
Chapter 9

Appendix

9.1 Terminology of shear zones and shear zone

networks

The brittle-viscous transition is the change from fracturing on one or more
discrete surfaces to thermally activated creep within zones of viscous, solid-
state flow (Schmid & Handy, 1991, Handy et al., in press). Following Ramsay
& Huber (1983), we distinguish between brittle shear zones (synonymous
with faults and fractures) and ductile shear zones. Shear zone with-
out a prefix is a general term describing any zone with sub-parallel walls
in which deformation is localized. We use the term ductile exclusively in
relation to solid-state viscous, mylonitic deformation, being fully aware that
ductility itself is not a mechanistic concept (Rutter, 1986, Schmid & Handy,
1991). The term viscous is used to describe deformation that was accom-
modated by thermally activated deformation mechanisms (Piorier, 1985).
These include dislocation glide and dislocation creep, solid-state diffusion
creep, diffusional mass transfer involving solution/precipitation and viscous
grain boundary sliding (Schmid & Handy, 1991). Wherever special empha-
size on deformation mechanisms is needed, we add appropriate prefixes.

Brittle shear zones show strain discontinuities across the shearing plane
(marker 2 in Fig. 9.1a), whereas ductile shear zones show continuous varia-
tions of strain across their width and no geometrical discontinuities can be
seen on the scale of the shear zone (marker 3 in Fig. 9.1a).
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Figure 9.1: Features of shear zones and shear zone networks: (a) A mylonitic shear zone

with a brittle tip. Deflected marker layers illustrate the monoclinal fold forming the ductile

bead beyond the tip of the brittle fault (marker 1); a sharp cut-off towards the fault plane

(marker 2) and a smooth cut-off towards the mylonitic shear zone centre (marker 3). Note

the difference between the brittle displacement, the ductile damage zone displacement and

the total displacement; (b) A shear zone network with host shear zones (1), step-over shear

zones (2), a footwall drag truncation (3), a hanging wall drag truncation (4), the ductile

damage zone (5) and a ductile bead (6) around a host shear zone.

Finite strain across ductile shear zones increases continuously from zero
strain and displacement at the margins of the shear zone to maximum strain
and displacement in its center. Brittle shear zones focus deformation on the
shearing plane itself, but in most cases a volume of wall rock adjacent to
the plane is deformed due to ”the initiation, propagation, interaction and
build-up of slip along faults” (Kim et al., 2004). In the fault mechanics
literature, this volume is termed the ”damage zone”. Where markers are
oriented at high angles to the fault as in this study, most of this deformation
in the wall rock near the fault is expressed macroscopically as monoclinally
folded markers, here termed (ductile) fault drags. The rock volume where
such fault drags occur is termed the ductile damage zone (Fig. 3, 4,
arrow 5 in Fig. 9.1b). The fault drag is normal when the deflection of
markers is convex in the direction of shear along the fault or shear zone
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(marker 3 in Fig. 9.1a), and is reverse when the deflection in the direction
of shear is concave (Hamblin, 1965). The intersection between a dragged
linear or planar marker and the fault plane is called a cut-off (Ramsay
and Huber, 1983). The nature of cut-offs is important in the context of
strain gradients and the transition from faults to ductile shear zones and
we therefore distinguish between smooth cut-offs where the tangent to
the deflected marker at the cut-off encloses an angle β with the shearing
plane of < 5◦ (Fig. 9.1a), and sharp cut-offs where β > 5◦ (see markers
in Fig. 3.4, Fig. 9.1a). Deflections of planar or linear markers next to a
structural element cross-cutting the rock (e.g., a fault) have been named
”flanking structures” (Passchier, 2001).

Monoclinal folds that form beyond the tips of brittle faults in the direction of
tip propagation are termed ductile beads, following Elliott (1976). Elliott
observed ductile beads in front of mode III fractures at the terminations of
thrust faults. The ductile bead is part of the ductile damage zone (arrow 6
in Fig. 9.1b).

