1).

The quadratic Hamiltonian can then be diagonalized by the canonical transformation

b, _ cosha; —sinha, By 2.8)
bt —sinha,; cosha, B, '
to
H=1Y clq|BBg- (2.9)
970

Here the operators ; describe free plasmonic energy eigenmodes and we introduced
Va(q)|*

Vi (
Cg = \/‘14— 1 o

_ 2ﬂ0F+‘ﬁM)+‘6W)>
w = g (znvp+v1<q> V) @1

(2.10)

2.1.1 Displacement and phase field representation

For a real space representation of the Luttinger model Hamiltonian it is convenient to

introduce the displacement field

=5 Z 81gn q)e igx (bq + btq> (2.12)

and the phase field
1qx t
21} L‘q ( b,q>. (2.13)

The advantage of this representation is a close analogy to classical elasticity theory. One
can think of the field ¢(x) as the displacement of particles from their equilibrium position.
In one dimension, a change of the displacement has a one to one correspondence to a
density fluctuation and Egs. (2.6,2.12,2.13) confirm that

Vo(x) = m:p(x):=7m:pr(x)+p(x): (2.14)
Vo(x) = m:pr(x)—pr(x):, (2.15)

where the colons denote normal ordering. While V¢ describes the local density fluctua-
tions VO “counts” the difference between right and left-movers and is therefore connected
to the current operator. Moreover, V0 is the canonical conjugate (or generalized momen-
tum) of ¢ in the sense that

[p(x), VO(x')] = —imd(x—x") (2.16)
[0(x), Vo(x')] = —imé(x—x"). (2.17)
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2 The Luttinger model

With these definitions one can rewrite the Luttinger Hamiltonian in the form

H= zir/dx [K [VO(x)]2 + % Vo(x)?], (2.18)

where K is the Luttinger parameter. Eq. (2.18) is the classical field theory analog of a
harmonic chain consisting only of a kinetic part (momentum squared) and a harmonic
potential. For a connection to Eq. (2.9) the long wavelength limit of ¢ = ¢;—¢ and a = a;—
was used such that with Vi(gq) = V2(q) = (Vo — Va,) /27 we obtain

c = =+ (2.19)

1 2 [ Vo— Vax
i =4/1 4+ —2=F 2.2
I e + po (2.20)

Note that it is not straight forward to derive Egs. (2.19,2.20) from the interacting fermionic
Hamiltonian (2.2). By assuming a linear dispersion and distinguishing between right- and
left-moving electrons, one effectively takes a short-cut to a rigorous renormalization group
treatment. The latter projects the low energy behavior of the initial Hamiltonian onto the
Luttinger model but also renormalizes the coupling constants. Without knowledge of the
details of the renormalization one should regard c and K as phenomenological parameters
which should be fixed separately. The form of Egs. (2.19,2.20) can be fixed by the Pauli
principle and Galilean invariance as described by Starykh et al. (2000) (see Appendix A.1
for details).

2.1.2 Spin

Most of the arguments in the derivation of the Luttinger Hamiltonian also apply when
including the spin degree of freedom. Then the bosonization procedure is carried out
starting from spin and charge densities which are defined as asymmetric and symmetric
combinations of the spin resolved densities. In the language of the phase and displacement
fields one uses

1

Pess = ﬁ@mm) (2.21)
1
0.5 = E(GTim) (2.22)
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2 The Luttinger model

and finds that the spinful Hamiltonian splits up into two independent parts (see Appendix
A.1 for details)

_ UOcys 1 2 2
Hc/s = dx (V(Pc/s) +Kc/s (V@C/S) (2.24)
27 Kc/s
Uy A2
Hse = o2 /dxcos [2\@475} , (2.25)

which is known as spin charge separation. The contribution Hg¢ is known as the sine-
Gordon term, where A is the UV momentum cutoff of the linear dispersion. The sine-
Gordon term follows from backscattering terms of the structure CETC LTC{ LCR] which cannot
be written as density operators. A renormalization group analysis of the Hamiltonian [see
e.g. Giamarchi (2004)] shows that the sine-Gordon term is irrelevant for the low energy
behavior. In particular, the renormalization group analysis for the spin rotational invariant

case yields that the “coupling constant” Vy, flows to zero which leads to

Koo, = Kgvs = vF (2.26)
1 2Vo

— = 1+ — 2.27

K, = 1. (2.28)

2.2 Bosonization of the fermion operators

In this section we discuss how the fermionic field operators 1 (x) = 1/+/L ¥ exp(ikx)ck
can be rewritten in terms of the bosonic fields, which is required to calculate fermionic
correlation functions within the bosonization technique. The desired relation can be
obtained by studying the commutation relation of 1(x) with the bosonic fields. Using the
relations between ¢, § and the density operators [Egs. (2.14,2.15)] it is straight forward to
check that

[br/(x), V(x')] = m6(x —x")¢r/r(x) (2.29)
[Yr/L(x), VO(x')] = £m6(x —x")pr/r(x), (2.30)

which is, with a look at the commutation relations of ¢ and 0 [Egs. (2.16,2.17)], solved by
Pr/L(x) ~ elfDE@] This however is still a purely bosonic operator and has to be com-
bined with a unitary operator Ug, that acts on the fermionic Hilbert space and changes
the electron number by one. Fixing the prefactors then leads in the thermodynamic limit
to

A . .
lI)R/L(x) — \/;eilkpxel[(?(x)iqﬁ(x)] uR/L/ 2.31)
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2 The Luttinger model

where A is again the UV momentum cutoff of the theory and the Klein factor Uy, is often
omitted because it drops out in particle number conserving expressions due to its unitarity.

The corresponding field operator in the case of spinful fermions takes the form

PR (%) = 1/ % pHikex e%{[ec(x):tzpc(x)]Jra[Gs(x):i:<p5(x)}}uR/LU' 232)

2.2.1 Chiral fields

The fields 6 and ¢ contain contributions from both, the right- and left-moving eigenmodes
Bg- When studying partitioning and fractionalization effects it is beneficial to separate

these contributions and introduce chiral fields
1
0. (x) = 0(x) + 2 (x) 233)

which are expressed only in terms of right- or left-moving plasmons, respectively. The

corresponding commutation relations read

[0+(x),0+(x")] = :l:%sign(x—x') (2.34)

[0+(x),0+(x")] = 0. (2.35)

Since the plasmons are energy eigenmodes traveling with velocity c the time evolution of
the chiral fields is given by 0 (x, t) = 04 (x F ct).

From its diagonal form in terms of the plasmon operators [Eq. (2.9)] it is clear that also
the Hamiltonian can be divided into a right- and left-moving part. Applying Eq. (2.33) to
the Hamiltonian of Eq. (2.18) we find

OF

H= - / dux {[V9+(x)]2 + [ve,(x)]z} . (2.36)

7T

Current operators

The chiral fields also allow one to separate the current and density operators
j(x) = %Fve(x) (2.37)

p(x) = V() (238)

je(x) = %Wi(x) (2.39)
p+(x) = i%Wi(x)- (2.40)
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2 The Luttinger model

Similarly one can also derive an expression for the chiral energy current operators from
ik (x) =i [H,pk(x)] = —Vjk(x), with the energy density pf = vf [V04]* /47. The

result reads )

i = depli (x) = L (VO (x)] (2.41)

Fractionalization

Interestingly it is also possible to divide the electron field operators into a right- and
left-moving part. By substituting the chiral fields into Eq. (2.31) we obtain

Pry1 o Q0relQe0 (2.42)

with the same coefficients Q+ = (1 + K)/2 that also determine the charge partitioning
[see Eq. (1.2)]. This split up of the original electron operator into right- and left-moving
eigenmodes leads to the notion of charge fractionalization. These eigenmodes can also
be interpreted as free fermionic quasi-particles of the Luttinger model which are called
holons and spinons (in the spinless case there are only holons). The crucial difference to
the quasi-particles in Fermi liquids is however that the overlap of the original electrons
and the new quasi-particles vanishes, which reflects itself in a momentum distribution

function which is continuous at the Fermi momentum.

2.2.2 Holons and spinons

Holons can be introduced naturally by rescaling the bosonic fields to ¢ = ¢/+/K and
6 = VK [seee. g. Voit (1995)] which leads to a Hamiltonian of the form

H= " / dx ([V8()]* + [VH()) (2.43)

where we focused on the spin independent problem (spinons can be defined analogously).
This Hamiltonian describes a non-interacting (K = 1) fermionic systems with vr = c.
Reading the bosonization formular [Eq. (2.31)] backwards then leads to the definition of

the corresponding free fermions
P ol [0()EG(x)] _ GivVEKE: (x) (2.44)
which are called holons. The corresponding density operator can be expressed as
LR () s+ P (- (x) == VRV (). 2.45)

The mass and charge of the holons is therefore renormalized by a factor of v/K. This would
lead to a more tedious form of the prefactor in Eq. (2.44) which we circumvent by defining

the holons as dimensionless. The original Fermion operator can then be rewritten in terms
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2 The Luttinger model

of the holons as

A g o %
PrsL(x,t) = \/; P [ (o, )] [ (s, )] (2.46)

with 4 = eiVKO:(x) and similarly Q )/ VK = cosha(sinh a).

2.2.3 Correlation functions

The advantage of the representation in terms of holons and spinons is that this allows for

a fast calculation of correlation functions. The holon Green’s functions are simply given

by the noninteracting expressions’

~ - - i/A
~ - - i/A
—iGI(x,t) = <¢1(0/0)¢’i(3€, t)> = <:Fx+lc{t+1//\> : (2.48)

Here we focus on the T = 0 behavior. The finite T expression follows by substituting
(£x —ct) by Ly sinh [(£x — ct) /Lt|, where Lt = ¢/ T describes the length scale beyond
which the correlation functions start to decay exponentially. Using Eq. (2.46) and the fact
that ¢ with different chiralities commute it is then possible to write the correlation function

of the original electrons as

: A +ikpx /7 cosha 71 cosh a 7 sinha 71 sinh a
GRyn (0 1) = =i —e 0 (i (x, )R (0,00°° ) (s (x, 1)t (0, 0)77he )
(2.49)
Since the fields ¢ are exponentials of free bosonic operators we can use the independent
boson theorem [for a prove see e.g. Giuliani and Vignale (2005)]

<ezi(xl'/3;r+}/i,3i)> _ e% i (xiBf+viBi)?) (2.50)

to realize that ,

(P11 ) = (fuil) 251)

With the known correlation functions of i we can then immediately write down

cosh” « sinh” a
GryL(xt) = Aeiik” __ A . VA - , (2.52)
27 +x —ct+1i/A +x+ct—1i/A

where the lesser Green’s function can be obtained from Gz, (x,t) = —Gg,; (—x, —t).
With the knowledge of the Green’s function we can derive the spectral function

Arn(nt) = o ({prn (e 0,980 0.0)}) = o (Giu(nh) ~ Giu(xh)  @59)

INote that a missing factor of A/27 is due to the dimensionless definition of .
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2 The Luttinger model

Figure 2.2: Right-mover spectral function (blue) for v = 0.2 in comparison with the non-
interacting spectral functions (dark red). The right part shows a cut along the
dotted line.

as well as its Fourier transform

Agsr(k,w) = / dt / dxel = ) Ap 1 (x,1) (2.54)
1

1
7T (7)? <20A

where I' denotes the Gamma function and we introduced

2
> lw T ck|" " w+ck|"O (Jw| —clk]), (2.55)

1 1
ety — s (L
v = sinh 1x—4<K 2+K>. (2.56)

A plot of a typical spectral function can be seen in Fig. 2.2. The algebraic behavior of the
spectral function differs dramatically from a Lorentzian quasi-particle peak and reflects
the strongly interacting nature of the Luttinger model. Integrating over different momenta
yields the local tunneling density of states

I/R/L((U) = ;I;AR/L(I(,(U) (257)
_ 1 |wl >27
vr/L(w) = AT (L 57 c <2C A (2.58)

that (also in contrast to the Fermi liquid) vanishes as w — 0. This is known as zero bias
anomaly.
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2 The Luttinger model

Figure 2.3: Right-mover spectral function (for . = 0.2) in the spinful case. The right panel
shows a cut along the dotted line. Also in the spinful case, the power law
structure of the spectral function shows the absence of Fermi liquid like single
particle excitations.

Spinful case

For spinful particles in a spin rotation invariant system the spectral function takes the
form [Voit (1993)]

-1
(w — Upk)%i% w—vk|' T w > vk

Ar(k, w) o (2.59)

Te
2 ,w < —uck

(—w — vrk)
with 7, = (K. — 2+ K1) /4 and we focused at the case k > 0. A plot of the typical form of
the right-mover spectral function is shown in Fig. 2.3. It exhibits power law singularities
along the holon and spinon dispersions which resemble peaks around the right-moving
holon and spinon mass shell for not too strong interactions. Note that the spectral function
vanishes between the left-moving spinon and holon dispersion. This is a consequence of
the spin rotational invariance which leads to Ks; = 1. One can think of K, /s as determining
the ratio of the fractional right- and left-moving holons/spinons that are “contained” in
an original right-moving electron [see Eq. (2.46)]. For K; = 1 this simply means that
right-moving electrons do not contain left-moving spinons and can therefore only excite
holons and right-moving spinons in a tunneling process, which leads to the asymmetric
distribution of finite spectral weight.
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3 Energy partitioning of tunneling

currents into Luttinger liquids

In the Fermi liquid picture of the electron tunneling process one expects that injecting,
say, a right-moving particle introduces a right-moving quasi-particle excitation. The
latter carries away the excess energy and momentum of the injected electron, while
the charge distributes isotropically on the fast plasmon time scale. In one dimension,
plasmon excitations and single particle excitations cannot be distinguished. This leads
to the collective Luttinger liquid behavior and an unusual charge partitioning which is
connected to the fractional excitations of the highly correlated state [see Egs. (1.2,2.46)].
This chapter discusses that strong interactions also lead to a partitioning of energy currents
and is based on Karzig et al. (2011).

In contrast to the charge, partitioning of energy can be measured in dc transport setups
and spectroscopies which makes it easier to access. The reason for the trivial dc charge par-
titioning ratios are backscattering effects at the measuring leads, which will be discussed

in the following.

3.1 Backscattering at Fermi liquid leads

We start with considering spinless fermions and model the interface between the Luttinger
liquid and the Fermi liquid leads by a position dependent Luttinger parameter K(x). It
changes at the interface on a length scale w from its Luttinger liquid value K(x) = K to
K(x) = 1, which describes the weakly interacting lead. This model, was already studied
extensively in the literature in the context of the dc conductance [Maslov and Stone (1995);
Safi and Schulz (1995)], the thermal transport [Fazio et al. (1998)] as well as recently in
the out of equilibrium extension of bosonization [Gutman et al. (2009, 2010a,b)]. Here we
recast some of these results in terms of a simple scattering picture.

3.1.1 Charge currents

In realistic samples w will be much larger than the Fermi wavelength, which is typically of
the order of the width of the wire. This leads to an absence of backscattering of individual
electrons at the interface and thus conserves the number of right- and left-moving electrons.
After a time much larger than L/c (L being the length of the Luttinger liquid and c the
holon velocity) the excitations introduced by an injected right-moving electron have left
the interacting region. Due to the conservation of the number of right- and left-movers
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Figure 3.1: Schematic picture of charge backscattering in a Luttinger liquid with leads.
(a) shows the resulting trivial charge partitioning in the leads. (b) depicts the
Luttinger liquid /lead interface and the corresponding current conservation.

this is only possible when a single right-mover exits into the right lead, yielding the trivial
noninteracting charge partitioning ratio [see Fig. 3.1a].

It is instructive to understand this simple argument also in terms of backscattering of the
charge carrying eigenmodes (holons) of the interacting system. Consider a corresponding
current Q c incident on the interface from the Luttinger liquid side [see Fig. 3.1b]. After
scattering at the boundary the current splits up into transmitted and reflected parts Q, tour
and —Qrqc, respectively. The conservation of the number of right- and left-movers is
equivalent to current conservation (before and after hitting the interface) and requires
¢ = tor — rc. Together with the charge conservation condition 1 = rg + to we can solve

1—-K

- = 3.1

Q 1+K (1)
2

-t 2

fo 1+K (3-2)

The overall charge QY leaving into the right and left leads can be obtained by summing

over all possible elementary scattering process which resemble a geometric series of the

form
QL = (Qito+Qrroto) (1+7d+rh+..) (3.3)
Q) = (Q:+Qsro) 7% (34)
If we now use the known charge partitioning ratio Q+ = (1 £ K)/2 we find
0 1

which indeed shows that all the charge will exit into the right lead when injecting a
right-moving electron. Note that it is crucial that the reflection amplitude rq is negative
to cancel the left-moving contributions of the current. This in turn already indicates a
crucial difference for the corresponding backscattering of energies. Since there is nothing
like a backscattering of negative energies, a nontrivial energy partitioning ratio after the

tunneling process will result in nontrivial energy currents exiting into the leads.
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3 Energy partitioning of tunneling currents into Luttinger liquids

3.1.2 Energy currents

The influence of the Fermi liquid leads on energy partitioning can be described in terms of
the scattering behavior of the plasmons which carry the energy current. For an interface
which is smooth on the plasmon length scale, the plasmons are adiabatically transmitted
to the leads and the energy partitioning can be directly probed by measuring the heat
currents flowing into the leads. Note however that the plasmons are the low energy
excitations in a Luttinger liquid and their typical wavelength is therefore much longer
than the Fermi wavelength. Assuming a smooth interface for the plasmons is therefore
more demanding than for the electrons. Moreover, since there is no lower bound to
the plasmon momentum, there will be plasmons for every given w that behave as if the
interface was sharp.

In the low energy limit the interface can therefore be modeled generically as K(x) =
KO(—x) + O(x). The abrupt change causes backscattering of plasmons in a similar way to
that of photons at an interface between two materials with two different refractive indices.
In both cases, free bosons change their velocity abruptly and one can indeed obtain the
plasmon transmission and reflection probabilities from the well-known Fresnel equations
as we will show in the following.

The interface can be described best in the real space representation of the bosonic fields
whose time evolution is governed by the Hamiltonian [see Eq. (2.18)]

H= 2 / dx <[V9(x)]2 o &)z [Vcl)(x)]Z) | (3.6)

The fields fulfill the commutation relations [V8(x), p(x')] = [V (x),0(x")] = imd(x — ')
[see Egs. (2.16,2.17)] from which we obtain

orp(x,t) = i[H,¢p(x,t)] = —vpVO(x,t) (3.7)
90(x,t) = i[H,G(x,t)]:—szi)qub(x,t), (3.8)

where the time dependent fields can be obtained by replacing the operators B, by B, (t) =
e ¥ B, in their definitions [see Eqs. (2.12,2.13)]. Decoupling the equations of motion then
yields the wave equations

2
(a%-v(%) v) p(x,t) = 0 (3.9)

2 ( Ur ? 2 _
(at <K(x)> Velo(x,t) = 0, (3.10)

from which we can deduce the behavior of the fields at the interface (x = 0). Despite the

jump of K(x), the relations above imply that 8, V6, and ¢ are continuous at x = 0, while
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3 Energy partitioning of tunneling currents into Luttinger liquids

V¢ jumps as

Vo) —vp(0r) . (3.11)

In the spirit of standard scattering theory, we now use these conditions to match “wave-
functions” left and right of the interface. For a given energy, say w,; = cq these “wavefunc-
tions” are formed by the plasmons S, in the interacting region to the left of the interface.
In the Fermi liquid leads however the same energy is reached at higher momenta with
corresponding plasmons b, k. For g > 0 the incoming waves are given in terms of ; and

b_q/k while the outgoing operators can be obtained by a 2 x 2 scattering matrix' via

By = rBytth ok (3.12)
bq/K = tlﬁ[]—l-rlb,q/K. (3.13)

We now use the definition of the fields ¢ and 6 [see Eqgs. (2.12,2.13)] to determine the
reflection and transmission coefficients. The fields can be written as

1 L [*® 1 : _i
¢(x) = ®(—x)21\/;/0 dq\/;v K [e"By —e B4 — Huc.] (3.14)
1 L [® 11 ; gy
x>21\/;/0 dg aﬁ [eqx/Kbq/K_e q /Kb_q/K—H.C.}

1 L o 11 . i
0(x) = @(—x)i\/ 271/ deﬁ [el"xﬁque "B—q _H-C-] (3.15)
21“ / qu/Kbq/K—i—e igx/Kp, /K—HC}.

From the continuity of ¢, 0, and V6, as well as the well-defined jump of V¢, we then find

and

. L_LIIE (3.16)
Foo= ilf (3.17)
t o= 1iK (3.18)
t = 12fK (3.19)

The fact that r = rg and t = tg can be understood in the following way. The right- and
left-moving (particle) current operator is linear in the bosonic fields, and given by [see Eq.
(2.39)] I+ (x) = % V0+(x). Since an incident plasmon is reflected as B, = rB_; + tb,/k, the

INote that the scattering matrix in this form is not unitary because the waves corresponding to the boson
operators are not normalized to unit flux. Defining the scattering matrix as a transformation between
ﬁq, —= ,q sk and B —q fbiq /k then indeed satisfies the unitarity condition.
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3 Energy partitioning of tunneling currents into Luttinger liquids

plasmon reflection and transmission amplitudes directly determine the charge reflection.
The energy currents however depend quadratically on the plasmon operators via [see Eq.

(2.41)]

2
UF

ji(x) = i47ﬂ<(x)

[V (x)]? (3.20)

and are therefore determined by the plasmon reflection and transmission probabilities.

