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Abstract

Density-Functional Theory (DFT) is presently the most widely used approach to determine

the electronic structure of atoms, molecules and solids. Its applicability depends crucially on

physically sound and numerically accessible approximations to the exchange-correlation-energy

functional. Despite the fact that the original Hohenberg-Kohn theorem was generalized to

explicitly include the spin degrees of freedom by von Barth and Hedin more than 30 years ago,

recent applications are mostly based on approximations to the exchange-correlation energy de-

vised to describe collinear spin magnetizations. In this thesis we present a novel functional for

Spin-Density-Functional Theory (SDFT) that is explicitly constructed for non-collinear spin

magnetizations, i.e. , it appreciates the possibility for the spin magnetization to change its

orientation and not only its magnitude. The functional is constructed in close analogy to the

well-known Local-Spin-Density Approximation (LSDA) which uses the uniform electron gas

with a constant spin magnetization as reference system. We define a semi-local approxima-

tion for the exchange-correlation energy by generalizing the reference system to the uniform

electron gas in the spin-spiral-wave (SSW) state. The SSW state, discovered by Overhauser,

is investigated using various many-body techniques in order to obtain the required reference

data. We demonstrate that it is possible to extend the idea of the LSDA by the inclusion of

a Spin-Gradient Extension (SGE), derived from the aforementioned SSW state. By construc-

tion the SGE yields exchange-correlation-magnetic fields that are non-collinear w.r.t. the spin

magnetization. This indicates that the new functional will improve the description of spin dy-

namics, by means of Time-Dependent Spin-Density-Functional Theory (TD-SDFT), because

it takes into account that the Kohn-Sham spin-current density does not reproduce the physical

spin-current density. This is of importance for the ab-initio description of spintronics, i.e. ,

the manipulation and control of the spin degrees of freedom from first principles, which in

recent years emerged as an important field of research due to its potential application for data

storage and information processing.
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Notation and conventions

Throughout the thesis we will use Hartree atomic units (a.u.), i.e. , h̄ = me = e = 1. We

will employ the formalism of second quantization to represent operators acting in Fock space.

The field operators are denoted by φ̂↑(r) and φ̂↓(r). They satisfy the fundamental anti-

commutation relation

{

φ̂σ(r) , φ̂
†
σ′(r

′)
}

= δσσ′δ(r − r′) .

Since the thesis is focused on non-collinear magnetism we will collect the spin-up and the

spin-down field operators in the two-component Pauli field

Φ̂(r) =

(

φ̂↑(r)

φ̂↓(r)

)

, Φ̂†(r) =
(

φ̂†
↑(r) φ̂†

↓(r)
)

.

Products in the internal space of the Pauli field follow the rule of matrix multiplication, i.e. ,

Φ̂†Φ̂ represents a scalar-valued field and Φ̂Φ̂† represents a 2×2-matrix-valued field. This

leads to the somewhat unconventional definition of the operator representing the one-particle-

reduced density matrix

γ̂(r; r′) = − : Φ̂(r) Φ̂†(r′) :,

employing the normal ordering operator : : . Normal ordering is always taken w.r.t. the true

vacuum |Ω〉 and not the Fermi sea. Single-particle orbitals will be denoted by Φj(r), where

the meaning of the index j will be defined in the context. Note the missing ˆ compared to the

fundamental Pauli fields Φ̂(r). The Kohn-Sham orbitals will have their own symbol Φs
j(r),

due to their central role in Density-Functional Theories. Spin-spiral-wave states have their own

symbol ξkb=∓(r), because they are a central object in this thesis. Vectors in physical space are

denoted by bold symbols, e.g. v, and second-rank tensors by underlined bold symbols, e.g. T .

Inner products of vectors in physical space (R3) are indicated by · , while external products of

vectors in physical space are denoted by ⊗. Traces over Fock space are indicated by Tr{. . .}
and traces over the internal (spin) space by tr{. . .}. The symmetric definition of the Fourier
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transformation is used, i.e. ,

f(k) =
1
√
2π

3

∫

d3r eık·rf(r) ,

f(r) =
1
√
2π

3

∫

d3k e−ık·rf(k) .

This leads to the convention that a Dirac delta function evaluated at zero contributes (2π)−3

irrespective of whether its argument is in momentum or position space. Moreover this implies

that the volume of an extended system is set to one. The vector σ denotes the vector of Pauli

matrices. They obey

[

σκ, σλ
]

= ı2ǫκλµσ
µ,

σκσλ = δκλ + ıǫκλµσ
µ,

with ǫκλµ being the totally anti-symmetric Levi-Civita tensor. Sometimes we add the 2×2-
unit matrix σ0 to the set of Pauli matrices. We employ a definition of the spin magnetization

that excludes the factor µB compared to the physical definition of the spin magnetization.

This means that the factor µB is inserted as coupling constant between an external magnetic

field and the spin magnetization. In contrast to the definition of the density we retain the

− sign, due to the negative electronic charge, in the definition of the spin magnetization

in order to emphasize that the magnetic moment due to the electronic spin aligns with an

external magnetic field. The fundamental single-particle Hamiltonian of this thesis is the Pauli

Hamiltonian, obtained by means of the Foldy-Wouthuysen transformation [FW50], i.e. , the

weakly-relativistic limit, applied to the Dirac equation. Throughout this thesis we will neglect

spin-orbit coupling terms, because they correspond to a higher order relativistic correction

( 1
c2

). Furthermore we will neglect the coupling of the vector potential to the current. This

is justified a posteriori by the fact that we are using the external magnetic field as a tool to

motivate the inclusion of the spin magnetization as a fundamental variable in Spin-Density-

Functional Theory. After the inclusion of the spin magnetization as fundamental variable we

are considering only systems with a vanishing external magnetic field. Any aberration on the

aforementioned conventions will be mentioned explicitly.



Chapter 1

Introduction and guide through the

thesis

The advent of quantum theory is one of the most celebrated discoveries in natural science.

Since the fundamental equation was laid out by Schrödinger in 1926 [Sch26], numerous phe-

nomena, related to the microscopic structure of matter, could be explained and quantified.

Soon it became clear, however, that the solution of the Schrödinger equation for interacting

particles is out of reach, except for systems with a only a few degrees of freedom. Even the

enormous technological advances in electronics, which themselves were made possible due to

the understanding of microscopic physics, did not, and probably will not, enable us to solve

the interacting many-body problem exactly.

In their seminal work Hohenberg and Kohn [HK64] proved that it is possible, in principle,

to reformulate quantum theory in terms of the electronic density, which only depends on one

coordinate in contrast to the wave function which depends on N coordinates if the system is

composed of N electrons. In chapter 2 we introduce the fundamental idea and basic principles

of Density-Functional Theories. Practical implementations of Density-Functional Theories rely

on the idea, due to Kohn and Sham [KS65], to connect a system of interacting electrons to

a system of non-interacting electrons. This non-interacting system, dubbed the Kohn-Sham

system, incorporates the complications arising due to the interaction of the electrons in an

averaged way discussed in chapter 3.

The virtue of Density-Functional Theories is that this mapping of an interacting system

onto a non-interacting system can in principle be done exactly. In practice this mapping has

to be approximated in form of the so-called exchange-correlation-energy functional. The main

routes for the construction of density functionals are described in chapter 4. Since the uniform

electron gas is the paradigm for interacting electrons and hence plays an important role in the

construction of functionals we review its basic properties in chapter 5.
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As suggested by the title, this thesis is focused on the treatment of non-collinear magnetism

in Density-Functional Theories. In classical electrodynamics magnetism occurs due to the

presence of moving charges, i.e. , charge currents. The experiment conducted by Stern and

Gerlach in 1922 [GS22], however, gave the first indication that the electron possesses an

intrinsic magnetic moment. They found that a beam of neutral silver atoms is split into two

beams by the application of an inhomogeneous magnetic field. This was rather puzzling since

if the recently by Bohr proposed quantization of the angular momentum was taken seriously,

it seemed strange that the beam was split into two beams that are both deflected by the

same amount in opposite directions. From Bohr’s quantization of the angular momentum

one expects that there should be also one part of the beam that remains unaltered by the

inhomogeneous magnetic field. Pauli solved this mystery in 1927 by proposing a modified

version of the Schrödinger equation [Pau27] in which he introduced a two component wave

function, the so-called Pauli spinor. The two-componentness of the wave function reflects

the fact that an electron possesses an intrinsic magnetic moment. In 1928 Dirac proposed

his equation unifying special relativity and quantum mechanics [Dir28], from which the Pauli

equation emerges in the weakly-relativistic limit and hence explains the appearance of the

internal structure of the electron as a necessity following from the compliance of quantum

theory with special relativity.

The intrinsic magnetic moment is always present in contrast to the orbital-magnetic moment

which is only present if the electron is in a quantum mechanical state that carries a current.

This permanent magnetic moment is a rather strange property of the electrons for it does not

have a classical analogy. Its strangeness may be exemplified by considering a superposition of

a quantum mechanical state representing an intrinsic magnetic moment that points upwards

(spin-up) and a quantum mechanical state representing an intrinsic magnetic moment that

points downwards (spin-down). One might naively expects that the resulting state has no

magnetic moment, but in reality the superposition represents a quantum mechanical state

that has a magnetic moment orthogonal to the up-down direction. Considering also the

spatial degree of freedom of the electron the situation is even more complicated, because

now the meaning of the up-down direction may change in space. A spatially varying intrinsic

magnetic moment is the key characteristic of non-collinear magnetism.

In spite of the fact that the interaction between electrons is a charge-charge interaction,

i.e., it formally does not involve the intrinsic magnetic moment, it is due to the Pauli-exclusion

principle that the intrinsic magnetic moment plays a crucial role in the description of interacting

electrons. This was spectacularly demonstrated by Overhauser [Ove62] in his seminal work

on the instability of the uniform electron gas w.r.t. the formation of a spin-spiral wave, which

represents an explicit example of non-collinear magnetism resulting from interactions between
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the electrons. The spin-spiral wave state is the central theme of this thesis. It is quantitatively

analyzed employing Hartree-Fock theory and Reduced-Density-Matrix-Functional Theory in

chapter 6.

In 1972 von Barth and Hedin [vBH72] extended the charge-only Density-Functional Theory

to explicitly include the intrinsic magnetic moment. The inclusion of the spin magnetization

as fundamental variable in Spin-Density-Functional Theory not only facilitates the description

of systems exposed to an external magnetic field but also enables us to explicitly investigate

the influence of interaction on the magnetic structure. Hence in chapter 7 we employ Spin-

Density-Functional Theory in order to complement our studies of the spin-spiral-wave state of

the uniform electron gas.

In chapter 8 we address the problem of constructing viable approximations to the exchange-

correlation-energy functional of Spin-Density-Functional Theory. Most functionals for the

description of non-collinear magnetism used presently are ad hoc generalizations of functionals

constructed for collinear systems. We demonstrate that it is possible to generalize the well-

known Local-Spin-Density Approximation by considering the aforementioned spin-spiral-wave

state of the uniform electron gas as reference system. The main result of this thesis is

the Spin-Spiral-Wave functional, which may also be viewed as a Spin-Gradient Extension to

the Local-Spin-Density Approximation. While by construction it yields exchange-correlation-

magnetic fields that are non-collinear w.r.t. the spin magnetization it retains the formal and

numerical simplicity of local approximations in Density-Functional Theories.





Chapter 2

Introduction to Density-Functional

Theories

Density-Functional Theories (DFTs) aim at the efficient description of many-particle systems.

The key idea is to replace the wave function as fundamental variable by one-particle densities,

e.g. the charge density. Hohenberg-Kohn-like theorems guarantee that a description in terms

of these densities is possible by establishing a one-to-one correspondence between the densities

and their corresponding conjugated potentials. Even in the absence of a Hohenberg-Kohn-

like theorem it is still possible to obtain a variational scheme for the determination of the

ground-state energy and densities through the so-called constrained-search formalism. Aim

of this chapter is to clarify the aforementioned features of, and present an introduction to

Density-Functional Theories. A thorough introduction to DFTs may be found in [DG90].

2.1 The Hohenberg-Kohn theorem

We consider a many-body Hamiltonian of the form

Ĥ = T̂ + V̂ + Ŵ , (2.1)

where T̂ is the kinetic energy and V̂ the external potential. They are referred to as single-

particle contributions to the Hamiltonian. Ŵ is the contribution due to interactions between

the particles. Usually Ŵ indicates a two-particle interaction, e.g. the Coulomb repulsion of

two charged particles. Here we shall only consider particle-number conserving Hamiltonians,

i.e. ,

[

Ĥ, N̂
]

= 0, (2.2)

7
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with N̂ being the particle-number operator. Hence we can always choose to diagonalize

the Hamiltonian and the particle-number operator simultaneously, leading to the spectral

representations

Ĥ =
∞∑

N=0

∑

α

|N,α〉 ENα 〈N,α| , (2.3)

Ĥ |N,α〉 = ENα |N,α〉 , (2.4)

N̂ =
∞∑

N=0

∑

α

|N,α〉N 〈N,α| =
∞∑

N=0

N1N , (2.5)

N̂ |N,α〉 = N |N,α〉 , (2.6)

where the quantum numbers N,α label the common eigenstates of the Hamiltonian and the

particle-number operator. The quantum number α, labeling the energy levels for a fixed num-

ber of particles N , might be discrete, continuous or partially discrete and partially continuous.

In practice the determination of the full spectrum for a given number of particles is hardly

possible. In fact even the computation of the few lowest-energy eigenstates of an interacting

system is not tractable, given the currently available computing facilities, except for systems

with a very small number of particles.

One way to approach the problem of calculating properties of an interacting system is to

reformulate the theory in terms of more tractable quantities than the state vector or wave

function. In their seminal work Hohenberg and Kohn [HK64] suggested the use of the particle

density, i.e. , the probability density of finding a particle at a given position, as fundamental

variable. The Hohenberg-Kohn theorem in its original version applies to non-degenerate ground

states with a fixed number of particles N . It states that the ground-state density

n0(r) = 〈N, 0| Φ̂†(r) Φ̂(r) |N, 0〉 ,
∫

d3r n0(r) = N, (2.7)

is in one-to-one correspondence with the external potential V̂ . This is a very powerful statement

in that it allows to view all observables of the quantum system governed by the Hamiltonian

Ĥ, given in Eq. (2.1), as functionals of the ground-state density. This follows from the fact

that the external potential is a functional of the ground-state density and therefore, since the

kinetic energy and the interaction Ŵ are kept fixed, the Hamiltonian is fully determined by

its ground-state density. By solving for the eigenstates of the Hamiltonian, we can obtain

any observable of the system. In practice, however, the external potential, determined by the

position of the nuclei in a molecule or solid, is given and not the ground-state density. It is

possible to use the Rayleigh-Ritz variational principle in connection with the Hohenberg-Kohn
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theorem in order to determine the ground-state energy and its corresponding density n0,

E0 = inf
n0

〈Ψ [n0]| Ĥ |Ψ [n0]〉 , (2.8)

where the Hamiltonian Ĥ is given and |Ψ [n0]〉 is the ground state as a functional of the ground-

state density as implied by the Hohenberg-Kohn theorem. This construction is a reformulation

of the Rayleigh-Ritz variational principle in terms of ground-state densities instead ofN -particle

states. The basic idea of DFTs is to take the variation of the energy functional over more

manageable quantities, i.e. , the set of ground-state densities. Ground-state densities depend

only on one spatial argument whereas the N -particle states depend on N spatial arguments,

as can be inferred from writing down the Rayleigh-Ritz variational principle in terms of the

position representation of the state, i.e. , the wave function,

E0 = inf
Ψ0

∫∫

d3r1d
3r2 . . .

∫

d3rN

×Ψ†
0(r1, r2, . . . , rN) Ĥ(r1, r2, . . . , rN)Ψ0(r1, r2, . . . , rN) , (2.9)

Ĥ(r1, r2, . . .) =
∑

i

(
1
2

←−∇ i ·
−→∇ i + V (ri)

)

+ 1
2

N∑

i,j

1

|ri − rj|
. (2.10)

For systems with more than 10 particles it is simply impossible to even store a single wave

function Ψ0(r1, r2, . . .). Reformulating the Rayleigh-Ritz variational principle in terms of the

fundamental densities comes at the price that the functional dependence on the fundamental

variables is not known and therefore has to be approximated in practice. A caveat of the

Hohenberg-Kohn theorem is that it establishes a one-to-one correspondence between ground-

state densities and an equivalence class of potentials. External potentials are considered

equivalent if they differ only by a constant.

2.2 External potentials and the chemical potential

In the following we will discuss the role of a constant variation of the external potential in

Hamiltonian Eq. (2.1) in greater detail in order to prepare a different route to obtain the energy

as a functional of the density. Let us first consider the ground-state energy as a function of

the number of particles

EN0 = E(N) : N→ R. (2.11)

We assume that this function is convex, i.e. , we have

E(N + 1)− E(N) ≥ E(N)− E(N − 1) , (2.12)
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which is known as Lieb’s conjecture [Lie83]. This is certainly true for a non-interacting

fermionic system, because adding particles to the systems requires the occupation of energeti-

cally higher single-particle orbitals. Note that it is not assumed that the occupied single-particle

orbitals have positive energy, i.e. , the ground-state energy is not a monotonically increasing

function w.r.t. the number of particles. The only way to obtain an equality in Eq. (2.12) would

be to have degeneracies, or equivalently symmetries, in the systems, because only then two

successive additions of particles would change the energy twice by the same amount. In writing

down Eq. (2.12) we implicitly relate the ground-state energies at different particle numbers by

keeping the external potential fixed for all N . This means that the constant of the external

potential appearing in Hamiltonian (2.1) is the same for all N . This can be achieved by setting

for finite systems the smallest asymptote of the potential and for periodic systems the average

potential to zero. In order to extend definition Eq. (2.11) to non-integer number of particles

we borrow the concept of the statistical operator D̂ from statistical quantum mechanics. This

concept was born out of the necessity to describe the statistical uncertainty - as opposed to

the fundamental Heisenberg uncertainty - present in experiments. On a theoretical level this

uncertainty can be taken into account by representing the quantum mechanical system by

the aforementioned statistical operator instead of representing it by a state vector |Ψ〉. The

statistical operator itself is defined as a weighted sum over projections on state vectors, i.e. ,

D̂ =
∑

i

wi |Ψi〉 〈Ψi| ,
∑

i

wi = 1. (2.13)

Expectation values of a generic operator Ô are calculated by tracing over D̂Ô, e.g.

E = Tr
{

D̂Ĥ
}

=
∑

i

wi 〈Ψi| Ĥ |Ψi〉 , (2.14)

N = Tr
{

D̂N̂
}

=
∑

i

wi 〈Ψi| N̂ |Ψi〉 . (2.15)

Therefore the expectation values of operators for a system described by D̂ are given as weighted

averages over the expectation values of the operators w.r.t. the states comprising D̂. Using the

statistical operator D̂ we can define a generalized Rayleigh-Ritz variational principle in order

to define the minimal energy corresponding to an arbitrary non-integer number of particles N ,

E(N ) = inf
D̂N

Tr
{

D̂N Ĥ
}

, (2.16)

where the infimum runs over all statistical operators D̂N having N particles. From Lieb’s

conjecture (cf. (2.12)) it is evident that only the two ground states with integer particle number

just below and above N can enter in the minimizing statistical operator D̂0
N . Appreciating the
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linear dependence on the weights {wi} it is straight forward to define a ground-state ensemble

representing a system with non-integer number of particles, i.e. ,

D̂0
N=N+δ = (1− δ) |N, 0〉 〈N, 0|+ δ |N + 1, 0〉 〈N + 1, 0| , δ ∈ [0, 1] (2.17)

n0(r) = Tr
{

D̂0
N=N+δΦ̂

†(r) Φ̂(r)
}

,

∫

d3r n0 (r) = N + δ = N , (2.18)

E(N = N + δ) = Tr
{

D̂0
N=N+δĤ

}

= (1− δ) E(N) + δE(N + 1) . (2.19)

We can investigate the ground-state energy as a function of N further by looking at its

Legendre transformation

LT{E}(µ) = − inf
N
{E(N )− µN} = −E(µ) . (2.20)

The Legendre transform −E(µ) contains the same information as the original function E(N ),

but now this information is encoded in a function of µ, the conjugated variable to the number

of particles N . Explicitly it returns for a given µ the ground-state energy E(N)− µN with N

being integer. In fact for a range µ ∈ [µ−, µ+] the same N is picked, as can be deduced from

the piecewise linear behavior of the function E(N)− µN (cf. Fig. 2.1). This is a consequence

of the fact that the Legendre transformation maps points to lines and vice versa. Rewriting

the term added to the ground-state energy in Eq. (2.20)

−µN = −
∫

d3r µn0(r) , (2.21)

and comparing it to

Tr
{

D̂N V̂
}

=

∫

d3r V (r)n0(r) , (2.22)

it seems that we re-introduced a constant to the potential. It is important to realize that this

constant is not the arbitrary constant of the Hohenberg-Kohn theorem, but it is only arbitrary

within an interval [µ−, µ+] for a given number of particles N . The range of the interval

[µ−, µ+] depends crucially on the ground-state energies at different particle numbers for the

system under investigation and therefore on the external potential V̂ itself. The physical

interpretation of µ is evident: it is the chemical potential, i.e. , the potential between the

system and a reservoir of particles. The ambiguity of the chemical potential stems from the

fact that the ground-state energy of the system with N particles may differ from the ground-

state energy of the system with N + 1 particles by a finite amount. This energy difference has

to be overcome by changing the chemical potential in order to provide the necessary energy

to add a particle to the system.
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N N

N N

E(N )− µN
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E(N )− µN
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N
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(N+1)

(N+1)
(N+1)

(N+1) (N−1)

(N−1)
(N−1)

(N−1)(N−2)

(N−2)

(N−2)

(N−2)

E(µ0)

E(µ0)

E(µ0)

E(µ0) E(µ1)

E(µ2)

E(µ3)

(d)(c)

(b)(a)

Figure 2.1: The panels (a)-(d) show E(N )− µN as a function of the particle number N for

various µ. The values of E(µ) = infN {E(N )− µN} are indicated by the horizontal dashed

lines.

Panel (a): E(N )− µ0N is minimal for N = N .

Panel (b): µ1 = AN , i.e. , the electron affinity of the N -particle system. For this specific value

µ1 the function E(N )− µ1N is minimal for N ∈ [N,N + 1]. The minimal value is E(µ1).

Panel (c): µ2 > AN and less than the electron affinity of the (N + 1)-particle system AN+1.

E(N )− µ2N is minimal for N = (N + 1) as long as µ ∈ [AN , AN+1]. Comparison to the

situation in panel (b) exemplifies the duality of points and lines by means of the Legendre

transformation (cf. Eq. (2.20)).

Panel (d): µ3 = IN , i.e. , the ionization potential of the N -particle system. Here we sketch a

situation in which the second ionization potential IN−1 is equal to IN . This occurs for example

if the two highest occupied orbitals of a non-interacting system are degenerate. Accordingly

E(N )− µ3N is minimal for N ∈ [N − 2, N ].
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2.3 The Levy-Lieb constrained-search formalism

In Eq. (2.8) we defined the ground-state energy as the infimum of an energy functional EHK[n0]

over all ground-state densities n0. The energy functional can be split into two contributions,

EHK[n0] = 〈Ψ [n0]| Ĥ |Ψ [n0]〉 (2.23)

= 〈Ψ [n0]| T̂ + Ŵ |Ψ [n0]〉+ 〈Ψ [n0]| V̂ |Ψ [n0]〉

= FHK[n0] +

∫

d3r V (r)n0(r) , (2.24)

i.e. , a contribution linear in n0 and V and the remainder FHK[n0]. FHK[n0] is called the

universal functional, because it does not depend on the external potential and therefore does

not depend on the system under investigation.

Alternatively the ground-state energy can be obtained by minimizing the expectation value

of the Hamiltonian Ĥ over all statistical operators D̂,

E0 = inf
D̂

Tr
{

D̂
(

Ĥ − µN̂
)}

. (2.25)

Note that we introduced the chemical potential in order to take the infimum over all statistical

operators in contrast to Eq. (2.16). This is only compatible with Eq. (2.16) if Lieb’s conjecture

is true. A neat idea to derive the energy as a functional of the density was independently

proposed by Levy [Lev82] and Lieb [Lie83]. They suggested the so-called constrained-search

formalism. It is implemented by splitting the minimization process into two parts: in a first

step the minimization is carried out over all statistical operators yielding a prescribed density

n(r), and then, in a second step, the minimum over all densities is found,

E0 = inf
n

{

inf
D̂→n

Tr
{

D̂
(

Ĥ − µN̂
)}}

(2.26)

= inf
n

{

inf
D̂→n

Tr
{

D̂
(

T̂ + Ŵ
)}

+

∫

d3r (V (r)− µ)n(r)
}

= inf
n

{

FL[n] +

∫

d3r (V (r)− µ)n(r)
}

. (2.27)

Accordingly we have an alternative definition of the energy as a functional of the density

(cf. Eq. (2.24))

EL[n] = FL[n] +

∫

d3r (V (r)− µ)n(r) . (2.28)

The main difference between Eq. (2.24) and Eq. (2.28) is the domain of the functional. The

Levy-Lieb energy functional is defined over all densities n stemming from a statistical operator
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D̂, whereas the Hohenberg-Kohn energy functional is defined over all ground-state densities

n0. Densities obtained from D̂ via

n(r) = Tr
{

D̂Φ̂†(r) Φ̂(r)
}

, (2.29)

are called ensemble N -representable. Since the set of ensemble N -representable densities

encompasses the set of ground-state densities, the Levy-Lieb functional is defined over a

broader set of densities. Note that, in the constrained-search formalism, no reference to the

Hohenberg-Kohn theorem is made and therefore the Levy-Lieb functional does not rely on the

Hohenberg-Kohn theorem. Minimizing both functionals yields the same ground-state energy.

In the following we will denote the universal functional by F [n], but the distinction between the

Hohenberg-Kohn universal functional and the Levy-Lieb universal functional will be recalled if

necessary.

2.4 The universal functional and conjugated variables

In the previous section we introduced the energy functional

E[n] = F [n] +

∫

d3r (V (r)− µ)n(r) . (2.30)

When minimized over all densities n for a fixed potential V we obtain the ground-state energy

of the system characterized by the external potential V . Hence we can view the ground-state

energy E0 as a functional of the external potential, i.e. ,

E0[V ] = inf
n

{

F [n] +

∫

d3r (V (r)− µ)n(r)
}

. (2.31)

Comparing Eq. (2.31) to the definition of the Legendre transformation (cf. Eq. (2.20)) we

can identify E0[V ] as the (negative) Legendre transform of the universal functional. Since the

Legendre transformation is its own inverse, much like the Fourier transformation, the universal

functional is the Legendre transform of −E0[V ]. The duality relation

−E0[V ]
Legendre transformation⇐==============⇒ F [n] , (2.32)

proposes the notion of n and V being conjugated variables. Using the concept of conjugated

variables we can motivate the extension of the charge-density-only DFT proposed by Hohen-

berg and Kohn to include more densities as fundamental variables. If the Hamiltonian Ĥ
includes additional external potentials, e.g. a magnetic field, vector potential, etc. , we include

the densities that couple linearly to the additional potentials, e.g. the spin magnetization, the

charge-current density, etc. , as fundamental variables. The physical motivation to introduce
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more fundamental variables even if there are no additional external potentials is closely related

to spontaneous symmetry breaking. If the symmetry breaking is accompanied by the appear-

ance of a characteristic order parameter, the inclusion of the order parameter as a fundamental

variable facilitates the construction of approximations to the universal functional considerably.

As an example we consider magnetic systems. They are characterized by a a non-vanishing

spin-magnetization

m(r) = −Tr
{

D̂Φ̂†(r)σΦ̂(r)
}

. (2.33)

Taking into account that the spin-magnetization directly couples to an external magnetic field,

we now consider Hamiltonians of the form

Ĥ = T̂ + V̂ + B̂ + Ŵ , (2.34)

where B̂ is the contribution to the Hamiltonian due to the presence of an external magnetic

field B. Employing the constrained-search formalism we can define the ground-state energy

as a functional of the external potentials

E0[V,B] = inf
n,m

{

F [n,m] +

∫

d3r (V (r)− µ)n(r)−
∫

d3r µBB(r) ·m(r)

}

, (2.35)

F [n,m] = inf
D̂→{n,m}

Tr
{

D̂
(

T̂ + Ŵ
)}

, (2.36)

where we implicitly defined a new universal functional in terms of the fundamental variables

{n,m}. The DFT including besides the charge density n also the spin magnetization m

was first proposed by von Barth and Hedin [vBH72]. In contrast to the construction via

the constrained-search formalism, given in Eq. (2.35), Barth and Hedin followed the original

approach of Hohenberg and Kohn and proved the Hohenberg-Kohn theorem for Spin-Density-

Functional Theory (SDFT).

This illustrates the general scheme for the construction of various DFTs. First a new density,

helping to characterize the system, is added as fundamental variable. Then, the potential

conjugated to the new density is added to the Hamiltonian even if this additional potential

is set to zero later on. Next a new universal functional is defined via the constrained-search

formalism. Finally we minimize

E[n,m, . . .] = F [n,m, . . .] +

∫

d3r (V (r)− µ)n(r)

−
∫

d3r µBB(r) ·m(r) +

∫

d3r . . . , (2.37)

in order to obtain the ground-state energy and densities {n0,m0, . . .} corresponding to the

system characterized by the external potentials {V,B, . . .}. As already mention in the discus-

sion of the constrained-search formalism, no reference to any Hohenberg-Kohn-like theorem
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has been made. This means that the determination of the ground-state energy by minimizing

E[n, . . .] does not rely on establishing a one-to-one correspondence between densities and the

conjugated external potentials. However, once we are interested in observables other then the

ground-state energy, such a one-to-one correspondence has to be proved in order to justify the

calculation of the observables in terms of the densities.