Displacement accommodated by ductile deformation in mylonitic shear zones
is called ductile displacement. Displacement which is accommodated by
ductile fault drags is called ductile damage zone displacement (’c’ in
Fig. 9.1a). Displacement accommodated by slip on brittle fault planes is
termed brittle displacement (’b’ in Fig. 9.1a). The sum of all displace-
ments at a section across a shear zone - brittle and/or ductile - is the total
displacement, Dsect (’a’ in Fig. 9.1a). Distinguishing these different kinds
of displacement is important when describing coeval discrete and distributed
deformation.

The width of a shear zone along a particular section across the shear zone,
Wsect, is measured perpendicular to the shearing plane. Shear strain distri-
bution in shear zones reaches a maximum, γmax, within the shear zone and
can be averaged across the entire shear zone by dividing the total displace-
ment by the width (γmean = Dsect/Wsect, see Appendix 9.2).

Shear zone networks consist of interconnected host- and step-over shear
zones. Host shear zones are parallel to the bulk shearing plane (’1’ in
Fig. 9.1b). Step-over shear zones connect host shear zones at an angle
to the overall shearing plane (’2’ in Fig. 9.1b). Host and step-over shear
zones isolate lozenges of less deformed host rock in between (’7’ in Fig.
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9.1b). Shear zones are found to widen by drag truncation, a process
involving lateral branching of fractures along ductile shear zones into fault
drags, combined with rotation and overprinting of the fabric in the sheared
domains between the fault and the shear zone center. Drag truncation forms
truncated drag folds or truncated drags (’3’ and ’4’ in Fig. 9.1b).

9.2 Quantifying γmax in shear zone centers

We measured the orientation of the existing S1/2 foliation along ten sections
approximately perpendicular to the shear zone. The angle between the de-
flected S1/2 and the shear zone boundary (α′) at a particular distance from
the shear zone center was used to calculate shear strain (γ)/shear zone width
(Wsect)-diagrams (Fig. 3.5c) after Ramsay & Graham (1970):

cot α′ = cot α− γ (9.1)

where α is the angle between S1/2 and the shear zone boundary C3 before
being sheared. This technique was developed for passive markers only, and
using it for actively deforming markers - as shown for S1/2 by Carreras &
Garćıa Celma (1982) - bears the risk of underestimating the finite shear
strain. Nevertheless Eq. 9.1 gives a first-order estimate of γ.

Reliable γ values cannot be calculated near the shear zone center, because
the angles between the deflected (and reactivated) S1/2 and C3 are very
small, such that even small measurement errors render very large perturba-
tions of γ. To calculate the maximum shear strain (γmax) in these central
parts of the shear zone, we constructed γ/Wsect-diagrams from the margins
towards the shear zone center, as far as reliable measurements could be made
(a and b in Fig. 9.2). We approximated functions f(+x) and f(−x) for the
two scatter-plots resulting from measuring the deflection of S1/2 in the two
fault drags. We then integrated these functions with respect to distance
from the shear zone margins to the center:

Ax =
∫ a

−x
f(−x)dx (9.2)

and

By =
∫ +x

b
f(+x)dx (9.3)
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Figure 9.2: Shear strain vs. width (γ/Wsect) diagram. FW - footwall, HW - hanging

wall, SZC - shear zone center. The shear strains were calculated using the equation of

Ramsay & Graham (1970). The area of the grey rectangle in the shear zone center equals

the part of the total displacement which was not accommodated by shearing in the drags.

The rectangle represents a conservative approximation of the maximum shear strain in

the shear zone center. See text for detailed explanation.

The area beneath the γ/Wsect-function equals the shear zone’s total dis-
placement at that particular site (Dsect, Ramsay & Graham, 1970), which
can be estimated from independent measurements. Therefore,

C = Dsect − (Ax + By) (9.4)

where C is the area of a rectangle whose base āb is the width of the shear
zone centre, and whose length is a minimum estimate for γmax (Fig. 9.2).
The mean shear strain (γmean) accommodated by the shear zone along a
given transect was calculated with the relation

γmean = Dsect/Wsect (9.5)
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9.3 Sample descriptions

• CC01 Metapsammite (44,6% quartz, 24,1% biotite, 15,4% plagioclase,
9,8% muscovite, 4,0% opaque undefined ore phase, accessory epidote,
tourmaline). Cala Prona. Collected from the center of the mylonitic
shear zone in Fig. 4.2, about 16m NW of the shear zone termination
(cf. Fig. 3.5).

