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INTRODUCTION 1
Piecewise constant vector fields (PCVFs) on simplicial geometries are indispensable objects
for the discretization of smooth vector fields. Defined by one tangent vector per affine cell,
they can be thought of as cell averages of a smooth field, coming from an L2-projection for
instance, and therefore constitute a lowest order L2-approximation with respect to a given
metric on a simplicial mesh. As such they provide an intuitive representation for velocity and
force fields in fluid dynamics or computational electromagnetics, just to name a few examples.
Furthermore, they appear naturally as weak gradient fields of linear Lagrange functions used
in H1-conforming finite element methods for variational problems, or as piecewise defined
gradient fields of Crouzeix-Raviart elements for discontinuous nonconforming methods.

But their application area does not restrict to approximation of smooth fields. In discrete
differential geometry and geometry processing they are important objects in their own right,
without the presence of a smooth field which is to be approximated. For instance, discrete dif-
ferential geometry has coined notions of discrete curvature directions on simplicial surfaces,
and several algorithms for surface parametrization and remeshing tasks make heavy use of
so-called frame fields, usually represented by tuples of PCVFs. The simplicity of their defi-
nition, numerical representation and implementation seems particularly appealing for these
kinds of problems. Furthermore, geometric models coming e.g. from high-resolution scan
data or computer graphics frequently exhibit a huge number of cells, so with respect to per-
formance there is a desire for low-order ansatz spaces defined by a low number of degrees of
freedom.

However, in order to develop a rich vector calculus on the spaceXh of PCVFs one has to de-
fine notions of curl and divergence. It is clear that the piecewise application of smooth differ-
ential operators to PCVFs does not give a meaningful result. In two dimensions, a prominent
solution is to define divergence and curl as L2-adjoint operators to the piecewise gradient and
cogradient of Lagrange and Crouzeix-Raviart elements, respectively, forcing Green’s formula
to hold true. More precisely, for a PCVF X ∈ Xh on a closed simplicial surface, its divergence
and curl shall be the functions divL (X ) ∈ L and curlF (X ) ∈ F satisfying

〈divL (X ),ϕ〉L2 = −〈X ,∇ϕ〉L2 for all ϕ ∈ L
〈curlF (X ),ψ〉L2 = 〈X , J∇ψ〉L2 for all ψ ∈ F ,

whereL andF denote the ansatz spaces of linear Lagrange and Crouzeix-Raviart elements,
respectively. A field X ∈ Xh is then said to be harmonic if its divergence and curl vanishes, and
it turns out that the space Hh of all harmonic PCVFs on a closed oriented simplicial surface
Mh has dimension 2g, where g denotes the genus of Mh. Moreover, on a closed surface, the
space∇L of gradient fields of Lagrange elements is always L2-orthogonal to the space J∇F
of cogradient fields of Crouzeix-Raviart elements, leading to the orthogonal decomposition

Xh =∇L ⊕ J∇F ⊕Hh.
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2 INTRODUCTION

This result is in structural accordance with the smooth theory, where the classical Hodge
decomposition on a closed oriented Riemannian manifold states that the space of smooth
k-forms Ωk can be L2-orthogonally decomposed as

Ωk = dΩk−1 ⊕δΩk+1 ⊕H k.

Here, the space of harmonic k-forms H k has dimension equal to the dimension of the k-th
cohomology space Hk(M) with real coefficients. Indeed, a basis for H k provides a set of
concrete representatives for a basis of cohomology classes of Hk(M). This latter fact is a
consequence of de Rham’s theorem, and it is due to the mixing of the ansatz spacesL andF
in the definition of discrete curl and divergence that this remarkable linkage between smooth
harmonic forms and the topology of the underlying geometry also holds in the discrete case.

In the presence of a boundary ∂M , the spaces of exact forms dΩk−1 and coexact forms
δΩk+1 are no longer L2-orthogonal to each other, though, and the Hodge theory on M be-
comes drastically richer. To circumvent this problem one usually poses Dirichlet boundary
conditions (the tangential part t(ω) of a differential form has to vanish along the boundary
∂M) on the space Ωk−1 and Neumann boundary conditions (the normal part ω |∂M −t(ω)
has to vanish along ∂M) on Ωk+1 to obtain a decomposition

Ωk = dΩk−1
D ⊕δΩk+1

N ⊕H k.

However, in this splitting the space of harmonic forms H k is now infinite-dimensional and
has no topological significance any more. Still, it can be further split into subspacesH k

D and
H k

N of so-called Dirichlet and Neumann fields, isomorphic to the k-th relative and absolute
cohomology space. This leads to the two Hodge-Morrey-Friedrichs decompositions

Ωk = dΩk−1
D ⊕δΩk+1

N ⊕H k ∩ dΩk−1 ⊕H k
N

= dΩk−1
D ⊕δΩk+1

N ⊕H k ∩δΩk+1 ⊕H k
D .

A natural question that arises is whether both decompositions can be unified to a single
orthogonal decomposition involving both the spaces of Neumann and Dirichlet fields at the
same time. This is also stimulated by the fact that always

H k
N ∩H

k
D = {0},

so that the spaces form at least a direct sum. However, it turns out that they are in general not
orthogonal to each other. The reason for this is the presence of certain fields that represent
cohomology classes which are not induced by the boundary components ∂M , but rather come
from the “interior topology” of a manifold. This insight provides a further splitting of the
spaces H k

N and H k
D into two subspaces each, one of them representing cohomology coming

from the boundary and the other representing cohomology coming from the interior.
These subspaces provide refined decompositions which are interesting not only from a the-

oretical point of view, but also with respect to computational decompositions and the analysis
of vector fields, as they distinguish harmonic fields intrinsic to a geometry from those induced
by the boundary components. Furthermore, they give a simple criterion in which cases the
spacesH k

N andH k
D are orthogonal to each other. In view of applications, this is in particular

the case for surfaces homeomorphic to a sphere with several holes cut out (including two-
dimensional flat domains in R2) as well as for three-dimensional domains embedded in R3.
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It is no longer the case, though, for oriented surfaces with boundary which exhibit interior
cohomology, which are—by the classification of surfaces—exactly those homeomorphic to a
surface of genus g ≥ 1 with several boundary components.

On the discrete side, a similar development of a Hodge theory for PCVFs on surfaces and
solids with boundary is missing, and the result on closed surfaces is so far state of the art.

CONTRIBUTIONS. The aim of this work is to transfer this evolution of smooth Hodge-type
decomposition statements to corresponding structurally consistent decomposition statements
for the space Xh on simplicial surfaces with boundary and simplicial solids, i.e. bounded
tetrahedral domains, in R3. Here, structurally consistent is understood with respect to three
aspects: first, the geometric orthogonality statements should be preserved by the correspond-
ing discrete spaces. Second, the deep linkage to the cohomology of the shape, which is a
purely topological invariant, needs to be reflected and manifested in the correct dimensions
of the topologically significant subspaces Hh,D and Hh,N of discrete Dirichlet and Neumann
fields, respectively, and their respective subspaces. Third, in the case that the discrete vector
field on a discrete mesh approximates a smooth vector field on a smooth geometry, we require
convergence for the components of a discrete decomposition to their respective counterparts
in the smooth decomposition, assuming that the mesh converges metrically to the smooth
geometry.

It turns out that the intricate interplay of geometry and topology in the smooth Hodge
theory can be completely reflected by the discrete decomposition statements for PCVFs which
we will derive in the following. In particular we obtain a complete characterization of the
spaceXh in terms of its Hodge decompositions, which is in agreement with the smooth results,
and various experimental results confirm the theory.

In detail, this work includes the following contributions:

• We derive discrete analogues of the Hodge-Morrey-Friedrichs decompositions for the
spaceXh on simplicial surfaces with boundary and show that the corresponding spaces
of discrete Dirichlet and Neumann fields have the correct dimensions.

• We define discrete spaces of exact and boundary-coexact Dirichlet fields, and coexact
and boundary-exact Neumann fields. These subspaces provide a refined splitting and
add the distinction between harmonic fields representing inner cohomology and bound-
ary cohomology to the decompositions. In the absence of inner cohomology we obtain
a complete orthogonal decomposition for surfaces with boundary, involving both the
spacesHh,D andHh,N at the same time.

• In a similar spirit we derive decomposition statements for simplicial solids. In particular,
the cohomology of such solids is always induced by the boundary and we obtain a
complete five-term decomposition.

• On simplicial surfaces the equality Hh,D ∩Hh,N = {0} is not always true. Surprisingly,
it turns out that the discretization of the mesh, i.e. the combinatorial connectivity of
the mesh, plays another important role in view towards a consistent discretization. We
derive and prove a criterion on the mesh which guarantees the intersection to be trivial,
and investigate a few exemplary cases which exhibit possible obstructions.
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• We define refined decomposition statements for spaces of Whitney k-forms on man-
ifolds with boundary and prove an extension of the seminal convergence result by
Dodziuk [Dod76] to include these new decompositions. Incorporating a norm esti-
mate by Stern [Ste13], we obtain convergence of these decompositions with respect to
a sequence of approximating metrics. These results will be central to the convergence
proof of our discrete vector field decompositions.

• We prove convergence of the decomposition statements for PCVFs for simplicial surfaces
with boundary approximating a smooth surface, following the strategy by Wardetzky
[War06]. Furthermore, we explain how to modify this approach in order to obtain the
corresponding convergence statements on simplicial solids.

• We propose and explore a strategy for the computation of harmonic bases for the various
topologically significant harmonic subspaces in our decompositions.

• Based on an iterated L2-projection, we provide algorithms to compute all decompo-
sitions for a given PCVF on a simplicial surface or solid. We evaluate this approach
by comparing the components obtained by the discrete decompositions of PCVF inter-
polants of smooth stereotypical examples to their corresponding smooth components.

RELATED WORK. The discretization of vector fields or more generally differential forms is
a vast and classical topic both on the applied side as well as from a theoretical point of view,
and it is far too vast to provide a complete overview on all related concepts that have been
developed in the last decades. We therefore focus on recent work that emphasizes geometrical
and topological aspects for the discretization strategy.

On the smooth side, a comprehensive treatment of Hodge decompositions up to the four-
term Hodge-Morrey-Friedrichs decomposition for differential forms is given by Schwarz in
[Sch95]. A five-term decomposition for vector fields on domains in R3 is derived in the
expository article [CDG02]. The distinction between fields representing inner and boundary
cohomology and the question of orthogonality between the spaces of Neumann and Dirichlet
fields is first published by Shonkwiler in [Sho09] and [Sho13], but is, according to him, based
on previous work by Dennis DeTurck and Herman Gluck (cf. [Sho13, Sec. 1]).

The focus on PCVFs on simplicial surface meshes in modern geometry processing and their
theoretical description goes back at least to Polthier and Preuss [PP03] who used them as a
concept for analysis and decomposition of vector fields, with a convergence proof on closed
surfaces given by Wardetzky in [War06]. An elementary extension to three-dimensional
domains is given in [TLHD03]. A discrete Levi-Civita connection for PCVFs on simplicial
surfaces is proposed in [AOCBC15]. Exemplary applications in geometry processing and
modelling include field generation for interactive surface processing [XZCOX09], remesh-
ing [DKG05, SZS08], deformation [KNP14], parametrization [KNP07] or visualization and
analysis of vector fields [SZ12, PP03].

A different way to define discrete vector fields or more generally discrete k-forms is pro-
vided by the discrete exterior calculus (DEC) [Hir03], which defines discrete k-forms as a
synonym for simplicial k-cochains. For numerical computations, though, these quantities as-
signed to k-cells usually need to be interpolated to the full-dimensional cells. The elementary
forms suggested by Whitney in his classical book [Whi12] from 1957 can be considered a
first discretization strategy for differential forms, since they provide interpolants of simplicial
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cochains on a smooth triangulation. In the 1970s and 1980s, Raviart and Thomas [RT77]
and Nédélec [Né80] developed families of finite elements for the computational treatment
of Navier-Stokes- and Maxwell-type problems, and Bossavit [Bos88] later put these finite
elements in the context of Whitney forms in two and three dimensions.

The finite element exterior calculus developed by Arnold et al. [AFW06, AFW10] provides
a unifying framework for mixed problems involving more than one ansatz space. Therein,
the Whitney form complex is generalized to complexes of polynomial differential forms of
arbitrary degree, where at each stage there is a choice between a full polynomial ansatz
space over each element or a reduced polynomial space, as is the case for Whitney forms. All
complexes are subcomplexes of a Sobolev-de Rham complex and can be therefore considered
a conforming discretization. In contrast, Holst and Stern [HS12] extend this theory to include
complexes whose ansatz spaces are not subspaces of a Sobolev space on a smooth geometry,
as is the case for ansatz spaces on simplicial surface meshes approximating a smooth surface
in R3, for instance.

The definition of a discrete curl and divergence for PCVFs as those elements that enforce
Green’s formula to hold true is driven by a paradigm inherent to mimetic discretization meth-
ods [BH06]. Here, the definition of discrete operators and objects is primarily driven by the
attempt to mimic properties from the smooth world such as conservation laws, Green’s for-
mula or the complex property im(T k−1) ⊆ ker(T k) for a sequence {T k} of operators.

Notions of curl- and divergence-freeness also exist on the level of weightings on directed
networks. An exposition is given by Lovász and Benjamini in [Lov04, BL03], with applications
to random processes on networks embedded on a closed surface given in [BL02a, BL02b].

Of particular interest for geometric applications are harmonic fields, i.e. fields which are
both curl- and divergence-free, as they constitute an even, steady flow in the interior of the
domain. A subset of those arises as gradient fields of linear Lagrange potential functions
which solve the Laplace-Beltrami problem ∆u= 0 on a surface mesh. For instance, [DKG05]
use such a gradient field to obtain an orthogonal frame field (X1, X2) by setting X1 := ∇u,
X2 := JX1, where JX1 denotes a piecewise 90-degree rotation in the tangent space of each tri-
angle, and take this field as a guidance for quadrilateral remeshing applications. [XZCOX09]
extend this approach by providing a fast update mechanism for the efficient computation of
harmonic gradients under changing boundary constraints, possibly modified by user inter-
action. Relaxing the notion of harmonicity a bit, [SZS08] consider quasi-harmonic gradient
fields, which can be thought of as minimizers of the Dirichlet energy on an inhomogeneous
medium with varying permeability. But not all harmonic fields arise as potentials. [HKWW10]
suggest a strategy for finding cochains that represent cohomology generators on a surface.

Finally, it should be noted that there are many different definitions and approaches for the
computation of a discrete Hodge decomposition. For instance, [RHS16] discuss a decompo-
sition in the spectral domain after Fourier transformation, and [PPL+10] propose a meshless
decomposition on point set samples in R2. See also [BNPB13] for a survey on various discrete
Hodge decompositions.

OUTLINE. The next chapters are ordered as follows:
Chapter 2 reviews the necessary smooth theory and topological definitions, since all these

notions are central for the following discretization. Section 2.1 summarizes simplicial coho-
mology on manifolds with boundary and provides cohomological computations for surfaces
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and solids. With regard to a topologically consistent discretization, these quantities need to
be preserved in the discrete theory. Section 2.2 lists the most important notions from the
theory of differential forms on manifolds with boundary, with an emphasis on the bound-
ary components of a differential form. Section 2.3 introduces the fundamental spaces H k

D
and H k

N of harmonic Dirichlet and Neumann fields and concludes with the Hodge-Morrey-
Friedrichs decomposition. Section 2.4 then reviews the recent results by Shonkwiler and
provides a slightly modified proof for the orthogonal subsplittings of H k

D and H k
N , as this is

not yet contained in the standard literature on differential forms.
Chapter 3 constitutes the heart of this work as it develops the discrete decompositions for

simplicial surfaces and solids with boundary. The essential ansatz spaces are introduced in
Section 3.1. Discrete decompositions on simplicial surfaces are derived in Section 3.2 and
their geometric and topological consistency with the smooth analogues is proved. Similar
results are proved for simplicial solids in Section 3.3. However, the spaces of discrete Dirichlet
and Neumann fields on simplicial surfaces do not always intersect trivially, in contrast to the
smooth world, and it is the objective of Section 3.4 to illustrate why and in which situations
this is not the case. Finally, we prove a criterion on the mesh which guarantees a trivial
intersection also for the discrete spaces.

Chapter 4 deals with the third pillar of structural consistency—approximation and con-
vergence. To this end we first generalize an approximation result by Dodziuk for Whitney
form spaces in Section 4.1. Next, we consider the case of an approximating mesh inducing
a distorted metric on a smooth mesh and therefore a distorted orthogonal decomposition for
Whitney forms in Section 4.2. Finally, in Section 4.3 we compare the discretizations from
Chapter 3 with the distorted Whitney decompositions to obtain convergence.

Chapter 5 puts the discrete theory into practice and demonstrates its relevance for a few
central applications. In Section 5.1 we propose a strategy for the computation of bases for
harmonic fields on surfaces and illustrate some examples. Section 5.2 then provides an algo-
rithm based on iterated L2-projections for the refined decompositions derived in Section 3.2.
Sections 5.3 and 5.4 explain the analogue strategies for simplicial solids, stress the slight dif-
ferences and evaluate the complete decomposition for stereotypical smooth fields which are
interpolated on a discrete mesh. Finally, Section 5.5 concludes with a few remarks on the
numerical solution of the problems in the previous sections.

PUBLICATIONS: Parts of this thesis have been published in

• Poelke, Konstantin and Polthier, Konrad: Boundary-aware Hodge Decompositions for
Piecewise Constant Vector Fields, Computer-Aided Design, Volume 78, September 2016,
Pages 126–136



SMOOTH DECOMPOSITIONS 2
2.1 COHOMOLOGY

This section provides a background on cohomology groups of compact manifolds with boundary
since these algebraic-topological results will be essential to the remaining chapters. For practical
computations, the long exact cohomology sequence is an indispensable tool, so is the Poincaré-
Lefschetz duality theorem. Explicit computations are given for surfaces and volumes in R3 which
are the interesting cases with regard to the discretization later on. All facts can be found in standard
textbooks on algebraic topology, e.g. [Mun84], [Bre93] or [Hat02].

GENERAL FACTS. In all what follows let M be a compact, topological, orientable manifold
with boundary ∂M . We are mostly interested in the case dim M = 2 or dim M = 3, but all
results hold in arbitrary dimensions. In order to work with simplicial (co-)homology, we as-
sume that M is triangulable, so that it carries the structure of a simplicial complex, i.e. there
is a homeomorphism |K | ∼−→ M from a geometric realization of a simplicial complex K . Again,
most results hold in much wider generality, using other flavours of homology theories such
as singular, Čech or sheaf cohomology, but in view towards numerical applications, simplicial
cohomology is the most tractable, so we briefly outline its construction. Furthermore, for di-
mensions two and three, topological manifolds with boundary are always triangulable, which
is not the case for higher dimensions any more. It is, though, if M is smooth by Whitehead’s
triangulation theorem, see e.g. [Man14] and the literature referenced therein, and then the
singular and simplicial (co-)homology theories yield isomorphic (co-)homology groups.

Let Ck(M) and Ck(∂M) denote the groups of simplicial k-chains on M and ∂M with real
coefficients. Since M is assumed to be compact, we can restrict to finite triangulations and
then Ck(M) and Ck(∂M) are finite-dimensional R-vector spaces. The inclusion ι : ∂M ,→ M
gives rise to a short exact sequence

0→ Ck(∂M)
ι]
−→ Ck(M)

π]
−→ Ck(M)/Ck(∂M)→ 0 (2.1)

for each k. There is a boundary operator ∂k : Ck(M)→ Ck−1(M) commuting with the maps
ι] and π] in (2.1), and we denote by Zk(M) := ker(∂k) and Bk := im(∂k+1) the subspaces of
cycles and boundaries, and similarly for the spaces Ck(∂M) and Ck(M)/Ck(∂M), where in the
latter case we write Zk(M ,∂M) and Bk(M ,∂M). The boundary map satisfies ∂k◦∂k+1 = 0 and
therefore forms a complex, i.e. at each stage it is Bk(M) ⊆ Zk(M). The corresponding quotient
spaces Hk(M) := Zk(M)/Bk(M) and Hk(∂M) := Zk(∂M)/Bk(∂M) are the k-th homology
spaces for M and ∂M , respectively, and the space Hk(M ,∂M) := Zk(M ,∂M)/Bk(M ,∂M)
is the k-th relative homology space of M . The maps ι] and π] in (2.1) induce maps ι∗ :
Hk(∂M) → Hk(M) and π∗ : Hk(M) → Hk(M ,∂M), and there are connecting morphisms
δ∗ : Hk(M ,∂M)→ Hk−1(∂M) such that all these maps fit into a long exact sequence in homol-
ogy

· · · → Hk+1(M ,∂M)
δ∗−→ Hk(∂M)

ι∗−→ Hk(M)
π∗−→ Hk(M ,∂M)

δ∗−→ Hk−1(∂M)→ . . . .

7



8 SMOOTH DECOMPOSITIONS

Dualizing these notions, one obtains the corresponding results for simplicial cohomol-
ogy: Let Ck(M), Ck(∂M) and Ck(M ,∂M) denote the dual spaces of Ck(M), Ck(∂M) and
Ck(M)/Ck(∂M), respectively. The first two are the spaces of simplicial k-cochains on M and
∂M . The space Ck(M ,∂M) is the space of relative k-cochains and can be naturally identified
with all cochains of Ck(M) that vanish on k-chains contained in the boundary ∂M . These
spaces now form a short exact cochain sequence

0→ Ck(M ,∂M)
π]

−→ Ck(M)
ι]

−→ Ck(∂M)→ 0.

In the following it will be helpful to think of Ck(M ,∂M)
π]

−→ Ck(M) as a subspace inclusion.
The map ι] is just the restriction of a k-cochain on M to the boundary ∂M .

Now there is a coboundary operator dk
∆ : Ck(M) → Ck+1(M) defined as the adjoint to

∂k by dk
∆(w)(σ) := w(∂k+1σ) for any cochain w ∈ Ck(M) and chain w ∈ Ck+1(M), and

therefore dk+1
∆ ◦d

k
∆ = 0. Again, we have spaces of cocycles Zk(M) := ker(dk

∆) and coboundaries
Bk(M) := im(dk−1

∆ ) and so on, and their respective quotient spaces are the k-th cohomology
spaces Hk(M) := Zk(M)/Bk(M), Hk(∂M) := Zk(∂M)/Bk(∂M) and the relative cohomology
spaces Hk(M ,∂M) := Zk(M ,∂M)/Bk(M ,∂M).

As above, these spaces give rise to a long exact sequence in cohomology

· · · → Hk−1(∂M)
δ∗

−→ Hk(M ,∂M)
π∗

−→ Hk(M)
ι∗

−→ Hk(∂M)
δ∗

−→ Hk+1(M ,∂M)→ . . . (2.2)

which will be of central importance in the following.
Since all the involved spaces are finite-dimensional and the coefficient ring is the field

of real numbers, the k-th homology space and cohomology space are always isomorphic in
all three cases, i.e. Hk(M) ∼= Hk(M), Hk(∂M) ∼= Hk(∂M) and Hk(M ,∂M) ∼= Hk(M ,∂M)
([Mun84, Cor. 53.6]). Furthermore, Lefschetz-Poincaré duality states that there are isomor-
phisms

Hk(M ,∂M) ∼−→ Hn−k(M). (∼= Hn−k(M))

If ∂M = ; this reduces to the classical Poincaré duality Hk(M) ∼−→ Hn−k(M) for closed mani-
folds.

Finally, we need the Mayer-Vietoris sequence stated in singular cohomology, which is the
exact sequence

· · · → Hk−1(A∩ B)→ Hk(M)→ Hk(A)⊕Hk(B)
ι∗A+ι

∗
B−−−→ Hk(A∩ B)→ Hk+1(M)→ . . . (2.3)

for subsets A, B ⊆ M such that �A∪�B = M , and ι∗A and ι∗B come from the inclusions ιA : A∩B ,→ A
and ιB : A∩ B ,→ B.

In the following we will omit the indices for ∂k, dk
∆, if they are of no particular importance.

Usually, they are clear from the context anyway. Furthermore, we shall write

hk(M) := dim Hk(M)

hk
r (M) := dim Hk(M ,∂M)

for the dimensions of the absolute and relative k-th cohomology, and usually we will even
just write hk or hk

r , if there is no confusion on the manifold under investigation.
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COHOMOLOGY OF SURFACES WITH BOUNDARY. Let M be an orientable compact surface
with boundary. It is a classical result that M is homeomorphic to a surface that is obtained by
removing m ≥ 0 disjoint open discs from a closed surface of genus g ≥ 0, and furthermore
that for a fixed pair (g, m), all such surfaces obtained from a closed surface of genus g by
removing m discs are topologically equivalent, see e.g. [Kin97, Thm. 4.17]. We will say
that M is of type Σg,m or M is homeomorphic to Σg,m, where Σg,m is for each pair (g, m) a
representative surface. The following result is a standard computation, but since we make
heavy use of it, we give the short proof.

Lemma 2.1.1. Let M be a surface of type Σg,m, m≥ 1. Then

h1(M) = 2g +m− 1.

Proof. Let eM be a closed and connected surface of genus g, let B :=
⊎m

j=1 Dj,R be the union
of m ≥ 1 closed, pairwise disjoint closed topological disks Dj,R, and let Dj,r be a closed
topological disk contained in the open interior of Dj,R for each j, i.e. Dj,r ⊂ �Dj,R. Set

A := eM \
�

⊎m
j=1
�Dj,r

�

. Then A is a surface of type Σg,m, so by the classification theorem,
M is homeomorphic to A.

The result now follows from a direct computation of the Mayer-Vietoris sequence for this
particular case: eM and A are connected, so H0( eM) ∼= H0(A) ∼= R, B and A∩ B are disjoint
unions of m topological disks and annuli, respectively, so H0(B)∼= H0(A∩B)∼= Rm. Each disk
in B is contractible whereas each annulus in A∩B deformation retracts to the one-dimensional
sphere S1, so H1(B) = 0 and H1(A∩B)∼= Rm. Finally, we have H2(A) = H2(A∩B) = H2(B) = 0
since all these sets have non-empty boundary, and H2( eM)∼= R by Poincaré duality. Therefore,
the Mayer-Vietoris sequence is isomorphic to an exact sequence

0→ R
α
−→ R⊕Rm β

−→ Rm γ
−→ H1( eM)

δ
−→ H1(A)⊕ 0

ε
−→ Rm ζ

−→ R→ 0

and it follows by exactness that β is surjective, so γ = 0 and δ is an injection. Since
dimker(ε) = dim im(δ) = 2g and dim im(ε) = m−1 this shows h1(M) = h1(A) = 2g+m−1,
as (co-)homology is a topological invariant.

A trivial consequence of Lemma 2.1.1 is that for surfaces of type Σ0,m with m ≥ 1 it is
h1(M) = m− 1. This includes the common case of two-dimensional, bounded domains with
holes embedded in R2. Summarizing, for surfaces of type Σg,m the cohomology sequence
(2.2) is isomorphic to an exact sequence

0→ R→ Rm→ R2g+m−1→ R2g+m−1→ Rm→ R→ 0. (2.4)

COHOMOLOGY OF BOUNDED DOMAINS IN R3. For compact, three-dimensional manifolds
M with boundary which are embedded as compact subsets inR3 it is always H3(M) = 0. More
importantly, however, is the fact that the cohomology always comes from the boundary in the
sense that the first and second cohomology spaces H1(M) and H2(M) inject in the cohomol-
ogy spaces H1(∂M) and H2(∂M) of the boundary. This observation will be the cornerstone
for the orthogonality result in Theorem 3.3.13 and provides a generalization of a discrete
decomposition result by Monk [Mon91] which we will give in Corollary 3.3.6. We will refer
to M as above as a bounded domain in the following.
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Lemma 2.1.2. Let M be a bounded domain in R3. Then the maps H1(M) → H1(∂M) and
H2(M)→ H2(∂M) in the cohomology sequence (2.2) are injective.

Proof. ∂M has a collar neighbourhood C homeomorphic to ∂M×[0, 1) in M (see e.g. [Hat02,
Prop. 3.42]), and we set A := M and B := M û ∪ C , where M û denotes the complement of M
in R3. Then clearly �A∪�B = �M ∪M û ∪ C = R3 and A∩ B = C . Since the collar neighbourhood

provides a deformation retraction of C onto ∂M and B onto M û, it is Hk(A∩ B) = Hk(C) =
Hk(∂M) and Hk(B) = Hk(M û) = Hk(M û) (see the proof of [Mun84, Thm. 70.7] for the last
equality). Furthermore, since Hk(A∪B) = Hk(R3) = 0 for k ≥ 1, the Mayer-Vietoris sequence
(2.3) becomes

0→ H0(R3)→ H0(M)⊕H0(M û) → H0(∂M)

→ 0 → H1(M)⊕H1(M û)
ι∗M+ι

∗
Mû−−−−→ H1(∂M)

→ 0 → H2(M)⊕H2(M û)
ι∗M+ι

∗
Mû−−−−→ H2(∂M)→ 0.

Therefore ι∗M + ι
∗
M û

is an isomorphism for k = 1,2, and ι∗M must be injective.

As an immediate consequence of Lemma 2.1.2, the cohomology sequence for compact,
connected three-dimensional domains with boundary in R3 reads

0→H0(M)� H0(∂M)�

H1(M ,∂M)
0
−→H1(M)� H1(∂M)�

H2(M ,∂M)
0
−→H2(M)� H2(∂M)�

H3(M ,∂M)→0

(2.5)

where � denotes an injective map and � denotes a surjection. In particular, the maps
ι∗ : Hk(M) � Hk(∂M) induced by the inclusion ι : ∂M ,→ M are inclusions on the level
of cohomology, too, the maps π∗ map everything to zero and consequently the connecting
homomorphisms δ∗ : Hk(∂M)� Hk+1(M ,∂M) are surjective.

Let ∂M have m connected components, i.e. dim H0(∂M) = m, then from (2.5) it follows
that dim H1(M ,∂M) = m− 1. Let dim H1(M) = h1, then by Poincaré-Lefschetz duality the
sequence (2.5) yields the isomorphic sequence

0→ R�Rm�Rm−1 0
−→ Rh1

�R2h1
�Rh1 0

−→ Rm−1�Rm�R→ 0. (2.6)

We explicitly mention the following obvious, but important situation:

Corollary 2.1.3. Let M be a bounded domain in R3 with a connected boundary ∂M. Then
H2(M) = 0.

Proof. This follows immediately from (2.6) with m= 1.

The intuition behind Corollary 2.1.3 is clear: if M has just a single boundary component,
there can be no cavities inside M , as each cavity would add another boundary component.
This insight shall give a simple proof for Corollary 3.3.6 later on.
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2.2 DIFFERENTIAL FORMS ON MANIFOLDS WITH BOUNDARY

We give a short overview on differential forms on manifolds with boundary, most importantly
Green’s formula, tangential and normal boundary components and how they relate to tangential
and normal components of representing vector proxy fields. All these results can be found in detail
in [Sch95], further references are [Lee03] or [AFW06].

Let (M , g) be an n-dimensional oriented Riemannian manifold with boundary ∂M and
let ι : ∂M ,→ M denote the inclusion. A smooth differential k-form on M is given by an
assignment

p 7→ωp ∈ Altk(TpM), p ∈ M

where ωp is an alternating k-form on the tangent space TpM , such that for any family of
smooth vector fields {X1, . . . , Xk} the function p 7→ ωp(X1, . . . , Xk) is a smooth function on
M , and we denote by Ωk(M) the space of smooth differential k-forms on M . The metric g
defines an inner product on each TpM and induces an inner product on Altk(TpM) by

〈ωp,ηp〉p :=
∑

1≤i1<i2<···<ik≤n

ωp(Ep,i1 , . . . , Ep,ik) ·ηp(Ep,i1 , . . . , Ep,ik) (2.7)

forωp,ηp ∈ Altk(TpM) and an arbitrary oriented g-orthonormal basis {Ep,1, . . . , Ep,n} of TpM .
These inner products define the L2-product on Ωk(M) by

〈ω,η〉L2 :=

∫

M
〈ωp,ηp〉pµ(p),

where µ ∈ Ωn(M) is the Riemannian volume form on M , satisfying 〈µp,µp〉p = 1 for all p ∈ M .