Thus, reflection and transmission coefficients for the energy current take the form

1—-K\?
T’E — 7’2 — (1_”(> (321)
4K
tr = K2 = T (3.22)
+

which indeed coincides with the Fresnel formulas when setting v; = ¢ and v, = vr (or
alternatively the refractive indices n; = K and n, = 1). Note that the analogy to optics can
even explain the backscattering of negative charges. When going from the Luttinger liquid
to the Fermi liquid leads, the refractive index increases from K to 1. In optics this leads to
a phase shift of 77 which yields negative reflection amplitudes that cause the charges to
cancel.

However, since rg is positive this is not possible for the energies and introducing right-
and left-moving energy excitations ¢+ in the Luttinger liquid will lead to an energy flow
¢} into both leads. The latter can be calculated in the same way as for the charges by
taking into account all possible multiple reflections [see Eq. (3.4)]. The result reads

0

e = (ex+exre) (3.23)

1-1-1’15/

and can be used to determine the initial energy partitioning from the heat currents into
the Fermi liquid leads.

3.1.3 Thermal conductance of a Luttinger liquid

The above reflection and transmission coefficients are already sufficient to calculate the
thermal conductance of a Luttinger liquid in a transparent plasmon scattering picture.
As derived in section 2.2.1 the energy current operator of the Luttinger liquid takes the
intuitive form j§ (x) = +cp} (x) [see Eq. (2.41)]. The expectation value averaged over a

homogeneous system is thus given by
1
-E o 1 +
<]i> = j:L Eq Cwq <,Bq,8q> , (3.24)

which can be obtained by comparison with the Hamiltonian (2.9) in terms of the plas-

mon operators ;. Introducing the Bose distribution function <5$5q> = np(wy) =

(exp(wq/T) —1) ~and using the plasmon density of states L/27c, we then obtain the
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3 Energy partitioning of tunneling currents into Luttinger liquids

simple relation

<j§[> -4 (;ang(w). (3.25)

The overall thermal current through a Luttinger liquid with sharp non-interacting leads is
then given by

(i*) = / Czk;w’fg(mt) [ (w) = ng (w)], (3.26)

which resembles the structure of the well-known Landauer formula. Now, using T, =

T_ + 6T and expanding in small 6T leads to the thermal conductance

Gr = 7'E(t°t)%T. (3.27)
The total transmission probability can be determined by summing up a geometric series
similar to the above expressions. The result reads

o _p 1 _ 2K 3.28
e =g T e (3.28)
which determines the thermal conductance of a Luttinger liquid to be
T K
=———T. 2
Cr=317ral (3.29)

As mentioned before this result does depend on the interaction in contrast to the charge
conductance which is given by G = ¢?/ 7t (note that h = 271) [Maslov and Stone (1995);
Safi and Schulz (1995)]. In fact, the thermal conductance even vanishes in the strongly
interacting case K = 0, while for K = 1 it indeed reduces to the Wiedemann-Franz law
Gr = GT7?/3¢%. Interestingly, this relatively simple derivation reproduces the result that
was only recently obtained in a non-equilibrium functional bosonization study [Gutman
et al. (2009)].

3.1.4 Spin

When considering spinful electrons, there are two different interaction parameters K. ;.
Since the charge is only carried by one of the modes, the argument for charge backscat-
tering stays the same and one simply has to replace K by K.. Energy however, can be
transported by spin and charge modes. In the spin rotationally invariant case, K; = 1 and
a part of the excess energy from injecting a right-moving electron can be used to excite
spin excitations that leave from the Luttinger liquid into the leads without backscattering.

We therefore find X
eer(1+K)? + e+ (1—-K)
2(1+K?)

& = + €5, (3.30)

with &, = 0. The energy current injected into the left lead is therefore independent of the

spin excitations, when injecting right-moving electrons.
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Figure 3.2: Schematic picture of energy partitioning, when injecting a momentum eigen-
state. The right panel shows the projection of the injected state onto the right-
and left-moving excitations. The shaded background represents the Luttinger
liquid’s spectral function.

3.2 General expressions for charge and energy partitioning

With the motivation that energy partitioning survives even including backscattering effects
at Fermi liquid leads, it is now left to discuss the energy e of the initially induced right-
and left-moving charge excitations. We start with discussing spinless electrons to avoid
unnecessary complications.

It will turn out that energy partitioning depends crucially on the state of the injected
electrons (e.g. local or momentum resolved). The main results can already be understood
by a simple energy and momentum conservation argument if the electron tunnels into the

Luttinger liquid as a momentum eigenstate.

3.2.1 An energy and momentum conservation argument

Consider inserting a right-moving electron with energy ¢, above the Fermi energy and
momentum movr + ki, into the Luttinger liquid. The excess energy will be distributed
by exciting right- and left-moving plasmons with overall momentum k. and energy
e+ = c|k+|. From energy and momentum conservation we then find

ein = clky|+clk_]| (3.31)
mop +kin = Qymc—Q_mc+ky+k_. (3.32)

The terms involving the electron mass describes the zero energy part of the right- and
left-moving holon momenta and is in line with the charge partitioning argument, which
stays untouched. We can therefore solve the remaining part involving the excess energies
and find

i = 5 (ein ckin) (3:33)

which is illustrated in Fig. 3.2.
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Figure 3.3: Schematic view of an extended source. The magnetic and electric fields can be
used to shift the dispersions of the wires relative to each other. The right panel
shows an example where the upper (source) wire only injects right-moving
electrons into the lower wire.

Energy partitioning is therefore entirely independent of the fixed charge partitioning,
and can be tuned to arbitrary values by varying the injected state, i.e. experimental
parameters. In fact, when the momentum of the injected right-moving electron is smaller
than the Fermi momentum (ki, < 0), and its energy close to c|kin|, Eq. (3.33) implies that
essentially all its excess energy is propagating to the left, while most of the charge moves
to the right. A crucial ingredient in this result is the interaction-induced broadening of
the Luttinger liquid spectral function which allows for injecting particles away from the
mass shell. In a non-interacting system the spectral function would be a delta peak at the
right-mover dispersion and no left-moving excitations would be excited.

The conservation law argument provides a simple picture of energy partitioning in terms
of projections onto the right- and left-moving plasmon branches [cf. Fig. 3.2]. However,
tunneling particles will in general not be momentum eigenstates and the associated
superposition of different momentum states requires to calculate the energy current in a
more formal approach. We will start with the instructive example of the particle current
for tunneling into a Luttinger liquid.

3.2.2 Particle current

We consider the Hamiltonian
OF 2 2
H= in /dx {[V&(x)] + [VO_(x)] } + Hrr, (3.34)

where Hrg describes tunneling of right-moving electrons between a source and the Lut-
tinger liquid. In the following we will discuss the two extreme cases of an extended long

source wire and local tunneling.

Extended source

We consider a long extended source of length Ls which can be realized in experimental
setups of two parallel quantum wires [see Barak ef al. (2010b) and Fig. 3.3]. Assuming
that the dispersion of the source wire only couples to the right-moving electrons in the
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Luttinger liquid [see Fig. 3.3], the tunneling Hamiltonian takes the form

Hie =t [ dx [yk(0ys() + ¥ ()9e()] (335)

where [ denotes an integral over the length of the source and t is the tunneling amplitude.
We will define the injected right- and left-moving particle currents I as the change of the
integrated chiral density [ dxp(x) due to the tunneling, which can be expressed as [see
Eq. (2.40)]

L = c?t [/ dxpi(x)] =i [HTR,iZI;/deVGi(x)} . (3.36)

From Egs. (2.14,2.15) we can find the useful relation

V6o (x) = £ [Qu pr(x): +Qs 1 ()] (337)

Since Hrr contains only right-moving electrons the commutator involving pr(x) =
¥ (x)yL(x) vanishes and the current takes the form

I = Qul. (3.38)

Here, I can be evaluated with the fermion commutation relations? and yields

1= =it [ph()ps(x) - pE()pr(x)] (3.39)

The result in Eq. (3.38) implies that charge partitioning can already be described on the
operator level and is thus independent of experimental details that are involved in the
expectation value of I. For a comparison to the energy currents it is however helpful to
evaluate (I) which can be done to leading order in the tunneling by

(I = —i/ldt’([[(O),HTR(t’)D (3.40)

0
= /oo dt//Sdxdx/2§R<¢R(x/,t/)lp'lr{(x)qjg(x/’ tl)IPs(X) (3.41)
—lP;{(x)wR(x/, t')l/)g(x)l/lg(x', t/)>eith’ ,

where R denotes the real part and we included the chemical potential into the time
dependence. The latter can be accounted for by replacing () — y(t)e " and using that
the source chemical potential yis = p + eV is shifted by the applied bias V. The expectation
values in the source and in the Luttinger liquid can then be evaluated separately in terms

ZNote that the constant that is subtracted for the normal ordering commutes with Hrg.
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of the Green’s functions

iG™(x,t) = <¢(x, t)¢*(0,0)> (3.42)
—iG<(x, 1) <¢*(o,0)¢(x, t)> (3.43)

and one finds

(I) = Lef2R / " / dx [GE (1) G5 (—x, —') — G (1,¢) GZ (—x, —#')] &<V |
o (3.44)
The integral over time can be extended via 2R | Em dt — [*_dt by noting that the Hermi-
tian conjugation implied by R transforms the Green’s functions such that (iG> (x,t))" =
(¥(x,t)9*(0,0) >+ = (9(0,0)y’(x,t)) = iG”(—x,—t) which is equivalent to shifting
t — —t. Finally we Fourier transform G(x,t) = [ &k dweilkx—wt) G (k, w) and represent our
result with

iG”(k,w) = 2mA(kw)(1— f(w)) (3.45)
—iGS(k,w) = 2nA(k,w)f(w), (3.46)

in terms of the spectral function A(k,w) and Fermi function f(w) = [exp(w/T) +1]7! as
(I) = £*Lg / dkdwAg (k,w) As (k,w — eV) [fs(w —eV) — f(w)]. (3.47)

Here, fs denotes the Fermi function at a source temperature Ts that can be different from
T. Eq. (3.47) is a well-known and quite general result for the tunneling current and it
allows for a simple interpretation. Eq. (3.47) describes both, tunneling into and out of
the wire, depending on the sign of eV. For positive eV it is an average of states with
energies such that the source is occupied and the wire is empty weighted by the overlap
of the spectral functions of wire and source. In the case of a non-interacting source with
dispersion ¢, = €} — eV (¢} is the energy of a particle in the source measured relative to
1) the spectral function takes the form Ag(k,w) = d(w — €x). Then, the tunneling current
probes the spectral function of the Luttinger liquid via

<1<0>> = L / dkAg (k,ei) [f(si —eV) - f(si)] . (3.48)

Experimentally one often measures d (I) /dV to obtain (for small temperatures) directly
the spectral function as

W)
d(eV) = 27t VsAR (kv,BV) . (349)

Here ky is determined by siv = eV and vg = Lg/(270xey) is the density of states of the
source wire. Note that in the double wire geometry of Barak et al. (2010b), changing
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the voltage V requires an additional adjustment of the magnetic field B such that the
dispersion ¢; stays fixed and only the chemical potential of the source is altered.
Local source

Even for local tunneling it is possible that the source mainly couples to the right-moving
electrons of the Luttinger liquid, as we will discuss later. For now we simply assume that
the local source can be described by the tunneling Hamiltonian

Hrg = toe [h(x = 0)ips + pipr (x = 0)] (3.50)

(with t,. having the units energy x |/length). In contrast to the extended case, the source’s
spectral function Ag(w) is local and describes the tunneling density of states. A similar
calculation as in the extended case leads to

I = 2. / dk / dwAg (k@) As (W — eV) [f(w —eV) — f ()] . (351)

In the case of tunneling from a single level at energy ¢y measured relative to u we set
Ago) (w) = 6(w — [eg — eV]) and

(100) = 278 wr(e0) [f(eo — V) — f (e0)] (3.52)

directly measures the tunneling density of states vr(¢o) f S kA R (k,€0). This density
of states vanishes in a Luttinger liquid with a power law vg(w) « w?" [c¢f. Eq. (2.58)]
which is known as zero bias anomaly. There is a distinct difference between the finite
Vg(w) in the non-interacting case where 7y = 0 and the zero bias anomaly for any finite
v > 0. This shows again that it is not possible to describe the low energy behavior in a
perturbative expansion in the interaction strength, due to the strongly interacting nature

of the Luttinger liquid.

3.2.3 Energy current

Using the Hamiltonian (3.34) we will now calculate the injected right- and left-moving
energy currents by going through the same steps as in the case of the particle current.

Extended source

The injected energy current is defined as the change of the right- and left-moving energy

due to the tunneling Hamiltonian

F = —Ei =i / dx [HTR, / dx— (VO (x)]?] . (3.53)
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Evaluating the commutator we then find

18 = £3:0 [ dx ({9h(o), V00 } ps(6) = 930 {0, V020 }) . (350

where the curly brackets denote the anti commutator. This expression is strikingly different
from the particle current [Eq. (3.38)] in the sense that I£ and I£ are described by different
operators and not simply by a change of prefactor. It is therefore essential to discuss
partitioning at the level of the expectation value

(18) = i /_Owdt'<[1£,HTR(t’)}>, (3.55)

which makes energy partitioning dependent on details of the tunneling state and therefore
experimentally tunable. In similar steps as for the particle current the expectation value
can be written as

<I£> = Fet’QslLs /_ " ar /5 dx’ 656
é)%( <{llf?z(0,0), VGi(0,0)} Pr(¥, t’)> <1Ps(0,0)z/1§(x’, t’)> oi'eV

_ <1PR(x’, t') {¢£(0,0),V91(0,0)}> <1P§(x/, t/)lPs(0,0)> eit’eV) .

The more complicated expectation values that contain the bosonic and fermionic fields
can be efficiently computed by writing ¢}, ~ e (Q+4+V8:+Q-4-V0-) ‘i terms of formal
derivatives with respect to the auxiliary operators A = V1. Then by tracing the
modifications due to A+ in the standard calculation of the Luttinger liquid Green function
[see Appendix A.2] we find that the resulting energy current can be written as

<1§;> - tZQKiLs /Ooodwq/dk/des (k,w —eV) (3.57)
X{AR (kFqw—w,) [{1 —f(w—wy)} fs(w—eV)

p(wg) {fs(@ = eV) = (0 — @)}
+AR (kg0 +@y) [f (@ +wy) {1 = folw—eV)}

) (f () St~ ]}

-1, e .
where ng(w) = (/T —1) " is the Bose distribution function and we used w, = cq.

Eq. (3.57) is the main result of this section. At zero temperature it describes energy transfer
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Figure 3.4: Overlap of the occupied states on the non-interacting source wire dispersion
(blue) and the Luttinger liquid’s spectral function (shaded background). The
velocity of the source wire dispersion was chosen as vs = c.

to the Luttinger liquid by spontaneous plasmon emission while tunneling into or out
of the Luttinger liquid (24, 4t line). At finite temperature the 3" and 5t line capture
stimulated plasmon emission as well as a possible cooling of the Luttinger liquid (negative
energy current) via plasmon absorption. The structure of Eq. (3.57) is more involved than
for the particle current because of an additional integral over the right- and left-moving
plasmon modes that can be excited or annihilated during the tunneling process.

Non-interacting extended source

To elucidate the above result for the energy current we will now consider tunneling from a
non-interacting source into the Luttinger liquid (eV > 0) at zero temperature. The spectral
function of the source Ago) (k,w) = 6 (w — & + eV) then simply replaces w in Eq. (3.57)
by the source’s single particle dispersion ¢; measured relative to the Luttinger liquid’s

chemical potential y. The corresponding differential energy current then takes the form

d If:(o 2 eV
§<eV)> - tz%Ls/o dwgAr (kv F 4,6V —w,) , (3.59)

which can be evaluated with the Luttinger liquid spectral function [see Eq. (2.55)] and
indeed reproduces the result of the energy and momentum conservation argument (3.33)

d < Ii(°)> . d < 1<o>>
W = E (eV:i:Ckv) d(eV) . (3-59)

The differential energy current d <Ii(0)> /d(eV) is therefore a direct probe for the energy
partitioning of energy and momentum eigenstates. The overall energy current is then
given by the average over all occupied states on the source wire’s dispersion [see Fig. 3.4]
weighted with their tunneling probability, which is controlled by the Luttinger liquid’s
spectral function. For voltages close to the threshold eV = cky the left-moving energy
current vanishes. Increasing the voltage then leads to more and more energy flowing to
the left. Due to the fact that the spectral function only decays slowly with the distance
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Figure 3.5: Overlap of the spectral functions of the source (blue) and drain (black) wire,
focusing on the region where the source is occupied and drain is empty. The
velocity of the source wire dispersion was chosen to cs = c.

to the right-moving plasmon dispersion, it is even possible to reach the regime I£ > I%.
This can be illustrated by choosing a source dispersion ¢} = 2¢ (kv) — ck which intersects
the right-moving plasmon dispersion at energy e (ky) = (V +cky)/2 = &4 and is
parallel to the left-moving plasmon dispersion [see Fig. 3.4]. The spectral function then
becomes proportional to (ck — e, )7 '’ and the injected right-moving energy takes the k
independent value € (k) = ¢4 while e_ (k) = (ck — €. ). Integrating over ck up to eV then
yields

E g y+1 ey in

IE eV—e, vy eV—e, Q%

(3.60)

The energy current ratio IF /IE can thus be tuned by the voltage to take in principle
arbitrary values. Note that reaching the regime I% /IE < 1 requires higher and higher
voltages if the interaction becomes weaker and Q_ = 0 indeed yields the non-interacting

result of a vanishing left-moving energy current.

Interacting Luttinger liquid source

If the source wire is also an interacting Luttinger liquid, the energy current is controlled
by the overlap of two Luttinger liquid spectral functions as depicted in Fig. 3.5. The
finite broadening of the source’s spectral functions leads to the fact that d (I£) /d(eV) is
not only probing the state at (ky, eV) such that the differential energy current does not
reproduce Eq. (3.59).

Making the source interacting does not introduce any qualitative changes in the behavior
of the energy current. Specifically, the left-moving energy current is again enhanced by
increasing V, while fixing the point where the mass shells of left- (source) and right-
moving (drain) plasmons intersect. Setting the velocities and Luttinger parameters of
source and drain wire equal, the energy currents read

Qi

1
<1§> = 5 (eV £cky) g {ay, (3.61)

which shows that Eq. (3.60) also holds for an interacting source.
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Local source

The energy currents in the case of a local injection of right-moving electrons can be directly
read off from the nonlocal results of Eq. (3.57) by setting t*Ls — tlzo . and using the local
form of the source’s spectral function As(k, w) — Ag(w). The crucial difference to an
extended source is that the integrals over the spectral functions then become independent
of the direction of the transferred plasmon momenta g and the energy currents only differ
by the prefactor Q%, such that

<1§;> - Qzﬁfin_ <1E> : (3.62)

Unlike for nonlocal injection, the local energy partitioning thus only depends on the
interaction constant, but it is still distinctly different from the charge splitting. This
difference can be traced to the fact that the charge density is linear in the Luttinger liquid
fields, while the energy is quadratic. Note that also in contrast to charge partitioning,
Eq. (3.62) only holds on the level of expectation values and is not an operator identity.

Local tunneling spectroscopies can be described by considering tunneling from a single
energy level at ). The total energy current then takes the simple form (If) = ¢y (I%),
where (I°) is the local tunneling current given by Eq. (3.52).

3.3 Experimental consequences of energy partitioning

We now turn to experimental signatures of energy partitioning, emphasizing that unlike
charge partitioning, it is not masked by the presence of Fermi liquid leads.

3.3.1 Local injection into quantum Hall edge states

The local injection of electrons with a definite chirality is in principle possible in quantum
Hall systems as well as two dimensional topological insulators. In the latter, the edge states
form a helical liquid [Wu et al. (2006)]. Helical liquids behave similarly to Luttinger liquids
with the crucial difference that the right- and left-moving electrons have opposite spin.
With a spin-polarized tunneling source, it is therefore possible to inject chiral electrons,
which leads to partitioning effects as in a Luttinger liquid, due to the Coulomb interaction
between the opposite spin directions [Das and Rao (2011)]. Energy partitioning can then
be detected by measuring the different amounts of heat current that flow to the leads that
are positioned right and left of the tunneling source.

The transferred heat to the leads may be addressed most conveniently in a quantum Hall
geometry [see Fig. 3.6]. We consider two close-by quantum Hall edge states, which are
coupled by the Coulomb interaction between them. Since tunneling depends exponentially
on distance, it is possible to tunnel into only one of the edge modes, corresponding to only
injecting only right-movers in the non-interacting case. Increasing the distance between

the edges far from the tunneling source effectively switches off the interaction and leads to
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Figure 3.6: Local injection into one of two close-by quantum Hall edge channels. The
figure indicates both the initial splitting of charge and energy at injection and
the resulting splitting in the Fermi liquid leads.

backscattering of the charge currents [Berg et al. (2009)]. This is associated with the trivial
charge partitioning as discussed in section 3.1.1.

On the other hand, the energy partitioning remains nontrivial after multiple reflections
from the Luttinger-liquid-lead interfaces. These reflections only cause a quantitative
change and the energy currents flowing into the right and left leads are T It + RIE
and RI E + TIE, respectively. With the knowledge of the interface it is then possible to
determine the original energy partitioning, even when measuring in the leads. For an
interface which is smooth on the scale of the plasmon wavelength the reflections can
be neglected completely because 7 = 1 and R = 0. Assuming the opposite limit, the
injection energies are sufficiently small such that the Luttinger-liquid-lead interfaces can
be treated as being abrupt, where we have 7 = 1/(1+rg) and R = rg/ (1 + rg) [see
Eq. (3.23)].

In the non-interacting region, it is possible to directly probe the electron distribution
functions in the outgoing edge channels by tunneling spectroscopies [Altimiras et al.
(2010a)] as indicated in Fig. 3.6. With the knowledge of the electron distribution function
one can then deduce the different energy currents carried by the right- and left-moving
modes.