• CC05 Metapsammite (48,8% quartz, 30,6% biotite, 7,6% plagioclase,
5,4% muscovite, 4,8% k-feldspar, accessory epidote, tourmaline). Cala
Prona, see Fig. 4.2 for location.

• CC08 Metapelite (46,8% biotite, 25,6% quartz, 16,1% feldspar, 4,2%
chlorite, accessory muscovite, ilmenite and tourmaline). Cala Prona,
see Fig. 4.2 for location.

• CC11a-c pure vein Qtz, sampled along dragged quartz vein. Cala
Serena, UTM 31T 521835 east, 4687155 north.

• CC12a Metapelite (45,6% quartz, 34,8% biotite, 11,2% feldspar, ac-
cessory garnet, chlorite, muscovite, ilmenite and tourmaline). Cala
Serena, UTM 31T 521822 east, 4687045 north.

• CC14b Metapsammite (44,4% quartz, 25,5% biotite, 20,5% feldspar,
3,5% muscovite, accessory ilmenite, chlorite and tourmaline). Cala
Serena, see Fig. 7.1 for sample location, UTM 31T 521859 east,
4687052 north.

• CC17a Metapsammite (44,5% quartz, 24,4% feldspar, 23% biotite, 6%
muscovite, accessory garnet, ilmenite, chlorite, apatite and tourma-
line). Cala Serena, see Fig. 9.4 for location.

• CC17c Metapsammite (41,2% quartz, 28,2% feldspar, 24,8% biotite,
4,6% chlorite, accessory garnet, ilmenite, apatite and tourmaline).
Cala Serena, see Fig. 9.4 for location.

• CC18 Metapelite (39,4% quartz, 32% biotite, 24,2% feldspar, 4,4%
muscovite, accessory garnet, ilmenite, chlorite, apatite and tourma-
line). Cala Serena, see Fig. 9.4 for location.
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• CC31 Metapsammite (41,5% quartz, 26,9% feldspar, 26,5% biotite, 3%
muscovite, accessory ilmenite, chlorite, apatite and tourmaline). Cala
Serena, see Fig. 9.4 for location.

• CC37/1 Metapsammite (49,4% quartz, 30,9% biotite, 14% feldspar,
1,6% muscovite, accessory ilmenite, chlorite and tourmaline). Cala
Prona, see Fig. 4.2 for location.

• CC37/2 Metapelite (41,4 % biotite, 36,3% quartz, 15,1% feldspar,
2,8% muscovite, accessory ilmenite, chlorite and tourmaline). Cala
Prona, see Fig. 4.2 for location.

• CC38 Metapsammite (47,7% quartz, 35% biotite, 14,3% feldspar, 0,9%
muscovite, accessory ilmenite, chlorite and tourmaline). Cala Prona,
see Fig. 4.2 for location.

• CC52 Metapelite (35,0% quartz, 33,1% biotite, 26,3% feldspar, 6,6%
muscovite). Cala Serena, see Fig. 9.4 for location.

• CC105 Metapsammite (45,4% quartz, 33,3% biotite, 15,3% feldspar,
3,9% muscovite, accessory ilmenite, chlorite and tourmaline). Cala
Serena (see Fig. 9.4 for location.

Quartz samples that were used to determine differential stresses are 100%
pure quartz. Their locations are marked in Fig. 9.4, with the exception of
sample CC11, which is given above.
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9.4 Element distribution maps to Fig. 4.11

Figure 9.3: Element distribution map from shear band in Fig. 4.11. Fault rock in shear

band is composed of Qtz2, Plag2, Bt2 and Ilm. See Fig. 4.11 for scale and text for

explanation. Sample CC37/2.
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9.5 Figure- and sample locations

Figure 9.4: (a) Locations of outcrops shown on figures in the text. Labeling corresponds

to the figure numbers in the text. (b) Sampling sites of samples investigated in this paper

and shown on figures in the text. Labeling corresponds to the sample numbers in the text,

without the ’CC’-prefix.
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9.6 Measurement of shear zones

Shear zone length is the length of the polyline defining the shear zone center
(Fig. 9.5). Shear zone width Wsect is measured normal to the shear zone
center at the location of maximum displacement. These criteria could not
be used for the largest-scale data due to the lack of appropriate markers.
In order to define their lengths and widths shear zones were vectorized as
polygons from Fusseis et al. (2006). Feret´s diameter (i.e. the longest
distance between any two points along the shear zone boundary) was de-
termined with the image analysis software ImageJ and taken as shear zone
length (Fig. 9.5). Hence, the length of branching and/or curved shear zones
is underestimated for the large-scale data. The width was measured at the
widest position along the shear zone, normal to the main strike direction at
that point (Fig. 9.5).