For elements ωp ∈ Altk(TpM) and ηp ∈ Altl(TpM), their wedge product is defined as the
element ωp ∧ηp ∈ Altk+l(TpM) with

ωp ∧ηp(Xp,1, . . . , Xp,k+l) :=
∑

σ∈Sk+l
k

sgn(σ)ωp(Xp,σ(1), . . . , Xp,σ(k))ηp(Xp,σ(k+1), . . . , Xp,σ(k+l))

where Sk+l
k denotes the set of all permutations σ of the numbers {1, . . . , k + l} such that

σ(1) < . . .σ(k) and σ(k + 1) < · · · < σ(k + l). The Hodge star operator ? combines the
algebraic structure of alternating forms on TpM with the metric properties of M . It is an
isomorphism ? : Altk(TpM)→ Altn−k(TpM), ηp 7→ ?ηp, where ?ηp is the unique element in
Altn−k(TpM) satisfying

ωp ∧ ?ηp = 〈ωp,ηp〉pµp for all ωp ∈ Altk(TpM),

and satisfies ?? = (−1)k(n−k) · Id. Both definitions extend to maps ∧ : Ωk(M) × Ωl(M) →
Ωk+l(M) and ? : Ωk(M)→ Ωn−k(M), defined in each fibre by the definitions given above.
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For each k, there is a map dk : Ωk(M)→ Ωk+1(M) such that dk+1 ◦ dk = 0. It is uniquely
defined by the additional assumptions that d f shall be the ordinary differential for any func-
tion f ∈ Ω0(M) and that the Leibniz rule d(ω∧η) = dω∧η+(−1)kω∧dη shall hold for any
ω ∈ Ωk(M), η ∈ Ωl(M). This unique map is the exterior derivative and turns the sequence of
spaces Ωk(M) into the de Rham complex

0→C∞(M)
d0

−→ Ω1(M)
d1

−→ . . .
dn−1

−−→ Ωn(M)
dn

−→ 0.

Moreover, for each k it defines the coderivative δk : Ωk(M) → Ωk−1(M) by the relation
δkω := (−1)n(k+1)+1 ? dn−k(?ω), and both are related by Green’s formula

〈dω,η〉L2 = 〈ω,δη〉L2 +

∫

∂M
ι∗ω∧ ι∗(?η) for ω ∈ Ωk(M),η ∈ Ωk+1(M), (2.8)

where ι∗ denotes the pullback along the inclusion ι : ∂M ,→ M . This pullback commutes
with wedge product and exterior derivative so that

ι∗(ω∧η) = ι∗ω∧ ι∗η and ι∗(dω) = d(ι∗ω), (2.9)

the latter derivative being the restriction to the boundary manifold ∂M . Green’s formula
(2.8) itself appears as a special case of Stokes’ theorem which states that for any (n−1)-form
ω ∈ Ωn−1(M) it is

∫

M
dω=

∫

∂M
ι∗ω. (2.10)

BOUNDARY COMPONENTS OF A DIFFERENTIAL FORM. Of particular interest to us is the
boundary behaviour of vector fields and differential forms. At each point p ∈ ∂M , the tangent
space Tp∂M of the boundary manifold ∂M can be identified as a subspace of codimension
one of the tangent space TpM via the differential Dιp of the inclusion ι. A unit normal field
of M is then a smooth assignment

p 7→ νp ∈ TpM for all p ∈ ∂M

over ∂M such that g(νp,νp) = 1 and g(νp, Xp) = 0 for all p ∈ ∂M and Xp ∈ Tp∂M . Since
M is oriented, there is a unique unit normal field ν which we call the outer unit normal field.
If ϕ : U ⊆ M → Rn

xn≥0 is a chart in a neighbourhood of a boundary point p ∈ ∂M , it can
be described as the unit normal field whose pushforward (Dϕ)ν has a negative coordinate
xn < 0, and since M has an oriented atlas, this convention is globally consistent.

The outer unit normal field ν allows us to decompose a vector field X on M restricted to the
boundary into its normal component ~n(X |∂M ) := g(ν, X |∂M )ν and its tangential component
~t(X |∂M ) := X |∂M −~n(X |∂M ). This in turn defines the tangential and normal component of
a differential form ω ∈ Ωk(M) over the boundary by

t(ω |∂M )(X1, . . . , Xk) :=ω |∂M (~t(X1), . . . ,~t(Xk)) and n(ω |∂M ) :=ω |∂M −t(ω |∂M ).

In the following we omit the explicit restriction ω |∂M in the operators t and n as this will be
clear from the context. The tangential part t(ω) only acts on the tangential components of
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the input vector fields X i and is therefore uniquely defined by a k-form in Ωk(∂M), thus one
can identify t(ω) with its pullback ι∗ω to Ωk(∂M).

The tangential and normal component are related by the Hodge star operator in the fol-
lowing sense: for ω ∈ Ωk(M) it is

? n(ω) = t(?ω) and ? t(ω) = n(?ω). (2.11)

where the star operator in ?n(ω) and ?t(ω) is applied to a smooth extension of n(ω) and t(ω)
and then restricted to ∂M . Furthermore, they are compatible with the exterior derivative and
coderivative:

t(dω) = d(t(ω)) and n(δω) = δ(n(ω)). (2.12)

Green’s formula then reads

〈dω,η〉L2 = 〈ω,δη〉L2 +

∫

∂M
t(ω)∧ ?n(η)

which is the form we shall use in the following.

VECTOR FIELD PROXIES. In two and three dimensions, the theory of differential forms is
classically formulated in terms of functions and vector fields only, with the classical vector
calculus operators representing the exterior derivative and coderivative on the level of vector
fields. The Riemannian metric induces a natural isomorphism between each tangent space
TpM and its dual space T ∗p M : given an element Xp ∈ TpM , there is a corresponding linear

map X [p := g(Xp,−) ∈ T ∗p M , and conversely every element X ∗p ∈ T ∗p M defines an element X ]p

via Riesz representation. These musical isomorphisms extend to isomorphisms ] : Ω1(M) ∼−→
X (M) and [ :X (M) ∼−→ Ω1(M) between the space of 1-forms and the spaceX (M) of smooth
vector fields on M . A 2-form ω ∈ Ω2(M) is then represented by the vector field (?ω)]. Via
these notions, the fibre metric (2.7) for two k-forms can be rewritten as

〈ωp,i1 ∧ · · · ∧ωp,ik ,ωp, j1 ∧ · · · ∧ωp, jk〉p = det
�

g(ω]p,is
,ω]p, jt

)
�

1≤s,t≤k

for basis elements of the type ωp,i1 ∧ · · · ∧ωp,ik ∈ Altk(TpM) and extended bilinearly.
In two dimensions, define the curl of a vector field X ∈ X (M) by curl(X ) := ?d1X [. This

makes the following diagram commutative

Ω0(M) d0
// Ω1(M) d1

//

#��

Ω2(M)
?
��

C∞(M) ∇ // X (M) curl // C∞(M)

In three dimensions, define the vector-valued curl of X as curl(X ) := (?d1X [)] and its di-
vergence as div(X ) := ?d2(] ◦ ?)−1X = ?d2 ? X [. This makes the diagram

Ω0(M) d0
// Ω1(M) d1

//

#��

Ω2(M) d2
//

#◦?��

Ω3

?
��

C∞(M) ∇ // X (M) curl // X (M) div // C∞(M)
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commutative. In Euclidean coordinates, these operators become the familiar expressions
in terms of partial derivatives ∂x i

. For instance, the two-dimensional curl is the operator
curl= ∂x2

− ∂x1
and the three-dimensional divergence is given by div=

∑

i ∂x i
.

The boundary projections are compatible with the musical isomorphisms so that

~n(ω]) = n(ω)] and ~t(ω]) = t(ω)]. (2.13)

For many geometric applications these vector proxies are more intuitive to deal with, but they
may also be misleading when the vector fields represent 2-forms in three dimensions. For
instance, boundary conditions are swapped when 2-forms are represented by vector fields:
a 2-forms ω ∈ Ω2(M) with t(ω) = 0 is represented by the vector field (?ω)] which now has
vanishing normal component along the boundary, since

~n((?ω)]) = n(?ω)] = (?t(ω))] (2.14)

by (2.11) and (2.13). This will be important in Section 3.3.

2.3 HODGE-TYPE DECOMPOSITIONS

This section summarizes classical Hodge-type decomposition results on manifolds with boundary.
Under appropriate boundary conditions every k-form can be decomposed into an exact, a coexact
and a harmonic component. The Friedrichs decomposition identifies the spaces of so-called har-
monic Neumann and Dirichlet fields as finite-dimensional subspaces of the infinite-dimensional
space of harmonic k-forms, representing the k-th absolute and relative cohomology space, respec-
tively. Both decomposition statements are combined in the four-term Hodge-Morrey-Friedrichs
decomposition. The main reference is [Sch95], an introduction can also be found in [AMR88].

We define the spaces of exact, coexact and harmonic k-forms by

dΩk−1(M) := {dω :ω ∈ Ωk−1(M)}

δΩk+1(M) := {δω :ω ∈ Ωk+1(M)}

H k(M) := {ω ∈ Ωk(M) : dω= 0 and δω= 0}.

Since the manifold M is fixed throughout the rest of this section, we will omit the reference
to M in the definition and usage of subspaces of Ωk(M), and simply write dΩk−1, δΩk+1,H k

and so on.
On a manifold without boundary these three spaces constitute the ingredients of any k-

form. More precisely:

Theorem 2.3.1 (Classical Hodge Decomposition, ∂M = ;). Let M be a smooth, compact
manifold without boundary. Then there is an L2-orthogonal decomposition

Ωk = dΩk−1 ⊕δΩk+1 ⊕H k.

A remarkable insight known as de Rham’s theorem is that the space H k is in fact finite-
dimensional and isomorphic to the k-th cohomology space Hk(M), and therefore harmonic
k-forms on a closed manifold represent the k-th cohomology classes.
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However, in the presence of a boundary the spaces of exact forms dΩk−1 and coexact forms
δΩk+1 are no longer L2-orthogonal to each other. Hence one has to pose appropriate bound-
ary conditions on the (co-)potential spaces to retain orthogonality. A natural choice are Dirich-
let boundary conditions on the spaceΩk−1 and Neumann boundary conditions onΩk+1, as these
types of boundary conditions are compatible with the exterior derivative and coderivative, re-
spectively, see (2.12):

Ωk−1
D := {ω ∈ Ωk−1 : t(ω) = 0}

Ωk+1
N := {ω ∈ Ωk+1 : n(ω) = 0}

Theorem 2.3.2 (Hodge Decomposition, ∂M 6= ;). Let M be a smooth, compact manifold with
boundary. Then there is an L2-orthogonal decomposition

Ωk = dΩk−1
D ⊕δΩk+1

N ⊕H k.

In this case, the resulting spaceH k of harmonic k-forms is infinite-dimensional and a priori
the topological relation is lost. It is a result by Friedrichs ([Fri55, Ch. 9], [Sch95, Thm. 2.4.8,
Thm. 2.6.1]) thatH k can again be split in two different ways into two orthogonal subspaces,
one of them being isomorphic to a cohomology space in each case. Define the spaces of
Neumann fields and Dirichlet fields on M by

H k
N := {ω ∈H k : n(ω) = 0}

H k
D := {ω ∈H k : t(ω) = 0}.

Theorem 2.3.3 (Friedrichs Decomposition). On a manifold with boundary the space of har-
monic fieldsH k has an L2-orthogonal splitting

H k =H k ∩ dΩk−1 ⊕H k
N

=H k ∩δΩk+1 ⊕H k
D .

and it isH k
N
∼= Hk(M) andH k

D
∼= Hk(M ,∂M).

Writing

H k
ex :=H k ∩ dΩk−1

H k
co :=H k ∩δΩk+1

for the space of exact and coexact harmonic fields, this culminates in the Hodge-Morrey-
Friedrichs decomposition ([Sch95, Thm. 2.4.8, Cor. 2.5.9]):

Theorem 2.3.4 (Hodge-Morrey-Friedrichs Decomposition). On a manifold with boundary the
space of k-forms admits the following L2-orthogonal decompositions:

Ωk = dΩk−1
D ⊕δΩk+1

N ⊕H k
ex ⊕H

k
N

= dΩk−1
D ⊕δΩk+1

N ⊕H k
co ⊕H

k
D .
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The isomorphisms H k
N
∼= Hk(M) and H k

D
∼= Hk(M ,∂M) are induced by the de Rham map

or period map

Rk : Ωk→ Ck(M), ω 7→
�

cω : σ 7→
∫

σ

j∗ω

�

, (2.15)

where σ is a k-simplex and j : σ ,→ M denotes the inclusion. Let Hk
dR(M) and Hk

dR(M ,∂M)
denote the k-th absolute and relative de Rham cohomology spaces, which are the k-th co-
homology spaces of the complexes (Ωk(M), dk)k=0,..,n and (Ωk

D(M), d
k)k=0,..,n, respectively.

Then de Rham’s theorem states that Rk induces isomorphisms R
k
N : Hk

dR(M)
∼−→ Hk(M) and

R
k
D : Hk

dR(M ,∂M) ∼−→ Hk(M ,∂M) on the level of cohomology. The Hodge-Morrey-Friedrichs
decomposition in Theorem 2.3.4 now provides a concrete set of representatives for Hk

dR(M)
and Hk

dR(M ,∂M), given by H k
N and H k

D . By abuse of notation we will denote the isomor-

phismsH k
N
∼−→ Hk(M) andH k

D
∼−→ Hk(M ,∂M) by R

k
N and R

k
D, too.

Remark 2.3.5. The proofs for all these decomposition results rely on Hilbert space theory and
properties of the Dirichlet energy D(ω) := 〈dω, dω〉 + 〈δω,δω〉 on appropriate completions
of the space Ωk. Most common is the completion with respect to the L2-product which gives the
space L2Ωk, but the theory works even more generally for arbitrary Sobolev spaces of differential
forms, too. For simplicity, here and in the following we shall restrict to splittings into spaces of
smooth differential forms which appear as subspaces of their respective Sobolev completions. For
a general treatment see [Sch95].

2.4 ORTHOGONALITY OF H k
N AND H k

D

The spaces of harmonic Neumann and Dirichlet fields do not share a common non-trivial sub-
space. However, they are in general not L2-orthogonal to each other. Each space can be further
decomposed into a space reflecting cohomology generated by boundary components, and a space
reflecting interior cohomology, with the presence of the latter subspace being the reason for the
non-orthogonality. For surfaces of type Σ0,m and bounded three-dimensional domains in R3, this
particular subspace is trivial though, and consequently there are orthogonal decompositions in-
volving both the spaces of Neumann and Dirichlet fields at the same time.

A natural question to ask is whether there is a decomposition involving both the spaces
H k

N andH k
D simultaneously. However, in generalH k

N andH k
D are not necessarily orthogonal

any more, see for instance the examples given in [Sho09]. At least their algebraic sum is still
direct:

Theorem 2.4.1. It is alwaysH k
N ∩H

k
D = {0}.

Proof. [Sch95, Theorem 3.4.4]
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Combining this result with the Friedrichs decompositions Theorem 2.3.3 shows thatH k =
H k

co +H
k

ex. In particular every k-form on a manifold with boundary is the sum of an exact
form and a coexact form, although this sum is not unique:

Ωk = dΩk−1 +δΩk+1.

As a consequence of Theorem 2.4.1, the Hodge-Morrey-Friedrichs decompositions can be
merged into a single decomposition

Ωk = dΩk−1
D ⊕δΩk+1

N ⊕ dΩk−1 ∩δΩk+1 ⊕ (H k
N +H

k
D ), (2.16)

where the sumH k
N +H

k
D is a direct, but in general not an L2-orthogonal sum.

The following theorem states a further decomposition of the spacesH k
N andH k

D into two
orthogonal subspaces. This result seems to be first published by Shonkwiler in [Sho09, Thm.
2.1.2] and [Sho13], but is apparently due to Dennis DeTurck and Herman Gluck, cf. [Sho09,
Introduction]. Since it does not appear in the standard literature we state the proof here,
slightly modified and adjusted to our notation, as this result will be essential for the discrete
decompositions in Sections 3.2 and 3.3. The following spaces will be relevant:

Definition 2.4.2. The spaces

H k
N ,co :=H k

N ∩δΩ
k+1 (2.17)

H k
N ,∂ ex := {ω ∈H k

N : ι∗ω ∈ dΩk−1(∂M)} (2.18)

H k
D,ex :=H k

D ∩ dΩk−1 = ?H n−k
N ,co (2.19)

H k
D,∂ co := {ω ∈H k

D : ι∗(?ω) ∈ dΩn−k−1(∂M)}= ?H n−k
N ,∂ ex (2.20)

are the spaces of coexact Neumann, boundary-exact Neumann, exact Dirichlet and boundary-
coexact Dirichlet k-forms, respectively.

An immediate consequence of the Friedrichs decompositions in Theorem 2.3.3 are the or-
thogonalities H k

N ,co ⊥ H
k

D and H k
D,ex ⊥ H

k
N . Shonkwiler has proved that the subspaces of

coexact and boundary-exact Neumann fields as well as the exact and boundary-exact Dirich-
let fields constitute an orthogonal splitting of the spaces of Neumann and Dirichlet fields,
respectively. Furthermore, the subspaces of coexact Neumann and exact Dirichlet fields are
directly linked to the cohomology induced by the boundary components, whereas the other
two subspaces reflect cohomology coming from the “interior” of the manifold, as will become
clear from the proof.
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Theorem 2.4.3 (Shonkwiler, DeTurck, Gluck). The spaces H k
N and H k

D have the following
L2-orthogonal decompositions:

H k
N =H

k
N ,co ⊕H

k
N ,∂ ex

H k
D =H

k
D,ex ⊕H

k
D,∂ co.

Proof. Following the strategy in [Sho09], we consider the first decomposition and start with
proving orthogonality. Let η = δβ ∈ H k

N ,co and ξ ∈ H k
N ,∂ ex with ι∗ξ = dτ for some τ ∈

Ωk−1(∂M). τ has a smooth extension to a form τ̃ ∈ Ωk−1(M). By applying Green’s formula
(2.8), twice we obtain

〈η,ξ〉= 〈δβ ,ξ〉= 〈β , dξ〉 −
∫

∂M
t(ξ)∧ ?n(β) = −

∫

∂M
t(dτ̃)∧ ?n(β)

= 〈dτ̃,δβ〉 − 〈ddτ̃,β〉= 〈dτ̃,η〉= 〈τ̃,δη〉+
∫

∂M
t(τ̃)∧ ?n(η) = 0

because η ∈H k
N implies δη= 0 and n(η) = 0.

To prove the existence of the splitting we proceed as follows: the inclusion ι : ∂M ,→ M
induces a map ι∗ : Hk(∂M) → Hk(M) on homology. Let B∂ ,k := {σk

1, . . . ,σk
b∂ ,k
} denote

a basis of size b∂ ,k for the subspace ι∗Hk(∂M) ⊆ Hk(M), and extend it to a basis Bk :=
{σk

1, . . . ,σk
b∂ ,k

,σk
b∂ ,k+1, . . . ,σk

bk
} for the whole space Hk(M). Let B k,∨ := {ck

i }i=1,...,bk
denote

its Kronecker dual basis of Hk(M).
We now show that dimH k

N ,co = b∂ ,k. Consider the commutative diagram

H n−k
D

R
n−k
D
��

. . . // Hn−k−1(∂M)

��

// Hn−k(M ,∂M)

Pn−k

��

π∗ // Hn−k(M) //

��

. . .

. . . // Hk(∂M)
ι∗ // Hk(M)

π∗ // Hk(M ,∂M) // . . .

with exact rows and Poincaré-Lefschetz isomorphisms as vertical arrows between the rows.
The basis Bk is mapped to a basis Bn−k := (Pn−k)−1(Bk), and by exactness of the rows the
subsetBn−k

∂
:= (Pn−k)−1(B∂ ,k) is a basis for ker(π∗). But by commutativity of the diagram

Hn−k
dR (M ,∂M)

R
n−k
D
��

π∗ // Hn−k
dR (M)

R
n−k
N
��

Hn−k(M ,∂M) π
∗
// Hn−k(M)

it is cn−k ∈ ker(π∗) if and only if for the representative ρ := (R
n−k
D )−1(cn−k) ∈ H n−k

D it is
π∗(ρ) = 0 ∈ Hn−k

dR (M), i.e. if and only if ρ ∈ dΩn−k−1 ∩H n−k
D =H n−k

D,ex . Since ? restricts to

an isomorphism ? :H n−k
D,ex →H

k
N ,co it follows dimH k

N ,co = dimH n−k
D,ex = dim ker(π∗) = b∂ ,k.
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Next we prove that the map ΠK ◦R
k
N induces an isomorphism fromH k

N ,co onto the subspace

K := 〈ck
1 , . . . , ck

b∂ ,k
〉R ⊆ Hk(M), where ΠK : Hk(M)→ K ,

∑bk
i=1 aic

k
i 7→

∑b∂ ,k

i=1 aic
k
i denotes the

algebraic projection onto K . By dimension counting it is enough to show injectivity. Assume

there is an ω ∈ H k
N ,co with ΠK ◦ R

k
N (ω) = 0, i.e. ck := R

k
N (ω) =

∑

i>b∂ ,k
aic

k
i . Then for any

σ ∈ Hk(∂M) it is ι∗ck(σ) = ck(ι∗σ) = 0 since by definition of the Kronecker dual basis only
the cochains ck

i with i ≤ b∂ ,k, are non-vanishing on ι∗Hk(∂M). Therefore ι∗ck = 0 ∈ Hk(∂M)
and thus ι∗ω = 0 ∈ Hk

dR(∂M), i.e. ι∗ω is exact on ∂M , so ω ∈H k
N ,∂ ex. But by orthogonality

ofH k
N ,∂ ex andH k

N ,co it must be ω= 0. This shows isomorphy.

Finally letω ∈H k
N and let c := ΠK ◦R

k
N (ω) ∈ K ⊆ Hk(M). Then there is a unique η ∈H k

N ,co

with ΠK ◦ R
k
N (η) = c. Thus, for ξ := ω−η it is ΠK ◦ R

k
N (ξ) = 0, so ξ ∈ H k

N ,∂ ex by the above

argument, and this gives the decomposition ω= η+ ξ ∈H k
N ,co ⊕H

k
N ,∂ ex.

The second decomposition follows from the first because ? :H k
N →H

n−k
D , being an isom-

etry, respects the orthogonality and mapsH k
N ,co toH n−k

D,ex andH k
N ,∂ ex toH n−k

D,∂ co.

The dimension for the split spaces coming from the proof will be important in the following
so we mention explicitly:

Corollary 2.4.4. Let b∂ ,k := dim ι∗Hk(∂M) = dimker(π∗ : Hn−k(M ,∂M)→ Hn−k(M)) and
bk = dim Hk(M) = dim Hn−k(M ,∂M). Then

dimH k
N ,co = dimH n−k

D,ex = b∂ ,k

dimH k
N ,∂ ex = dimH n−k

D,∂ co = bk − b∂ ,k.

Proof. This was shown in the proof of Theorem 2.4.3.

ORTHOGONALITY ON SURFACES AND VOLUMES. Theorem 2.4.3 gives an answer to the
question whether there is an orthogonal decomposition of Hodge-Morrey-Friedrichs type in-
volving both the spacesH k

D andH k
N at the same time for surfaces and volumes embedded in

R3 as follows.

Lemma 2.4.5. Let M be a surface of type Σ0,m. Then there is an L2-orthogonal decomposition

Ω1 = dΩ0
D ⊕δΩ

2
N ⊕ dΩ0 ∩δΩ2 ⊕H 1

D ⊕H
1

N .

Proof. The sequence (2.4) shows that for genus g = 0 it is dimker(π∗ : H1(M ,∂M) →
H1(M)) = m − 1 = dim H1(M ,∂M), so by Corollary 2.4.4 it is H 1

D = H
1
D,ex ⊂ dΩ0 and

H 1
N =H

1
N ,co ⊂ δΩ

2, and the result follows from Theorem 2.3.4.

In particular, this decomposition applies to flat, two-dimensional domains in R2. A similar
statement holds for three-dimensional bounded domains in R3.
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Lemma 2.4.6. Let M be a bounded domain in R3. Then for k = 1, 2, there is an L2-orthogonal
decomposition

Ωk = dΩk−1
D ⊕δΩk+1

N ⊕ dΩk−1 ∩δΩk+1 ⊕H k
D ⊕H

k
N .

Proof. It follows from (2.5) that the maps π∗ : Hk(M ,∂M) → Hk(M) are zero maps, so
ker(π∗) = Hk(M ,∂M), k = 1,2. Corollary 2.4.4 shows again that H k

D ⊂ dΩk−1 and H k
N ⊂

δΩk+1, and the result follows from Theorem 2.3.4.

Speaking in terms of vector proxies, Cantarella et al. [CDG02] have coined the following
notions of the corresponding subspaces:

GG := {∇ϕ ∈ C∞ : ϕ |∂M= 0}
FK := {curl(Y ) : Y ∈ X ,~t(Y ) = 0}
CG := {X ∈ X : ∃ϕ ∈ C∞, Y ∈ X such that X =∇ϕ = curl(Y )}
HG := {X ∈ X : ~t(X ) = 0, div(X ) = 0,∃ϕ ∈ C∞ such that X =∇ϕ}
HK := {X ∈ X : ~n(X ) = 0, curl(X ) = 0,∃Y ∈ X such that X = curl(Y )}

These spaces are called grounded gradients, fluxless knots, curly gradients, harmonic gradients
and harmonic knots, and there is an orthogonal decomposition

X = GG⊕ FK⊕CG⊕HG⊕HK (2.21)

which corresponds to the case k = 1 in Lemma 2.4.6. In particular, the spaces H 1
D and H 1

N
correspond to HG and HK, respectively. See the examples in Section 5.4 for stereotypical
vector fields in each of these spaces.



DISCRETE DECOMPOSITIONS 3
3.1 FUNCTION SPACES ON SIMPLICIAL MANIFOLDS

We introduce the space of piecewise constant vector fields Xh on a simplicial manifold and the
ansatz spaces used for the discrete decompositions which are derived in the following chapters. Of
great importance are the notions of tangential and normal continuity of piecewise constant vec-
tor fields across inner facets. They relate subspaces of Xh to subspaces of Whitney forms whose
complex on the one hand encodes the cohomology of the mesh and on the other hand possesses
enough interelement continuity to define an exterior derivative. Finally we define the correspond-
ing spaces of vector field proxies classically known as Raviart-Thomas and Nédélec elements and
tabulate dimensions of certain spaces which we shall need later on.

SIMPLICIAL MANIFOLDS. In the following we will consider manifolds of dimension two
or three that are geometric realizations of finite simplicial complexes embedded in R3. More
precisely, we call Mh ⊂ R3 an oriented, compact simplicial n-manifold with boundary, n = 2
or n= 3, if Mh is an oriented, compact topological n-manifold with boundary ∂Mh such that
there is a finite simplicial complex K whose geometric realization |K | of affine n-simplices
in R3 is as a set equal to Mh. The triangulation of the boundary ∂Mh is then a subcomplex
of K . If n = 2, we also refer to Mh as a simplicial surface, and for n = 3 we say that Mh is
a simplicial solid. In addition, we always assume that Mh is connected. In applications, Mh
is often interpreted as a simplicial approximation of a smooth shape and we will attain this
point of view in the convergence analysis in Chapter 4.

By abuse of notation we often identify Mh with its simplicial complex structure and write
M (i)h for the set of i-simplices in the triangulation on Mh. We denote by nV , nE , nF and nT the
number of 0-, 1-, 2-, and 3-simplices which we call vertices, edges, faces or triangles, and tetra-
hedra, respectively. The simplices of highest dimension in Mh are also called cells. These are
triangles for simplical surfaces and tetrahedra for simplicial solids. The (n− 1)-dimensional
simplices forming the boundary of a cell σ are called the facets of σ. Furthermore, we write
nbV , nbE and nbF for the number of vertices, edges and triangles contained in the boundary
subcomplex ∂Mh, and niV := nV − nbV , niE := nE − nbE , niF := nF − nbF for the number of
entities in the interior of Mh in the respective dimensions.

We shall need the following, simple combinatorial relations between these numbers: for a
simplicial surface with boundary it is niE = 3nF − nE . Furthermore, its Euler characteristic is
given by the formula

χ(Mh) = nV − nE + nF = 1− h1. (3.1)

Similarly, a simplicial solid in R3 satisfies niF = 4nT − nF and for its Euler characteristic,
both in absolute and relative version, holds

χ(Mh) = nV − nE + nF − nT = 1− h1 + h2

χ(Mh,∂Mh) = niV − niE + niF − nT = −h1
r + h2

r − 1= −χ(Mh).
(3.2)

For a simplicial surface Mh there is by definition an orientation on the triangulation and
we can specify for each affine triangle a (constant) unit normal field N consistent with this

21
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orientation. This orientation defines a complex structure J on every tangent space TpMh,
where p is a point in the interior of a triangle f , which acts geometrically by an anti-clockwise
rotation by π/2. More precisely, if we identify TpMh with a plane through the origin in R3

parallel to f , and Xp is a vector in TpMh, then JXp := Np×Xp, where × denotes the Euclidean
cross product in R3.

PIECEWISE CONSTANT VECTOR FIELDS. Let Mh be a simplicial surface. If f = [v0, v1, v2]
is a triangle of Mh, then the barycentric coordinates on f provide a chart λ = (λ1,λ2) onto
the unit triangle in R2, spanned by (0,0), (1,0) and (0,1). We say that a tangent vector field
X ∈ X ( f ) is a constant tangent vector field over f if it can be written as

Xp :=
∑

ai∂ λi |p for all p ∈ f

for two coefficients a1, a2 ∈ R which do not depend on the point p. An analogous definition
applies to constant tangent vector fields over a cell t of a simplicial solid in R3.

Definition 3.1.1 (Piecewise Constant Vector Field). Let Mh be a simplicial surface or a simpli-
cial solid in R3. A piecewise constant vector field (PCVF) on Mh is an element X ∈ L2(Mh,R3)
such that X |σ is represented by a constant tangent vector field over each cell σ. The space of all
PCVFs is denoted by Xh(Mh).

If Mh is clear from the context, we usually just write Xh. For a simplicial surface Mh, one
can identify an element X ∈ Xh with a family (X f ) f ∈M (2)h

indexed by the triangles of Mh,

where X f is a vector in the plane through the origin parallel to f . The L2-product onXh then
reduces to a sum of weighted Euclidean scalar products as

〈X , Y 〉L2 =
∑

f ∈M (2)h

〈X f , Yf 〉 · area( f )

The same formula applies to simplicial volumes, summing over all tetrahedra t ∈ M (3)h and
replacing the area factor by the three-dimensional volumes vol(t) of the tetrahedra.

By the very definition of a piecewise constant vector field X the only non-static information
is captured by the transition across an edge between adjacent triangles in the case of surfaces
or more generally across any (n−1)-face which is the intersection between any two adjacent
n-cells. This transition can be characterized by a normal jump [X ]N and tangential jump [X ]T
as follows: for a simplicial surface Mh assign an arbitrary but fixed orientation to all edges
e ∈ M (1)h . If e is such an oriented edge in the intersection of two adjacent triangles f1 and f2,
let νi denote the outward unit normal field of fi at e. Then, define the normal and tangential
jumps of X at e by

[X ]N (e) := 〈X1,ν1〉+ 〈X2,ν2〉
[X ]T (e) := 〈X1, Jν1〉+ 〈X2, Jν2〉.

Equivalently, these quantities can be expressed by first unfolding the two triangles at e until
they become coplanar, i.e. ν1 = −ν2. Then [X ]N (e) = 〈X1 − X2,ν1〉 and [X ]T (e) = 〈X1 −
X2, e/‖e‖〉, assuming e is oriented such that e/‖e‖= Jν1.
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Similarly, if Mh is a simplicial solid inR3, assign an arbitrary, but fixed unit normal direction
ν to each face f ∈ M (2)h . For f = t1 ∩ t2, define normal and tangential jump of X at f by

[X ]N ( f ) := 〈X1 − X2,ν〉
[X ]T ( f ) := ν× (ν× (X1 − X2)).

Note that the tangent spaces of the cells at f , identified as subspaces of TpR3, are already
coplanar for each point p ∈ f , since Mh is flat. In any case we say that X is normally continuous
if all normal jumps vanish at inner facets, and tangentially continuous if all tangential jumps
vanish at inner facets.

These two notions are essential in the analysis and formulation of finite element spaces,
because the interelement continuity of piecewise smooth finite element functions determines
the regularity of the Sobolev space the finite element space belongs to. For instance, if M ⊂ R2

is a triangulated domain then a piecewise smooth vector field is in H(curl, M) (i.e. has a weak
curl) if and only if it is tangentially continuous across inner edges, and it is in H(div, M) if
and only if it is normally continuous.

LINEAR ANSATZ SPACES FOR FUNCTIONS. We shall consider the following ansatz spaces
of functions Mh→ R, where Mh could be either a simplicial surface or a simplicial solid.