2.5 Reduced-Density-Matrix-Functional Theory

Reduced-Density-Matrix-Functional Theory (RDMFT) might be viewed as the most general

static DFT. As discussed, new DFTs can be devised by including more densities as fundamental

variables. A natural way to extend the original charge-density DFT is suggested by the equation

of motion (EOM) for the density, i.e. , the continuity equation. It relates changes in the density

to the divergence of the charge-current density

j(r) = 1
2ı
Tr
{

D̂
(

Φ̂†(r)
(

∇Φ̂(r)
)

−
(

∇Φ̂†(r)
)

Φ̂(r)
)}

(2.38)

= lim
r′→r

1
2ı
(∇−∇′) Tr

{

D̂Φ̂†(r′) Φ̂(r)
}

. (2.39)

The EOM for the current, i.e. , the momentum-balance equation, relates the changes in the

current to the divergence of a stress tensor

T (r) = 1
4
Tr
{

D̂
(

∇Φ̂†(r)
)

⊗sym

(

∇Φ̂(r)
)}

(2.40)

= lim
r′→r

1
4
(∇⊗∇′ +∇′ ⊗∇) Tr

{

D̂Φ̂†(r′) Φ̂(r)
}

, (2.41)

plus terms depending on two-particle densities if a two-particle interaction is present in the

Hamiltonian. The trace of the stress tensor, obtained by replacing the tensor product ⊗ by

the inner product ·, is the well-known kinetic-energy density

T (r) = 1
2
Tr
{

D̂
(

∇Φ̂†(r)
)

·
(

∇Φ̂(r)
)}

, (2.42)

= lim
r′→r

1
2
(∇ · ∇′) Tr

{

D̂Φ̂†(r′) Φ̂(r)
}

. (2.43)

The scheme proposed by the hierarchy of the EOMs would be to devise a corresponding

hierarchy of DFTs. As suggested by Eqs. (2.39), (2.41), (2.43), this hierarchy of DFTs would

include more and more higher order gradients of the object

γ(r; r′) = −Tr
{

D̂ : Φ̂(r) Φ̂†(r′) :
}

, (2.44)

the so-called one-particle-reduced density matrix (1RDM). The limiting case of including gra-

dients up to infinite order would then correspond to choosing the 1RDM itself as fundamental
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variable. The 1RDM may be considered the non-local generalization of the usual density.

In Eq. (2.44) we employ the normal ordering operator : : in order to carry over the internal

structure - representing the spin degrees of freedom - of the fundamental Pauli fields Φ̂ to the

definition of the 1RDM. Note that the product Φ̂†(r′) Φ̂(r) is a scalar field operator whereas

the product

Φ̂(r) Φ̂†(r′) =

(

φ̂↑(r)

φ̂↓(r)

)
(

φ̂†
↑(r

′) φ̂†
↓(r

′)
)

=

(

φ̂↑(r) φ̂
†
↑(r

′) φ̂↓(r) φ̂
†
↑(r

′)

φ̂↑(r) φ̂
†
↓(r

′) φ̂↓(r) φ̂
†
↓(r

′)

)

,

is a 2×2-valued field operator. The normal-ordering operator forces the fundamental field

operators φ̂(r),φ̂†(r′) to switch places.

In his seminal paper [Gil75] Gilbert derived the Hohenberg-Kohn theorem for the 1RDM.

The Gilbert theorem states that the 1RDM is in one-to-one correspondence with the ground-

state wave function. In contrast to the Hohenberg-Kohn theorem the Gilbert theorem does

not establish a one-to-one correspondence between the the 1RDM and its conjugated non-

local potential. As a consequence only ground-state expectation values can be written as

functionals of the ground-state 1RDM γ0(r; r
′). Excited state properties, such as transition

matrix elements, are in principle out of reach. The construction of an energy functional is

most efficiently done by employing the constrained-search formalism,

E[γ] = W [γ] +

∫∫

d3rd3r′ H0(r
′; r) γ(r; r′) , (2.45)

W [γ] = inf
D̂→γ

Tr
{

D̂Ŵ
}

, (2.46)

∫∫

d3rd3r′ H0(r
′; r) γ(r; r′) =

∫

d3r
(

tr
{

lim
r′→r
∇′ · ∇γ(r; r′)

}

+ 1
c
A(r) · tr

{

lim
r′→r

1
2ı
(∇−∇′) γ(r; r′)

}

− µBB (r) · tr{σγ(r; r)}

+
(

1
2c2
|A(r) |2 + V (r)− µ

)
tr{γ(r; r)}

)

, (2.47)

where we introduced tr {. . .} to indicate the trace over the internal (spin) degree of freedom as

opposed to the trace over Fock space denoted by Tr {. . .}. Eq. (2.47) emphasizes that the non-

local nature of the 1RDM makes it the conjugated density to all single-particle contributions

of the Hamiltonian. It follows that the universal functional W [γ] only includes contributions

due to particle-particle interactions. Most notably, in contrast to the original DFT, the kinetic

energy is explicitly known as a functional of the 1RDM

T [γ] = 1
2

∫

d3r tr
{

lim
r′→r
∇′ · ∇γ(r; r′)

}

. (2.48)
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The 1RDM itself can be viewed as an operator acting in the single-particle Hilbert space. Its

hermiticity can readily be derived from Eq. (2.44). Accordingly it can be represented by its

spectral decomposition,

γ(r; r′) =
∑

j

njΦj(r) Φ
†
j(r

′) , (2.49)

with Φj(r) being two-component Pauli spinors. The eigenvalues nj are usually called occupa-

tion numbers and the eigenstates Φj(r) natural orbitals. The 1RDM is a non-local 2× 2 matrix

in spin space. Its spatial diagonal contains the charge density and the spin-magnetization,

ρ(r) = γ(r; r) = 1
2

(

n(r)−m3(r) −m1(r) + ım2(r)

−m1(r)− ım2(r) n(r) +m3(r)

)

= 1
2
ρα(r) σ

α, (2.50)

with α = 0, 1, 2, 3. Coleman derived necessary and sufficient conditions for an 1RDM to be

ensemble N -representable [Col63]. Quite naturally for an N -particle system the occupation

numbers have to sum up to N , and for fermionic systems each occupation number has to be

between zero and one, i.e. ,

γ(r; r′) =
∑

j

njΦj(r) Φ
†
j(r

′) ,
∑

j

nj = N , nj ∈ [0, 1] (2.51)

⇐⇒

γ(r; r′) = −Tr
{

D̂ : Φ̂(r) Φ̂†(r′) :
}

.

An important concept for 1RDMs is the notion of a pinned state. Pinned states are

natural orbitals with occupation number equal to zero or one. In fact the corresponding

natural orbitals are only defined up to a unitary transformation among themselves, since they

form a set of states with degenerate eigenvalues. From Coleman’s proof it is evident that

natural orbitals with occupation number equal to one, are orbitals that appear in every Slater

determinant present in the expansion of the states comprising the statistical operator. Similarly

natural orbitals with occupation number equal to zero do not appear in any Slater determinant

contributing to D̂. The simplest example for D̂ would be a projection on a single Slater

determinant. Since the N -particle ground state of a non-interacting system can be written as

a single Slater determinant, a non-interacting 1RDM can be written as

γs(r; r
′) =

∑

j occ.

Φj(r) Φ
†
j(r

′) . (2.52)

The non-interacting ground-state Slater determinant consists of the lowest N eigenstates of

the Hamiltonian. We conclude that:

1) A non-interacting 1RDM has only pinned states.
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2) The ambiguity w.r.t. the natural orbitals can be resolved for non-interacting systems by

recognizing that the natural orbitals can be chosen to be simultaneous eigenstates of Ĥ0.

Clearly, in this way, the ambiguity can only be removed for non-degenerate eigenstates of Ĥ0.

3) A non-interacting 1RDM is idempotent, i.e. ,

∫

d3r′′ γs(r; r
′′) γs(r

′′; r′) = γs(r; r
′) . (2.53)

The idempotency of γs can be used to construct an explicit counter-example to the one-to-one

correspondence between non-local potentials and 1RDMs. Assume that γs is the ground-state

1RDM for some Hamiltonian Ĥ0. Now construct a Hamiltonian Ĥ′
0 = Ĥ0 − Û , by subtracting

a non-local potential of the form

U(r′; r) = Uγs(r
′; r) . (2.54)

Since Ĥ0 and Û are diagonalized by the same set of orbitals, also Ĥ′
0 shares the set of

eigenstates (and thereby natural orbitals) with Ĥ0. Only the N -lowest eigenstates are shifted

by U , i.e. , we found a ground state 1RDM γs that corresponds to two different non-local

potentials (single-particle Hamiltonians) H0 and H ′
0.





Chapter 3

Aspects of Density-Functional

Theories

The great success of DFTs can largely be attributed to an ingenious idea due to Kohn and Sham

[KS65]. They proposed the introduction of a fictitious non-interacting system, that has the

same ground-state density as the interacting system under investigation. Since non-interacting

systems can be treated numerically exactly, only the difference of the universal functional for

interacting systems and the universal functional for non-interacting systems (i.e. , the kinetic

energy) has to be approximated. This difference is the so-called Hartree-exchange-correlation-

energy functional. Excluding from this difference furthermore the Hartree contribution, which

is explicitly known in terms of the density, the exchange-correlation (xc) functional is readily de-

fined. The xc energy is a much smaller quantity than the full universal kinetic-plus-interaction

energy. In addition the Kohn-Sham scheme provides an efficient algorithm to minimize the

energy functional by self-consistently solving a single-particle Schrödinger equation. Further-

more the Kohn-Sham system may be interpreted as a crude approximation to functionals for

all observables implied by an energy functional. In fact it is common practice to discuss and

analyze the band structure or density of states of the Kohn-Sham system. This chapter is

intended to provide an overview of the Kohn-Sham system by focusing on the three aforemen-

tioned features. Moreover we discuss the peculiarities of RDMFT compared to common DFTs,

because one may view the absence of a Kohn-Sham system as the most notable difference

between DFT and RDMFT for practical implementations.

21
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3.1 The Kohn-Sham System

In Chapter 2 we introduced the energy functional

E[n] = F [n] +

∫

d3r V (r)n(r) , (3.1)

for interacting systems. Similarly we can introduce an energy functional for non-interacting

systems,

Es[n] = Ts[n] +

∫

d3r Vs(r)n(r) , (3.2)

Ts[n] = inf
D̂→n

Tr
{

D̂T̂
}

. (3.3)

In their seminal paper [KS65] Kohn and Sham proposed to consider a non-interacting system,

dubbed the Kohn-Sham (KS) system, that has the same ground-state density n0 as the inter-

acting system. Imposing that the variation of the interacting and the non-interacting energy

functional both vanish at the common ground-state density, a relation between the potential

of the non-interacting system Vs, the KS potential, and the potential of the interacting system

V is readily obtained,

δE[n0]

δn(r)
=
δEs[n0]

δn(r)
= 0

δF [n0]

δn(r)
+ V (r) =

δTs[n0]

δn(r)
+ Vs(r) ,

⇒ Vs(r) = V (r) + vHxc (r) , (3.4)

vHxc(r) =
δEHxc[n0]

δn(r)
(3.5)

EHxc[n] = F [n]− Ts[n] . (3.6)

In Eq. (3.6) we defined the Hartree-exchange-correlation energy functional. Furthermore its

functional derivative, the Hartree-xc potential Eq. (3.5), was used in Eq. (3.4) to relate the

external potential V of the interacting system to the external potential Vs of the KS system.

Commonly the classical contribution due to interactions is separated out, because it is an

explicitly known and large contribution to EHxc[n]. For Coulomb-interacting electrons this

corresponds to the Hartree energy,

EH [n] =
1
2

∫∫

d3rd3r′
n(r)n(r′)

|r − r′| . (3.7)

Therefore the energy functional Eq. (3.1) has been split into the contributions,

E[n] = Ts[n] +

∫

d3r V (r)n(r) + EH [n] + Exc[n] , (3.8)
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where we have introduced the xc-energy functional Exc[n] = EHxc[n]− EH [n] which has to

be approximated in practice. All other contributions are either explicitly known as functionals

of the density (EH [n]) or implicitly given in terms of an algorithm (Ts[n]). Though being a

small contribution to the energy, Exc[n] is critical for the description of the electronic structure

of interacting systems. Hence in the past decades enormous effort went into the construction

of approximations to the xc-energy functional.

3.2 Representability and derivative discontinuities

Equating the variation of the non-interacting energy functional with the variation of the inter-

acting energy functional in Eq. (3.4) requires some caution. We implicitly assume that both

functionals are defined over the same set of densities. Following Hohenberg and Kohn [HK64]

the functionals are defined over the set of ground-state densities of non-interacting and inter-

acting systems, respectively. Densities that come from the ground state of some local external

potential are called V -representable. The KS scheme is based on the assumption that the sets

of non-interacting V -representable and interacting V -representable densities are identical.

In Eq. 3.3 we have employed the constrained-search formalism to define the non-interacting

kinetic energy functional Ts[n]. This approach to derive an energy functional is always defined

over ensemble N -representable densities (cf. Sec. 2.3) and therefore the domains of the non-

interacting energy functional and the interacting energy functional are the same. Hence we

can relate an external potential U of a non-interacting system to an external potential V of

an interacting system, by requiring that the variations of the respective energy functionals are

equal for all ensemble N -representable densities, i.e. ,

δEV [n]

δn(r)
=
δEs,U[n][n]

δn(r)
, (3.9)

UV [n](r) = V (r) + vH [n](r) + vxc[n](r) , (3.10)

vH [n](r) =
δEH [n]

δn(r)
=

∫

d3r′
n(r′)

|r − r′| , (3.11)

vxc[n](r) =
δExc[n]

δn(r)
. (3.12)

In the previous equations we indicate implied dependencies on densities and potentials carefully.

The functional on the r.h.s. of Eq. (3.9) depends only on the density, whereas the l.h.s. also

depends on the external potential V . Therefore Eq. (3.9) defines U as a functional of V and n.

As can be seen from Eq. (3.10) the functional dependence on V is simple. The n-dependent

part of U can be split further into the functional derivative of the Hartree energy and the

functional derivative of the xc-energy, the so-called exchange-correlation potential. Evaluated
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at the ground-state density n0 of V we get

UV [n0](r) = Vs[n0](r) , (3.13)

i.e. , the KS potential.

A second subtlety is related to the use of functional derivatives. In fact, at least for

functionals defined over the ensemble N -representable densities, we have already seen that

the energy exhibits kinks (cf. Fig. 2.1 in Sec. 2.2). This means that for variations within the

set of densities represented by the ground-state ensemble Eq. (2.17), the functional derivative

of the universal functional behaves discontinuously. We can parameterize these variations by

nδ(r) = Θ(−δ) |δ|n−(r) + (1− |δ|)n0(r) + Θ(δ) |δ|n+(r) , (3.14)

where n−,n0 and n+ are the (N − 1)-, N - and (N + 1)-particle ground-state densities, respec-

tively, and Θ(x) is the Heaviside step function. Having parameterized the functional variation

in terms of δ ∈ [−1, 1], we note that for a non-interacting system the energy change is propor-

tional to the energy of the highest occupied orbital ǫHOMO for δ ∈ (−1, 0) and to the energy

of the lowest unoccupied orbital ǫLUMO for δ ∈ (0, 1) of the N -particle system, respectively.

Accordingly, the non-interacting energy functional exhibits a derivative discontinuity at δ = 0,

or equivalently at an integer number of particles, i.e. ,

∆s =
δEs[n]

δn(r)

∣
∣
∣
∣
δ→0+

− δEs[n]

δn(r)

∣
∣
∣
∣
δ→0−

=
δTs[n]

δn(r)

∣
∣
∣
∣
δ→0+

− δTs[n]

δn(r)

∣
∣
∣
∣
δ→0−

= ǫLUMO − ǫHOMO. (3.15)

Similarly we can analyze the change of the interacting energy functional under the varia-

tions defined in Eq. (3.14). Now the energy change is proportional to the energy differ-

ence between the ground-state energy of the N - and the (N − 1)-particle system, i.e. ,

the negative ionization potential −I = E(N)− E(N − 1), for δ ∈ (−1, 0) and to the en-

ergy difference of the (N + 1)- and the N -particle system, i.e. the negative electron affinity

−A = E(N + 1)− E(N), for δ ∈ (0, 1). The derivative discontinuity of the interacting energy

functional at δ = 0, the so-called fundamental gap, is given by

∆ =
δE[n]

δn(r)

∣
∣
∣
∣
δ→0+

− δE[n]

δn(r)

∣
∣
∣
∣
δ→0−

= I − A

= ∆s +
δExc[n]

δn(r)

∣
∣
∣
∣
δ→0+

− δExc[n]

δn(r)

∣
∣
∣
∣
δ→0−

= ∆s +∆xc. (3.16)

In Eq. (3.16) we introduced the derivative discontinuity of the xc-energy functional. It was

first discussed by Perdew et al. in 1982 [PPLB82]. The derivative discontinuity is important
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if one aims at a quantitative prediction of the fundamental gap using DFT. This is reflected

by the fact the fundamental gap obtained from approximations to the xc functional that do

not exhibit a derivative discontinuity are systematically too small. A prominent example of

materials where the derivative discontinuity is essential are the so-called Mott insulators. These

are extended systems predicted to be conductors by band theory, an effective non-interacting

theory, but are known to be insulators experimentally. The physical mechanism behind this is

an interaction-induced localization of the electrons. In the framework of DFTs Mott insulators

can be understood in terms of the decomposition of the fundamental gap into the KS gap

∆s and the xc gap ∆xc. Systems with a vanishing KS gap but a non-vanishing ∆xc are the

reflection of the aforementioned characteristics of a Mott insulator in the context of KS DFTs.

The vanishing KS gap implies that the non-interacting systems, yielding the same ground-state

density as the interacting system, is a conductor but the non-vanishing xc gap ensures that

the true fundamental gap is finite. An approximate xc-energy functional, devised to properly

describe strongly correlated systems, should therefore show a derivative discontinuity.

Finally we remark that the existence of the functional derivative of the universal functional

was established on the set of non-interacting V -representable densities by Englisch and Englisch

[EE84a, EE84b] if only finite dimensional Hilbert spaces are considered. Together with the

results in [CCR85] that on a lattice each ensemble N -representable density is arbitrary close to

a non-interacting V -representable density, on might consider the representability question to

be settled for all practical purposes, because a numerical implementation of the KS scheme will

always discretize the single-particle Hilbert space. For a detailed study of the V -representability

issue in DFTs the interested reader is referred to the work of Lammert (e.g. [Lam10] and

references therein).

3.3 The self-consistent Kohn-Sham scheme

The introduction of the KS system suggests a neat way to find the ground-state density

for an interacting system exposed to an external potential V . Given an approximation for

the xc-energy functional we can compute the variation of the energy functional at a trial

density n(k)(r). We determine the potential U (k)(r) of a non-interacting system for which

the variation of the non-interacting energy functional equals to the variation of the interacting

energy functional. This is precisely the potential defined in Eq. (3.10). It is given in terms of the

variation of the xc-energy functional (cf. Eq. (3.12)). Then the non-interacting ground-state

density n(k+1)(r) corresponding to the potential U (k) is obtained by solving the Schrödinger

equation for the non-interacting problem. This density n(k+1)(r) is used as new guess for the

ground-state density of the interacting system. Again, for this new trial density the variation
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of the interacting energy functional can be evaluated, which in turn yields a new potential

U (k+1). Repeating this cycle until self-consistency yields a density that produces a potential

U via Eq. (3.10), to which the density itself is the corresponding ground-state density. This

scheme is illustrated in Fig. 3.1. The self-consistent potential is the KS potential Vs and the

self-consistent density is the ground-state density n0 of the interacting system characterized

by the external potential V . Hence we can find the ground-state density and energy of an

interacting system by a self-consistent solution of a non-interacting system,
(
−1

2
∇ · ∇+ Vs[n](r)

)
Φs

k(r) = ǫkΦ
s
k(r) , (3.17)

N∑

k=1

Φs
k
†(r) Φs

k(r) = n(r) , (3.18)

Vs[n](r) = V (r) + vH [n](r) + vxc[n](r) , (3.19)

vxc[n](r) =
δExc[n]

δn(r)
. (3.20)

Since derivatives of the energy functional are used, the KS scheme might be viewed as a

gradient algorithm to minimize (approximations to) the non-linear energy functional. The KS

scheme is the most widely used implementation of DFTs nowadays. It yields a non-interacting

ground state which reproduces the interacting densities. Hence it is possible to determine

any observable by simply evaluating the expectation value of the corresponding operator using

the KS ground state. The expectation values themselves have to be taken with caution,

because they are always expectation values of a single Slater determinant. It is imperative

to realize that even for the exact energy functional only those expectation values that are

explicitly obtained from the fundamental densities are exact. The KS scheme is not a shortcut

to obtain arbitrary expectation values as a functional of the density. Only if the system

under investigation is weakly correlated, i.e. , in the expansion of the ground state one Slater

determinant is dominant, and the dominant Slater determinant is very close to the KS Slater

determinant, expectation values of the KS ground state may be good approximations to the

true expectation values.

3.4 Peculiarities of Reduced-Density-Matrix-Functional

Theory

RDMFT, which was introduced in the previous chapter as the most general DFT, shows some

peculiarities if one tries to devise a KS scheme. It was already pointed out (cf. Sec. 2.5) that

it is not possible to establish a one-to-one correspondence between the 1RDM and the single-

particle contribution Ĥ0 to the Hamiltonian Ĥ. In addition it was realized by Coleman [Col63]
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Figure 3.1: Visualization of the KS minimization procedure. The interacting energy functional

is depicted by the blue curve.

Panel (a): A non-interacting system is found for which the corresponding non-interacting en-

ergy functional (green curve) has the same variation (slope) as the interacting energy functional

at the trial density n(k). The determination of the ground-state density of this non-interacting

system via the solution of the single-particle Schrödinger equation yields a new trial density

n(k+1).

Panel (b): The energy functional of the non-interacting system obtained in the previous mini-

mization step is shown as the dashed green curve. A new non-interacting system whose energy

functional has the same slope as the interacting system at density n(k+1) is found (green curve).

In the presented example the solution of the Schrödinger equation for the new non-interacting

system yields the ground-state density n0 of the interacting system.

that an interacting 1RDM cannot be equal to a non-interacting 1RDM. The eigenstates of a

non-interacting system are always single Slater determinants, whereas eigenstates of interacting

systems are superpositions of Slater determinants. Any single Slater determinant, however,

yields an idempotent 1RDM (cf. Eq. (2.53)), i.e. , a 1RDM with occupation numbers either 0 or

1. An interacting eigenstate always produces an 1RDM with occupation numbers nj ∈ [0, 1].

Therefore the construction of a KS scheme along the lines outlined before is not possible.

It fails because non-interacting V -representable 1RDMs do not overlap with interacting V -

representable 1RDMs. As a consequence the minimization of the energy functional in RDMFT,

i.e. ,

E[γ] =

∫∫

d3rd3r′ H0(r
′; r) γ(r; r′) +W [γ] , (3.21)
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has to be carried out directly. In order to ensure that the variations of the energy functional

Eq. (3.21) are taken only over ensemble N -representable 1RDMs, one usually rewrites the func-

tional in terms of the occupation numbers and natural orbitals defined in Eqs. (2.49),(2.51),

i.e.

E[{nj ,Φj}] =
∑

j

nj

∫

d3r Φ†
j(r)

{
1
2

←−∇ · −→∇ + V (r)
}

Φj(r) +W [{nj ,Φj}] . (3.22)

Then one varies over the occupation numbers {nj}, while ensuring the ensemble N -repre-

sentability constraints 0 ≤ nj ≤ 1 and
∑

j nj = N , and over the natural orbitals. Since the

natural orbitals are eigenstates of the hermitian operator γ(r; r′), they have to stay orthogonal

under variations in order to ensure ensemble N -representability of the variation.



Chapter 4

Functionals in Density-Functional

Theories

The applicability of DFTs depends crucially on the derivation of good approximation to the

xc-energy functional. Already in their paper [KS65] introducing the KS scheme Kohn and

Sham suggested an approximation for Exc[n], the so-called Local-Density Approximation. In

subsequent years a plethora of functionals of increasing complexity was derived. In this chap-

ter we briefly discuss various types of approximations. It will become clear that concerning

functionals there will be a tradeoff between accuracy and complexity. Explicit density func-

tionals are easier to implement and the numerical effort is small enough to investigate large

systems, e.g. complex molecules or compound materials. Implicit functionals, that rely on

the Kohn Sham implementation of DFTs tend to provide more accurate energies and exhibit

exact features like derivative discontinuities, usually not present in explicit density functionals.

Accordingly they are better suited for the description of systems where correlations play an

important role, but the numerical effort is much bigger than for explicit density functionals.

Finally we see that, again, RDMFT shows peculiarities when compared to standard DFTs. As

already mentioned in Sec. 3.4 it is not possible to devise a Kohn-Sham scheme for RDMFT, so

one might suspect that all functionals should be explicit functionals of the 1RDM. Nonetheless

most approximate functionals known to date are implicit functionals of the 1RDM, because

the spectral decomposition of the 1RDM (cf. Eq. (2.49)) suggest to represent the 1RDM in

terms of the natural orbitals and occupation numbers.

29
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4.1 Local and semi-local approximations

Kohn and Sham proposed a first approximation for the xc-energy functional in their seminal

paper [KS65] introducing the KS construction. It can be motivated as follows. We choose to

write the xc-energy in terms of an xc-energy density ε̃xc,

Exc[n] =

∫

d3r ε̃xc(r) =

∫

d3r n(r) εxc(r) . (4.1)

In Eq. (4.1) we further decided to write the xc-energy density in terms of the xc-energy

per particle εxc times the density, because the density is our fundamental variable. The

energy per particle at position r is determined from a reference system where the density

has the same value everywhere in space. This is the uniform electron gas, i.e. , a system

of interacting electrons exposed to a constant external potential. The constant potential

determines the number of electrons per unit volume and therefore by varying the constant

potential and calculating the xc-energy per particle one obtains εunifxc (n). The so-called Local-

Density Approximation (LDA) is defined by evaluating εunifxc (n) at the local value of the electron

density, i.e. ,

ELDA
xc [n] =

∫

d3r n(r) εunifxc (n(r)) . (4.2)

The application of the LDA depends on the availability of the function εunifxc (n). Being the

prototypical interacting system, the uniform electron gas is probably one of the most studied

systems in condensed matter physics. Seminal contributions were the calculation of its ground-

state energy by means of perturbation theory pioneered by Macke [Mac50], Pines [Pin53] and

Gell-Mann and Brueckner [GMB57], which is referred to as the Random-Phase Approximation

(RPA). Though being perturbative in nature, derived from the assumed smallness of the

interaction contribution, the ground breaking idea was to resum the most divergent terms in

the perturbation series. This led to a renormalization of the contributions that are second order

in the interaction. Thereby the divergence of the second order contribution was eliminated by

grouping it with the most divergent terms of higher order contributions to the perturbation

series. In the following years various attempts were made to improve the results by including

more diagrams in the expansion for the ground-state energy of the uniform electron gas. In

1980 the Quantum Monte Carlo approach was used by Ceperley and Alder [CA80] to obtain

the exact dependence of the energy per particle as a function of the density.

In order to improve the LDA one usually tries to determine the local xc-energy per particle

not just from the density of the system at position r, but also from the density around position

r. Viewing the density around position r as given through its Taylor expansion, it is evident

that this corresponds to the determination of εxc through the density and its gradients. First
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attempts using perturbative techniques to devise gradient-dependent functionals, the so-called

gradient-expansion approximations (GEAs) failed in practice. This might be compared to the

divergence of the xc-energy of the uniform electron gas if the perturbative expansion is cut

at low orders. In many-body perturbation theory this is overcome by resumming the most

divergent terms. For the construction of gradient-dependent xc-functionals a solution was

obtained in a different way, but it may be viewed as the analogon of a resummation.

A heavily used concept in the construction of functionals is the so-called xc-hole. Assuming

a rescaled interaction λŴ , and a λ-dependent external potential that is supposed to guarantee

that the same ground-state density is obtained for any value of λ, the Hartree-xc energy can

be written in terms of a coupling constant integration by employing the Hellmann-Feynmann

theorem,

EHxc[n] =
1
2

∫ 1

0

dλ

∫∫

d3r1d
3r2

Pλ [n](r1, r2)

|r1 − r2|
, (4.3)

Pλ [n] (r1, r2) = Tr
{

D̂(λ)
0 [n] φ̂†(r1) φ̂

†(r2) φ̂(r2) φ̂(r1)
}

, (4.4)

gλ[n](r1, r2) =
Pλ [n] (r1, r2)

n(r1)n(r2)
, (4.5)

where Pλ [n] (r1, r2) is the pair density and gλ[n](r1, r2) the pair correlation function de-

termined from the ground-state statistical operator D̂(λ)
0 corresponding to the density n at

interaction strength λ implied by the Hohenberg-Kohn theorem. Excluding the Hartree con-

tribution we obtain the xc-energy functional expressed through the xc-hole nxc,

Exc[n] =
1
2

∫ 1

0

dλ

∫∫

d3r1d
3r2

n(r1)n(r2)

|r1 − r2|
(gλ[n](r1, r2)− 1)

= 1
2

∫

d3r n(r)

∫

d3u
nxc[n](r, r + u)

u
, (4.6)

nxc[n](r, r + u) =

∫ 1

0

dλ n(r + u) (gλ[n](r, r + u)− 1) , (4.7)

nx[n](r, r + u) = n(r + u) (g0[n](r, r + u)− 1) , (4.8)

nc[n](r, r + u) = nxc[n](r, r + u)− nx[n](r, r + u) . (4.9)

In Eqs. (4.8),(4.9) we furthermore defined the partitioning of the xc-hole into the exchange

hole nx and the correlation hole nc. Eq. (4.6) suggests the notion of the xc-energy being

the interaction of the density with its surrounding xc-hole. From the sum rule (cf. Appendix

4 of [GV05]) of the pair correlation function g(r1, r2) the following exact properties can be
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derived,

nx (r, r + u) ≤ 0, (4.10)
∫

d3u nx (r, r + u) = −1, (4.11)
∫

d3u nc (r, r + u) = 0. (4.12)

The LDA is obtained by approximating nxc by the xc-hole of the uniform electron gas

nxc[n](r, r + u) ≈ nunif
xc (u;n(r)) . (4.13)

Since, in this case, nxc is approximated by the xc-hole of a physical system, this approxima-

tion fulfills conditions Eqs. (4.10),(4.11),(4.12). The GEAs improved the small u behavior

compared to the LDA approximation Eq. (4.13), but lead to an oscillatory behavior for large

u which results in the violation of Eqs. (4.10),(4.11),(4.12). This is resolved in the so-called

generalized gradient approximations (GGAs) by cutting off the spurious large-u limit. First

steps in this direction were taken by Langreth and Perdew [LP80] and culminated in, among

others, the PBE [PBE96] and the BLYP [Bec88, LYP88] xc-energy functionals. Independent

on how the specific approximation is obtained, GGAs can be casted into the functional form

EGGA
xc [n] =

∫

d3r n(r) εGGA
xc (n(r) , |∇n(r) |)

=

∫

d3r n(r) εunifxc (n(r)) (1 +Gxc(n(r) , |∇n(r) |)) , (4.14)

where we introduced the function Gxc(n, |∇n|) denoting the gradient corrections w.r.t. the

LDA Eq. (4.2).