Figure 9.5: Measurement of shear zones. See text for explanation.

9.7 Determination of the representative area (RA)

Consider a foliation map with foliation traces at angles φloc and φi to a
reference line, respectively, inside and outside a shear zone (Fig. 9.6). In
n runs, this foliation map is covered with grids (area of interest, AOIan)
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comprising square cells, xai, whose base length increases following an = a0 ·
2n−1, where a0 is the initial, shortest base length (Fig. 9.6. Within any one
of the square cells of the AOIan, the mean orientation of all foliation traces,
φmi, is calculated with ACFs (see below). A cell is classified to be outside
of the shear zone if φmi ∈ φi (unlocalized orientations) and within the shear
zone if φmi /∈ φi (localized orientations). The frequency distribution of
elements with mean orientations that are localized, Freq(φloc), is calculated
for each run (i.e. for a given an) and plotted against the width of the grid
cells (Fig. 9.6b). The value of an at which Freq(φloc) = 5% is arbitrarily
designated as the width aRA and corresponds to one side of the square
representative elementary area, RA:

RA = a2
RA (9.6)

The value of aRA is easily determined by interpolating linearly between
points bracketing the 5%-boundary on a plot of Freq(φloc) versus the base
lengths of the grid cells (Fig. 9.6c). Note that this method had to be
simplified for the largest-scale data due to the lack of fabric within the shear
zones and a φi = [10◦; 110◦]. The shear zone areas were vectorized and filled
with a homogeneous, linear pattern parallel to their main strike direction,
assuming that the fabric in the shear zone center is approximately parallel
to average shear zone trend. The remaining map was filled with another
homogeneous, linear pattern at a high angle to represent undeflected passive
markers.

9.8 Determining φmi with Autocorrrelation Func-

tions

This section describes how to determine the mean foliation orientation, φmi

within a grid cell xai of an area of interest. The Autocorrrelation Func-
tion (ACF) is a statistical function that describes the spatial variability of
regionalized variables. The ACF may be written:

f(x, y)⊗ f(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f(x′, y′) · f(x + x′, y + y′)dx′dy′ (9.7)
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where f(x, y) represents the two-dimensional brightness function defining
the sample image, the operator⊗ stands for a correlation or convolution, and
x′ as well as y′ are the dummy variables of integration (Panozzo Heilbronner
1992). The value of the ACF at a given point (x,y), ρ, yields the correlation
of all image points (x + x′, y + y′) with all neighborhood points (Panozzo
Heilbronner 1992). The origin of the ACF coordinate system is located at
the center of the ACF figure (Figs. 9.7a,b). The ACF figure allows one
to see how well an image correlates with itself when it is replaced with
respect to itself in all possible directions (Panozzo Heilbronner 1992). Thus,
it reveals low gradients in ρ parallel to elongate feature directions or to
features with low spatial frequencies1, and high gradients in ρ parallel to
short feature directions or to features with high spatial frequencies (fig. 4
in Panozzo Heilbronner 1992). This property is what allows ACF figures to
be used to determine directions of preferred orientation, for example, the
shape-preferred orientation of platy or elongate minerals in rocks (Panozzo
Heilbronner 1992, Heilbronner 2002).

In this paper, we apply ACFs to determine the mean orientation of folia-
tion trajectories from 2D images like maps and thin sections. For a given
AOIa, center-weighted ACFs are calculated for each xai to obtain the mean
orientation of the foliation within that cell. The xai overlap 1/2 of their size
in both horizontal and vertical directions ensuring the ACF-center cai being
measured four times smoothing local variations of the ACF.