L := {ϕ : Mh→ R : ϕ |σ linear for each cell σ and ϕ globally continuous}
F := {ψ : Mh→ R :ψ |σ linear for each cell σ and ψ continuous at facet barycentres}

The space L is the space of linear Lagrange elements on Mh. Its standard basis is given by
the vertex basis functions ϕ j with ϕ j(vi) = δi j , where vi ∈ M (0)h is a vertex, and we say
that their degrees of freedom lie at the vertices. An alternative interpretation of these basis
functions is as generalized barycentric coordinates: over each triangle f = [v0, v1, v2] of a
simplicial surface, the restrictions of the associated basis functions ϕ j to f are the barycentric
coordinates λ0,λ1,λ2 on f . Consequently, ϕ j can be interpreted as a generalized barycentric
coordinate function, supported on the star of the vertex v j , and by abuse of notation we
shall also write λ j := ϕ j whenever we want to emphasize that we think of ϕ j as a piecewise
barycentric coordinate function, and similarly for simplicial solids. We will attain this point
of view later on to define Whitney forms.

The space F is the space of Crouzeix-Raviart elements. Its standard basis is given by the
facet basis functions ψ j with ψ j(bi) = δi j , where bi is the barycentre of the (n−1)-face with
index i, and we say that their degrees of freedom lie at facet midpoints. Therefore, for n= 2
these are all functions which are linear over each triangle and continuous at edge midpoints,
whereas for n= 3 they are linear over each tetrahedral cell and continuous at barycentres of
the triangular faces.

The boundary-constrained subspaces L0 ⊂L and F0 ⊂F are defined by

L0 := {ϕ ∈ L : ϕ(vb) = 0 for all vb ∈ ∂M (0)h }

F0 := {ψ ∈ F :ψ(b) = 0 for all barycenters b of facets in ∂M (n−1)
h }.

Note that elements in L0 vanish identically on boundary facets whereas elements in F0 in
general only vanish at the barycentres of boundary facets.
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Figure 3.1: Left: Lagrange basis function on a simplicial surface associated to the middle
vertex and its gradient field. Middle: Crouzeix-Raviart basis function associated
to an edge and its cogradient field. Right: A general Crouzeix-Raviart function is
only continuous at edge midpoints.

DISCRETE GRADIENTS. For any piecewise linear function φ on Mh the gradient is defined
piecewise by

(∇φ) |σ:=∇(φ |σ) for all cells σ ∈ M (n)h ,

where the right-hand side is the restriction of the smooth gradient over the n-cell σ. The
gradient maps the space of linear Lagrange elements L as well as the space of Crouzeix-
Raviart elements F to subspaces of Xh which we denote by ∇L and ∇F , respectively, that
is

∇L := {∇ϕ : ϕ ∈ L}
∇F := {∇ψ :ψ ∈ F}.

If dim Mh = 2 we shall also need the cogradient space of Crouzeix-Raviart elements defined
by

J∇F := {J∇ψ :ψ ∈ F}.

The gradient and cogradient field for a linear Lagrange and a Crouzeix-Raviart basis function,
respectively, are illustrated in Figure 3.1.

The gradients of linear Lagrange and Crouzeix-Raviart functions have the following intrin-
sic representations: if Mh is a simplicial surface and f a triangle, let e denote an edge of f ,
with its orientation induced from the boundary ∂ f , and let v be the vertex of f opposite to
e, see Figure 3.2. Then for the linear Lagrange basis function ϕv ∈ L associated to v and the
Crouzeix-Raviart basis function ψe associated to e it is

∇ϕv | f=
Je

2 · area( f )
and ∇ψe | f=

−Je
area( f )

. (3.3)

Similarly, if Mh is a simplicial solid, let f = [v0, v1, v2] denote a facet of a tetrahedron t, and
let v be the vertex of t opposite to f . Assume that the vertices vi are ordered such that for the
edges e1 := [v0, v1] and e2 := [v0, v2] their cross product e1 × e2 points inside t. Then using
‖e1 × e2‖= 2 · area( f ) and vol(t) = area( f ) · height/3, one obtains for ϕv ∈ L associated to
v and ψ f ∈ F associated to f :

∇ϕv |t=
e1 × e2

6 · vol(t)
and ∇ψe |t= −

e1 × e2

2 · vol(t)
.
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e

f

v

e2 e1
v0

v1v2

v

f

Figure 3.2: Notation used for the intrinsic representation of gradients on a triangle and a
tetrahedron.

In order to use Green’s formula for PCVFs on individual cells, we need to extend X ∈ Xh
to facets. However, since X ∈ L2(Mh,R3), its trace on facets is not well-defined. Still, we can
apply Green’s formula locally, since for any cell σ, X |σ has by definition a smooth constant
representative X ∈ C∞(σ;R3). We will implicitly refer to this representative whenever we
deal with boundary integrals over boundaries of individual cells to obtain a well-defined local
trace of X .

Lemma 3.1.2. Let Mh be a simplicial surface or simplicial solid in R3 and let X ∈ Xh. Then

〈X ,∇ψ〉L2 = 0 for all ψ ∈ F0

if and only X is normally continuous. Furthermore,

〈X ,∇ψ〉L2 = 0 for all ψ ∈ F

if and only if X is normally continuous and has vanishing normal component along the boundary.

Proof. First, let Mh be a simplicial surface, e = f1 ∩ f2 ∈ M (1)h an inner edge adjacent to
triangles f1 and f2, and ψe ∈ F0 the Crouzeix-Raviart basis function associated to e. Then,
if νi denotes the piecewise constant outer normal field of fi , by Green’s formula over the
individual triangles it is

〈X ,∇ψe〉L2 =

∫

f1

〈X f1 ,∇ψe〉+
∫

f2

〈X f2 ,∇ψe〉

= −
∫

f1

div(X f1) ·ψe +

∫

∂ f1

〈X f1 ,ν1〉ψe −
∫

f2

div(X f2) ·ψe +

∫

∂ f2

〈X f2 ,ν2〉ψe

=

∫

∂ f1

〈X f1 ,ν1〉ψe +

∫

∂ f2

〈X f2 ,ν2〉ψe

= ±‖e‖
�

〈X f1 ,ν1〉+ 〈X f2 ,ν2〉
�

= ±‖e‖[X ]N (e),

since the divergence of the smooth, constant vector fields X fi
vanishes and

∫

e′ψe = 0 for all
other edges e′ 6= e of fi , as ψe vanishes at the midpoints of each e′. Hence 〈X ,∇ψe〉L2 = 0
for all basis functions ψe ∈ F0 if and only if [X ]N (e) = 0 for all inner edges e ∈ M (1)h \∂M (1)h ,
i.e. if and only if X is normally continuous.
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If in addition 〈X ,∇ψb〉L2 = 0 whereψb ∈ F is the basis function associated to the barycen-
tre of an edge e contained in ∂Mh, let f denote the single adjacent triangle to e and ν its outer
normal at e. Then again by Green’s formula it is

〈X ,∇ψb〉L2 = −
∫

f
div(X ) ·ψb +

∫

∂ f
〈X ,ν〉ψb = ‖e‖〈X ,ν〉

and therefore 〈X ,∇ψb〉L2 = 0, if and only if the normal component of X along e vanishes.
If Mh is a simplicial solid, the very same proof shows that 〈X ,∇ψb f

〉L2 = 0 for a basis
function associated to the barycentre b f of a facet f = t1 ∩ t2 if and only if [X ]N ( f ) = 0. We
just need to check that

∫

f ′ψb f
= 0 for all other facets f ′ 6= f of t1 and t2. To this end, assume

that t1 = [v0, v1, v2, v3] and f = [v0, v1, v2]. Then since ψb f
vanishes at all barycentres of

facets f ′ 6= f of t1, it vanishes along the plane through these barycentres, which is parallel to
f , and ψb f

| f≡ 1. Without loss of generality let f ′ = [v1, v2, v3], then its barycentre is given
by λ1 = λ2 = λ3 = 1/3. Therefore, over f ′ it is ψb f

| f ′= 1− 3λ3, and using the coordinate

chart λ := (λ2,λ3) : f ′ → f0 := [(0, 0), (1, 0), (0, 1)] ⊂ R2 to the standard triangle in R2, we
find

∫

f ′
ψb f
| f ′ =

∫

f0

ψb f
| f ′ ◦λ−1 · G

= G ·
∫ 1

0

∫ 1−x

0

1− 3λ3 ◦λ−1(x , y) dydx

= G ·
∫ 1

0

∫ 1−x

0

1− 3y dydx = 0,

where G denotes the square root of the Gramian determinant of λ−1, which is constant, as
λ−1 is affine. The proof for the vanishing normal component along ∂Mh goes along the same
lines as in the surface case.

Corollary 3.1.3. Let Mh be a simplicial surface and X ∈ Xh. Then X is tangentially continuous
if and only if 〈X , J∇ψ〉L2 = 0 for all ψ ∈ F0. If 〈X , J∇ψb〉L2 = 0 for every basis function
ψb ∈ F associated to the barycentre of an edge contained in the boundary ∂Mh, then X has a
vanishing tangential component along ∂Mh.

Proof. This follows immediately from Lemma 3.1.2 since X is tangentially continuous if and
only if JX is normally continuous.

WHITNEY’S ELEMENTARY FORMS. In [Whi12, Ch. 4, §27], Whitney gives an explicit defi-
nition for a right-inverse to the de Rham map R (2.15) in terms of what is nowadays commonly
referred to as Whitney forms. Each Whitney form is a linear combination of elementary forms,
where each elementary k-form is associated to an oriented k-simplex σ := [vi0 , . . . , vik] of a
smooth triangulation of M and defined by

ωσ := k!
k
∑

j=0

(−1) jλi j
dλi0 ∧ . . .∧Ôdλi j

∧ . . .∧ dλik
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with the λi j
being generalized, smooth barycentric coordinates on M such that

∫

σ′
ωσ =

¨

1 if σ′ = σ
0 else

for any k-simplex σ′, and Ôdλi j
means that the j-th entry in the wedge product is omitted. We

writeW k(M) for the space of Whitney k-forms, spanned by all elementary k-forms. The Whit-
ney map is then the interpolation map W k : Ck(M)→ W k(M) ⊂ Ωk(M) which maps the k-
cochain which is 1 on σ and 0 on all other k-simplices to the differential k-formωσ ∈ Ωk(M),
and extended linearly. Whitney has proved in [Whi12, Ch. 4, §27] that this interpolation map
is a right-inverse to R : Ωk(M)→ Ck(M) and that it commutes with the exterior derivative on
the level of differential forms and simplicial cochains. Therefore the diagram

. . . Ck(M)
d∆ //

W k

��

Ck+1(M) . . .

W k+1

��

. . .W k(M) d // W k+1(M) . . .

(3.4)

commutes for all k, and W k descends to an isomorphism between simplicial cohomology and
smooth de Rham cohomology [Whi12, Thm. 29A, Ch. 4, §29].

Whitney’s interpolation construction carries over to simplicial manifolds triangulated by
piecewise affine n-simplices and is well-established in the finite element community, though
it has been reinvented a couple of times under different names, most prominently as Raviart-
Thomas elements ([RT77]) or Nédélec elements ([Né80]), constituting vector proxy fields for
(Hodge star transformed) Whitney 1-forms on triangular domains in R2 in the former case,
and Whitney 1- and 2-forms on simplicial solids in R3 in the latter. In this case the function λi
is the piecewise linear barycentric coordinate supported on every cell that contains the vertex
vi and extended by zero outside of the simplicial star of vi as discussed above, and the very
same definition of Whitney forms carries over to simplicial surfaces in R3.

The resulting Whitney forms are not smooth any more, but they are still smooth when
restricted to a single cell, and possess desired transition properties so that a discrete exterior
derivative can be defined for them as the piecewise smooth exterior derivative. If Mh is
embedded in R2 (i.e. a bounded polygonal domain in R2) or a simplicial solid in R3, then
dω is the weak derivative in the Sobolev sense, see. [AFW06, Lemma 5.1]. Consequently
they are well-suited for problems that require H(curl)- or H(div)-regularity, which frequently
appear in numerical computations for Maxwell- or Navier-Stokes-type problems.

We will need the following two well-known characterizations of Whitney k-forms:

Lemma 3.1.4. Letω ∈W k(Mh). Then the tangential trace over the intersection of two adjacent
n-cells is well-defined.

Proof. Let τ ⊂ σ1 ∩ σ2 be the (n − 1)-cell adjacent to σ1 and σ2 and let ιi : τ ,→ σi de-
note the inclusion. Since the generalized barycentric coordinates {λ j} over Mh are globally
continuous, it follows from (2.9) that

t(d(λ j |σ1
)) = d(t(λ j |σ1

)) = d(t(λ j |σ2
)) = t(d(λ j |σ2

)),
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so the tangential trace t(dλ j) on τ is well-defined and does not depend on σ1 or σ2. In
particular, if v j is not a vertex in τ, then λ j |τ≡ 0 and consequently t(dλ j) = 0. By (2.9) and
linearity of the pullback, this also holds for every elementary form ωτk

and thereby for all
ω ∈W k(Mh).

Lemma 3.1.5. Let ω ∈W k(Mh). Then dω= 0 if and only if ω is constant on every cell.

Proof. [AFW06, Thm. 4.1 and Thm. 3.4]. Note that the authors write P −1 Λ
k for the space of

Whitney k-forms W k(Mh).

Due to the fact that Whitney forms have a well-defined tangential trace, they obey Green’s
formula when used as the component to which the exterior derivative is applied. More pre-
cisely, if w ∈ W k(M) is a Whitney k-form with respect to continuous, piecewise smooth
barycentric coordinates on M , then for any smooth (k+ 1)-form η ∈ Ωk+1(M) it is

〈dw,η〉L2 = 〈w,δη〉L2 +

∫

∂M
t(w)∧ ?n(η) (3.5)

VECTOR FIELD PROXIES FOR WHITNEY FORMS. We will be mostly interested in the case
where dim Mh = 2 or dim Mh = 3 and k = 1 or k = 2. In this case, Whitney forms can be
expressed in the classical notion of vector calculus as functions and (co-)vector fields on Mh.
Again, we shall abbreviateW k =W k(Mh) whenever the domain is clear from the context. By
definition, W 0 =L . Moreover, W 1 corresponds to the space

N := {ω] :ω ∈W 1},

which is the classical space of lowest order Nédélec edge elements as defined in [Né80], spanned
by all piecewise linear vector fields of the form λi∇λ j − λ j∇λi , where ei j is an edge in Mh.
See Figure 3.3 for an illustration.

Figure 3.3: Nédélec basis function associated to the diagonal edge in two and three dimen-
sions. The tangential component of the vector field along the diagonal integrates
to one, but is zero along all other edges.

Furthermore, if dim Mh = 3 we write RT := {(?ω)] : ω ∈ W 2} which is known as the
space of Raviart-Thomas elements, defined in [RT77] and [Né80], and we denote by DG the
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space of lowest order discontinuous Galerkin elements, specified by a single constant value per
cell. With these notions we obtain for simplicial surfaces the following correspondence

W 0 d // W 1 d //

]��

W 2

?
��

L ∇ // N curl // DG
(3.6)

and for dim Mh = 3, this diagram becomes

W 0 d // W 1 d //

]��

W 2 d //

]◦?��

W 3

?
��

L ∇ // N curl // RT div // DG
(3.7)

To conclude this section, we list the dimensions of the function spaces involved in the de-
composition results in the next sections. These results follow from straight-forward compu-
tations, making use of the combinatorial relations of the Euler characteristic (3.1) and (3.2)
and the fact that the Whitney complexes (3.6) and (3.7) have cohomology spaces isomorphic
to the simplicial cohomology spaces—a consequence of W k being an isomorphism between
the complex of Whitney forms and the complex of simplicial cochains.

dim Mh = 2 Dimension dim Mh = 3 Dimension
∇L nV − 1 ∇L nV − 1
∇L0 niV ∇L0 niV
J∇F nE − 1 J∇F nF − 1
J∇F0 niE = 3nF − nE J∇F0 niF = 4nT − nF

curl(N ) nE − nV + 1− h1

curl(N0) niE − niV − h1
r

Table 3.1: Dimensions for certain subspaces ofXh for simplicial surfaces (left) and simplicial
solids (right) which appear in the decomposition results in Sections 3.2 and 3.3.
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3.2 DECOMPOSITIONS ON SIMPLICIAL SURFACES

In this section we study discrete Hodge-type decompositions for simplicial surfaces with bound-
ary. A discrete version of the Hodge-Morrey-Friedrichs decomposition is derived, using linear La-
grange elements as ansatz spaces for potentials and Crouzeix-Raviart elements for copotentials.
The spaces Hh,D and Hh,N of discrete Dirichlet and Neumann fields have the same dimension as
their smooth counterparts, equal to the dimension of the first cohomology space. Each of these two
discrete spaces has subspaces reflecting non-trivial cohomology coming from boundary components
and inner handles of the geometry, consistent with the smooth results obtained by Shonkwiler. Us-
ing these subspaces we answer the question whether Hh,D and Hh,N can simultaneously appear
in a single decomposition and obtain such a decomposition for surfaces of type Σ0,m. Finally we
discuss how the choice of ansatz spaces affects the resulting decompositions and discretizations of
harmonic fields.

In the following let Mh be a simplicial surface with non-empty boundary. Recall from Corol-
lary 3.1.3 that X ∈ (J∇F0)⊥ if and only if X is tangentially continuous across inner edges
and moreover X ∈ (J∇F )⊥ if and only if X is tangentially continuous across inner edges and
has vanishing tangential component along the boundary. The following lemma relates these
tangentially continuous subspaces of Xh to closed Whitney 1-forms.

Lemma 3.2.1. A PCVF X is in the space J∇F⊥0 if and only if it represents a closed Whitney
1-form, and X is in the space J∇F⊥ if and only if it represents a closed Whitney 1-form with
vanishing tangential component.

Proof. Let ω ∈W 1 be closed, i.e. dω= 0, then ω is constant over each cell by Lemma 3.1.5.
Moreover, since each Whitney form is tangentially continuous, the representing proxy field
X :=ω] is tangentially continuous by (2.12), so X ∈ J∇F⊥0 by Corollary 3.1.3.

Conversely, let X ∈ J∇F⊥0 . Pick an arbitrary, but fixed orientation for each edge e ∈ M (1)h ,
define ae :=

∫

e X [ and set ω :=
∑

e aeωe ∈ W 1. Since X is tangentially continuous, ae is

well-defined. Then for every triangle f ∈ M (2)h it is by Stokes’ theorem

∫

f
dω=

∫

∂ f
ω=

∑

e∈∂ f

ae

∫

e
ωe =

∑

e∈∂ f

aeεe

where each e now has the boundary orientation inherited from the triangle f . Therefore we
have to multiply with εe = 1 if this orientation agrees with the one we have fixed, and εe = −1
otherwise. Let τe denote the oriented unit tangent of the triangle edge e, i.e. τe = e/‖e‖.
Then by writing this last sum in terms of line integrals of the vector field X along the edges
e we conclude

∑

e∈∂ f

aeεe =
∑

e∈∂ f

∫

e
〈X ,τe〉dS =

∑

e∈∂ f

‖e‖〈X ,τe〉= 〈X ,
∑

e∈∂ f

e〉= 0

since for any triangle the oriented boundary edges sum up to zero. Hence the assignment
R(dω) : f 7→

∫

f dω is the zero element in C2(Mh), and since R : W 2 ∼−→ C2(Mh) is an
isomorphism, it follows dω= 0, i.e. ω is closed.

The addendum follows from the fact that for all boundary edges e ∈ ∂M (1)h it is ae = 0 if
and only if t(X [) = 0 if and only if ~t(X ) = 0.
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Remark 3.2.2. The construction in Lemma 3.2.1 provides isomorphisms R : J∇F⊥0 ∼−→ Z1(Mh)

and R0 : J∇F⊥ ∼−→ Z1(Mh,∂Mh) which are given by the assignment

X 7→
�

cX : e 7→
∫

e
〈X ,τe〉= 〈X , e〉

�

∈ Z1(Mh) (Z
1(Mh,∂Mh)).

for any X ∈ J∇F⊥0 (X ∈ J∇F⊥). We will come back to these maps below.

Lemma 3.2.3. The following pairs of subspaces are L2-orthogonal:

∇L ⊥ J∇F0

∇L0 ⊥ J∇F

Proof. With respect to the commutative diagram (3.6) this is a consequence of Lemma 3.2.1:
since every exact form is closed, it follows for any ϕ ∈ L that (∇ϕ)[ ∈ ker(d1

W ), where
d1
W := d1 |W 1 , so indeed ∇ϕ ∈ J∇F⊥0 .
If in addition ϕ ∈ L0, then ϕ vanishes along ∂Mh. Thus by (2.12), dϕ has vanishing

tangential component, which in turn means that ∇ϕ has vanishing tangential component
along ∂Mh, so ∇ϕ ∈ J∇F⊥.

Corollary 3.2.4. If Mh is closed, then the spaces ∇F and J∇L are L2-orthogonal.

Proof. If ∂Mh = ;, then L0 =L and F0 =F , and the result follows from Lemma 3.2.3.

In general, the direct sum of any two orthogonal spaces in Lemma 3.2.3 span a subspace
V that is strictly contained in the space Xh. However, the complement V ⊥ will always be
of a dimension independent of the triangulation and can therefore be seen as a topological
invariant—it is nothing else but a concrete realization for the first cohomology group of Mh,
either in its absolute or relative version. In analogy with the smooth situation we define:

Definition 3.2.5 (Discrete Harmonic, Neumann, Dirichlet (2d)). The L2-orthogonal comple-
ments of the orthogonal sums ∇L0⊕ J∇F0, ∇L ⊕ J∇F0 and ∇L0⊕ J∇F within Xh are the
spaces of discrete harmonic fields, discrete Neumann fields and discrete Dirichlet fields, and
denoted byHh,Hh,N andHh,D, respectively.

Since discrete Dirichlet fields are orthogonal to J∇F , it follows that their tangential pro-
jection onto each boundary edge vanishes. In contrast, a discrete Neumann field has only
weakly vanishing normal projection onto each boundary edge in the sense that it is orthog-
onal to gradients of linear Lagrange functions associated to boundary vertices. Since this is
a condition over the star of each boundary vertex, it does in general not enforce the normal
component to be strictly zero, see Figure 3.4 for an illustration.
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Figure 3.4: A discrete Dirichlet field (left) and Neumann field (middle) on a flat geometry
of type Σ0,2, each being one out of two basis fields forHh,D andHh,N . The right
image shows a close-up of both fields in a vicinity of the small boundary hole. The
Dirichlet field (blue) is perpendicular to each boundary edge, whereas the Neu-
mann field is only almost tangential. Both fields are L2-orthogonal to each other
(see Lemma 3.2.17 later on), since all Dirichlet fields are exact on this geometry
(and correspondingly, all Neumann fields are coexact).

Lemma 3.2.6 (Fundamental Decomposition (2d)). The space Xh admits the following L2-
orthogonal decompositions

Xh =∇L ⊕ J∇F0 ⊕Hh,N (3.8)

=∇L0 ⊕ J∇F ⊕Hh,D (3.9)

and it is dimHh,N = dimHh,D = h1.

Proof. The orthogonality for each decomposition follows from Lemma 3.2.3 and the defini-
tion of the spaces of discrete Neumann and Dirichlet fields. For the dimensions, one can
perform a direct computation using the identity for the Euler characteristic (3.1). However,
the following argument is more insightful since it directly identifies the spacesHh,N andHh,D
as representatives for the absolute and relative first cohomology. Since J∇F⊥0

∼= {ω] : ω ∈
ker(d1

W ) ⊂W
1} and ∇L ⊆ J∇F⊥0 by Lemma 3.2.1 and Lemma 3.2.3, it follows that

Hh,N
∼= J∇F⊥0 /∇L

∼= ker(d1
W )/im(d

0
W )
∼= Z1(Mh)/B

1(Mh) = H1(Mh).

Similarly, for the relative version it is

Hh,D
∼= J∇F⊥/∇L0

∼= ker(d1
W0
)/im(d0

W0
)∼= Z1(Mh,∂Mh)/B

1(Mh,∂Mh) = H1(Mh,∂Mh)

and by Lefschetz-Poincaré duality it is H1(Mh)∼= H1(Mh,∂Mh).

Remark 3.2.7. Lemma 3.2.6 shows that the isomorphisms in Remark 3.2.2 yield isomorphisms

RN :Hh,N
∼−→ H1(Mh)

RD :Hh,D
∼−→ H1(Mh,∂Mh)
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which can be thought of as discrete analogues of the de Rham isomorphism: RN maps an element
X ∈Hh,N to the equivalence class of the cocycle R(X ). Its inverse maps a cohomology class [w] to
the element X := R−1(w), decomposes X according to (3.8) as X =∇ϕ+XN with∇ϕ ∈ ∇L and
XN ∈Hh,N , and drops the gradient part ∇ϕ. Note that it does not depend on the representative
w of [w], and is therefore well-defined. A similar description applies to RD, using (3.9).

There is a third decomposition involving the space of all discrete harmonic fields by posing
boundary conditions on both the potential as well as the copotential space:

Xh =∇L0 ⊕ J∇F0 ⊕Hh (3.10)

However, as in the smooth situation, Hh has no topological significance any more in the
presence of a boundary and moreover depends on the mesh: a simple calculation shows that

dimHh = 2nF − niV − niE = h1(M) + nbE − 1→∞

under refinement of the boundary.

Remark 3.2.8. For the case that Mh is a closed surface (i.e. ∂M = ;) the fundamental decom-
positions both become

Xh(Mh) =∇L ⊕ J∇F ⊕Hh

withHh
∼= H1(Mh) and thus dimHh = 2g, where g is the genus of Mh. This special case is the

situation considered in [War06].

The fundamental decompositions yield a discrete version of the Hodge-Morrey-Friedrichs
decomposition in Theorem 2.3.4:

Theorem 3.2.9 (Discrete Hodge-Morrey-Friedrichs Decomposition (2d)). The space Xh ad-
mits the following L2-orthogonal decompositions:

Xh =∇L0 ⊕ J∇F0 ⊕Hh ∩∇L ⊕Hh,N (3.11)

=∇L0 ⊕ J∇F0 ⊕Hh ∩ J∇F ⊕Hh,D. (3.12)

Proof. This is an immediate consequence of Lemma 3.2.6.

INNER AND BOUNDARY COHOMOLOGY REPRESENTATIVES. These two discrete Hodge-
Morrey-Friedrichs decompositions raise the question whether there is a single L2-orthogonal
decomposition involving both the spaces of discrete Dirichlet and Neumann fields at the same
time. A priori, the best one can get from Theorem 3.2.9 is a decomposition

Xh =∇L0 ⊕ J∇F0 ⊕∇L ∩ J∇F ⊕ (Hh,N +Hh,D), (3.13)

but the latter sum is in general neither orthogonal, nor is it necessarily direct, as the obstruc-
tions in Section 3.4 will show.

Therefore we consider a further orthogonal decomposition into subspaces of the spaces
Hh,N and Hh,D that correspond to cohomology classes coming from the inner topology and
those coming from the boundary. The following definition is in accordance with Defini-
tion 2.4.2.
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Definition 3.2.10. The spaces of discrete coexact Neumann fields, boundary-exact Neumann
fields, exact Dirichlet fields and boundary-coexact Dirichlet fields are defined as

Hh,N ,co :=Hh,N ∩ J∇F

Hh,N ,∂ ex := (Hh,N ,co)
⊥Hh,N

Hh,D,ex :=Hh,D ∩∇L

Hh,D,∂ co := (Hh,D,ex)
⊥Hh,D ,

where the orthogonal complement is taken insideHh,N andHh,D, respectively.

Corollary 3.2.11. It isHh,N ,co ⊥Hh,D andHh,D,ex ⊥Hh,N .

Proof. This follows from Lemma 3.2.6.

To establish a connection between the spaces defined in Definition 3.2.10 and the cohomo-
logical complexity introduced by boundary components and inner handles, we consider the
projection map

prN :Hh,D→Hh,N , XD 7→ XN

which takes an element XD ∈Hh,D, decomposes it according to the fundamental decomposi-
tion in (3.8) as

XD =∇ϕ + XN

with XN ∈Hh,N , and then drops the exact component ∇ϕ.

Lemma 3.2.12. It is ker(prN ) = Hh,D,ex. Furthermore, if Mh is homeomorphic to Σg,m, then
dimHh,D,ex = m− 1.

Proof. The definition of prN makes the diagram

Hh,D
prN //

RD
��

Hh,N

RN
��

H1(Mh,∂Mh)
π∗ // H1(Mh)

commutative, with the vertical arrows being the discrete de Rham isomorphisms from Re-
mark 3.2.7. Indeed, if RD(XD) = [w] = w + B1(Mh,∂Mh) ∈ H1(Mh,∂Mh) is the relative
cohomology class represented by XD ∈Hh,D, then π∗([w]) = w+B1(Mh), as π∗ is induced by
the inclusion C1(Mh,∂Mh) ,→ C1(Mh) and is therefore an inclusion Z1(Mh,∂Mh) ,→ Z1(Mh)
on the level of cocycles. But by Remark 3.2.7, the inverse of RN decomposes R−1(w) according
to (3.8) and drops the exact component, and this is precisely how prN is defined.

Therefore, π∗(RD(XD)) = RN (prN (XD)) = 0 ∈ H1(Mh) if and only if prN (XD) ∈ ∇L is exact,
which happens if and only if XD ∈Hh,D,ex. In particular, it is dim ker(prN ) = dim ker(π∗) and
from (2.4) it follows dimker(π∗) = m− 1.

Lemma 3.2.12 identifies the space Hh,D,ex as the space of representatives for the kernel
of π∗ in the cohomology sequence, that is, as the representatives for non-trivial relative co-
homology classes that become exact when one includes the boundary for possible potential
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functions. Since ker(π∗) is the image of the map δ∗ : H0(∂M)→ H1(Mh,∂Mh) in the coho-
mology sequence (2.2), it is plausible to think of them as representing non-trivial cohomology
information coming from the boundary, as coined in [Sho09], which is in accordance to the
dimension m−1. The complementary spaceHh,D,∂ co should therefore correspond to the inner
cohomology, which is supported by the fact that its dimension is 2g.

Lemma 3.2.13. prN restricts to an isomorphism prN : Hh,D,∂ co
∼−→ Hh,N ,∂ ex. In particular, if

Mh is of type Σg,m it is

dimHh,D,ex = dimHh,N ,co = m− 1

dimHh,D,∂ co = dimHh,N ,∂ ex = 2g.

Proof. We first check that prN indeed maps discrete boundary-coexact Dirichlet fields to
boundary-exact Neumann fields. Since ker(prN ) = Hh,D,ex, it follows that prN is injective
onHh,D,∂ co. For a field XD ∈Hh,D,∂ co let XD = J∇ψ+ Z +∇ϕ be its orthogonal decomposi-
tion inHh,N ,co ⊕Hh,N ,∂ ex ⊕Hh ∩∇L . Then

0= 〈XD, J∇ψ〉L2 = 〈J∇ψ, J∇ψ〉L2 + 〈Z , J∇ψ〉L2 + 〈∇ϕ, J∇ψ〉L2

where the last two summands vanish due to the orthogonality of the decomposition. It follows
J∇ψ= 0, so indeed prN (XD) = Z ∈Hh,N ,∂ ex.

We now show that dimHh,D,ex = dimHh,N ,co which implies that the orthogonal comple-
ments are also of the same dimension. Then since prN is an injective map between spaces of
the same dimension it must be an isomorphism. To this end, note that for A := Hh ∩ J∇F
and B := Hh ∩∇L we have Hh,D,ex = B ∩ A⊥Hh and Hh,N ,co = A∩ B⊥Hh , where again ⊥Hh

denotes the orthogonal complement insideHh. Then

dim A∩ B⊥Hh = dimHh − dim(A∩ B⊥Hh )⊥Hh

= dimHh − dim(A⊥Hh + B)

= dimHh − (dim A⊥Hh + dim B − dim(B ∩ A⊥Hh ))

= dimHh − (dim B⊥Hh + dim B) + dim(B ∩ A⊥Hh )

= dim(B ∩ A⊥Hh ),

because dim A⊥Hh = dimHh,D = dimHh,N = dim B⊥Hh by Lemma 3.2.6.

Considering again the cohomology sequence

· · · → H0(∂Mh)
δ∗

−→ H1(Mh,∂Mh)
π∗

−→ H1(Mh)
ι∗

−→ H1(∂Mh)→ . . .

we conclude:

Corollary 3.2.14. The cohomology classes in ker(ι∗) are represented byHh,N ,∂ ex.