3.3.2 Momentum conserved tunneling

Momentum conserved tunneling allows for an even more striking manifestation of the
energy partitioning. For nonlocal injection, the right- and left-moving charge excitations
have different maximal energies, given by e | = (1/2)(eV +cky) and ek ., = (1/2)(eV —

cky) when injecting right-movers. Here, we assumed for definiteness that the source wire
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Figure 3.7: Nonlocal injection by momentum-conserving tunneling between parallel quan-
tum wires. The quantum dots to the left and right of the injection region serve
to probe the energy partitioning.

has a larger charge velocity than the lower wire. Note that these maximal energies remain
valid even for an interacting source, cf. Fig. 3.5.

These results can be tested experimentally in some detail in the setup sketched in Fig.
3.7, in which the Luttinger liquid is probed by single-level quantum dots both to the
left and to the right of the injection region. First, consider a long Luttinger liquid in the
absence of Fermi liquid leads. In this case, the maximal energies of right- and left-moving

excitations are directly observable as thresholds in the current flowing into the quantum

dots. Indeed, current can flow into the quantum dots with gate-tunable dot level eX/F

as long as eR/l < eR/L.

only

In the vicinity of the threshold, the charge currents into the quantum dots will exhibit a
R/L _ ¢R/L Extending the approach of Takei et al. (2010) to the

power-law dependence on e/ — €54t

nonlocal injection of electrons of definite chirality, we find for the injection of right-movers
that [see section 3.4]

dIR/dV o« (efax — Eout) (3.63)

dlL/dV o« (e, — ek )?2V10-D), (3.64)
where Ig,; denote the charge currents into the right and left quantum dot. These results
are valid for a noninteracting source. The presence of an interacting source modifies the
form of the threshold exponents and we find in the case that the source and drain wires
are identical (Ks = K, ¢g = ¢) that

dIr/dV o (8§nax_8§ut)27_1 (3.65)
Al /dV o (eb  —ek )P 2vrlmDHL (3.66)

max out

When taking the finite system size into account, the interfaces (of length d) will cause

multiple reflections of energy currents for eX/L < c/d. In this case, only the larger of
the two thresholds can be directly probed experimentally. However, when the threshold
energies are sufficiently large, eR/L > c/d, energy reflection at the interfaces becomes

negligible and both thresholds are directly accessible.
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3 Energy partitioning of tunneling currents into Luttinger liquids

Figure 3.8: Overlap of the spectral function of a spin rotationally invariant Luttinger liquid
(blue) with the occupied states of a non-interacting source wire (red). The main
text discusses different energy thresholds depending on the position of (eV, ky)
with respect to the regions 1,2 and 3.

3.3.3 The spinful case

So far we have only considered the spin-polarized case. Spinful electrons introduce an
additional degree of freedom such that the energy of tunneling particles can be used to
excite charge and spin modes with velocities v, and v;. In a spin rotationally invariant
system vs = vr and it is not possible for a tunneling right-moving particle to excite a
left-moving spin excitation [see Fig. 3.8]. With the three remaining modes, energy and
momentum conservation [see Eq. (3.31)]

€n = Uc|kc+| =+ Z)c‘kcf| + Z7F|ks+| (3.67)
kin = ker +ke— + kst (3.68)

is not sufficient to fully determine the energy partitioning. It remains true that injecting
close to the left-moving charge branch will create almost exclusively a left-moving energy
current, and vice versa for injecting near the two right-moving branches. Thus, while the
details of the injection process become more complicated the qualitative behavior remains
the same as in the spinless case.

Also the presence of thresholds carries over to the case of a spin-degenerate system. We
again assume for definiteness that the velocity of the source’s dispersion is higher than v..
Consider first the region with eV > v,|ky| (region 1 in Fig. 3.8). Then, the right threshold
eR .« remains the same as in the spinless case (with ¢ — vp) while the left threshold
becomes ¢k ., = v.(eV — vsky)/(ve + vs) due to a process that excites a right-moving
spin and a left-moving charge excitation. At lower voltages, v, |ky| > eV > vs|ky|, there
is no tunneling for ky < 0 (region 2), while we find X ,, = max{v.(eV — vsky)/ (v, —

vs);vs(eV +vcky)/ (ve +vs) } and ek, = ve(eV — vsky)/ (v + vs) for ky > 0 (region 3).

R

The first term in ey,

applies close to eV = v.ky and is due to an excitation of a right-
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3 Energy partitioning of tunneling currents into Luttinger liquids

moving charge and spin mode, while the second term leads to higher threshold energies
close to eV = vsky and includes exciting a right-moving spin and left-moving charge

mode. The latter process also determines the left-moving energy threshold &k, for ky > 0.

3.4 Quantum dot spectroscopy

In this section we calculate the tunneling current into a quantum dot (drain) that is located
at a distance d to the right of the tunneling source. We will assume that d >> c/E;, where
E; is the energy of the injected particle. In this regime there will be no tunneling process
that couples source and drain directly. This limit was already considered by Takei et al.
(2010) in the case of local tunneling of particles (without fixed chirality) within a Keldysh
approach. We will first review the case of local tunneling but take [in contrast to Takei et al.
(2010)] the limit d >> c/E; already at the beginning which simplifies the calculation. The
corresponding transport mechanism can then be imagined as an electron tunneling into
the Luttinger liquid and splitting off into left- and right-moving eigenmodes. The latter
then propagates ballistically to the right drain where it is extracted. Because transport
is ballistic, the current is independent of 4 and we can set d = 0 in the course of the
calculation. The important consequence of the large source drain distance is that we can

assume that the left-moving excitations at the source and the right drain are decoupled.

3.4.1 Local injection

In the case of an occupied source and an empty drain (to the right of the source), the
current is given by

Lp(t) = — |m[? !'72!2/dfzdtsdmeiEZ(tl_tZ)eiEl(t3_t“) <¢’/5(0/ ta) s (d, t2)a(d, 1) 4 (0, f4)> ,
(3.69)

with &, B = R, L and 71, 177 are the tunnel couplings at the source and drain respectively.

The times t4 and t3 belong to the source tunneling process, while t; and t, describe

processes at the drain. The above formula can be deduced from [see Eq. (3.52)]

Lp(t1) = '72!2/dtzeiE2(“_t2) <¢l(d/ t2)a(d, f1)> (1-np(E2)), (3.70)

which describes the tunneling current into a single energy level E; at the drain. The
average is not taken with respect to the equilibrium ground state but in a state

. rl/ ! / H /
e th " A (OS] gy o <1 — iy / dr'pl(0, t’)lpse_‘Elt> 0) (3.71)
that is the result of an electron tunneling at the source. We then find Eq. (3.69) after

setting [1 — np(E;)] = ng(E;) = 1. To evaluate the four fermion correlator we use the
holon operators [see Eq. (2.46); we omit the tilde in the notation of the holons for better
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3 Energy partitioning of tunneling currents into Luttinger liquids

readability] that are the free quasi-particles of the Luttinger liquid

L Nozst
ket = (o) e (hen) " (v wn)” 672

)\/m

yl(x,t) = <271m)2eikfx (ﬂ(x,t))ﬁ(qi(x,t) , (3.73)

with /Y +1 = Q,/VK and VY = Q_/VK. Now we will set d = 0 and drop the
position dependence. In the following we treat the injection of right- and left-movers
simultaneously by using « and B as \/y + 1 for R and /7 for L, when written as exponents
while &, B denotes the opposite value (ie. if v = \/y+1 then @ = /7). Using the
independence of the left-movers at the source and the right drain we then can write

(ot (t2) () 9h(ks) ) (3.74)
= () (e (s10)" @at (v100)")

(- (1)) { (9 0) (9" )

The fields 1 are exponentials of free bosons, therefore we can use the independent boson
theorem [see Eq. (2.50)] to find

(pgte) = (payt)" . (3.75)

Then we can use the known Green'’s functions of the holons to find [see Egs. (2.47,2.48)]
_ B i .
(- (3 6) ) (9 ()" - ) = Glta = 1G5t — 1), (370

where we defined G5 (t) = [GZ(0,1)]".

We now evaluate the four-right-mover correlator. For brevity we introduce the short
form 6; = iv/K6, (0, t;) for the exponent of the holon fields. Using the independent boson
theorem we then find

(e (1) ) (v )"

= <eﬁ93e’“92e“9167ﬂ94> (3.77)
_ < e5937a02+a617594> 0L (— (03,02 [61,03] +(63,01] +(62,03])) — % 102,611~ 5 [03,64) (3.78)
— e%((ﬁ937a92+a91 7'394)2>e%(7[03,92]*[91,94]+[93,91]‘#[92,94])*%[02,91]*§[93,94] (379)
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Now we use

(BO3 — abr + aby — BO,)?
= w{@—@%whﬁy—@r&f_@—@ﬂ+ﬁ@Tﬁy+ﬁ@rmf (3.80)

and

HE-arre) _ ) (P97 (12)) (3.81)
(¥t () (k)

to obtain

< v ) (1) (i) (v )"
G

 GS(t - 1)Ga (st )thﬁ(fz — 13) Gt — ta) (382)
PR Goh — )G — ) '
We now define N
ey = Jupll2 7 B)0glh mh) (3.83)
" Gt —13)Gg(t — ta)
Finally using Eq. (3.69) and setting t; = 0 we find (note that a® + &2 = 2 + 1)
2
Ly = —|ml* Il <2/>r> /dt2dt3dt4e_iE2t2eiE1(t3_t4)
H'?—il (¢ =R; B=R)
XqI5" (a=R;p=L)or (a=L; p=R), (3.84)
5> («=L;p=L)

which is indeed the leading order for the current calculated by Takei et al. (2010). The
different cases in the above expression correspond to the choice of whether in injected
particle at the source (« index) and the extracted particle at the right drain (B index) are
right- or left-movers. The physical interpretation of the terms in Eq. (3.84) is that the
Green’s functions G= give the tunneling density of states for injecting and extracting
particles as the source and drain while I describes the propagation along the wire.

For the case of injecting and extracting right-movers Eq. (3.84) takes the form

o i(E1—5F ) AtHAE: y 2y+1 ; 2941
Igg = [ dtdAtdt _ 3.85
A <n+i<t+af>> (wi(t—%)) o
1 1 1
(it SN i )\ it S\
N — ity 7+ ity ’

n+i(ty—At)
where 7 = 1/A and AE = E; — E;. The integral can be evaluated analytically in the limit

AE < Eq, which corresponds to tunneling close to the tunneling threshold. Note that as
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mentioned above the threshold energy for tunneling out of the Luttinger liquid is the same
as the total injected energy since we are dealing with local tunneling. Making repeated
use of [3.382.7 in Gradshteyn and Ryzhik (2007)]

1 - —i
/ dAte b <1>7+ _ e (3.86)
1 +i(ts— At) I(y+1) 7

we then find

27—
il 27 (1B () O(AE 3.87
CET T (2y)  CAE) (387

which indeed recovers the result by Takei et al. (2010) who considered local tunneling of

Irr = —

particles without a fixed chirality. The reason why Igr already describes the non-chiral
local injection is that the other contributions
) ’ 4 2(2y—9")+1
i 2l 270 (7Ex)* (4E)
2Eal2 (/)L (4y — 27 +2)
2
2, 12 4
i Il 27 (7E)*T (42

) r+1
I, = FETO T 1 OeE) (3.89)

Iy =Ir =

®(AE) (3.88)

are subdominant close to AE = 0. Here Ig; describes injection of right-movers and
extraction of left-movers and we defined 7/ = /y(7+1). Having generalized the
calculation of Takei et al. (2010) for a chiral local injection we now turn to non-local
tunneling at the source.

3.4.2 Momentum resolved injection
We now consider the injection of a momentum eigenstate

Y / / L/m
o o) = {1 [ g st 0}0) 390
with momentum k; at the source. This can be implemented by setting
1 .
(WhCa)ps () = - L mexp (—ika(xs — x1)) (3.91)
k

such that Eq. (3.69) is modified to

Le(t) = —|ml* |l / dt,dtsdty / dxzelB2(hi—R)gifi(l—t)e—ihixs (3 gp)
S

x (9p(xa, 1) g () () (1) )
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The calculation then follows the same steps as for the local injection with the difference

that we now need to distinguish the right and left-moving Greens functions

B
. s 1 Ui
iG(x, )5~ = 5= ST (3.93)

such that

(¥plxs )Pl () u(t)Ph() = e GRl—0IGE la—t—ty) (394)

e
<(2—t3+tx)G (ty — t4)
"‘< G 2p G (t3+tx—ts) Gt —1o)
0(

—t3 + ty) G>ﬁ(t2 —ty) P

where the £ sign in front of kr corresponds to the extraction of right- and left-movers
and we defined ¢, = x/c. Measuring all momenta with respect to kr, we can set kr = 0.
Shifting t3 — t3 + t, we then find

iE1(ts—ts) —iEatr oi(E1—cki)tx i 29y+1
< > (3.95)

o 2 2 €
e = ImPiml /S ax [ dadtsdty e

() lremta) (i) (552
n+1(ts —tg) N 41i(ts + 2ty — tg) n+1i(ts —t2) 7 — ity ’

Now we introduce the right- and left-moving injected energies e+ = (E; % cky) /2. Similar

to the case of local injection the integrals can be performed close to the out-tunneling
threshold given by e, because we consider the drain to be to the right of the tunneling
source. The result reads

2_
onpo2 1270 (e = E)* P00 (e — F)

Ly = —ImlInlE T (B2)T2 (aB)T (27 + 1+ B2 — 2aB) (3.96)
Specifically, we find

I = =Pl PEReT (e, — By RS (e B o

e = —|mPlmPE 2" (e - EZ)MHiwcr (7)2?22 1(73)(?(& +Ez2) 27y O

i = — i PIRPE e e~ B OB )

Iy = — I PiPE R (e, — BT 2O e — Fa) (3.100

T2 (7)) (y+1)’

with 9/ = /(v +1). This gives a formal derivation that the threshold is indeed given by
the initial energy partitioning because the above expressions vanish for E; > ¢,. Note
that although we only considered extraction to the right of the source we can apply the
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results to extracting to the right and left of the source by the reflection symmetry of the
problem. For example, the current for injecting a left-mover and extracting a right-mover
at the right drain is the same as for injecting a right-mover and extracting a left-mover at
the left drain. If we then take only the leading order contribution close to the threshold
we obtain Egs. (3.63,3.64) of the section above.

3.4.3 Interacting source

The above calculation can also be generalized to an interacting source. Is this case dif-
ferential conductance measurements cannot address a single momentum eigenstate. We
therefore have to integrate Eq. (3.96) over different possible k; and E; weighted by the
source wire spectral function. If we assume cs = ¢ we then find

I é‘i é‘i Vv 27— 14 27_'BZE2“/3_2 p>—1 E 29+ 20 101
W [dwy [dw- (s+—w+> (e_—w,) 5 Twl (wy — Eo) (3.101)
E, 0
B 2 4y—2aB+1
B2 () ()T @10

with e/ = (eV =+ cky)/2 and the spectral function in Eq. (2.55). [Note that 2y — B2 is just
a general way of writing v — 1 or v depending on the chirality of the injected particles.]
The leading order result close to the tunneling threshold then yields Egs. (3.65,3.66).
Interestingly, the threshold exponents for the momentum resolved injection from a source
with cg = c are the same as for a local injection from a noninteracting source. We already
encountered this coincidence in Eq. (3.61), which states that the energy partitioning of
such an interacting source is the same as for a local noninteracting source that injects right-

and left-movers at different energies €', = (eV =+ cky)/2.

3.5 Conclusions

While energy and charge of an injected electron travel together in a noninteracting system,
this is no longer the case in the presence of interactions. This decoupling is especially
peculiar in one dimensional systems, where it is not possible to distinguish between
collective plasmon and single quasi-particle excitations. The strong correlations in a
Luttinger liquid lead to fractional excitations, which are deeply connected to the charge
partitioning ratio when injecting particles with a well-defined chirality.

In this chapter we showed that energy partitioning is distinctly different from charge
partitioning. Although it also relies on strong interactions it does not depend on the
Luttinger parameter K alone. In fact it is crucially controlled by the state of the injected
electron and one may even reach conditions such that charge and energy of an injected
particle propagate in opposite directions.

While charge partitioning cannot be measured in dc setups due to backscattering effects

at the weakly interacting Fermi liquid leads, we showed that this is possible for energy
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partitioning. Importantly, this allows for direct experimental probes of energy partitioning

and we presented several possible setups for this.
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4 Curvature induced relaxation in

quantum wires

A finite curvature of the electron dispersion leads to a breakdown of the integrability
of the Luttinger model, which allows for true thermalization in clean one dimensional
electron systems. A tremendous theoretical progress in the description of one dimensional
systems beyond the Luttinger paradigm has increased our understanding of the effects of
the curvature of the dispersion, as reviewed by Imambekov et al. (2011). It turns out that it
is most promising to employ a description in terms of the fermionic picture to avoid the
divergences that plague a perturbative treatment of the curvature in the bosonic language
[Samokhin (1998)].

Fermionic theories of one dimensional systems can be categorized in two complemen-
tary approaches, one relying on a perturbative treatment in terms of the original electrons
and the other based on a refermionization of the Luttinger Hamiltonian. Refermioniza-
tion maps the non-interacting bosonic Luttinger model back to non-interacting Fermions.
The resulting non-interacting fermionic quasi-particles (holons and spinons, see section
2.2.2) cannot be probed directly but represent a valuable theoretical tool. The finite cur-
vature introduces an interaction between these quasi-particles, which can be modeled
phenomenologically [Imambekov and Glazman (2009a,b); Schmidt et al. (2010a,b)]. Curva-
ture thus leads to a decay of the quasi-particles, which sets an upper bound ¢ < movrV; for
the holon energy beyond which the holon and spinon modes are no longer well-defined.
Here V) is the 4 = 0 component of the (Fourier transformed) Coulomb interaction.

For higher energies it is possible to work perturbatively in the interaction between
the original electrons. This can be understood by the following argument. Consider
an electron injected into a quantum wire with an excitation energy ¢ above the Fermi
energy er. Due to the quadratic dispersion ¢, = k?/2m, its velocity differs from that of
the electrons in the Fermi sea by at least Av = ¢/muvr. (Here, vr is the Fermi velocity.)
According to the standard condition for the validity of the Born approximation in quantum
mechanics [Landau and Lifshitz (1977)] we therefore expect a perturbative approach to
be appropriate when ¢ > muvrVjy. Note that this exactly complements the limit of the
refermionization approaches and from the point of view of Luttinger liquid theory, this
condition ensures that the original electrons retain their integrity during the collision
process. Indeed, at weak coupling the difference between the spin and charge velocities of
the Luttinger liquid is v, — vs ~ V;/ 7 [see Eq. (2.27)], so that the condition can be recast
as v, — vs < Av. Hence, spin and charge do not separate appreciably during the collision
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4 Curvature induced relaxation in quantum wires

Figure 4.1: Three-body relaxation process for (a) particle and (b) hole excitations. Note
that hole relaxation is not allowed at T = 0.

process.

This weak interaction approaches were previously applied to study curvature induced
corrections to the conductance and thermopower [Lunde et al. (2007); Rech and Matveev
(2008); Rech et al. (2009); Levchenko et al. (2011a,b)].

Here we focus on energy relaxation of hot electrons in quantum wires [based on Karzig
et al. (2010)]! aiming for an understanding of the experiment by Barak ef al. (2010b) [see
section 1.1.1] that observes a strong asymmetry in the relaxation behavior of particle
and hole excitations. It will turn out that quantitative agreement between theory and
experiment requires to take both the long range Coulomb interaction and the spin of the
electrons into account, which has not been considered in previous approaches.

4.1 Basics of three-body scattering

The relaxation of hot particle and hole excitations in the weakly interacting limit is de-
scribed by three-body processes [see Lunde et al. (2007) and section 1.1.2]. The asymmetry
in energy relaxation between hot particles and holes can be readily understood from the
basic three-body collisions as sketched in Fig. 4.1a. Suppose a hot particle 1 on, say, the
right-moving branch transfers momentum gq; = ky/ — k; to a right-mover in the Fermi
sea. Due to the positive curvature of the dispersion relation, the energy loss Ae¢ of the hot
particle exceeds the energy of the created particle-hole pair. This mismatch can be fixed by
simultaneously exciting a left-moving particle-hole pair. In line with the energy mismatch,
the energy transfer to the left-moving particle-hole pair is of order (e/er)Ae, while the
typical energy loss Ae of the hot particle in a single three-body collision is of order e.
Compare this with the relaxation of hot holes sketched in Fig. 4.1b, where for a given
momentum transfer the energy gain due to filling the hole by a higher-energy electron is
smaller than the energy cost of exciting a co-moving particle-hole pair. Fixing this energy
mismatch is therefore possible only if a counter-propagating electron gives up energy.
Clearly, the Pauli principle forbids such a process at zero temperature and the hole is
unable to relax. Indeed, this conclusion remains true for arbitrary n-body processes [Barak

1See also related works by Levchenko et al. (2010); Micklitz and Levchenko (2011)
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et al. (2010b)].

Hot holes do however relax at finite temperatures. Due to thermal smearing, the counter-
propagating electron can give up an energy of order T. Thus, the hot hole can relax its
energy, with a maximal energy loss of Ae ~ erT/e. This implies that hot holes float
towards the Fermi energy in many small steps as long as € > er. Here, e7 = VerT is a
new characteristic energy scale introduced by finite temperature. Conversely, for ¢ < e,
the energy loss of the hole per three-body collision would be comparable to its energy.