4.2 Orbital functionals

The functionals introduced so far are explicit functionals of the fundamental densities. Using

the KS scheme introduced in the previous section we can define energy functionals that are

implicit functionals of the fundamental densities, because they are defined in terms of properties

of the KS system. Usually this means that the functional is defined in terms of the KS orbitals

Φs
j and therefore these functionals are dubbed orbital functionals (cf. [GKKG00] for a review).

A specific example is the exact-exchange-energy functional (EXX),

EEXX
xc [n] = −1

2

N∑

j=1

N∑

k=1

∫∫

d3r1d
3r2

(
Φs

j
†(r1) Φ

s
k(r1)

) (
Φs

k
† (r2) Φ

s
j(r2)

)

|r1 − r2|
. (4.15)
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4.2.1 The optimized-effective-potential method

Since orbital functionals depend only implicitly on the density the evaluation of the xc-potential

is rather involved compared to explicit density functionals. The result for the xc-potential

stemming from the EXX functional Eq. (4.15) was first obtained by Sharp and Horton and

numerically evaluated by Talman and Shadwick [TS76]. The first calculation going beyond

exact-exchange were performed by Grabo and Gross [GG95]. Here we shall restrict ourselves

to the spin-independent derivation,

vxc(r) =
δExc[n]

δn(r)

=
∑

k

∫

d3x

(
δExc[n]

δφs
k(x)

δφs
k(x)

δn(r)
+ h.c.

)

=
∑

k

∫∫

d3xd3y

(
δExc[n]

δφs
k(x)

δφs
k(x)

δVs(y)
+ h.c.

)
δVs(y)

δn(r)
, (4.16)

where we recognize δVs(y)
δn(r)

as the inverse of the static density-density response function of the

KS system. From first order perturbation theory we get

δφs
k(x)

δVs(r)
=
∑

j 6=k

φs
j(x)φ

s
j
†(r)

ǫk − ǫj
φs
k(r)

⇒ χs (x, r) =
δn(x)

δVs(r)

=
N∑

k=1

(

φs
k
†(x)

δφs
k(x)

δVs(r)
+
δφs

k
†(x)

δVs(r)
φs
k(x)

)

=
N∑

k=1

∑

j 6=k

(

φs
k
†(x)φs

j(x)φ
s
j
†(r)φs

k(r)

ǫk − ǫj
+ h.c.

)

. (4.17)

Multiplying Eq. (4.16) by
∫
d3r χs(r, r

′) and bringing all terms on one side we finally arrive at

the so-called optimized-effective-potential (OEP) equations,

0 =
N∑

k=1

(
φs
k
†(r)ψk(r) + h.c.

)
, (4.18)

ψk(r) =
∑

j 6=k

φs
j(r)

ǫk − ǫj

∫

d3r′
(

φs
j
†(r′) vxc(r

′)φs
k(r

′)− φs
j
†(r′)

δExc[n]

δφs
k
†(r′)

)

, (4.19)

where we introduced the orbital shifts ψk. An alternative derivation of the OEP equations can

be obtained by considering a generic energy functional given in terms of single-particle orbitals

{φk} that result from a non-interacting system characterized by some external potential V̂ .

If we minimize this energy functional w.r.t. the external potential V̂ , an optimized-effective
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potential VOEP(r) is determined requiring

δEOEP[{φk [V ]}]
δV (r)

∣
∣
∣
∣
V=VOEP

= 0, (4.20)

hence the name optimized-effective-potential method.

The total energy functional in the EXX approximation Eq. (4.15) is formally equivalent

to the Hartree-Fock (HF) energy expression, which is obtained by evaluating the expectation

value of the interacting Hamiltonian Ĥ using a single Slater determinant |Φ0〉 constructed

from the single-particle orbitals Φj,

EHF[{Φj}] = 〈Φ0| Ĥ |Φ0〉 = 〈Φ0| T̂ + V̂ |Φ0〉+ 〈Φ0| Ŵ |Φ0〉 (4.21)

=
N∑

j=1

∫

d3r Φ†
j(r)

(
1
2

←−∇ · −→∇ + V (r)
)

Φj(r) (4.22)

+ 1
2

N∑

j=1

N∑

k=1

∫∫

d3r1d
3r2

(

Φ†
j(r1) Φj(r1)

)(

Φ†
k(r2) Φk(r2)

)

|r1 − r2|
(4.23)

− 1
2

N∑

j=1

N∑

k=1

∫∫

d3r1d
3r2

(

Φ†
j(r1) Φk(r1)

)(

Φ†
k(r2) Φj(r2)

)

|r1 − r2|
. (4.24)

In Eq. (4.23) we identify the Hartree energy, already introduced in Eq. (3.7) in the framework

of DFT, for a density given in terms of the orbitals comprising the single Slater determinant

|Φ0〉, i.e. ,

n(r) = 〈Φ0| Φ̂†(r) Φ̂(r) |Φ0〉 =
N∑

j=1

Φ†
j(r) Φj(r) .

The crucial difference between Eq. (4.15) and Eqs. (4.22), (4.23), (4.24) is that the Φs
j are

orbitals of a non-interacting Hamiltonian with a local external potential, whereas the orbitals

Φj in HF theory are obtained by minimizing EHF [{Φj}] only under the constraint that the

orbitals are normalized, i.e. ,

0 =
δ

δΦ†
j(r)

(

EHF [{Φj}]−
N∑

k=1

ǫk

∫

d3r′ Φ†
k(r

′) Φk(r
′)

)

. (4.25)
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Carrying out the functional derivative w.r.t. the orbitals we obtain

ǫjΦj(r) =
(
−1

2
∇2 + V (r)

)
Φj(r) + VH(r) Φj(r)

−
∫

d3r′ UF (r; r
′) Φj(r

′) , (4.26)

VH(r) =
N∑

k=1

∫

d3r′
Φ†

k(r
′) Φk(r

′)

|r − r′| , (4.27)

UF (r; r
′) =

N∑

k=1

Φk(r) Φ
†
k(r

′)

|r − r′| . (4.28)

Eq. (4.26) is the single-particle HF equation which has to be solved self-consistently in order to

find stationary points of the HF-energy functional. This single-particle Schrödinger equation

is similar to the Kohn-Sham equation introduced in the previous chapter (cf. Eq. (3.17)).

However, the effective potential in HF theory contains the Fock potential UF (r; r
′), which

is a non-local external potential. Orthogonality of the orbitals can be inferred a posteriori,

because the single-particle Hamiltonian Eq. (4.26) is still a hermitian operator. Since the

EXX-energy functional is minimized under an additional constraint, i.e. , that the orbitals are

restricted to be eigenstates of an effective Hamiltonian with a local potential, it possibly yields

a higher total energy than the HF-energy functional.

4.3 Functionals in Reduced-Density-Matrix-Functional

Theory

Remembering that the 1RDM obtained from a single Slater determinant |Φ0〉 is idempotent,

i.e. , the occupation numbers are either 0 or 1, we can replace
∑N

j=1 →
∑

j nj in the definition

of the HF-energy functional Eq. (4.21),

EHF[{nj ,Φj}] =
∑

j

nj

∫

d3r Φ†
j(r)

(
1
2

←−∇ · −→∇ + V (r)
)

Φj(r)

+ 1
2

∑

j,k

njnk

∫∫

d3r1d
3r2

(

Φ†
j(r1) Φj(r1)

)(

Φ†
k(r2) Φk(r2)

)

|r1 − r2|

− 1
2

∑

j,k

njnk

∫∫

d3r1d
3r2

(

Φ†
j(r1) Φk(r1)

)(

Φ†
k(r2) Φj(r2)

)

|r1 − r2|
. (4.29)
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Moreover from the spectral decomposition of the 1RDM Eq. (2.49) we can write the HF energy

functional as an explicit functional of the 1RDM,

EHF[γ] =

∫∫

d3rd3r′ tr{H0(r
′; r) γ(r; r′)}

+ 1
2

∫∫

d3r1d
3r2

tr{γ(r1; r1)} tr{γ(r2; r2)}
|r1 − r2|

− 1
2

∫∫

d3r1d
3r2

tr{γ(r1; r2) γ(r2; r1)}
|r1 − r2|

. (4.30)

In fact it has been proved by Bach et al. [BLLS94] that minimization of the RDMFT HF-energy

functional Eq. (4.30) yields exactly the 1RDM corresponding to the HF ground state |Φ0〉,
even if the domain of EHF[γ] is taken to be the ensemble N -representable 1RDMs. Most

RDMFT functionals are structurally similar to the HF functional. It is usually the quadratic

dependence on the occupation numbers in the Fock term that is modified, and the functionals

can be casted into the form

E[γ] = H0[γ] + EH [γ] + Exc[γ] (4.31)

Exc[γ] =
1
2

∑

j,k

F (nj, nk)

∫∫

d3r1d
3r2

(

Φ†
j(r1) Φk(r1)

)(

Φ†
k(r2) Φj(r2)

)

|r1 − r2|
, (4.32)

with the specific form of F (nj, nk) determining the functional at hand.

In Table 4.1 we collect a representative selection of functionals for RDMFT. The non-

quadratic dependence on the occupation numbers in F (nj , nk) is responsible for minimizing

the corresponding energy functional with a non-idempotent 1RDM. At first sight it seems

that we have a contradiction, because in the previous section we realized that there is no

non-interacting system that yields the 1RDM of an interacting system, but we just identi-

fied the Hartree-Fock theory with an approximation to the energy functional in RDMFT. The

key to solve this issue is to realize that the HF-functional represents an approximation to

the exact RDMFT energy functional. This specific approximation is responsible for the fact

that the minimizing 1RDM is idempotent, i.e. , corresponds to a single Slater determinant.

Approximations that are minimized by a correlated 1RDM cannot be obtained from an ef-

fective single-particle Schrödinger equation. The only way around this would be to consider

an effective single-particle theory with a huge number of degenerate eigenstates. Then one

could construct an ensemble of the degenerate non-interacting ground states that reproduces

the 1RDM of the interacting system. In fact if one tries to derive a single-particle scheme

from the variational equations in RDMFT one obtains a single-particle Hamiltonian with a

non-local external potential, that ensures that all un-pinned natural orbitals are eigenstates

of the single-particle Hamiltonian with eigenvalue µ, i.e. , all un-pinned natural orbitals have
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F (nj, nk) remarks reference

−njnk no correlation [Har28, Foc30]

−√njnk [Mül84, BB02]

−√njnk + δjk
(
nj − n2

j

)
self-interaction [GU98]

correction to Müller

−1
2
njnk [CGA02]

−1
2

√

nj (2− nj)nk (2− nk)






√
njnk, for j 6= k and Φj ,Φk ∈ W
−√njnk, otherwise

W : occ. orbitals in HF [GPB05]







√
njnk, for j 6= k and Φj ,Φk ∈ W
−njnk, for j 6= k and Φj ,Φk ∈ S
−√njnk, otherwise

S: unocc. orbitals in HF [GPB05]

−√njnk + δjk
(
nj − n2

j

)
Θ(x) :

+2Θ
(
1
2
− nj

)
Θ
(
1
2
− nk

)√
njnk Heaviside step function [Pir05]

−Θ
(
nj − 1

2

)
Θ
(
nk − 1

2

)√

(1− nj) (1− nk)

− (njnk)
α α ≈ 0.55 [SDLG08]

− (njnk)
a0+a1(njnk)

1+b1(njnk)
{a0, a1, b1} optimized for [ML08]

a selection of molecules

Table 4.1: Table of RDMFT functionals (not exhaustive).

an effective single-particle energy equal to the chemical potential. The admission of non-local

potentials makes the development of degeneracies possible since state-dependent potentials,

i.e. , potentials shifting the eigenvalue of a single state, are allowed. This not only destroys

the intuitive notion of the energy of a state being a compromise between the kinetic energy

and a local potential energy, but also makes this effective system useless as a numerical min-

imization algorithm for RDMFT functionals. Hence in RDMFT the energy functional has to

be minimized directly, usually by employing gradient based algorithms for high dimensional

optimization problems, while enforcing the ensemble N -representable constraints.





Chapter 5

The uniform electron gas

The uniform electron gas is the paradigm of interacting metallic systems [GV05]. It is de-

scribed by an interacting Hamiltonian with a constant external potential. This seemingly

trivial model exhibits already a variety of features arising due to interactions between the

electrons, e.g. spontaneous symmetry breaking. Although one might suspect that the trans-

lational invariance of the Hamiltonian is reflected in all expectation values of the interacting

system, interactions induce correlations in the probability of finding an electron as position r1

and another electron at position r2. The joint probability is referred to as the two-particle

or pair density. Due to the indistinguishability of the electrons and their fermionic character

there is already a fundamental correlation in the two-particle density even when the particles

are non-interacting. In the world of physics, however, there is the convention that talking

about correlations means to talk about the additional correlation due to the interaction be-

tween the electrons. In order to illustrate the complexity of interacting electrons we consider

the uniform electron gas in two extreme limits. For a very dense electron gas the kinetic

energy is the dominant contribution to the total energy and therefore the ground state will

minimize the kinetic energy. This means that the electrons will occupy completely delocalized

orbitals, i.e. , plane waves states. On the other hand, as first suggested by Wigner [Wig34],

the long-range Coulomb repulsion is the dominant contribution for a very dilute electron gas

and therefore the ground state will minimize the energy by keeping the electrons as far apart

as possible. This implies that the electrons tend to localize and form the so-called Wigner

crystal. Then the ground state energy is essentially given by the classical Coulomb energy of

charges localized on a periodic lattice. Accordingly the two-particle density will be strongly

peaked for r1 − r2 being the lattice vectors of the Wigner crystal. In the intermediate regime

the electron gas has to find an optimal balance between the kinetic and the interaction en-

ergy which is reflected in the structure of the two-particle density. Even if, by means of the

Quantum Monte Carlo method [Cep04], it is possible to compute the interacting ground-state

39
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energy exactly, one has to make some assumptions on the specific nature (or symmetry) of the

ground state (e.g. spin-unpolarized uniform, spin-unpolarized Wigner crystal, partially spin-

polarized, fully spin-polarized, superconducting, ...). In practice one forces the electron gas

into a specific state by applying a symmetry-breaking external potential. Then one compares

the resulting ground-state energy for different states, excluding the energy contribution due

to the symmetry-breaking fields, in order to determine the lowest energy configuration. In

the present chapter we review the basic properties of the uniform electron gas with unbroken

symmetries.

5.1 Hamiltonian

The grand-canonical Hamiltonian of the uniform electron gas is given by

Ĥ = T̂ − µN̂ + Ŵ

=

∫

d3r Φ̂†(r)
(

1
2

←−∇ · −→∇ − µ
)

Φ̂(r)

+ 1
2

∫∫

d3r1d
3r2 Ψ̂

†(r1, r2)W (r1 − r2) Ψ̂(r1, r2) , (5.1)

where we introduced the composed two-particle field Ψ̂. It is given in terms of the components

of the fundamental Pauli field Φ̂,

Ψ̂(r1, r2) =









ψs,0(r1.r2)

ψt,1(r1.r2)

ψt,0(r1.r2)

ψt,−1(r1.r2)









=










1√
2

(

φ̂↑(r1) φ̂↓(r2)− φ̂↓(r1) φ̂↑(r2)
)

φ̂↑(r1) φ̂↑(r2)
1√
2

(

φ̂↑(r1) φ̂↓(r2) + φ̂↓(r1) φ̂↑(r2)
)

φ̂↓(r1) φ̂↓(r2)










. (5.2)

The components of the field Ψ̂ correspond to the spin-0 singlet and spin-(1, 0,−1) triplet

states. Together with the definition of the Coulomb interaction

W (r1 − r2) =
1

|r1 − r2|









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









, (5.3)

one arrives at the more common representation of the interaction

Ŵ = 1
2

∑

σ1σ2

∫∫

d3r1d
3r2 φ̂

†
σ1
(r1) φ̂

†
σ2
(r2)

1

|r1 − r2|
φ̂σ2

(r2) φ̂σ1
(r1) . (5.4)
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Writing the interaction Ŵ as in Eq. (5.1) using the interaction Eq. (5.3) emphasizes that

the Coulomb interaction does not scatter between different spin channels. It is convenient to

rewrite the fields and the Coulomb interaction in terms of their Fourier components,

Φ̂(r) =
1
√
2π

3

∫

d3k eık·rΦ̂(k) , (5.5)

Ψ̂(r1, r2) =
1

(2π)3

∫∫

d3k1d
3k2 e

ık1·r1eık2·r2Ψ̂(k1,k2) , (5.6)

W (r1 − r2) =
1

(2π)3

∫

d3q eıq·(r1−r2)
4π

q2
diag(1, 1, 1, 1)

︸ ︷︷ ︸

=W(q)

, (5.7)

leading to

Ĥ =

∫

d3k Φ̂†(k)

(
k2

2
− µ

)

Φ̂(k) (5.8)

+ 1
2

1

(2π)3

∫∫∫

d3k1d
3k2d

3q Ψ̂†(k1 + q,k2 − q)W (q) Ψ̂(k1,k2) . (5.9)

5.2 The non-interacting ground state

Considering only the single-particle contribution Eq. (5.8), it is straight forward to construct

the ground state of the non-interacting electron gas

|Φ0〉 =
∏

k≤kF

φ̂†
↓(k) φ̂

†
↑(k) |Ω〉 (5.10)

=
∏

ǫ(k)≤0

φ̂†
↓(k) φ̂

†
↑(k) |Ω〉 . (5.11)

The non-interacting ground state |Φ0〉 is obtained by filling the vacuum |Ω〉 successively with

spin-up and spin-down electrons in momentum eigenstates labeled by k up to a maximum

momentum kF, the so-called Fermi wave vector. The Fermi wave vector is determined by the

constant density, i.e. , the number of electrons per unit volume. The constant density n of

the uniform electron gas is commonly specified in terms of the Wigner-Seitz radius rs. It is

defined by assigning each electron a spherical volume with radius rs, i.e.

n =
1

4
3
πr3s

. (5.12)

Alternatively we can compute the density by calculating the expectation value of the density

operator,

n = 〈Φ0| Φ̂†(r) Φ̂(r) |Φ0〉

=
1

(2π)3

∫∫

d3kd3k′ eık·re−ık′·r 〈Φ0| Φ̂†(k′) Φ̂(k) |Φ0〉 . (5.13)
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The expectation value 〈Φ0| Φ̂†(k′) Φ̂(k) |Φ0〉 is equal to 1 if the two momenta are equal and

if the state with momentum k is present in the ground-state Slater determinant |Φ0〉,

〈Φ0| Φ̂†(k′) Φ̂(k) |Φ0〉 = 〈Φ0|
(

φ̂†
↑(k

′) φ̂↑(k) + φ̂†
↓(k

′) φ̂↓(k)
)

|Φ0〉

= δ(k − k′) (Θ(kF − k) + Θ(kF − k)) .

Accordingly the Fermi wave vector can be related to the density or equivalently the Wigner-

Seitz radius,

n =
1

3π2
k3F =

1
4
3
πr3s

⇒ kF =

(
9π

4

)1/3
1

rs
. (5.14)

As already indicated in Eq. (5.11) an alternative prescription to construct the non-interacting

ground state is to fill the vacuum with single-particle states that have a negative energy. From

ǫ(k) = k2

2
− µ it is clear that the chemical potential µ determines how many single-particle

state have a negative energy and therefore the density of the uniform electron gas. This

prescription is more general than the prescription to fill all states with a momentum less than

kF, since it also applies for non-isotropic dispersions ǫ(k).

5.3 The Hartree-Fock ground-state energy

The first order correction to the ground-state energy due to the interactions is obtained by

evaluating the expectation value of Ŵ w.r.t. the non-interacting ground state |Φ0〉. Similarly

to the computation of density (cf. (5.13)) one has to calculate

〈Φ0| φ̂†
σ1
(k1 + q) φ̂†

σ2
(k2 − q) φ̂σ2

(k2) φ̂σ1
(k1) |Φ0〉 .

In contrast to the evaluation of the quadratic terms in the fundamental fields, there are two

possibilities for a non-vanishing contribution. The first is that the outer annihilation/creation

operators remove/insert an electron into the same state and the inner annihilation/creation op-

erators remove/insert an electron into the same state. Both processes require that q vanishes.

The second possibility is that the outer/inner annihilation/creation operators remove/insert an

electron into the same state and vice-versa. These processes both require that q = k2 − k1

and additionally that σ1 = σ2. Furthermore k1 and k2 have to be occupied in Φ0. Due to the

anti-symmetry of fermionic states the second term acquires an additional minus sign,

〈Φ0| φ̂†
σ1
(k1 + q) φ̂†

σ2
(k2 − q) φ̂σ2

(k2) φ̂σ1
(k1) |Φ0〉

= (δ(q) δ(q)− δ(k1 + q − k2) δ(k1 + q − k2) δσ1σ2
δσ1σ2

)Θ(kF − k1)Θ(kF − k2)

=
1

(2π)3
(δ(q)− δ(k1 + q − k2) δσ1σ2

)Θ(kF − k1)Θ(kF − k2) . (5.15)
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This result can also be obtained employing the methods of Many-Body-Perturbation Theory,

i.e. , by evaluating the first order Feynmann diagrams derived employing Wick’s theorem

[FV71, GRH91]. Starting from Eq. (5.4) the expectation value of the interaction Ŵ w.r.t. the

interacting ground state |Ψ0〉 is

〈Ψ0| Ŵ |Ψ0〉 = 1
2

∑

σ1σ2

∫∫

d3r1d
3r2

1

|r1 − r2|

×
(

〈Φ0| φ̂†
σ1
(r1) φ̂σ1

(r1) |Φ0〉 〈Φ0| φ̂†
σ2
(r2) φ̂σ2

(r2) |Φ0〉

− 〈Φ0| φ̂†
σ2
(r2) φ̂σ1

(r1) |Φ0〉 〈Φ0| φ̂†
σ1
(r1) φ̂σ2

(r2) |Φ0〉
)

+O
(
W 2
)

= 1
2

∑

σ1σ2

∫∫

d3r1d
3r2

1

|r1 − r2|

× (nσ1
(r1)nσ2

(r2)− γσ1σ2
(r1; r2) γσ2σ1

(r2; r1)) . (5.16)

We recognize that the interaction energy, up to first order, appears to be the same as the

approximation to the interaction energy within Hartree-Fock theory (cf. Eq. (4.30)). However,

in Hartree-Fock theory the 1RDM is constructed from orbitals diagonalizing the effective single-

particle Hamiltonian Eq. (4.26) whereas in Eq. (5.16) the 1RDM is obtained from orbitals

diagonalizing the single-particle contribution to the interacting Hamiltonian Ĥ. It turns out

that for the uniform electron gas the orbitals diagonalizing the non-interacting part Ĥ0 and

the orbitals diagonalizing the Hartree-Fock Hamiltonian ĤHF are identical and therefore the

ground-state energy in first-order perturbation theory and Hartree-Fock theory are identical.

A caveat, when evaluating this ground-state energy, is that the direct term, i.e. , the Hartree

energy, in Eq. (5.16) diverges due to the long-range character of the Coulomb interaction.

This divergence is canceled by exposing the electrons to a uniform positive background charge

with a density equal to the electron density. Because of this uniform background charge, the

uniform electron gas is sometimes referred to as the Jellium model. Excluding furthermore the

energy contribution due to the chemical potential, the internal energy per unit volume is

EHF = 1
2

∑

σ

∫∫

d3rd3k Θ(kF − k)
e−ık·r

(2π)3
←−∇ · −→∇ eık·r

(2π)3

− 1
2

∑

σ1σ2

∫∫

d3r1d
3r2

γσ1σ2
(r1; r2) γσ2σ1

(r2; r1)

|r1 − r2|

=
1

(2π)3

∫

d3k Θ(kF − k) k2

− 1

(2π)6

∫∫

d3k1d
3k2 Θ(kF − k1)

4π

(k1 − k2)
2Θ(kF − k2) . (5.17)
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The remaining integrals can be solved analytically and yield the well-known Hartree-Fock result

for the energy per electron in terms of the Wigner-Seitz radius

ǫunifHF (rs) =
3

10

(
9π

4

)2/3

︸ ︷︷ ︸
≈1.10

1

r2s
− 3

4π

(
9π

4

)1/3

︸ ︷︷ ︸
≈0.45

1

rs
. (5.18)

We complete our discussion of the uniform electron gas within Hartree-Fock theory by calcu-

lating the effective Hartree-Fock potential defined in Eq. (4.28),

UF (r; r
′) =

1

(2π)3

∫

d3k′ Θ(kF − k′)
eık

′·(r−r′)

|r − r′|

=
1

(2π)6

∫∫

d3kd3k′ Θ(kF − k′)
4πeı(k+k′)·(r−r′)

k2

=
1

(2π)3

∫

d3k eık·(r−r′) 1

(2π)3

∫

d3k′
4πΘ(kF − k′)
(k − k′)

2 . (5.19)

From Eq. (5.19) we can extract the shift of the single-particle dispersion in the effective

Hartree-Fock Hamiltonian compared to the non-interacting dispersion, i.e.

U(k) =
1

(2π)3

∫

d3k′
4πΘ(kF − k′)
(k − k′)

2

=
kF
π

(

1 +
k2 − k2F

4k
ln

(

(kF − k)2

(kF + k)2

))

. (5.20)

Now we can understand why the Hartree-Fock result is equivalent to the result from first-order

perturbation theory. The shift in the dispersion −U(k) depends, just like the non-interacting

dispersion, only on the magnitude of k. The dispersion remains isotropic. Furthermore −U(k)
is a monotonically increasing function and therefore the energetical ordering of the plane wave

states is unchanged. Hence the minimizing Slater determinant is equivalent to the non-

interacting Slater determinant.

5.4 Reduced-Density-Matrix-Functional Theory for the

uniform electron gas

An important step to go beyond the Hartree-Fock approximation was taken by Gell-Mann

and Brueckner in 1957 [GMB57]. They employed the Random-Phase Approximation (RPA),

which represents a resummantion of the most divergent terms of the perturbation expansion,

to obtain the leading order corrections to the Hartree-Fock result. In the small rs, i.e. , the
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high density limit, it is given by

ǫunif(rs) = ǫunifHF (rs) + α ln(rs)− β +O(rs ln(rs)) , (5.21)

α ≈ 0.031 , β ≈ 0.047.

The constant contribution β stems from the second-order exchange diagram and the ln(rs)-

dependence comes from the screened second-oder bubble diagram. In 1980 numerically exact

ground-state energies became available due to the Quantum Monte Carlo calculations by

Ceperley and Alder [CA80]. These exact results cannot only directly be used to construct

the LDA (cf. Sec. 4.1) but also serve as a benchmark for the developments of functionals

in RDMFT. Since most RMDFT functionals are variations of the Hartree-Fock functional

(cf. Sec. 4.3), we can immediately write down the energy functional,

E[γ] =
∑

σ

∫

d3k
nσ(k)

(2π)3

(
k2

2
− µ

)

− 1
2

∑

σ

∫∫

d3k1d
3k2

F (nσ(k1) , nσ(k2))

(2π)6
1

(k1 − k2)
2 , (5.22)

γ(r; r′) =

∫

d3k
(

n↑(k) Φ
†
k↑(r

′) Φk↑(r) + n↓(k) Φ
†
k↓(r

′) Φk↓(r)
)

=
1

(2π)3

∫

d3k

(

n↑(k) eık·(r−r′) 0

0 n↓(k) eık·(r−r′)

)

. (5.23)

We included the chemical potential in the energy functional, because it acts as a Langrangian

multiplier to fix the density when minimizing the energy functional directly. In Eq. (5.23)

the natural orbitals are taken to be pure spin-up and pure spin-down plane waves. Assuming

furthermore that the occupation numbers are spherically symmetric, we can discretize the

momentum space into spherical volume elements Ωj. Averaging the occupation numbers over

the volume elements Ωj, i.e. ,

njσ =

∫

Ωj

d3k nσ(k) , (5.24)

and defining the integral weights

DWIj =

∫

Ωj

d3k
1

(2π)3
, (5.25)

DKIj =

∫

Ωj

d3k
1

(2π)3
k2

2
, (5.26)

DXIjk =

∫

Ωj

∫

Ωk

d3k1d
3k2

1

(2π)6
4π

(k1 − k2)
, (5.27)
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Figure 5.1: Correlation energy as a function of the Wigner-Seitz radius rs for various functionals

(Fig. taken from [LSD+09]). The Monte Carlo results are obtained fitting the Perdew Wang

parameterization [PW92] to the Diffusion Monte Carlo data of Ortiz and Ballone [OHB99].

the discretized version of the energy functional reads

E[{nj}] =
∑

jσ

njσDKIj − µ
∑

jσ

njσDWIj − 1
2

∑

jkσ

F (njσ;nkσ)DXIjk. (5.28)

The minimization of the functional Eq. (5.28) is a high dimensional non-linear optimization

problem in terms of the occupation numbers {nj}. The chemical potential µ ensures as La-

grangian multiplier that the minimum configuration {nj}0 is normalized to the required density

n =
∑

jσ (njσ)0 DWIi. The minimization is carried out using a steepest descent algorithm.