Proof. By exactness of the sequence, ker(ι∗) = im(π∗), and by Lemma 3.2.13, im(π∗) is
represented byHh,N ,∂ ex.
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In the case of smooth differential forms, we have first defined the space H k
N ,∂ ex explicitly

as
H k

N ,∂ ex = {ω ∈H
k

N : ι∗ω ∈ dΩk−1(∂M)}

and only then proved in Theorem 2.4.3 that it is actually orthogonal to the space H k
N ,co

of coexact Neumann fields. In contrast, in the discrete setting we have explicitly defined
the space Hh,N ,co as the intersection of discrete Neumann fields with the cogradient space
J∇F , and then defined Hh,N ,∂ ex as its orthogonal complement within Hh,N . Of course, this
establishes the orthogonality of these two spaces by definition. We will now deduce that
Hh,N ,∂ ex can also be defined in analogy to its smooth counterpart. To this end, we define
for a PCVF X ∈ Xh its restriction to the boundary as the piecewise constant, one-dimensional
vector field on the one-dimensional boundary polygons ∂Mh to be

(X |∂Mh
)e := 〈X fe

, e〉= R(X )(e)

for each boundary edge e ∈ ∂Mh with its adjacent face fe.

Lemma 3.2.15. Let X ∈Hh,N ,∂ ex be a discrete boundary-exact Neumann field. Then there is a
function ϕ ∈ L (∂Mh) such that X |∂Mh

=∇ϕ and therefore

Hh,N ,∂ ex =H
⊥Hh,N

h,N ,co = {X ∈Hh,N : X |∂Mh
∈ ∇L (∂Mh)}.

Proof. By Corollary 3.2.14, the space Hh,N ,∂ ex represents cohomology classes in ker(ι∗) ⊂
H1(Mh). But since ι] : C1(Mh)→ C1(∂Mh) is the restriction to ∂Mh, it follows ι∗(RN (X )) = 0
in H1(∂Mh) if and only if X |∂Mh

= ι](R(X )) is in B1(∂Mh), i.e. exact on ∂Mh.

Combining these results with the discrete Hodge-Morrey-Friedrichs decompositions in The-
orem 3.2.9, we obtain:

Theorem 3.2.16. The discrete Hodge-Morrey-Friedrichs decompositions have the following re-
finements into boundary and inner cohomology-representing subspaces:

Xh =∇L0 ⊕ J∇F0 ⊕Hh ∩∇L ⊕Hh,N ,co ⊕Hh,N ,∂ ex (3.14)

=∇L0 ⊕ J∇F0 ⊕Hh ∩ J∇F ⊕Hh,D,ex ⊕Hh,D,∂ co (3.15)

As mentioned before, in general there is no hope for L2-orthogonality between Hh,N and
Hh,D due to the presence of the spacesHh,N ,∂ ex andHh,D,∂ co. Roughly speaking, these fields
concentrate on non-trivial paths that generate the homology for handle regions and the influ-
ence of the boundary constraints can be marginal in such a case, depending on the geometry.
We will provide a few examples in Section 5.1. With regard to Corollary 3.2.11, the situation
can be summarized as shown in Figure 3.5.
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U

Hh,D,ex

Hh,D,∂ co

Hh,N ,co

Hh,N ,∂ ex

Figure 3.5: Schematic, low-dimensional alignment of the spaces Hh,D and Hh,N . Both sub-
spacesHh,N ,∂ ex andHh,D,∂ co lie in a common subspace U (dashed plane) that is
orthogonal to both Hh,D,ex and Hh,N ,co. However, Hh,N ,∂ ex and Hh,D,∂ co are not
orthogonal to each other in U , destroying the orthogonality ofHh,D andHh,N .

SURFACES COMING FROM A SPHERE. We now consider surfaces “coming from a sphere”,
i.e. surfaces of type Σ0,m. This includes all connected open, bounded domains in R2 with
various holes cut out, for instance. Here the situation is much simpler.

Lemma 3.2.17. Let Mh be of type Σ0,m. Then it is Hh,D = Hh,D,ex and Hh,N = Hh,N ,co. In
particularHh,D ⊥Hh,N .

Proof. If g = 0, then by Lemma 3.2.13 it is dimHh,D,∂ co = dimHh,N ,∂ ex = 0. The orthogo-
nalityHh,D ⊥Hh,N now follows from Corollary 3.2.11.

Speaking geometrically, this says that in the case where Mh is of type Σ0,m every discrete
harmonic vector field with vanishing tangential projection along the boundary is integrable,
and a similar result holds for discrete Neumann fields. A remarkable consequence for surfaces
of type Σ0,m is that alwaysHh,D ∩Hh,N = {0}, which can be considered a discrete version of
Theorem 2.4.1. With respect to Lemma 3.2.6 this can be equivalently expressed by

Xh =∇L + J∇F

and therefore, every PCVF is the (not unique) sum of a gradient field and a cogradient field.
The same question for general surfaces turns out to be much harder and will be discussed in
Section 3.4.

Coming back to the original question whether there is a single decomposition involving both
the spaces at the same time, we have the following positive result for surfaces homeomorphic
to Σ0,m.

Theorem 3.2.18 (Complete Decomposition for Surfaces of TypeΣ0,m). Let Mh be of typeΣ0,m.
Then the space Xh admits the following complete L2-orthogonal decomposition:

Xh =∇L0 ⊕ J∇F0 ⊕∇L ∩ J∇F ⊕Hh,D ⊕Hh,N .
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Proof. By Lemma 3.2.17, it is Hh,D ⊥ Hh,N and from the fundamental decompositions in
Lemma 3.2.6 it follows

(Hh,D ⊕Hh,N )
⊥Hh =H ⊥

h,D ∩H
⊥

h,N ∩Hh = (∇L ∩ J∇F )∩Hh =∇L ∩ J∇F .

SWAPPING THE ANSATZ SPACES. Exchanging the roles of the ansatz spaces for potential
functions and copotential functions amounts to applying the rotation operator J to each of
the spaces in the decomposition. For instance, the analogues of the discrete Hodge-Morrey-
Friedrichs decompositions Theorem 3.2.9 become

Xh = JXh =∇F0 ⊕ J∇L0 ⊕ JHh ∩ J∇L ⊕ JHh,N

=∇F0 ⊕ J∇L0 ⊕ JHh ∩∇F ⊕ JHh,D.

For these decompositions, the space of Crouzeix-Raviart elementsF now plays the part of the
space of potential functions whereas the Lagrange elements are used as copotential functions.
Setting

H †
h,N := JHh,D

H †
h,D := JHh,N ,

it is now the discrete Neumann fields in H †
h,N which have strictly vanishing normal compo-

nent at each boundary edge, whereas discrete Dirichlet fields have only weakly vanishing
tangential component. Therefore, for the rest of this section we will call the spacesHh,D and
H †

h,N strong Dirichlet and strong Neumann fields, and the spacesH †
h,D andHh,N weak Dirichlet

and weak Neumann fields, respectively.
Mixing discrete Dirichlet and Neumann spaces from both discretizations, one immediately

obtains a discrete version of Theorem 2.4.1:

Lemma 3.2.19. It isHh,D ∩H
†

h,N = {0}.

Proof. Let X ∈ Hh,D ∩H
†

h,N , then X ∈ ∇F⊥ ∩ J∇F⊥. Thus X has vanishing tangential and
normal component at each boundary edge, hence it vanishes on triangles adjacent to the
boundary, and since X is normally and tangentially continuous across all edges, it follows
X ≡ 0 everywhere.

In particular, Lemma 3.2.19 implies that always

Xh =∇F + J∇F .

Of course, this sum is never direct. More precisely, the dimension of the intersection space
computes as

dim∇F ∩ J∇F = 2(nE − 1)− 2nF = −2χ − 2+ 2nV = 2(h1 + nV − 2)> 0,

which is always positive and much larger than the dimension of the corresponding space in
(3.17). We obtain a second discrete version of the five-term decomposition (2.16).
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Theorem 3.2.20. The space Xh admits the following five-term decomposition

Xh =∇L0 ⊕ J∇L0 ⊕∇F ∩ J∇F ⊕ (Hh,D +H
†

h,N ),

where the spaces of strong Dirichlet and Neumann fields form a direct sum.

Proof. By Lemma 3.2.19, the sumHh,D +H
†

h,N is direct and by the fundamental decomposi-
tions Lemma 3.2.6 each of the two summands is orthogonal to ∇L0, J∇L0 and either ∇F
or J∇F .

Finally, with respect to the heavy use of linear Lagrange elements, we should mention that
the spaces of discrete Dirichlet and Neumann fields cannot be derived from a discretization
based purely on linear Lagrange ansatz spaces. For instance, although

Xh =∇L0 ⊕ J∇L ⊕ (∇L0 + J∇L )⊥

is an orthogonal decomposition, the residue space (∇L0 + J∇L )⊥ has dimension

dim(∇L0 + J∇L )⊥ = 2nF − niV − nV

= 2(nE − nV − nF ) + nF − nbE + nbV

= −2(1− h1) + nF

and is therefore mesh-dependent and has no meaningful topological interpretation any more.

DIV, CURL AND DISCRETE HOLOMORPHIC FUNCTIONS. The intention behind all previous
decomposition results is to provide a complete structural understanding of the space Xh of
PCVFs. Central to all these statements are the two spaces of exact vector fields∇L(0) and co-
exact vector fields J∇F(0), possibly with boundary conditions applied to the (co-)potentials.
All other spaces are derived from these two spaces in the sense that they are subspaces or
particular orthogonal complements. In particular, the only remainder from the smooth the-
ory is the discrete (co-)gradient operator, which is, restricted to a single triangle, the smooth
surface gradient applied to a linear function. With respect to Green’s formula one can also at-
tain a dual point of view by defining a discrete divergence and curl operator acting on PCVFs
by those functions forcing Green’s formula in the discrete setting to hold true—a paradigm
prevalent to mimetic discretization methods. In the context of discrete differential geometry,
this was initiated by Polthier and Preuss in [PP03], and later on elaborated on by Wardetzky
in [War06]. Following their depiction, one defines implicitly the elements

divL0
(X ) ∈ L0 such that 〈divL0

(X ),ϕ〉L2 = −〈X ,∇ϕ〉L2 for all ϕ ∈ L0

curlF0
(X ) ∈ F0 such that 〈curlF0

(X ),ψ〉L2 = 〈X , J∇ψ〉L2 for all ψ ∈ F0.

for a given PCVF X ∈ Xh. This gives operators

divL0
:Xh→L0

curlF0
:Xh→F0
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which we refer to as discrete divergence and discrete curl. Then it is by definition

ker(divL0
) =∇L⊥0

ker(curlF0
) = J∇F⊥0

and the decomposition (3.10) becomes

Xh =∇L0 ⊕
�

ker(divL0
)∩ ker(curlF0

)
�

⊕ J∇F0,

identifying the space Hh of discrete harmonic fields as those fields which are discrete diver-
gence- and curl-free. Consequently, the spaces of harmonic Dirichlet and Neumann fields
rewrite as

Hh,D = ker(divL0
)∩ (J∇F⊥)

Hh,N = ker(curlF0
)∩ (∇L⊥).

Of particular interest are discrete divergence-free gradient fields of Lagrange elements,
which are defined by functions ϕ ∈ L satisfying divL0

(∇ϕ) = 0. Such fields are fre-
quently used in remeshing and parametrization applications, see e.g. [DKG05, KNP07, SZS08,
XZCOX09], mostly due to their regular behaviour in the interior of a domain and the relatively
simple implementation of linear Lagrange functions on triangular meshes. These fields are
gradients of discrete harmonic functions, defined as the elements in the kernel of the stiffness
matrix

�

〈∇ϕi ,∇ϕ j〉L2

�

i=1,...,niV , j=1,...nV
,

whose entries can be intrinsically written as cotangent weights, see [PP93]. By adding nbV -
many prescribed function values attained at the boundary vertices, there is a unique weak
solution to the Laplace problem

∆ f = 0 subject to f |∂M= f0

for a given boundary function f0. If Mh is of type Σg,m, Lemma 3.2.13 shows that the space
Hh,D,ex captures the (m−1)-many solutions corresponding to discrete boundary functions f0
which are locally constant on the boundary ∂Mh.

In the construction and theoretical investigation of discrete minimal surfaces and their
conjugates, Polthier has set up in [Pol02, Sec. 3.4] a discrete Cauchy-Riemann problem to
find a discrete conjugate harmonic function for a given discrete harmonic function ϕ ∈ L as

Find ψ ∈ F such that ∇ϕ = J∇ψ, (3.16)

and (3.16) is referred to as the discrete Cauchy-Riemann equations. It is shown in [Pol02,
Prop. 69]:

Theorem 3.2.21. Let Mh be simply connected and let ϕ ∈ L be discrete harmonic. Then there
is—up to a constant—a unique solution ψ ∈ F to the discrete Cauchy-Riemann equations.

Using the decomposition results derived above, this theorem also follows immediately from
Theorem 3.2.18: if Mh is simply connected, thenHh,D = {0} and therefore every divergence-
free gradient field is contained in the central harmonic component ∇L ∩ J∇F .
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A pair (ϕ,ψ) satisfying (3.16) constitutes a discrete holomorphic function ϕ+ iψ, and ϕ and
ψ are discrete harmonic conjugate to each other. The full decomposition in Theorem 3.2.18
now shows that the dimension of the space of discrete holomorphic functions on Mh computes
as

dim∇L ∩ J∇F = 2nF − niV − niE − 2h1

= 2nF − nV + nbV − 3nF + nE − 2h1

= −1+ h1 + nbV − 2h1

= nbV − h1 − 1,

(3.17)

and since h1 = m−1 for a surface of type Σ0,m, there are, up to the constants, nbV −m linearly
independent discrete holomorphic functions. Under the assumption thatHh,D ∩Hh,N = {0},
this result generalizes as follows:

Lemma 3.2.22. Let Mh be a surface of type Σg,m and assume that Hh,D ∩Hh,N = {0}. Then
the space of discrete holomorphic functions on Mh has dimension nbV − 2g −m+ 2.

Proof. This follows from (3.13) with the same computation as in (3.17), using h1 = 2g+m−1
and taking constant potentials and copotentials into account.

3.3 DECOMPOSITIONS ON SIMPLICIAL SOLIDS

We now apply the same investigation to simplicial solids in R3. This scenario differs in two major
aspects from the case of surfaces discussed before: first, vector fields can now represent either 1-
or 2-forms and one needs to be careful when it comes to cohomological arguments since in general
the spaces Hk(M) and Hk(M ,∂M) are not isomorphic any more. Second, all cohomology is now
induced by the cohomology of the boundary, so there is no need for a further splitting of discrete
Dirichlet or Neumann fields. As a consequence there is always a complete orthogonal five-term
decomposition.

For this section let Mh denote a simplicial solid embedded in R3. Again, we are interested
in decomposition results for the space Xh of piecewise constant vector fields on Mh, which
are represented by a constant vector in R3 per tetrahedral cell. Let N and F denote the
spaces of Nédélec elements and Crouzeix-Raviart elements on tetrahedral meshes as defined
in Section 3.1, and let N0 ⊂ N and F0 ⊂ F denote the subspaces of all elements whose
degrees of freedom associated to simplices of the boundary ∂Mh are set to zero.

Lemma 3.3.1. A PCVF X is in the space ∇F⊥0 if and only if it represents a closed Whitney
2-form, and X is in the space ∇F⊥ if and only if it represents a closed Whitney 2-form with
vanishing tangential component.

Proof. The proof is in the same spirit as for Lemma 3.2.1. However, since the involved con-
struction of the Whitney 2-form and the de Rham map differs in this case, we give the details
for completeness.

Let ω ∈ W 2 be closed, i.e. dω = 0, then ω is constant over each cell by Lemma 3.1.5.
Moreover, since each Whitney form is tangentially continuous, the representing proxy field
X := (?ω)] is normally continuous by (2.14), so X ∈ ∇F⊥0 by Lemma 3.1.2.

Conversely, let X ∈ ∇F⊥0 . Pick an arbitrary, but fixed orientation for each face f ∈ M (2)h ,
define a f :=

∫

f ?X
[ and set ω :=

∑

f a fω f ∈ W 2. Since X is normally continuous, so is X [
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and thus t(?X [) is well-defined over f by (2.11). Then for every tetrahedron t ∈ M (3)h it is by
Stokes’ theorem

∫

t
dω=

∫

∂ t
ω=

∑

f ∈∂ t

a f

∫

f
ω f =

∑

f ∈∂ t

a f ε f

where each f now has the boundary orientation induced from the tetrahedron t. Therefore
we have to multiply with ε f = 1 if this orientation agrees with the one we have fixed, and
ε f = −1 otherwise. Let ν f denote the outer unit normal of the tetrahedron t at face f . Then
by writing this last sum in terms of surface integrals of the vector field X we conclude

∑

f ∈∂ t

a f ε f =
∑

f ∈∂ t

∫

f
〈X ,ν f 〉dS =

∑

f ∈∂ t

area( f )〈X ,ν f 〉= 〈X ,
∑

f ∈∂ t

area( f ) · ν f 〉= 0

since for any tetrahedron the area vectors area( f ) ·ν f at each face sum up to zero. Hence the

assignment R(dω) : t 7→
∫

t dω is the zero element in C3(Mh), and since R :W 3 ∼−→ C3(Mh) is
an isomorphism, it follows dω= 0, i.e. ω is closed.

The addendum follows from the fact that for a boundary face f ∈ ∂Mh it is a f = 0 if and
only if t(?X [) = 0 if and only if ~n(X ) = 0.

Lemma 3.3.2. The following pairs of subspaces are L2-orthogonal:

curl(N )⊥∇F0

curl(N0)⊥∇F .

Proof. With respect to the commutative diagram (3.7) this is now a simple consequence of
Lemma 3.3.1: since every exact form is closed, it follows for any X ∈ N that curl(X )[ ∈
ker(d2

W ), so indeed curl(X ) ∈ ∇F⊥0 .
If in addition X ∈ N0, then X [ has vanishing tangential component along ∂Mh. Thus by

(2.12), dX [ has vanishing tangential component, too, which in turn means that curl(X ) has
vanishing normal component along ∂Mh, so curl(X ) ∈ ∇F⊥.

As in the two-dimensional case, we define the discrete harmonic fields as the L2-orthogonal
residue space of these two subspace combinations:

Definition 3.3.3 (Discrete Harmonic, Neumann, Dirichlet (3d)). The L2-orthogonal comple-
ments of the orthogonal sums curl(N0) ⊕ ∇F0, curl(N ) ⊕ ∇F0 and curl(N0) ⊕ ∇F within
Xh are the spaces of discrete harmonic fields, discrete Neumann fields and discrete Dirichlet
fields, and denoted byH ?

h ,H ?
h,N andH ?

h,D, respectively.

Lemma 3.3.4 (Fundamental Decomposition (3d)). The space Xh admits the following L2-
orthogonal decompositions

Xh = curl(N )⊕∇F0 ⊕H ?
h,N (3.18)

= curl(N0)⊕∇F ⊕H ?
h,D (3.19)

and it is dimH ?
h,N = h2 and dimH ?

h,D = h2
r .
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Proof. The orthogonality follows directly from Lemma 3.3.2 and the definition of discrete
Neumann and Dirichlet fields. Since it is∇F⊥0

∼= {(?ω)] :ω ∈ ker(d2
W ) ⊂W

2} and curl(N ) ⊆
∇F⊥0 by Lemma 3.3.1 and Lemma 3.3.2, it follows that

H ?
h,N
∼=∇F⊥0 /curl(N )∼= ker(d2

W )/im(d
1
W )
∼= Z2(Mh)/B

2(Mh) = H2(Mh).

Similarly, for the relative version it is

H ?
h,D
∼=∇F⊥/curl(N0)∼=ker(d2

W0
)/im(d1

W0
)∼= Z2(Mh,∂Mh)/B

2(Mh,∂Mh)=H2(Mh,∂Mh).

Again, we obtain discrete de Rham isomorphisms on the level of cohomology

R
?

N :H ?
h,N
∼−→ H2(M)

R
?

D :H ?
h,D
∼−→ H2(M ,∂M),

this time given by

X 7→

�

cX : f 7→
∫

f
〈X ,ν f 〉dS = 〈X ,ν f 〉 · area( f )

�

where ν f is a fixed unit normal to the face f ∈ M (2)h , cf. the proof of Lemma 3.3.1.

Remark 3.3.5. In contrast to the definitions of discrete harmonic, Neumann and Dirichlet fields
in the two-dimensional case in Definition 3.2.5, in the three-dimensional case the discrete Dirich-
let fields have strictly vanishing normal component on each boundary face, and discrete Neu-
mann fields have weakly vanishing tangential component on the boundary. This is because the
decompositions Lemma 3.3.4 are in fact decompositions for vector proxies of 2-forms, as be-
comes clear in the previous proofs: potentials are now vector potentials and the operator curl
corresponds to the exterior derivative d1

W : W 1 →W 2 on the level of Whitney forms. As a con-
sequence, the corresponding representation isomorphism ]◦? :W 2→X , defined piecewise over
each cell, swaps boundary conditions by (2.11) and (2.14). The ?-notation in H ?

h,N and H ?
h,D

should remind the reader of this fact.
The reason for the interpretation of PCVFs as discrete vector proxies for 2-forms lies in the

simplicity of the spaceF : each PCVF which is L2-orthogonal to all gradients of Crouzeix-Raviart
elements is normally continuous across interelement faces, but not tangentially continuous. In
contrast, to define a similar decomposition for PCVFs representing 1-forms would require to find
an ansatz space V and a linear operator T : V → X such that a PCVF is in the orthogonal
complement T (V )⊥ if and only if it is tangentially continuous.

A special case of Lemma 3.3.4 was considered by Monk [Mon91]:

Corollary 3.3.6. Let Mh be a simplicial solid in R3 with a connected boundary ∂Mh. Then the
space Xh splits as

Xh = curl(N )⊕∇F0.

Proof. By Corollary 2.1.3 it is 0 = H2(M) ∼=H ?
h,N , and the result follows from Lemma 3.3.4.
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Remark 3.3.7. The article [Mon91]makes the even stronger assumption that Mh must be simply
connected. Corollary 3.3.6 shows that this assumption is not necessary for the stated decompo-
sition in [Mon91, Thm. 4.9], though. For instance, it still holds true on a solid torus.

We obtain a discrete version of the Hodge-Morrey-Friedrichs decomposition:

Theorem 3.3.8 (Discrete Hodge-Morrey-Friedrichs Decomposition (3d)). The space Xh ad-
mits the following L2-orthogonal decompositions

Xh = curl(N0)⊕∇F0 ⊕H ?
h ∩ curl(N )⊕H ?

h,N (3.20)

= curl(N0)⊕∇F0 ⊕H ?
h ∩∇F ⊕H

?
h,D. (3.21)

Proof. This is a consequence of Lemma 3.3.4.

Let
H ?

h,D,ex :=H ?
h,D ∩ curl(N )

be the space of exact Dirichlet fields. With respect to the question whether there is a complete
decomposition involving both spacesH ?

h,N andH ?
h,D at the same time, we again consider the

projection map
pr?N :H ?

h,D→H
?

h,N , XD 7→ XN

where XN is the Neumann component of the decomposition (3.18):

XD = curl(η) + XN ∈ curl(N )⊕H ?
h,N .

As in Lemma 3.2.12, we expect that ker(pr?N ) =H
?

h,D,ex. But since Mh is a domain embedded
in R3, all Dirichlet fields are in fact exact:

Lemma 3.3.9. It is ker(pr?N ) =H
?

h,D,ex =H
?

h,D.

Proof. The argument is analogous to the proof in Lemma 3.2.12. By definition of pr?N the
diagram

H ?
h,D

pr?N //

R
?

D
��

H ?
h,N

R
?

N
��

H2(M ,∂M) π
∗
// H2(M)

is commutative, with the vertical arrows being isomorphisms. Therefore dim ker(pr?N ) =
dimker(π∗), but because of Lemma 2.1.2 and (2.5),π∗must be the zero map, so that ker(π∗) =
H2(M ,∂M). SinceH ?

h,D represent the cohomology classes in H2(M ,∂M), it is π∗(R
?

D(XD)) =
0 ∈ H2(M) for every XD ∈H ?

h,D, so each XD is in fact exact and therefore XD ∈H ?
h,D,ex.

Here lies a major difference to the general surface case: since Mh is embedded in R3, it
follows from the cohomology sequence (2.5) that all mapsπ∗ are zero maps and consequently,
all discrete Dirichlet fields are exact. Furthermore, we have seen in Lemma 2.1.2 that the map
ι∗ : H2(Mh) → H2(∂Mh) is an injection and therefore ker(ι∗) = {0}. Thus there is no need
for a discrete analogue for the space of boundary-exact Neumann fields as it would be trivial
anyway. We conclude:
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Corollary 3.3.10. It is Xh = curl(N ) +∇F .

Proof. By Lemma 3.3.9 it isH ?
h,D ⊂ curl(N ) and the result follows from (3.21).

Corollary 3.3.11. It isH ?
h,D ⊥H

?
h,N .

Proof. This follows from Lemma 3.3.9 and Theorem 3.3.8.

Corollary 3.3.12. It isH ?
h,N ⊂∇F .

Proof. It is H ?
h,N ⊥ curl(N0) and H ?

h,N ⊥ H
?

h,D by Corollary 3.3.11, so H ?
h,N ⊂ ∇F follows

from (3.19).

Therefore, for simplicial solids in R3 there is a single complete decomposition involving
both the spacesH ?

h,N andH ?
h,D as L2-orthogonal subspaces:

Theorem 3.3.13 (Complete Decomposition for Simplicial Solids in R3). On a simplicial solid
Mh ⊂ R3 there is a complete decomposition

Xh = curl(N0)⊕∇F0 ⊕ curl(N )∩∇F ⊕H ?
h,N ⊕H

?
h,D. (3.22)

Proof. The decomposition follows from Corollary 3.3.11 and Theorem 3.3.8.

Again, we refer to the intersection space curl(N )∩∇F as the central harmonic component,
consisting of all discrete harmonic fields which are exact as well as coexact. In the terminology
of [CDG02], these are the discrete curly gradients from (2.21). In the smooth situation this
space will be infinite-dimensional. For the discrete setting we obtain:

Lemma 3.3.14. The central harmonic component has dimension

dim(curl(N )∩∇F ) = nbF − h2 − 1.

Proof. By Section 3.1 it is dim curl(N0) = niE − niV − h1
r . Using h2 = h1

r , niF = 4nT − nF and
the formula for the Euler characteristic (3.2), we obtain

dim(curl(N )∩∇F ) = 3nT − (niE − niV − h1
r )− niF − h2 − h2

r

= 3nT − niE + niV − niF − h2
r

= niV − niE + niF − nT − h2
r + nbF

= nbF − h1
r − 1.

Furthermore, the spaces∇F0 and curl(N0) correspond to the spaces of grounded gradients
and fluxless knots, respectively. However, in contrast to (2.21), it is now the spaceH ?

h,N which
corresponds to the space HG of harmonic gradients, and similarly, H ?

h,D corresponds to the
space HK of harmonic knots. Again, this is due to the fact, that our decomposition interprets
vector fields as proxies for 2-forms, as mentioned in Remark 3.3.5. Therefore, the spaces
representing absolute and relative cohomology are swapped.
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DECOMPOSITION BASED ON LAGRANGE ANSATZ SPACES. In [TLHD03], a three-term
decomposition is proposed which is based purely on Lagrange elements as ansatz spaces: let
L denote as usual the space of linear Lagrange elements on Mh, and let

L 3 := {(ϕx1
,ϕx2

,ϕx3
) : ϕx i

∈ L}

denote the space of vector Lagrange elements. Again, we have subspaces L0 ⊂L and L 3
0 ⊂

L 3 spanned by all those elements whose degrees of freedom associated to vertices contained
in the boundary ∂Mh are set to zero. The authors then prove the orthogonality curl(L 3

0 ) ⊥
∇L0 and conclude that there is a decomposition

Xh =∇L0 ⊕ curl(L 3
0 )⊕gH

?
h (3.23)

where ÝHh is the resulting space of discrete harmonic fields, defined as the L2-orthogonal com-
plement of the sum of the former two spaces.

In order to compare this decomposition with the decomposition in Theorem 3.3.13, we
note that N ⊂L 3. Furthermore, it is shown in [AFW06, Lem. 3.8 and Sec. 5.5] that

im(curl :L 3→Xh) = im(curl :N →Xh).

Since L ⊆F , it follows from Theorem 3.3.13 that

curl(N )∩∇F ⊕H ?
h,N ⊕H

?
h,D ⊆gH

?
h ,

and a computation similar to the one in Lemma 3.3.14 gives

dimgH ?
h = 3nT − niV − (niE − niV − h1

r ) = 3nT − niE + h1
r .

With respect to Lemma 3.3.2 it is possible to remove the boundary conditions on one of the
ansatz spaces in (3.23) and one still obtains an orthogonal decomposition, with a reduced
space of discrete harmonic fields as complement. However, as in the two-dimensional case it is
not possible to obtain the correct dimensions for the spaces of discrete Dirichlet and Neumann
fields by using Lagrange elements only. Indeed, for the corresponding decompositions

Xh = curl(N )⊕∇L0 ⊕àH ?
h,N

= curl(N0)⊕∇L ⊕àH ?
h,D

the resulting, “wrong” dimensions

dimàH ?
h,N = h2 + niF − niV

dimàH ?
h,D = h2

r + nF − nV

are a simple consequence of Lemma 3.3.4 and the fact that dimF/L = nF − nV as well as
dimF0/L0 = niF − niV .
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3.4 WHEN IS Hh,N ∩Hh,D = {0}? OBSTRUCTIONS

The discrete analogueHh,N ∩Hh,D = {0} is not always true because of subregions of topological
complexity inside a geometry that are poorly connected to the rest of the mesh. This insight can be
reduced to a purely combinatorial problem about quasi-harmonic flows on networks which gives
a criterion on the mesh discretization to avoid this pathology.

OBSTRUCTIONS. As mentioned in Section 3.2, an important question towards a consistent
discretization is whether the discrete version Hh,N ∩ Hh,D = {0} of Theorem 2.4.1 holds
true, too. With respect to the fundamental decompositions in Lemma 3.2.6, this question is
equivalent to the equality

Xh =∇L + J∇F . (3.24)

But in contrast to the smooth theory, this is not always the case, as a simple calculation shows:
computing dimensions, we have dimXh = 2nF , dim∇L = nV − 1 and dim J∇F = nE − 1.
So even if we assume a direct sum, then by subtracting the relation 3nF − 2nE + nbE = 0 we
obtain

dimXh − dim(∇L + J∇F )≥ 2nF − (nV − 1)− (nE − 1)

= 2nF − nV − nE + 2− (3nF − 2nE + nbE)

= −χ(Mh) + 2− nbE

= h1 + 1− nbE .

(3.25)

Therefore, even in the most optimistic case ∇L ∩ J∇F = {0} this difference will be positive
whenever h1 + 1 > nbE , i.e. if the discretization of the boundary is too low in comparison
to the topological complexity, and the difference is even larger if we do not assume trivial
intersection. This already happens on a geometry as simple as a pretzel surface with a single
triangle cut out, as shown in Figure 3.6.

Figure 3.6: Two linearly independent vector fields in the intersection space Hh,N ∩Hh,D on
a pretzel surface with a single triangle cut out. For this particular surface it is
3 = nbE < h1 + 1 = 5, so Hh,N ∩Hh,D has dimension two, and the shown vector
fields form a basis.
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Figure 3.7: A pretzel surface with a hole formed by eleven edges and a close-up of the bound-
ary hole. Still, there are two linearly independent fields in the intersection space
Hh,N ∩Hh,D, since the hole is surrounded by a triangle (dashed line) constituting
an effective boundary of only three edges. This is possible, as for the discrete har-
monic fields only tangential continuity is required and thus a vector field which is
perpendicular to the edges bounding a subregion can be extended by zero to the
interior of that region, which is exactly what happens here.

The situation is even more involved, as depicted in Figure 3.7: even if nbE ≥ h1 + 1, it still
might be the case that (3.24) does not hold. The reason for this failure are cycles (i.e. closed
paths) in Mh that are homologous to boundary cycles (or more generally sums of boundary
cycles) and have a substantially smaller number of edges, constituting a virtual boundary
with too little edges. However, in general it is not clear how to state precise conditions that
are easy to verify for a given surface Mh, as it also depends on the distribution of boundary
components across the surface, see Figure 3.8 for a further counterexample.