A cell typically contains several foliation traces, one or more of which may
have different orientations. All of these traces determine the geometry of the
ACF figure to an extent dependent on their shape, orientation and frequency.
Thus, the ACF averages the orientations of all objects (foliations) within a
given cell. We used center-weighted ACFs to smooth out local aberrations
in the orientation of foliation traces (Fig. 9.7b). The long axis of the central
ACF peak in the x´-y´-plane yields the mean orientation φmi of the foliation
in an analyzed grid cell of the AOIa (Fig. 5c in Panozzo Heilbronner 1992).

1This is the frequency at which an object reoccurs within the image, e.g. the spacing

of foliation traces.
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Figure 9.7: Visualization of the ACF. [a] and [b] show ACFs for sample images in [c] and

[d]. [e] and [f] show two 3D-surface plot of the ACFs. Zero displacement is always located

in the ACF center. Therefore, the highest ACF-peaks (right column) indicate maximum

correlation in the ACF centers. The gradient of the ACF-brightness depends on the shape

of the analyzed object.

9.9 Thresholding of ACF data

We used macros for de-noising the ACF data, which can, together with a
detailed manual, be obtained from Christoph Schrank. Thresholding is the
process of ’cutting off’ the central ACF peak from the background noise.
The shape and orientation of the central ACF peak depend on the gray
value chosen to define its basal contour (Fig. 9.7a, b). This peak rises
above a plane that consists of valleys and ridges (Fig. 9.8c). For image dis-
placements smaller than the average marker line distance, small correlations
are responsible for the valleys due to small overlaps of oblique or curved
markers. This is unavoidable background correlation (Panozzo Heilbronner,
1992). If the displacement comes close to the average marker line distance,
the overlaps increase on account of the periodicity of the foliation pattern
causing ridges of higher correlation. Since the basal contour of the central
peak is of interest only, it must be ’cut off’ not only above the background
correlation level, but also such that no contacts to the adjacent ridges oc-
cur. This is necessary because the ’cut-off’ is done by binary thresholding
of the gray values in the regarded image: all values equal to or above the
threshold are converted to black whereas those below the threshold become
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white. If the threshold is too low, the central peak as well the major ridges
are connected. As a consequence, this cai contains a large, quasi rectangular
particle that does not yield the orientation of the central peak when deter-
mined automatically by a bitmap analysis software. Since the gray value
distribution of the cai is positively skewed (Fig. 9.8d), we propose to calcu-
late the threshold simply by adding the mean gray value and its standard
deviation. This proved to yield good results (Fig. 9.8e).

After thresholding, all remnant ridge-related particles as well as single-pixel
noise are removed by a routine simply selecting the central particles and
pasting them in a blank image (Fig. 9.8f). Otherwise, the automatic image
analysis routine measuring the orientations of the central particles would
regard the noise as well and bias the results. The ACF-data in the present
paper have been calculated, processed and evaluated using the public do-
main software Scion Image (http://www.scioncorp.com/) and macros by
Heilbronner (2002).

9.10 Testing the robustness of the ACF method

Because the ACF figure depends on the geometry, frequency, and distribu-
tion of the marker lines in the sample image, bias must be expected according
to variations of these features. Assuming careful mapping, the geometrical
bias is caused by variations of marker line thickness. Thick marker lines re-
duce the average marker line distance. This results in a higher background
correlation level because the overlaps due to the periodic foliation pattern
occur for smaller displacements (Fig. 9.9a). The height of the central peak
compared to the basal plane decreases. Thus, thresholding and de-noising
are rendered more difficult because the skewness of the gray value distri-
bution is diminished. The probability of connected particles is augmented.
The proportion of xai with φmi ∈ φi increases as well (Fig. 9.9d). This
effect becomes more relevant for ACF-sizes close to the average marker line
distance. Thus, huge line thickness should be avoided. Based on empirical
considerations, we used a line thickness of one point, the horizontal image
width being 1024 pixel.

The frequency and distribution of marker lines depend on rock properties
and outcrop conditions. Gaps in maps due to lack of outcrop are common.
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Figure 9.8: Thresholding and de-noising of ACF-centers, cai. [a] Foliation map of the

Cala Cullaró area (Fig. 1c). Box with arrow marks a sample xai. [b] cai corresponding

to xai indicated in [a] in plane view. The origin of the coordinate system is in the image

center. Gray values relate to the correlation level ρ yielded by the ACF for a given displace-

ment with black (=255) being equivalent to ρ and white (=0) notifying zero correlation.