In each minimization step the occupation numbers are constrained to be nj ∈ [0, 1] in order

to ensure ensemble-N representability. In addition, the volume elements Ωj can be adjusted

to be finer in regions of high variance in n(k) and coarser in regions where n(k) is almost

constant. The results for the xc-energy obtained by minimizing various functionals are com-

piled in Fig. 5.1. The Power-functional [SDLG08] yields very accurate correlation energies for

the uniform electron gas in the range of metallic densities 1 ≤ rs ≤ 10 for an optimal value

of α = 0.55 . In [LSD+09] we find that the optimal value for α determined from the disso-
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ciation of the Hydrogen molecule (α = 0.525) and determined from a set of small molecules

(α = 0.578) are very close to the optimal value determined from the uniform electron gas. All

functionals are minimized by momentum distributions n(k) that are smoothened out compared

to the non-interacting momentum distribution n(k) = Θ(µ− ǫ(k)). The momentum distri-

butions exhibit a discontinuity at the Fermi energy ǫ(kF) = µ only if the definition of F (ni, nj)

contains an explicit sign change, as for example the corrections to the Müller functional pro-

posed in [GPB05]. The step in the momentum distribution defines the Fermi surface of the

system. Functionals that smoothly vary between occupied and unoccupied states therefore

seem to dissolve the Fermi surface. Hence one might view the action of the xc-contribution in

the energy functional Eq. (5.28) as a thermalization of the electrons with each other. In this

picture the momentum distribution would correspond to the statistical weights n(k) associated

to the states |φk〉. Their specific value is determined by the minimizing momentum distribu-

tion n0(k) of the employed functional. However, from Landau’s theory of the Fermi liquid, is

is expected that the momentum distribution exhibits a discontinuity at the Fermi surface. The

size of the discontinuity is directly related to the effective mass of the quasi-electron in the

normal Fermi liquid. Momentum distributions can be obtained to high accuracy by Quantum

Monte Carlo methods [HBP+11] or other many-body techniques [Lam71, Ove71, TY91]. They

all agree that the discontinuity decreases with decreasing density which signals the break-down

of the quasi-electron concept for very dilute systems. Unfortunately the functionals yielding

discontinuous momentum distributions show the opposite trend for the discontinuity as a func-

tion of the density (cf. Fig. 5.2). For all DFTs it is desirable that the energy functional not

only yields the correct ground-state energy, but also the correct fundamental density, i.e. ,

the correct momentum distribution in the case of RDMFT for the uniform electron gas. The

universal functional within RDMFT for all uniform systems can be defined as

Eunif
xc [{n(k)}] = inf

D̂→n(k)
Tr
{

D̂Ŵ ′
}

, (5.29)

where the prime indicates that the Hartree contribution has been canceled from the interac-

tion. A numerically exact construction seems to be possible employing Quantum Monte Carlo

methods. Since the Quantum Monte Carlo methods are wave-function or propagator based

methods, they provide a momentum distribution n(k) together with the corresponding value of

xc-energy EQMC
xc [{n(k)}]. The momentum distribution is implicitly determined by the single

particle dispersion ǫ(k). Usually this is taken to be ǫ(k) = 1
2
k2 − µ, but one could add an

external, translationally invariant, non-local potential Σ(k), acting as Lagrangian multiplier,

in order to impose a specific momentum distribution. This is surely a formidable task, since

the momentum distribution is an almost arbitrary positive function. It might be possible to

streamline this procedure via a parameterization of the Lagrangian multiplier Σ(k) in terms
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Figure 5.2: Momentum distributions for the uniform electron gas for the Müller [Mül84] and the

BBC1 [GPB05] functional (Figs. taken from [LHG07]). The upper panels show the momentum

distribution at rs = 1 and the lower panels at rs = 5. The discontinuous dependency on the

occupation numbers in the BBC1 functional (cf. Table 4.1) yields a step of the momentum

distribution at the Fermi wave vector kF. The size of the step is smaller for higher densities

(lower rs) in contrast to the expectations from Landau’s theory of the Fermi liquid. The

dashed red line is the variation of the occupation numbers at the minimum. Deviation from

zero indicates that the corresponding occupation number is pinned, i.e. , it is optimal at 1,

the upper limit of its allowed range.
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of a parameter ω. For a set of {ωi} one could employ the Quantum Monte Carlo methods to

determine

Eunif(ω) = min

{
1

(2π)3

∫

d3k
(
1
2
k2 − µ+ Σω(k)

)
n(k)− EQMC

xc [{n(k)}]
}

(5.30)

The parametrical dependence of Σω(k) on ω should be chosen such, that a relevant set

of momentum distributions is sampled by the set {ωi}. Furthermore a unique prescription

{n(k)} → {ωi} has to be given in order to extrapolate the results, obtained via Eq. (5.30),

to all ensemble-N representable n(k). Then the resulting mapping εQMC
xc [n(k)] could be used

to define the RDMFT analogy to the LDA by employing the Wigner transform

nR(k) =
1
√
2π

3

∫

d3s e−ık·sγ(R+ s/2;R− s/2) , (5.31)

ELMDA
xc [γ] =

∫

d3R γ(R;R) ε[nR(k)] , (5.32)

i.e. , the Local-Momentum-Distribution Approximation (LMDA). The implementation of the

proposed construction should be guided by physical considerations when constructing the path

to be explored using Quantum Monte Carlo techniques via explicit expressions for Σω(k). It

remains to be seen whether a functional along the lines of proposition Eq. (5.32) can compete

with the comparatively simple functionals (cf. Table 4.1), since these orbital functionals are

fundamentally non-local in nature whereas the LMDA imposes a somewhat local picture of

the xc-energy functional.





Chapter 6

Overhauser’s spin-spiral-wave state

In his seminal paper [Ove62] Overhauser proved that the paramagnetic solution of the uniform

electron gas within Hartree-Fock theory is always unstable w.r.t. the formation of a charge-

density wave (CDW) or spin-density wave (SDW). This in not in contradiction with the result

of the Sec. 5.3 that the paramagnetic state is a self-consistent solution of the Hartree-Fock

equations, because the Hartree-Fock equations are derived from the stationarity of the Hartree-

Fock energy functional under variations of the orbitals constituting the Hartree-Fock state.

Self-consistent solutions of the Hartree-Fock equation therefore might be saddle points of the

energy. The possibility for multiple stationary points is a reflection of the non-linearity in

self-consistent theories. In other words, the interaction between the electrons leads to a rich

structure of the energy landscape with various stationary points representing different phases

of the system. These various phases are characterized by a state that breaks the symmetry of

the Hamiltonian. Furthermore the symmetry breaking state yields a non-vanishing expectation

value of a characteristic observable called the order parameter. Hence self-consistent theories

are tools to explore the different phases and reveal their corresponding order parameters. In

this chapter we investigate the spin-spiral-wave (SSW) state, introduced by Overhauser as an

explicit example for a self-consistent solution of the Hartree-Fock equations for the Jellium

model. The SSW state has a spatially rotating spin magnetization

m(r) = nχ







s cos(q · r)
s sin(q · r)√

1− s2






, (6.1)

with a SSW wave vector q, relative spin magnetization χ and the azimuthal angle s = sin(θ).

It is a specific realization of a SDW state proved to have a lower energy than the paramagnetic

state. The results presented in this chapter have been published in [EKP+10].
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6.1 Uniformly polarized electron gas in Hartree-Fock

theory

Before considering the spin-spiral-wave state we discuss the uniformly polarized state as an

introductory example of a broken-symmetry solution to the HF equations. Modifying the

single-particle contribution to the Jellium Hamiltonian Eq. (5.1) by a constant magnetic field

B = Be3 along the z-axis, we get

Ĥ0 =

∫

d3k Φ̂†(k)

(
1
2
k2 − µ− 1

2
B 0

0 1
2
k2 − µ+ 1

2
B

)

Φ̂(k) . (6.2)

The application of a constant external magnetic field can be viewed as the application of a

chemical potential µ↑ = µ+ 1
2
B for spin-up electrons and a chemical potential µ↓ = µ− 1

2
B

for the spin-down electrons. Defining the relative spin-polarization

χ =
n↑ − n↓

n
∈ [−1, 1] , (6.3)

we obtain spin-resolved Fermi vectors via

n↑/↓ = n
1± χ
2

=
1

3π2
k3F

1± χ
2

=
1

(2π)3

∫

k≤kF↑/↓

d3k

⇒ kF↑/↓ = kF (1± χ)1/3 . (6.4)

Since in the Hartree-Fock energy for the uniformly polarized case the spin-up and spin-down

channels are decoupled, one can obtain the spin-resolved Hartree-Fock energy per electron (ex-

cluding the contribution due to the external magnetic field) from the result for the unpolarized

electron gas (cf. Eq. (5.18)),

ǫunifHF (rs, χ) =
3

10

(
9π

4

)2/3
1

r2s

(

(1 + χ)5/3 + (1− χ)5/3
)

2

− 3

4π

(
9π

4

)1/3
1

rs

(

(1 + χ)4/3 + (1− χ)4/3
)

2
. (6.5)

The energy is a symmetric function of χ and furthermore concave in χ ∈ [0, 1]. Accordingly

its minimum as a function of χ is either at χ = 0, i.e. , the unpolarized (paramagnetic) state,

or at χ = 1, i.e. , the fully polarized (ferromagnetic) state. Whether the paramagnetic or

the ferromagnetic configuration is lower in energy is determined by the relative weight of the

kinetic energy w.r.t. the exchange energy and therefore the density. For a density less than a

critical density, specified by

rs = rc =
2π

5

(
9π

4

)1/3
22/3 − 1

21/3 − 1
≈ 5.45, (6.6)
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the electron gas prefers to be in the fully polarized state even if no external magnetic field is

applied.

6.2 The Overhauser instability of the uniform electron

gas

Now we turn to the SSW state that Overhauser introduced as an explicit example for the

instability of the uniform electron gas w.r.t. the formation of a charge- or spin-density waves

[Ove62]. His idea was to assume a coupling g(k) of spin-up plane waves with wave vector

k − 1
2
q to spin-down plane waves with wave vector k + 1

2
q in the effective single-particle

Hamiltonian (cf. Eq. (4.26)), i.e. ,

ĤHF =

∫

d3k
(

φ̂†
↑
(
k − 1

2
q
)

φ̂†
↓
(
k + 1

2
q
)
)

HSSW

(

φ̂↑
(
k − 1

2
q
)

φ̂↓
(
k + 1

2
q
)

)

. (6.7a)

HSSW =

(
1
2

(
k − 1

2
q
)2 − U↑

(
k − 1

2
q
)
− µ −1

2
g(k)

−1
2
g†(k) 1

2

(
k + 1

2
q
)2 − U↓

(
k + 1

2
q
)
− µ

)

. (6.7b)

Defining ǫσ(k) =
1
2
k2 − Uσ(k) one can readily diagonalize

HSSW = U †(k)

(

ǫ−(k)− µ 0

0 ǫ+(k)− µ

)

U(k) , (6.8)

ǫ∓(k) = ǫ(k)∓ 1
2

√

|D(k) |2 + |g(k) |2, (6.9)

U(k) =
(

cos
(
1
2
θ(k)

)
− sin

(
1
2
θ(k)

)

sin
(
1
2
θ(k)

)
cos
(
1
2
θ(k)

)

)

, (6.10)

where we introduced the two energies

ǫ(k) = 1
2

(
ǫ↑
(
k − 1

2
q
)
+ ǫ↓

(
k + 1

2
q
))

= 1
2
k2 + 1

8
q2 − 1

2

(
U↑
(
k − 1

2
q
)
+ U↓

(
k + 1

2
q
))
, (6.11)

D(k) = −
(
ǫ↑
(
k − 1

2
q
)
− ǫ↓

(
k + 1

2
q
))

= k · q + U↑
(
k − 1

2
q
)
− U↓

(
k + 1

2
q
)
. (6.12)

Furthermore the angle θ(k) is defined via

cos(θ(k)) =
D(k)

√

|D(k) |2 + |g(k) |2
, (6.13a)

sin(θ(k)) =
g(k)

√

|D(k) |2 + |g(k) |2
, (6.13b)

⇒ θ(k) = arctan

(
g(k)

D(k)

)

. (6.13c)
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We introduce the SSW field Ξ̂(k) in terms of the components of the fundamental Pauli field

in momentum space,

Ξ̂(k) =

(

ξ̂−(k)

ξ̂+(k)

)

= U(k)
(

φ̂↑
(
k − 1

2
q
)

φ̂↑
(
k + 1

2
q
)

)

, (6.14)

in order to write the Hamiltonian Eq. (6.7a) in its spectral decomposition,

ĤHF =

∫

d3k Ξ̂†(k)

(

ǫ−(k)− µ 0

0 ǫ+(k)− µ

)

Ξ̂(k) . (6.15)

The corresponding creation operators ξ̂†−(k), ξ̂
†
+(k) insert an electron in the single-particle

orbitals

ξk−(r) =

(

cos
(
1
2
θ(k)

)
e−

ı
2
q·r

sin
(
1
2
θ(k)

)
e
ı
2
q·r

)

eik·r
√
2π

3 , (6.16a)

ξk+(r) =

(

− sin
(
1
2
θ(k)

)
e−

ı
2
q·r

cos
(
1
2
θ(k)

)
e
ı
2
q·r

)

eik·r
√
2π

3 , (6.16b)

respectively. Having diagonalized the effective Hartree-Fock Hamiltonian Eq. (6.7a) by means

of the SSW orbitals Eq. (6.16) we can compute the non-local effective potential defined in

Eq. (4.28),

UF (r; r
′) =

∑

b=−,+

∫

d3k′ nb(k
′)
ξk′b(r) ξ

†
k′b

(r′)

|r − r′|

=
∑

b=−,+

∫

d3k′ nb(k
′) ξk′b(r) ξ

†
k′b

(r′)
1

(2π)3

∫

d3k
4πeık·(r−r′)

k2

=
∑

b=−,+

∫

d3k′ nb(k
′) ξk′b(r) ξ

†
k′b

(r′)
1

(2π)3

∫

d3k
4πeı(k−k′)·(r−r′)

(k − k′)
2

=
1

(2π)3

∫

d3k eık·(r−r′) 1

(2π)3

∫

d3k′
4π

(k − k′)
2

× 1
2




(n(k′) + B(k′)) e−ı

1
2
q·(r−r′) A(k′) e−ı

1
2
q·(r+r′)

A(k′) eı
1
2
q·(r+r′) (n(k′)−B(k′)) eı

1
2
q·(r−r′)



 . (6.17)

In Eq. (6.17) we introduced the abbreviations

n(k) = (n−(k) + n+(k)) , (6.18)

B(k) = (n−(k)− n+(k)) cos(θ(k)) , (6.19)

A(k) = (n−(k)− n+(k)) sin(θ(k)) . (6.20)
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θ(k1)

θ(k2)

ϕ(r)

Figure 6.1: The effect of the spin rotation U(r,k) on pure spin-up (green arrow) or pure

spin-down (red arrow) plane waves for two momenta k1/2. The angle θ(k) specifies the cone

on which the spin is rotating. The position on the cone is given by the angle ϕ(r) = q · r,

which is the same for all plane waves.

Moreover, comparing Eqs. (6.17) and (6.7b) we can identify the Hartree-Fock self-consistency

conditions,

U↑
(
k − 1

2
q
)
=

1

(2π)3

∫

d3k′
4π

(k − k′)
2
1
2
(n(k′) + B(k′)) , (6.21a)

U↓
(
k + 1

2
q
)
=

1

(2π)3

∫

d3k′
4π

(k − k′)
2
1
2
(n(k′)− B(k′)) , (6.21b)

g(k) =
1

(2π)3

∫

d3k′
4π

(k − k′)
2A(k

′) . (6.21c)

Eqs. (6.21a), (6.21b), (6.21c) determine the effective potentials U↑, U↓ and g in terms of

the occupation numbers nb, or equivalently the Fermi surface, and the angles θ. The Fermi

surface and the angles in turn depend on the effective potentials U↑, U↓ and g (cf. Eqs. (6.11)-

(6.13c)). Accordingly those equations have to be solved self-consistently in order to determine

the optimal potentials, Fermi surface and angles. It is important to emphasize that all equations

derived in this section intrinsically depend on the SSW wave vector q. The energy contribution

due to the pairing potential g(k) favors a hybridization of spin-up and spin-down plane waves

differing by q in their momenta. The orbital angles θ(k) (cf. (6.16)) describe this hybridization.

Another way of looking at the orbital angles θ(k) is to consider them, together with the angles
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ϕ(r) = q · r, as angles defining a rotation in spin space represented by

U(r,k) = e−ıϕ(r)σ3

e−ıθ(k)σ2

=

(

cos
(
1
2
θ(k)

)
e−

ı
2
q·r − sin

(
1
2
θ(k)

)
e−

ı
2
q·r

sin
(
1
2
θ(k)

)
e
ı
2
q·r cos

(
1
2
θ(k)

)
e
ı
2
q·r

)

. (6.22)

The orbitals of Eq. (6.16a)/(6.16b) can then be thought of as being constructed by transform-

ing pure spin-up/spin-down plane waves in spin space according to the rotation Eq. (6.22).

First the plane wave is rotated around the y-axis by an angle θ(k), i.e. , an angle depending

on its momentum. Then it is rotated around the z-axis by an angle ϕ(r) = q · r, which is the

same for all plane waves, but depends on the spatial position (see Fig. 6.1). With this consid-

eration it is clear that the angle θ(k) has to be restricted to the interval [0, π] (or [−π, 0]) in

order to assign a unique azimuthal rotation angle.

6.3 Spin spirals in Reduced-Density-Matrix-Functional

Theory

In order to determine the SSW state we will not solve the Hartree-Fock self-consistent integral

equations introduced in the previous section, but we will employ the theoretical framework of

RDMFT, introduced in Secs. 2.5, 3.4 and 4.1. As already mentioned, Hartree-Fock theory can

be viewed as a specific approximation for an energy functional in RDMFT. This will enable

us to not only find the Hartree-Fock SSW state, but also to investigate the effect of the

inclusion of correlations, by means of an xc-energy functional, on the SSW state and the

Overhauser instability in general. Overhauser proved that the SSW state is lower in energy

than the paramagnetic state assuming a wave vector q ≈ 2kF. In our numerical investigation

we determine the optimal value of q for a given density. We will see that q in fact varies

from 2kF → 1kF, at the Hartree-Fock level, as the density decreases. We choose the Power-

functional [SDLG08] (cf. Table 4.1), since it reduces to the Hartree-Fock functional for α = 1

on one hand, excluding correlation effects, and on the other hand for α = 0.5 coincides with

the Müller functional, which is known to over-correlate. Furthermore for α ≈ 0.6 it yields very

good correlation energies for the symmetry unbroken electron gas as discussed in Sec. 5.4. The

implementation of RDMFT for the SSW state follows closely the treatment of the symmetry

unbroken uniform electron gas outlined in the aforementioned section. There we assumed that

the 1RDM exhibits the symmetries present in the Hamiltonian, i.e. , the natural orbitals are

pure spin-up/spin-down plane waves, while here we use orbitals of the form of Eq. (6.16) as

ansatz for the natural orbitals for our RDMFT treatment of the uniform electron gas. The spin-
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spiral wave vector q and the hybridization angle θ(k) will be treated as variational parameters

for the natural orbitals. It can easily be verified that the SSW orbitals of Eq. (6.16) form a

complete and orthonormal set. The 1RDM, with the SSW ansatz for the natural orbitals, is

given by

γSSW(r; r′) =
∑

b=−,+

∫

d3k nb(k) ξkb(r) ξ
†
kb(r

′)

=
1

(2π)3

∫

d3k eık·(r−r′)

× 1
2




(n(k) + B(k)) e−ı

1
2
q·(r−r′) A(k) e−ı

1
2
q·(r+r′)

A(k) eı
1
2
q·(r+r′) (n(k)−B(k)) eı

1
2
q·(r−r′)



 . (6.23)

From the spatial diagonal r = r′ we see that the corresponding electron density n is spatially

constant, i.e. , CDWs are not described within this ansatz. The magnetization of the uniform

electron gas is

m (r) = nχ







s cos(q ·r)
s sin(q ·r)√

1− s2






, (6.24a)

nχs = − 1

(2π)3

∫

d3k A(k) , (6.24b)

nχ
√
1− s2 = − 1

(2π)3

∫

d3k B(k) . (6.24c)

The x- and y-components of the magnetization rotate in space along the direction of q with

a periodicity given by the wavelength q = |q|.

6.4 Numerical Implementation

Having chosen a functional and having made an ansatz for the natural orbitals, we minimize

the functional for the ground-state energy. The functional depends on nb(k) , θ(k) and

the SSW wave vector q. Since the density of the SSW state remains constant the Hartree

contribution to the energy is cancelled by the uniform background charge. Accordingly the

energy per electron reads

eα[nb, θ] (q) = t [nb, θ] (q)− wα1[nb, θ]− wα2[nb, θ] , (6.25)



58

with the kinetic energy per electron

t[nb, θ] (q) =
1

2n

1

(2π)3

∫

d3k
(

(n−(k) + n+(k)) k
2

− q · k (n−(k)− n+(k)) cos(θ(k))
)

+
q2

8
, (6.26)

the energy contribution from exchange-like terms of orbitals with the same b (intra-band

exchange)

wα1[nb, θ] =
1

2n

1

(2π)6

∫∫

d3k1d
3k2

4π

(k1 − k2)
2

×
(

(n−(k1)n−(k2))
α + (n+(k1)n+(k2))

α
)

cos2
(
θ(k1)− θ(k2)

2

)

, (6.27)

and the energy contribution from exchange-like terms of orbitals with opposite b (inter-band

exchange)

wα1[nb, θ] =
1

2n

1

(2π)6

∫∫

d3k1d
3k2

4π

(k1 − k2)
2

×
(

(n−(k1)n+(k2))
α + (n+(k1)n−(k2))

α
)

sin2

(
θ(k1)− θ(k2)

2

)

. (6.28)

The symmetry is only broken along the direction of q, which is chosen to be parallel to the

z-axis. Since we are not considering spin-orbit coupling the plane in which the spin magneti-

zations rotates can be chosen as the x-y plane. Accordingly we can use cylindrical coordinates

in momentum space, i.e. , nb(k) = nb(kρ, kz) and θ(k) = θ(kρ, kz). In order to minimize the

gain in the kinetic energy (cf. (6.26)) by forming a spin spiral (n−(k)− n+(k)) cos(θ(k))

should be an odd function w.r.t. kz. Therefore we impose the following restrictions:

nb(kρ,−kz) = nb(kρ, kz) , n−(k) ≥ n+(k) , (6.29)

θ(kρ,±|kz|) =
π

2
(1∓ a(kρ, |kz|)) , (6.30)

with 0 ≤ a(k) ≤ 1. The z-component of the magnetization vanishes for these symmetry

restrictions and the ansatz Eqs. (6.29),(6.30) describes a planar SSW. The configurations

nPM
− (k) = Θ (|k − kFe3| − kF) + Θ (|k + kFe3| − kF) ,
nPM
+ (k) = 0 , aPM(k) = 1 , q = 2kFe3 (6.31a)

and

nFM
− (k) = Θ

(
|k − 21/3kF|

)
,

nFM
+ (k) = 0 , aFM(k) = 0 , q = 0, (6.31b)
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which are compatible with Eqs. (6.29),(6.30), correspond to the paramagnetic (PM) and ferro-

magnetic (FM) state of the uniform electron gas, respectively. Analogous to the discretization

procedure described in Sec. 5.4 we assume that the occupation numbers nb(k) and the angles

a(k) are constant within annular regions Ωj in k-space,

Ωj =
{

k
∣
∣ kj−ρ ≤ kρ ≤ kj+ρ ; kj−z ≤ kz ≤ kj+z

}

. (6.32)

Then the discretized energy contributions are

t[nb, θ] (q) =
∑

bj

nbjDKIj +
q2

8

− q
∑

j

(n−j − n+j) cos(θj)DQIj, (6.33a)

wα1[nb, θ] =
1

2

∑

bjk

(nbjnbk)
α cos2

(
θj − θk

2

)

DXIjk, (6.33b)

wα2[nb, θ] =
∑

jk

(n−jn+k)
α sin2

(
θj − θk

2

)

DXIjk, (6.33c)

where the integral weights are given by

DKIj =
1

8π2n

∫∫

Ωj

dkρdkz
(
k3ρ + kρk

2
z

)
(6.34a)

DQIj =
1

8π2n

∫∫

Ωj

dkρdkz (kρkz) (6.34b)

DXIjk =
1

2n

1

(2π)6

∫∫∫

Ωj

dkρ1dkz1dφ1

∫∫∫

Ωk

dkρ2dkz2dφ2

× 4πkρ1kρ2

k2ρ1 + k2ρ2 + (kz1 − kz2)2 − 2kρ1kρ2 cos(φ1 − φ2)
. (6.34c)

The integrals (6.34a) and (6.34b) are readily solved and the integrals (6.34c) can ultimately

be reduced to elliptic integrals (cf. App. A), which are numerically accessible with high accu-

racy. Since the momenta are treated as continuous variables we stay in the thermodynamic

limit. Thus all energies obtained numerically are variational. The error introduced by the

discretization is solely due to the assumption that the nb(k) and θ(k) are constant within the

elementary volume elements Ωj and can systematically be reduced by increasing the number

of discretization points.

After having discretized the problem, the minimization of the energy functional of Eq. (6.25)

becomes a high-dimensional optimization problem. We use a steepest descent algorithm for

the minimization and ensure that the N -representability conditions (cf. Sec. 2.5 Eq. (2.51)),

are satisfied during the minimization process. Starting from some initial 1RDM and some

initial discretization in momentum space the energy is minimized for a fixed spin-spiral wave
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Figure 6.2: Hartree-Fock total energy per electron of the SSW state as function of the SSW

wave vector q at various rs. The value eHF(q = 2kF) is subtracted in order to emphasize

the behavior of the minimum at different densities. For increasing density (decreasing rs) the

minimum shifts to higher values of qopt and the energy gain compared to the paramagnetic

state by forming a spin spiral decreases.

vector q. Then the discretization is refined in those regions of momentum space where the

nbj and/or the aj show the largest variations. The minimization on the refined momentum

space mesh starts from a re-initialized 1RDM in order to prevent dependencies on the result

of the minimization on the coarser grid. Finally we compare the total energies at different q

in order to determine the optimal SSW wave vector qopt for various densities.

6.5 Results within Hartree-Fock theory

We first use our numerical implementation to investigate Overhauser’s SSW state in the

Hartree-Fock approximation or equivalently the Power functional with α = 1. From the con-

siderations in Eqs. (6.31) we see that it is sufficient to minimize w.r.t. a 1RDM whose oc-

cupation numbers are only non-zero for orbitals with b = − and |q| ∈ [0, 2kF] since both the
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Figure 6.3:

Left panel: Dependence of the energy per electron on rs, within the Hartree-Fock approxima-

tion, for the paramagnetic, ferromagnetic and SSW phase in the region of the paramagnetic-

ferromagnetic crossover. The inset shows the behavior of the amplitude nχ, defined in

Eq. (6.24a), at the optimal spin-spiral wave vector.

Right panel: Dependence of the Hartree-Fock optimal spin-spiral wave vector qopt on the den-

sity, given by rs. The proposed approximation by a simple scaling law Eq. (6.35) is shown as

the dashed line.

paramagnetic and the ferromagnetic Hartree-Fock solutions are accessible under these con-

ditions. The minimization at q = 0 and q = 2kF yields exactly the occupation numbers nbj

and angle parameters aj given in Eqs. (6.31b) and (6.31a), respectively. Therefore we can

read the total energy per particle as function of the spin-spiral wave vector in the following

way: eHF(q = 0) is the energy of the ferromagnetic state, eHF(q = 2kF) corresponds to the

energy of the paramagnetic state. For intermediate values, 0 < q < 2kF, eHF(q) corresponds

to a SSW configuration with m3 = 0 (planar spiral). Overhauser’s statement can then be

expressed as ∂qeHF(q)|q=2kF
> 0, i.e. , the paramagnetic configuration is unstable w.r.t. the

formation of a SSW.

In Fig. 6.2 we show the dependence of the total energy per particle on the spin-spiral wave

vector q for various densities. Consistent with Overhauser’s proof, the derivative of eHF(q) is

positive at q = 2kF. It is clear from Fig. 6.2 that the optimal SSW wave vector moves away

from the paramagnetic configuration (q = 2kF) as the density decreases. Furthermore the

difference between the total energy at the minimum and the total energy at q = 2kF increases

with increasing rs, i.e. , the instability is more pronounced at lower densities. Below some

critical density, however, the ferromagnetic state (q = 0) becomes the most stable solution.
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This is not in contradiction with Overhauser’s statement since the SSW state is still lower

in energy than the paramagnetic state. A comparison of the energy per electron in the

paramagnetic, ferromagnetic and SSW phase is depicted in Fig. 6.3. Our results for the non-

collinear magnetic states of the uniform electron gas extend the picture given by Zhang and

Ceperley [ZC08]. They employed a Monte Carlo algorithm that samples only single Slater

determinants in order to investigate a combined CDW/SDW state, staying however in the

collinear regime. It seems that the gain in energy by forming a collinear SDW/CDW state

(cf. Ref. [ZC08] for details) is larger compared to the energy gain by forming an SSW. This is

consistent with the qualitative argument already given by Overhauser, that the superposition

of a left- and right-rotating SSW yielding a collinear SDW will increase the gain in energy.

To describe the resulting behavior of the optimal wave vector qopt(rs) for the non-collinear

SSW we propose a simple, empirical scaling law:

qopt(rs) = 2kF

(

1−
(
rs
r0

)3
)β

, (6.35)

where r0 ≈ 5.7 and β ≈ 0.2. The proposed scaling behavior of qopt reproduces the numerical

data very accurately as can be seen in Fig. 6.3. It should be emphasized that we do not find

any optimal spin-spiral wave vector qopt < kF. Note that for densities close to the transition

to the ferromagnetic state the optimum wave vector qopt can be quite different from 2kF while

for higher densities it is very close to this value. The results in Ref. [ZC08] indicate a different

behavior of the dominant wave vector at high densities. This can be understood by considering

that in Ref. [ZC08] a general superposition of collinear SDWs and CDWs was considered while

in our work we investigate the broken-symmetry solution due to a single non-collinear SSW.

The effect of the refinement of the discretization in momentum space is shown in Fig. 6.4.

By sampling nbj and aj more often in regions of higher variations we both lower the energy

and reduce the numerical noise in eHF(q). The convergence of the total energy can be in-

ferred from the values eHF(q = 2kF) at different discretizations and comparing to the analytic

paramagnetic energy. For the case of rs = 5.0 we obtain an SSW energy that is lower than

the analytic paramagnetic energy at the optimal value of the SSW wave vector. At higher

densities (lower rs) the energy gain by forming a SSW is lower, so we would need a very fine

discretization to obtain numerical results lower than the analytic paramagnetic energy. How-

ever, considering the numerical value of the paramagnetic energy at the same discretization

is sufficient to demonstrate the instability w.r.t. a SSW formation, because the computed

energies are variational as discussed in Sec. 6.4. In order to determine the dependence of the

optimal spin-spiral wave vector qopt on the density, we therefore refine the momentum space

discretization until qopt is converged.
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Figure 6.4: Hartree-Fock total energy per electron as function of the spin-spiral wave vec-

tor q at the density corresponding to rs = 5.0. The data sets represent results at different

discretizations. The dashed horizontal line visualizes the analytic value of the paramagnetic

ground state energy. The optimal SSW wave vector is qopt ≈ 1.6kF.