Figure 3.8: On the low-discretized tunnel connecting the high-genus region of a surface of
type Σ21,2 with the boundary region there is an edge cycle homologous not to a
single boundary component, but to the sum of both boundary cycles, constituting
a boundary cycle with just eight edges acting as a virtual boundary (dashed orange
line) of too few edges to compensate the cohomology generated by the high-genus
part. As a consequence, a large number of fields in Hh,N ∩ Hh,D exist on this
geometry.



3.4 WHEN IS Hh,N ∩Hh,D = {0}? OBSTRUCTIONS 49

COMBINATORIAL ANGLE CLASSIFICATION: In the following we derive a combinatorial
criterion for the validity of (3.24), based on weightings on directed graphs induced by har-
monic fields. This approach is inspired by the work of Lovász and Benjamini on discrete har-
monic functions and rotation-free circulations in the context of networks, see [BL03, Lov04],
and the determination of a closed surface’s genus by observing a random process on a con-
nected subgraph of small size in [BL02b] and [BL02a]. We follow the terminology for the
angle classification in directed networks introduced therein.

First we need to generalize the notion of a simplicial surface to include isolated singu-
larities. These are vertices whose link is no longer connected but separates into connected
components.

Definition 3.4.1 (Simplicial Surface with Isolated Singularities). A simplicial surface with
isolated singularities is a subset Sh ⊆ Mh triangulated by a subcomplex of a simplicial surface
Mh with boundary such that every maximal simplex in Sh is of dimension two.

We refer to a simplicial surface with isolated singularities as a singular simplicial surface for
short, keeping in mind that the only singularities allowed are isolated non-manifold vertices.

It follows from the definition of a singular simplicial surface that every edge is adjacent
to one or two triangles. Edges that are adjacent to exactly one triangle are called boundary
edges of Sh, and vertices whose link is disconnected are called singular. In particular, a sin-
gular simplicial surface does not need to be a topological surface, but it can be thought of as
a collection of simplicial subsurfaces Mh,i with boundary which are stitched together at indi-
vidual boundary vertices, becoming the singular vertices. The related, but slightly stronger
notion of a quasi-manifold requires that in addition any two triangles can be connected by
an alternating sequence of triangles and edges, each incident to the next one—a property
which is called strong connectedness, see [CV91]. See Figure 3.9 for an illustration of the dif-
ferences. Our more general notion of a singular simplicial surface as defined above has the
advantage that it is closed under removal: removing a singular simplicial subsurface Sh from
another singular simplicial surface S′h yields again a (not necessarily connected) singular sim-
plicial surface, which is not true for quasi-manifolds. Of course, the definition of a singular
simplicial surface includes quasi-manifolds and simplicial surfaces with boundary.

Figure 3.9: Simplicial surface, quasi-manifold and a singular simplicial surface.
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In the following we assume that (Mh,∂Mh) is a simplicial surface with boundary, and
(Sh,∂ Sh) always denotes a singular simplicial subsurface of Mh with boundary. We can in-
herit the orientation on triangles of Sh from Mh. Furthermore we pick an arbitrary, but fixed
orientation assigned to each edge e ∈ S(1)h . For each directed edge e we write t(e) for the
tail of e and h(e) for the head of e. An inner corner at a vertex v is a quadruple (v, e1, e2, f ),
where e1 and e2 are edges adjacent to v and belong to the face f . An outer corner at a bound-
ary vertex v is a triple (v, e1, e2) where e1 and e2 are both boundary edges (i.e. edges in the
subcomplex triangulating ∂ Sh ) adjacent to v, and, when traversing the adjacent edges to v
in a counter-clockwise order, starting at e1, there are no further edges between e1 and e2 or
e2 and e1. This latter condition is necessary to precisely define an outer corner at a singular
vertex which could have more than two adjacent boundary edges. For non-singular boundary
vertices, this addendum is not needed. Finally, a corner is either an inner corner or an outer
corner.

Definition 3.4.2 (Weighted Singular Simplicial Surface). A weighted, singular simplicial sur-
face is a singular simplicial surface Sh together with a weighting w : S(1)h → R which assigns a
weight to each directed edge in Sh and satisfies w(e) = −w(−e).

In other words, a weighting is just a simplicial 1-cochain on Sh. In the following it is
useful to reorient the edges of Sh such that w(e) ≥ 0 for a given weighting w. Such an
edge orientation is said to be induced by the weighting w, see Figure 3.10 for an illustration.
Obviously such an induced orientation for a given weighting is not unique, if there are edges
e with w(e) = 0. These edges are called 0-edges.
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Figure 3.10: Left: a simplicial surface Mh with an arbitrary edge orientation and a weight-
ing defined on it. We have omitted any numerical values but just annotated the
edges with the sign of w. Right: the weighting induces a not necessarily unique
orientation on Mh by reorienting the edges such that w(e)≥ 0 everywhere. The
orientation of zero edges can be chosen arbitrarily. Here, their original orienta-
tion is preserved (dashed lines).
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Figure 3.11: Sharp corners (orange) for the weighting depicted in Figure 3.10. All other
corners are blunt. Inner corners formed by at least one 0-edge are by definition
always blunt, no matter what the edge orientation dictates.

Definition 3.4.3 (Sharp Corner, Blunt Corner). Let Sh be a weighted, singular simplicial surface
with weighting w. An inner corner (v, e1, e2, f ) is called sharp if

1. w(e1) 6= 0 and w(e2) 6= 0, and

2. sgn(w(e1)) = sgn(w(e2)) if and only if t(e1) = t(e2) or h(e1) = h(e2).

All other interior corners are called blunt.

Note that his definition solely depends on the weighting w and not on the orientation
we have fixed initially. If we consider the orientation induced by w, then sharp corners are
corners at which the two adjacent edges are both either directed towards the common vertex
or away from it. In contrast, a blunt corner that does not include a 0-edge is characterized
by one of these edges pointing towards the common vertex and the other one away from
it. This motivates the naming for these corners, as suggested in [Lov04], and simplifies the
visualization of the various corner types, see Figure 3.11. Our notion of blunt corners is
slightly more general, as we also include corners formed by 0-edges. Blunt corners in the
sense of Lovász [Lov04] are always formed by edges with non-zero weight and thus should
be rather called properly blunt in our scenario.

We denote the number of sharp corners inside a face f by s f , the number of blunt inner
corners at a vertex v by bv and the number of outer corners at v by ov . Although for a
simplicial surface it is always ov = 1, this is not the case any more for singular simplicial
surfaces where singular vertices are adjacent to at least four boundary edges. However, it
always holds

∑

v∈S(0)h

ov = nbE . (3.26)
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The following result is an extension of Benjamini’s and Lovász’ formula in [BL02b, Lov04]
to singular surfaces with boundary:

Lemma 3.4.4. Let Sh be a weighted singular simplicial surface. Then it is

2χ(Sh) + nbE =
∑

f ∈S(2)h

(2− s f ) +
∑

v∈S(0)h

(2− bv). (3.27)

Proof. Let deg(v) denote the degree of vertex v. Since every corner is either an inner sharp
or blunt corner or an outer corner, it is

∑

v∈S(0)h

deg(v) =
∑

f ∈S(2)h

s f +
∑

v∈S(0)h

bv +
∑

v∈S(0)h

ov .

Furthermore, by the handshake lemma and definition of Euler characteristic it is
∑

v∈S(0)h

deg(v) = 2nE = 2nV + 2nF − 2χ(Sh).

Rearranging these two equations and using (3.26) gives the result.

Whereas Lemma 3.4.4 holds for any weighting on Sh, in the following we are mainly inter-
ested in weightings that come from harmonic vector fields. The notion of harmonicity can be
defined on the level of weightings (or 1-cochains), too: A weighting w on Sh is rotation-free
or closed, if w(∂ f ) = 0 for each face f ∈ S(2)h . It is divergence-free or a circulation if

∑

e∈S(1)h :h(e)=v

w(e) −
∑

e∈S(1)h :t(e)=v

w(e) = 0.

Finally, a weighting, which is both rotation-free and divergence-free is called a harmonic
weighting.

Note that if w is divergence-free and v is a vertex with at least one adjacent edge e with
w(e)> 0 pointing towards v, then there must be another edge e′ with w(e′)> 0 pointing away
from v. This is a graph-theoretic analogue of the physical understanding that a divergence-
free vector field does neither produce nor absorb any flow at any point. In the analysis of
electrical networks this is exactly what is expressed by Kirchhof’s current law. Furthermore,
the condition for divergence-freeness appears in various flavours, which usually differ by the
choice of weights for the summands w(e). Here we assume constant weights equal to one,
but other popular choices include the cotangent weights as in [PP03] or weights based on a
dual mesh as described in [Hir03].

It turns out that we can weaken the notions of rotation- and divergence-freeness, since in
the following we will merely work with the corner types—the numerical values of the weight-
ing on edges are not even taken into account. In addition, this even becomes a necessity when
we consider weightings induced by harmonic PCVFs, since the cochain R(X ) coming from the
period map applied to a PCVF X ∈Hh,N ∩Hh,D does in general not satisfy the divergence-free
condition with constant weights, but with the cotangent weights. Therefore we shall consider
weightings whose corner types behave similarly to those of harmonic weightings.
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Definition 3.4.5. A weighting w on Sh is...

• ...quasi-divergence-free, if every vertex v is either adjacent to 0-edges only, or there are at
least two adjacent edges e1, e2 with w(ei) 6= 0, i = 1, 2, such that, after reorienting them
so that t(e1) = t(e2), it is sgn(w(e1)) 6= sgn(w(e2)).

• ...quasi-rotation-free, if every face f is either bounded by 0-edges only, or, after reorienting
the bounding edges so that their orientation agrees with the one in ∂ f (i.e. so that they
form an oriented, closed cycle), there are at least two edges e1, e2 with w(ei) 6= 0, i = 1,2
and sgn(w(e1)) 6= sgn(w(e2)).

• ...quasi-harmonic, if it is both quasi-divergence free and quasi-rotation free.

If we consider an orientation induced by w we can equivalently define w to be quasi-
divergence-free if each vertex v which is not adjacent to 0-edges only, has at least two adjacent
edges with non-zero weight, one of them pointing towards v and the other away from v. Sim-
ilarly, quasi-rotation-free implies that each face which is not bounded by 0-edges only is also
not bounded by a directed, closed edge cycle. Figure 3.12 illustrates these two notions.

Figure 3.12: Left: A quasi-divergence-free vertex with five adjacent blunt corners (green),
one of them being properly blunt and the other four adjacent to 0-edges, as
well as one adjacent sharp corner (orange). Middle and right image: two quasi-
rotation-free triangles, the first one with s f = 2, the second with s f = 1.

Since these properties merely depend on the sign of a weighting it is enough to restrict
attention to weightings w : S(1)h → {−1,0, 1} as already suggested by Figure 3.10.

Theorem 3.4.6. Assume that nbE(Sh) > −2χ(Sh). Then there is no quasi-harmonic weighting
that vanishes on all boundary edges, but is non-zero on all interior edges of Sh.

Proof. We will lead (3.27) to a contradiction. Note that by assumption the left-hand side of
the equation is positive. We now show that the right-hand side is non-positive. Assume there
is such a weighting w and let the orientation of the edges be induced by w. Since w is quasi-
rotation-free, every triangle f ∈ Sh that does not include a boundary edge, has exactly two
sharp angles, so s f = 2 for every such face. For every inner vertex v, the quasi-divergence-
free condition requires at least one incident edge to point towards v and another to point
away from v, so bv ≥ 2. This shows that the right-hand side of (3.27) is non-positive when
summing over all interior vertices and all faces not adjacent to boundary edges.
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Figure 3.13: Configuration at a singular vertex connecting two simplicial surface patches.
Each boundary edge inherits an orientation coming from the oriented triangles
according to the global orientation of the simplicial surface Mh, indicated by the
black twisted arrows inside the triangles and the dashed black arrows along the
boundary components. With respect to this boundary orientation we construct
the new weighting w̃ out of w by assigning values w̃(e) ∈ {−1,+1} at boundary
edges e ∈ ∂ S(1)h , such that the corner at t(e) becomes a sharp corner (orange)
and the corner h(e) becomes blunt (green). As a result, it is bv ≥ 2 and s f = 2
for w̃, so w̃ is quasi-harmonic, too. The arrow indicators on the boundary edges
in the figure already show the values for w̃.

To include the boundary-adjacent faces and boundary vertices we will construct another
quasi-harmonic weighting w̃ out of w with non-positive sums on the right-hand side of (3.27)
as follows: for each interior edge e ∈ S(1)h set w̃(e) := w(e). For each non-singular subsurface
patch Mh,i in Sh, reorient its boundary in the orientation induced from the orientation on

Mh,i . Then, for each boundary edge e ∈ ∂M (1)h,i adjacent to the face f set w̃(e) := a with
a ∈ {−1,+1} chosen such that the inner corner of f at the vertex t(e) becomes a sharp corner
for w̃. The other corner of f at h(e) then automatically becomes a blunt corner, because the
vertex of f opposite to e must be a sharp corner due to the harmonicity of w, cf. Figure 3.13.
Thus for w̃ it is s f = 2 for every face adjacent to a boundary edge.

Furthermore, for every boundary vertex which is non-singular it is bv ≥ 2: there is exactly
one blunt inner corner formed with a boundary edge and at least one other blunt inner corner
formed between two interior edges, because w has been quasi-divergence-free at v. Finally,
every singular boundary vertex has at least one blunt inner corner per adjacent manifold
patch Mh,i . Figure 3.13 illustrates this situation.

Since w is quasi-harmonic and non-zero on interior edges, w̃ satisfies bv ≥ 2 for all vertices
v ∈ Sh and s f ≥ 2 for all faces f ∈ Sh, so the right-hand side in (3.27) is indeed non-positive.
By assumption the left-hand side is positive, though, which gives the contradiction.
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Figure 3.14: Two configurations of isolated 0-edges, together with exemplary continuations
of the mesh in a neighbourhood of the left vertex. At each vertex, one of the two
blunt corners adjacent to the isolated 0-edge compensates the missing sharp
corner in one of the two triangles. Since the weighting is quasi-divergence-free,
there is at least another blunt corner formed by non-0-edges (purple edges in
the left image) or formed between boundary-0-edges, if the vertex is a bound-
ary vertex and there are no other non-0-edges apart from the ones bounding fi
(purple dashed edges in the right image).

Note that the construction of w̃ in the proof of Theorem 3.4.6 does not alter the total value
of the right-hand side; it merely redistributes sharp and blunt angles between the two sums,
such that each individual sum becomes non-positive.

Remark 3.4.7. If Sh is a non-singular simplicial surface with boundary, one can directly check
that the right-hand side is non-positive for w: for any face f with a boundary 0-edge, it is s f = 1.
On the other hand, each boundary vertex must have at least two incident edges with non-zero
weights, one of them pointing towards and the other away from it. Adding the two blunt corners
at the boundary 0-edges, this gives bv ≥ 3 for every boundary vertex. Hence the summand
(2− bv) ≤ −1 compensates the positive summand (2− s f ) = 1 for this configuration, and the
right-hand side of (3.27) is indeed non-positive.

We now extend Theorem 3.4.6 to include the case that the weighting might have isolated
0-edges in the interior of Sh: these are inner edges e with w(e) = 0, which are adjacent to
two triangles f1 and f2 such that each fi is bounded by at least one edge ei with w(ei) 6= 0.

Corollary 3.4.8. Assume that nbE(Sh)> −2χ(Sh). Then there is no quasi-harmonic weighting
on Sh that vanishes on all boundary edges, but is non-zero on all inner edges or has at most
isolated inner 0-edges.

Proof. Construct w̃ as in the proof of Theorem 3.4.6. Now if e is an inner isolated 0-edge,
then it is s fi

= 1 for its two adjacent faces f1, f2. Furthermore, its vertices v1 := t(e) and
v2 := h(e) each form two blunt corners with e inside f1 and f2. In addition, each vi must
have at least a third blunt inner corner, since the edges of f1 and f2 adjacent to vi are non-
zero and w̃ is quasi-divergence free, see Figure 3.14 for an illustration. Therefore bvi

≥ 3 for
i = 1,2, so (2− bvi

)≤ −1, compensating the positive summands (2− s fi
) = 1 in the sums on
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the right-hand side of (3.27). Together with Theorem 3.4.6 this shows that the right-hand
side is non-positive.

Turning back to the original question whether Hh,N ∩Hh,D = {0}, the following lemma
relates harmonic vector fields in Hh,N ∩ Hh,D to quasi-harmonic weightings, provided the
surface Mh is triangulated by a Delaunay triangulation as characterized in [BS07, Prop. 10].
Therein, an inner edge e ∈ M (1)h is said to be locally Delaunay if for the angles α, β opposite
to e in the two adjacent triangles it holds α+ β < π. A Delaunay triangulation of Mh then is
a triangulation such that every inner edge e is locally Delaunay.

Lemma 3.4.9. Let Mh be Delaunay and let X ∈ Hh,N ∩Hh,D. Then R(X ) is a quasi-harmonic
weighting which vanishes on all boundary edges.

Proof. Consider an edge orientation induced by w := R(X ). Since X ∈ Hh,D ⊥ J∇F , the
cochain w is closed by Remark 3.2.2. In particular, if the boundary of any face is not formed
by 0-edges only, it cannot be a directed edge cycle, so w is quasi-rotation-free. In addition, X
is perpendicular to each boundary edge, so w vanishes on the boundary.

Moreover, since X ∈Hh,N ⊥∇L , for each vertex it is

0= 〈X ,∇ϕv〉L2 =
1
2





∑

ei∈M (1)h :h(ei)=v

(cotαi + cotβi)w(ei) −
∑

ei∈M (1)h :t(ei)=v

(cotαi + cotβi)w(ei)



 .

Since Mh is Delaunay, all weights (cotαi + cotβi) are positive. Therefore, if a vertex v is not
adjacent to 0-edges only, there must be at least one edge pointing towards v and another
one pointing away from v, both with positive weight, so the weighting is quasi-divergence-
free.

We would like to apply Theorem 3.4.6 to the quasi-harmonic weighting w := R(X ) coming
from a vector field X ∈ Hh,D ∩Hh,N . If we knew that w was non-zero or had only isolated
0-edges in the interior of Mh, then Corollary 3.4.8 would immediately imply that w ≡ 0
whenever nbE(Mh)> −2χ(Mh), showing thatHh,D∩Hh,N is trivial in this case. However, we
do not know anything about w on interior edges. In particular there could be whole regions
on which w vanishes.

The idea now is to only consider the support of X , denoted by supp(X ), i.e. the set of all
triangles in Mh on which X is non-zero. These are all triangles which are adjacent to at least
one edge e with w(e) 6= 0, but since w is quasi-rotation-free, it follows that each such triangle
is actually bounded by two or three non-zero edges for w—the case of only one adjacent
non-zero edge is not possible.

It is easy to see that the set Sh := supp(X ) is a possibly disconnected singular simplicial
subsurface of Mh. The counterexamples in Figures 3.7 and 3.8 suggest that it is not enough
to require the inequality nbE(Mh) > −2χ(Mh) for the fixed surface Mh, but rather for any
possibly singular subsurface of Mh. This motivates the subsurface property:

(SP) Every singular simplicial subsurface Sh ⊆ Mh satisfies nbE(Sh)> −2χ(Sh).
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Theorem 3.4.10. Let Mh be a simplicial surface with boundary such that

1. Mh is a Delaunay mesh;

2. Mh satisfies the subsurface property (SP).

Then it isHh,D ∩Hh,N = {0}.

Proof. Let 0 6= X ∈ Hh,D ∩Hh,N . Then Sh := supp(X ) 6= ;, and because Mh is Delaunay, it
follows from Lemma 3.4.9 that w := R(X ) is a quasi-harmonic weighting on Sh, vanishing on
all boundary edges in ∂ Sh, and having at most isolated non-zero edges in the interior, being
non-zero everywhere else. Since Mh satisfies property (SP), it is nbE(Sh) > −2χ(Sh), and
by Corollary 3.4.8 we conclude that such a weighting w cannot exist on Sh, a contradiction.
ThereforeHh,D ∩Hh,N = {0} as claimed.

As a consequence of Theorem 3.4.10, discrete Neumann fields are uniquely defined by their
tangential projection along the boundary:

Corollary 3.4.11. Let Mh satisfy the assumptions of Theorem 3.4.10. Then a discrete Neumann
field X ∈Hh,N is uniquely determined by its tangential projection onto the boundary.

Proof. Let X1, X2 ∈ Hh,N such that R(X1)(e) = R(X2)(e) for all boundary edges e ∈ ∂M (1)h .

Then X := X1 − X2 satisfies R(X )(e) = 0 for all e ∈ ∂M (1)h , so X ∈ Hh,N ∩Hh,D. By Theo-
rem 3.4.10 it is X = 0, so X1 = X2.

The subsurface property which lies at the heart of Theorem 3.4.10 ensures that subregions
of topological complexity are well-connected within the mesh and to the boundary, and this is
what essentially breaks down in the counterexamples in Figures 3.6 to 3.8. From a practical
point of view, though, this ingredient is unsatisfying as it is expensive to check algorithmi-
cally. Nevertheless, the question of connectedness of subregions is already present in [BL02b],
where the corresponding notion on networks is that of separability of subgraphs and it seems
unavoidable to pose as a necessary condition.

Moreover, the reduction to weightings with values in {−1,0, 1} appears lossy since it straps
off any metric information present on the level of harmonic PCVFs. Hence one could expect
that the obtained bound nbE(Sh) > −2χ(Sh) is too imprecise and could possibly be lowered.
That this is not the case is demonstrated in Figure 3.15 on a geometry of typeΣ2,2 (so χ(Mh) =
−4), with eight boundary edges in total. This is a surprising result, as in all other considered
examples the number of necessary boundary edges is the one computed in (3.25), which is
half the size stated in the bound. It seems as if the symmetry of the geometry with respect to
the locations of the boundaries plays another role and has an impact on the bound.

Finally, the transformation of a discrete harmonic field into a quasi-harmonic weighting
requires the mesh to be Delaunay in order to ensure positivity of the cotangent weights.
However, R(X ) can still be quasi-harmonic even though some edges are not locally Delaunay,
so that this condition can likely be loosened, too. A complete answer to all these questions
seems hard, though, and remains for future work.

Many geometries that arise in practice and possess reasonable triangulations satisfy (3.24).
Particular care must be taken, though, if Mh has a very high genus in comparison to the num-
ber of boundary components (i.e. if g � m), if the grid discretization around the boundary
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holes is particularly coarse, or if Mh can be roughly divided into a region capturing the bound-
aries and a region of high genus, both connected only by a very coarse discretization as in
Figure 3.8, for instance.

Figure 3.15: A symmetric pretzel surface with two opposite holes cut out. The surface mesh
is Delaunay and has eight boundary edges, still there exists a non-trivial field in
the intersection spaceHh,D ∩Hh,N .



CONVERGENCE 4
We now prove convergence of the discrete decomposition results to their smooth counter-
parts, following the route suggested by Wardetzky in [War06]. This convergence relies on
two approximation errors that need to be controlled: the error that is caused by the approx-
imation of a smooth differential form by a discrete form, and the error that is caused by the
approximation of a smooth manifold by a discrete mesh. Consequently, the convergence proof
relies on the following ingredients, which are covered in detail in the next chapters:

1. The core ingredient is the convergence result obtained by Dodziuk [Dod76]which states
roughly that on a smooth manifold the Whitney interpolants of cochains obtained by
applying the de Rham projection to a smooth decomposition converge to the smooth
components under refinement of the inscribed smooth triangulation. Dodziuk considers
the case of a three-term Hodge-type decomposition into an exact, coexact and harmonic
component. This result needs to be generalized to Whitney counterparts of the refined
splittings of Neumann and Dirichlet fields into coexact and boundary-exact Neumann
as well as exact and boundary-coexact Dirichlet fields.

2. Next, we combine the previous convergence statements with a sequence of metrics g̃i
converging to the smooth metric g: how does a g-orthogonal decomposition in Whitney
spaces compare to decompositions which are orthogonal with respect to the metrics g̃i?
This reflects the situation of approximating a smooth manifold by a triangular mesh
with a piecewise flat metric, and pulling-back decompositions on the approximating
mesh to the smooth manifold.

3. Finally, the corresponding decompositions for PCVFs need to be related to the decom-
positions of Whitney forms. To this end, we shall compare the projection to Xh of a
Whitney decomposition of a smooth vector field X with the PCVF decomposition of the
projection of X to Xh.

We shall be mainly interested in the refined fundamental decompositions

Ωk = dΩk−1 ⊕H k
N ,co ⊕H

k
N ,∂ ex ⊕δΩ

k+1
N

= dΩk−1
D ⊕H k

D,ex ⊕H
k

D,∂ co ⊕δΩ
k+1,

as they contain the topologically relevant spaces. It poses no further problems to apply the
same strategy to the other discrete decomposition statements. An analogous argument for the
convergence of the corresponding decompositions on simplicial solids goes along the same
lines so we shall only mention the few differences in Remark 4.3.4.
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SMOOTH ADMISSIBLE TRIANGULATIONS. In the following, let {Fi : M → Mhi
}i∈N be a

family of smooth triangulations, i.e. each Fi is a homeomorphism between M and an affine
simplicial complex Mhi

which is a diffeomorphism when restricted to the preimage of any
affine cell in Mhi

. The simplicial complex structure Ki on Mhi
pulls back to a (curved) simpli-

cial complex structure K̃i := F−1
i (Khi

) on M .
We will assume that this sequence of triangulations is a subdivision which behaves nicely

in the following sense (cf. [Pat75]): define the mesh size h̃i of K̃i as

h̃i := sup
σ∈K̃(n)i

diam(σ)

where diam(σ) denotes the maximum distance of any two points in σ with respect to the
Riemannian distance function induced by the metric g. Then this sequence of triangulations
shall be such that, first, K̃i+1 is a subdivision of K̃i for all i, second, h̃i → 0 for i →∞, and
third, there is a constant c such that the Riemannian distance between any two vertices of a
cell in K̃i is bounded from below by c ·h̃i . This latter condition ensures that each triangulation
is homogeneous in the sense that all cells are about the same size, and in addition, that no
triangles become arbitrarily thin. We will refer to a family of triangulations satisfying these
criteria as an admissible family of triangulations of M .

4.1 GENERALIZING DODZIUK’S CONVERGENCE RESULT

Dodziuk has proved that the Whitney interpolation of the k-cochain whose values agrees with
the integral of a smooth k-form ω on every k-simplex of a triangulation converges to ω in linear
order of the mesh size. Furthermore he has defined a three-term Hodge decomposition for Whitney
forms and proves convergence of the components to their smooth counterparts. In this section we
extend his results to the refined splittings of Neumann and Dirichlet fields.

In this section, we consider the manifold M with its fixed metric g, together with an ad-
missible family {Fi : M → Mhi

}i∈N of triangulations, inducing simplicial complex structures
K̃i of mesh size h̃i on M . The scalar product and norm without any subscript always denote
the L2-product and L2-norm with respect to the fixed metric g.

Let {λhi , j} denote the piecewise linear barycentric coordinates on Mhi
. Then their pullbacks

{eλhi , j := F∗i λhi , j} are barycentric coordinates on M , globally continuous and smooth on the
interior of each cell of eKi . A k-form ω = dλhi , j1 ∧ · · · ∧ dλhi , jk on a cell of Mhi

corresponds to

a pullback form F∗i ω= deλhi , j1 · · ·∧deλhi , jk on M . Consequently, the space of Whitney k-forms
W k(Mhi

) on Mhi
pulls back to a space of Whitney k-forms on M , and we denote this space

byW k
i :=W k

i (M). Elements inW k
i are smooth on every cell in K̃i , but not continuous across

interelement transitions (except for the case k = 0). Still, they have a well-defined tangential
trace on facets as was shown in Lemma 3.1.4.

Associated to this family of spaces of Whitney k-forms are projection maps

Φk
i :=W k

i ◦ Rk
i : Ωk(M)→W k

i ,

each being the composition of the period map Rk
i : Ωk(M) → Ck(eKi) onto cochains and

the Whitney interpolation map W k
i : Ck(eKi) → W k

i to Whitney k-forms on M . For better
readability we omit the index k for Φi in the following. Note that Φi maps exact k-forms to
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exact Whitney k-forms, and closed k-forms to closed k-forms, which is a consequence of Rk
i

and W k
i being morphisms of complexes.

The Whitney map is a right-inverse to the period map Rk
i : Ωk(M)→ Ck(eKi), i.e. Rk

i ◦W k
i is

the identity on Ck(eKi). Conversely, Dodziuk has proved that the element Φi(ω) approximates
the smooth form ω ∈ Ωk(M):

Theorem 4.1.1. Let ω ∈ Ωk(M). Then there is a constant cω only depending on ω and the
initial triangulation eK0 on M such that

‖ω−Φi(ω)‖ ≤ cω · h̃i .

Proof. [Dod76, Thm. 3.7 and Cor. 3.27]

FUNDAMENTAL DECOMPOSITIONS IN WHITNEY SPACES. In analogy with the smooth
situation we consider the following spaces:

W k
i,D := {ω ∈W k

i : t(ω) = 0 along ∂M}

dW k−1
i,(D) := {dω :ω ∈W k−1

i,(D)}

K k
i := ker(dk :W k

i →W
k+1
i )

K k
i,D := ker(dk |W k

i,D
:W k

i,D→W
k+1
i,D )

The spaces of harmonic Whitney Neumann and Dirichlet fields are then defined as the L2-
orthogonal complements

H k
Wi ,N

:=
�

dW k−1
i

�⊥K k
i

H k
Wi ,D

:=
�

dW k−1
i,D

�⊥K k
i,D

within the kernel spacesK k
i andK k

i,D, respectively. We will need the following slightly mod-
ified version of Dodziuk’s seminal result [Dod76, Thm. 4.9]:

Theorem 4.1.2 (Convergence of Fundamental Whitney Decompositions). Let ω ∈ Ωk(M)
and consider the smooth decompositions

ω= dα+ρN +δβN ∈ dΩk−1 ⊕H k
N ⊕δΩ

k+1
N

= dαD +ρD +δβ ∈ dΩk−1
D ⊕H k

D ⊕δΩ
k+1

Let Φi(ω) ∈W k
i be the Whitney interpolant and let

Φi(ω) = dai + ri,N + bi,N ∈ dW k−1
i ⊕H k

Wi ,N
⊕ (K k

i )
⊥

= dai,D + ri,D + bi ∈ dW k−1
i,D ⊕H

k
Wi ,D
⊕ (K k

i,D)
⊥

be the L2-orthogonal decompositions in the space of Whitney k-forms. Then all components
converge to their corresponding smooth components in linear order of the mesh size.
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Proof. Dodziuk has proved this theorem for the case that the boundary consists of two disjoint
closed submanifolds ∂M1 and ∂M2 such thatω itself obeys Dirichlet boundary conditions on
∂M1 and Neumann boundary conditions on ∂M2. In our case we do not pose any boundary
conditions on ω, but the proof still works the same way. Thus we just give a few comments
on the proof, assuming the reader is familiar with the original proof in [Dod76, Thm. 4.9].

Dodziuk first considers the case where ω is harmonic. In our situation the harmonic parts
under consideration are either ρN or ρD, corresponding to either ∂M1 = ; or ∂M2 = ; in
Dodziuks setting. Therefore this case does not need any modifications.

Second, Dodziuk considers the orthogonal projection PΦi(δβ(N)) of the Whitney interpo-
lation of the coexact component onto the space of closed Whitney forms and concludes that
this part tends to zero. In our situation we consider elements w ∈K k

i = dW k−1
i ⊕H k

Wi ,N
and

wD ∈K k
i,D = dW k−1

i,D ⊕H
k
Wi ,D

and note that

〈w,δβN 〉= 〈dw,βN 〉 −
∫

∂M
t(w)∧ ?n(βN ) = 0

〈wD,δβ〉= 〈dwD,β〉 −
∫

∂M
t(wD)∧ ?n(β) = 0

by (3.5), so the analogous estimates

|〈PiΦi(δβN ), w〉|= |〈Φi(δβN ), w〉|= |〈Φi(δβN )−δβN , w〉| ≤ ‖Φi(δβN )−δβN‖‖w‖
�

�〈Pi,DΦi(δβN ), w〉
�

�= |〈Φi(δβ), wD〉|= |〈Φi(δβ)−δβ , wD〉| ≤ ‖Φi(δβ)−δβ‖‖wD‖

hold true and we conclude that the orthogonal projections Pi,DΦi(δβ) and PiΦi(δβN ) onto
K k

i,D and K k
i tend to zero.

The rest of the proof can be applied literally. In particular a definition for a discrete
coderivative is not needed—the space of discrete coexact Whitney forms is replaced by the
orthogonal complements of the kernels K k

i and K k
i,D.