Although hot particles always relax in a small number of three-body collisions, the
energy scale et is also relevant in this case. Indeed, for ¢ < e, the energy transfer to the
counter-propagating particle-hole pair is small compared to temperature. This has two
important consequences. First, the phase space of the left-moving particle-hole pair is no
longer controlled by the typical energy transfer ¢2/¢r but by temperature T so that the
energy relaxation rate of hot particles becomes temperature dependent. Second, it is no
longer relevant whether the counter-propagating electron gains or loses energy so that for
e < er, energy relaxation becomes equally fast for hot particles and holes.

Before entering the details of the derivation we summarize the results for the relaxation
rate in the different energy regimes. The energy relaxation rate of hot particles is given by

2\ 4 2 2
1_ 9LF3 <e> [ln 1 1 } <€> (4.1)
T, 327 \ evr 2kra er

at high energies ¢ > er. Here e and € are the electron charge and the dielectric constant,

£

n R
48[?

respectively while a denotes the width of the wire and kr the Fermi momentum with
kra < 1. Note that the (¢/¢r)? dependence is only accidentally similar to the Fermi liquid
result. It stems from a cancellation of a factor (¢/¢f)? by the energy denominator of the
second order perturbation theory. This additional enhancement is absent in the spinless
case which then yields an overall (¢/er)* dependence.

As mentioned above the relaxation becomes temperature dependent in the low energy

(@) e

which is identical for particles and holes in this regime. For € > e, the hole relaxation
rate is further suppressed by a factor of (e1/¢)? such that

1 2 () 1 2 (T\?
o (&) [olaalelic | () .

In the high energy regime the hole relaxation is therefore (at a comparable excitation en-

regime ¢ < e7 and takes the form

€

In|—
n 481:

€UF

T Th 473

1 1 3(4ln(2)—1)8F<32 )4{1 1

- n 2k1:ﬂ

€

n —_—
481:

ergy) by a factor (e7/¢)* smaller than 1/71,. The relevant thermalization rate for the entire
distribution function is thus always controlled by the slower hole relaxation processes.
Note that this even holds for injecting hot particles, since the relaxation of high-energy
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particles necessarily involves the excitation of deep holes.

4.2 Calculation of the relaxation rates

The above relaxation rates are calculated within the Boltzmann equation approach by
considering an electron distribution function n = n® 4+ én, which is perturbed from its
equilibrium form n° by the injection of a hot particle into the wire. The full Boltzmann
equation for a homogeneous wire

oin(ky, 1) = on(ky, 1) (4.4)

coll

then describes the equilibration of the distribution due to collisions between the electrons.
Since two-particle scattering is ineffective in changing the distribution function in the
presence of energy and momentum conservation the collision integral is dominated by

three-body processes

diny ’C = — Y Wiy [mnans(1—ny)(1—ny)(1—ny) (4.5)

oll states

—nymyny (1 —n1)(1—ny)(1—n3)].

Here, the index i stands for (k;, 0;) and the sum goes over all initial states of particles 2 and
3, as well as over all possible final states (1,2, 3’). The equilibrium distribution function

n0

is a stationary solution of the Boltzmann equation, which leads to a vanishing collision
integral (detailed balance). Expanding to first order in the perturbation én away from

equilibrium one obtains

on
94 (6n = — Y Wigrgndndn(1 —nd) (1 —nd) (1 —nd) | ——n 46
t(dn1) ol szt;es 123,123 313 ( )( 2)( 3) 901 — ) (4.6)
n ony n ons _ ony B Ony B onzy
Q- B0 A0 y(-ng) -]

Even in this linearized form, solving the Boltzmann equation is still a hard problem and
exact solutions can only be obtained in some special cases [see e.g. Micklitz and Levchenko
(2011) who consider spinless electrons]. The difficulty comes with the fact that Eq. (4.6)
does not only describe the relaxation of the injected hot particle but also all the secondary
particle and hole excitations that are created during the equilibration process. In the
following we will restrict the attention on the initial out-scattering rate of the injected hot
particle. This can be done by setting (k;, 1) at the momentum and spin of the injected hot
electron and considering the initial time t = 0, where én vanishes for all 2,3,1’,2/,3" # 1.

In the relaxation time approximation 0;(én1) = —dénq/ Tlgut we define the out-scattering
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rate as

1
== ) Y. Winspoamind(1—nd)(1—nd)(1—n). (4.7)

k2k3q1q2q3 020307101 T3/

out
Tp

Here, q; = ki — k; and we replaced the abstract sum over states as sums over the quantum
numbers i = (k;, 0;) and used the convention that the particles at 1/,2,2’ lie on the right-
moving branch while 3 and 3’ are left-movers [see Fig. 4.1]. The factor of 1/2 then accounts
for double counting because exchanging 1’ and 2’ does lead to the same final state.

The three-body matrix element W3 193 describes the transition probability from a
state |[123) = czl o c,tz Uzc,ts 0 |0) to [1'2'3") (where ¢l creates a particle with momentum k
and spin o relative to the vacuum |0)) and can be calculated from the generalized Fermi

golden rule expression
Wi 1oy = 27t|{1'2'3 |V Go(E;)V[123)|*5(E; — Ef). (4.8)

The subscript c means connected in the sense that it excludes effectively two-particle
processes which do not contribute to relaxation. Gp and V are the free propagator and the
interaction part of the Hamiltonian V' = H — Hy, respectively. They take the form

1

Go(Ei) = =—F 7/ 4.9
o(E:) E,— Hy + 10+ (4.9)
1
V - Y8 Z chzl-%qalc]tz—qo’zckzﬂ'zckloj . (410)
kikogoi0n

Note that the corresponding hole relaxation rate is determined by the same matrix element
Wha3,12737. Hole relaxation takes place when a particle at state 1 scatters into the hole at 1/
[see Fig. 4.1]. With the same notation as for the particles, the hole out-scattering rate is

thus given by

1 1
Tk?ut = E 2 Z W123,1/2/3/n?ngng(1 — Tlg/)(l — l’lg/) . (411)

k2k3ql 4293 020307101 031

4.2.1 The Coulomb interaction in one dimension

We now discuss the form of the Coulomb matrix element V; in one dimensional systems.
In the long wavelength limit ga < 1 (where a is the width of the wire), V;; does not depend
on details of the transverse wave function of the electrons. It is then possible to determine
V; by taking the Fourier transform of

2

YO = e

The additional a? term in the denominator introduces a small distance cutoff beyond

(4.12)

which the one dimensional approximation breaks down. While internal screening in one
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dimensional systems is weak, the Coulomb interaction will eventually be screened by
external gates. Modeling the gates as metal plates, the presence of a charge ¢ in the wire

induces a mirror charge at distance 2d, where d is the distance to the gate. Thus V, takes

the form
2e 1 1
VvV, = cos(gr 4.13
! € \/r2+a2 V12 + (2d)? ar) (*.13)
262
= — [Ko(lgla) — Ko(2lgld)] , (4.14)
where we used
cos(gx
/ dx xzi _ =Ko (|qal) , (4.15)

in terms of the modified Bessel function Ky. We can then use the well-known asymptotic

expansion
() -r+3(-mG)-r+1) z<1
ZZe - ,Z>>1

Ko(z) = (4.16)

[Abramowitz and Stegun (1964) (chapters 9.6 and 9.7), v ~ 0.577 is the Euler-Mascheroni
constant] to find an approximate description of V; in different screening regimes. The
result reads in leading logarithmic order

(4.17)

(4.18)

In the unscreened case (qd > 1), the Fourier transform V; diverges logarithmically for
g — 0 due to the long range nature of the Coulomb interaction. This divergence is cut off
at a scale g ~ 1/d and the screening dominated regime (gd < 1) yields a typical short

range interaction (of the type 1 — ¢?).2

4.2.2 The three-body matrix element

The description of the three-body matrix element Wiy3 11213 is the central part of a calcu-
lation of the relaxation rate. A brute force calculation of Wiy3 17273 can quickly become
laborious because it consists of 36> = 1296 terms after taking the square of the amplitudes
(1'2'3'|VGy(E;)V|123), due to the various virtual processes contributing in second order

perturbation theory as well as possible exchange terms. It is thus crucial combine as

ZNote that the slow logarithmic dependence of go(q) can usually be ignored by setting g9 = qo(7), where §
is a typical momentum transfer of the problem
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Ty

Figure 4.2: Schematic illustration of the six amplitudes T}Dza/z/g/) that contribute to the

three-body matrix element.

many terms as possible before finally taking the square. To this end Lunde et al. (2007)
introduced the following decomposition

(123 |VGV 123)c = Y (= 1)PoT50 0 Th ) - (4.19)
P

Here p denotes the parity of the six possible permutations P of the final states 1’23’

and 52)1(213,)2,3,) results from permutations of (5(;'8,22%,

T7132(3i,2,3/) include the momentum conservation é;, 1 4,+4;,0 which can be used to eliminate

) = 01,0,/ 05,0 003,0y- The amplitudes

g2 from the momentum summation. Using additionally the energy conservation condition
2 (kig1 + kag2 + kags) + 41 + 45+ 45 =0 (4.20)

Lunde et al. (2007) showed that the direct three-body amplitude takes the form (see

Appendix A.3)
TIB. _ m(—q2) 91V, Vs + 92V Vo, + 93V, Vi, ) (4.21)
123 L2 (kv —k3)q193(k1 — k3)

Although the matrix elements V, tend to be suppressed for larger g, this suppression is only

weak because of the slow logarithmic g dependence of the long range Coulomb interaction.
In fact it is one of the main results of this chapter that this suppression is compensated
by a much smaller energy denominator for large momentum transfer processes and that
it is therefore necessary to consider all five exchange terms. The resulting amplitude for
these terms can be directly read off from Eq. (4.21) by replacing the momenta ky/, ky/, k3
corresponding to the required exchanges.

Note that the three-body amplitude vanishes identically for point like interactions
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(V4 = const.) and it is thus beneficial to expand the nominator of Eq (4.21) to first non
vanishing order. To keep this expansion general for all exchange terms we note that the

six involved amplitudes [see Fig. 4.2] fall into two main categories. The direct term T}3,

as well as T)%%, involve no large momentum transfer processes and have a clearly smallest
momentum transfer q3. The remaining four exchange processes do contain two large
momentum transfers of the order of 2kr. The fact that in all six terms it is possible to
choose one momentum transfer 4§z which is much smaller than the remaining two (§1, §2)

allows for a general expansion of the nominator of Eq. (4.21).
VeV + 02V Ve + B3V Ve, = 43 (Vqllql Vi, + Vi [Vﬁl - Vtk]) . (4.22)

Assuming an unscreened Coulomb potential, we only keep the leading logarithmic order

and all six amplitudes take the compact form

123 _ o) m Vg [Ve — Vg

from which all amplitudes can be derived. The two small momentum transfer amplitudes
[see Fig. 4.2] take the form

V,
123 q
Tii5ry 8€F1L2 (Voo — Vi) (4.24)
V,
123 _ q
where we introduced
pP1 = k2/ — k] . (426)
Similarly, we find for the four 2kr-processes
\%Z
123 123 2k
T3/2/1/ = —T1/3/2/ — m (V2kF - V‘h) (4.27)
V.
123 123 2k
T3/1/2/ = — 2/3/1/ — m (VZkF - Vpl) . (4:.28)

The 2kr processes dominate the small 4 amplitudes because of ¢ < er. Note however that
the leading order of the 2kr amplitudes comes in pairs with opposite signs. This becomes

important when calculating the total three-body amplitude

50(123) 123 - s0(123) 123 (4.29)

2
Yo [(123|vGev|123) [T = ) o123 Tz — Oy gy Tovra

spin spin

o(123) o(123) 123 o (123) o (123) 123
+ <5U(3/1/2/) B 50(2’3/1’)) Tz + <5a(1/3/2') B 50(3/2/1/)) Ty

2

o (123)

In the spinless case, all § (1123

)= 1 and the leading order of the 2kr processes vanishes.
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In the next order, the contribution of the 2kr amplitudes remains finite and the energy
denominator is of the same order as for the small g processes. In this case one can then
apply the argument of the logarithmic suppression of V., such that the leading order
contribution is given by the small g4 processes, as assumed by Lunde et al. (2007).

Electrons in real quantum wires, however are not spinless, which increases the three-
body matrix element by a factor of the order (er/¢)?. The importance of the electron spin
can be understood in terms of the symmetry of the wavefunction. When the total spin of
the three colliding particles is maximal, or when fermions are spinless, the orbital part of
their wave function must be odd, which leads to a larger separation of the electrons and
thus reduces the effect of the interaction. In contrast, no such suppression occurs when
the total spin of the three colliding particles is 1/2, since the interacting particles can be in
the same orbital state.

Neglecting the small g processes in favor of the 2kr exchange contributions, the resulting

spin summation leads to

Y (1123 |VGV[123). [ = 6 ([Tgﬁ?z/r + [TQ@YD . (4.30)
spin

Note that since the relaxation is controlled by 2kr momentum transfer processes we can
use the unscreened Coulomb interaction throughout the following calculations. The Fermi
momentum in CEO quantum wires is typically of the order of the inverse wire width
1/a while distances to screening gates d > a so that screening can be safely neglected for
the 2kr processes. The effect of screening on the scale of g1, p1 can be accounted for by
replacing g1, p1 — 1/d in the Coulomb matrix elements in Eqs. (4.27,4.28) which results in
replacing ¢ — vr/d in the logarithms of the results (4.1,4.2,4.3).

4.2.3 The partial scattering rate

We now assembled all the required ingredients to calculate the out-scattering rates from
Egs. (4.7,4.11) by performing the remaining integrations over the Fermi functions. We note
that the leading order of the three-body matrix element [see Eq. (4.30)] does not depend
on the initial momentum and the small curvature induced momentum transfer of the

left-moving particle. The sum over g3 and k3

Y (1 —n3)8(E; — Ey) (4.31)
g3k

can thus be carried out separately. The energy delta function

6(Ei — Ef) = mé (knqr + koqo + kaqs + q1 /2 + q5/2 + q5/2) (4.32)
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ensures energy conservation. It is then possible to eliminate the sum over g3, which yields

to leading order
L m
%&B‘Ef)—ﬂﬁf (4.33)

with the understanding that g3 has to be replaced by

p191
== 4.34
qs3 2kr ( )
in all remaining expressions. This result of energy and momentum conservation quantifies
the qualitative argument of section 4.1 that vpqs ~ €*/er < vpg1, vpgz. The remaining
integral over k3 results in the phase space
L
0(1_,0y_ L 43
kzn?)(l Tl3/) - 27T eﬂs/kT — 1/ (435)
3
where we introduced the thermal momentum kr = T /vr. As mentioned above this phase
space is controlled by g3 for |q3| > kr (note that g3 is negative), which is equivalent to the
condition € > er = /epT. For lower excitation energies ¢ < e7 thermal broadening leads
to a phase space ~ kr.

The remaining integrals over g1, k, or similarly over g1, p1 can be discussed most conve-
niently in terms of the partial scattering rate P(q1, p1)dg1dp; that describes the transition
rate from electrons at kq, k; to final states in an interval dg; and dp; around ky» = k1 + g1
and ky = ki + p1. Using the out-scattering rate the partial scattering rate can then be

defined as ,

out =
Tp

/dqldplpp(fll, 1) (4.36)

with

2 2
_ 3er L* q1p1/2k% szkp {% (VZkF - VPl) + pi% (V2kF - th) }
Polfr p1) = 2703 (2vp)4 _mp ktpytay _ktay _ktp\
<1_e 2kaT> <1+e kT ><1+e kT><1+e kT)
37)

Here we introduced the excess momentum of the hot particle as k = k; — kr = ¢/vr.

It is also possible to read off the corresponding partial hole scattering rate from Eq. (4.37).
Hole relaxation can be described by a particle at k; scattering into the unoccupied hole
state at k1, which can be accounted for by replacing (1 — n?,) — n? [see Eq. (4.11)]. In
Eq. (4.37), this corresponds to replacing [1 + exp(—(k+g1)/kr)] ! by [1 + exp(k/kr)] 1.
To compare particle and hole relaxation it is reasonable to define the positive excess
energies and momenta of a hole excitation as ¢, = e¢r — ¢, and k;, = kr — kv = —k — q1.
Shifting the integration variable p1 — py;, with py;, = ki —ky = —p; [Fig. 4.3 shows
the different definitions for q; and p; for particle and hole relaxation] the partial hole

scattering rate takes the form
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\J
\J

k k

Figure 4.3: Visualization of the momentum transfers q; and p; in the case of (a) electron
and (b) hole relaxation. The possibility to exchange the labels 1’ and 2’ (1 and 2)
for electrons (holes) is reflected in the symmetry of 1 and p; in Eqs. (4.37,4.38).

2 2
ser 14 gips2 Vi [ (Ve = Vi) + 2 (Ve = V)7
Ph(ql, pl) - 273 (27)1:)4 mp1 ktpy 4y _ ki _kg (4.38)
(4 1) () (e #) ()

Here we omitted again the index /1, with the understanding that the definitions of € and k

are chosen appropriately in the case of hole relaxation. Comparing Egs. (4.37) and (4.38),
shows that the partial particle and hole scattering rates are equal up to a sign change
of g3. The change of the sign is crucial for e > er, and limits the small momentum
transfer process to |g3| < kr for holes while the particle relaxation does not show a similar
restriction. For ¢ < e, however, the partial scattering rates become independent of g3

which leads to a particle-hole symmetric result.

4.2.4 Energy relaxation rates

We are interested in the relaxation of hot particle and hole excitations towards thermal
equilibrium. The corresponding relaxation rate is not necessarily equivalent to the out-
scattering rate. The latter only describes how fast the excitation leaves its initial state and
does not take into account the number of relaxation steps required for the excitation to
reach an energy of the order of temperature. The more relevant quantity for the relaxation
process is thus given by the energy relaxation rate.

By thinking in terms of relaxation steps we essentially solve the Boltzmann equation
(4.6), which describes the evolution of the initial excitation and will in general contain drift
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and diffusion terms in momentum space. Unidirectional relaxation steps then assume that
there is a strong asymmetry between relaxation and excitation of the hot particle (hole).
As we will show in the following the typical energy relaxation steps |Ae| > T, while a
further excitation is only possible on the scale of Ae ~ T. This asymmetry strongly favors

relaxation which justifies the assumption of unidirectionality.

Particle relaxation at ¢ > et

The particle relaxation is not limited by temperature and typical energy transfers are of the
order Ae ~ e. Therefore, the out-scattering rate already captures energy relaxation. Since
the relaxation rate does not rely on finite temperature we can set T = 0 for the ¢ > er

limit and obtain

- = / dg1dp1Per(q1, p1)|1=0 (4.39)

2
3er LVE (Vo — Vi) [pl ql]
= dg.d E =4 — 4.40
/ NP 4 (20F)4k2 7 * p1 (440
XO(—k —p1 —q1)O(k+ p1)O(k + q1) .

Due to the slow logarithmic dependence of V,, the Coulomb matrix element can be
approximated by a typical value of the integration variable which is of the order g1, p1 ~ k.
The integral can then be done exactly and leads to the result of Eq. (4.1).

Comparison with the holon decay rate

Interestingly, there exists a connection between the particle relaxation [Eq. (4.1)] and the
holon decay rate. Schmidt et al. (2010b) considered a spinful one dimensional system,
where curvature effects of the dispersion lead to a decay of the fermionic quasi-particles
of the Luttinger liquid (holons). As mentioned above the holon approach can be applied
in the complementary limit of strong interaction such that k < mVj.

For small k we can approximate Vi by the screened Coulomb matrix element Vj, which

dominates Vy, for weak screening. Thus Eq. (4.1) takes the form

1 g (022“) <k> . (4.41)
Tp U k]:
The holon decay rate on the other hand is given by [Schmidt et al. (2010b)]
Vo [ Vai ( k >3
I ~ep— £ — ] . 4.42
€r oF ( v% kr ( )

These expressions match at the limit of applicability of both approaches k ~ mVj. This
matching of the two complementary approaches is remarkable. It suggests that the
fermionic quasi-particles of the Luttinger model transform into the original electrons for
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higher excitation energies, where curvature effects destroy the holon integrity.

Particle and hole relaxation at ¢ < 7

In the limit ¢ < e7, the particle and hole relaxation rates become identical. Note that we
still consider the injection of hot excitations such that we work in the intermediate regime
T < e < er = /erT. This still allows for approximating the Fermi functions that involve

the right-moving particles as step functions such that the partial scattering rates are given

by

1

2k1:a In

273 evp

2
Pu(q1,p1) = Pp(q,p1) = Ser [ > ]h\

&
4&' (4.43)

@( k — pl—ql)®(k+]91 ®k+Q1

Here we again treat the logarithms as constants. Although temperature does not limit the
typical energy transfer
Ae = —vpmin (|q1], |p1]) , (4.44)

which can therefore still be of the order of ¢ it becomes problematic to approximate the
energy relaxation rate with the out-scattering rate at finite temperature. The reason lies in
a logarithmic divergence of the out-scattering rate due to processes with vanishing energy
transfer Ae. The processes that cause the divergence do therefore not contribute to the
relaxation. This can be dealt with by considering the energy relaxation rate, which is still
well-defined.

The change of the energy of the hot excitation is given by weighting the partial scattering
rate with the corresponding energy transfer such that

- [ dandpror min (1l 171 ) Pyl ) (445

The remaining integral is then indeed finite and can be performed exactly. The result reads

de  3er 2 \* ¢ 1 1 k \?
PR T (ew) T; 2In(2) — 5 In T In % , (4.46)
such that the energy relaxation rate can be extracted through
€ de
= = 4.47
T dt’ (1.47)

which results in Eq. (4.2).