For our numerical results we have verified that the occupation numbers and the angular

parameters aj satisfy Overhauser’s self-consistency equations Eq. (6.21) by iterating them

only once. The difference between the angles aj in the occupied regions before and after the

iteration is numerically zero for all values of q. This means that choosing a spin-spiral wave

vector we can always find a solution of the self-consistency equations derived by Overhauser.

Since the total energy does not depend on the aj in regions where nbj = 0, one self-consistency

loop furthermore fixes the angles aj in unoccupied regions of k-space. This is necessary to

construct the proper Hartree-Fock dispersions (cf. Fig. 6.5) also for the unoccupied states.

At the single-particle level we have an intuitive understanding of the instability: as the two

distinct spin-up and spin-down regions of the paramagnetic state are squeezed into each other,

the orbitals in the overlapping region hybridize. This hybridization then leads to the opening

of a direct gap between the Hartree-Fock single-particle dispersions corresponding to b = −,+
at kz = 0 as well as to a lowering of both the symmetry and the total energy of the system.

The mixing of the spin-up and spin-down orbitals is given by the orbital angles θ(k), capable
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Figure 6.5:

Left panel: Hartree-Fock single-particle dispersion (kρ = 0) at rs = 5.0 for the paramagnetic

(q ≥ 2kF), ferromagnetic (q = 0) and the SSW state (qopt = 1.6kF). The difference between

the two symmetric minima corresponds to the SSW wave vector q. The paramagnetic disper-

sion may also be viewed as an SSW dispersion with the origin in momentum space shifted by

±q for the different spin channels (cf. Eqs. (6.31)).

Right panel: Orbital angles θ(kρ = 0, kz) for various densities, specified by rs, at the opti-

mal SSW wave vector. The horizontal dashed line corresponds to the orbital angles at q = 0

(ferromagnetic) and the step-like dashed line corresponds to q = 2kF (paramagnetic). For in-

creasing rs the optimal spin-spiral wave vector becomes smaller, such that the Fermi spheres,

separated at q = 2kF, begin to overlap. In order to gain energy the spin-up and spin-down

orbitals in the overlapping region hybridize and the orbital angle θ describes the mixing of the

spin-up and spin-down states.

of describing a continuous transition between the paramagnetic and the ferromagnetic state

(cf. Eqs. (6.31a) and (6.31b) respectively). The behavior of the orbital angles at the optimal

spin-spiral wave vector is shown in Fig. 6.5.

6.6 Results within Reduced-Density-Matrix-Functional

Theory

As discussed above the Power functional reduces to the uncorrelated Hartree-Fock approxima-

tion for α = 1 and to the Müller functional for α = 0.5. The latter one is known [LHG07] to

over-correlate and therefore one expects that decreasing α from 1→ 0.5 increases the amount

of correlation in the system. This picture was verified in Ref. [LSD+09], where an optimal

value of α ≈ 0.6 was found in the regions of metallic densities for the paramagnetic uniform
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Figure 6.6: Total energies per electron of the SSW state described with the density-matrix-

power functional as a function of the spin-spiral wave vector q for various values of α at

rs = 5.0. The total energy per electron at q = 0 is subtracted in order to emphasize the

behavior with increasing q.

electron gas (cf. Sec. 5.4). In Fig. 6.6 the dependence of the total energy per particle at

rs = 5.0 is shown for various α. It should be noted that the configuration for q > 2kF can-

not be interpreted as the paramagnetic state in the correlated case. This is due to the fact

that correlations smear out the sharp step found for the uncorrelated case in the momentum

distribution around the Fermi surface as discussed in Sec. 5.4. Therefore at q = 2kF the

fractionally occupied regions in momentum space are not necessarily disjoint. Only when the

occupied regions separate into two parts the configuration corresponds to the paramagnetic

state. However, the configuration at q = 0 may still be interpreted as the ferromagnetic state.

From Fig. 6.6 it is clear that the instability w.r.t. a SSW is still present for α = 0.9. For higher

values of α the instability disappears and for α = 0.5, 0.6 the energy has a maximum in the

SSW region. Thus for values of α which provide good correlation energies for the uniform

electron gas in the paramagnetic regime there is no SSW formation. In order to understand

the reason for this it is instructive to look at various contributions to the total energy. In

Fig. 6.7 we compare the correlation energy contribution with the contribution coming from
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Figure 6.7:

Right panel: Comparison of the correlation energy with the contribution from kinetic plus

exchange terms t+ wHF for α = 0.6, 0.7, 0.8 at rs = 5.0. All energy contributions are shifted

such that the value at q = 0 is zero. For decreasing α the minimum in t+ wHF shifts to higher

values of q. The correlation contribution wc = wα − wHF however damps out this instability

for values of α that yield good total energies at metallic densities.

Left panel: Relative correlation energy as a function of the spin-spiral wave vector q for various

rs at α = 0.6. Correlations are more important around the ferromagnetic configuration. In

the region of the Hartree-Fock SSW instability correlations have the smallest effect. This

indicates why the instability is not sustained when correlations are included at the level of the

density-matrix-power functional.

the kinetic and exchange terms. The minimum is still present considering only kinetic and

exchange contributions, but for decreasing α the correlation contribution damps out the in-

stability more and more. One might suspect that at high densities, where exchange dominates

correlations, the instability sustains. Our findings in Sec. 6.5 show that in the Hartree-Fock

approximation the energy gain decreases when the density increases, which is consistent with

an analytic argument given by Giuliani and Vignale [GV08] that at high densities the energy

gain by forming a SDW and/or CDW is overcome by correlations. Furthermore our results

indicate that correlation effects dominate the SSW instability also at intermediate densities.

In order to gain some insight into the role of correlations we define the relative correlation

energy δec as

δeαc =
wα − wHF

|eα|
. (6.36)

In Fig. 6.7 we show the dependence of this quantity on the spin-spiral wave vector for the

correlation parameter α = 0.6. The absolute value of the relative correlation is smallest in the

region of the SSW instability (q = kF → 2kF), which explains why the instability is no longer
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present when correlations are included. Furthermore we can see that the relative correlation

is dominant in the region of the ferromagnetic configuration. This can be understood by

noticing that the Power functional approximates the correlation energy by a pre-factor times a

Fock integral (most present-day functionals in RDMFT approximate correlations in this way,

cf. Sec. 4.1). Since Fock integrals imply that equal spins are particularly correlated, we expect

a similar dependence of the relative correlation energy for other RDMFT functionals.

6.7 Summary and Conclusion

We have investigated the instability of the uniform electron gas w.r.t. the formation of a spin-

spiral wave within Reduced-Density-Matrix-Functional Theory, which includes the Hartree-Fock

approximation as an important limiting case. To our knowledge this is the first numerical

Hartree-Fock study of the non-collinear spin-spiral-wave state in the electron gas, despite

the fact that Overhauser presented his analytical work on the problem five decades ago.

In Overhauser’s work, the optimal spin-spiral wave vector was not determined. Our study

shows that, in contrast to common belief, the optimal spin-spiral wave vector is not always

close to 2kF. While at high densities we confirm this value for the optimal wave vector

for a single non-collinear spin-spiral, for lower densities (just before the transition to the

ferromagnetic state) the optimal wave vector even approaches kF. Within the framework of

Reduced-Density-Matrix-Functional Theory we also studied the effect of correlations on the

spin-spiral-wave instability using the Power functional. Not unexpectedly, we find that the

inclusion of correlations suppresses the instability, which is explained by the behavior of the

correlation energy in the region of the spin-spiral wave instability.





Chapter 7

Spin-Density-Functional Theory for

the spin-spiral wave

Overhauser’s spin-spiral wave is as picture-book example of the intriguing feature of self-

consistent theories to predict spontaneous symmetry breaking. Based on the seemingly inno-

cent ansatz that the many-particle wave function is a single Slater determinant, Hartree-Fock

theory predicts that the spin-spiral state of the uniform alectron gas is lower in energy than

the paramagnetic state. As we have discussed in chapter 3 the Kohn-Sham implementation

of DFT also represents a self-consistent theory. However, it is not based on an ansatz for the

many-body wave function but instead is based on the Hohenberg-Kohn theorem that allows

to connect the Kohn-Sham system uniquely to the interacting system via the fundamental

densities, that are identical in both systems. This is of great importance if one aims at the de-

scription of symmetry breaking. If the Hartree-Fock system exhibits a broken symmetry, e.g. a

non-vanishing spin magnetization, this has strictly speaking no implications for the physical,

i.e. , interacting system, because it is obtained using an ansatz for the wave function. If the

Kohn-Sham system exhibits a non-vanishing spin magnetization, however, this implies that the

spin magnetization of the interacting system is also non-vanishing since they are identical by

construction. In practice one has to be careful that bad approximations for the xc potentials

may cause unphysical symmetry breaking or prevent physical symmetry breaking. Another way

to illustrate the difference between Kohn-Sham DFT and Hartree-Fock theory is to look at

the uniform electron gas. When treated within Kohn-Sham DFT the Kohn-Sham potential is

a constant otherwise the density would not be constant. This means that the single-particle

dispersion in the Kohn-Sham system is 1
2
k2. Therefore one may view the effective Kohn-Sham

single-particle Hamiltonian to be more physical than the effective Hartree-Fock single-particle

Hamiltonian for the uniform electron gas, because it retains the 1
2
k2 dispersion for the ef-

fective electrons, whereas the dispersion of the effective electrons in Hartree-Fock theory is

69
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modified by a k-dependent term with a logarithmically diverging slope at the Fermi wave

vector (cf. Sec. 5.3). This logarithmic divergence implies a vanishing density of states at the

Fermi surface rendering the electron gas insulating at all densities. This comparison of course

employs the notion that the quasi particles of the uniform electron gas are approximated by

the Kohn-Sham or Hartree-Fock effective particles, respectively.

In the present chapter we investigate if the Overhauser instability is also present in the

treatment of the uniform electron gas employing Spin-Density-Functional Theory (SDFT)

[vBH72]. The inclusion of the spin magnetization as fundamental variable is necessary since it

is the characterizing density of the spin-spiral wave. An alternative density-functional formalism

for the description of general spin-density waves and anti-ferromagnetism was proposed by

Capelle and Oliveira [CO00a, CO00b]. In their work the system is also described in terms of

its density and spin magnetization but the x- and y-components of the spin magnetization are

replaced by their non-local counterparts. This might be viewed as a hybrid theory between the

completely non-local RDMFT and the completely local SDFT. The results presented in this

chapter were published in [KE09].

7.1 Spin-spiral wave for local effective potentials

The crucial difference between the effective Hartree-Fock Hamiltonian and the effective Kohn-

Sham Hamiltonian is that the latter only contains local external potentials, i.e. , a local

external potential Vs and a local external magnetic field Bs in the case of SDFT. The Kohn-

Sham Hamiltonian for the SSW state can be inferred directly from the Hamiltonian Eq. (6.7),

because the requirement of local external potentials means that the only k-dependent part

of the effective Hamiltonian is the kinetic contribution. This is accomplished by setting

U↑
(
k − 1

2
q
)
→ 1

2
B, U↓

(
k + 1

2
q
)
→ −1

2
B and g(k)→ A yielding

Ĥs =

∫

d3k
(

φ̂†
↑
(
k − 1

2
q
)

φ̂†
↓
(
k + 1

2
q
)
)

Hs
SSW

(

φ̂↑
(
k − 1

2
q
)

φ̂↓
(
k + 1

2
q
)

)

. (7.1a)

Hs
SSW =

(
1
2

(
k − 1

2
q
)2 − 1

2
B − µ −1

2
A

−1
2
A 1

2

(
k + 1

2
q
)2

+ 1
2
B − µ

)

. (7.1b)
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It is straight forward to write Eq. (7.1) in terms of the fundamental Pauli fields employing a

Fourier transformation,

Ĥs =

∫

d3r Φ̂†(r)
(

1
2

←−∇ · −→∇ − µ+ µBσ ·Bs(r)
)

Φ̂(r) , (7.2a)

Bs(r) = − 1
2µB







A cos(q · r)
A sin(q · r)

B






. (7.2b)

It is not surprising that the external magnetic field Bs has the same form as the spin magneti-

zation of the SSW. The diagonalization of the Kohn-Sham Hamiltonian Eq. (7.1) is analogous

to the diagonalization of the Hartree-Fock Hamiltonian Eq. (6.7). The spectral decomposition

is given by

Ĥs =

∫

d3k Ξ̂†
s(k)

(

ǫ−(k)− µ 0

0 ǫ+(k)− µ

)

Ξ̂s(k) , (7.3a)

ǫ∓(k) =
1
2
k2 + 1

8
q2 ∓ 1

2

√

(k · q + B)2 + A2. (7.3b)

The Kohn-Sham orbitals corresponding to the components of the spiral field Ξ̂s are determined

through the angles

cos(θ(k)) =
k · q + B

√

(k · q +B)2 + A2

, (7.4a)

sin(θ(k)) =
A

√

(k · q +B)2 + A2

, (7.4b)

⇒ θ(k) = arctan

(
A

k · q + B

)

. (7.4c)

They look formally equivalent to the Hartree-Fock spin-spiral orbitals Eq. (6.16), but it should

be kept in mind that the definition of the orbital angles θ(k) differs :

ξsk−(r) =

(

cos
(
1
2
θ(k)

)
e−

ı
2
q·r

sin
(
1
2
θ(k)

)
e
ı
2
q·r

)

eik·r
√
2π

3 , (7.5a)

ξsk+(r) =

(

− sin
(
1
2
θ(k)

)
e−

ı
2
q·r

cos
(
1
2
θ(k)

)
e
ı
2
q·r

)

eik·r
√
2π

3 . (7.5b)

The expression for the Kohn-Sham 1RDM is therefore also equivalent to Eq. (6.23) (again, the

difference in the definition of the angles has to be remembered) and the spin magnetization
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is given by

m (r) = nχ







s cos(q ·r)
s sin(q ·r)√

1− s2






, (7.6a)

nχs = − 1

(2π)3

∫

d3k (n−(k)− n+(k))
A

√

(k · q + B)2 + A2

, (7.6b)

nχ
√
1− s2 = − 1

(2π)3

∫

d3k (n−(k)− n+(k))
k · q + B

√

(k · q + B)2 + A2

. (7.6c)

Note that the integration region is specified by the occupation numbers nb(k). They are either

zero (for ǫb(k) > 0) or one (for ǫb(k) < 0) and determine the Fermi surface of the electron

gas. The Fermi surface is not the usual Fermi sphere, because the dispersion Eq. (7.3b) breaks

the spherical symmetry of the para- or ferromagnetic state of the uniform electron gas. The

discussion so far is valid for SDFT in general, i.e. , considering the Kohn-Sham magnetic field

Eq. (7.2b) as the sum of external and xc magnetic field. If we want to investigate whether a

given approximation for the xc-energy functional favors a broken-symmetry ground state we

have to establish that the effective Kohn-Sham magnetic field is only the xc-magnetic field.

This condition is

µBBs = −µBBxc = −
δExc[n,m]

δm(r)
, (7.7)

which has to be checked for a given approximation for Exc[n,m]. Eq. (7.7) is the Kohn-Sham

analog to the Hartree-Fock self-consistency equations (cf. Eq. (6.21)).

7.2 The exact-exchange functional in Spin-Density-

Functional Theory

Since we are interested in comparing SDFT to Hartree-Fock theory we employ the exact-

exchange functional, introduced in Sec. 4.2. In terms of the spin-spiral orbitals Eq. (7.5), it is

given by

EEXX
xc [n,m] = −1

2

∑

b1,b2

∫∫

d3k1d
3k2 nb1(k1)nb2(k2)

×
∫∫

d3r1d
3r2

(
ξsk1b1

†(r1) ξ
s
k2b2

(r1)
) (
ξsk2b2

† (r2) ξ
s
k1b1

(r2)
)

|r1 − r2|
. (7.8)
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The exchange-correlation potentials

vxc(r) =
δExc[n,m]

δn(r)
, (7.9)

µBBxc(r) =
δExc[n,m]

δm(r)
, (7.10)

have to be determined employing the OEP method (cf. Sec. 4.2.1). Here we will not follow

the route taken in Sec. 4.2.1 in order to compute the Kohn-Sham potential for the charge-only

DFT, but use Eq. 4.20, i.e. ,

0 =
δEEXX

δVs(r)
, (7.11)

0 =
δEEXX

δBs(r)
, (7.12)

EEXX = Ts + V0 + EEXX
xc . (7.13)

The functional dependency on the potentials of EEXX is implied through the dependence of

the kinetic energy Ts and the exact-exchange energy EEXX
xc on the Kohn-Sham orbitals, which

in turn may be viewed as functionals of the external potential via a solution of the Kohn-Sham

equation. In order to streamline the derivation of the OEP integral equations we introduce

the 2× 2-potential

vs(r) =

(

Vs(r) + µBBs3(r) µBBs1(r)− ıµBBs2(r)

µBBs1(r) + ıµBBs2(r) Vs(r)− µBBs3(r)

)

= vα(r) σ
α

=
(
v0α + vxcα

)
σα , α = 0, 1, 2, 3. (7.14)

Furthermore we define the combined index j = (k, b) such that
∑

b

∫
d3k →∑

j. Accordingly

Eqs. (7.11), (7.12) are expressed as

0 =
δEEXX

δvα(r)

=
∑

j

∫

d3r′
(

δTs
δξsj (r

′)
+ njξ

s
j
†(r′) v0α(r

′) σα +
δEEXX

xc

δξsj (r
′)

)
δξsj (r

′)

δvα(r)
+ h.c. . (7.15)

Using the Kohn-Sham equation we can rewrite

δTs
δξsj (r

′)
= njξ

s
j
†(r′)

(

−1
2

←−∇ ·←−∇
)

= njξ
s
j
†(r′)

(

−1
2

←−∇ ·←−∇ + vβ(r
′) σβ − vβ(r′) σβ

)

= njξ
s
j
†(r′)

(
ǫj − vβ(r′) σβ

)
. (7.16)
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Moreover we know from first-order perturbation theory

δξsj (r
′)

δvα(r)
=
∑

k 6=j

ξsk
†(r) σαξsj (r)

ǫj − ǫk
ξsk(r

′) . (7.17)

The variation of EEXX
xc w.r.t. ξsj (r

′) is

δEEXX
xc

δξsj (r
′)
= −

∑

k

njnkξ
s
k
†(r′)

∫

d3x
ξsj

†(x) ξsk(x)

|r′ − x| . (7.18)

It is common practice to define the matrix elements

M⋆
kj = −

∫

d3r′
(

vxcβ (r′) ξsj
†(r′) σβξsk(r

′) +
∑

l

nl

∫

d3x
ξsj

†(x) ξsl (x) ξ
s
l
†(r′) ξsk(r

′)

|r′ − x|

)

,

(7.19)

together with the orbital shifts

Ψj(r) =
∑

k 6=j

Mjkξ
s
k(r)

ǫj − ǫk
. (7.20)

With these definitions the OEP equations take the simple form

0 =
∑

j

nj

(

Ψ†
j(r) σ

αξsj (r) + ξsj
†(r) σαΨj(r)

)

. (7.21)

7.2.1 Optimized effective potential equations for the spin-spiral

wave

For the spin-spiral orbitals the orbital shifts are

Ψk∓(r) =
∓ξsk±(r)

√

(q · k + B)2 + A2

(

d(k)−
∫

d3k′
4π

(k − k′)
2D(k,k′)

)

, (7.22)

d(k) = 1
2
(A cos(θ(k))−B sin(θ(k))) , (7.23)

D(k,k′) = 1
2
(n−(k

′)− n+(k
′)) (cos(θ(k)) sin(θ(k′))− sin(θ(k)) cos(θ(k′))) , (7.24)

where the denominator in Eq. (7.22) is the energy difference between the lower band (b = −)

and the upper band (b = +) at the same wave vector k. Since the orbital shifts for the upper

band are proportional to the orbitals of the lower band, and vice-versa, the OEP equation

for the scalar potential, i.e. , α = 0, is trivially fulfilled. For the x- and y-components of the
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magnetic field we obtain the OEP equations

0 =

∫

d3k
n−(k)− n+(k)

√

(q · k + B)2 + A2

cos(θ(k)) (A cos(θ(k))−B sin(θ(k)))

−
∫∫

d3kd3k′
4π

(k − k′)
2

(n−(k)− n+(k)) (n−(k
′)− n+(k

′))
√

(q · k + B)2 + A2

cos(θ(k))

× (cos(θ(k)) sin(θ(k′))− sin(θ(k)) cos(θ(k′))) , (7.25)

where the equation for the x-component is Eq. (7.25) multiplied by cos(q · r) and the equation

for the y-component is Eq. (7.25) multiplied by sin(q · r). The OEP equations hold for all

r and therefore both components yield the same condition Eq. (7.25). Similarly the OEP

equation for the z-component of the magnetic field is

0 =

∫

d3k
n−(k)− n+(k)

√

(q · k +B)2 + A2

sin(θ(k)) (A cos(θ(k))−B sin(θ(k)))

−
∫∫

d3kd3k′
4π

(k − k′)
2

(n−(k)− n+(k)) (n−(k
′)− n+(k

′))
√

(q · k + B)2 + A2

sin(θ(k))

× (cos(θ(k)) sin(θ(k′))− sin(θ(k)) cos(θ(k′))) . (7.26)

Restricting the spin-spiral state to planar spirals, i.e. , B = 0, we note the following definit

parities: 1) The dispersions Eq. (7.3b) are even under k→ −k, accordingly the occupations

numbers are also even under k→ −k. 2) cos(θ(k)) and sin(θ(k)) are odd and even, respec-

tively, under k→ −k as can be seen from the definitions Eqs. (7.4a), (7.4b). It follows that

the equation for the z-component (cf. Eq. (7.26)) is fulfilled trivially. The only remaining OEP

equation for planar spin-spiral waves reads therefore

0 = A

∫

d3k
n−(k)− n+(k)
(
(q · k)2 + A2

)3/2
(q · k)2

− A
∫∫

d3kd3k′
4π

(k − k′)
2 (q · (k − k′))

q · k
(q · k)2 + A2

× (n−(k)− n+(k))
√

(q · k)2 + A2

(n−(k
′)− n+(k

′))
√

(q · k′)
2
+ A2

. (7.27)

In the following we will evaluate the exact-exchange-energy functional for planar SSWs. For a

fixed amplitude A of the external magnetic field we vary q in order to determine the optimal

qopt. Then the curves for various amplitudes are compared for the determination of the

absolute minimum within the planar SSW configuration.
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7.3 Direct minimization of the energy

Rather than calculating the Kohn-Sham potentials self-consistently, we use the fact that the

Kohn-Sham potential vs(r) is a constant and that the Kohn-Sham magnetic field Bs(r) forms

a spiral with amplitude A and wave vector q = qeq, where eq is chosen w.l.o.g. to be the unit

vector in z-direction. We are interested in the situation of spontaneous symmetry breaking,

i.e. , the Kohn-Sham magnetic field is entirely due to its exchange-correlation magnetic field.

We will show later that this is indeed the case and Bs(r) is consistent within the OEP equa-

tion Eq. (7.27). We point out that the vector of the spin magnetization for the planar SSW is

parallel to the Kohn-Sham magnetic field. This certainly is a consequence of the simplicity of

the system under study. For more complicated systems it was shown [SDAD+07] that these

quantities need not be parallel in non-collinear SDFT employing the exact-exchange-energy

functional. This is an important difference to the non-collinear LSDA formulation [KHSW88],

where the spin magnetization and the exchange-correlation magnetic field are locally parallel

by construction. In contrast to the energy functional within RDMFT (cf. Sec. 6.4) the en-

ergy functional for SDFT depends only on the three paramters of the planar SSW, i.e. , the

amplitude A, the spin-spiral wave vector q and the chemical potential µ. Since we want to

investigate the SSW instability for a fixed density, the chemical potential is implicitly deter-

mined through the density, specified in terms of the Wigner-Seitz radius rs, the amplitude A

and the magnitude q of the spin-spiral wave vector, i.e. , µ = µ(rs, A, q). For a fixed density

n the energy per particle reads,

eEXX(rs, A, q) = t(rs, A, q)− w1(rs, A, q)− w2(rs, A, q) , (7.28)

with the kinetic contribution (introducing k = kρ, z = kz and kφ = φ)

t(rs, A, q) =
1

2n

1

(2π)3

∫

d3k
( (
k2 + z2

)
(n−(k, z) + n+(k, z))

− qz (n−(k, z) + n+(k, z)) cos(θ(z))
)
+
q2

8
, (7.29)

and the intra- and inter-band exchange contributions

w1(rs, A, q) =
1

2n

1

(2π)6

∫∫

d3k1d
3k2

4π

(k1 − k2)
2

× (n−(k1, z1)n−(k2, z2) + n+(k1, z1)n+(k2, z2))

× (1 + cos(θ(z1)) cos(θ(z2)) + sin(θ(z1)) sin(θ(z2))) , (7.30a)

w2(rs, A, q) =
1

2n

1

(2π)6

∫∫

d3k1d
3k2

4π

(k1 − k2)
2

× (n−(k1, z1)n+(k2, z2) + n+(k1, z1)n−(k2, z2))

× (1− cos(θ(z1)) cos(θ(z2))− sin(θ(z1)) sin(θ(z2))) . (7.30b)
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Figure 7.1:

Left panel: Energy per particle in EXX for the electron gas at rs = 5.4 with spin density wave

as function of q/kF and different values of the amplitude A of the Kohn-Sham magnetic field.

The straight line corresponds to the total energy per particle of the paramagnetic state at this

density. The inset shows a magnification close to the minimum.

Right panel: Single-particle Kohn-Sham and Hartree-Fock bands at k = 0 for the optimized

parameter values (A = 0.022µB and q/kF = 1.68 at rs = 5.4) mimizing the EXX total energy

per particle (cf. left panel). The straight line indicates the Fermi energy and shows that close

to z/kF = 0 states of the second Kohn-Sham band (green, dashed line) are occupied in the

ground state. The Kohn-Sham orbitals are used to compute the Hartree-Fock Hamiltonian.

The relative position of the second HF band (purple, dash-dash-dotted line) indicates that also

in HF the states in both bands will be occupied.

The formal equivalence to Eqs. (6.27), (6.28) is readily established using trigonometric iden-

tities. In contrast to the RDMFT treatment we do not discretize momentum space into

cylindrical volume elements, because we explicitly know the Fermi surface, specified by nb(k)

or equivalently the single-particle dispersion, and the angle functionas θ(z). The exchange

integrals Eq. (7.30) can be evaluated analytically (cf. App. A) up to the intergrations along

z1, z2, which have to be carried out numerically.

In Fig. 7.1 we show the total energy per electron at rs = 5.4 for a few values of A as function

of q/kF. The value rs = 5.4 was chosen because then 1) the SSW phase is lower in energy

than both the paramagnetic and ferromagnetic phases and 2) the amplitude of the SSW (or

the Kohn-Sham magnetic field) is relatively high such that the resulting energy differences can

easily be resolved numerically. We clearly see that for the given values of A for wavenumbers

between q/kF ≈ 1.5 and q/kF ≈ 1.75 the energy of the SSW state is lower than the energy of

the paramagnetic state. The lowest energy for this value of rs is achieved for the parameters
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A = 0.022µB and q/kF = 1.68. In Fig. 7.1 we show the Kohn-Sham single-particle dispersions

of Eq. (7.3b) as well as the Hartree-Fock single particle dispersions. To obtain the latter we

first calculate the non-local Fock potential (which is a 2× 2 matrix in spin space),

UF (r; r
′) =

∑

b=−,+

∫

d3k
ξskb(r) ξ

s
kb

†(r′)

|r − r′| , (7.31)

and then diagonalize the resulting Hartree-Fock single-particle Hamiltonian

HHF(r; r
′) = 1

2

←−∇ · −→∇ − UF (r; r
′) , (7.32)

It is important to emphasize that we use the Kohn-Sham orbitals and orbital energies to

evaluate the non-local Fock potential, i.e., we do not perform a self-consistent Hartree-Fock

calculation here. In Fig. 7.1 we show the KS and HF dispersions only for the z-coordinate,

i.e., we set k = 0. As expected, close to z/kF = 0 a direct gap opens up in the Kohn-Sham

single-particle dispersions due to the presence of the mixing of the spin-up and spin-down

channels. The position of the Fermi energy is such that not only states of the lower (b = −)

band but also states of the upper (b = +) Kohn-Sham band are occupied in the ground state.

It is evident that the Hartree-Fock single-particle direct band gap at z/kF = 0 is much larger

than the corresponding Kohn-Sham gap. Moreover, the position of the second Hartree-Fock

band indicates that also in the Hartree-Fock case there will be occupied states in the second

band.

The occupation of states in both single-particle bands is sometimes excluded in works on the

SSW in the Hartree-Fock approximation [Ove62, GV05] and also the numerical investigation

in the previous chapter showed that in Hartree-Fock theory only the lowest single-particle

band is occupied. This has motivated us to do the minimization of the exact-exchange-energy

functional under the additional constraint that only states of the lower band are occupied.

Similar to Fig. 7.1, in Fig. 7.2 we show the total energy per electron at rs = 5.4 for a few

values of A as function of q/kF. Of course, the constrained minimization leads, for a given

value of rs, to different optimized parameter values. Surprisingly, however, we find that the

minimization constraining the occupation to the lower band leads to lower total energies than

the minimization obtained occupying both bands. Moreover, this lower total energy is achieved

with a Slater determinant which has empty states below the Fermi level. This can be seen in

the right panel of Fig. 7.2 where we show the Kohn-Sham and Hartree-Fock energy bands at

rs = 5.4 for the one-band minimization for the optimized parameter values of A = 0.040µB

and q/kF = 1.33. We see that there are states in the upper Kohn-Sham band below the Fermi

energy which, due to the constraint in the minimization, remain unoccupied. We also note

that for the one-band case the amplitude of the minimizing Kohn-Sham magnetic field, and
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Figure 7.2:

Left panel: Same as left panel in Fig. 7.1 except that now only states in the lower band are

allowed to be occupied. The total energy per particle at the minimum is lower than when

states in both bands are allowed to be occupied.