In order to obtain refined decompositions representing inner and boundary cohomology
we have to define analogues of (co-)exact and boundary (co-)exact Dirichlet and Neumann
fields in the Whitney setting. We start with the Dirichlet fields. All convergence statements
of the form ‖x i − yi‖ → 0 are implicitly understood to hold for i→∞.

DIRICHLET SPLITTING. Define the spaces of exact and boundary-coexact Dirichlet Whitney
forms by

H k
Wi ,D,ex :=H k

Wi ,D
∩ dW k−1

i

H k
Wi ,D,∂ co := (H k

Wi ,D,ex)
⊥H k
Wi ,D

with the orthogonal complement taken insideH k
Wi ,D

. Since Φi preserves exactness we obtain
as a consequence of Theorem 4.1.2

Lemma 4.1.3. Let ρD = dσ ∈H k
D,ex be an exact Dirichlet k-form and let

Φi(ρD) = dai + dsi ∈ dW k−1
i,D ⊕H

k
Wi ,D,ex.

Then ‖dσ− dsi‖ → 0.
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Proof. From Theorem 4.1.2 it follows for the decomposition Φi(ρD) = dai +dsi that ‖dai‖ →
0, so ‖ρD −Φi(ρD)‖ → 0 implies ‖dσ− dsi‖ → 0.

We need the following orthogonality result:

Lemma 4.1.4. Let τ ∈ H k
D,∂ co be a smooth boundary-coexact Dirichlet k-form and let da ∈

dW k−1
i with t(da) = 0. Then 〈da,τ〉= 0.

Proof. Since δτ= 0, it is

〈da,τ〉=
∫

∂M
t(a)∧ ?n(τ).

Now, τ is boundary-coexact, so by definition there is an element η ∈ Ωn−k−1(∂M) such that
?n(τ) = ι∗(?τ) = dη, and η has a smooth extension to a form η̃ ∈ Ωn−k−1(M). By repeated
use of Green’s formula we obtain

∫

∂M
t(a)∧ ?n(τ) =

∫

∂M
t(a)∧ t(dη̃) = ±

∫

∂M
t(a)∧ t(? ? dη̃) = ±

∫

∂M
t(a)∧ ?n(?dη̃)

= ± (〈da,?dη̃〉 − 〈a,δ ? dη̃〉)
= ± (〈da,δ ? η̃〉 − 〈a,δδ ? η̃〉)

= ±〈da,δ ? η̃〉= ±
∫

∂M
t(da)∧ ?n(?η̃)

where the sign ± depends on the numbers k and n, but obviously does not matter in the
proof, because the last boundary integral vanishes as t(da) = 0 by assumption.

Theorem 4.1.5 (Convergence of Dirichlet Splitting). Let ρD = dσ+τ ∈H k
D,ex ⊕H

k
D,∂ co be a

Dirichlet k-form and let

Φi(ρD) = dai + dsi + t i ∈ dW k−1
i,D ⊕H

k
Wi ,D,ex ⊕H

k
Wi ,D,∂ co (4.1)

denote its orthogonal decomposition in the space of Whitney forms. Then ‖dσ− dsi‖ → 0,
‖τ− t i‖ → 0 and ‖dai‖ → 0.

Proof. First, let Φi(dσ) = da′i + ds′i ∈ dW k−1
i,D ⊕H

k
Wi ,D,ex. From Lemma 4.1.3 we know that





da′i




→ 0 and




dσ− ds′i




→ 0. Now let Pi :W k
i → dW k−1

i,D ⊕H
k
Wi ,D,ex denote the orthogonal

projection. For the second term we estimate as follows: for all da+ds ∈ dW k−1
i,D ⊕H

k
Wi ,D,ex it

is

〈PiΦi(τ), da+ ds〉= 〈Φi(τ), da+ ds〉
= 〈Φi(τ)−τ, da+ ds〉
≤ ‖Φi(τ)−τ‖‖da+ ds‖

where we have used that 〈τ, da+ds〉= 0 by Lemma 4.1.4. Thus by Riesz isometry it follows

‖PiΦi(τ)‖ ≤ ‖Φi(τ)−τ‖ → 0
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and by writing PiΦi(τ) = da′′i +ds′′i ∈ dW k−1
i,D ⊕H

k
Wi ,D,ex this implies





da′′i




→ 0 and




ds′′i




→
0. Finally let t ′i := Φi(τ)− PiΦi(τ). We rewrite Φi(ρD) and reorder terms as follows:

Φi(ρD) = Φi(dσ) +Φi(τ)

= Φi(dσ) + PiΦi(τ) + (Φi(τ)− PiΦi(τ))

= (da′i + da′′i )
︸ ︷︷ ︸

=dai

+(ds′i + ds′′i )
︸ ︷︷ ︸

dsi

+t ′i ∈ dW k−1
i,D ⊕H

k
Wi ,D,ex ⊕H

k
Wi ,D,∂ co

Comparing with the decomposition (4.1), it follows t i = t ′i and we obtain

‖dai‖=




da′i + da′′i




≤




da′i




+




da′′i




→ 0

‖dσ− dsi‖=




dσ− ds′i − ds′′i




≤




dσ− ds′i




+




ds′′i




→ 0

‖τ− t i‖= ‖τ− (Φi(τ)− PiΦi(τ))‖ ≤ ‖τ−Φi(τ)‖+ ‖PiΦi(τ))‖ → 0.

Corollary 4.1.6. For ω ∈ Ωk(M) let

ω= dαD + (dσ+τ) +δβ ∈ dΩk−1
D ⊕ (H k

D,ex ⊕H
k

D,∂ co)⊕δΩ
k+1.

Then for the corresponding splitting of the Whitney interpolation

Φi(ω) = dai,D + (dsi + t i) + bi ∈ dW k−1
i,D ⊕ (H

k
Wi ,D,ex ⊕H

k
Wi ,D,∂ co)⊕ (K

k
i,D)
⊥

all components converge to their smooth counterparts.

Proof. Theorem 4.1.2 and Theorem 4.1.5.

NEUMANN SPLITTING. We now consider the spaces of Whitney boundary-exact and co-
exact Neumann fields

H k
Wi ,N ,∂ ex := {w ∈H k

Wi ,N ,co : ι∗w= dp for some p ∈W k−1
i (∂M)}

H k
Wi ,N ,co := (H k

Wi ,N ,∂ ex)
⊥H k
Wi ,N

where the orthogonal complement is taken insideH k
Wi ,N

. We need the following observation:

Lemma 4.1.7. Let ω ∈ Ωk(M) be boundary-exact, i.e. there is a (k − 1)-form ϕ ∈ Ωk−1(∂M)
such that ι∗ω = dϕ. Then Φi(ω) is a boundary-exact Whitney k-form, i.e. there is a Whitney
(k− 1)-form p ∈W k−1

i (∂M) such that dp = ι∗Φi(ω).

Proof. The Whitney interpolation W k
i as well as the period map Rk

i both commute with pull-
back to the boundary. For W k

i this is because barycentric coordinates over a subsimplex are
restrictions of barycentric coordinates over the cell. For the period map (or more precisely
the period maps Rk

i and Rk
i |∂M on M and ∂M) it is

Rk
i |∂M (ι

∗ω)(τ) =

∫

τ

j∗(ι∗ω) =

∫

τ

j̃∗ω= Rk
i (ω)(τ)
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where j : τ ,→ ∂M and j̃ = ι ◦ j : τ ,→ M denote the inclusions of an arbitrary k-simplex
τ ∈ ∂M (k) in ∂M and M , and therefore Rk

i |∂M (ι∗ω) = ι∗Rk
i (ω). So Φi commutes with ι∗,

and since both maps also commute with the exterior derivatives on M and ∂M , respectively,
it is

ι∗Φi(ω) = Φi |∂M (ι
∗ω) = Φi |∂M (dϕ) = dΦi |∂M (ϕ) =: dp.

Lemma 4.1.8. Let τ ∈H k
N ,∂ ex and let

Φi(τ) = dai + si + t i ∈ dW k−1
i ⊕H k

Wi ,N ,co ⊕H
k
Wi ,N ,∂ ex.

Then si = 0, ‖dai‖ → 0 and consequently ‖τ− t i‖ → 0.

Proof. dai is boundary-exact and t i is boundary-exact by definition. By Lemma 4.1.7, Φi(τ) is
boundary-exact, too, and so must be si = Φi(τ)−dai− t i , i.e. si ∈H k

Wi ,N ,co∩H
k
Wi ,N ,∂ ex = {0}.

From Theorem 4.1.2 it follows ‖dai‖ → 0, which implies ‖τ− t i‖ → 0.

Again, we need an orthogonality result between smooth forms and Whitney forms, which
is in some sense dual to Lemma 4.1.4:

Lemma 4.1.9. Let δσ ∈ H k
N ,co be a smooth coexact Neumann field. Let da ∈ dW k−1

i be an
exact Whitney form and t ∈H k

Wi ,N ,∂ ex a boundary-exact Whitney form. Then

〈da,δσ〉= 〈t,δσ〉= 0.

Proof. The first case is simple:

〈da,δσ〉= 〈a,δδσ〉+
∫

∂M
t(a)∧ ?n(δσ) = 0

since n(δσ) = 0. For the second case, let ι∗ t = dp for some p ∈ W k−1
i (∂M) and let p̃ ∈

W k−1
i (M) be an arbitrary extension of p to M . Again by repeated use of Green’s formula we

obtain

〈t,δσ〉= 〈dt,σ〉 −
∫

∂M
t(t)∧ ?n(δσ) = −

∫

∂M
t(dp̃)∧ ?n(δσ)

= 〈dp̃,δσ〉 − 〈ddp̃,σ〉= 〈dp̃,δσ〉

= 〈p̃,δδσ〉+
∫

∂M
t(p̃)∧ ?n(δσ) = 0.

Theorem 4.1.10 (Convergence of Neumann Splitting). Let ρN = δσ + τ ∈ H k
N ,co ⊕H

k
N ,∂ ex

be a Neumann k-form and let

Φ(ρN ) = dai + si + t i ∈ dW k−1
i ⊕H k

Wi ,N ,co ⊕H
k
Wi ,N ,∂ ex (4.2)

denote its orthogonal decomposition in the space of Whitney forms. Then ‖δσ− si‖ → 0,
‖τ− t i‖ → 0 and consequently ‖dai‖ → 0.
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Proof. The proof is similar to Theorem 4.1.5. First let Φi(τ) = da′i + t ′i . We know from
Lemma 4.1.8 that





da′i




 → 0 and




τ− t ′i




 → 0. Now let Pi : W k
i → dW k−1

i ⊕H k
Wi ,N ,∂ ex

denote the orthogonal projection. Then for all da+ t ∈ dW k−1
i ⊕H k

Wi ,N ,∂ ex it is

〈PiΦi(δσ), da+ t〉= 〈Φi(δσ), da+ t〉
= 〈Φi(δσ)−δσ, da+ t〉
≤ ‖Φi(δσ)−δσ‖‖da+ t‖

since 〈δσ, da+ t〉= 0 by Lemma 4.1.9, and again by Riesz isometry we conclude

‖PiΦi(δσ)‖ ≤ ‖Φi(δσ)−δσ‖ → 0.

Writing PiΦi(δσ) = da′′i + t ′′i this implies




da′′i




→ 0 and




t ′′i




→ 0. Finally, let s′i = Φi(δσ)−
PiΦi(δσ), then

Φi(ρN ) = Φi(δσ) +Φi(τ)

= PiΦi(δσ) + (Φi(δσ)− PiΦi(δσ)) +Φi(τ)

= (da′i + da′′i )
︸ ︷︷ ︸

=dai

+s′i + (t
′
i + t ′′i )

︸ ︷︷ ︸

=t i

∈ dW k−1
i ⊕H k

Wi ,N ,co ⊕H
k
Wi ,N ,∂ ex

and, comparing with (4.2), we obtain s′i = si and

‖dai‖=




da′i + da′′i




≤




da′i




+




da′′i




→ 0

‖δσ− si‖= ‖δσ− (Φi(δσ)− PiΦi(δσ))‖ ≤ ‖δσ−Φi(δσ)‖+ ‖PiΦi(δσ)‖ → 0

‖τ− t i‖=




τ− t ′i − t ′′i




≤




τ− t ′i




+




t ′′i




→ 0.

Corollary 4.1.11. For ω ∈ Ωk(M) let

ω= dα+ (δσ+τ) +δβN ∈ dΩk−1 ⊕ (H k
N ,co ⊕H

k
N ,∂ ex)⊕δΩ

k+1
N .

Then for the corresponding splitting of the Whitney interpolation

Φi(ω) = dai + (si + t i) + bi,N ∈ dW k−1
i ⊕ (H k

Wi ,N ,co ⊕H
k
Wi ,N ,∂ ex)⊕ (K

k
i )
⊥

all components converge to their smooth counterparts.

Proof. Theorem 4.1.2 and Theorem 4.1.10.

Remark 4.1.12. Crucial to all of these convergence proofs is the reference to the Whitney ap-
proximation ‖ω−Φi(ω)‖, and this was shown by Dodziuk to converge linearly in the mesh size
h̃i , cf. Theorem 4.1.1. As a consequence, the Dirichlet and Neumann splittings converge in linear
order of the mesh size, too.
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Remark 4.1.13. Dodziuk’s original work [Dod76] involves the definition of a combinatorial
coderivative operator δ∆ : Ck+1(M ,∂M)→ Ck(M ,∂M) on the level of cochains, defined as the
formal adjoint to the simplicial exterior derivative d∆ by

〈d∆c, c′〉∆ = 〈c,δ∆c′〉∆ for all c ∈ Ck(M ,∂M), c′ ∈ Ck+1(M ,∂M),

where the inner product 〈−,−〉∆ on cochains is defined as the L2-product of the respective Whit-
ney interpolants, turning the Whitney interpolation into an isometry. However at the time the
article was written it was unclear if this discretization provides a consistent approximation of the
smooth coderivative.

More recently, Smits found a positive partial answer to this question for the special case of
1-forms on a triangulated surface under refinement by a regular standard subdivision [Smi91],
but the general case (general subdivision schemes, more than two dimensions, k-forms for k > 1)
remained an open problem.

Only two years ago Arnold et al.[AFGT14] could indeed generalize Smits’ result for 1-forms
to arbitrary dimensions, provided that the refinement follows a strict subdivision scheme. At the
same time they found a counterexample demonstrating that one cannot loosen the assumption
on the subdivision scheme, and a numerical experiment shows that there is in general no hope
for consistency for arbitrary 1< k < n.

Since we are mostly interested in a precise characterization of piecewise constant harmonic
fields we did not introduce a combinatorial codifferential, but merely work directly with the kernel
spaces K k

(D) and their orthogonal complements. Moreover, the decompositions in Section 3.3
for PCVFs on simplicial solids correspond to a Whitney approximation by 2-forms for which the
experiment in [AFGT14] gives an impressive counterexample to a consistent discrete coderivative,
even under a highly regular and uniform refinement rule.
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4.2 CONVERGENCE WITH APPROXIMATING METRICS

We now consider the situation of approximating a compact smooth manifold with boundary
(M , g) by a sequence of simplicial meshes, each equipped with the piecewise Euclidean metric.
These metrics pull back to distorted metrics g̃i on M which define a different notion of orthogonality
on M . If the distortion induced by the pullback is low, the orthogonal decompositions of Whitney
form spaces with respect to g and g̃i are close to each other. In particular, for an admissible family
of triangulations converging metrically to M , all components converge to each other and by the
previous chapter also to the corresponding components of a smooth decomposition.

METRIC DISTORTION. In this chapter we interpret the admissible family of triangulations
{Fi : M → Mhi

} as a sequence of piecewise flat meshes approximating a smooth limit mesh.
To this end assume that each Mhi

is equipped with the locally Euclidean metric ghi
.

The homeomorphisms Fi induce a sequence of pulled-back metrics egi := F∗i ghi
on M , which

are defined almost everywhere, except for the (n−1)-skeleton of M , and smooth in the interior
of every cell. Therefore the induced metric distortion tensors Λi , implicitly defined almost
everywhere by

g(ΛiX , Y ) := egi(X , Y ) = ghi
(F∗X , F∗Y ) for all X , Y ∈ X (M),

are smooth, symmetric and positive definite in the interior of every cell of M , too.
The sequence {Λi} of tensor fields measures the deviation of the pulled-back metrics egi

from the smooth metric g. Intuitively, an appropriate approximation should ultimately yield
a distortion tensor Λi that is close to the identity. At any point p in the interior of a cell, let





(Λi)p






p := sup
Xp∈Tp M , ‖Xp‖p=1





(Λi)pXp







p

denote its operator norm on TpM , which equals the eigenvalue of Λi of maximum magnitude.
Let

‖Λi‖L∞ := ess sup
p∈M





(Λi)p






p

denote the essential supremum of these norms over M . Then ‖Λi − Id‖L∞ can be interpreted
as the maximal deviation of the distortion tensor Λi from the identity, and consequently
‖Λi − Id‖L∞ → 0 is what is meant by metric convergence. Equivalently, the essential suprema
of all eigenvalues of Λi , considered as functions over M , shall tend to 1.

Definition 4.2.1 (Metric Convergence). The sequence {(Mhi
, ghi
)}i∈N converges metrically to

(M , g) if for the distortion tensors Λi it is ‖Λi − Id‖L∞ → 0 for i→∞.

As before, we write 〈−,−〉, ‖−‖, ], ⊕ for the L2-product, L2-norm and operators depending
on the fixed metric g on M without any subscript. In contrast, we write 〈−,−〉ghi

, ‖−‖ghi
, ]hi

,
⊕hi

for the objects on Mhi
with respect to the piecewise flat metric ghi

, and 〈−,−〉
egi

, ‖−‖
egi

,
e]i , e⊕i for the corresponding objects on M with respect to the pulled-back metric g̃i . The
pulled-back L2-product 〈−,−〉

egi
on Ωk(M) then reads as

〈ω,η〉
egi
= 〈Fi∗ω, Fi∗η〉ghi

,
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i.e. it is the L2-product of the pushforwards on Mhi
with respect to ghi

. As a special case, the
L2-product on Xh(Mhi

) pulls back to an L2-product on X (M) given by

〈X , Y 〉
egi

:=

∫

Mhi

ghi
(F∗X , F∗Y )µMhi

=

∫

M
g(ΛiX , Y )

Æ

det(Λi)µM .

Furthermore, the isomorphisms ] and e]i are related by ωe]i = Λ−1
i ω

] for ω ∈ Ω1(M).
In the following we make use of a norm estimate given by Stern in [Ste13]. Therein, he

introduces the notion of singular values of a diffeomorphism F : (M , gM )→ (N , gN ) between
smooth manifolds as follows: at each point p ∈ M , pick an oriented gM -orthonormal basis of
TpM , and an oriented gN -orthonormal basis of TF(p)N . With respect to these two bases, the
Jacobian DF is represented by an (n× n)-matrix with singular values ς1(p) ≥ ς2(p) ≥ · · · ≥
ςn(p) > 0, which are independent of the choice of the orthonormal bases. These ordered
singular values extend to functions ς j : M → R, which are called the singular values of the
diffeomorphism. Stern then shows for the L2-norms on compact manifolds:

Theorem 4.2.2. Let F : (M , gM ) → (N , gN ) be an orientation-preserving diffeomorphism be-
tween compact Riemannian manifolds with singular values ς1(p) ≥ · · · ≥ ςn(p) > 0. Then,
setting

cς :=




(ς1 · · · · · ςk)
1/2(ςk+1 · · · · · ςn)

−1/2






−1
∞

Cς :=




(ς1 · · · · · ςn−k)
1/2(ςn−k+1 · · · · · ςn)

−1/2






∞,

the following norm equivalence estimate holds for any k-form ω ∈ Ωk(M):

cς‖ω‖L2(M) ≤ ‖F∗ω‖L2(N) ≤ Cς‖ω‖L2(M). (4.3)

Proof. [Ste13, Thm. 5 and Cor. 6]

Remark 4.2.3. Although phrased for diffeomorphisms between smooth manifolds, Stern’s esti-
mate also applies to our situation where the homeomorphisms Fi : M → Mhi

are merely piecewise
diffeomorphic, because the (n− 1)-skeleton is a set of measure zero for the L2-product. The sup
norm arising in the definition of the constants in Theorem 4.2.2 is then replaced by the essential
sup norm.

The following lemma is an estimate which appears for 1-forms in [War06], albeit with a
different bound. Here we generalize it to k-forms.
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Lemma 4.2.4. Letω,η ∈ Ωk(M), and let cς,i , Cς,i denote the constants from Theorem 4.2.2 for
the piecewise diffeomorphism Fi : M → Mhi

. Then

�

�〈ω,η〉 − 〈ω,η〉
egi

�

�≤
1
2
·max

n
�

�

�1− c2
ς,i

�

�

�,
�

�

�1− C2
ς,i

�

�

�

o

·
�

‖ω‖2 + ‖η‖2
�

. (4.4)

Proof. The bound is a consequence of the polarization identity for the scalar products:

�

�〈ω,η〉 − 〈ω,η〉
egi

�

�=
�

�

�〈ω,η〉 − 〈Fi∗ω, Fi∗η〉ghi

�

�

�

=
1
4

�

�

�‖ω+η‖2 − ‖ω−η‖2 − ‖Fi∗(ω+η)‖
2
ghi
+ ‖Fi∗(ω−η)‖

2
ghi

�

�

�

≤
1
4

�
�

�

�‖ω+η‖2 − ‖Fi∗(ω+η)‖
2
ghi

�

�

�+
�

�

�‖ω−η‖2 − ‖Fi∗(ω−η)‖
2
ghi

�

�

�

�

≤
1
4
·max

n
�

�

�1− c2
ς,i

�

�

�,
�

�

�1− C2
ς,i

�

�

�

o

·
�

‖ω+η‖2 + ‖ω−η‖2
�

=
1
4
·max

n
�

�

�1− c2
ς,i

�

�

�,
�

�

�1− C2
ς,i

�

�

�

o

· 2
�

‖ω‖2 + ‖η‖2
�

where the last inequality incorporates the bounds from Theorem 4.2.2.

In the following it will be convenient to set

εi :=max
n
�

�

�1− c2
ς,i

�

�

�,
�

�

�1− C2
ς,i

�

�

�

o

.

Corollary 4.2.5. For 0 6=ω ∈ Ωk(M), it is
�

�

�

�

�

1−
‖ω‖2

egi

‖ω‖2

�

�

�

�

�

≤ εi .

Proof. Follows immediately from Lemma 4.2.4 with η=ω.

Corollary 4.2.6. Let {Mhi
} converge metrically to M. Then for any ω,η ∈ Ωk(M) it is

�

�〈ω,η〉 − 〈ω,η〉
egi

�

�→ 0 and

�

�

�

�

�

1−
‖ω‖2

egi

‖ω‖2

�

�

�

�

�

→ 0.

Proof. The metric convergence ‖Λi − Id‖L∞ → 0 implies that the essential suprema of the
eigenvalues of Λi , considered as functions over M , tend to 1. Since these eigenvalues are the
squares of the singular values of the Jacobian DFi for any orthonormal basis, this implies that
the essential suprema of all singular values {ς j} tend to 1, which in turn implies cς,i → 1 and
Cς,i → 1, so that εi → 0. The result now follows from Lemma 4.2.4 and Corollary 4.2.5.
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DISTORTED DECOMPOSITIONS IN WHITNEY SPACES. In the following we denote by da,

r, H k
Wi ,D

and so on elements and spaces defined by the metric g, and by deai , eri ,
âH k
Wi ,D

and
so on elements and spaces defined by the distorted metrics g̃i . Note that the spaces of exact
forms dW k−1

i,(D) as well as the kernel spaces K k
i,(D) are not affected by a change of metric,

whereas all other spaces—defined as orthogonal complements of certain subspaces—are.

Lemma 4.2.7. Let ω ∈ Ωk(M) and let

Φi(ω) = dai + ri,N + bi,N ∈ dW k−1
i ⊕H k

Wi ,N
⊕ (K k

i )
⊥ (4.5)

= deai +eri,N +ebi,N ∈ dW k−1
i

e⊕i
âH k
Wi ,N

e⊕i
ã(K k

i )
⊥ (4.6)

and

Φi(ω) = dai,D + ri,D + bi ∈ dW k−1
i,D ⊕H

k
Wi ,D
⊕ (K k

i,D)
⊥ (4.7)

= deai,D +eri,D +ebi ∈ dW k−1
i,D

e⊕i
âH k
Wi ,D

e⊕i
å(K k

i,D)
⊥ (4.8)

denote its fundamental decompositions with respect to the metrics g and g̃i , respectively. Then,
if the sequence {Mhi

} converges metrically to M, all components converge to each other in the
L2-norm with respect to g on M.

Proof. This was proved in [War06, Thm. 3.4.6] for the case of 1-forms on a closed surface.
The proof applies also to our situation, with a slightly modified argumentation. For instance,
for the exact component it is

‖dai − deai‖
2 = 〈dai − deai , dai − deai〉
= 〈dai − deai , (dai −Φi(ω)) + (Φi(ω)− deai)〉
= 〈dai − deai ,Φi(ω)− deai〉

since (dai−Φi(ω)) is orthogonal to dW k−1
i for 〈−,−〉. In contrast, (Φi(ω)−deai) is orthogonal

to dW k−1
i with respect to the product 〈−,−〉

egi
, but not for 〈−,−〉. Using Lemma 4.2.4, this

gives

‖dai − deai‖
2 =

�

�〈dai − deai ,Φi(ω)− deai〉 − 〈dai − deai ,Φi(ω)− deai〉egi

�

�

≤
1
2
εi

�

‖dai +Φi(ω)− 2deai‖
2 + ‖dai −Φi(ω)‖

2� .

Metric convergence implies εi → 0. Furthermore, dai and Φi(ω) are bounded in the ‖−‖-
norm, as they converge to the corresponding components of the (bounded) smooth form ω

by Theorem 4.1.2, and ‖deai‖ is bounded due to the equivalence of the norms (4.3) and the
fact that ‖deai‖egi

≤ ‖Φi(ω)‖egi
is bounded. Overall, it follows ‖dai − deai‖

2 → 0. A similarly
adjusted argument shows the convergence of the other two components in the respective
decompositions.

To show the convergence of the Dirichlet and Neumann splittings with respect to the dis-
torted metric, we need the following lemma which is tailored to our situation.
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Lemma 4.2.8. Let (X , 〈−,−〉) be a space with inner product 〈−,−〉, and let {Ei}, {Ki}, {Zi} be
sequences of finite-dimensional subspaces of X with Ei ⊆ Ki∩Zi . Let {〈−,−〉i} denote a sequence
of inner products on X such that

|〈x , y〉 − 〈x , y〉i| ≤ ε′i
�

‖x‖2 + ‖y‖2
�

for all x , y ∈ X (4.9)

with ε′i → 0 for i →∞, where ‖−‖ is the norm induced by 〈−,−〉. For each i ∈ N, define Hi

and eHi as the orthogonal complements of Ei within Ki with respect to 〈−,−〉 and 〈−,−〉i , i.e.

Ei ⊕Hi := Ki

Ei e⊕i eHi := Ki .

Let Ui := Hi ∩ Zi and eUi := eHi ∩ Zi , and again define Vi and eVi as orthogonal complements
within Hi and eHi by

Ui ⊕ Vi := Hi

eUi e⊕i eVi := eHi .

Finally, let {ri ∈ Hi}, {r̃i ∈ eHi} be sequences such that ‖ri − r̃i‖ → 0 and ‖ri‖ (or equivalently
‖r̃i‖) stays bounded. Then for the orthogonal decompositions

ri = ui + vi ∈ Ui ⊕ Vi

r̃i = ũi + ṽi ∈ eUi e⊕i eVi

it holds ‖ui − ũi‖ → 0 and ‖vi − ṽi‖ → 0.

Proof. Let Pi : Ki → Ki ∩ Zi and P̃i : Ki → Ki ∩ Zi denote the orthogonal projections with
respect to 〈−,−〉 and 〈−,−〉i , respectively. Since Ei ⊆ Zi , the intersection Ki ∩ Zi has the
orthogonal decompositions

Ki ∩ Zi = Ei ∩ Zi ⊕Hi ∩ Zi = Ei ⊕ Ui

= Ei ∩ Zi e⊕i eHi ∩ Zi = Ei e⊕i eUi

and consequently, Pi ri = ui and ePi r̃i = ũi . We then have

‖ui − eui‖=




Pi ri − ePi r̃i





≤ ‖Pi ri − Pi r̃i‖+




Pi r̃i − ePi r̃i







≤ ‖Pi‖‖ri − r̃i‖+




(Pi − ePi)r̃i





.

Since Pi is an orthogonal projection with respect to 〈−,−〉, it is ‖Pi‖ = 1, and ‖ri − r̃i‖ → 0
by assumption. For the second term, note that since ui and ũi are orthogonal projections to
Ki ∩ Zi , it is

〈ui , z〉 = 〈ri , z〉
〈ũi , z〉i = 〈r̃i , z〉i

�

for all z ∈ Ki ∩ Zi .
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Then with zi := Pi r̃i , the convergence assumption (4.9) and Riesz isometry yield over Ki∩Zi:





(Pi − ePi)r̃i





= ‖zi − ũi‖= ‖〈zi − ũi ,−〉‖
= sup
‖z‖=1

‖〈zi − ũi , z〉‖= sup
‖z‖=1

‖〈zi , z〉 − 〈ũi , z〉‖

≤ sup
‖z‖=1

‖〈zi , z〉 − 〈ũi , z〉i‖+ sup
‖z‖=1

‖〈ũi , z〉i − 〈ũi , z〉‖

= sup
‖z‖=1

‖〈r̃i , z〉 − 〈r̃i , z〉i‖+ sup
‖z‖=1

‖〈ũi , z〉i − 〈ũi , z〉‖

≤ sup
‖z‖=1

ε′i
�

‖r̃i‖
2 + ‖z‖2

�

+ ε′i
�

‖ũi‖
2 + ‖z‖2

�

= ε′i
�

‖r̃i‖
2 + ‖ũi‖

2 + 2
�

.

The sequence ‖r̃i‖ is bounded by assumption. For ‖ũi‖, we first note that

‖ũi‖
2
i ≤ ‖ũi‖

2
i + ‖ṽi‖

2
i = ‖r̃i‖

2
i ,

where the norm is induced by 〈−,−〉i . It follows from (4.9) that, first ‖r̃i‖i must be bounded,
so that ‖ũi‖i is bounded, too, and so, second, that ‖ũi‖must also be bounded. The assumption
ε′i → 0 gives the result.

Essential for the proof of Lemma 4.2.8 is the metric independence of the subspaces Ki and
Zi . We obtain the convergence of the distorted Neumann and Dirichlet splittings:

Lemma 4.2.9. Let ρN ∈ H k
N be a harmonic Neumann field and let ri,N and r̃i,N denote its

discrete approximations in the decompositions (4.5) and (4.6). Denote by

ri,N = si,N + t i,N ∈H k
Wi ,N ,co ⊕H

k
Wi ,N ,∂ ex

r̃i,N = s̃i,N + t̃ i,N ∈åH k
Wi ,N ,co

e⊕i
åH k
Wi ,N ,∂ ex

their orthogonal decompositions into coexact and boundary-exact Neumann Whitney fields with
respect to the metrics g and g̃i , respectively. Let {Mhi

} converge metrically to M. Then it is




si,N − s̃i,N





 → 0 and




t i,N − t̃ i,N





 → 0. In particular, if ρN = σN + τN denotes the smooth
decomposition, then both si,N and s̃i,N converge to σN , and t i,N and t̃ i,N converge to τN .

Proof. With the notation of Lemma 4.2.8, set X := L2Ωk(M), the L2-closure with respect to
g of smooth k-forms on M , and define the spaces Ei := dW k−1

i , Ki :=K k
i and Zi := {w ∈ Ki :

w is boundary-exact}. Then Hi := H k
Wi ,N

, Ui = H k
Wi ,N ,∂ ex and Vi := H k

Wi ,N ,co, and similarly

for the distorted spaces eHi and so on. The sequences {ri := ri,N} and {r̃i := r̃i,N} converge to
each other with respect to the metric g on M by Lemma 4.2.7, and also converge to a smooth
form on M by Theorem 4.1.2, so they are bounded. Finally, Lemma 4.2.4 ensures the validity
of the estimate (4.9). The claim now follows from Lemma 4.2.8.
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Lemma 4.2.10. Let ρD ∈ H k
D be a harmonic Dirichlet field and let ri,D and r̃i,D denote its

discrete approximations in the decompositions (4.7) and (4.8). Denote by

ri,D = si,D + t i,D ∈H k
Wi ,D,ex ⊕H

k
Wi ,D,∂ co

eri,D = s̃i,D + t̃ i,D ∈åH k
Wi ,D,ex

e⊕i
åH k
Wi ,D,∂ co

their orthogonal decompositions into exact and boundary-coexact Dirichlet Whitney fields with
respect to the metrics g and g̃i , respectively. Let {Mhi

} converge metrically to M. Then it is




si,D − s̃i,D





 → 0 and




t i,D − t̃ i,D





 → 0. In particular, if ρD = σD + τD denotes the smooth
decomposition, then both si,D and s̃i,D converge to σD, and t i,D and t̃ i,D converge to τD.