Hole relaxation at ¢ > et

In contrast to the particle relaxation, the energy transfer in a single relaxation process

of hot holes cannot reach ¢. It is instead limited to Ae < erT/¢ and it is therefore again
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essential to consider the energy relaxation rate. Since Ae < ¢, one of the momentum
transfers q; or p; is small while the corresponding exchange term becomes of the order
of k. Due to the symmetry of the partial scattering rate with respect to 4; and p; we can

choose without loss of generality
| < |p1| =k, (4.48)

by adding a factor of 2 in Eq. (4.38). The leading order contribution of the partial scattering
rate then takes the form

3er (2\'1 1 1 1
A = 21 (2)' 1 [ i,
2hm3 \ evp ) k2 oy _q LD 2kpa

xO(—k—p1 —q1)O(k+ p1)O(k+g1) .

k

ln%

2
) (4.49)

With Ae = vpq; we now use the same approach for the energy relaxation rate as above to
find

k

ln%

2
) . (4.50)

2\ 4
de 1/ Nermf | 1
dt 7T \ €EVE £ 2kga
The energy relaxation time of a hole is controlled by the time it spends in the high energy

regime € > e1. We can thus integrate the differential equation above, assuming that we

do not leave the regime € >> e such that

vl - dt ¢ 1 1
Th:/ ds/ds’:/ de’ ™ %g T (4.51)
€ \/4EFT d—gt d—‘;:

which gives the result of Eq. (4.3) as

— = == (4.52)

4.3 Chiral relaxation process

The three-body processes discussed so far rely on the presence of right- and left-moving
particles. Here we comment on a competing process shown in Fig. 4.4 that involves only
co-moving electrons. In this process, two electrons near the Fermi energy are scattered
in opposite directions in energy, allowing a high-energy particle to relax slightly by an
energy Ae ~ T?/e. Assuming that the interaction is screened for these small momentum

transfers, the resulting particle-hole symmetric energy relaxation rate takes the form

1 1 2\ 4 6
S =g ( ¢ > L &5 144/l (4.53)

€vp) ereet
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Figure 4.4: Chiral relaxation process. A hot particle can relax a small part of its energy by
using curvature effects on the order of the temperature. Here the color gradient
indicates the thermal smearing.

as we will show below. (Here, e¢; = vr/d.) By comparing with Egs. (4.1,4.2,4.3), one can
conclude that these processes are sub-dominant when ¢ > et or T < er/ (kpd)*. Note
however that these processes control the relaxation in chiral systems such as quantum
Hall edge states as we will discuss in chapter 5.

4.3.1 Derivation of the energy relaxation rate

The approach for the calculation of the energy relaxation rate is the same as for the non-
chiral processes discussed before (see section 4.2). Here we sketch the main differences
and discuss the parametric dependence of the corresponding energy relaxation rate.
Considering again the relaxation of a hot particle ¢ > T, energy and momentum
conservation results in
n o= %W , (4.54)

such that q; ~ k3./k is the smallest momentum in the problem. The energy delta function
can then be eliminated by

Y O(Ei—Ef) = S-o, (4.55)
q1

with the understanding that g; should be replaced by Eq. (4.54). We now discuss the

three-body matrix element starting with the case of an unscreened Coulomb interaction.
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Three-body matrix element

The general expression (4.23) of the three-body amplitudes is still a valid starting point
and we find

mV,, (Vo — V,
Tiay = Ty =—2 (leiz n) (4.56)
ka (Vk -V )
T3, = —-Ti&, = o 457
2173 Y21 = T2(ky — ks — g3 )k (4.57)
mVie (Vi — Vi o
T8, = —Ti8, =_—* ( kLz%l’j =) (4.58)

These three-body amplitudes present another manifestation of the importance of the
electron spin. In the spinful case the resulting three-body matrix element is finite and the
leading order contribution is given by the exchange terms in Eqs. (4.57,4.58). For spinless
electrons one would simply sum up the above terms and the overall matrix element
vanishes, which would require to go to the next order in an expansion in kr/k.

Summarizing the results for the chiral relaxation process obtained so far, the energy
relaxation rate of spinful particles takes the form

3

1 m —q1 o 04,0 0 [ 1 ]2 [ 1 ]2 2 2

—_~— ——15(1 — 14 )n3(1 —nz, — 4+ |— Ve (Ve =V, ,

T kL3 q3k§(3 k 2( 2) 3( 3) (kz_k3_q3)k q3k k( k kT)
(4.59)

where the additional factor —q; /k weights the out-scattering rate with the relative relaxed
energy per scattering event.

Power counting

The leading order of the sum (4.59) cancels out completely because of 41 momentum
transfers that are compensated by corresponding —g; transitions. The next order in the
T / € expansion reveals that relaxation processes are more likely than additional excitations.
This can already be understood from Fig. 4.4 and is a consequence of the small difference
in the momentum transfers of the processes close to the Fermi energy. Relaxation (41 < 0)
leads to a reduction of the momentum transfer for the scattering process that works
against the Fermi function (in Fig. 4.4: 3 — 3’), while a positive g; has the opposite effect.
Balancing relaxation and excitation effects is thus expected to add a factor of the order
|lg1|/kr.

More formally, the rate for exciting the hot particle can be estimated by the transforma-
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tion1,2,3 <» 1/,2/,3'. Thus the effective energy relaxation rate is controlled by

1
L 900 = 991 — ) — (1 — )y (1= )]
1 1 1 1

- ky ka3 ks k3t (4.60)

2<1—|—e"T> <1+e kr > <1+ekT> <1—|—e kr >

1 1 1 1
- ky—q1-43 _k k3tq3 _k
2(1+e kr ><1~|—e "T) <1+ekT >(1—|—e kr)

~ n3(1—nd)nd(1— ng/)ng,_k—zl , (4.61)

where all momenta in the second and third line are measured relative to kr. The Fermi
functions set typical momentum transfers close to the Fermi energy to the order of k1 and
therefore q; ~ kZT /k. The energy relaxation rate can then be estimated from Eqgs. (4.59,4.61)
by power counting and leads to

1 m3 5 (kr\2 V2 (Vi = Vi) kp

— ~ —=(Lk —) -t 4.62
T, ks (Lkr) <k> K2k2 k (4.62)
l N ﬁ Vi (Vk - VkT> ? kl 2 (4.63)
T, m (Av)? k)’ '

where we introduced the difference in velocity Av = k/m between the hot particle and
the Fermi velocity. For an unscreened Coulomb interaction Vj (Vi — Vi, ) can be replaced
by (e?/€) up to logarithms while in the screened case [kd < 1, see Eq. (4.17 )] it is given
by Vi (Vi — Vi) ~ (¢?/€)(kd)? which results in Eq. (4.53).

4.4 Inter branch equilibration

So far we only discussed the energy relaxation within the branch of the injected hot
particles. Since the relaxation of a, say, right-moving particle creates right- and left-moving
particle-hole pairs there will also be an energy redistribution between the right- and
left-moving branches. The parametric difference between the energies of the excited co-
(~ €) and counter-propagating (~ ¢/ er) particle-hole pairs led to the conclusion [Karzig
et al. (2010)] that the energy equilibration rate between right- and left-moving branches
is much slower than the intra branch equilibration. The physical picture of the entire
equilibration process was that the relaxation of the hot right-moving particle leads to a
temperature difference between the right- and left-moving branches, which finally relaxes

1 2\ /73
~ F <e> <> . (4.64)
Tinter €0F Er

Here we will argue that this picture was partially wrong. The main conclusion that there

with a much slower rate

is almost no equilibration between right- and left-movers on experimentally relevant
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4 Curvature induced relaxation in quantum wires

time scales still holds, but for a different reason. In fact, the time scale of equilibration of
the entire distribution function is the same as for the relaxation within the right-moving
branch [~ T, see Eq. (4.2)]. Momentum conservation, however, leads to an equilibrium
distribution function with different temperatures for right- and left-movers such that the
energy transfer to the left-moving branch remains small even after arbitrarily long times.
In this sense the statement of Karzig et al. (2010) is even stronger than originally assumed.

Note that the result of Tinter = T, is consistent with Micklitz and Levchenko (2011) who
calculated the relaxation rate for the entire distribution function in the case of spinless
particles at small excitation energies e ~ T. Their result 7\~ (T/er)® agrees with with

inter

the expected (¢/¢r)* suppression of Eq. (4.2) in the case of spinless particles.

Distribution functions

Karzig et al. (2010) overlooked that an initial distribution function

ok , 0k

Tl(k) = 1 e—H (465)
eT+aT/2 +1  eT-a172 4+ 1]
does not relax to an equilibrium distribution function of the form
Hoq(k) = % (4.66)
e T +1

and thus interpreted the initial change of the temperature difference as o;AT(t)|;—o =

AT(0)/ Tinter- The actual time dependence, however, is given by

AT(t) = AT(0) [1 . (T) (1-e#)

, 4.67
- (467)

which has the same initial time derivative 3;AT(t)|;—o = AT(0)/7(T/er)? because

1/t ~ T [see Eq. (4.2)]. The reason for the partial decay of AT lies in the form of
the correct equilibrium distribution function [see e.g. Micklitz et al. (2010)]

Ok O(—k

P T N - )

e —uk—pg ep—uk—pp

e 1 41 e 1 +1

(4.68)

The different chemical potentials reflect the fact that there is still no appreciable particle
transfer between the right- and left-moving branches since the corresponding rate is
exponentially small in T/p. The uk term describes the boost of the distribution function

reflecting the momentum conservation and is given by [Micklitz and Levchenko (2010)]

AT 372 T?

Note that the T?/u? corrections are due to the curvature of the dispersion. Interestingly,
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Figure 4.5: [llustration of the energy balance during the relaxation process (neglecting the
hole relaxation).

the initial distribution function [Eq. (4.65)] with a small temperature difference for right-
and left-movers is already a boosted equilibrium distribution function ¢4 for a linear
electron dispersion ¢, = @ (k)vrk. This immediately follows from

:f:UFk _ :l:UFk — Upk%
(T+£5) T

(4.70)

and signals again the absence of relaxation for a linear dispersion. The small T?/u?
correction due to the curvature effects can then be interpreted as a small equilibration of
the temperature difference on the order of AT(T/u)? in line with Eq. (4.67).

Energy transfer to the left-moving branch

The most striking argument why there cannot be relaxation on a timescale longer than 1,
is that the energy transfer to the left-movers is due to three-body collisions [see Fig. 4.5b]
and these collisions stop after the time 7,, when the injected particle has relaxed.

We will now deduce the overall energy transfer to the left-moving branch during the
relaxation of a hot particle with energy e. Consider first the particle relaxation [see Fig. 4.5].
We assume that the energies of left- and right-movers before the relaxation are given by
Er = E and Eg = E + ¢, respectively. The energy transfer to the left-moving branch per
three-body collision is given by the curvature effect as Ae; = €2/«¢r.

On the other hand, relaxation of the additionally excited hole transfers energy back from
the left- to the right-moving branch [see Fig. 4.6]. The curvature induced small asymmetry
between particle and hole processes leads to the fact that particle and hole processes do
not cancel the energy transfer completely. A simple way to think about this is to consider
the case where particles relax much faster than holes. After 7, the particles relaxed all
their energy ¢ — Aey, to hole excitations. The subsequent hole relaxation then transfers
the energy —Aey (1 — e/¢er) back from the left-moving branch such that the total energy

2
At = ¢ <€> . 4.71)

€r

transfer after 1, takes the form
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Er=E+e(1-5)

F

Ep=E+e5
F

Figure 4.6: [llustration of the energy balance during the relaxation process (taking into
account the hole relaxation).

Note that this is consistent with the AT(T/u)? equilibration for the temperature difference.
A higher right-mover temperature Tg = T + AT can be viewed as if a fraction AT /T of
the particles is excited to energies ¢ = Tg ~ T. During the equilibration the temperature
transfer is therefore AT /T x T°/¢%.

4.5 Comparison with experiment

The experiment of Barak et al. (2010b) addresses relaxation in one dimensional systems
beyond the Luttinger liquid limit. The main idea is to insert hot particles and holes with
fixed energy and momentum into a quantum wire and then probe for consequences of
the possible relaxation processes (see section 1.1.1). If the hot excitation relaxes, it creates
additional excited particle-hole pairs. Another tunneling contact at a distance of 2 ym
from the source was then tuned in such a way that it is only possible for excited particles
to flow into the drain, implying that relaxation was accompanied by an increase in current.

Barak et al. (2010b) did not measure the dependence of the energy relaxation rate on ¢,
but did provide bounds. Specifically, they observed particle relaxation and the absence of
hole relaxation at excitation energies ¢ of order er /3. With the corresponding time it takes
the excitations to reach the drain (typical Fermi velocity ~ 2 - 10°m/s) this leads to the
following bounds for the energy relaxation rates

—5 2 10's™ (4.72)
Tp

1 _

=5 < 10Ms7h (4.73)
Ty

For numerical estimates based on our theoretical results we used vr ~ 2-10°m/s, m =
0.067me, kr ~ 1-108m~!, a ~ 20nm, e = 12.4 €y, € = vrkr/2 ~ 6.6 meV, which are
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realistic parameters for the geometry of Barak ef al. (2010b). The resulting estimates

— = 10Ms~1! (4.74)
P

1 9.—1

— &~ 5-10%s (4.75)
Th

are quantitatively consistent with the experimental bounds. Note that the temperature
T = 0.25K of the experiment results in e7 = 0.38 meV such that with ¢ = 2.2meV, the
experiment was conducted in the high energy regime ¢ > er.

Note that the experiment also does not observe signs of relaxation between right and
left-movers which is consistent with the discussion in section 4.4.

4.5.1 Estimate for the Coulomb matrix element

Note that the numerical results (4.74,4.75) require a more accurate estimate of the Coulomb
matrix element V; that can be applied to the regime kra ~ 1. The latter can be determined
as a matrix element of the operator ¢?/ (er) exp(—r/d) in the two-electron state which is
controlled by the corresponding transverse wave functions. The result can be expressed
as [Giuliani and Vignale (2005), Appendix 1]

dq. 4re? /e )
v = / F 4.76
with the form factor
Flqu) = [ dr.fp(r)fPeor, 477)

where ¢(r ) is the transverse wave function which we assumed to be described by the
ground state of a particle in a box of size a

p(x,y) = %c‘os <%) Cos (%) . (4.78)

Note that the interaction term Vy, (Var, — Vi), which controls the relaxation rates origi-
nates from Eq. (4.22). The numerical estimates (4.74,4.75) therefore rely on replacing

1, L .
Vory (Var, — Vi) — 7 (51 V43 Vs — (G + §3) Vi, Vay + §3 Vi, Va4 ) (4.79)

with §; = 2kr and §3 = k/2 as is typical for the large momentum transfer processes.

4.6 Conclusions

The Luttinger liquid serves as a paradigm in one dimensional systems, comparable with
the Fermi liquid theory for higher dimensional systems. Yet, the Luttinger model does
not describe relaxation and thermalization and one is therefore forced to go beyond the
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Luttinger model to address these issues.

The finite curvature of the electron dispersion breaks the Luttinger model’s integrability
and provides an intrinsic source of thermalization in translationally invariant one dimen-
sional systems. This chapter discussed the corresponding equilibration and thermalization
processes of hot carriers in quantum wires. The relaxation mechanism can be described in
terms of a well-defined perturbative approach that relies on three-body processes. As a
manifestation of the finite curvature of the electron dispersion three-body processes show
a strong asymmetry in the energy relaxation rates of particle and hole excitations. In fact,
hole relaxation is only possible at finite temperatures while there is no similar restriction
for particles.

A crucial insight of this chapter is the importance of spin and the long range Coulomb
interaction, which dramatically increases the energy relaxation rates of particle and hole
excitations via 2kr momentum transfer processes. This enhanced relaxation rate provides
a quantitative interpretation of a recent experiment of Barak et al. (2010b) in terms of three-
body processes. Also in line with this experiment, we argue that three-body processes do
not transfer a substantial amount of energy between the right- and left-moving branches.

Finally, we also discussed a possible three-body process that involves only particles of
the same chirality. While its effect is sub-dominant in typical quantum wire geometries
it allows for three-body relaxation processes in quantum Hall edge states, which will be
discussed in chapter 5.
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5 Relaxation and edge reconstruction in

integer quantum Hall systems

The interplay between the confinement potential and electron-electron interactions con-
trols reconstructions of quantum Hall edge states. This chapter studies [based on Karzig
et al. (2012)] the influence of reconstruction effects on the relaxation and equilibration of
edge excitations of quantum Hall systems. Specifically, we consider energy relaxation of a
hot particle injected into a translational invariant quantum Hall edge at Landau level fill-
ing factors v = 1,2. With the assumption that the velocity v; of the injected particle differs
sufficiently from the Fermi velocity vr, the Coulomb interaction is treated perturbatively.
In this limit, relaxation processes are dominated by three-body processes (see chapter 4)
which depend sensitively on the electron dispersion and hence on edge reconstruction
effects.

Edge reconstruction can be discussed in various limits and ranges from the absence
of reconstruction in infinitely sharp edges [Halperin (1982)] to the development of com-
pressible and incompressible stripes [Chklovskii et al. (1992)] for very smooth confinement
potentials, which can be described by electrostatics. Here we focus on an intermediate
regime, where the filling still only takes integer values but interaction effects can lead to a
spin symmetry breaking [Dempsey et al. (1993)] or to additional edge states [de C. Chamon
and Wen (1994)].

This chapter consists of three major parts. We begin by explaining the basic differences
of the three-body processes in quantum Hall edge states compared to those in quan-
tum wires within the setting of an unreconstructed edge. We then discuss two simple
models of reconstructed quantum Hall edges. First, we address relaxation processes
for a spin-reconstructed edge at filling factor v = 2 and then turn to a minimal model
of charge reconstruction of a v = 1 edge which provides the simplest realization of

counter-propagating edge modes.

5.1 Unreconstructed edge

A confinement potential V,(x) that is sharp on the scale of the Coulomb interaction (i.e.,
V. > e?/el%, where € is the dielectric constant and Iz = (eB)~!/2 denotes the magnetic
length) remains stable against interaction-induced reconstructions and the electron disper-

sion (k) can be obtained approximately from the noninteracting Schrodinger equation
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<
\V><

Figure 5.1: Edge without reconstruction effects. (a) Single particle dispersions and typical
relaxation processes in the lowest Landau level for a spin degenerate system.
Vertical arrows label temperature T and cyclotron energy w,. (b) The corre-
sponding sharp (T = 0) occupation number as function of the guiding center
position X.

1
H = o [px+ (py — Bx)’] + Ve(x), (5.1)
where we used the Landau gauge A = (0, Bx,0) for the vector potential and x and y
denote the directions perpendicular and along the edge, respectively. For a constant
confinement potential the ground state solution of Eq. (5.1) is the lowest Landau level

wave function
Px(x,y) = (LIpy/7r) /2o hwwe=(e=X7/2 (5.2)

where k, = X /I3 is given in terms of the guiding center coordinate X. The characteristic
energy scale of Eq. (5.1) is given by the cyclotron frequency w. = eB/m, which also controls
the gap to the next Landau level. In the limit of high magnetic fields (V, < w./Ip), the
electron states near the edge can still be approximated by the lowest Landau level wave
functions and their energy simply follows the confinement potential V,(X). A generic
electronic dispersion of an unreconstructed edge is sketched in Fig. 5.1a, exhibiting a
confinement-induced bending of the Landau levels near the edge of the sample. The
defining feature of the unreconstructed edge is the sharp zero-temperature occupation
function v,(X) = O(—X) of Landau level states with guiding center X when the Zeeman
splitting e is negligible [see Fig. 5.1b].

The single particle dispersion near the Fermi energy (corresponding to momentum kr)
is controlled by the confinement potential and can be approximated as

e(k) = vp(k — kg) + (k — kp)?/2m,. (5.3)

The dispersion is parametrized through the edge velocity vr = VC’Z% at the Fermi energy
and the curvature 1/m, = Vé’l%. Note that these parameters become maximal for an
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infinitely sharp edge for which vr ~ w.lp and 1/m, ~ 1/m [Halperin (1982)]. Note
however, that a description in terms of the wave functions in Eq. (5.2) is no longer valid in
this extreme limit.

The finite curvature of the dispersion implies that at least three particles are required
for an energy and momentum conserving relaxation process. Relaxation of a high-energy
electron (labeled by i = 1 in Fig. 5.1a) is possible by scattering two electrons (labeled
i = 2,3 in Fig. 5.1a) near the Fermi energy. Indeed, due to the curvature of the dispersion
near the Fermi energy, exciting electron i = 2 from the Fermi energy requires more energy
than scattering electron i = 3 deeper into the Fermi sea. Clearly, this relaxation process
relies on finite temperature and typical energy transfers for electrons i = 2,3 at the Fermi
energy are of the order of T. Quantitatively, this process can relax the hot particle with
excess energy € ~ vr(k; — kp) = vpk by

ky — k
g = Bl —k) = ) (5.4)

which follows from energy and momentum conservation and g; = k; — k; is the momen-
tum transfered to particle i in the collision. Note that q; < g3 so that relaxation occurs in
many small steps vpqq ~ T?/e.