Right panel: Same as right panel in Fig. 7.1 except that the optimized parameters are used

which result from a minimization with occupied states in the lower Kohn-Sham band only. For

rs = 5.4 these values are A = 0.040µB and q/kF = 1.33. Again, the straight line indicates the

Fermi energy. Note that the states of the upper Kohn-Sham band (green, dashed line) remain

unoccupied in this calculation, even if their single-particle energies are below the Fermi level,

i.e., the resulting Slater determinant is not a ground state of the Kohn-Sham Single-particle

Hamiltonian. On the other hand, the post-hoc evaluation of the Hartree-Fock bands indicates

that the upper Hartree-Fock band (purple, dash-dash-dotted line) will remain unoccupied and

the resulting Hartree-Fock wave function will be a ground-state Slater determinant.

therefore also the gap between the two Kohn-Sham bands at z/kF = 0, is almost twice as

large as in the two-band case. Compared to Fig. 7.1, the intersection of the Fermi energy

with the bands εb(k = 0, z) is shifted to a lower value of |z|. Again, the direct Hartree-Fock

gap at z/kF = 0 is significantly larger than the Kohn-Sham gap. In contrast to the two-band

case, the upper Hartree-Fock band now is energetically higher than the Fermi energy and

the corresponding Hartree-Fock state, unlike the Kohn-Sham state, has no unoccupied single-

particle states below the Fermi energy. Again here we have done only a post-hoc evaluation

of the Hartree-Fock bands, but we have seen in Sec. 6.5 that the statement remains valid

for a self-consistent Hartree-Fock calculation. We have optimized the energy per particle

for a range of rs for single-particle occupations in both energy bands and for occupations

restricted to the lower band. In Fig. 7.3 we show the resulting phase diagram in the relevant

density range. When allowing occupations in both bands, the SSW state (which is then
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Figure 7.3:

Upper panel: Total energy per particle in EXX for different phases of the uniform electron gas

as function of Wigner-Seitz radius rs. In the SSW phase we consider two cases. In one case

the occupation of single-particle states in both bands is allowed while in the other case the

occupied states are restricted to the lower band.

Lower panel: Energy difference between the total energies per particle of the paramagnetic

phase and the SSW phase for SSWs with occupied states in one and two bands. For the two-

band case, the SSW phase is lower in energy than both the paramagnetic and the ferromagnetic

phase for 5.0
<∼ rs

<∼ 5.46. For the one-band case the range of stability of the SSW phase is

4.78
<∼ rs

<∼ 5.54.

a ground state Slater determinant) is lower in energy than both the paramagnetic and the

ferromagnetic phase for rs in the range 5.0
<∼ rs

<∼ 5.46. In this case the energies are very

close to the energies of the paramagnetic phase (energy differences of less than 0.04 mHa,

c.f. lower panel of Fig. 7.3) and therefore the transition to the ferromagnetic phase occurs at

an value of rs only slightly higher than rc where paramagnetic and ferromagnetic phase are

degenerate. On the other hand, restricting the single-particle occupation to the lower band,

the SSW state is more stable than para- and ferromagnetic state for 4.78
<∼ rs

<∼ 5.54. In this

case the energy differences between the paramagnetic and the SSW phase range to almost

0.4mHa (lower panel of Fig. 7.3), almost an order of magnitude larger than in the two-band

case. However, for all rs values in the stability range of the SSW phase, the minimizing Slater
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Figure 7.4: Optimized values for the parameters q (upper panel) and A (middle panel) for

which the EXX energy per particle of the SSW phase is minimized. The results are shown

over the range of rs for which the SSW phase is lower in energy than both the paramagnetic

and the ferromagnetic phases for the cases when both bands or only one band are occupied.

Lower panel: amplitude of the SSW (Eq. (7.6b)) for the one- and two-band case.

determinant in the one-band case is not a ground state of the Kohn-Sham Hamiltonian. Both

the one- and two-band cases in EXX have in common that they predict the SSW phase to

be lower in energy than the paramagnetic phase only for a restricted range of rs. This is

different from the Hartree-Fock case (cf. Cap. 6) where the SSW phase is more stable than

the paramagnetic phase for all values of rs. This is not completely surprising since due to

the additional constraint of local Kohn-Sham potentials vs and Bs in the EXX minimization,

the resulting energies have to be higher than the Hartree-Fock total energies. Since for small

values of rs the SSW total energies in Hartree-Fock are extremely close to the total energies

of the paramagnetic phase as discussed in Sec. 6.5, the higher EXX total energies can easily

lead to a more stable paramagnetic phase. In Fig. 7.4 we show the SSW parameters q (upper

panel) and A (middle panel) for which the EXX total energy per particle is minimized in the

one- and two-band cases for those rs for which the SSW phase is more stable than both the

paramagnetic and ferromagnetic phases. For the one-band case, the wave vector q of the spin-

spiral wave covers almost the whole range between kF and 2kF while for the two-band case
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this range is much narrower. The amplitudes A and m0 = nχ of the Kohn-Sham magnetic

field (middle panel) and the spin magnetization (lower panel) of the SSW are significantly

smaller in the two-band case than in the case with occupied single-particle states in the lower

band only. It is sometimes assumed [GV05] that the wavenumber of the SSW is close to 2kF.

Our results show that this need not be the case, as in the one-band case q approaches kF for

densities at the lower end of the stability range of the SSW phase. However, neither in EXX

nor in Hartree-Fock (cf. Sec. 6.5) we ever found a stable SSW state with wavenumber lower

than kF.

7.4 Self-consistency conditions

In the previous Section we have used an ansatz for the Kohn-Sham orbitals in the SSW phase

which depends on two parameters and then minimized the EXX total energy per particle with

respect to these parameters. We have done this minimization once allowing single-particle

states in both bands to be occupied and once for occupations only in the lower band. This is

different from the usual way of applying SDFT where one calculates the exchange-correlation

potentials and solves the Kohn-Sham equation self-consistently. In this section we still use the

ansatz Eq. (7.5) for the Kohn-Sham orbitals and investigate if it is consistent with the OEP

equation

J(rs, A, q) = 0 = A

∫

d3k
n−(k)− n+(k)
(
(q · k)2 + A2

)3/2
(q · k)2

− A
∫∫

d3kd3k′
4π

(k − k′)
2 (q · (k − k′))

q · k
(q · k)2 + A2

× (n−(k)− n+(k))
√

(q · k)2 + A2

(n−(k
′)− n+(k

′))
√

(q · k′)
2
+ A2

, (7.33)

derived in Sec. 7.2.1 Eq. (7.27). In Fig. 7.5 we show J(rs, A, q) of Eq. (7.33) for rs = 5.4 as

function of q/kF for different values of A both for the case of occupations in both bands (upper

panel) as well as for occupations restricted to the lower band (lower panel). In the upper panel

of Fig. 7.5 we choose the same values for the parameter A as used in Fig. 7.1 which all had

local minima for some value of q < 2kF. For these values of A, however, Eq. (7.33) is not

satisfied for any value of q in that range. We therefore conclude that in the two-band case the

energy minimization is not consistent with the OEP equations. In the lower panel of Fig. 7.5

where only single-particle states of the lower band are occupied we choose the parameters

as in Fig. 7.2. In this case, J(rs, A, q) not only crosses zero, but also does so exactly for

those values of q/kF for which we found local minima in the total energy per particle. We
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therefore conclude that in the one-band case the minimization of the total energy is consistent

with the OEP equation, i.e., our ansatz is self-consistent in this case. Again we emphasize

that the lowest total energy is achieved when the Slater determinant is has holes below the

Fermi surface. It has been shown [BLLS94] that in unrestricted Hartree-Fock theory all the

single-particle levels are fully occupied up to the Fermi energy. To the best of our knowledge, a

similar statement has not been proven for SDFT (even in EXX approximation) and our results

indicate that it might not be true in EXX. On the other hand, the proof of Ref. [BLLS94]

holds for the true, unrestricted Hartree-Fock ground state while in our case we have restricted

the uniform electron gas to the SSW symmetry. It is conceivable that the fact that we find

an “excited-state” Slater determinant as energy-minimizing wave function hints towards an

instability of the SSW phase against further reduction of the symmetry.

7.5 Summary and Conclusions

In the present chapter we have investigated the SSW state of the uniform electron gas within

the EXX approximation of non-collinear SDFT. While in the Hartree-Fock approximation the

SSW state is energetically more stable than the paramagnetic state for all values of rs, in EXX

this is only true for values of rs larger than a critical value. Using an explicit ansatz for the

spinor orbitals in the SSW state, we have performed the energy minimization of the EXX total

energy in two ways: (i) in the first case we used as non-interacting reference wavefunction a

ground-state Slater determinant with occupied single-particle orbitals belonging to both single-

particle energy bands, as long as their energy is below the Fermi energy. Then the SSW phase

is more stable than both paramagnetic and ferromagnetic phases for 5.0
<∼ rs

<∼ 5.46. (ii) In

the second case we required all the occupied single-particle orbitals in the Slater determinant

to belong to the lower band. The minimizing Slater determinant in this case turns out to

be an “excited state”, since orbitals with orbital energies below the Fermi energy belonging

to the second band remain unoccupied. Nevertheless, for a given rs the total energies of

the minimizing SSW states are significantly lower than in case (i). The range of stability of

the SSW phase with respect to both paramagnetic and ferromagnetic phases is extended to

4.78
<∼ rs

<∼ 5.54. The self-consistency conditions provided by the OEP equations for non-

collinear SDFT are satisfied with our ansatz for the single-particle orbitals only for case (ii).

We found that for case (i) the parameter values minimizing the EXX total energy are not

consistent with the OEP equations. This means that case (i) is not a solution of the OEP

equations. Only case (ii) is a solution of the OEP equations and therefore yields spontaneous

symmetry breaking.
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Figure 7.5:

Upper panel: J(rs, A, q) of Eq. (7.33) for rs = 5.4 as function of q/kF and different values

of A for the case with occupations in two bands. The parameter values are the same as in

Fig. 7.1 for which a minimum in the total energy per particle was found. Since J(rs, A, q)

never crosses zero, in this case the minimum of the total energy is not consistent with the

solution of the OEP equation.

Lower panel: same as above but now for occupied single particle states only in the lower band.

The parameter values are the same as in Fig. 7.2. In contrast to the two-band case, now

J(rs, A, q) not only crosses zero but also does so at those values of q/kF for which a local

minimum was found in Fig. 7.2 (see inset for magnification around the intersections with the

zero axiss). Therefore, the OEP equation in this case is consistent with the minimization of

the total energy per particle.



Chapter 8

Non-collinear functional derived from

the spin-spiral-wave state

So far we have used DFTs to investigate the instability of the uniform electron gas w.r.t. the

formation of a spin-spiral wave. Motivated by Overhauser’s proof that the instability is present

at the level of a Hartree-Fock treatment of the uniform electron gas, we generalized Over-

hauser’s explicit ansatz for the effective single-particle orbitals to RDMFT which allowed us

to include correlation effects. Furthermore we compared the Hartree-Fock results (obtained

via RDMFT) to the results stemming from the local version of the Hartree-Fock-energy func-

tional, i.e. , the exact-exchange-energy functional within SDFT. In the present chapter we will

pursue a different goal. We ask the question whether we can use the SSW state of the uniform

electron gas to obtain a new functional for SDFT. We find that this is indeed possible, by

constructing the functional in close analogy to the Local-Spin-Density Approximation (LSDA).

This means that we assign a local xc-energy density determined from local characteristic pa-

rameters of the SSW state. Those are, in addition to the density n and the magnitude of

the magnetization m = nχ, which are already present in the LSDA, the sine of the azimuthal

angle, i.e. , s = sin(θ), and the magnitude of SSW wave vector q. A similar approach was

proposed in [KA03] restricted, however, to the small-q limit. We will demonstrate that the

definition of the additional two parameters involves gradients of the spin-magnetization m.

Therefore the proposed functional is an explicit density functional including gradients of the

spin-magnetization, which is not obtained by generalizing a collinear functional by means of

the so-called Kübler trick [KHSW88, PSF07].
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8.1 Exact properties from symmetries

Before discussing the construction of the functional, we review briefly some exact conditions on

xc-energy functionals derived from symmetry considerations. Assume two different coordinate

systems R and X. A vector in coordinate system R is denoted by r and a vector in coordinate

system X by x. If the origins of the two coordinate systems differ by a translation t = tet we

have x = r + t. We define the density n′ which is the density n translated by t, i.e. ,

n′(r) = n(x) = n(r + t) . (8.1)

For infinitesimal translations t = εet the difference δn of the two densities is

δn(r) = n′(r)− n(r) = εet · ∇n(r) . (8.2)

Since the kinetic energy and the interaction energy are translationally invariant the universal

functionals F [n] and Ts[n] yield the same energy for both densities n and n′. Moreover, the

Hartree energy functional EH [n] is translationally invariant as can be inferred directly from

its definition (cf. Eq. (3.7)). Hence an approximation for the xc-energy functional also has to

give the same energy for both densities,

0 = Exc[n
′]− Exc[n] =

∫

d3r
δExc[n]

δn(r)
δn(r)

= εet ·
∫

d3r vxc(r) (∇n(r)) = εet ·
∫

d3r (∇vxc(r))n(r) . (8.3)

For the partial integration in the second line of Eq. (8.3) we assumed that the boundary

contributions vanish. As Eq. (8.3) has to be valid for arbitrary infinitesimal translations t, we

obtain the so-called zero-force theorem,

0 =

∫

d3r (∇vxc(r))n(r) . (8.4)

It states that the xc-potential cannot exert a net force on the electrons.

Similarly we can investigate the situation when the coordinate system X has the same

origin as the coordinate system R, but is rotated compared to R, i.e. , x = Rr with R being

a 3×3 rotation matrix. For infinitesimal rotations around an axis eω we have x = r + dω × r

with dω = εeω. This means that the difference of the densities is given by

δn(r) = n′(r)− n(r) = n(Rr)− n(r) = ε (eω × r) · ∇n(r) . (8.5)

Again, the kinetic, interaction and Hartree energy are rotationally invariant and hence we get

0 = Exc[n
′]− Exc[n] =

∫

d3r
δExc[n]

δn(r)
δn(r)

= εeω ·
∫

d3r vxc(r) r × (∇n(r)) = εeω ·
∫

d3r r × (∇vxc(r))n(r) . (8.6)
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Since Eq. (8.6) has to hold for any eω we obtain a zero-torque theorem

0 =

∫

d3r r × (∇vxc(r))n(r) . (8.7)

Turning to SDFT we also have to investigate how the spin magnetization transforms. For

translations in analogy to Eq. (8.8) we define

m′(r) = m(x) = m(r + t) . (8.8)

For infinitesimal translations we get

δm(r) = m′(r)−m(r) = εet · ∇ ⊗m(r) , (8.9)

where it is implied that the components of ∇ are contracted with the unit vector et. Similar

to Eq. (8.3) we require

0 = Exc[n
′,m′]− Exc[n,m] =

∫

d3r

(
δExc[n,m]

δn(r)
δn(r) +

δExc[n,m]

δm(r)
δm(r)

)

= εet ·
∫

d3r ((∇vs(r))n(r) + µB (∇⊗Bxc) ·m(r)) . (8.10)

Since et is arbitrary we obtain the zero-force theorem for SDFT,

0 =

∫

d3r ((∂jvs(r))n(r) + µB (∂jB
κ
xc)mκ(r)) , (8.11)

where we employed a notation in terms of the components of Bxc, m and ∇, together with

Einstein’s summation convention, in order to show explicit which components are contracted.

Considering spatial rotations in SDFT we compare the rotated spin magnetization

m′(r) =
〈

Φ̂†(Rr)σΦ̂(Rr)
〉

= m(Rr) , (8.12)

to the rotated paramagnetic current

′(r) = 1
2ı

〈

Φ̂†(Rr)
(

∇Φ̂(Rr)
)

−
(

∇Φ̂†(Rr)
)

Φ̂(Rr)
〉

= R 1
2ı

〈

Φ̂†(Rr)
(

∇Φ̂
)

(Rr)−
(

∇Φ̂†
)

(Rr) Φ̂(Rr)
〉

= R(Rr) . (8.13)

We can see that while the paramagnetic current  transforms as a vector under spatial rotation

the spin magnetization m does not. This is due to the fact that the three components of

the spin magnetization are a reflection of the internal degree of freedom, i.e. , the two-

componentness of the fundamental Pauli field, whereas the three components of the current

arise due to the definition of the current in terms of gradients of the fundamental Pauli field.
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We can generalize the zero-torque theorem Eq. (8.7) for SDFT by calculating the change in

the spin magnetization under infinitesimal spatial rotations

δm(r) = m′(r)−m(r) = ε (eω × r) · ∇ ⊗m(r) , (8.14)

and requiring

0 = Exc[n
′,m′]− Exc[n,m] =

∫

d3r

(
δExc[n,m]

δn(r)
δn(r) +

δExc[n,m]

δm(r)
δm(r)

)

= εeω ·
∫

d3r (r × (∇vxc(r))n(r) + µBr × (∇⊗Bxc(r))m(r)) . (8.15)

This leads to a zero-torque theorem for SDFT,

0 =

∫

d3r ǫjkl rk ((∂lvxc(r))n(r) + µB (∂lB
κ
xc(r))mκ(r)) . (8.16)

As discussed above SDFT employs with the spin magnetization an additional fundamental

variable that reflects the internal degree of freedom of the fundamental Pauli field. Hence we

can also derive conditions on the xc-energy functional by investigating a change of the internal

coordinate system. A rotation of the internal coordinate system is achieved by

Φ̂′(r) = UΦ̂(r) , (8.17)

where U corresponds to a unitary 2×2-matrix with a trace equal to one, i.e. , an element of

SU(2) . A generic rotation around an axis specified by a unit vector n is given by

U = e−ın·σϕ
2 = cos

(ϕ

2

)

σ0 − ı sin
(ϕ

2

)

n · σ, (8.18)

From the fundamental commutation relation of the Pauli matrices we obtain

U †σκU =
(

cos
(ϕ

2

)

σ0 + ı sin
(ϕ

2

))

σκ
(

cos
(ϕ

2

)

σ0 − ı sin
(ϕ

2

))

= cos(ϕ) σκ + sin(ϕ) ǫκλµnλσ
µ + (1− cos(ϕ))nκnλσ

λ, (8.19)

which can be rewritten in vectorial notation as

U †σU = (cos(ϕ) + sin(ϕ)n×+(1− cos(ϕ))n⊗ n)σ

= Rσ, (8.20)

withR being the 3×3-rotation matrix corresponding to a spatial rotation by an angle ϕ around

the axis n. Therefore the transformed magnetization is given by

m′(r) =
〈

Φ̂†(r)U †σUΦ̂(r)
〉

= Rm(r) . (8.21)
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It is straight forward to see that the density does not change under a rotation of the internal

coordinate system,

n′(r) =
〈

Φ̂†(r)U †UΦ̂(r)
〉

= n(r) . (8.22)

The same is true for the paramagnetic current,

′(r) = 1
2ı

〈

Φ̂†(r)U †
(

∇UΦ̂(r)
)

−
(

∇Φ̂†(r)U †
)

UΦ̂(r)
〉

= (r) , (8.23)

since here we are only considering global rotations of the internal coordinate system, i.e. , U
does not depend on r. The spin magnetization transforms as a vector under rotations of the

internal coordinate system, whereas the current remains unchanged, which is the opposite of

the transformation properties of the spin magnetization and the paramagnetic current under

spatial rotations. For infinitesimal internal rotations we get

δm(r) = m′(r)−m(r) = dω ×m(r) . (8.24)

Imposing

0 = Exc[n
′,m′]− Exc[n,m] =

∫

d3r
δExc[n,m]

δm(r)
δm(r)

= ε

∫

d3r µBBxc(r) · (eω ×m(r))

= εeω ·
∫

d3r µBm(r)×Bxc(r) , (8.25)

we arrive at another zero-torque theorem for SDFT, since the rotation axis eω is arbitrary,

0 =

∫

d3r µBm(r)×Bxc(r) . (8.26)

This zero-torque theorem was first derived by Capelle, Vignale and Györffy [CVG01] from the

equation of motion for the spin magnetization in time-dependent SDFT. It states that the

xc-magnetic field must not exert a net torque on the system.

8.2 The definition of the Spin-Gradient Extension

From the discussion of the previous section we conclude that if we want to construct an explicit

xc-energy functional it should depend only on scalars, i.e. , quantities that remain unchanged

under a change of the coordinate system. Therefore a functional for SDFT cannot depend on

single components of the spin magnetization, because their value depends on the orientation

of the internal coordinate system. For the construction of a strictly local approximation this
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implies that it can only depend on the density n and the magnitude of the spin magnetization

m = m ·m. This leads to the well-known Local-Spin-Density Approximation (LSDA),

Exc[n,m] =

∫

d3r n(r) εunifxc (n(r) ,m(r)) . (8.27)

For a strictly local approximation the local xc-energy density is determined by two scalar quan-

tities. The SSW state however is characterized by 4 parameters so we cannot define a strictly

local functional using the SSW state of the uniform electron gas reference system. Accordingly

a functional based on the SSW state has to include gradients of the fundamental densities. We

can immediately discard the divergence of the spin magnetization ∇ ·m, because it contracts

the spatial components of ∇ with the spin components of m. For the same reason we exclude

combinations like m · (∇n). Moreover the density of the SSW state remains constant and

hence we do not consider gradients of the density. We recall the magnetization of the SSW

state,

m(r) = m







s cos(q · r)
s sin(q · r)√

1− s2






, (8.28)

and compute the first-order gradient,

D(r) = ∇⊗m(r) = m







−sqx sin(q · r) −sqy sin(q · r) −sqz sin(q · r)
sqx cos(q · r) sqy cos(q · r) sqz cos(q · r)

0 0 0






. (8.29)

It is important to note that the the components Djκ = ∂jmκ of the tensor D have a spatial

index j and a spin index κ. Therefore the index j must be contracted with another spatial

index and index κ with another spin index. One possibility is to contract the spin index of D

with the spin index of the magnetization and square the remaining spatial vector, i.e.

DL = mκ (∂jmκ)mλ (∂jmλ) . (8.30)

This scalar measures the change of the magnetization along the direction specified by the

magnetization. It is no surprise that this quantity vanishes for the SSW state, because the

spin magnetization rotates in space, which means that the change of the magnetization is

perpendicular to the direction of the magnetization. Another possibility to contract the indices

of Djκ would be to square D in both indices,

D(r) = |D(r) |2 = (∂jmκ(r)) (∂jmκ(r)) . (8.31)
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Evaluating D for the SSW magnetization yields m2s2q2 at any point in space, which means

that the total change of the spin magnetization is homogeneous. One might be tempted to

use a dependence on D for the definition of the functional constructed with the SSW state as

reference system, because, much like the density and the magnitude of the magnetization, D

has a global value for the SSW state. However we have seen that the longitudinal change of

the magnetization vanishes for the SSW state and therefore also

DT(r) = m2(r)D(r)−DL(r) , (8.32)

would yield the same information as D for the SSW state. We weighted the total change D

with the square of the magnetization, since we projected in the definition of the longitudinal

change of the magnetization on m and not on the unit vector along m. We can rewrite

Eq. (8.32)

DT = mκmκ (∂jmλ) (∂jmλ)−mκ (∂jmκ)mλ (∂jmλ)

= (δκµδλν − δκνδλµ)mκmµ (∂jmλ) (∂jmν)

= ǫτκλǫτµνmκmµ (∂jmλ) (∂jmν) , (8.33)

which explicitly shows that DT(r) is the square of

DT(r) = m(r)× (∇⊗m (r)) , (8.34)

which measures the change of the magnetization perpendicular to the magnetization. Since

the magnetization of SSW state varies only transversally the physical choice is to include

the transversal gradient DT(r) in the definition of the functional. DT only determines the

combination s2q2, which forces us to include second-order gradients. Evaluating the Laplacian

of the magnetization for the SSW state,

d(r) = ∆m(r) = m







−sq2 cos(q · r)
−sq2 sin(q · r)

0







(8.35)

we see that the contraction m(r) · d(r) yields −m2s2q2 for the SSW state which is competing

with DT, because it provides the same information s2q2. Adopting the convention that the

SSW parameters are obtained as local as possible we choose DT to determine s2q2. Squaring

d we obtain d(r) = d(r) · d(r) = m2s2q4 which seems to provide the missing information,

because from the ratio of DT and d we might define the local SSW parameters

s2(r) =
D2

T(r)

m6(r) d(r)
, (8.36)

q2(r) =
m2(r) d(r)

DT(r)
. (8.37)
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However, for a generic system, Eq. (8.36) might yield an s2 which is larger than one. This is

inconsistent with the fact that s represents the sine of the azimuthal angle of the spin-spiral

magnetization. Since dL(r) = (m(r) · d(r))2 represent the longitudinal contribution of the

Laplacian we can in analogy to Eq. (8.32) define

dT(r) = m2(r) d(r)− dL(r) , (8.38)

which can be recasted into

dT = mκmκ (∂j∂jmλ) (∂k∂kmλ)−mκ (∂j∂jmκ)mλ (∂k∂kmλ)

= ǫτκλǫτµνmκmµ (∂j∂jmλ) (∂k∂kmν) . (8.39)

Again, this is the square of the contribution of the Laplacian which is perpendicular to the

magnetization,

dT(r) = m(r)× (∆m(r)) . (8.40)

For the SSW state it is straight forward to verify that dT = m4s2 (1− s2) q4 and hence we

arrive at the final definitions for the local parameters

s2(r) =
D2

T(r)

D2
T(r) +m4(r) dT(r)

, (8.41)

q2(r) =
D2

T(r) +m4(r) dT(r)

m4(r)DT(r)
, (8.42)

where now, by construction, s2 is between zero and one. In definitions Eqs. (8.41), (8.42)

we have implicitly replaced the part of the second-order gradient, providing information al-

ready obtained by means of the first-order gradient, by the first-order gradient containing this

information. Finally we define the SSW functional

ESSW
xc [n,m] =

∫

d3r n(r) εSSWxc (n(r) ,m(r) , DT(r) , dT(r)) , (8.43)

where the function εSSWxc (n,m,DT, dT) or equivalently εSSWxc (rs, χ, s, q) is the exchange-correlation-

energy density of the uniform gas in the spin-spiral-wave state. In analogy to the definition of

a generic GGA (cf. (4.14)), we can rewrite the xc-energy functional as

ESSW
xc [n,m] =

∫

d3r n(r) εunifxc (n(r) ,m(r)) (1 + Sxc(n(r) ,m(r) , DT(r) , dT(r))) , (8.44)

introducing the Spin-Gradient Extension (SGE) Sxc to the LSDA functional,

Sxc(n,m,DT, dT) =
εSSWxc (n,m,DT, dT)− εunifxc (n,m)

εunifxc (n,m)
. (8.45)

Note that

εSSWxc (n,m,DT = 0, dT) = εSSWxc (n,m,DT = 0, dT = 0) = εunifxc (n,m) .
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8.3 Kohn-Sham potentials from the Spin-Gradient Ex-

tension

Having defined the SSW functional we can investigate the corresponding xc-potential and

xc-magnetic field. First we have a look at the usual LSDA potentials, i.e.

vLSDA
xc (r) =

δELSDA
xc

δn(r)
= εunifxc (n(r) ,m(r)) + n(r)

(
∂nε

unif
xc (n(r) ,m(r))

)
, (8.46)

µBB
LSDA
xc (r) =

δELSDA
xc

δm(r)
= n(r)

(
∂mε

unif
xc (n(r) ,m(r))

)m(r)

m(r)
. (8.47)

In order to streamline the derivation of the xc-potentials for the SSW functional we drop the

super- and subscripts of εSSWxc and we only indicate a spatial dependence of ε implied through

its explicit dependence on the local values of n, m, DT and dT. Furthermore we drop the

subscript T of the gradients DT, dT and introduce the abbreviations εn = ∂nε, εm = ∂mε,

εD = ∂Dε and εd = ∂dε. The xc-potential has the same form as the LSDA potential, since ε

does only depend on the density and not on gradients of the density,

vSSWxc (r) =
δESSW

xc

δn(r)
= ε(r) + n(r) εn(r) . (8.48)

The xc-magnetic field has three contributions,

BSSW
xc (r) = Bm(r) +BD(r) +Bd(r) , (8.49)

where Bm, BD, Bd contain εm, εD, εd, respectively. The first contribution is formally

equivalent to the LSDA xc-magnetic field,

µBBm(r) = n(r) εm(r)
m(r)

m(r)
. (8.50)

For the determination of BD we need to compute

δD(r′)

δmκ(r)
=

δ

δmκ(r)

(

mλmλ (∂jmµ) (∂jmµ)−mλ (∂jmλ)mµ (∂jmµ)
)

(r′)

= 2
(

mκ(r
′)
(
∂′jmλ(r

′)
) (
∂′jmλ(r

′)
)
−
(
∂′jmκ(r

′)
)
mλ(r

′)
(
∂′jmλ(r

′)
))

δ(r′ − r)

+ 2
((
∂′jmκ(r

′)
)
mλ(r

′)mλ(r
′)−mκ(r

′)mλ(r
′)
(
∂′jmλ(r

′)
))

∂′jδ(r
′ − r) . (8.51)

Using a partial integration we obtain

µB (BD)κ = 4nεD

(

mκ (∂jmλ) (∂jmλ)− (∂jmκ) (∂jmλ)mλ

)

+ 2nεD

(

mκmλ (∂j∂jmλ)− (∂j∂jmκ)mλmλ

)

+ 2 (∂jnεD)
(

mκmλ (∂jmλ)− (∂jmκ)mλmλ

)

, (8.52)
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where we dropped the spatial arguments for brevity. In vectorial notation BD can be written

as

µBBD = 4 (nεD) (∇⊗m)×
(
m×(∇⊗m)

)
+ 2 (nεD)m×(m×d)

+ 2 (∇nεD)m×
(
m×(∇⊗m)

)
, (8.53)

where the cross-product × acts on the spin components, i.e. , the components of m. Fur-

thermore it is implied the components of the ∇ are contracted. The energy contribution due

to BD in the Kohn-Sham system can be computed without employing a partial integration by

using ∂′jδ(r
′ − r) = −∂jδ(r′ − r),

EBD
= µB

∫

d3r m(r) ·BD(r)

= 4

∫

d3r n(r) εD(r) (m(r)×(∇⊗m(r))) · (m(r)×(∇⊗m(r)))

= 4

∫

d3r n(r) εD(r)D(r) . (8.54)

A similar calculation can be used to verify that the net torque due to BD vanishes. Now we

compute

δd(r′)

δmκ(r)
=

δ

δmκ(r)

(

mλmλ (∂j∂jmµ) (∂k∂kmµ)−mλ (∂j∂jmλ)mµ (∂k∂kmµ)
)

(r′)

= 2
(

mκ(r
′)
(
∂′j∂

′
jmλ(r

′)
)
(∂′k∂

′
kmλ(r

′))−
(
∂′j∂

′
jmκ(r

′)
)
mλ(r

′) (∂′k∂
′
kmλ(r

′))
)

δ(r′ − r)

+ 2
((
∂′j∂

′
jmκ(r

′)
)
mλ(r

′)mλ(r
′)−mκ(r

′)mλ(r
′)
(
∂′j∂

′
jmλ(r

′)
))

∂′k∂
′
kδ(r

′ − r) . (8.55)

Again, using two partial integrations, we get

µB (Bd)κ = 2nεd

(

(∂j∂j∂k∂kmκ)mλmλ −mκmλ (∂j∂j∂k∂kmλ)
)

+ 4nεd

(

(∂j∂jmκ) (∂kmλ) (∂kmλ)− (∂kmκ) (∂kmλ) (∂j∂jmλ)
)

+ 4nεd

(

(∂k∂j∂jmκ) (∂kmλ)mλ −mκ (∂kmλ) (∂k∂j∂jmλ)
)

+ 4nεd

(

(∂k∂j∂jmκ)mλ (∂kmλ)− (∂kmκ)mλ (∂k∂j∂jmλ)
)

+ 4 (∂knεd)
(

(∂k∂j∂jmκ)mλmλ −mκmλ (∂k∂j∂jmλ)
)

+ 4 (∂knεd)
(

(∂j∂jmκ) (∂kmλ)mλ −mκ (∂kmλ) (∂j∂jmλ)
)

+ 4 (∂knεd)
(

(∂j∂jmκ)mλ (∂kmλ)− (∂kmκ)mλ (∂j∂jmλ)
)

+ 2 (∂k∂knεd)
(

(∂j∂jmκ)mλmλ −mκmλ (∂j∂jmλ)
)

. (8.56)
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Introducing δ = ∆d this reads in vectorial notation,

µBBd = 4 (∇nεd)
(

m×
(
(∇⊗d)×m

)
+ (∇⊗m)×

(
d×m

)
+m×

(
d×(∇⊗m)

))

+ 4 (nεd)
(

(∇⊗m)×
(
d×(∇⊗m)

)
+ (∇⊗m)×

(
(∇⊗d)×m

)
+m×

(
(∇⊗d)×(∇⊗m)

))

+ 2
(

(nεd)m×
(
δ×m

)
+ (∆nεd)m×

(
d×m

))

. (8.57)

The energy contribution for the Kohn-Sham system due to Bd is given by

EBd
= µB

∫

d3r m(r) ·Bd(r)

= 4

∫

d3r n(r) εd(r) (m(r)×d(r)) · (m(r)×d(r))

= 4

∫

d3r n(r) εd(r) d(r) , (8.58)

where we used ∂′k∂
′
kδ(r

′ − r) = ∂k∂kδ(r
′ − r). In the same way we can verify that also

the net torque due to Bd vanishes and therefore the net torque of the full BSSW
xc vanishes

as expected, since we defined the SSW functional using only properly contracted quantities.