Proof. This time, set X := L2Ωk(M), Ei := dW k−1
i,D , Ki := K k

i,D and Zi := dW k−1
i . Then

Hi :=H k
Wi ,D

, Ui =H k
Wi ,D,ex and Vi :=H k

Wi ,D,∂ co, and similarly for the distorted spaces eHi and
so on, and the claim follows with the same argument as in Lemma 4.2.9.

Theorem 4.2.11. Let ω ∈ Ωk(M) be decomposed as

ω= dα+σN +τN +δβN ∈ dΩk−1 ⊕H k
N ,co ⊕H

k
N ,∂ ex ⊕δΩ

k+1
N (4.10)

= dαD +σD +τD +δβ ∈ dΩk−1
D ⊕H k

D,ex ⊕H
k

D,∂ co ⊕δΩ
k+1 (4.11)

and let

Φi(ω) = dãi + s̃i,N + t̃ i,N + b̃i,N ∈ dW k−1
i

e⊕i
åH k
Wi ,N ,co

e⊕i
åH k
Wi ,N ,∂ ex

e⊕i
ã(K k

i )
⊥ (4.12)

= dãi,D + s̃i,D + t̃ i,D + b̃i ∈ dW k−1
i,D

e⊕i
åH k
Wi ,D,ex

e⊕i
åH k
Wi ,D,∂ co

e⊕i
å(K k

i,D)
⊥ (4.13)

be the decomposition of its Whitney projection with respect to the metrics g̃i , and let {Mhi
}

converge metrically to M. Then all components in (4.12) converge to the respective components
in (4.10), and all components in (4.13) converge to the respective components in (4.11).

Proof. Corollary 4.1.6 and Corollary 4.1.11 show the convergence of the corresponding de-
compositions for the smooth metric g, and Lemma 4.2.7 together with Lemma 4.2.9 and
Lemma 4.2.10 give the convergence of the distorted Whitney decompositions to the undis-
torted ones.
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4.3 APPROXIMATION BY PCVFS

Concluding the approximation proof, this section finally considers the case of approximating a
smooth vector X field by a PCVF on a discrete mesh and shows convergence of the discrete de-
compositions for Xh to their smooth counterparts. To this end we shall define the approximating
vector field as the element Phi

(X ) ∈ Xh(Mhi
) that is the L2-projection of the piecewise defined

pushforward F∗X over Mhi
. Its discrete decomposition pulls back to a decomposition on M which

is orthogonal with respect to the distorted metric g̃i . The proof now compares this decomposi-
tion with the distorted Whitney decompositions, and the results from the previous sections and an
approximation statement of smooth vector fields by PCVFs in [War06] yield the expected conver-
gence.

Finally it remains to show that approximations by PCVFs and their decompositions accord-
ing to Section 3.2 and Section 3.3 still converge to their smooth counterparts. For the surface
case we will show this explicitly for the following refined fundamental decompositions

Xh =∇L ⊕ (Hh,N ,co ⊕Hh,N ,∂ ex)⊕ J∇F0

=∇L0 ⊕ (Hh,D,ex ⊕Hh,D,∂ co)⊕ J∇F .

For the three-dimensional case we shall only give a remark on how to prove convergence,
as this case is not substantially different from the surface case. We shall closely follow the
strategy suggested by Wardetzky in [War06, Sec. 3.4.3].

Again, we assume that {Fi : M → Mhi
} is an admissible family of smooth triangulations,

where M is now a surface with boundary and Mhi
is a sequence of simplicial surfaces. Given

a smooth vector field X ∈ X (M) on M , its L2-best approximation on the simplicial surface
Mhi

shall be the element Phi
(X ) ∈ Xh(Mhi

) satisfying

〈Phi
(X ), Yh〉ghi

= 〈Fi∗X , Yh〉ghi
for all Y ∈ Xh(Mhi

),

and we denote this projection by Phi
: L2X (M) → Xh(Mhi

). The pullback F∗i Phi
(X ) is then

the L2-orthogonal projection of X with respect to 〈−,−〉 g̃i
on M onto the space

Xi(M) := F∗i Xh(Mhi
) = {F∗i Yh : Yh ∈ Xh(Mhi

)}

which can be considered the space of piecewise constant vector fields with respect to the
coordinates {eλhi , j = F∗i λhi , j} on M : indeed, over any triangle f ∈ M (2)hi

, a constant vector

field X f =
∑

j a j∂ λhi , j pulls back to the vector field

F∗X f =
∑

j

a j DF−1∂ λhi , j =
∑

j

a j∂ eλhi , j ,

having the same constant coefficients as X f .
If ePi : L2X (M) → Xi(M) denotes the L2-orthogonal projection with respect to 〈−,−〉 g̃i

,
then by the above discussion it is ePi(X ) = F∗Phi

(X ). Hence we can think of this approximation
either as the element ePi(X ) ∈ Xi(M) on M , or as the element Phi

(X ) ∈ Xh(Mhi
) on the

approximating surface Mhi
. Wardetzky has shown that for any vector field X ∈ X (M) its

projection ePi(X ) to Xi(M) converges to X :
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Lemma 4.3.1. Let X ∈ X (M) and let {Mhi
} converge metrically. Then





X − ePi(X )




→ 0.

Proof. [War06, Lemma 3.4.3]

Furthermore, for every Whitney form w ∈ W 1(Mhi
) on Mhi

with its orthogonal splitting
into a closed and coclosed component w= c + b ∈K 1 ⊕hi

(K 1)⊥ it is

Phi
(w]hi ) = Phi

(c]hi ) + Phi
(b]hi ) ∈ (J∇F0)

⊥ ⊕hi
J∇F0,

and similarly for the splitting KD ⊕hi
K ⊥D , see [War06, Lemma 3.4.5]. Here, by abuse of

notation, we denote the orthogonal projection W 1(Mhi
)]hi →Xh(Mhi

) by Phi
, too. In partic-

ular, since c is closed, it follows from Lemma 3.1.5 that c]hi is already a PCVF on Mhi
, i.e.

Phi
(c]hi ) = c]hi . We obtain

Corollary 4.3.2. Let w ∈W 1(Mhi
) with ghi

-orthogonal decompositions

w= dai + si,N + t i,N + bi,N ∈ dW 0
i ⊕hi

H 1
Wi ,N ,co⊕hi

H 1
Wi ,N ,∂ ex⊕hi

(K 1
i )
⊥

= dai,D + si,D + t i,D + bi ∈ dW 0
i,D⊕hi

H 1
Wi ,D,ex⊕hi

H 1
Wi ,D,∂ co⊕hi

(K 1
i,D)
⊥.

Then its projection Phi
(w]hi ) to Xh(Mhi

) has the orthogonal decompositions

(dai)
]hi + (si,N )

]hi + (t i,N )
]hi + Phi

(b
]hi
i,N ) ∈ ∇L ⊕hi

(Hh,N ,co ⊕hi
Hh,N ,∂ ex)⊕hi

J∇F0

(dai,D)
]hi + (si,D)

]hi + (t i,D)
]hi + Phi

(b
]hi
i ) ∈ ∇L0 ⊕hi

(Hh,D,ex ⊕hi
Hh,D,∂ co)⊕hi

J∇F .

The previous considerations culminate in the following convergence statements for the
refined discrete fundamental decompositions for PCVFs.

Theorem 4.3.3. Let M be a smooth, compact surface with boundary ∂M, and {Fi : M → Mhi
}

be an admissible family of smooth triangulations by simplicial surfaces, converging metrically to
M. Let ω ∈ Ω1(M) be a 1-form with its decompositions

ω= dα+ (σN +τN ) +δβN ∈ dC∞ ⊕ (H 1
N ,co ⊕H

1
N ,∂ ex)⊕δΩ

2
N

= dαD + (σD +τD) +δβ ∈ dC∞D ⊕ (H 1
D,ex ⊕H

1
D,∂ co)⊕δΩ

2.

Let Xhi
:= Phi

(ω#) be the projection of ω# to Xh(Mhi
) with respect to 〈−,−〉ghi

, and let

Xhi
=∇ϕi + (Shi ,N + Thi ,N ) + J∇ψi,N ∈ ∇L ⊕hi

(Hh,N ,co ⊕hi
Hh,N ,∂ ex)⊕hi

J∇F0

=∇ϕi,D + (Shi ,D + Thi ,D) + J∇ψi ∈ ∇L0 ⊕hi
(Hh,D,ex ⊕hi

Hh,D,∂ co)⊕hi
J∇F

Then




(dα)] − F∗i ∇ϕi





→ 0




(dαD)
] − F∗i ∇ϕi,D





→ 0







σ
]
N − F∗i Shi ,N








→ 0




(σD)
] − F∗i Shi ,D





→ 0




(τN )
] − F∗i Thi ,N





→ 0







τ
]
D − F∗i Thi ,D








→ 0




(δβN )
] − F∗i J∇ψi,N





→ 0




(δβ)] − F∗i J∇ψi





→ 0
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Proof. We show convergence for the first decomposition. The proof for the second is literally
the same. First of all, we consider everything on M . Let

X =: A+ S + T + B := (dα)] +σ]N +τ
]
N + (δβN )

]

ePi(X ) =: eAi + eSi + eTi + eBi := F∗∇ϕi + F∗Shi ,N + F∗Thi ,N + F∗J∇ψi,N .

We have to show




A− eAi





→ 0 and so on. With respect to Corollary 4.2.6 the convergence to
zero with respect to the ‖−‖-norm is equivalent to convergence in the ‖−‖ g̃i

-norm. Therefore
if we do not need to focus on statements for a particular norm we shall write ‖−‖( g̃i) to
indicate that this could either stand for the norm induced by g or the norm induced by g̃i .
We shall use the following notation

Φi(ω) =: ãWi
+ s̃Wi

+ t̃Wi
+ b̃Wi

∈ dW 0
i
e⊕i
åH 1
Wi ,N ,co

e⊕i
åH 1
Wi ,N ,∂ ex

e⊕i
ã(K 1

i )
⊥

ePi(Φi(ω)
]̃i ) =: eAWi ,h + eSWi ,h + eTWi ,h + eBWi ,h ∈ F∗i

�

∇L ⊕hi
Hh,N ,co ⊕hi

Hh,N ,∂ ex ⊕hi
J∇F0

�

and conclude as follows:
First, by Corollary 4.1.11 it is





dα− ãWi







( g̃i)
→ 0,





σN − s̃Wi







( g̃i)
→ 0 and so on. Further-

more, by Lemma 4.3.1, it is





ePi(X )− X







( g̃i)
→ 0.

Second, we claim that









ePi(Φi(ω)]̃i )− X









( g̃i)
→ 0 in both norms. Considering the ‖−‖ g̃i

-

norm, it is









ePi(Φi(ω)
]̃i )− X










g̃i

≤









ePi(Φi(ω)
]̃i )− ePi(X )










g̃i

+





ePi(X )− X







g̃i

The second term tends to zero by Lemma 4.3.1. For the first term we estimate









ePi(Φi(ω)
]̃i − X )










g̃i

≤





ePi







g̃i








Φi(ω)
]̃i − X










g̃i

≤







Φi(ω)
]̃i −Φi(ω)

]









g̃i

+




Φi(ω)
] − X







g̃i

≤




(Λ−1
i − Id)Φi(ω)

]






g̃i
+




Φi(ω)
] − X







g̃i

Both terms converge with respect to ‖−‖ which can be seen as follows:




(Λ−1
i − Id)Φi(ω)

]




≤




Λ−1
i − Id







L∞





Φi(ω)
]




→ 0

since




Λ−1
i − Id







L∞ → 0 and




Φi(ω)]






g̃i
is bounded. Furthermore,





Φi(ω)
] − X





=




Φi(ω)− X [




= ‖Φi(ω)−ω‖ → 0

by Theorem 4.1.1. Therefore









ePi(X )− ePi(Φi(ω)]̃i )









( g̃i)
→ 0, since both terms converge to X .

Considering the ‖−‖ g̃i
-norm, it follows that all components in the g̃i-orthogonal decomposi-

tions

ePi(X ) = eAi + eSi + eTi + eBi

ePi(Φi(ω)
]̃i ) = eAWi ,h + eSWi ,h + eTWi ,h + eBWi ,h
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tend to each other in both norms.
Next, we show that eAWi ,h, eSWi ,h and eTWi ,h converge to A, S and T . Note that by Corol-

lary 4.3.2 it is eAWi ,h = (ãWi
)]̃i , eSWi ,h = (s̃Wi

)]̃i and eTWi ,h = ( t̃Wi
)]̃i . We obtain






eAWi ,h − A





=







(ãWi
)]̃i −α]










≤







(ãWi
−α)]̃i








+







α]̃i −α]









=




Λ−1
i (ãWi

−α)]




+




Λ−1
i α

] −α]






≤




Λ−1
i







L∞





(ãWi
−α)]





+




Λ−1
i − Id







L∞





α]






=




Λ−1
i







L∞





ãWi
−α





+




Λ−1
i − Id







L∞‖α‖.

It is




Λ−1
i







L∞ → 1 and




Λ−1
i − Id







L∞ → 0 by metric convergence, and




ãWi
−α





 → 0 by
Corollary 4.1.11. Thus






eAWi ,h − A





 → 0, and the same argument holds for the other two
components, too. Finally, since ePi(X ), eAi , eSi and eTi converge to X , A, S, and T , it must hold





eBi − B





→ 0, too.

Remark 4.3.4 (Convergence for Simplicial Solids). Basically the same line of argument works
for the convergence results in the three-dimensional case, keeping the following slight differences
in mind. As already mentioned in Remark 3.3.5, the discrete decompositions in Section 3.3
interpret vector fields as vector proxies for 2-forms. Therefore, they need to be compared with
the corresponding components in the Whitney decompositions for Whitney 2-forms, too, and not
with 1-forms. On the other hand, there is no non-trivial further splitting for the spacesH ∗

D and
H ∗

N on three-dimensional domains in R3—all Dirichlet fields are exact and all Neumann fields
are coexact. Hence the argumentation following Lemma 4.2.8 is not needed in this case.



APPLICATIONS 5
In this last chapter we present applications for the structural decomposition results derived
above. In particular, we shall focus on the following aspects:

1. The computation of harmonic fields: harmonic vector fields play a central role in many
applications, e.g. in parametrization and remeshing problems in computational geom-
etry or in the numerical treatment of Hodge-Laplace problems, where they arise as non-
trivial elements in the kernel. Furthermore, the subspaces of Dirichlet and Neumann
fields provide representatives for cohomology classes, with their refined split subspaces
of (co-)exact and boundary-(co-)exact fields separating cohomology information in-
duced by the boundary from cohomology coming from the interior of the geometry. In
fact they turn out to be useful as a tool for the detection and analysis of topological
features. We therefore explain a computational strategy to compute such bases and
show a few examples on various test models.

2. The computational decomposition of a given vector field: we have already mentioned
several important use cases for Hodge decompositions, ranging from the analysis of
vector fields and their singularities to the projection onto particular components of a
vector field, e.g. to ensure local integrability. We will present a strategy to compute the
refined decompositions derived in Section 3.2 and Section 3.3, based on an iterated
L2-projection scheme. Finally, we compare our discrete results to smooth fields defined
analytically.

5.1 COHOMOLOGY REPRESENTATIVES ON SIMPLICIAL SURFACES

We present a method for computing bases for the spaces of discrete Dirichlet and Neumann fields
on simplicial surfaces. In each case, the basis is encoded as a typically low-dimensional null space
of an almost-square sparse matrix. For the subspace of exact Dirichlet fields and coexact Neumann
fields we obtain a basis of potentials and copotentials in L and F , respectively. Several examples
demonstrate the practicability of this approach.

As a first application we compute bases for the topologically significant spaces Hh,D and
Hh,N and their refined subspaces of (co-)exact and boundary-(co-)exact Dirichlet and Neu-
mann fields on simplicial surfaces. From a combinatorial point of view the computation of
(co-)homology generators is a central topic in computational topology, see e.g. [EW05],
[Dło12] or [BCC+12], just to name a few exemplary articles. For geometric and physical ap-
plications, though, it is often desirable not only to compute homology-generating cycles com-
binatorially, but rather to work with a basis that is formed by harmonic fields which constitute
an even flow, being divergence-free and rotation-free at the same time. Since the property of
being divergence-free depends on the Riemannian metric, such a basis cannot be constructed
by purely combinatorial methods any more, and one has to incorporate an orthogonalization
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procedure, see [HKWW10]. In the following we therefore compute orthogonal complements
of gradient and cogradient spaces directly to obtain bases for Hh,D and Hh,N . Lemma 3.2.6
and Remark 3.2.7 guarantee that these bases will indeed generate the respective cohomology
groups.

SETTING UP THE SYSTEM MATRICES. Recall that discrete Dirichlet fields are defined as the
orthogonal complement of the sum∇L0⊕J∇F . LetBL := {ϕi} be the nodal basis ofL , and
BL0

:= {ϕ0,i} ⊂ BL be the subset of basis functions whose degrees of freedom correspond to
the inner vertices. Similarly, letBF := {ψi} andBF0

be the edge-midpoint bases for F and
F0, respectively, the latter given by all basis functions associated to inner edges. To represent
elements in Xh, we interpret each vector field X ∈ Xh as a family of vectors in R3, indexed
by the triangles f ∈ M (2)h . Without the requirement for tangency, a basis is then given by
the family {E f ,1, E f ,2, E f ,3} f ∈M (2)h

with the canonical basis vectors E f ,i = (δ1,i ,δ2,i ,δ3,i) ∈ R3,

where δ j,i denotes the Kronecker delta. For simplicity we renumerate these vectors and set
BR := {E j} for j = 1, . . . , 3nF , and R := R3nF . We define the following matrices:

L∇L0,R :=
�

〈∇ϕ0,i , E j〉L2

�

i=1,...,niV
j=1,...,3nF

LJ∇F ,R :=
�

〈J∇ψi , E j〉L2

�

i=1,...,nE−1
j=1,...,3nF

LN ,R :=
�

〈Ni , E j〉L2

�

i=1,...,nF
j=1,...,3nF

,

where Ni is the (constant) normal field of triangle fi . For an element X =
∑

i X i Ei in the linear
span ofBR it is L∇L0,R · X = 0 and LJ∇F ,R · X = 0 if and only if X is L2-orthogonal to all gra-
dient fields of inner Lagrange elements and all cogradient fields of Crouzeix-Raviart elements
on Mh, respectively (for the matrix-vector product we identify X with its coefficient vector
(X i) here and in the following). Furthermore, LN ,R · X = 0 if and only if X is a tangential
vector field to Mh. Stacking these matrices into a single matrix

LHh,D
:=





L∇L0,R
LJ∇F ,R

LN ,R



 (5.1)

of dimension (niV + nE − 1+ nF )× 3nF , it is

Hh,D = ker(LHh,D
),

so finding a basis of Hh,D is equivalent to finding a basis for ker(LHh,D
). We will discuss two

approaches to solve for this kernel in Section 5.5. Note that only nE − 1 basis functions of F
are needed, as the constant functions form the kernel of J∇. Of course, if Mh is embedded
in R2, there is no need to enforce tangency and one can perform the computation directly in
coordinates of R2, so that the system reduces to a ((niV + nE − 1)× 2nF )-matrix.

The very same strategy can be applied to obtain a basis forHh,N , using the matrices L∇L ,R
and LJ∇F0,R instead of L∇L0,R and LJ∇F ,R in the stacked system (5.1).

To compute a basis for Hh,D,ex, we proceed in a similar fashion. However, since we are
seeking gradient fields, a solution X can be written as X = ∇ϕX :=

∑

i X i∇ϕi . This reduces
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drastically the system size for two reasons: first, no tangency conditions need to be imposed
and second, such gradient fields are automatically orthogonal to J∇F0. In effect, there are
just two conditions that need to be satisfied for∇ϕX , namely that∇ϕX is orthogonal to∇L0,
and that it is orthogonal to all J∇ψb, j , whereψb, j ∈ Fb. Here,Fb denotes the subspace ofF
spanned by all basis functions whose degrees of freedom are associated to boundary edges.
A solution is then the gradient field of a discrete harmonic function ϕX which is constant on
each boundary component, see Figure 5.13. We set up the matrices

L∇L0,∇L :=
�

〈∇ϕ0,i ,∇ϕ j〉L2

�

i=1,...,niV
j=1,...,nV

LJ∇Fb ,∇L :=
�

〈J∇ψb,i ,∇ϕ j〉L2

�

i=1,...,nbE
j=1,...,nV

and stack them to a matrix

LHh,D,ex
:=





L∇L0,∇L
LJ∇Fb ,∇L
(1,0, . . . , 0)



 ,

where the last row is added to exclude constant functions.
Solving for the (m − 1)-dimensional null space of LHh,D,ex

gives the coefficient vectors for
the basis functions BL , and their gradients form a basis for Hh,D,ex. Once again, a similar
procedure can be performed to obtain a basis forHh,N ,co.

Finally, once we have bases {Y1, . . . , Yh1} for Hh,D and {Z1, . . . , Zm−1} for Hh,D,ex, a basis
forHh,D,∂ co can be obtained e.g. by solving for the 2g-dimensional kernel of the matrix

�

〈Zi , Yj〉L2

�

i=1,...,m−1
j=1,...,h1

and orthonormalize with respect toHh,D,ex, if necessary.
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Figure 5.1: Bases forHh,N andHh,D on the AwH-model of type Σ0,3.

EXPERIMENTAL RESULTS. The first example in Figure 5.1 shows bases forHh,N andHh,D
on a flat annulus geometry with an additional hole cut out (we shall refer to this model
by “AwH”), so that h1 = 2. Since this model does not possess any interior cohomology, all
Dirichlet fields are exact, and all Neumann fields are coexact. Furthermore, the shown basis
for each space is an orthonormal basis, so that all four fields are pairwise orthogonal to each
other.

Figure 5.2 shows bases forHh,N andHh,D on a torus with an attached cylinder (abbreviated
“TwC”), which is topologically a surface of type Σ1,2. Whereas the spaces Hh,D and Hh,N in
the previous example have been L2-orthogonal to each other, this is no longer the case for this
model due to the presence of non-trivial inner cohomology generators which are shared by
both spaces. Although the representing fields are almost orthogonal on the cylindrical region,
they concentrate in the same fashion along the longitudinal and latitudinal cycles that reflect
homology generated by the torus, and are clearly not orthogonal to each other any more. All
fields are non-zero everywhere, even if the small values are not visible in this graphic.

Two pairings of each a Dirichlet and a Neumann field from Figure 5.2 are shown as a close-
up on the torus region in Figure 5.3. The first pairing forms mostly acute angles on individual
triangles on the torus region, whereas the second pairing forms mostly obtuse angles. In any
case, a local non-orthogonality is clearly visible and as these fields concentrate their mass on
the torus region, these two pairs are apparently not L2-orthogonal.



5.1 COHOMOLOGY REPRESENTATIVES ON SIMPLICIAL SURFACES 83

Figure 5.2: Basis fields for Hh,N (left column) and Hh,D (right column) on a torus with a
cylinder attached, which is topologically Σ1,2. The fields in the first and third
row all concentrate their mass in the same fashion along the longitudinal and
latitudinal cycles that reflect homology generated by the torus, and are clearly
not orthogonal to each other any more.

Figure 5.3: Two parings of Neumann and Dirichlet fields from the bases shown in Figure 5.2.
The left image shows the first Neumann field and the third Dirichlet field, forming
locally acute angles on each triangle on the torus region. The right image shows
the third Neumann field and the third Dirichlet field, forming obtuse angles.
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AwH Hh,D(a) Hh,D(b)
Hh,N (a) 1.57 1.57
Hh,N (b) 1.57 1.57

TwC Hh,D(a) Hh,D(b) Hh,D(c)
Hh,N (a) 2.30 1.57 0.74
Hh,N (b) 1.62 1.57 1.55
Hh,N (c) 2.41 1.58 2.31

Table 5.1: Angles between the basis fields forHh,N andHh,D on the flat AwH-model and the
TwC-model in radians. Whereas the angles on the flat AwH-model are all right
angles, this is no longer true for the TwC-model, whose toroidal region generates
inner cohomology.

This is confirmed by the numerical values for the angles given in Table 5.1. Here, each
angle is computed as usual by

cosα=
〈X , Y 〉L2

‖X‖L2‖Y ‖L2
for X ∈Hh,N , Y ∈Hh,D.

Whereas both the second Neumann and Dirichlet field of Figure 5.2 form an angle of almost
π/2 to all other fields, this is not true for the other fields. As the discussion suggested, the
first pairing indeed forms an acute L2-angle of 0.74 radians, whereas the second pairing forms
an obtuse L2-angle of 2.31 radians. Note that the angles spanned by the second Neumann
and Dirichlet fields which are concentrated on the cylindrical region are only almost right
angles. This is because solving for the kernel to compute bases for Hh,N and Hh,D does not
take the splitting into the refined subspaces into account a priori. The well-separateness of
the solutions is in this example merely coincidence and depends on the numerical solver. In
contrast, all angles for the flat AwH-model are truly right angles.

Elaborating on this last aspect, Figure 5.4 shows a basis for the space of Dirichlet fields
on the Laurent’s hand model (“LH”), where three holes have been cut into the finger tips.
Adding the hole at the wrist, this model is of type Σ1,4, where a toroidal region is formed by
the thumb and the index finger. Consequently,Hh,D is five-dimensional. Although the results
in the first row of Figure 5.4 already suggest a splitting into Hh,D,ex (first three images) and
Hh,D,∂ co (last two), this is again merely coincidence and cannot be relied on, as it depends
on the solver used to compute the kernel of the system matrix LHh,D

. In contrast, the second
row shows a true basis forHh,D,ex and their corresponding harmonic potential functions. The
colouring indicates that the potential is indeed constant on each boundary component.
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Figure 5.4: First row: Basis for Hh,D on the modified Laurent’s hand model with three holes
cut into the finger tips and a fourth hole at the wrist. Second row: Basis for
Hh,D,ex and the corresponding potential functions.

5.2 HODGE DECOMPOSITIONS ON SIMPLICIAL SURFACES

We present an algorithm to compute the decompositions derived in Section 3.2 for a given input
vector field. The computation is based on an iterated L2-projection on the subspaces of the respec-
tive decompositions. The decomposition is tested for discrete interpolations of superpositions of
smooth, stereotypical fields. The distinction between boundary and inner cohomology is illustrated
in further examples.

Next, we present a computational approach for the decomposition of PCVFs according to
the Hodge-type decomposition theorems on simplicial surfaces derived in Section 3.2. The
refined decompositions of discrete harmonic Dirichlet and Neumann fields provide a concise
distinction between harmonic flows induced from the interior topological features of the ge-
ometry and those harmonic flows that reflect the boundary. We assume that we are given
a PCVF X ∈ Xh which might come from real data or an analytic expression, for instance
through interpolation or L2-projection onto the space Xh, representing cell-averages of the
original field.

To compute the decomposition, we follow the iterated L2-projection approach proposed by
[PP03], since it is a conceptually simple and—due to its global nature—robust method: given
a vector field X = X0 ∈ Xh, compute the L2-projection prV1

(X ) onto an L2-direct summand
subspace V1 of the orthogonal decomposition of interest, and form the residue X1 := X −
prV1
(X ). Now, project X1 onto the next subspace V2, form the residue X2, and iterate until all

subspaces are processed. Each projection step amounts to the solution of a linear problem of
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the type

Find u ∈ Vi such that 〈u, v〉L2 = 〈X i−1, v〉L2 for all v ∈ Vi . (5.2)

Solving these system requires a basis for each subspace Vi in order to set up the system matrix
and the right-hand side. This is easy for the subspaces ∇L0, ∇L , J∇F0 and J∇F . For ∇L
and J∇F , one should exclude the constant functions from the kernel, or solve for a least-
squares minimum solution instead, for instance.

In order to compute the projection of X onto Hh,D,ex, we first compute a basis BHh,D,ex
=

{Z1, . . . , Zm−1} forHh,D,ex as described in Section 5.1. Each Zi is of the form

Zi =
nV
∑

j=1

zi j∇ϕ j with ϕ j ∈ L

with coefficients zi j ∈ R. Using this basis, we now solve (5.2). The resulting coefficient vector
u represents the solution as a linear combination

m−1
∑

i=1

ui Zi =
nV
∑

j=1

�m−1
∑

i=1

uizi j

�

∇ϕ j .

A pseudocode example for a computational decomposition according to (3.15) is given in
Listing 5.1. A computation for the decomposition involving the refined Neumann fields goes
along the same lines.

Listing 5.1: Algorithm for the computation of the decomposition (3.15)

Input: PCVF X ∈ Xh, integer m (optional)
X∇L0

= project(X , ∇L0)
X1 = X - X∇L0

XJ∇F0
= project(X1, J∇F0)

X2 = X1 - XJ∇F0

XHh∩J∇F = project(X2, J∇F )
X3 = X2 - XHh∩J∇F
BHh,D,ex

= compute_HDex_basis(size=m− 1)
XHh,D,ex

= project(X3, BHh,D,ex
)

XHh,D,∂ co
= X3 - XHh,D,ex

return X∇L0
, XJ∇F0

, XHh∩J∇F , XHh,D,ex
, XHh,D,∂ co

EXPERIMENTAL RESULTS. We present two exemplary computational decompositions. The
first one decomposes the L2-projection to Xh of the vector field

Xannulus := XN ,co + XD,ex + Xex + Xco with

XN ,co := (x2 + y2)−1(−y, x),

XD,ex := (x2 + y2)−1(x , y),

Xex := (2x , 1) =∇(x2 + y),

Xco := 2(−y, x) = −J∇(x2 + y2)
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on a flat annulus in R2, centred at the origin. Note that XN ,co and XD,ex are smooth harmonic
fields, i.e. they are curl- and divergence-free. Furthermore, on a perfectly round annulus
centred at the origin the rotating field XN ,co is tangential along the boundaries whereas the
radial field XD,ex is orthogonal to the boundaries. Since there is no inner cohomology (the
annulus is homeomorphic to Σ0,2), by Theorem 3.2.18 there is a complete L2-orthogonal
decomposition involving all the discussed spaces at the same time. The result is shown in
Figure 5.5. The exact part Xex contributes predominantly to the central harmonic space∇L∩
J∇F andHh,D,ex, whereas the harmonic circulation is correctly captured inHh,N ,co.

The parts of the complete decomposition that are not shown correspond to the non-existing
inner cohomology and are consequently negligible, with L2-norms of magnitude 10−12 and
lower coming from numerical round-off, see Table 5.2 below. Of course, an additional small
discretization error depending on the mesh size is caused by the interpolation step of the
smooth field onto Xh. The harmonic Dirichlet and Neumann components are in fact exact
and coexact, respectively, as predicted by Lemma 3.2.17.

Figure 5.5: Decomposition of the vector field Xannulus. Top row: input vector field, central
harmonic component in ∇L ∩ J∇F and exact component in ∇L0. Bottom row:
coexact component in J∇F0, exact Dirichlet component in Hh,D,ex and coexact
Neumann component inHh,N ,co.
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Figure 5.6: First row: input vector field and its components in ∇L0 and J∇F0. Second
row: components inHh ∩∇L ,Hh,N ,co andHh,N ,∂ ex. Third row: components in
Hh ∩ J∇F ,Hh,D,ex andHh,D,∂ co.