For Landau-level filling factor v = 2, these considerations apply when the Zeeman
splitting is small compared to temperature. In the opposite limit ez >> T, the curvature of
the dispersion implies that the Fermi momenta and hence the Fermi velocities differ for
the two spin directions. In this case, relaxation is dominated by processes in which the
electrons i = 1 and i = 2 have opposite spins, and thus different Fermi momenta kr; and
Fermi velocities v; with j = 1,2. To include a finite Zeeman splitting at Landau level filling
factor v = 2 as well as for later convenience, it is thus beneficial to consider a modified
dispersion

e(k) = vi(k —krj), k ~ kp; 55)

Ul(k—kl) + ¢, k ~ kl

which is linearized in the vicinity of each of the three particles, including the hot particle
with velocity v; and momentum kj. This captures the behavior in the regime of strong
Zeeman splitting ez > T on which we will focus in the following. Nevertheless, we can
also recover the results for the quadratic dispersion and weak Zeeman splitting ez < T
by identifying v, — v3 with the typical velocity difference T/ (vpm,) due to the curvature
of the dispersion. Using the dispersion in Eq. (5.5), energy and momentum conservation

leads to
. Uy — U3

v — 0

7 q3 - (5.6)

The velocity difference vo — v3 ~ €7/ (vam,) is controlled by the Zeeman splitting which
we assume to be small compared to the excitation energy ¢ such that (v, — v3) < (v1 — v2).
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5.1.1 Three-body scattering formalism

Energy relaxation by processes of the kind shown in Fig. 5.1a was already discussed in
section 4.3. While the calculation here follows the same outline, there are characteristic
differences related to the nature of the interaction matrix elements. The energy relaxation
rate via three-body collisions is again given by

1 -
i— Z 191 W11,22§3,n2n3(1 — nll)(]_ — 7’12/)(1 — 713/) . (5‘7)

TE 3123

where 7; is the Fermi-Dirac distribution function at k;. The factor involving g; weights the
out-scattering rate with the relative relaxed energy, accounting for the fact that the hot
particle relaxes only a fraction of its energy in a single collision. The three-body matrix
element can be evaluated by the generalized golden rule

2
WiB, = %\<1’2’3’yvcov1123>c|25(15 —E). (5.8)

Here, Gy is the free Green’s function, V' = (1/2L) Yy, k00,0, Vo (K1 —k2)a;§1 . a,‘:z_ 402 20Uk
is the generic two-body interaction potential, and the subscript c emphasizes that only
connected processes contribute which involve all three particles.

The calculation for quantum Hall edges differs from that for quantum wires in the form
of the Coulomb matrix element V, (k; —k) which now have to be evaluated using the
Landau level wave functions in Eq. (5.2). The main difference is that while the edge states
are one dimensional in the sense that they only depend on a single quantum number k,
changing k, also affects their transverse position X, which is not the case for quantum

wires.

Coulomb matrix element

We start from the interaction matrix element in real space

2
_ (oD @ e/e |0 4@
In the following we will measure all lengths scales in units of the magnetic length /3.
In these units the guiding center coordinate directly translates into momenta. With the
lowest Landau level wave functions of Eq. (5.2) we then find

V(X X) = & . / dxdydAdiyﬂ (5.10)
7tel /AX? + Ay?
o IDYOX p= 3 (x=X)? =5 (x=X—0X)? ;= 5 (x+Ax—=X)? ,— 3 (x+Ax—X'+6X)? )

where we used the screened Coulomb potential which carries an extra factor e™ V Ax*+Dy?/d

with d being the distance to a screening gate. The integration over Ay gives 2Ky (|AxéX]) in
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the case when 6 X > 1/d, where K is a modified Bessel function. If, however, X <« 1/d
the integral is cut off and the result changes to 2Ky (|Ax/d|). We will derive results for the
case 6X > 1/d and keep in mind the appropriate changes for the other limit. After the y
integration, giving a factor of L, we obtain the intermediate result

2
Vsx(X,X') = %e*%m dxdAxKo(|AxX|)e 22 X-X'+Ax)% =3 (X=X+oX+0x) (5 11)

Performing the Gaussian integral over x gives a factor of \/71/2. Reinserting /g and using
the Landau gauge one arrives at
2
V,(ky) = g%e’%qzlé / drlge 2kt R (g3 . (5.12)
Note that V;(k,) = V;(—k, —2q) and is therefore not symmetric in the argument, which
plays an important role in the derivation of the three-body matrix element. In the limiting
case of Eq. (5.12) when kI3 > 1 one can approximate the exponential under the integral
by the delta-function v/2716(ky 4 q + ), and thus obtains
2% 1 2L 2
Vy(ky) = e 5Ko(|q(ky +q)I5]). (5.13)
In the other limiting case when k,Ip < 1 one can approximate the exponential under the
integral of Eq. (5.12) by exp(—«x2I%/2) and then complete the integration exactly with the
result
62 1 212 212
Vy(ky) = =€ 25Ky (q°15/4). (5.14)
The important conclusion is that for quantum Hall systems, the Coulomb matrix el-
ement is exponentially suppressed by a factor of exp(—g?l3/2) for large momentum
transfers. This is especially relevant because large momentum transfers yield the leading
contribution to relaxation in quantum wires (see chapter 4.2). Moreover, V, (ki —kz) does
not only depend on the momentum transfer but also on the initial momentum difference
which controls the distance of the guiding centers of the interacting electrons. Focusing on
the remaining low momentum transfer processes (g < 1/Ig) and using the asymptotic

expansion of the Bessel function [see Eq. (4.16)] one obtains

— 2 1n |glp), ki — ko < 151

B o (5.15)
—2n|g(ky — ko + @), ki —ky > 15

Vq(kl —kz) ~ {

with the understanding that at small g, the matrix elements will be eventually cut off
by a large length scale d >> Ip which is given by the distance to a screening gate. For
ki — ko < 1/Ip the Coulomb matrix element is that of a quantum wire of width Ip
[see Eq. 4.17]. For k1 — ko > 1/I, the interaction is that of electrons in two quantum

wires separated by a distance of (k1 — k2 + ¢)I3 which corresponds to the average of the
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momentum differences of the electrons before and after the collision.

Three-body matrix element

With the absence of large momentum transfer processes the three-body scattering is
dominated by the direct matrix element. The importance of the (k1—k) dependence of
the Coulomb matrix element can be seen from the fact that the linearized dispersion of
Eq. (6.5) leads to a vanishing direct matrix element for a quantum-wire-like Coulomb
interaction V;(0). Reiterating the derivation from Lunde et al. (2007) for the direct matrix
element (see Appendix A.3), now using the dispersion relation of Eq. (5.5) yields

1 Vq3 (kg — kQ)Vql (kl — kz + Q3) — Vth (k1 — kz)Vq3 (kg — kz + 6]1)

Tllzé / % e~
123 LZ (13(02—03)
o Var(ka = s) Vi, (kr — ks + 32) = Vi (Ra — ks) Vi (k2 — ks + q1)
72(v3 — 2)
_%W&b—*O%Jb—kr+%W—be—kﬂWJh—kr+%),616
73(v1 — v3)

where we omitted the trivial spin structure that contributes « ¢, ¢, s, 0, 605,0, and used
the property V,(k,) = V,;(—k, —2g). Note that this expression indeed vanishes for
V;(ky) = Vj. To proceed further we make use of the assumptions that the injected particle
is of high energy, such that vy >> v53 and k; > k3. In this case we expand Vj; (k, + g;) in
g; and obtain

Ti23 E _ Vqs(k3 —k2) o Vi (k1 —k2) Vi, (k2 — k3)
12’3 eL? (02 — Z)3)(k1 — kz) (Ul — Uz)(kz — kg) (02 — U3)<k1 — k3)
Vi, (ki — k3) Vs (ks — k1) Vi, (k2 — k1) (5.17)

(01 —v3)(ka —ks)  (v1—v3)(k1 —ka)  (v1—02)(k1 —k3) |~

where it was now possible to approximate V,(k,) = —2¢*/eIn(|k,q|I3) [¢f. Eq. (5.15)].
Note that if we are in the regime when k, — k3 < I I we have to use the interaction
potential V,(k,) = —2¢?/eIn(|g|l), which has a vanishing derivative with respect to k.
This can be accounted for by removing the two terms with V;, (.. .) in the above formula
for T}%},. Finally, to the leading logarithmic order we can set V,, (ki — ko) = V;, (k1 — k3)
as well as V, (ko — k1) = Vi (ks — ki) = Vi, (k1 — k2) and Vi, (ks — k2) = Vi, (ko — k3) to
obtain the more compact result

Tll /222/}3/ -

27532 (kz — k3 Vg, (ko — k3) 2V, (k) | v2—v3Vy (k)> . (5.18)

L2\ vy — 03 k2 (Av)k  ky — k3 (Av)?

Here, v1 — v = Av and k; — kp = k. Note that this expression applies with the assumption
that all initial momentum differences are large compared to 1/Ip to also suit the recon-
struction effects that will be discussed later. For the unreconstructed edge, it is however
more reasonable to assume k, — k3 < 1/Ip (which holds for typical ez, T < e?/elp) in
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which case the last term of Eq. (5.18), involving V;,, does not show up.

17

5.1.2 Results for the unreconstructed edge

For the unreconstructed edge, the momentum and velocity differences are linked by the
curvature of the confinement potential via v; — v3 = (ko — k3)/m. and Av = k/m;. Here,
we included the possibility that the confinement potential grows faster than quadratic
which defines an effective m; 1> mZ1 that captures this effect. For brevity of the presenta-
tion, we assume m, > m; so that the direct matrix element takes the form

Ti%, = —@V (ky — k3). (5.19)

1/2'3/ [2¢k2 "B 2 3

Since for large Zeeman energy the particles at k; and k3 have opposite spins, there is
no exchange contribution (remember that exchange is appreciable for small momentum
transfers only) and Eq. (5.19) fully determines the three-body matrix element. The corre-
sponding energy relaxation rate can then be obtained by power counting which yields

1 L 3 (v —v3)kr [ e*me 2 Uy — U3

TE Av (Lkr) (Av)k (62L2k7— Av (5.20)
_ (k2 - kS)Z 62 4 kT 4
B my eAD %) (5.21)

In obtaining this result, a factor of L/Av emerges from eliminating the J-function in
Eq. (6.8), each summation over the remaining k», k3, 43 contributes a phase space factor of
~ k1 = T/v,, and the last factor in the first line of Eq. (5.21) accounts for the competition
between excitation (g1 > 0) and relaxation (g1 < 0) of the hot particle. The latter is slightly
favored because the momentum transfer working against the Fermi distribution is reduced
by a fraction q1 /kr ~ (v2 — v3)/Av (see section 4.3).

Eq. (5.21) implies that the relaxation rate it strongly temperature dependent and can be
enhanced [(k; — k3) =~ €z /v2] by increasing the magnetic field.

The relaxation rate in Eq. (5.21) was obtained for large Zeeman energy ez > T. As
mentioned above, the relaxation rate in the opposite limit of weak Zeeman splitting
ez < T can be obtained up to prefactors by replacing (k, — k3) ~ T/v, = kr. Note
that this regime allows for a low momentum transfer exchange term T}%},, because the
particles 2 and 3 are no longer necessarily of opposite spin. T|3,, can then be obtained
from Eq. (5.19) by replacing g3 — ko — k3, which does not change the power counting
argument. For a spin polarized edge, however, Eq. (5.21) only applies if the Coulomb
interaction is not screened for momenta of the order of k7. For a screened short range
interaction (kT < 1/d), the Pauli principle leads to a suppression of the energy relaxation
rate by an additional factor of (krd)* < 1 (see section 4.3).

Note that the fact that Eq. (5.21) reproduces the result of the corresponding relaxation

rate in a quantum wire [Eq. (4.63)] only up to a factor of the order (kr/k)? has its origin in

77
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.
>

Figure 5.2: Spin reconstructed edge for ez = 0. (a) depicts the Hartree-Fock single particle
dispersion in the reconstructed region. The relaxing hot particle i = 1 lies
outside this region and is not shown. Note that the curvature of the confinement
potential was set to zero such that the velocity difference v, — v3 > 0 is not
obvious from the figure. (b) shows the T = 0 occupation numbers of the
different spin species as function of the guiding center coordinate X.

the suppression of the large momentum transfer processes such that the energy relaxation

in a quantum Hall edge without reconstruction effects is comparatively slow.

5.2 Spin reconstruction

Edge reconstruction in quantum Hall systems results from the competition between the
Coulomb interaction and the confinement potential. Spin reconstruction at v = 2 takes
place when the confinement potential V, varies sufficiently slowly so that V. < e/ €l? and
can be understood at the level of the Hartree-Fock approximation [Dempsey et al. (1993)].
Once the slope of the confinement potential becomes weaker than that of the repulsive
Hartree potential V}, it is favorable to deposit charges outside the edge. This can be done
without paying extra exchange energy by a relative shift of the Fermi momenta of spin
up and spin down particles, as depicted in Fig. 5.2. In the absence of a Zeeman splitting,
ez = 0, this is a second order phase transition with spontaneous breaking of the spin
symmetry. Then, the distance of the two Fermi momenta varies as krp — kr3 o [VC, — VI/{]U 2
eventually saturating at 1//p [Dempsey et al. (1993)]. For finite Zeeman splitting ¢z, the
spin symmetry is lifted by the Zeeman field and the transition is smeared on the scale of
kry — krz ~ ez /0.

Spin reconstruction leads to characteristic changes in the single particle dispersion that
develops an “eye structure” [see Fig. 5.2a]. Important for the relaxation dynamics is
the increase of v, — v3 = (kpa — kp3) /m., which enhances the typical relaxed energy per
relaxation step [cf. Eq. (5.6)].

For truly long range interactions, the particle velocity would exhibit a logarithmic
singularity ~ e¢?/eIn(|k — kr|l3) at the Fermi energy, which is however cut off in the

presence of screening, say by a nearby gate electrode, at a scale 1/d. The Fermi velocity is
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Figure 5.3: Charge reconstructed edge. (a) depicts the Hartree-Fock single particle dis-
persion in the reconstructed region of a spin polarized sample at v = 1. The
relaxing hot particle i = 1 lies outside this region and is not shown. (b) shows
the occupation number as function of guiding center coordinate X near the
edge of the sample.

thus still of the order of vy, v3 ~ €2 /€ for typical choices of the screening length 4.

Even with spin reconstruction, the relaxation of hot particles can still be described
within the model dispersion of Eq. (5.5). We consider the case where the hot particle [not
shown in Fig. 5.2] is injected well outside the reconstructed region of size ¢?/ (elp). This is
compatible with the condition for the validity of a perturbative expansion, which reduced
to v1 > v, for the case that the Fermi velocity is determined by the interaction.

The energy relaxation rate 1/ Tés) can now be derived in the same way as for the
unreconstructed edge and consequently, Eq. (5.21) also applies to spin reconstructed edges.
The crucial difference is that the momentum difference is now strongly enhanced by the
spin reconstruction, taking values up to k» — k3 ~ 1/Ig. Comparing the rates before
(ko — k3 ~ max{ez, T} /v2) and well after spin reconstruction, one finds an enhancement

of the relaxation rates given by

L= (el >21. 522

(s) max{ez, T} ) ¢

5.3 Charge reconstruction

For confinement potentials that vary even more smoothly, changing by e? /€l over a region
w > Ip, spin reconstruction can be accompanied by an additional charge reconstruction
such that part of the electrons at the edge are pushed away from the bulk by a length
of the order of Iz [de C. Chamon and Wen (1994); Barlas et al. (2011)]. This corresponds
to a non-monotonic behavior of the dispersion with momentum and the creation of two
additional counter-propagating edge modes, as depicted in Fig. 5.3.

A minimal model for charge reconstruction considers filling factor v = 1 within the

Hartree-Fock approximation [de C. Chamon and Wen (1994)]. Consider first a confinement
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potential defined by a positive background charge which occupies lowest Landau level
wave functions Px with the occupation number v.(X) = @(—X). Such a confinement
potential exactly cancels the Hartree potential of the electrons for an unreconstructed
edge. In this case, the electron occupation of the unreconstructed edge is stabilized by the
(attractive) exchange potential.

The reconstruction transition can then be modeled by changing the abrupt drop of v.(X)
into a linear decrease over a length w. For the unreconstructed electron occupations, this
leads to negative (at X < 0) and positive (at X > 0) excess charges, causing a dipole
tield that favors separating electrons from the bulk. Once this dipole field overcomes the
exchange potential, the charge reconstruction transition takes place. Within the Hartree-
Fock approximation, this happens for w ~ 8I. Due to the particle-hole symmetric choice
of the confinement potential around X = 0, the width and the distance of the additional
stripe from the bulk electron droplet both take the same value b [see Fig. 5.3b]. Moreover,
the transition is of first order in the sense that b changes abruptly at the transition from
zero to a value of the order of 3.

Note that the same mechanism induces new (weaker) effective dipole fields at each of
the three Fermi points as the edge becomes yet smoother. Thus, increasing w even further
causes additional stripes to appear, eventually approaching the limit of a compressible
stripe which is expected for w > Ip [Chklovskii ef al. (1992)]. In the following we will
focus on w 2 Ip, remaining well outside the compressible limit.

Energy relaxation in the charge reconstructed case can also be captured by the dispersion
(5.5) when setting v3 < 0. The three Fermi velocities of the charge reconstructed edge are
essentially determined by the variation of the exchange potential, which is short ranged
such that b 2> Ip already approximates the bulk edge (b — oo) behavior. Consequently, the
magnitude of the Fermi velocities is equal to that of the unreconstructed edge and ~ ¢?/e.
In line with the discussions above, we consider the relaxation of a hot particle injected
well outside the reconstructed region with v; > ¢?/e.

The nonmonotonic behavior of the dispersion introduces a new relaxation process
which relaxes the hot particle by exciting two counter-propagating particle-hole pairs
[see Fig. 5.3]. This eliminates the restriction that the energy transfers at the Fermi energy
cannot exceed the temperature and makes a process similar to that for non-chiral quantum
wires possible [see section 4.1]. Unlike for the discussion of the quantum wires, however,
by considering the regime v1 > v;, v3 the momentum transfers at the Fermi energy of the
co- and counter-propagating branch are of the same order.

The three-body matrix element of Eq. (5.18) still applies in the presence of charge
reconstruction because its derivation did not require a specific sign of v3, again resulting
in Eq. (5.19). The crucial difference for the energy relaxation rates arises from the large
allowed g3 ~ 1/Ig, which is limited only by the size of the reconstructed region for which
the linearized dispersion applies. This increases both the momentum phase space to
(L/Ip)? and the typical relaxed momentum to (v, — v3)/(Avlg). Moreover, excitation and
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relaxation processes no longer need to be balanced when ¢? /€l > T, and we find
1 me 2 \*/1 /1B 4

which allows for relaxation even at T = 0 and implies a dramatic increase of the relaxation

rate.

5.4 Conclusions

We studied three-body processes as an intrinsic mechanism for relaxation of hot electrons
in clean integer quantum Hall edges at Landau level filling factors v = 1 and v = 2. These
processes rely crucially on the form of the electron dispersion and are thus susceptible
to edge reconstruction effects. For an unreconstructed edge, energy relaxation requires
a finite temperature which determines the phase space for the relaxation processes. The
energy given up by the hot electron in a single three-body collision is controlled by
curvature effects on the scale of temperature or Zeeman energy so that the relaxation rate
can in principle be tuned by a magnetic field once ez > T.

While unreconstructed edges are expected for steep confinement potentials, smoother
confinement potentials with V. < 2/ (eI2) may lead to an interaction-induced spin
reconstruction, which causes a relative shift of the Fermi momenta of the two spin species
by ~ 1/Ig. The three-body processes are then controlled by curvature effects on the scale
of the interaction energy ¢?/(elg) which causes a strong increase of the relaxation rate.

Even softer confinement may cause charge reconstruction which introduces additional
co- and counter-propagating edge modes. The presence of counter-propagating modes
allows for relaxation even at T = 0. Consequently, the phase space for three-body
collisions is no longer controlled by temperature but by the size of the reconstructed
region ~ 2/ (elg) which ensues an additional dramatic enhancement of the relaxation

rate.
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6 Scattering theory of current induced

forces in nanoelectromechanical

systems1

In this chapter we develop a scattering theory of the non-equilibrium forces that electrons
exert on slowly varying mechanical degrees of freedoms in nanoelectromechanical systems.
The separation of electronic and mechanical times scales allows one to treat the mechanical
degrees of freedom as classical variables that are described by a Langevin equation

ou

MoXo 4 oo = E = Y 7 Xp + Ca - 6.1)

Here M, and U are the generalized mass and potential of the N mechanical degrees of
freedom X = (Xj, .., Xn). The coupling to the electrons is then described by the mean and
fluctuating force F% and o as well as the damping matrix 7,5 which results from the first
order of the adiabatic expansion. In out of equilibrium situations, it is no longer possible to
relate y,p and ¢, by the fluctuation dissipation theorem and the fully adiabatic scattering
matrix will not be sufficient to describe the velocity dependent current induced forces
[Bode et al. (2011, 2012)]. It is therefore important to account for a slow time dependence
in scattering theory.

While the static scattering theory is a well-known standard tool for treating coherent
transport in mesoscopic systems [see e.g. Blanter (2010) for a pedagogical discussion], its
time dependent counterpart is far less elaborated. Scattering matrix expressions for slowly
time dependent phenomena were mainly obtained in the context of adiabatic pumping
[Brouwer (1998); Avron et al. (2001)] and further refined in the context of Floquet scattering
theory [Moskalets (2011)] for systems with periodic time dependence.

In this chapter we will use an arbitrarily (but slowly) time dependent scattering theory.
First, we will however start with a short review of the static scattering scattering theory
which provides the reference point for an adiabatic expansion of the time dependent

problem.