From the explicit form of BD, Eq. (8.53), and Bd, Eq. (8.57), it is evident that for a generic

magnetization BSSW
xc is not parallel to m. This means that the xc-magnetic field exerts a

local torque on the system. For a collinear magnetization, i.e. a magnetization that points in

the same direction everywhere in space, only the first term Bm is non-vanishing. Therefore in

collinear situations BSSW
xc is identical to BLSDA

xc . If one is interested in finding the ground-state

magnetic configuration of a specific system without external magnetic field, one has to start

the self-consistent Kohn-Sham calculation from a initial magnetization that is non-collinear,

i.e. that points in various directions in space, and investigate to which magnetic configuration

the Kohn-Sham self-consistent loop converges.

8.4 Random-Phase Approximation for the spin-spiral-

wave state

The definition of the SSW functional is completed by the determination of the xc-energy

of the uniform electron gas in the spin-spiral configuration. As a first approximation one

might consider to use only the exchange energy of the uniform electron gas either from a

self-consistent Hartree-Fock calculation (cf. Chap. 6) or from first-order perturbation theory

(cf. Chap. 7). As we have discussed extensively in Chapter 6, the uniform electron gas exhibits

an instability w.r.t. the formation of a SSW when treated in the Hartree-Fock approximation,

and in Chapter 7 we found that this instability is at least partially present if we consider
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the OEP exact-exchange functional, which is equivalent to treating the energy in first-order

perturbation theory for the uniform electron gas. However an analytical argument by Giuliani

and Vignale [GV08] showed that this instability is not present if one considers the Random-

Phase Approximation which corresponds to the inclusion of correlations. Also our investigation

of the SSW within RDMFT in Sec. 6.6 indicates that an inclusion of correlation effects opposes

the Overhauser instability. Since we do not want to encode an artificial instability in the

functional, we decided to obtain the reference energies from the Random-Phase Approximation

for the uniform electron gas in the SSW configuration. Optimally one would like to use

exact Quantum Monte-Carlo methods to obtain the reference energies, but to our knowledge

there are no studies of the uniform electron gas including non-collinear spin magnetizations

employing Quantum Monte-Carlo methods. At this point it is important to stress that the

reference energies are not obtained from a ground state calculation of the uniform electron

gas, but from a minimization of the energy under the constraint that the uniform electron gas

has a SSW spin magnetization. Note that the same is true for the reference energies used to

construct the usual LSDA, i.e. , the energies are obtained from the uniform electron gas being

constrained to have a specific value of the spin magnetization. This means that, in spite of the

fact that the uniform electron gas is not spin polarized at a density corresponding to rs = 1,

the minimal energy corresponding to a spin polarized electron gas at this density enters the

definition of the LSDA.

Employing the coupling constant technique or, equivalently, the adiabatic-connection fluctuation-

dissipation theorem of many-body perturbation theory the correlation energy in the RPA of

the uniform electron gas is given by

εc,RPA =
ı

2

∫ 1

0

dλ
1

λ

∫∫

d3qdω
(λW (q)P0(q;ω))

2

1− λW (q)P0(q;ω)
. (8.59)

From a DFT point-of-view the RPA correlation energy also contains kinetic energy contribu-

tions by means of the coupling constant integration. One might argue that this is responsible

for the suppression of the Overhauser instability, since the kinetic energy opposes the forma-

tion of a SSW. In Eq. (8.59) we have introduced the polarizability P0 of the non-interacting

uniform electron gas in the SSW state. In order to obtain the explicit form of P0 we first write



97

down the non-interacting time-ordered Green’s function for the SSW state

G0(r; r′; τ) = −ı
∑

b=∓

∫

d3k e−ıǫb(k)τξkb(r) ξ
†
kb(r

′) ((1− nb(k))Θ(τ)− nb(k)Θ(−τ))

=
1

2π

∫

dω
1

(2π)3

∫

d3k eı(k·(r−r′)−ωτ)

×
(

Mk−(r; r
′)

(
1− n−(k)

ω − ǫ−(k) + ıη
+

n−(k)

ω − ǫ−(k)− ıη

)

+Mk+(r; r
′)

(
1− n+(k)

ω − ǫ+(k) + ıη
+

n+(k)

ω − ǫ+(k)− ıη

))

, (8.60)

where we introduced the two 2×2-matrices

Mk−(r; r
′) =




cos2

(
1
2
θ(k)

)
e−ı

1
2
q·(r−r′) sin

(
1
2
θ(k)

)
cos
(
1
2
θ(k)

)
e−ı

1
2
q·(r+r′)

sin
(
1
2
θ(k)

)
cos
(
1
2
θ(k)

)
eı

1
2
q·(r+r′) sin2

(
1
2
θ(k)

)
eı

1
2
q·(r−r′)



 ,

(8.61a)

Mk+(r; r
′) =




sin2

(
1
2
θ(k)

)
e−ı

1
2
q·(r−r′) − sin

(
1
2
θ(k)

)
cos
(
1
2
θ(k)

)
e−ı

1
2
q·(r+r′)

− sin
(
1
2
θ(k)

)
cos
(
1
2
θ(k)

)
eı

1
2
q·(r+r′) cos2

(
1
2
θ(k)

)
eı

1
2
q·(r−r′)



 .

(8.61b)

The non-interacting dynamical density-density correlation function, also known as the polar-

ization propagator, is related to the Green’s function Eq. (8.60) by

P0(r; r
′; τ) = −ı tr{G0(r; r′; τ)G0(r′; r; τ)} (8.62)

=
1

2π

∫

dω
1

(2π)3

∫

d3k1
1

(2π)3

∫

d3k2 e
ı((k1−k2)·(r−r′)−ωτ)

×
(

A(k1,k2)

(
(1− n−(k1))n−(k2)

ω − (ǫ−(k1)− ǫ−(k2)) + ıη
− n−(k1) (1− n−(k2))

ω − (ǫ−(k1)− ǫ−(k2))− ıη
(1− n+(k1))n+(k2)

ω − (ǫ+(k1)− ǫ+(k2)) + ıη
− n+(k1) (1− n+(k2))

ω − (ǫ+(k1)− ǫ+(k2))− ıη

)

+B(k1,k2)

(
(1− n−(k1))n+(k2)

ω − (ǫ−(k1)− ǫ+(k2)) + ıη
− n−(k1) (1− n+(k2))

ω − (ǫ−(k1)− ǫ+(k2))− ıη
(1− n+(k1))n−(k2)

ω − (ǫ+(k1)− ǫ−(k2)) + ıη
− n+(k1) (1− n−(k2))

ω − (ǫ+(k1)− ǫ−(k2))− ıη

))

,

where we have executed one ω-integration by means of the residue theorem of complex analysis.
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Moreover we introduced

A(k1,k2) = tr{Mk1−(r; r
′)Mk2−(r

′; r)} = tr{Mk1+(r; r
′)Mk2+(r

′; r)}
= 1

2
(1 + C(k1;k2)) (8.63a)

B(k1,k2) = tr{Mk1−(r; r
′)Mk2+(r

′; r)} = tr{Mk1+(r; r
′)Mk2−(r

′; r)}
= 1

2
(1 + C(k1;k2)) (8.63b)

C(k1;k2) = cos(θ(k1)) cos(θ(k2)) + sin(θ(k1)) sin(θ(k2)) . (8.63c)

Relabeling k1 → k and k2 → k − q in Eq. (8.62), we can read-off the Fourier transform of

the polarization propagator,

P0(q;ω) =
∑

b1=∓

∑

b2=∓

1

(2π)3

∫

d3k 1
2
(1 + b1b2C(k;k − q))

×
(

(1− nb1(k))nb2(k − q)

ω − (ǫb1(k)− ǫb2(k − q)) + ıη
− nb1(k) (1− nb2(k − q))

ω − (ǫb1(k)− ǫb2(k − q))− ıη

)

. (8.64)

From the Lehmann representation we know that time-ordered correlation functions are analytic

in the first and third quadrant of the complex ω-plane and hence we can deform the integration

contour for the frequency integral in the expression for the correlation energy Eq. (8.59) to

run along the imaginary axis, i.e. ,

εc,RPA = −1

2

∫ 1

0

dλ
1

λ

∫∫

d3qdω
(λW (q)P0(q;ω))

2

1− λW (q)P0(q;ω)
. (8.65)

Carrying out the coupling constant integration we get

εc,RPA =
1

2

∫∫

d3qdω (ln(1−W (q)P0(q; ıω)) +W (q)P0(q; ıω)) . (8.66)

Accordingly we only need the polarizability for purely imaginary frequencies, i.e.

P0(q; ıω) =
∑

b1=∓

∑

b2=∓

1

(2π)3

∫

d3k 1
2
(1 + b1b2C(k;k − q))

nb1(k)− nb2(k − q)

(ǫb1(k)− ǫb2(k − q))− ıω ,

(8.67)

where we dropped the ±ıη prescription since the polarizability has no poles on the imaginary

axis. It is straight forward to obtain the real and imaginary part of the polarizability along the

imaginary ω-axis,

Re[P0(k; ıω)] =
∑

b1=∓

∑

b2=∓

1

(2π)3

∫

d3k 1
2
(1 + b1b2C(k;k − q))

× (nb1(k)− nb2(k − q)) (ǫb1(k)− ǫb2(k − q))

(ǫb1(k)− ǫb2(k − q))2 + ω2
, (8.68)

Im[P0(k; ıω)] =
∑

b1=∓

∑

b2=∓

1

(2π)3

∫

d3k 1
2
(1 + b1b2C(k;k − q))

× (nb1(k)− nb2(k − q))ω

(ǫb1(k)− ǫb2(k − q))2 + ω2
. (8.69)
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Figure 8.1:

Representative results for the change in energy δεSSW = εSSW − εunif . δε is plotted as

a function of the spin-spiral wave vector q. The various curves represent results for

s = 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, where the overall variation increases with s.

In the left panels the changes in exchange energy (black curves) and the changes in correlation

energy (red curves) are shown. The right panels show the combined change of the exchange-

correlation energy of the uniform electron gas due to the formation of a spin-spiral wave. In

agreement with our results from RDMFT (cf. Sec. 6.6) the correlation contribution cancels

largely the exchange contribution.
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We can see that the real and imaginary part of the polarizability are even and odd functions

of ω, respectively. Using these definite parities we can restrict the frequency integration to

positive ω,

εc,RPA =

∫

d3q

∫ ∞

0

dω
(

1
2
ln
(
(1−W (q) Re[P0(q; ıω)])

2 + (Im[P0(q; ıω)])
2)

+W (q) Re[P0(q; ıω)]
)

. (8.70)

The explicit calculation of the non-interacting polarizability for imaginary frequencies is done in

App. B, here it shall just be mentioned that it can be reduced to a one-dimensional integration

that has to be carried out numerically. The 4 integrals to be computed in order to obtain

the correlation energy include a trivial angle integration, but the remaining three-dimensional

integral has to be performed numerically. In Figure 8.1 we compare the RPA-correlation energy

for the SSW state to the exchange energy for some representative characteristic parameters

of the SSW state.

8.5 Parameterization of the Random-Phase Approxi-

mation results

Instead of using the RPA xc-energy as an approximation to εSSWxc (rs, χ, s, q), we use the results

from RPA to approximate the SGE enhancement factor Sxc(rs, χ, s, q), Eq. (8.45). This

has the advantage that for collinear systems the SSW functional reduces to the well-known

LSDA, obtained by parameterizing the Quantum Monte Carlo results, e.g. the parameterization

by Perdew and Wang [PW92], and not to the RPA-LSDA. For any practical application of

the SSW functional it is necessary to have a numerically accessible representation of the

SGE enhancement factor, since it is not possible to calculate the xc-energy of the uniform

electron gas on-the-fly. Sxc is a function of 4 variables and hence it is not straight forward to

guess an approximate form. We decided to construct a polynomial representation S̃xc of the

enhancement factor that is optimized using the RPA results described in the previous section.

We chose a polynomial representation of the form

S̃n
xc =

∑

2j+k+l+m≤2n

CjklmRj(rs)Xk(χ)Sl(s)Qm(q/kF) . (8.71)
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The polynomials R, X, S and Q are defined in terms of the Chebychev polynomials Tn(x),

i.e. ,

Rj(rs) = Tj

(
rs

rs + 2

)

, (8.72a)

Xk(χ) =
1
2
(T2k(χ) + T2k+2(χ)) = χT2k+1(χ) , (8.72b)

Sl(s) =
1
2
(T2l(s) + T2l+2(s)) = sT2s+1(s) , (8.72c)

Qm(q) =
1
2

(

T2m

(
q/kF

q/kF + 2

)

+ T2m+2

(
q/kF

q/kF + 2

))

=

(
q/kF

q/kF + 2

)

T2m+1

(
q/kF

q/kF + 2

)

. (8.72d)

With this choice the polynomial representation of Sxc fulfills by construction the important

limit Sxc → 0 for either χ→ 0, s→ 0 or q → 0. The parameter n of S̃n
xc determines the

maximal degree (which is roughly 2n) of the the polynomials. Note that S̃xc is a rational

function in rs and q since we mapped the intervals rs ∈ [0,∞] and q/kF ∈ [0,∞] onto the

unit interval via rs
rs+2

and q/kF
q/kF+2

, respectively. In order to determine the optimal Cjklm we

compute the RPA xc-energy on an equidistant mesh in the 4-dimensional parameter space,

i.e. ,

(rs, χ, s, q/kF) ∈ [1, 2, . . . , 10]× [0.05, 0.15, . . . , 0.95]

× [0.05, 0.15, . . . , 0.95]× [0, 0.25, . . . , 16.0] , (8.73)

which yields 65000 data points for the least-square fitting of the coefficients. The results of

the fit for various n are summarized in table 8.1. We can see that by increasing the degree of

n 3 4 5 6 7

Number of coefficients 35 70 126 210 330

RMS deviation (×10−2) 2.7 2.5 2.2 2.1 2.0

Table 8.1: Table summarizing the least-square fit of Sxc,RPA.

the fitting polynomial we reduce the root-mean-square deviation. For 330 coefficients some of

the coefficients are considerably larger than the average fitting coefficient, which gives a hint

that we are starting to over-fit the reference data. This is not surprising since we are using

polynomials for our fit and hence increasing the degree of the polynomial induces uncontrolled

oscillations at some point (Runge’s phenomenon). We find that S̃n=6
xc is a reasonable choice

for the polynomial representation of Sxc,RPA and in Fig. 8.2 we compare this polynomial

representation to the RPA results for some representative characteristic SSW parameters. The

coefficients for S̃n=6
xc are tabulated in appendix C.



102

0 1 2 3 4 5 6 7 8
-0.02

-0.015

-0.01

-0.005

0

−
S
x
c

q/kF

rs = 5 (a.u.), χ = 0.85

0 1 2 3 4 5 6 7 8
-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

−
S
x
c

q/kF

rs = 3 (a.u.), χ = 0.35

Figure 8.2: Representative results for the SGE enhancement Sxc. Here we plot −Sxc as

a function of the spin-spiral wave vector q, because then the curves may directly be com-

pared to the energy differences shown in Fig. 8.1 (εunifxc (rs, χ) is strictly negative, hence min-

ima/maxima are interchange in Sxc compared to δε). The various curves represent results for

s = 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, where, again (cf. Fig. 8.1), the overall varia-

tion increases with s. The results from the RPA calculation are shown in black and the results

from the polynomial representation S̃n=6
xc are shown in red. We see that S̃n=6

xc is a qualitatively

correct representation of Sxc,RPA.

8.6 First results and discussion

In order to investigate the effects of the inclusion of transversal gradients of the spin magne-

tization we implemented the polynomial representation, constructed in the previous section,

in the ELK code [ELK]. The ELK code is an all-electron full-potential linearized augmented-

plane-wave (FP-LAPW) code, which allows a fully non-collinear treatment of periodic systems.

Accordingly it allows for an investigation of intra-atomic, as well as inter-atomic non-collinear

magnetism and therefore is perfectly suited for the application of the SSW functional. The

interested reader may find an excellent overview and reference on the FP-LAPW method in

the book by Singh and Nordström [SN05]. For the implementation of the xc-magnetic field

there are two distinct strategies. The first is to compute the spatially dependent Bxc(r) from

Eqs. (8.50), (8.53), (8.57), which involves 4th-order gradients of the spin magnetization and

second order gradients of n(r) ε(r), that have to be obtained numerically. This implemen-

tation will be referred to as the local implementation. The second strategy uses that the

eigenstates, i.e. , the Kohn-Sham orbitals
{

Φs
j

}

, of the effective Kohn-Sham Hamiltonian Ĥs,
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including the xc-magnetic field, are obtained by diagonalizing a matrix-representation of Ĥs

on a Pauli spinor basis
{

Φj(r)
}

. Since the determination of the matrix-representation of Ĥs

only requires the matrix elements of Bxc(r), i.e. ,

(Bxc)jk = µB

∫

d3r Φ†
j(r)Bxc(r) · σΦk(r)

= (Bm)jk + (BD)jk + (Bd)jk , (8.74)

one can directly use Eqs. (8.51) and (8.55) in connection with ∂′δ(r − r′) = −∂δ(r − r′) and

∂′∂′δ(r − r′) = ∂∂δ(r − r′), respectively, in order to obtain the matrix elements Eq. (8.74)

in terms of second-order gradients, i.e. ,

(Bm)jk =
∫

d3r
n(r) εm(r)

m(r)
mjk(r)·m(r) , (8.75)

for the contribution stemming from the dependence on the magnitude of the spin magnetiza-

tion,

(BD)jk = 2

∫

d3r n(r) εD(r)
(

(mjk(r)×(∇⊗m(r))) · (m(r)×(∇⊗m(r)))

+ (m(r)×(∇⊗mjk(r))) · (m(r)×(∇⊗m(r)))
)

, (8.76)

for the contribution due to the dependence on the transversal first-order gradient, and finally

(Bd)jk = 2

∫

d3r n(r) εd(r)
(

(mjk(r)×(∆m(r))) · (m(r)×(∆m(r)))

+ (m(r)×(∆mjk(r))) · (m(r)×(∆m(r)))
)

, (8.77)

for the contribution of the xc-magnetic field implied by the dependence on the second-order

transversal gradient. One realizes that now second-order gradients for all spin-magnetization

matrix elements

mjk(r) = Φ†
j(r)σΦk(r) , (8.78)

have to be computed. For electronic-structure codes using a fixed basis set, these gradi-

ents could be computed once, at the beginning of the self-consistent Kohn-Sham cycle. In

the LAPW method, however, an optimized basis is determined in each self-consistent loop,

which requires a re-calculation of the gradients of the spin-magnetization matrix elements in

each iteration. This increases considerably the numerical effort of the second implementation

strategy compared to the local implementation, which requires the computation of 4th-order

gradients, but only of the total spin magnetization m(r).
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Figure 8.3:

The left panels show the spin magnetization of the Chromium mono-layer. The direction of

the spin magnetization is indicated by the red arrows and the magnitude is shown by the color

map. The upper left panel depicts the result from the LSDA calculation and the lower left

panel from the local implementation of the SSW functional.

The right panels show the exchange-correlation-magnetic field of the Chromium mono-layer.

Again, the direction of of Bxc is indicated by the red arrows and the magnitude is shown by

the color map. Result from the LSDA calculation are given in the upper right panel and the

result for the SSW functional in the lower right panel.

While the spin magnetization remains virtually unchanged, the xc-magnetic field employing

the spin-gradient extension to the LSDA exhibits more structure. The xc-magnetic field of the

LSDA is by construction proportional to the spin magnetization which is essentially spherically

symmetric, the xc-magnetic field of the SSW functional shows the 3-fold symmetry of the

hexagonal Chromium mono-layer (cf. Fig. 8.4).
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As a first testing scenario we choose to investigate an unsupported Chromium mono-layer

with the lattice constant (a = 7.79 a.u.) and geometry of a Ag(111) surface. We would like to

emphasize that the presented results are not a systematic investigation of its magnetic ground

state since we are not investigating different magnetic structures. Instead we are focusing on

the 120◦ Néel state which is known to be a solution of the classical Heisenberg model for

antiferromagnets with nearest-neighbor interactions. The main aim of this proof of principle

calculation is to compare the LSDA functional which, by construction, yields xc-magnetic

fields that are collinear w.r.t. the spin magnetization, to the SSW functional proposed in

this work. All calculations were performed using a 23×23×1 k-point grid with a plane-wave

cutoff of |G+ k| ≤ 2.5 a.u. and touching muffin-tin radii of 2.73 a.u. . The symmetry is

broken by applying a small magnetic field inside the muffin-tin spheres in order to induce the

120◦ Néel state. During the self-consistent iteration the external magnetic field is switched off

successively. In Fig. 8.3 we compare the result from the LSDA calculation in the Perdew-Wang

parameterization [PW92] and the SSW functional, i.e. the aforementioned LSDA including the

polynomial representation S̃n=6
xc of the SGE, defined in Sec. 8.5. The spin magnetization for

both functionals yield similar results and we find atomic moments of 3.9732µB for the LSDA

and 3.9724µB for the SSW functional. The xc-magnetic field from the SSW functional exhibits

more structure and reflects the 3-fold rotation symmetry of the 120◦ Néel state.

The main difference of the SSW functional compared to the LSDA is the non-collinearity

of the xc-magnetic field w.r.t. the spin magnetization, which is shown in Fig. 8.4. Introducing

the spin-current-density operator

Ĵ(r) = − ı
2

(

Φ̂†(r)σ⊗
(

∇Φ̂(r)
)

−
(

∇Φ̂†(r)
)

⊗σΦ̂(r)
)

, (8.79)

we can write the Kohn-Sham equation of motion for the spin magnetization, i.e.,

∂tm(r) +∇ · J s(r) = −2µBm(r)×Bs(r) . (8.80)

For static SDFT with a vanishing external magnetic field this implies

∇ · J s(r) = 2µBm(r)×Bxc(r) , (8.81)

i.e. the local torque due the exchange-correlation magnetic field is identical to the divergence

of the Kohn-Sham spin-current density for vanishing external fields. For the example of the

chromium mono-layer in the 120◦ Néel state we therefore see that the transversal component

of the Kohn-Sham ground-state spin-current does not vanish (cf. Fig. 8.4).
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Figure 8.4:

Right panel: Zoom on a single Chromium atom. The xc-magnetic field, calculated using

the SSW functional in the local implementation (cf. lower right panel of Fig. 8.3). Here, in

contrast to Fig. 8.3, the full range of the magnitude of Bxc is shown.

Left panel: The z-component of the local torque m×Bxc. Since the spin magnetization and

the xc-magnetic field vary in the x-y plane, the other components of the local torque vanish.

A non-vanishing local torque indicates that the SSW functional accounts for the difference

between the Kohn-Sham spin-current density J s(r) and the physical spin-current J(r).

Considering the time-dependent version of Density-Functional Theory, introduced first by

Runge and Gross in 1984 [RG84], we compare the equation of motion for the spin magnetization

in the physical system

∂tm(r, t) +∇ · J(r, t) = −2µBm(r, t)×B(r, t) . (8.82)

to the equation of motion for the Kohn-Sham system (cf. (8.80)). TD-SDFT reproduces the

physical time-dependent spin magnetization but not the spin-current density and hence we can

introduce the so-called exchange-correlation spin-current density

Jxc(r, t) = J(r, t)− J s(r, t) . (8.83)

Subtracting Eq. (8.82) from Eq. (8.80) we see that the longitudinal part of the xc-spin-

current density is equal to the local torque due to the time-dependent Bxc [CVG01]. Hence

an adiabatic application of the proposed SSW functional is able to take the difference of Kohn-

Sham and physical spin-current density into account. In fact it can easily be verified that the
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local torque due to the SSW functional can be written as

2µBm(r)×BSSW
xc (r) = 2∇ ·

(

− 2n(r) εD(r)m(r)×(∇⊗m(r))m2(r)

− 4n(r) εd(r) (∇⊗m(r))×(∆m(r))m2(r)

− 4n(r) εd(r)m(r)×(∇⊗m(r))m(r)·(∆m(r))

+∇⊗
(
2n(r) εd(r)m(r)×(∆m(r))m2(r)

) )

(8.84)

= ∇ · Jxc(r) . (8.85)

This suggests the notion that the part of BSSW
xc that is perpendicular to the spin magnetization

actually implies an explicit functional for the longitudinal part of the exchange-correlation spin-

current density, whereas the parallel part determines the energetics of the Kohn-Sham system.

In conclusion we believe that the SSW functional not only advances the equilibrium descrip-

tion of non-collinear systems, but also the ab-initio description of non-collinear spin dynamics.

An interesting question will be if the exchange-correlation spin-current functional proves to be

useful when spin-orbit coupling is included.





Outlook

The main motif of the presented thesis was the spin-spiral-wave state. We investigated its prop-

erties starting with a quantitative analysis of Overhauser’s instability theorem. The main out-

come of this work is an incorporation of the spin-spiral-wave state into Spin-Density-Functional

Theory. To this end we showed that the idea of a local-density approximation can be general-

ized to use the spin-spiral-wave state of the uniform electron gas as reference system. The aim

was to make the density-functional treatment of real materials sensitive to directional changes

of the spin-magnetic moment.

Recently non-collinear magnetic structures in the form of skyrmions have attracted attention

due to their experimental observation [MBJ+09]. The Spin-Gradient Extension to the Local-

Spin-Density Approximation may proves useful in the theoretical confirmation and prediction of

these structures. Whether a quantitative agreement with experiments can be achieved remains

to be seen. Employing large super cells, necessary to allow for the description of magnetic

structures that involve multiple unit cells, seems feasible since the proposed functional retains

the numerical simplicity of a local approximation. As a side remark we mention that the

generalized Bloch theorem for spin-spiral structures, which are related but not identical to

the spin-spiral state described in this thesis, allows to simulate a spin magnetization with a

periodicity incommensurate with the chemical unit cell using only the chemical unit cell with

modified boundary conditions for the spin-up and spin-down components of the orbitals. A

notorious example to study would be the γ-phase of iron which was found to exhibit a spin

spiral structure some time ago [Tsu89, TNN93].

The field of spintronics is believed to provide the next step in the everlasting aim of miniatur-

ization of electronic devices. The development of new spintronic devices requires a microscopic

understanding of how electron transport properties are affected by the spin degree of freedom.

Therefore it would be desirable to expand the present work to include time dependence. A first

possibility is to directly use the functional adiabatically in the framework time-dependent spin-

density-functional theory. In the linear response regime this would require the evaluation of

the exchange-correlation kernel, which is the functional derivative of the exchange-correlation

potential and magnetic field of the spin-spiral-wave functional. An interesting question is

109
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to what extend the charge and spin linear response are coupled. Furthermore within time-

dependent Spin-Density-Functional Theory the non-linear regime is accessible using real time

propagation of the Kohn-Sham equations. Leaving the adiabatic domain a challenge would

be to investigate whether a frequency dependent exchange-correlation kernel can be derived

using a spin-spiral-wave state that rotates also in time.



Appendix A

Exchange integrals for cylindrical

volume elements

In this appendix we present the computation of the exchange-integral weights, defined in

Chap. 6, Sec. 6.4, Eq. (6.34c). The integral to compute reads

DXIij =
1

2n

1

(2π)3

∫∫∫

Ωi

dkρ1dkz1dφ1
1

(2π)3

∫∫∫

Ωj

dkρ2dkz2dφ2

× 4πkρ1kρ2

k2ρ1 + k2ρ2 + (kz1 − kz2)2 − 2kρ1kρ2 cos(φ1 − φ2)
(A.1)

After shifting φ1 → φ1 + φ2, which is possible without changing the limits in φ1 because of

the periodicity of the cosine, we have an integral of the type
∫ 2π

0

dφ
1

1 + a cos(φ)
=

2π√
1− a2

, a2 < 1 , (A.2)

where

a =
−2kρ1kρ2

k2ρ1 + k2ρ2 + (kz1 − kz2)2
. (A.3)

From the second angular integration we get trivially a factor of 2π. Renaming the integration

variables ki = kρi and zi = kzi we have,

DXIij =
1

(2π)3 n

∫∫

Ωi

dk1dz1

∫∫

Ωj

dk2dz2
k1k2

√

(k21 − k22)2 + (z1 − z2)4 + 2 (k21 + k22) (z1 − z2)2
.