The second example, shown in Figure 5.6, compares the decompositions (3.14) and (3.15)
for the same input vector field on a torus geometry with two symmetric, opposite holes cut
out. The input vector field XΣ1,2

is the superposition

XΣ1,2
:= XA+ XB with

XA := (x2 + y2)−1(y,−x , 0)

XB := (0, z,−y)

of a harmonic flow XA along the torus and a rotation in the yz-plane around the centre
axis through the opposite holes, restricted to the surface mesh and interpolated in Xh. The
boundary-constrained exact and coexact components in ∇L0 and J∇F0, respectively, are
shared by both decompositions. The harmonic flow XA is in both cases correctly captured by
the corresponding subspace representing inner cohomology, which isHh,N ,∂ ex in the first case
andHh,D,∂ co in the second. The harmonic part of the rotation XB is in the first case captured
byHh,N ,co whereas in the latter it appears inHh∩J∇F . In both cases it is a coexact harmonic
field. The exact harmonic component which appears as Hh ∩∇L in the first and as Hh,D,ex
in the second decomposition is in both cases negligible. The boundary behaviour of each
component is shown in Figure 5.7.
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Figure 5.7: Boundary close-ups for the components shown in Figure 5.6. The boundary-
exactness of the component inHh,N ,∂ ex is clearly visible (second row, third image).
The rotation induced by the field XB is mostly captured by the coexact components
(pictures on the main skew diagonal).
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Figure 5.8: Decomposition of the vector field XΣ5,4
on a surface of type Σ5,4. Top row: input

vector field, exact component in ∇L0 and coexact component in J∇F0. Second
row: harmonic exact component in Hh ∩∇L , coexact Neumann component in
Hh,N ,co and boundary-exact Neumann component in Hh,N ,∂ ex. Third and fourth
row: close-ups of the boundary behaviour around the lower left boundary hole
for each component, following the same order as above. The exact component in
∇L0 is perpendicular to the boundary, whereas the components of the harmonic
Neumann part as well as the coexact component in J∇F0 are mostly tangen-
tial. The harmonic exact component in Hh ∩∇L does not obey any particular
boundary behaviour.

The last example is a decomposition according to (3.14) on a more complicated geometry
of type Σ5,4, see Figure 5.8. The field XΣ5,4

to be decomposed is once again a superposi-
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tion of several elementary fields: a harmonic circulation component around the right-most
handle, a rotational global component and a divergence component in the centre of the ge-
ometry, defined on the ambient space and restricted and interpolated in Xh. We mainly find
contributions in the subspaces ∇L0, J∇F0 andHh,N ,∂ co, the latter reflecting the global har-
monic flow around the “inner geometry” (the handles). See Table 5.2 for the L2-norms for
the components.

Space Xannulus XΣ5,4
Space Xannulus XΣ5,4

Input 5.82 2.80
∇L0 0.44 1.61 Hh,D,ex 3.21 -
∇F0 0.89 1.08 Hh,D,∂ co 10−12 -

Hh ∩∇L - 0.33 Hh,N ,co 4.33 0.06
∇L ∩ J∇F 1.95 - Hh,N ,∂ ex 10−14 1.48

Table 5.2: L2-norms of the components of the decomposed vector fields. Entries with a hy-
phen do not exist in the computed decompositions.

5.3 COHOMOLOGY REPRESENTATIVES ON SIMPLICIAL SOLIDS

We compute bases for the spaces H ∗
h,D and H ∗

h,N on simplicial solids. The basis for discrete
Neumann fields can be directly computed in the ansatz space F , which reduces the size of the
matrix whose kernel has to be solved for. For discrete Dirichlet fields we obtain a basis in the
ansatz space Xh. Still one can obtain a vector potential by projecting the solution onto the space
curl(N ). Two examples on geometries exhibiting both cavities and solid handles are shown.

We now demonstrate how to compute representatives for cohomology classes on simplicial
solids in R3. These representatives reveal the non-trivial topology of the domain—for do-
mains embedded in R3 topological features come from solid handle bodies or from cavities
in the interior. Although the strategy is in the same spirit as in Section 5.1, there are a few
differences.

SETTING UP THE SYSTEM MATRICES. In virtue of Theorem 3.3.8, a basis for the space of
Dirichlet fieldsH ∗

h,D is given by a basis for the orthogonal complement of curl(N0)⊕∇F .
LetBN := {ηi} be the edge basis for the Nédélec elementsN , and letBN0

:= {η0,i} ⊂ BN
be the subset of basis functions whose degrees of freedom correspond to the inner edges.
Similarly, let BF := {ψi} and BF0

be the face-midpoint bases for F and F0, respectively,
the latter containing all basis functions associated to inner faces. A basis for Xh is given by
the family {Et,1, Et,2, Et,3}t∈M (3)h

indexed by the cells, where Et,i = (δ1,i ,δ2,i ,δ3,i) ∈ R3 are the

canonical basis vectors. Again, for simplicity we renumerate these vectors and setBR := {E j}
for j = 1, . . . , 3nT , and R := R3nT . We define the following matrices:

Lcurl(N0),R :=
�

〈curl(η0,i), E j〉L2

�

i=1,...,niE
j=1,...,3nT

L∇F ,R :=
�

〈∇ψi , E j〉L2

�

i=1,...,nF−1
j=1,...,3nT

Then for an element X =
∑

i X i Ei in the linear span of BR it is Lcurl(N0),R · X = 0 and
L∇F ,R · X = 0 if and only if X is L2-orthogonal to all curl fields of inner Nédélec elements
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and all cogradient fields of Crouzeix-Raviart elements, respectively. Stacking these matrices
into a single matrix

LH ∗h,D
:=

�

Lcurl(N0),R
L∇F ,R

�

(5.3)

of dimension (niE + nF − 1)× 3nT , it is

H ∗
h,D = ker(LH ∗h,D

)

which needs to be solved for. Only nF−1 basis functions ofF are needed, since the constants
are in the kernel of the gradient. Furthermore, the rows in the matrix Lcurl(N0),R are linearly
dependent, since curl has a large kernel of dimension niV +h1

r = niV +h2, which follows from
Section 3.1. However, since the computation of a coimage basis for curl would itself require
the computation of a harmonic basis representing h1

r , we keep redundant rows, as this does
not have an apparent effect on the numerical solution.

Again, the same strategy can be applied to obtain a basis forH ∗
h,N , using the stacked matrix

LH ∗h,N
:=

�

Lcurl(N ),R
L∇F0,R

�

,

which is now of dimension (nE + niF )× 3nT , and solve for its kernel.
Both these methods provide us with a basis for H ∗

h,D and H ∗
h,N , respectively, expressed in

the basis {E j} of Xh. But because of Lemma 3.3.9 and Corollary 3.3.12, Dirichlet fields are
exact and Neumann fields are coexact. Thus in order to compute Neumann fields, we can
actually span the kernel of LH ∗h,N

by elements in ∇F , leading to the matrices

Lcurl(Nb),∇F :=
�

〈curl(ηi),∇ψ j〉L2

�

i=1,...,nbE
j=1,...,nF

L∇F0,∇F :=
�

〈∇ψ0,i ,∇ψ j〉L2

�

i=1,...,niF
j=1,...,nF

LH ∗h,N
:=





Lcurl(Nb),∇F
L∇F0,∇F
(1,0, . . . , 0)





As in the computation for Hh,D,ex in the surface case, it is sufficient to ensure orthogonality
of the gradient to elements curl(Nb) whose degrees of freedom are associated to boundary
edges only. The additional row (1, 0, . . . , 0) excludes the kernel of ∇ on F .

Given that nF is usually significantly smaller than 3nT —see e.g. [Gum00, Sec. 9] which
gives a ratio estimate of nV : nE : nF : nT = 1 : 6.5 : 11 : 5.5 for tetrahedral meshes with small
Euler characteristic and boundary, or the data for our test meshes in Table 5.3—this reduces
the system size roughly to two thirds of its original size. Moreover, a solution does not only
provide a vector field, but also its copotential function, up to a constant.

However, in contrast to the two-dimensional case, this strategy does not work out for the
space H ∗

h,D =H
∗

h,D,ex, because of the non-trivial kernel of curl which cannot be ruled out as
easily as for the ansatz space ∇F . The best one can do with this approach is to first solve
for the kernel of (5.3) and then compute an L2-projection onto curl(N ) in order to obtain a
potential field for each basis element ofH ∗

h,D.
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Model nV nE nF nT nV : nE : nF : nT

SUS 1813 11792 10312 9332 1.00 : 6.50 : 10.65 : 5.15
ST 1255 6466 9398 4187 1.00 : 5.15 : 7.49 : 3.34

SwC 1888 12246 19993 9633 1.00 : 6.49 : 10.59 : 5.10
DTwC 6575 36701 56030 25904 1.00 : 5.58 : 8.52 : 3.94
G3C2 8902 53482 83304 38724 1.00 : 6.01 : 9.36 : 4.35

Table 5.3: Mesh data for three-dimensional solid meshes used in the experiments.

EXPERIMENTAL RESULTS. In the following experiments we have computed streamlines
instead of plotting the vector glyphs directly in order to improve the visual perception of the
three-dimensional fields in the solid. The colouring encodes the velocity of the flow, i.e. the
length of the vectors at each point—orange indicates a higher velocity relative to blue regions.

Figure 5.9 shows a basis for the spaces H ∗
h,N and H ∗

h,D on a solid double-torus geometry
with a cavity around the origin (“DTwC”). The high velocity around the cavity stems from the
fact that this boundary component has a much smaller area than the outer boundary of the
geometry and that the total integrated in- and outflow of a divergence-free field has to sum
up to zero. The Dirichlet fields correspond to the two handles of the geometry.

Figure 5.9: Cohomology bases on the double-torus with a cavity. First row: model and dis-
crete Neumann basis. Second row: discrete Dirichlet basis.

As a second example, we compute the Dirichlet and Neumann basis on a geometry with
h1 = 3 and h2 = 2, see Figure 5.10 which we refer to as “G3C2”. Again, the two cavities, which
are generators for the second cohomology space, are nicely separated by the two Neumann
basis fields, but for a higher cohomological dimension this is not necessarily the case as the
computed Dirichlet basis shows.
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Figure 5.10: Cohomology bases on the model “G3C2” with three handles and two cavities
and therefore h1 = 3 and h2 = 2. First column: model and discrete Neumann
basis. Second column: discrete Dirichlet basis.
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5.4 HODGE DECOMPOSITIONS ON SIMPLICIAL SOLIDS

We compute the complete Hodge decomposition on simplicial solids and evaluate our algorithm
by computing decompositions for interpolants of stereotypical fields which are contained in exactly
one subspace of the smooth decomposition.

Finally, we discuss computational decompositions of PCVFs on simplicial solids. With re-
spect to Theorem 3.3.13 we shall only care for the complete decomposition

Xh = curl(N0)⊕∇F0 ⊕ curl(N )∩∇F ⊕H ?
h,N ⊕H

?
h,D. (5.4)

Following the iterated L2-projection algorithm in Section 5.2, we compute the decomposition
as described in Listing 5.2. Note that the projection of XHh∩∇F onto curl(N ) is still an element
in Hh ∩ ∇F , since the sum curl(N0) ⊕ H ∗

h,D ⊂ curl(N ) is orthogonal to Hh ∩ ∇F . The
projection is therefore indeed an element in the harmonic centre curl(N )∩∇F .

Listing 5.2: Algorithm for the computation of the decomposition (5.4)
Input: PCVF X ∈ Xh
Xcurl(N0) = project(X , curl(N0))
X1 = X - Xcurl(N0)
X∇F0

= project(X1, ∇F0)
X2 = X1 - X∇F0

XHh∩∇F = project(X2, ∇F )
XH ∗

h,D
= X2 - XHh∩∇F

Xcurl(N )∩∇F = project(XHh∩∇F , curl(N ))
XH ∗

h,N
= XHh∩∇F - Xcurl(N )∩∇F

return Xcurl(N0), X∇F0
, Xcurl(N )∩∇F , XH ∗

h,N
, XH ∗

h,D

EXPERIMENTAL RESULTS. As a first example, we consider the following stereotypical vec-
tor fields and compare them with the components of their discrete decompositions:

Xex∗0
:= (y,−x , 0) = curl(−zx ,−z y,−z2)

Xco∗0
:= (x , y, z) =

1
2
∇(x2 + y2 + z2 − 1)

XC := −
1
2
· (1,1, 1)

XN∗ =
1

(x2 + y2 + z2)3/2
(x , y, z)

XD∗ =
1

x2 + y2
(y,−x , 0).

(5.5)

Each of these fields represents one subspace of the smooth five-term decomposition (2.21),
provided they are defined on the correct domain. For the first three fields this will be a solid
unit sphere (“SUS”) centred at the origin. The last two fields become singular at the origin,
but they are harmonic at all non-zero points. XN∗ is a radial field and therefore normal to
the boundary of a solid sphere with a concentric cavity (“SwC”), whereas XD∗ is tangential to
the boundary of a solid torus (“ST”) centred at the origin. Figure 5.11 illustrates these three
types of domains.
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Figure 5.11: A solid unit sphere, a solid sphere with a cavity centred at the origin and a solid
torus are the prototypes of domains for representative fields in the five-term
decomposition on simplicial solids.

The field Xex∗0
is the curl field of a vector field which is normal to the boundary of the solid

unit sphere, which can be seen as follows: at each point on the boundary, the unit normal is
given by the direction vector (x , y, z). Since it is

(zx , z y, z2)× (x , y, z) = 0,

(zx , z y, z2) has no tangential component on the boundary. We therefore expect Xex∗0
to be

reflected in the space curl(N0).
The field Xco∗0

is the gradient of a function which vanishes on the boundary of the solid unit
sphere, so we expect this field to be represented in ∇F0.

Note that since we decompose vector proxies for 2-forms, the curl field is in fact the ex-
act component with its corresponding 2-form being in the image of the exterior derivative,
whereas the gradient field is coexact. Following the same convention as for Dirichlet and
Neumann fields in the three-dimensional case, the asterisk in the subscript should remind the
reader of this fact.

The constant field XC is both the gradient of a potential and the curl of a rotation around a
centre axis through the sphere passing through the origin and the point (0.5, 0.5,0.5). Since
it is harmonic, it is a candidate for the harmonic centre space curl(N )∩∇F .

The last two vector fields XN∗ and XD∗ are both divergence- and curl-free, i.e. harmonic. XD∗

is tangential to the boundary of a solid torus, whereas XN∗ is normal to any sphere of arbitrary
radius, centred at the origin. So we expect XD∗ to be reflected by a field in XH ∗h,D

∈ H ∗
h,D on

a solid torus, whereas XN∗ should be reflected by an element XH ∗h,N
∈ H ∗

h,N on a sphere
with a concentric cavity in the interior, cutting out a neighbourhood of the origin, which is a
singularity for the vector field.
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Figure 5.12: Discrete interpolants of stereotypical vector fields for the five-term decomposi-
tion from (5.5) and the superposition field (5.6). First row: Interpolants of the
fields Xex∗0

, Xco∗0
and XC on a solid sphere. Second row: The fields XN∗ , XD∗ and

the superposition Xex∗0+co∗0+C on a sphere with a cavity, a solid torus and a solid
sphere, respectively. For the five stereotypes, their reproductions in the respec-
tive subspaces of the decomposition are visually identical with the input fields.
The decomposed parts of the superposition agree visually with the fields in the
first row. See Table 5.4 for a quantitative evaluation.

In addition, we consider the superposition

Xex∗0+co∗0+C := Xex∗0
+ Xco∗0

+ XC (5.6)

and compute its discrete decomposition. Ideally, the three components are recovered in the
corresponding discrete spaces. The discrete interpolants of these vector fields on the respec-
tive geometries are shown in Figure 5.12.

Table 5.4 lists the L2-norms of each vector field and each of its components in the de-
composition. As expected, the dominant components in each decomposition are reflected in
the correct subspaces. Of course, the components in the other subspaces, albeit magnitudes
smaller, usually do not vanish due to discretization errors caused by the approximation of the
smooth mesh, the interpolation of the smooth field and the numerical solver.
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Xex∗0
Xco∗0

XC XN ∗ XD∗ Xex∗0+co∗0+C

Xh 1.27 1.55 1.75 6.14 3.17 2.66
curl(N ) 1.26 10−13 10−12 0.03 10−3 1.27
∇F0 0.03 1.55 10−13 1.00 0.17 1.55

curl(N )∩∇F 0.02 0.01 1.75 0.08 0.05 1.75
H ?

h,N 10−13 10−12 10−10 6.05 10−11 10−10

H ?
h,D 10−12 10−13 10−12 10−12 3.16 10−12

Table 5.4: L2-norms of the components of the decomposed vector fields from (5.5) and (5.6).

5.5 NUMERICAL ASPECTS

We elaborate on a few computational aspects for the above-mentioned algorithms. This includes
the numerical approach we have taken for the null space computation of a matrix as well as the
numerical representation of the smooth fields in the decomposition experiments.

INTRINSIC REPRESENTATION OF PCVFS. Given a simplicial surface mesh Mh, PCVFs can
be intrinsically represented by picking two directed edges e f ,1, e f ,2 of each triangle f , and
writing X f as a linear combination

∑

i a f ,ie f ,i . Assuming that no triangle is degenerated,
these edges form a basis for the tangent plane to f when interpreted as vectors in R3. Al-
ternatively, these vector fields can be defined in Euclidean coordinates of the ambient space,
where each vector X f is specified as a vector in Euclidean coordinates of R3, and we have
used this formulation in our computations. It has the advantage that their definition is intu-
itive and computations can often be easily performed as operations on R3 without any need
of coordinate transformations. On the other hand, the property of being tangential to Mh
usually needs to be enforced explicitly and added as a linear constraint as was done in (5.1).

To compute the surface gradient ∇ϕ of a function ϕ ∈ L or the cogradient J∇ψ for
ψ ∈ F , there are again two options: by representing these vector fields as intrinsic quantities
expressed in terms of the weighted and rotated edges of Mh, see (3.3), or via pullback to a
reference element as was done e.g. in [RHCM13].

INTERPOLATION AND PROJECTION. In the computational decompositions in Section 5.2
and Section 5.4, the smooth fields that have been analytically defined in the coordinates of
the ambient space were represented by discrete fields approximating the smooth fields on a
mesh approximation of a smooth shape, say a smooth annulus or a smooth sphere. To perform
this approximation, there are two natural choices: the first option is the computation of an
L2-best approximation of the restriction of a smooth field X to the mesh, which is a linear
system of the type

Find Xh ∈ Xh such that 〈Xh, Yh〉L2 = 〈X |Mh
, Yh〉L2 for all Yh ∈ Xh,

involving a quadrature to approximate the integral on the right hand side.
The second option is the interpolation of the smooth field in the function space Xh. For

PCVFs, this is achieved by point evaluation inside a cell t, say at the barycentre bt , leading
to a discrete version Xh whose representing vector over t is given by X (bt). In the above
experiments we have used this approach for simplicity. This choice does not destroy the
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convergence and approximation results from Chapter 4, since this interpolation is of the same
linear approximation order as a perfect L2-best approximation of X , see the proof of [War06,
Lemma 3.4.3].

SOLVING FOR THE NULL SPACE. The matrices LH (∗)h,D
and LH (∗)h,N

constructed in Sections 5.1

and 5.3 are fairly large, almost-square, sparse matrices, whose kernel dimension equals the
dimension of some cohomology space and is therefore usually very small in comparison to
the matrix size. To compute a null space basis for such a matrix, we have employed two
different approaches—a sparse, rank-revealing QR-decomposition as a direct solver and an
iterative eigensolver for a partial eigenspectrum on a transformed system—, both leading to
comparable results.

On the direct side, methods based on rank-revealing QR-decompositions (RRQR) and the
singular value decomposition (SVD) are common strategies for the numerical computation of
the rank and null space for a given matrix L, see e.g. [GVL13, FD13] or the null and rank
methods provided by MATLAB [TM16]. The SVD decomposes an (m× n)-matrix L as

L = U t · diag(ς1, . . . ,ςq) · V, (5.7)

where U is an orthogonal (m×m)-matrix, V is an orthogonal (n× n)-matrix and the matrix
diag(ς1, . . . ,ςq) is a rectangular diagonal (m × n)-matrix with the singular values ςi on its
diagonal, and q =min(m, n). Assuming that the singular values are ordered as

ς1 ≥ ς2 ≥ · · · ≥ ςk > ςk+1 = · · ·= ςq = 0

for some 1≤ k ≤ q, an orthonormal basis for the kernel of L is then given by the last (n− k)
columns of the transpose V t .

A rank-revealing QR-decomposition decomposes L as

L · P =Q · R

with an orthogonal (m×m)-matrix Q, an upper trapezoidal (m× n)-matrix R and a column
permutation matrix P, such that the first k columns of Q form a basis for range (L), where
k denotes the rank of L. Consequently, the last (m− k) columns of Q form an orthonormal
basis for the orthogonal complement of range (L) within Rm. Since ker(L) is the orthonormal
complement of range

�

L t
�

, we therefore compute the RRQR for the matrix L t to obtain an
orthonormal (n× n)-matrix Q, whose last (n− k) columns are a basis for the null space of L.

However, this approach has two drawbacks: for one thing, the resulting orthogonal matri-
ces are in general not sparse any more. This can be overcome by a sparse QR-decomposition
(SPQR) algorithm which tries to reduce the fill-in of Q and R. We have chosen the spqr im-
plementation provided by the SuiteSparse library [Dav11] which gives reliable results, even
for large models. However, although still as sparse as possible, the density of the Q-matrix
is considerably higher as in the iterated approach presented below, resulting in much higher
memory consumption and computation time. Here, an alternative approach could be the
algorithm suggested by Gotsman [GT08] based on a sparse LU-decomposition. See also Ta-
ble 5.5 for a comparison of the number of non-zero entries in the direct and iterative approach.

Second, the singular values are almost always never zero in numerical computations due
to round-off errors, so that L is usually never rank-deficient. This can be solved by providing
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Example nnz (L) nnz (L t L) nnz (Q) nnz (R) m× n
Hh,D/AwH 0.009 0.04 0.19 0.03 1608× 1610
Hh,N/AwH 0.009 0.04 0.2 0.03 1608× 1610
Hh,D/TwC 0.06 0.34 2.73 0.18 8997× 9000
Hh,N/TwC 0.06 0.35 2.73 0.19 8997× 9000
Hh,D/LH 0.21 1.20 17.25 0.83 29656× 29661
Hh,N/LH 0.21 1.20 17.13 0.84 29656× 29661
H ?

h,D/ST 0.10 0.57 11.65 1.14 12791× 12561
H ?

h,N/SwC 0.29 1.62 73.54 9.23 30784× 28899
H ?

h,D/G3C2 0.29 1.52 75.62 4.77 34456× 33594
H ?

h,N/G3C2 0.32 1.56 58.62 5.72 36588× 33594

Table 5.5: Number of non-zero (nnz) entries in millions for the system matrices and its SPQR-
factors in various examples. The horizontal line separates simplicial surfaces (top
part) from simplicial solids (bottom part).

a tolerance value ε and treating all columns with L2-norm smaller than ε as zero. In our
experiments we have chosen a value close to machine precision, say ε= 10−14. The work by
Foster and Davis [FD13] might provide a further solution to circumvent this problem.

In contrast to the use of a direct solver, the second approach is an ad hoc strategy motivated
by the fact that the kernel is usually very small in comparison to the matrix size. From the
SVD (5.7) it follows that the (n× n) square matrix

M := L t · L = V t · diag(ς1, . . . ,ςq, 0, . . . , 0
︸ ︷︷ ︸

n−q

)2 · V

has the same kernel as L. A basis for ker(L) is therefore given by the eigenvectors correspond-
ing to the zero-eigenvalues of the symmetric matrix M . These can be efficiently computed
with iterative solvers that provide an option for a partial computation of the eigenspectrum.
But again, there are errors due to round-off and the numerical rank of M might differ from its
pure rank. Here, there are two options: if we know the dimension d of the cohomology space
in question in advance, we can provide this number to the solver to solve for the eigenvectors
corresponding to the d smallest eigenvalues. On the contrary, if we do not know this number,
it still seems possible to deduce the correct value for d, for we always observed a clear gap
in the order of magnitude of the eigenvalues found when solving for the smallest ones in our
experiments. Hence, one can stop the iteration once this gap exceeds a certain threshold,
often of magnitude 105 or higher, as can be seen in Table 5.6. The resulting eigenvectors for
the d smallest eigenvalues then constitute a basis for ker(L).



5.5 NUMERICAL ASPECTS 101

Example µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10

Hh,D/AwH 20 19 6 6 5 5 5 5 5 5
Hh,N/AwH 20 19 6 5 5 5 5 4 4 4
Hh,D/TwC 19 18 18 6 6 6 6 6 6 6
Hh,N/TwC 19 18 18 7 6 6 6 6 6 5
Hh,D/LH 16 16 16 16 16 7 6 3 3 3
Hh,N/LH 16 16 16 16 15 10 4 3 3 3
H ?

h,D/ST 21 7 6 5 5 5 5 5 5 5
H ?

h,N/SwC 19 6 6 6 6 6 6 6 6 6
H ?

h,D/G3C2 18 18 18 10 7 7 7 7 6 6
H ?

h,N/G3C2 19 19 6 5 5 5 5 5 5 5

Table 5.6: Order of magnitude of the first ten eigenvalues µi for various experiments, encoded
by the exponent k for the order 10−k. Thus, the larger the numbers, the smaller the
magnitude of the eigenvalue. In each row, the number of bold entries correspond to
the correct number of expected solutions, given by the dimension of the respective
cohomology space. In each case there is a clear gap in the spectrum between the
smallest eigenvalues and the following eigenvalues.

Surprisingly, solutions to eigenvalues which are larger than the d smallest ones can still
exhibit a very structured behaviour, too, as shown in Figure 5.13. This is, however, unpre-
dictable behaviour and depends solely on the solver.

Figure 5.13: Eigenvectors for the next five smallest eigenvalues. These eigenvalues are of or-
ders 10−7 to 10−3, whereas the five correct solutions in Figure 5.4 correspond to
eigenvalues of order 10−16, so there is a clear gap of magnitude in the eigenspec-
trum, cf. Table 5.6. Whereas some of these eigenvectors are obviously nonsense
(first two images), others can give surprisingly well-structured vector fields, de-
pending on the solver.

In the experiments in the previous sections this approach outperforms the direct solver
in terms of computation time, but it does not come without drawbacks. For one thing, the
formation of the product L t · L squares the singular values. As a consequence this can have
an influence on the gap in the eigenspectrum, since very small, but non-zero singular values
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Figure 5.14: Fill patterns of the system matrices L, L t L and the QR-factors of L. Top row:
the matrices L1, L t

1 L1, L2 and L t
2 L2 with L1 := LHh,N

on the TwC-model, and
L2 := LHh,D

on the LH-model. Bottom row: The matrices Q1, R1, Q2 and R2

from the SPQR-decompositions L1P1 =Q1R1 and L2P2 =Q2R2.

can become indistinguishable from the true zero eigenvalues up to machine precision. In our
examples this did not cause any problems, but from a theoretical point of view this problem
cannot be neglected and there are surely example meshes on which the eigenspectrum of M
does not exhibit a visible gap in the order of magnitudes to tell apart the correct solutions
from the non-correct ones. In addition, the fill-in of M is usually much higher than the fill-in
of L, so the good sparsity property of L is partially lost. Still, it is much lower than the fill-in
of the Q matrix in the SPQR-decomposition, see Table 5.5 and Figure 5.14 for a visualization
of two fill patterns in our experiments.

Summarizing, whereas the SPQR-decomposition is from a theoretical point of view the
preferred approach, the solution based on an iterative solver provides in practice a reliable
and more efficient method with respect to both memory consumption and computation time.
Of course, for complex geometries one has to be very careful in the choice of an appropriate
solving strategy.

SOFTWARE AND DATA. The assembly of the system matrices as well as the projections and
interpolations on certain function spaces was carried out with the FEniCS library [ABH+15],
[LMW12], version 2016.1.0. It provides a domain specific language for the formulation of
variational problems and assembly of matrices, and implements a variety of commonly used
FEM families. For the iterative eigensolvers we use the ARPACK package as wrapped by the
Python library SciPy [JOP+ ], version 0.18.0, which implements an implicitly restarted Lanc-
zos method, and the eigensolver provided by the SLEPc library [HRV05], wrapped by FEniCS’
SLEPcEigensolver class, which implements a Krylov-Schur method by default [HRTV07].
Both solvers compute comparable solutions, but the SLEPc eigensolver was usually faster.
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For the sparse QR-decomposition we used the spqr algorithm [Dav11] from the SuiteSparse
library [D+ ], version 4.4.1. The visualization was done with the JavaView library [PKPR02],
version 4.60, and ParaView/VTK [Aya15, SML06], version 5.1.2.

The modified hand model in Figures 5.4 and 5.13 is based on the Laurent’s hand model
which is provided courtesy of INRIA by the AIM@SHAPE-VISIONAIR shape repository.
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ZUSAMMENFASSUNG

Die vorliegende Arbeit entwickelt eine diskrete Theorie von Hodge-artigen Zerlegungssätzen für den
Raum der stückweise konstanten Vektorfelder auf orientierten, simplizialen Flächen mit Rand und
simplizialen dreidimensionalen Gebieten in R3. Ein besonderer Schwerpunkt liegt dabei auf einer
konsistenten Diskretisierung sowohl bezüglich geometrischer als auch bezüglich topologischer Eigen-
schaften, die sich in Teilräumen konkreter Repräsentanten für Kohomologiegruppen manifestieren.

Dazu werden zunächst die differentialgeometrischen und topologischen Grundlagen der glatten
Theorie für n-dimensionale berandete Mannigfaltigkeiten zusammengefasst. Neben den klassischen
Hodge-Zerlegungssätzen wird insbesondere auf ein aktuelles Resultat von Shonkwiler eingegangen,
das harmonische Felder klassifiziert, welche es erlauben, nicht-triviale Kohomologie induziert durch
die Randkomponenten von der „inneren Kohomologie“ der Mannigfaltigkeit zu unterscheiden.

Basierend auf linearen Lagrange- und Crouzeix-Raviart-Ansatzräumen sowie kantenbasierten Né-
délec-Elementen wird dann zunächst die Diskretisierung für den Flächenfall entwickelt. Dabei fällt
den Definitionen der Räume der diskret-harmonischen Neumann- und Dirichlet-FelderHh,N undHh,D
besondere Bedeutung zu. Für allgemeine Flächen von Genus g > 0 mit m Randkomponenten er-
hält man diskrete Analoga der Hodge-Morrey-Friedrichs-Zerlegungen, die um die Differenzierung von
Shonkwiler erweitert werden. Speziell für g = 0 erhält man eine vollständige Fünf-Term-Zerlegung,
da solche Flächen keine innere Kohomologie besitzen – hier sind die RäumeHh,N undHh,D orthogo-
nal zueinander, was für g > 0 nicht der Fall ist. Vergleichbare Resultate werden für den Fall dreidi-
mensionaler, simplizialer, eingebetteter Gebiete in R3 erzielt. In beiden Fällen spielt das orthogonale
Komplement des Gradientenraumes der Crouzeix-Raviart-Elemente eine besondere Rolle, da dieser
Raum den Zusammenhang zu geschlossenen Whitney-Formen und damit zur simplizialen Kohomolo-
gie herstellt.

Ein tiefes Resultat im Glatten besagt, dass der Schnitt der Räume der Neumann- und Dirichlet-
Formen stets trivial ist. Die vergleichbare Aussage Hh,N ∩ Hh,D = {0} gilt im Diskreten jedoch im
Allgemeinen für Flächen mit g > 0 nicht. Vielmehr spielt hier auf erstaunliche Weise die Kombinatorik
des Gitters eine entscheidende Rolle, die topologisch reichhaltige Teilregionen der Geometrie mit der
Gitterkonnektivität zum Rest der Geometrie in Verbindung setzt. Dazu wird ein Kriterium an das Gitter
aufgestellt, dass die Gültigkeit der diskreten Aussage garantiert.

Nach der Entwicklung der konsistenten Diskretisierung wird nun die Konvergenz der diskreten Zer-
legungen bewiesen. Dafür wird zunächst ein fundamentales Resultat von Dodziuk zur Konvergenz von
Whitney-Formen auf einer glatten Referenz-Triangulierung auf die erweiterten Zerlegungen verallge-
meinert. Anschließend werden die verfeinerten Zerlegungen bezüglich einer Folge approximierender
Metriken { g̃i} untersucht. Setzt man Konvergenz der Metriken gegen die Metrik der glatten Referenz-
geometrie voraus, konvergieren auch die Zerlegungen, die orthogonal bezüglich der Metriken g̃i sind.
Schließlich erhält man die Konvergenz der Rückzüge der diskreten Zerlegungen gegen die glatten
Zerlegungen.

Die Arbeit schließt ab mit zwei zentralen Anwendungen der diskreten Hodge-Theorie in der mo-
dernen Geometrieverarbeitung: Zum einen werden Algorithmen zur Berechnung orthogonaler, har-
monischer Basen für die topologisch relevanten Teilräume vorgestellt. Zum anderen wird ein Ver-
fahren zur numerischen Berechnung von Zerlegungen für ein gegebenes stückweise konstantes Vek-
torfeld beschrieben und evaluiert. Dazu werden Stereotypen von repräsentativen glatten Feldern auf
simplizialen Geometrien interpoliert und die Komponenten der Zerlegung mit den Komponenten der
glatten Zerlegung verglichen.
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