[c] 3D-plot of the same cai. [d] Histogram of cai. [e] cai after application of the proposed

threshold. Note the central particle being separated from the remnant ridge particles. [f]

cai after thresholding and de-noising. Only the basal contour of the ACF-peak is left.

For heterogeneous foliation maps with major gaps in line distribution, the
background correlation level of the ACF decreases (Fig. 9.9b). Most seg-
ments of the marker lines usually have a non-localized orientation, φi. So
the gaps in line density locally cause a reduction of periodic overlaps for dis-
placements close to the average marker line distance. The frequency of xai

with φmi ∈ φi is artificially reduced at these places. This effect increases for
decreasing ACF-size because the gaps become large compared to ACF-size.
The graph in the Freq(φmi ∈ φi) versus ACF-size plot is shifted upwards
(Fig. 9.9d). The differences in the graphs decrease significantly at the scale
of aRA (Fig. 9.9d).
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We conclude: the divergence in the graphs depends on variations in the
average marker line distance and gaps in the marker line distribution. If the
scale of these spatial features is small compared to the ACF size, this bias
is averaged out. This is the case at the scale of aRA because the average
marker line distance is determined by the size of the smallest anisotropies
regarded which are intrinsically small compared to RA due to the geometric
homogeneity condition. Nevertheless, where reasonably applicable we used
linear interpolations to carefully fill gaps between the marker lines (Fig.
9.9c).

189



F
ig

u
re

9
.9

:
In

fl
u
en

ce
o
f

m
a
rk

er
lin

e
d
istrib

u
tio

n
a
n
d

lin
e

th
ick

n
ess

o
n

R
A

.
[a

]
-

[c]
T

h
ree

v
ersio

n
s

o
f

a
fo

lia
tio

n
m

a
p

in
clu

d
in

g
clo

se-u
p

v
iew

o
f

th
e

rela
ted

A
C

F
-p

ea
k

ca
lcu

la
ted

fo
r

th
e

cen
tra

l
im

a
g
e

a
rea

(d
a
sh

ed
sq

u
a
re

in
[c]

sh
ow

s
lo

ca
tio

n
o
f

x
a

i ).
N

o
te

th
a
t

th
e

v
ertica

l
a
x
es

a
re

sca
led

in
a

w
ay

th
a
t

p
ea

k
m

a
x
im

u
m

is
a
lw

ay
s

a
t

th
e

sa
m

e
h
eig

h
t.

S
ee

tex
t

fo
r

ex
p
la

n
a
tio

n
.

[a
]
H

o
m

o
g
en

ized
fo

lia
tio

n
m

a
p

w
ith

lin
e

th
ick

n
ess

=
2

p
o
in

ts.
[b

]

H
etero

g
en

eo
u
s

fo
lia

tio
n

m
a
p

o
f
lin

e
th

ick
n
ess

=
1

p
o
in

t
ex

p
o
sin

g
m

a
jo

r
g
a
p
s

in
lin

e
d
istrib

u
tio

n
(ex

a
m

p
les

m
a
rk

ed
b
y

recta
n
g
les).

[c]
H

o
m

o
g
en

ized

fo
lia

tio
n

m
a
p

o
f
lin

e
th

ick
n
ess

=
1

p
o
in

t.
[d

]
P

lo
t

o
f
F
req

(p
h
iloc)

v
ersu

s
A

C
F
-size

fo
r

a
ll

sa
m

p
le

im
a
g
es.

190



9.11 Thermometric data from samples CC17a and

CC17c

Table 9.1: Ti in Bt-data as illustrated in Fig. 5.12 (1/3). Samples CC17a and CC17c.

See text for explanation, Table 5.2 for representative compositions and Fig. 9.4 for sample

location.
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Table 9.2: Ti in Bt-data as illustrated in Fig. 5.12 (2/3). Samples CC17a and CC17c.

See text for explanation, Table 5.2 for representative compositions and Fig. 9.4 for sample

location.
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Table 9.3: Ti in Bt-data as illustrated in Fig. 5.12 (3/3). Samples CC17a and CC17c.

See text for explanation, Table 5.2 for representative compositions and Fig. 9.4 for sample

location.
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