IThis chapter is based on joint work with M. Thomas, S. Viola Kusminskiy, G. Zarédnd and F. von Oppen.
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6 Scattering theory of current induced forces in nanoelectromechanical systems

6.1 Static scattering theory

Time independent scattering theory considers the Hamiltonian
H=Hy+V, (6.2)
where Hj is a free Hamiltonian with plane wave eigenstates

Hol¢w(E)) = El¢m(E)) (6.3)

and V describes the scattering potential. The latter is assumed to have a finite range
such that the asymptotics of the system far from the scatterer are described by Hy. In
mesoscopic systems Hj is typically the Hamiltonian in the leads which are modeled as
ideal waveguides. Consequently m is a combined index labeling channels and leads.
One of the central objects of scattering theory are the advanced (—) and retarded (+)

scattering states which are eigenstates of the full Hamiltonian

H|; (E)) = Ely;; (E)) . (6.4)

Both, the advanced and the retarded solutions span the full Hilbert space and correspond
to different boundary conditions. The retarded solutions evolve from a plane wave state
at t — —oo when adiabatically switching on the scattering potential V. — V exp(—#|t|)
(i.e. we consider the limit 7 — 0). The advanced scattering states on the other hand are
evolved backwards in time from a free state at t — 4-co. In terms of the time evolution

operator U(t,t") the scattering states can therefore be written as
¥m(E)) = U0, —o0)|¢pm(E)) (6.5)
¢ (E)) = U(0,00)|¢u(E)). (6.6)

The solution of Egs. (6.5,6.6) are given by the Lippman-Schwinger equation

95 (E)) = |¢m(E)) + GV A(E)V|pu(E)), (6.7)
in terms of the full Green’s functions

1

The scattering matrix (S-matrix) is then defined as the unitary basis transformation from

the retarded to the advanced states

Sun(E',E) = (¢, (E")|¢y (E)) (6.9)
= (Pu(E")|U(co, —00)|¢p,(E)) (6.10)

83



6 Scattering theory of current induced forces in nanoelectromechanical systems

and is purely elastic S(E/,E) = S(E)J(E — E’) due to the time independence of the
problem. The physical interpretation of the S-matrix is that it gives the amplitude for an
incoming wave packet (t — —o0) at energy E and quantum number 7 to scatter into an

outgoing wave packet at E’, m for (t — o).

6.2 Slowly time dependent scattering theory

In this section we depart from the purely static scattering theory and consider a Hamilto-
nian
H(t) =Hy+ V(t), (6.11)

where V (t) varies slowly on the time scale of the electron interaction with the localized
potential V(¢). In the setting of nanoelectromechanical systems the scattering potential
depends only parametrically on time and takes the form

V(t) = V(X(1)) (6.12)

where X(t) denotes the slowly varying mechanical degrees of freedom. We now define
the time dependent retarded (4) and advanced (—) scattering states as full solutions of

the time dependent Schrodinger equation
i04[¥;, (E, 1)) = H(t) [¥;,(E, 1)), (6.13)

where the index m labels quantum numbers within the degenerate subspace of eigenstates
of Hy with energy E. The difference between advanced and retarded scattering states lies
again in their boundary conditions. Since the time an electron spends in the scattering
region is finite its evolution will be determined only by the free Hamiltonian Hy for t —
+o0. This can be implemented similarly to the time independent problem by switching off
the potential V(t) — V() exp(—#|t|) at large times. The scattering states are now defined
with the boundary conditions

WE(E, 1)) = e 2 g (E)) : ;: (6.14)

such that they evolve forward (+4) and backward (—) in time from an eigenstate of the free
Hamiltonian. In the following it will be convenient to write the time dependent scattering
states as

¥ (E, 1)) = ey (E 1)), (6.15)

2A detailed discussion that the overlap of the scattering states indeed gives the reflection and transmission
amplitudes of scattering can be found in the formal, but nicely written scattering theory introduction in
the book of Mello et al. (2004).
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which extracts the fast dynamic time dependence. The Schrodinger equation then takes
the form

0y (E 1)) = [H(t) — E] |¢5 (E, 1)) (6.16)

The solution of the Schrodinger equation (6.16) can be obtained iteratively within an
adiabatic expansion in the slow time dependence [Entin-Wohlman ef al. (2002)]. To zeroth
order one can ignore the time dependence of |5 (E, t)). Eq. (6.16) is then solved by the
frozen scattering states |)'*(E)) that are a solution of a static scattering problem with
fixed Hamiltonian H(X(t)) and therefore depend only parametrically on t.

The first order in the adiabatic expansion can be obtained by noting that in this order
ot (E, t)) = 9¢|¢i*(E)) and one obtains

95 (E, 1)) = |k (E)) —iGRA(E) |9yl (E)), (6.17)

which is fully determined by the frozen scattering states. Here, GR/4(E) = 1/(E — H(t) +
in) denotes the (frozen) retarded and advanced Green’s functions and |9, (E)) =
9t (|95 (E))). By taking the derivative of the Lippman-Schwinger equation [see Eq. (6.7)]
for the frozen scattering states one can then rewrite the time derivative of the scattering

state as
0y (E)) = GRMA(E) [0:V] [¢h*(E)) . (6.18)

Here we used
3:GRA(E) = GRA(E) [0;V] GR'A(E), (6.19)

which can be obtained by expanding G in powers of V(t) and the time independent free
Green’s functions Gy.

6.2.1 Adiabatic expansion of the S-matrix

Starting from the time independent definition of the S-matrix it is natural to define the

following generalization of a fully time dependent S-matrix

Smn(E',E, to) = {(¢m(E")[U(co, to)U(to, —00)|¢n(E)). (6.20)
= <T;1(E,/t0)|‘{!;:(Elt0)>' (621)

Note that this S-matrix becomes time independent for a static Hamiltonian. For a slow
time dependence of the Hamiltonian S, (E’, E, to) will also only change slowly and ¢
has to be evaluated at an appropriate “average time”. This can be implemented by the
Wigner transform, which helps decoupling the slow central time ¢ from the fast relative
time oscillations that are due to the electronic energies. Usually the Wigner transform is
defined as a mapping f(t + t/2,t — 7/2) — f(E,t). Here we encounter the equivalent
problem of a Wigner transform in energies, which decouples the central energy that leads
to the fast time changes and the small energy difference that is due to the slowly varying
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degrees of freedom. The two energy Wigner transform takes the form

Sy (E, 1) = / dee S, (E + ;,E . g,to) . (6.22)

By setting t; equal to the Wigner central time t we then obtain up to first order in the
adiabatic expansion

S = [l (€4 ) (e o b e Sowir - )
8—:177 <atll)’t”_ (E * g) o (E B §>>> (6.23)
= Sun(E) + 7 (@ (E)|w,"(E)) — (. (E)[oewy," (E)))

+73/d81i5(£)< e (E)‘atv " (E)>, (6.24)

where

Sun(E)O(E — E') = (i (E') |} (E)) (6.25)

is the frozen S-matrix and we used the Dirac identity (x +in)~! = —ind(x) + P(1/x),
which is valid under the integral of x, where P denotes the principal value integral. Note

that the principal value integral above vanishes such that we obtain

Sun (E, t) = Syn(E) + Amn(E) (6.26)
with
Apn(E) = 70 (0, (E)|9y"(E)) — (¢ (E)|9spy," (E))) - (6.27)

Eq. (6.26) is well-known in the context of time dependent scattering theory [Moskalets
and Biittiker (2004, 2005a); Bode et al. (2011, 2012)]. The crucial advantage of the above
derivation is that it gives an expression [Eq. (6.27)] for the form of first adiabatic correction
to the full S-matrix in terms of the adiabatic scattering states. In previous works® A (A-
matrix) was only given by Green’s function expressions [Bode et al. (2011, 2012)] or had to
be obtained from solving the entire time dependent problem [Moskalets and Biittiker (2004,
2005b)]. It is thus worth studying the properties of the A-matrix in this representation in

more detail.

6.2.2 Properties of the A-matrix

An alternative definition of the A-matrix

Aun(E) = 7 (9epy, (E)[0:V |9, (E)) — 7 (¢, (E)|0:V[opy, " (E)) (6.28)

3Note that the matrix A is closely related to the matrix U in the paper of Entin-Wohlman et al. (2002) who
however did not point out the connection to the full S-matrix.
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can be obtained by applying Eq. (6.18) to Eq. (6.27). Here we used

GR(E)|ph ™ (E)) = —ae|yh " (E)), (6.29)

which can be obtained by differentiating the Schrédinger equation (E — H) [, " (E)) =0
with respect to energy. Eq. (6.28) can be of practical use for a calculation of the A-matrix.
The advantage is that when calculating the overlap of the scattering states in real space it
restricts the integral to the finite scattering region unlike in Eq. (6.27) where the integral
runs over all of space. Note also that for the same reason Eq. (6.28) nicely demonstrates
that the A-matrix is always well-defined as long as the scattering potential is of finite
range.

It will be useful in the following to express the time derivative of the frozen S-matrix
in terms of the scattering states. This can be achieved by taking the derivative of the

well-known relation
Sin(E) = Opn — 27i(tpy, (E)|Vgu(E)), (6.30)
which follows directly from Eq. (6.25). From Egs. (6.7) and (6.19) we then obtain
31Sun(E) = —27ti (9!, (E)| 3,V [y} (E)). (631)

Note that this allows one to obtain the useful relation

@i, (B (E)) = (yh (E)|[0:V] GR(E)|yyt (E)) (6.32)
= (¥ (E)I P:V] [9eyn" (E)) (633)
=~ ()} (E)) = 5-969: S (6.34)

With these relations we can now check whether Eq. (6.27) indeed fulfills the relation
STA+ ATS = % (ats+aEs - aEs+ats) (6.35)

which follows from the unitarity of the full S-matrix [Moskalets and Biittiker (2004, 2005a);
Bode et al. (2011, 2012)]. Using Egs. (6.29,6.34) as well as the unitarity of the frozen S-matrix
we show that (omitting the quantum numbers for better readability)
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STA+ ATS
= 7S (A i) — (We 9 ) + 7 ((F 10 ) — (A [9z)) S (6.36)
= 2nrst <1p,g\ [0:V] GRy¢g>+2n<¢g|GA 0:V] |¢,g> s+% (s*aEats - aEats+s) (6.37)
= —2mdg [(¢i 19,V )] + % (s*ardis —agpais's) (6.38)
- —%aE [s*ats - ats*s} n % (s*aEats — aEats+s) (6.39)
= % (ats+aEs - aEs+ats) , (6.40)

which confirms that the A-matrix defined in Eq. (6.27) does indeed fulfill the unitarity

condition.

6.3 Reaction forces

The force that the (quantum coherent) electrons exert on the (classical) vibrational degrees
of freedom X(t) is given by [Berry and Robbins (1993)]

F=-Tr{p(t)VH}, (6.41)

where the gradient is taken with respect to X, # is the many body Hamiltonian, and p(t)
the corresponding many body density matrix. In the scattering formalism one is interested

in single particle operators. We thus use the general relation
(0) = Zomk <ﬂLﬂk> , (6.42)
mk

where 0, is a single particle matrix element (m, k are abstract quantum numbers) and
we choose that a!, creates a retarded scattering states such that <a;ak> = fxOkm - It is thus
possible to calculate

F=—-Tr{p(t)VH}, (6.43)

where H is the single particle Hamiltonian and we defined
o(t) = [ AEY FulE) 9 (B 0)wi (B0 (6:44

Here, f,(E) describes the energy probability distribution for each quantum number 1 of
the states |,/ (E, t)) [Eq. (6.13)] and is determined by the reservoirs in a scattering setting.

Similar to Berry and Robbins (1993) we now perform an adiabatic expansion of p(t)
which can be done by using the expansion of the scattering states [Eq. (6.17)]. The zeroth
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order expansion is given by the frozen scattering states as

= [ AL fu(B) i (B4 (B), (645

while the first order takes the form
P(X) = i [ dEYF(E)GH(E) o (£)) (9 (B) (6.46
+ [ AELFu(B) 44" (£)) (i (B)] GA(B). (6:47)

The zeroth order term of Eq. (6.43) describes the mean force F(*)(X) that the quantum
mechanical electrons exert on the classical mechanical degrees of freedom. The first order
term involves derivatives of the form 9; = X - V and leads to velocity dependent forces.
These forces can lead to rich behavior such as cyclic motions through Lorentz-like forces
or negative and positive damping. In the following we will discuss the different forces
step by step.

6.3.1 Mean force

The mean force can be expressed as

=~ [ 4E L A(E) (i (B)acHIy" (B)), (6.48)

where 9, indicates the partial derivative with respect to X,. To turn Eq. (6.48) into an

expression involving the S-matrix, we insert the resolution of the identity

1- | 4E 19} (8) (9 () (6.49)
and obtain
—— [ dE [ 4B CAGE) W Bl (E)) v (E)RHIT(E).  (650)

We note that Eq. (6.31) can also be applied to spatial derivatives such that
9aSmn(E) = =27t (” (E) |0V 4" (E)), (651)

from which we immediately obtain

F9 = — [ dEY_fu(E)(S)}(E) [—;ﬂiaasmn(E)] : (6.52)
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In a more compact notation, this can be written to give the mean force
o _ [dE Y fu(E)tr {HHS’L(E)GQS(E)} (6.53)
‘ 27 4 ’

where tr{...} denotes a trace (over the channel/lead index) excluding the energy integral,
so that Tr{...} = [dEtr{...}, and I, is a projector onto the generalized channel/lead
index n. In the case that the distribution functions f,,(E) depend only on the lead and not
on the channels, the projector can be replaced by I, which projects on lead v. Eq. (6.53)
then indeed coincides with the corresponding expression of Bode et al. (2011, 2012).

6.3.2 Friction and Lorentz-like force

The first order correction to the mean force is given by

Y= / dE Y (9 ()10 Hlyly (E)), (6.54)

where we chose the advanced scattering states as a complete basis for evaluating the
trace, which will be convenient for expressing the force in terms of the S-matrix. Note that
dH = 0,V such that we can use Eq. (6.18) to rewrite

QHY, (B)) = (GAE)) GAE)HIY, () (6.55)
HY (B)) = (GAE)) ™ fauly (B)) (6.56)
Wt E)H = (@ (B)] (GR(E)) (657)

Using the cyclic property of the trace the Green’s functions in the expression (6.46) of p;
cancel out and we find

Y = i [ BaE Y £ (E) [ @iy ()l () (9" (ED9l (E))
(g ()i (B)) ey (E) auwly (E)] - (6.58)

With d; = } 4 Xp0g one realizes that F; is indeed a velocity dependent force. It is thus
convenient to define the a generalized “damping matrix” v through

FY = = Yy X (6.59)
B

It is generalized in the sense that it describes all velocity dependent forces. Only the
symmetric part of 775 = (Yap + Ypa) /2 corresponds to physical damping, while the anti-
symmetric part 4 g = (Yap — vpa) /2 describes Lorentz-like forces. For an interpretation
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of the different forces it will thus be useful to decompose

Top = i [ AEY FulE)[Sha(E) Qut ()05} (E) (6.60)
— (9" (E) |0ty (E))Sma(E)| .
into its symmetric and antisymmetric parts, which we denote by {...}/,.

Symmetric part

We consider the term in the first line of Eq. (6.60) and omit the energy dependence which
is the same for all quantities and the sum over m is implicitly taken. We can then rewrite

St (Oaply 10p95T)

= Spu Ou(Wh 19s95T) — (W4 100595 T)) (6.61)
= O (St 1095 T) ) — 0uShu (Pl 199 T) — Sh(wir 909 ™)  (6.62)
= —0uSh(Whs 10y T) + (Oaply T 0pyT) . (6.63)

In the same sense one obtains

(@ [0utr )Smn = (" 10pWr )0aSmn — (Optp ™ [0atpyy ™) - (6.64)

In the symmetric part the last term cancels and one obtains

vip =1 [ AET Au(E) (ST (E)ly (B)OpYS () — @5l (E)Ily (E))2uSum(E) .

S

(6.65)
Now we define A, as A = ¥, Ay X, and use
i
(Aa) i = =27 (W [9atp”) — 59E0Suun (6.66)
which follows directly from Egs. (6.27) and (6.34). Finally we obtain
s dE t
Yap = EZ[_aEfn(E)]tr{nnaas (E)aﬁS(E)}S (6.67)

+ ;fi ;fn(E)tr {nn [E),XSJF(E)A/;(E) - A;(E)aﬁS(E)} } .

Eq. (6.67) recovers the result of Bode et al. (2011, 2012). The second part involving the

A-matrix vanishes in equilibrium [Bode et al. (2011, 2012)]. Since the expression only

involving S is positive definite, * describes a usual friction and damping force in equilib-

rium. Interestingly, the out of equilibrium contribution involving A can change the sign of
7® and leads to negative damping.

Note that it is not trivial to obtain a friction force that is mediated by a quantum system.
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Indeed, assuming a closed finite size system, Berry and Robbins (1993) obtained 7° = 0.
The crucial difference with our approach is that Berry and Robbins (1993) considered a
finite gaped system.

Antisymmetric part

The antisymmetric part of the damping matrix has the role of an effective orbital magnetic
field acting on the multidimensional space of X. From Eq. (6.60) and using that terms
symmetric in the indices &,  (such as d,dg) will cancel, we can write

Vg = i [ dEY fu(E){Sh(E)a [(why (E)|Opit (E))] (6.68)
~au [@pun" (E)}y (E))] Spn(E)} .

Comparing this expression with Eq. (6.66) directly yields
a _ dj t _ct
= [ o Y fu(E)ee {11, (A (EIS(E) - S*(E)aann(E)) } (6.69)

This antisymmetric part vanishes for time reversal invariant systems in equilibrium [Bode
et al. (2011, 2012)]. In a general non-equilibrium situation y* will however be finite
and can lead to cyclic motions of the slow mechanical variables. Note that within the
scattering formalism all the above relations are well-defined and we do not encounter any
divergences in contrast to Lii et al. (2010). The reason for this is that the finite time the
electrons stays in the scattering region effectively broadens the electron Green’s functions.

6.3.3 Stochastic force

For a full determination of the equation of motion of the slow mechanical degrees of

freedom we still need to determine the stochastic force
Calt) = 0 H(t) — (9 H(L)) (6.70)

[see Eq. (6.1)]. The leading order of the fluctuating force will be given only in terms of the
frozen S-matrix. Note that in equilibrium the fluctuation-dissipation theorem relates the
fluctuating force to the dissipative part ¢° and the latter can therefore also be expressed
only in terms of the frozen S-matrix [see Eq. (6.67)].

Since the electronic degrees of freedom are fast compared to the mechanical motion the

correlator
Dap(t,t') = {{Gu(t)¢p(t')) }s = Dap(t)3(t — ') (6.71)

will be local on the relevant time scales of the Langevin equation (6.1). In order to
determine D,4(t) we average D,4(t,t') over the fast electronic degrees of freedom such
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that
T

Daﬁ(fo) =D, ap (X /dTDalg (to + = 2 E) (672)
and work in the frozen scattering state basis |¢'). Since the correlatior is a two-body
operator we first have to rewrite it in terms of single-body expectation values to find an
S-matrix expression.

In second quantization language, we find in zeroth order of the adiabatic expansion

o HNO(t) = / dE / dE'Y alt"(E,t) (9.H™), . a?(E,t) (6.73)
mk

= / dE / dE'Y alot(E) (3,H™),  al(E)elE-E), (6.74)
mk

where ai,%Jr(E ) creates a frozen (retarded) scattering state with quantum number m and
energy E which is an eigenstate of the Hamiltonian H". The time evolution therefore
takes the simple form a,tco (E, t) = exp(—iE t)a,t{(’ (E). The correlator can now be obtained by
using the well-known expression [Biittiker (1992)]

(af(E)an(E") af (E") a;(E")) — (ay,(E) an(E")) (af (E") a;(E"))
= fw(E) (1 F fx(E") 6 6,k 6(E — E") S(E' — E"). (6.75)

where the minus sign refers to fermions and the plus sign indicates bosons. The distri-
bution function is given by fy(E) = (af(E) ax(E)). Applying Eq. (6.75) to Eq. (6.72) we
find

Dapto) / dr / dEdE')  fu(E) (17 fi(E N{ (it (B)| 9 H(t) 9ot ()l E )2
x (" (E)]9 H<>r¢,is+<E>>eﬂ<E*E’>%} (6.76)

S

The time integral yields [*_dte {E'~F)T = 2716(E’ — E). Inserting two resolutions of the
identity in terms of advanced scattering states, i.e. 1 = [dE Y | (E)) (¢, (E)|, then
allows for identifying the S-matrix with (!, = (E)|y; " (E')) = S (E) §(E — E’) as well as
its derivatives given by Eq. (6.31). We then find

Dap(to) = /dE Y fu(E) (1 F fu(E)) {%SZ;{(E) Sim(E) SLI(E)aﬁS,n(E)} ,(6.77)
nmkl s
which can be rewritten in matrix notation as
Dag(to) Z [1F fu(E)] tr {Hn [S*(E)E)QS(E)THms*(E)aﬁs(E)} .
(6.78)

Also Eq. (6.78) agrees with Bode et al. (2011, 2012). Note however that this derivation is
completely model independent and even applies when dealing with bosons instead of
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fermions.

6.4 Application: current induced forces in a mesoscopic

quantum dot

As mentioned above, the S-matrix expressions for the current induced forces forces were

already obtained from a model of a mesoscopic quantum dot [Bode et al. (2011, 2012)]. It

is instructive to study the connection between our general definition of A in terms of the

scattering states and the Green’s functions expression for a mesoscopic quantum dot.
Bode et al. (2011, 2012) considered the Hamiltonian

H(X) = Hx+ H; + Hp + Hr, (6.79)

which models a mesoscopic quantum dot (D) connected (T) to leads (L). The slow
classical degrees of freedom X(#) = (X;(t), Xa(f) ... Xn(t)) are in this case the mechanical
vibrational modes of the (e.g. suspended) dot, which couple to the electrons in the dot.