(A.4)

After introducing

ǫ1 =
k21
2
, a1 =

(
kiρ
)2

2
, b1 =

(
kiρ + δiρ

)2

2
, c1 = kiz , d1 = kiz + δiz,

ǫ2 =
k22
2
, a2 =

(
kjρ
)2

2
, b2 =

(
kjρ + δjρ

)2

2
, c2 = kjz , d2 = kjz + δjz, (A.5)
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Figure A.1: case A: (b1 − a1) < (b2 − a2) Figure A.2: case B: (b1 − a1) > (b2 − a2)

the integral reads

DXIij =
1

(2π)3 2n

∫ b1

a1

dǫ1

∫ d1

c1

dz1

∫ b2

a2

dǫ2

∫ d2

c2

dz2

× 1
√

(ǫ1 − ǫ2)2 + 1
4
(z1 − z2)4 + (ǫ1 + ǫ2) (z1 − z2)2

. (A.6)

Obviously the remaining integrand depends only on the three coordinates (ǫ1 − ǫ2), (ǫ1 + ǫ2)

and (z1 − z2), wich suggests the following transformation of variables:

x = ǫ1 − ǫ2 , y = ǫ1 + ǫ2 , s = z1 − z2 , t = z1 + z2, (A.7)

which leads to the following expression for the integral in terms of the new integration variables,

DXIij =
1

(2π)3 8n

∫

ds

∫

dt

∫

dx

∫

dy
1

√

x2 + 1
4
s4 + ys2

︸ ︷︷ ︸

=I(s)

(A.8)

where we omitted the limits of integration, because they are not changing in a simple way. In

fact they depend on the order in which the integrals are carried out. In Eq. (A.8) we already

indicate in which order we would like to compute the integrals, this means that now we have

to find the correct implementation of the limits.

In order to find the correct limits of integration after the variable transformation in Eq. (A.8)

we have to distinguish the two cases that are depicted in Fig. A.1 and Fig. A.2, respectively.

We can see that we have to split the integral over x for both cases in three regions. The

lower and the upper limit for y depend on the boundaries of the rectangle, which are given by
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different equations in each region. In case A the resulting integral is given by

IA(s) =

∫ b1−b2

a1−b2

dx

∫ 2b2+x

2a1−x

dy (· · ·)
︸ ︷︷ ︸

=FA
1
(x,s)

+

∫ a1−a2

b1−b2

dx

∫ 2b1−x

2a1−x

dy (· · ·)
︸ ︷︷ ︸

=FA
2
(x,s)

+

∫ b1−a2

a1−a2

dx

∫ 2b1−x

2a2+x

dy (· · ·)
︸ ︷︷ ︸

=FA
3
(x,s)

,

(A.9)

and in case B by

IB(s) =

∫ a1−a2

a1−b2

dx

∫ 2b2+x

2a1−x

dy (· · ·)
︸ ︷︷ ︸

=FB
1
(x,s)

+

∫ b1−b2

a1−a2

dx

∫ 2b2+x

2a2+x

dy (· · ·)
︸ ︷︷ ︸

=FB
2
(x,s)

+

∫ b1−a2

b1−b2

dx

∫ 2b1−x

2a2+x

dy (· · ·)
︸ ︷︷ ︸

=FB
3
(x,s)

.

(A.10)

It is an easy matter to compute the partial contributions

FA
1 (x, s) =

2

s2

(√
(
x+ 1

2
s2
)2

+ 2b2s2 −
√
(
x− 1

2
s2
)2

+ 2a1s2
)

, (A.11a)

FA
2 (x, s) =

2

s2

(√
(
x− 1

2
s2
)2

+ 2b1s2 −
√
(
x− 1

2
s2
)2

+ 2a1s2
)

, (A.11b)

FA
3 (x, s) =

2

s2

(√
(
x− 1

2
s2
)2

+ 2b1s2 −
√
(
x+ 1

2
s2
)2

+ 2a2s2
)

, (A.11c)

FB
1 (x, s) =

2

s2

(√
(
x+ 1

2
s2
)2

+ 2b2s2 −
√
(
x− 1

2
s2
)2

+ 2a1s2
)

, (A.11d)

FB
2 (x, s) =

2

s2

(√
(
x+ 1

2
s2
)2

+ 2b2s2 −
√
(
x+ 1

2
s2
)2

+ 2a2s2
)

, (A.11e)

FB
3 (x, s) =

2

s2

(√
(
x− 1

2
s2
)2

+ 2b1s2 −
√
(
x+ 1

2
s2
)2

+ 2a2s2
)

. (A.11f)

We realize that, by recombining the integrals over x with the same integrand, the two cases,

A and B, give exactly the same contribution. Since we have four different integrands we can

rewrite

I(s) = G1(s)−G2(s) +G3(s)−G4(s) , (A.12)

by introducing

G1(s) =
2

s2

∫ b1−b2+
1
2
s2

a1−b2+
1
2
s2
dx
√

x2 + α1 , α1 = 2b2s
2 , (A.13)

G2(s) =
2

s2

∫ a1−a2−1
2
s2

a1−b2−1
2
s2

dx
√

x2 + α2 , α2 = 2a1s
2 , (A.14)

G3(s) =
2

s2

∫ b1−a2−1
2
s2

b1−b2−1
2
s2

dx
√

x2 + α3 , α3 = 2b1s
2 , (A.15)

G4(s) =
2

s2

∫ b1−a2+
1
2
s2

a1−a2+
1
2
s2
dx
√

x2 + α4 , α4 = 2a2s
2 , (A.16)
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where we shifted the integration variable x→ x± 1
2
s2 and defined the αi in order to emphasize

the similarity of the four integrals. Using
∫

dx
√
x2 + α =

α

2
ln
(

x+
√
x2 + α

)

+
x

2

√
x2 + α, (A.17)

we get after some elementary calculations

I(s) = 2b2 ln

(

b1 − b2 + 1
2
s2 +

√

(b1 − b2)2 + (b1 + b2) s2 +
1
4
s4
)

− 2b1 ln

(

b1 − b2 − 1
2
s2 +

√

(b1 − b2)2 + (b1 + b2) s2 +
1
4
s4
)

+
√

(b1 − b2)2 + (b1 + b2) s2 +
1
4
s4

− 2b2 ln

(

a1 − b2 + 1
2
s2 +

√

(a1 − b2)2 + (a1 + b2) s2 +
1
4
s4
)

+ 2a1 ln

(

a1 − b2 − 1
2
s2 +

√

(a1 − b2)2 + (a1 + b2) s2 +
1
4
s4
)

−
√

(a1 − b2)2 + (a1 + b2) s2 +
1
4
s4

− 2a2 ln

(

b1 − a2 + 1
2
s2 +

√

(b1 − a2)2 + (b1 + a2) s2 +
1
4
s4
)

+ 2b1 ln

(

b1 − a2 − 1
2
s2 +

√

(b1 − a2)2 + (b1 + a2) s2 +
1
4
s4
)

−
√

(b1 − a2)2 + (b1 + a2) s2 +
1
4
s4

+ 2a2 ln

(

a1 − a2 + 1
2
s2 +

√

(a1 − a2)2 + (a1 + a2) s2 +
1
4
s4
)

− 2a1 ln

(

a1 − a2 − 1
2
s2 +

√

(a1 − a2)2 + (a1 + a2) s2 +
1
4
s4
)

+
√

(a1 − a2)2 + (a1 + a2) s2 +
1
4
s4,

= I(s; b2, b1)− I(s; b2, a1)− I(s; a2, b1) + I(s; a2, a1) , (A.18)

where we introduced,

I(s; b, a) = 2b ln

(

a− b+ 1
2
s2 +

√

(a− b)2 + (a+ b) s2 + 1
4
s4
)

− 2a ln

(

a− b− 1
2
s2 +

√

(a− b)2 + (a+ b) s2 + 1
4
s4
)

+
√

(a− b)2 + (a+ b) s2 + 1
4
s4. (A.19)

The integral of the absolute coordinate t is trivial, however we need to be careful with the

integration regions. With the same considerations as in Figs. A.1, A.2 we arrive at the following

two expressions:
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case (d1 − c1) < (d2 − c2):

DXIij =
1

(2π)3 4n

(∫ d1−d2

c1−d2

ds ((d2 − c1) I (s) + sI (s))

+

∫ c1−c2

d1−d2

ds ((d1 − c1) I (s)) +
∫ d1−c2

c1−c2

ds ((d1 − c2) I (s)− sI (s))
)

. (A.20)

case (d1 − c1) < (d2 − c2):

DXIij =
1

(2π)3 4n

(∫ c1−c2

c1−d2

ds ((d2 − c1) I (s) + sI (s))

+

∫ d1−d2

c1−c2

ds ((d2 − c2) I (s)) +
∫ d1−c2

d1−d2

ds ((d1 − c2) I (s)− sI (s))
)

. (A.21)

This time the two cases do not yield the same result. The final result can be written in

terms of the indefinite integrals

F(a, b, s) =
∫

ds I(s; a, b) , (A.22)

G(a, b, s) =
∫

ds sI(s; a, b) . (A.23)

With the help of Mathematica we get for the second integral,

G(a, b, s) =
∫

ds

(

sb2 ln

(

a2 − b2 + s2 +

√

(a2 − b2)2 + 2 (a2 + b2) s2 + s4
)

− sa2 ln
(

a2 − b2 − s2 +
√

(a2 − b2)2 + 2 (a2 + b2) s2 + s4
)

+
s

2

√

(a2 − b2)2 + 2 (a2 + b2) s2 + s4

)

= 1
4

(

(
a2 − b2

)
s2 − 1

2

(
a2 + b2 − s2

)
√

a4 − 2a2 (b2 − s2) + (b2 + s2)2

− 2a2s2 ln

(

a2 − b2 − s2 +
√

a4 − 2a2 (b2 − s2) + (b2 + s2)2
)

+ 2b2s2 ln

(

a2 − b2 + s2 +

√

a4 − 2a2 (b2 − s2) + (b2 + s2)2
)

− 2a2b2 ln

(

a2 + b2 + s2 +

√

a4 − 2a2 (b2 − s2) + (b2 + s2)2
))

. (A.24)

Mathematica converts the integral F into an expression in terms of elliptical integrals of the

first kind F (φ|k) and second kind E(φ|k) with complex arguments. Using properties of the

elliptic integrals, c.f. [GR80], we can rewrite Mathematica’s result in terms of real quantities,
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i.e. ,

F (a, b, s) =

∫

ds

(

b2 ln

(

a2 − b2 + s2 +

√

(a2 − b2)2 + 2 (a2 + b2) s2 + s4
)

− a2 ln
(

a2 − b2 − s2 +
√

(a2 − b2)2 + 2 (a2 + b2) s2 + s4
)

+ 1
2

√

(a2 − b2)2 + 2 (a2 + b2) s2 + s4

)

= s

(

1

6

√

a4 − 2a2 (b2 − s2) + (b2 + s2)2 + a2 − b2

− a2 ln
(

a2 − b2 − s2 +
√

a4 − 2a2 (b2 − s2) + (b2 + s2)2
)

+ b2 ln

(

a2 − b2 + s2 +

√

a4 − 2a2 (b2 − s2) + (b2 + s2)2
))

− 2

3

√

(a2 − b2)2 (a− b)2F



arctan




s

√

(a− b)2





∣
∣
∣

√

4ab

(a+ b)2





+
2

3

√

(a2 + b2)2 (a+ b)2E



arctan




s

√

(a− b)2





∣
∣
∣

√

4ab

(a+ b)2





− 2

3
s
(
a2 + b2

)

√

(a+ b)2 + s2

(a− b)2 + s2
. (A.25)



Appendix B

Non-interacting polarizability for the

spin-spiral-wave state

Here we perform the integration for the non-interacting polarizability of the SSW state defined

in Chap. 8, Sec. 8.4, Eq. (8.67). The polarizability for the SSW state at imaginary frequencies

is given by,

P0 (q, ıω) =
1

(2π)3

∑

b1=∓

∑

b2=±

∫

d3k 1
2
nb1 (k)

×
(

1 + b1b2C (k;k − q)

(ǫb1 (k)− ǫb2 (k − q))− ıω +
1 + b1b2C (k;k + q)

(ǫb1 (k)− ǫb2 (k + q)) + ıω

)

. (B.1)

From now on we shall use k = (y cos(φ) , y sin(φ) , s) and w.l.o.g. q = (x, 0, z). The region

of integration is specified by nb (k) = nb (y, s) and therefore we get

P0 (q, ıω) =
1

(2π)3

∫ z1−

z0−
ds

∫ x−
0

0

dy 1
2
y

∫ 2π

0

dφ
∑

b=∓

×
(

1− bC (s; s− z)
(

ǫ− (y, s)− ǫb
(√

y2 − 2xy cos(φ) + x2, s− z
))

− ıω

+
1− bC (s; s+ z)

(

ǫ− (y, s)− ǫb
(√

y2 + 2xy cos(φ) + x2, s+ z
))

+ ıω

)

+
1

(2π)3

∫ z1+

z0+

ds

∫ x0+

0

dy 1
2
y

∫ 2π

0

dφ
∑

b=∓

×
(

1 + bC (s; s− z)
(

ǫ+ (y, s)− ǫb
(√

y2 − 2xy cos(φ) + x2, s− z
))

− ıω

+
1 + bC (s; s+ z)

(

ǫ+ (y, s)− ǫb
(√

y2 + 2xy cos(φ) + x2, s+ z
))

+ ıω

)

. (B.2)

117



118

The dφ- and dy-integrals can be solved analytically

Q (α, x0; x) =
1

4π2

∫ x0

0

dy
y

2

∫

dφ 02π
1

α± xy cos(φ) =
1

4π2

∫ x0

0

dy y

∫

dt
1

α (1 + t2)± xy (1− t2)

=
1

4π2

∫ x0

0

dy y
1

α∓ xy

∫

dt
1

(

t− ı
√

α±xy
α∓xy

)(

t+ ı
√

α±xy
α∓xy

)

=
1

4π2

∫ x0

0

dy
y√

α2 − x2x2

=
1

4πx2

(√
α2 −

√

α2 − x20x2
)

,

with

x∓0 (z) = Max
[
0, 2 (µ± S (z))− z2

]
, (B.3)

S(z) = 1
2

√

(zq + B)2 + A2. (B.4)

being the radial integration limits, given a fixed z, for the upper and lower band, respectively.

Realizing that α = β ± ıω is the only complex quantity, we can separate real- and imaginary-

parts

Re[Q (β, x0; x,±ω)] =
1

4πx2

×
(

|β| −
√
(√

(β2 − ω2 − x20x2)2 + 4β2ω2 + (β2 − ω2 − x20x2)
)

/2

)

,

Im[Q (β, x0; x,±ω)] =
sgn(±βω)

4πx2

×
(

|ω| −
√
(√

(β2 − ω2 − x20x2)2 + 4β2ω2 − (β2 − ω2 − x20x2)
)

/2

)

.

Together we get

P0 (x, z, ıω) =
1

2π

∫ z1−

z0−
ds Q− (x, z, ω; s) +

1

2π

∫ z1+

z0+

ds Q+ (x, z, ω; s) . (B.5)
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with

Q− (x, z, ω; s) ≡ {1 + C (s, s− z)}Q
(
β1 (z; s) , x

−
0 (s) ; x,−ω

)

+ {1 + C (s, s+ z)}Q
(
β2 (z; s) , x

−
0 (s) ; x, ω

)

+ {1− C (s, s− z)}Q
(
β3 (z; s) , x

−
0 (s) ; x,−ω

)

+ {1− C (s, s+ z)}Q
(
β4 {z; s} , x−0 (s) ; x, ω

)
, (B.6)

β1 (z; s) ≡+ zs− z2

2
− S (s) + S (s− z) , (B.7)

β2 (z; s) ≡− zs−
z2

2
− S (s) + S (s+ z) , (B.8)

β3 (z; s) ≡+ zs− z2

2
− S (s)− S (s− z) , (B.9)

β4 (z; s) ≡− zs−
z2

2
− S (s)− S (s+ z) . (B.10)

and

Q+ (x, z, ω; s) ≡ {1 + C (s, s− z)}Q
(
β5 (z; s) , x

+
0 (s) ; x,−ω

)

+ {1 + C (s, s+ z)}Q
(
β6 (z; s) , x

+
0 (s) ; x, ω

)

+ {1− C (s, s− z)}Q
(
β7 (z; s) , x

+
0 (s) ; x,−ω

)

+ {1− C (s, s+ z)}Q
(
β8 (z; s) , x

+
0 (s) ; x, ω

)
, (B.11)

β5 (z; s) ≡+ zs− z2

2
+ S (s)− S (s− z) , (B.12)

β6 (z; s) ≡− zs−
z2

2
+ S (s)− S (s+ z) , (B.13)

β7 (z; s) ≡+ zs− z2

2
+ S (s) + S (s− z) , (B.14)

β8 (z; s) ≡− zs−
z2

2
+ S (s) + S (s+ z) . (B.15)

The integral Eq. (B.5) has to be solved numerically.





Appendix C

Tabulated coefficients for the

Spin-Gradient Extension

In the following we tabulated the coefficients for the polynomial representation S̃n=6
xc . These

coefficients may be used to implement the polynomial representation of Sxc,RPA defined in

Chap. 8, Sec. 8.5, Eq. (8.71).

(j, k, l,m) Cjklm

(0, 0, 0, 0) −2.74813
(0, 0, 0, 1) −1.81168
(0, 0, 0, 2) 0.211674

(0, 0, 0, 3) 0.0948286

(0, 0, 0, 4) 0.0174232

(0, 0, 0, 5) 0.0153099

(0, 0, 0, 6) 0.00168742

(0, 0, 1, 0) −0.403313
(0, 0, 1, 1) 0.0144716

(0, 0, 1, 2) 0.00367438

(0, 0, 1, 3) 0.035482

(0, 0, 1, 4) 0.00349679

(0, 0, 1, 5) −0.000687232

(j, k, l,m) Cjklm

(0, 0, 2, 0) −0.062503
(0, 0, 2, 1) −0.0336132
(0, 0, 2, 2) −0.00595854
(0, 0, 2, 3) 0.00498222

(0, 0, 2, 4) 0.000734493

(0, 0, 3, 0) −0.0148836
(0, 0, 3, 1) −0.0127118
(0, 0, 3, 2) −0.00685191
(0, 0, 3, 3) −0.000260289
(0, 0, 4, 0) −0.00336768
(0, 0, 4, 1) −0.0026275
(0, 0, 4, 2) −0.000670918
(0, 0, 5, 0) −0.000235186

(j, k, l,m) Cjklm

(0, 0, 5, 1) −0.000143852
(0, 0, 6, 0) −2.84× 10−6

(0, 1, 0, 0) −0.992457
(0, 1, 0, 1) 0.0241714

(0, 1, 0, 2) 0.0170056

(0, 1, 0, 3) 0.101777

(0, 1, 0, 4) 0.0314557

(0, 1, 0, 5) −0.000659524
(0, 1, 1, 0) 0.00853378

(0, 1, 1, 1) −0.0284641
(0, 1, 1, 2) −0.00812592
(0, 1, 1, 3) 0.00561304

(0, 1, 1, 4) 0.00148409

Table C.1: Coefficients for S̃n=6
xc (part 1).
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(j, k, l,m) Cjklm

(0, 1, 2, 0) −0.0270776
(0, 1, 2, 1) −0.0209393
(0, 1, 2, 2) −0.0100666
(0, 1, 2, 3) −0.00133606
(0, 1, 3, 0) −0.00598277
(0, 1, 3, 1) −0.00599263
(0, 1, 3, 2) −0.00092737
(0, 1, 4, 0) −0.000744697
(0, 1, 4, 1) −0.00037085
(0, 1, 5, 0) 0.0000245588

(0, 2, 0, 0) 0.0659134

(0, 2, 0, 1) −0.025517
(0, 2, 0, 2) −0.0308906
(0, 2, 0, 3) −0.00402752
(0, 2, 0, 4) 0.00040717

(0, 2, 1, 0) −0.0175784
(0, 2, 1, 1) −0.023275
(0, 2, 1, 2) −0.0176265
(0, 2, 1, 3) −0.00426414
(0, 2, 2, 0) −0.00418172
(0, 2, 2, 1) −0.0050033
(0, 2, 2, 2) −0.000161088
(0, 2, 3, 0) −0.00113118
(0, 2, 3, 1) −0.000473242
(0, 2, 4, 0) −0.0000348719
(0, 3, 0, 0) −0.00389398
(0, 3, 0, 1) −0.0118013
(0, 3, 0, 2) −0.0100464
(0, 3, 0, 3) −0.00181306
(0, 3, 1, 0) 0.00090383

(0, 3, 1, 1) −0.00115289
(0, 3, 1, 2) −0.0000464157
(0, 3, 2, 0) 0.000169848

(j, k, l,m) Cjklm

(0, 3, 2, 1) 0.0000283274

(0, 3, 3, 0) −0.000124823
(0, 4, 0, 0) 0.00165377

(0, 4, 0, 1) −0.000285921
(0, 4, 0, 2) −0.00019673
(0, 4, 1, 0) 0.000889862

(0, 4, 1, 1) 0.000260928

(0, 4, 2, 0) 2.32× 10−6

(0, 5, 0, 0) 0.000337346

(0, 5, 0, 1) 0.0000815987

(0, 5, 1, 0) 0.0000887041

(0, 6, 0, 0) 0.0000540729

(1, 0, 0, 0) 4.88182

(1, 0, 0, 1) 3.15805

(1, 0, 0, 2) −0.33788
(1, 0, 0, 3) −0.147639
(1, 0, 0, 4) −0.020039
(1, 0, 0, 5) −0.0229298
(1, 0, 1, 0) 0.677765

(1, 0, 1, 1) −0.0294751
(1, 0, 1, 2) −0.00358372
(1, 0, 1, 3) −0.0532579
(1, 0, 1, 4) −0.00206774
(1, 0, 2, 0) 0.0895932

(1, 0, 2, 1) 0.0448107

(1, 0, 2, 2) 0.00671602

(1, 0, 2, 3) −0.00754708
(1, 0, 3, 0) 0.0162721

(1, 0, 3, 1) 0.0142432

(1, 0, 3, 2) 0.00773634

(1, 0, 4, 0) 0.00329261

(1, 0, 4, 1) 0.00266186

(1, 0, 5, 0) 0.000235576

(j, k, l,m) Cjklm

(1, 1, 0, 0) 1.81843

(1, 1, 0, 1) 0.00621741

(1, 1, 0, 2) −0.0152351
(1, 1, 0, 3) −0.144333
(1, 1, 0, 4) −0.0329551
(1, 1, 1, 0) −0.0333261
(1, 1, 1, 1) 0.0358591

(1, 1, 1, 2) 0.00740061

(1, 1, 1, 3) −0.0127594
(1, 1, 2, 0) 0.0315141

(1, 1, 2, 1) 0.0237553

(1, 1, 2, 2) 0.0121981

(1, 1, 3, 0) 0.00585056

(1, 1, 3, 1) 0.006568

(1, 1, 4, 0) 0.000755296

(1, 2, 0, 0) −0.126782
(1, 2, 0, 1) 0.0255648

(1, 2, 0, 2) 0.0353875

(1, 2, 0, 3) −0.00315256
(1, 2, 1, 0) 0.015461

(1, 2, 1, 1) 0.0260865

(1, 2, 1, 2) 0.0204812

(1, 2, 2, 0) 0.00494602

(1, 2, 2, 1) 0.00674589

(1, 2, 3, 0) 0.00102883

(1, 3, 0, 0) 0.00311403

(1, 3, 0, 1) 0.0151853

(1, 3, 0, 2) 0.01251

(1, 3, 1, 0) −0.000204817
(1, 3, 1, 1) 0.0032024

(1, 3, 2, 0) −0.000354866
(1, 4, 0, 0) −0.00177483
(1, 4, 0, 1) 0.00115815

Table C.2: Coefficients for S̃n=6
xc (part 2).
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(j, k, l,m) Cjklm

(1, 4, 1, 0) −0.00098733
(1, 5, 0, 0) −0.000303327
(2, 0, 0, 0) −3.25938
(2, 0, 0, 1) −2.11157
(2, 0, 0, 2) 0.125372

(2, 0, 0, 3) 0.0563263

(2, 0, 0, 4) 0.00826714

(2, 0, 1, 0) −0.423334
(2, 0, 1, 1) 0.0107458

(2, 0, 1, 2) −0.00960004
(2, 0, 1, 3) 0.00425997

(2, 0, 2, 0) −0.0354086
(2, 0, 2, 1) −0.0119025
(2, 0, 2, 2) 0.000545622

(2, 0, 3, 0) 0.000124589

(2, 0, 3, 1) −0.0010616
(2, 0, 4, 0) −0.00066995
(2, 1, 0, 0) −1.29638
(2, 1, 0, 1) −0.0801677
(2, 1, 0, 2) −0.0218154
(2, 1, 0, 3) 0.0188277

(2, 1, 1, 0) 0.0390195

(2, 1, 1, 1) −0.00742304
(2, 1, 1, 2) 0.00173533

(j, k, l,m) Cjklm

(2, 1, 2, 0) −0.00182753
(2, 1, 2, 1) −0.0014003
(2, 1, 3, 0) −0.000477194
(2, 2, 0, 0) 0.0887224

(2, 2, 0, 1) 0.00271825

(2, 2, 0, 2) −0.00122261
(2, 2, 1, 0) 0.00357829

(2, 2, 1, 1) −0.00339669
(2, 2, 2, 0) −0.000577064
(2, 3, 0, 0) 0.00239283

(2, 3, 0, 1) −0.00217325
(2, 3, 1, 0) −0.0010054
(2, 4, 0, 0) −0.000295843
(3, 0, 0, 0) 1.72836

(3, 0, 0, 1) 1.04238

(3, 0, 0, 2) −0.0408074
(3, 0, 0, 3) −0.0211725
(3, 0, 1, 0) 0.196539

(3, 0, 1, 1) −0.00237496
(3, 0, 1, 2) 0.00550707

(3, 0, 2, 0) 0.0122217

(3, 0, 2, 1) 0.00286426

(3, 0, 3, 0) −0.000419612
(3, 1, 0, 0) 0.613507

(j, k, l,m) Cjklm

(3, 1, 0, 1) 0.040842

(3, 1, 0, 2) 0.0116186

(3, 1, 1, 0) −0.0163221
(3, 1, 1, 1) 0.00141247

(3, 1, 2, 0) 0.0000428224

(3, 2, 0, 0) −0.0355089
(3, 2, 0, 1) −0.00295355
(3, 2, 1, 0) −0.00164191
(3, 3, 0, 0) −0.000845625
(4, 0, 0, 0) −0.656854
(4, 0, 0, 1) −0.346214
(4, 0, 0, 2) 0.00415935

(4, 0, 1, 0) −0.0565585
(4, 0, 1, 1) 0.00200562

(4, 0, 2, 0) −0.00227527
(4, 1, 0, 0) −0.185283
(4, 1, 0, 1) −0.00794914
(4, 1, 1, 0) 0.00368631

(4, 2, 0, 0) 0.00663028

(5, 0, 0, 0) 0.163641

(5, 0, 0, 1) 0.0639688

(5, 0, 1, 0) 0.00883955

(5, 1, 0, 0) 0.0287817

(6, 0, 0, 0) −0.0189881

Table C.3: Coefficients for S̃n=6
xc (part 3).
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Deutsche Kurzfassung

Dichtefunktionaltheorie (DFT) ist eine der am weitesten verbreiteten Methoden zur Bestim-

mung der elektronischen Struktur von Atomen, Molekülen und Festkörpern. Die Anwendbarkeit

von DFT hängt von der Verfügbarkeit von physikalisch sinnvollen und numerisch stabilen

Näherungen des Austausch-Korrelations-Energiefunktionals ab. Obwohl das Hohenberg-Kohn

Theorem vor mehr als 30 Jahren durch von Barth und Hedin um die explizite Miteinbeziehung

des Spin-Freiheitsgrades erweitert wurde, basieren die meisten Anwendungen heutzutage auf

Austausch-Korrelations-Energiefunktionalen, die für kollineare Spinmagnetisierungen entwick-

elt wurden. In der vorliegenden Arbeit präsentieren wir ein neues Funktional für Spindichte-

funktionaltheorie (SDFT), welches explizit für die Beschreibung von nicht-kollinearem Spin-

magnetismus konzipiert wurde. Das Funktional berücksichtig die Möglichkeit der Spinmag-

netisierung, seine Richtung räumlich zu verändern. Die Konstruktion des Funktionals erfolgt in

Analogie zur Herleitung der bekannten lokalen Spinmagnetisierungsnäherung (LSDA), welche

das homogene Elektronengas (HEG) mit einer konstanten Spinmagnetisierung als Referenz-

system heranzieht. Wir definieren eine semi-lokale Näherung für das Austausch-Korrelations-

Energiefunktional, indem wir das HEG mit einer spiralförmigen Spinmagnetisierung als Re-

ferenzsystem benutzen, welches in den 60er Jahren von Overhauser qualitativ beschrieben

wurde. Als Vorbereitung zur Konstruktion des Funktionals untersuchen wir das HEG mit

einer spiralförmigen Magnetisierung quantitativ unter Anwendung verschiedener Vielteilchen-

Methoden. Wir zeigen, dass das Funktional die LSDA um die Abhängigkeit von Gradienten der

Spinmagnetisierung erweitert. Die sogenannte Spingradientenerweiterung erzeugt Austausch-

Korrelations-Magnetfelder, welche nicht parallel zur Spinmagnetisierung sind, was die Tatsache

berücksichtigt, dass die Spinstromdichten des physikalischen Systems und des Kohn-Sham Sys-

tems nicht identisch sind. Dies ist wichtig für die dynamische Beschreibung von Spinsystemen

im Rahmen der zeitabhängigen SDFT. Zeitabhängigen SDFT ist von enormer Bedeutung für

die ab-initio Behandlung von Spintronik, welche sich in jüngster Zeit als wichtiges Forschungs-

gebiet etabliert, da die Manipulation und Kontrolle des Spin-Freiheitsgrades der Elektronen

vielversprechende Anwendungen auf dem Gebiet der Datenspeicherung und Informationsverar-

beitung bietet.
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