Specifically, the Hamiltonian takes the form

Hy =Y (Ey— ) chey (6.80)
n P2

Hx=Y_ [21\2 - u(x)} (6.81)

Hp = Y d}, [ho(X)] e Do (6.82)

Hr=Y (c;w,,mdm n h.c.) . (6.83)
nm

H; models the leads, where c:r] (cy) creates (annihilates) an electron in channel 7 with
chemical potential y, [7 combines channel and lead index, the chemical potential depends
only on the lead index]. Hx represents the free evolution of the mechanical degrees of
freedom of the dot. Hp is the Hamiltonian of the dot, containing the electronic levels plus
the coupling of the electrons in the dot to X via a general function /o (X). The operators
dl, (dy) create (annihilate) an electron with quantum number m. Finally, Hr indicates the
tunneling process between the dot and the leads with tunneling amplitudes W, ;.
The Hamiltonian in Eq. (6.79) implies that the scattering states can be decomposed as

¥ (E,1)) =TI ¥y (E, 1) + T [¥; (E,1)) (6.84)

where I and I'lp denote projection operators onto the leads and dot, respectively. Note
that I'l;, - IIp = Ilp - IT; = 0. We can write the Lippman-Schwinger equation as

9} (E)) =1L ¢y (E)) + GR(E)V I |¢, (E)), (6.85)
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whereIT; |¢,(E)) = c; (E)|0) is an eigenvector of H and, therefore a state of a free electron
in the lead 77, GR(E) = (E — H + i) ! is the full Green’s function of the dot and the lead
and V = IIpW*II; + I1; WIIp + IIphoIlp. Hence we can project the Lippman-Schwinger
Eq. (6.85) onto the dot space

Ip " (E)) = IIp GR(E) IIp W' 1L |¢, (E)) (6.86)
= GR(E) W' |¢y(E)), (6.87)

where GR(E) = I1p GR(E) I1p is the dot’s Green function.
We are interested in an explicit expression for the A-matrix. Since only the dot Hamilto-
nian is time dependent we can use d;V = IIpdiholIp and obtain from Eq. (6.28)

Ag(E) = 7 | @ (E)ITIp (3sho) Tp |9 (E)) — (3™ (E)|TIp (3¢ho) TIn|dpyt (E)) |
(6.88)
In matrix form A, (E) = (¢, (E)| Ali;,(E)) is equivalent to

Ag(E) =7 [aE (WG};) (3:110) GRWT — WGR (34110) 0 (Ggw*)] . (6.89)

This indeed gives the result of Bode et al. (2011, 2012) which was obtained by an adiabatic
expansion of the time dependent dot-Green’s function Gp and using the Wigner transform

of the full time dependent S-matrix

S(E,t) = 1—2nmi [wg};w*} (E,t). (6.90)

6.5 Conclusion

We provided a full scattering theory derivation of the forces that are exerted onto the
mechanical degrees of freedom in a nanoelectromechanical system. We could indeed
confirm the expressions found by Bode et al. (2011, 2012) and show that these results hold
on a general, model independent level. Indeed with small modifications for the fluctuating
force Egs. (6.53,6.67,6.69,6.78) remain valid for the forces that bosons exert onto mechanical
degrees of freedom such that the presented scattering theory may also have interesting
applications to optomechanical systems.

Finally, we also want to draw attention to the explicit expressions for the A-matrix [see
Egs. (6.27,6.28)] that provide a straight forward recipe for the calculation of the first order
adiabatic correction to the S-matrix in terms of the frozen scattering states. This will be

useful for applying the approach to concrete examples.
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Low dimensional electron systems can behave strikingly different form their higher di-
mensional counterparts. This is especially pronounced in one dimensional systems whose
low energy physics is controlled by strong correlations. Recent experimental advances
in one dimensional systems draw more and more attention to their rich non-equilibrium
behavior. Motivated by these developments the main part of this thesis addressed two
important elementary non-equilibrium processes. In chapter 3 we discussed the main
characteristics of the out of equilibrium state that is introduced when a low energy particle
tunnels into a Luttinger liquid. Chapters 4 and 5 then went beyond the Luttinger liquid
paradigm and studied relaxation and thermalization of an introduced non-equilibrium
state due to the finite curvature of the electron dispersion.

Tunneling of an electron into a Luttinger liquid leads to partitioning of its charge
into right- and left-moving currents. The charge partitioning ratio is closely related to
the fractional excitations of the Luttinger liquid and only determined by the Luttinger
parameter K. In chapter 3 we studied the corresponding energy partitioning and found
that it is distinctly different from that of the charge. Although it also relies on the strong
correlations it does not depend on the Luttinger parameter K alone. In fact it is crucially
controlled by the injected state and can thus be tuned experimentally. Interestingly, it
is even possible to reach conditions such that charge and energy of an injected particle
propagate in opposite directions.

In finite size systems, charge partitioning is completely masked by backscattering effects
at the non-interacting Fermi liquid leads. We showed that in stark contrast to the charge,
energy partitioning provides a measurable characteristic of the tunneling process even
in dc setups. Specifically, we proposed realistic geometries in which one is able to probe
consequences of energy partitioning.

At higher excitations energies, it is necessary to include curvature effects of the disper-
sion. Chapter 4 studied the curvature induced energy relaxation of hot particle and hole
excitations in quantum wires. The relaxation mechanism is described by a well-defined
perturbation theory that relies on three-body processes. These processes show a strong
asymmetry for the energy relaxation rates of particle and hole excitations. The hole re-
laxation is strongly suppressed at low temperatures and ceases completely at T = 0. On
the other hand, there is no similar limitation for particles and the corresponding energy
relaxation rates can become relatively fast (of the order 1/7, ~ €2, where ¢ is the excitation
energy). In obtaining this result, chapter 4 demonstrated the importance of spin and of
the long range Coulomb interaction for three-body relaxation processes. Taking them into
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account dramatically increases the energy relaxation rates of particle and hole excitations
via 2kr momentum transfer processes. These enhanced relaxation rates provide a quanti-
tative interpretation of a recent experiment by Barak ef al. (2010b) in terms of three-body
processes. Also in line with this experiment, we argued that three-body processes do not
transfer a substantial amount of energy between right- and left-moving electrons.

Chapter 5 studied the influence of three-body collisions on the energy relaxation in
integer quantum Hall edge states. We specifically addressed different interaction induced
edge reconstruction scenarios. For an unreconstructed edge, energy relaxation relies on a
chiral three-body relaxation process which is strongly suppressed at low temperatures.
Another pronounced difference with scattering in quantum wires is that the Landau
level wave functions lead to a suppression of large momentum transfer Coulomb matrix
elements such that direct, instead of exchange processes dominate the relaxation.

While unreconstructed edges are expected for steep confinement potentials, a smoother
confinement leads to reconstruction effects which were found to strongly increase the
energy relaxation rate. Specifically, confinement potentials that are smoother than the
repulsive Hartree potential lead to spin reconstruction in v = 2 quantum Hall edge states,
which separates the Fermi momenta of the two spin species by ~ 1/Ip (where [ is the
magnetic length). We showed that the spin reconstructed dispersion leads to an increase
of the energy relaxation rate, but still requires finite temperatures.

Softer confinement potentials can also lead to charge reconstruction which we studied
in a minimal model of spin polarized edges at filling factor v = 1. Charge reconstruction
introduces additional co- and counter-propagating edge modes. The presence of counter-
propagating modes allows for similar relaxation process as in quantum wires, which are
not limited to finite temperature. Consequently, we predicted a dramatic increase of the
energy relaxation rates in charge reconstructed edges.

The field of one dimensional electron systems out of equilibrium has recently received
much theoretical attention. The emerging picture provides an understanding of the
low energy behavior, described by bosonization techniques, as well as the high energy
limit where curvature effects allow for a perturbative treatment of the electron-electron
interaction. An ongoing theoretical challenge is however the intermediate regime, where
one has to deal with the strong interactions as well as the finite curvature in a non-
equilibrium setting. A promising candidate for this regime is a description in terms of
the fermionic quasi-particles® of the Luttinger liquid (holons and spinons) [Imambekov
et al. (2011)] for which moderate curvatures introduce weak interactions. Interestingly,
the particle relaxation rates calculated in this thesis coincide with the holon decay rates
at the limit of applicability of both theories. It still has to be sorted out whether this is
a coincidence or whether there is an underlying connection between the two seemingly
different approaches. Another open question is whether our recent understanding of the
elementary processes in a Luttinger liquid can be used to construct a full kinetic theory of

INote however that these quasi-particles cannot be represented easily in terms of the original electrons but
consist of a fractional combination of right- and left-moving electrons.
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the weakly interacting holons and spinons.

An understanding of the kinetics in the strongly interacting regime could lead to an
interesting way to probe the properties of one dimensional systems by observing their
relaxation behavior. This could be especially useful to discriminate between different
reconstruction scenarios of fractional quantum Hall edge states because, while invisible to

charge measurement, the neutral modes will contribute to the relaxation behavior.

Another interesting manifestation of the qualitative differences that come along with
considering an out of equilibrium setting are nanoelectromechanical systems. There,
the non-equilibrium electron current can exert non-conservative forces that act on the
mechanical degrees of freedom.

In chapter 6 we provided a scattering theory of current induced forces. Former Green’s
function approaches could already identify their results for the current induced forces with
S-matrix expressions [Bode et al. (2011, 2012)]. Chapter 6 showed that the appearance of the
S-matrix is not coincidental but follows from a general scattering theory which accounts for
slowly time dependent scattering potentials. The advantage of this alternative derivation
of the current induced forces is that it gives additional insights into the underlying
structure of the theory.

The starting point of the calculation was similar as that of Berry and Robbins (1993)
who predicted Lorentz-like forces that act on a heavy particle that is coupled to a closed
quantum system. Including a continuous spectrum allows us to obtain also dissipative
forces that are mediated by the quantum system. Indeed, the scattering theory provides
a well-defined way to extend the discussion to infinite systems owing to the finite time
the electron spends in the scattering region. An additional advantage of the derivation
of chapter 6 is that it gives an expression for the adiabatic expansion of the full time
dependent S-matrix in terms of the frozen scattering states which is useful for applying
the approach to concrete examples.

An exciting perspective of current induced forces in nanoelectromechanical systems
is the possibility to exert directed forces which lead the way to nano-scale motors or
switches. From a theoretical point of view it would also be interesting to study the effect of
electron-electron interactions on current induced forces. Especially the strongly correlated
one dimensional systems could show a substantial departure from the non-interacting

picture.
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A.1 The Luttinger Hamiltonian

In this appendix we motivate the Luttinger liquid Hamiltonian starting from the original

fermionic Hamiltonian.

A.1.1 Spinless fermions

We start with the Hamiltonian for a spinless system

H = Hkin+Hint

Han = o [ (19400 | e vt [T )

(A1)
(A.2)

Hu = 5 [dx [axVix—x): o)+ pux) + 9L(0P(x) + gh(x)9 ()] A

(
< [or() + o1 () + 9 () + (e ()] :

In the following we will use the definition of normal ordering
L ge = i — (i)

as well as Egs. (2.14,2.31) which read

1
SRR/ = i pryLi= Ao (VO£ V)
IP}E/L(JC) o« e 10(x)F(x))

(A.4)

(A.5)
(A.6)
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The kinetic part can then be bosonized by

Jax s | Tout]
= % / dx :ZH:IIJE(x) (:tﬁz(x)tpza(x) :)wR(x):+:¢;(x)¢R(x)(ve(x)+V¢(x)> :} (A7)
— 5 [ 27 k) (B COR0) ~ (o) g x):-+ 9k (1) (3) (VO() + V()] (A8)
= 5 sk xon(x): (V00x) + V()] 9

— % / dx (VO(x) + V(x))? , (A.10)

where we used the fact that ¢4 = 0 and total derivatives drop out. We then find

Heo = o / dx <; ot () [YlpR(x)] () [YI[JL(X)} :) (A1)
- / dx [(VO(x) + V(x))* + (V6(x) - Vo (x))?] (A12)
- / dx [(V)* + (V6)?] (A.13)

Now we will consider the interaction Hamiltonian. Collecting the terms of momentum

transfer close to 0 and 2kr we find

Hint = ;/dx/dxlv(x_x/):[pR(x)pL(x/)"’PR(X)PR(XI) (A.14)
q~0
~ PROPR @Yl (WP () +R o L] -
q~2kp

Now we Fourier transform the above expression (with A(x) = + Yy e A, A=V,¢,p)
and obtain

Hit = 573 Y (Vo= Vorw—k) ¥k +q¢R,k,¢{,k7q¢le (A.15)

q.kK
1
~ iaps 2 (Vo= Vai) Wiprg¥re Wi gPLe s +R o L (A.16)
q.kk

where we wrote the prpr term in a symmetric way such that the Pauli principle leads to a
vanishing contribution of the prpr and prpr terms when approximating V; as constant.
Note however that terms that involve the momentum derivate of the potential (such as
Vz,kF) have to be considered when expanding the Hamiltonian to next order in low energies.

When including curvature effects of the dispersion one should also include corrections
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of the interaction part to be consistent in the low energy expansion [see Rozhkov (2006)].
Here we will focus on the low energy limit and Fourier transforming the above expressions

back gives

Ho = [ dv (Vo= Vo) G or@@pu(x) +:pu@erx) ), (A17)

such that the full Hamiltonian takes the form

H = % / dx [ (2 + ) (V) + (3 — u) (V0)?] (A.18)
with
Vo — Vo,
= N T (A.19)

By dividing the fermions into right- and left-movers and focusing on the behavior near
the Fermi points we effectively took a shortcut to a normalization procedure. As indicated
above the Fermi velocity will in general be renormalized to a different value dr which has
to be fixed separately. Fortunately there is a way to determine ¥ by requiring Galilean
invariance which manifests itself by requireing cK = v [Starykh et al. (2000)]'. Bringing
the Hamiltonian in the form

_c 1 2 2
== / dx { < (V9 +K(V6) } (A.20)
then determines
1 o OF +u
X = F— (A.21)
c = /0% —u? (A.22)
cK = 9r—u (A.23)

and the Galilean invariance is implemented by

r = vr+u (A.24)

c = ovp 1+ 27 opy /1 VZ"F (A.25)
= J142L = {1+ VO — VZ"F (A.26)
OF

which we used in the main text.

R =

INote that this is indeed required to have an interaction independent definition of the current operator

j(x) = £V6().
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A.1.2 Spinful fermions

In the spinful case the Hamiltonian consists now of 4 major contributions
H = H;+ H| + Hy| + Hsg, (A.27)

where H; and H| are the spinless Hamiltonians for each spin species, H;| describes the
density-density type of interactions between the two spin species and Hgg is the sine-
Gordon term that describes 2kr scattering with different spins that cannot be casted in a

density-density interaction. The additional Hy | term takes the form

Hyy =[x [ vV —2) s fori () + ()] for ) +pui(x)] . (A28)
which is dominated by Vj~o momentum transfers. Setting again V' (x — x") = Vpd(x — ')
we find

1 Vo
Hy = — / dx— (Vor) (Vo) - (A.29)
Now we introduce
Pess 7 (Pr £¢)) (A.30)
1
Oc/s —= (6, +6 A3
/ V2 ( T i) ( )
which yields
Hy = o / dx— chc (vcps)z} : (A.32)

From the spinless Hamiltonian we can therefore read off

HT +H, + Hy, (A.33)
— /d [ (Ve)* + K. (VQ)]+/d [ (Vepo)® + K, (V,)?

with

Kcvc — sts — UF (A.34)
1 2V — Vo
— = 1+ ——=F A.35
K. + TTUF ( )
1 Vor
— = 1-—- =&, A.36
K TTUF ( )

The sine-Gordon term is given by [Giamarchi (2004)]

Vo A?
Hee = szfrz / dx cos [2\64:5}. (A.37)
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It is again required to do a proper renormalization group analysis to fix the coupling
constants [see Giamarchi (2004)]. The result for a spin rotation invariant system is that the
coupling constant Vy, flows to zero such that Ki = 1 and the sine-Gordon term can be set
zero, which gives the result of Eq (2.27) in the main text.

A.2 Energy current correlator

In this appendix we calculate the correlators of Eq. (3.56) using the bosonization technique.
As mentioned in the main text we can rewrite the fermionic field operators as

Ph ~ e H(Qi0HQ0) — o—i(QuAVO+Q- A VO ) (A.38)
where we defined the auxiliary operators A1 = V! which help to calculate the expecta-

tion values

<¢R(x’, Yk (x, 1) V0L (x, 1) + pr (2, ) VO (x, )k (x, t)> (A.39)
2i 0

01 9AL <1pR(x’, t)pr(x, t)> .

Ai=V71

Note that A+ and V only act on x and not on x’. Now we also define

Pl (x) ~ e Doz My (B2 MiT(x)BLy] — o= Ly [£A+iq(M7(0BsgtMT (BL,)] (A 40)

with Mi( ) = LqKQ Le' i(+07=wt)  Therefore we can use AiMjE T MjE and AiMJr

T M =T, Since bosonic operators with positive and negative momenta commute we find
that

(i) (A1)

o E[ < Zq>0 .Biq (x)ﬁz:q] ef Eq>0 iAiiq [Mqiﬁi‘l+Mqi+ﬁ1q] >

- 11 <eZq>0<[ 7 () FALIGMF | g — [MF* (x) £ AxigM;T] L, ) > (A.42)
+

weLi=0~ 3EALiq( M (x) MET+ME (x) M)

= eFr(uh)gF-(xi) (A.43)

where we defined the fields F. (x, t) similar to the book of Giuliani and Vignale (2005).

Now we use the independent boson theorem

<ez,»(x,-bi+y,-br)> _ e%2f<("fbf+%b?)2> (A.44)
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to calculate
- 2 ) ( [ :F Ailin} [Mfr( x) =+ A:tiQM{;HD(<ﬁﬁ:qﬁ;q>+<,B+iqﬁj:q>>
q>

—> Ly 4 aLig (M;f(x)M;“ + M (x)M;t) . (A.45)
q>0

Consequently we can then calculate the desired derivative with respect to the auxiliary

operators
d _ + [pgtt e Y o IS
5as | Fx = qg)(ilqM [M (x) - M; } [Mq (x) Mq}:lzlqu ) (A.46)
Asm

x <<ﬁiqﬁlq> " <ﬁ*ﬂ,ﬁiq>) T % X g (M5 (oM + M (M)

= +)Y ig { )Mt (np(wy) +1) + My (x )M;tng(wq)} , (A47)
q>0

where <,B:;/5q> =ng = (e“/T — 1)71. Finally we obtain

(r(x, ) E(0,0) V02 (0,0) + Yr (x,1) V6. (0, 0)y4(0,0) ) (A.48)
iLKQiq;){ei(iqx—azqt) (np(wy)+1) — e—i(ﬂ:qx—wqt)nB(wq)}<1l)R(x, t)¢£(0,0)>.

Now note that

VO (x, )k (x, ) pr(¥', ) + Pk (x, 1) VOL(x, ) (2, 1) (A.49)
= (WO V05 (3, 0) + P, )0 (3, D, 1))

The other correlator of Eq. (3.56) can therefore be obtained by complex conjugation of
Eq. (A.48) with exchange of % <+ 1r. The latter also leads to a minus sign in front of the
d/9A4 which now acts on . Other minus signs in the exponent due to ¢} < g drop out

because of the quadratic form of the independent boson theorem. We therefore conclude

<vei (0,0)5(0,0)r (x, ) + ¥k(0,0) VO (0, 0)pr (. ) ) (A.50)
= Qe L fe ) (na(aop) +1) = g} yh(0, 0, 1)
q>0

A.3 Three-body amplitude

In this appendix we calculate the three-body amplitude of Lunde et al. (2007). To also suit
the case of quantum Hall systems we will generalize the derivation of Lunde et al. (2007)

and also keep the dependence of V(k; — k2) in terms of the initial momenta. Specifically
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we use .
V= 2L E Vq —k2) ak1+t]01akz gon Yo 0n Ay o - (A.51)

kikogoyon
We then calculate the expectation value of the three-body matrix element of Egs. (4.8,5.8)
in the main text. The three-body state can be written in second quantization as |123) =
a5 ;. 8% 5,04, |0). Applying the fermionic commutation relations {a;, a}L} = ¢;j we obtain
Vyk — ky)sign(abe) .
+io+ ka+q0a Yy —qoy, o

0},

GoV[123) = Z )

(abe)eP(123) ks T €ka — €ky—q ~ Ekotg
(A.52)
where P (123) describes the possible permutations of the indices and sign(abc) is positive
(negative) for cyclic (anti-cyclic) ordering. Multiplying by (1'2'3'|V we then obtain
1

Vy (ko — ki )sign (abe)sign(a'b'c
(1'2'3'|VGoV[123), = y Z ko) Vi ( p)sign(abe)sign(a’t'c’)

2 .
(2L) (abe)eP(123) g €ky + €k, — €ky—g — Ekotq T 0+
( /h/ /)EP(1/2/3/>
>< <

Now we exclude effective two-particle processes. This means that in the possible pairings

t t t
akc’ ot akb’ 71’7,(717’ aku’ +q,(7a’ akﬂ +q0o, akb —qoy akcﬂc O>C (A53)

of creation operators in Eq. (A.53) it is not allowed that an initial state k. scatters directly
into a state k. (without involving a momentum transfer g). Therefore we obtain nonzero

contributions for

(1'2'3'|V GV [123),

= (Oke ek, gk Okataky g — Okeky+qOky—qky —q' Okt (A.54)
—Okeky /' Oks—ak s Okara 0"+ Ok —q Okp—a b+ Okatg )

= (Ogky—k O ke, — Ogks—kaOg'kets — O ey —k, Ot ky—ke + Og ks —ko O oy ke )

X Ok tky ke k sk 7 (A.55)

where we omitted the Kronecker-deltas that involve the spin indices for better readability.

After renaming of indices we finally obtain

(123VGV123). = ) Vi, k. (ke — ko) Vi, —k, (kv — ko')sign(abe)sign(a'b'c’)

(abc)eP(123) €k, T €k, — €k, — €kyt+ko—k. +i0*
(a'b/"eP(172/3))
1
X W(Ska+kb+kCrkg/+kb/ +ku (50’,,/,0’,1 (SUb/,Ub(S(TC/,(TC (A56)

in terms of the symmetrized potentials V, = V; + V_,.
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