
.

Transcriptome-wide Single-cell Analysis
of Human Macrophage Heterogeneity

Inaugural-Dissertation

to obtain the academic degree

Doctor rerum naturalium (Dr. rer. nat.)

submitted to the

Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin

by Cornelius Fischer, M. Sc.

April 2017



.



This dissertation was conducted at the Max Planck Institute for Molecular

Genetics Berlin in the workgroup Nutrigenomics and Gene Regulation and at the

Genomics platform of the Berlin Institute for Medical Systems Biology at the Max

Delbrück Center for Molecular Medicine under the supervision of Dr. Sascha Sauer

from April 2012 to April 2017.

First supervisor: Dr. Sascha Sauer

(Max Delbrück Center for Molecular Medicine, Berlin)

Second supervisor: Prof. Dr. Stephan Sigrist

(Freie Universität Berlin)

Date of disputation: 23.10.2017



.



.

TO MY GRANDFATHER, LOTHAR EISSMANN.

All truth passes through three stages.

First, it is ridiculed. Second, it is violently opposed.

Third, it is accepted as being self-evident.

– Arthur Schopenhauer



.



.Acknowledgments

I am grateful for the associations I have had over the years that have allowed

me to look at di↵erent omics fields from di↵erent angles at the bench and computa-

tionally. Foremost, I would like to thank Dr. Sascha Sauer for the constant support

and the opportunities I experienced in sophisticated environments. I would also

like to specially thank Prof. Dr. Stephan Sigrist for advising this thesis.

I am most fortunate to have had superior students and colleagues to supply fresh

ideas and help. I thank Sophia Bauch and Michael Böttcher for the outstanding
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software; Donald Buczek and Sven Püstow and MPI helpdesk for support with

IT; Mark Lynch from Fluidigm for training and Margit Stadler, Andreas Dahl

and team for hints on C1 issues; Ulrich Stelzl for the robot. Sebastiaan Meijsing

for discussion on GR. Finally, I want to thank the Max Planck Society and the

Helmholtz Association for the support.

I would also like to express my sincere gratitude to my many friends that make

life rich and whole, including my colleagues Alexander Kiefer, Thomas Corwin,

Johannes Helmuth and Annita Louloupi. Finally, I thank Barbara for her patience,

and my parents, grandparents, as well as my sister and my brother and Michael

for the support during my studies.



..



Contents

1 Introduction 1
1.1 Cellular diversity in the immune system . . . . . . . . . . . . . . . . . . 1
1.2 Macrophages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Innate macrophage activation . . . . . . . . . . . . . . . . . . . . 3
1.2.2 M1-M2 concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Macrophage diversity . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Criteria for a simple model system . . . . . . . . . . . . . . . . . . . . . 7
1.4 Single-cell mRNA sequencing . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Single-cell isolation . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Protocols for single-cell sequencing preparation . . . . . . . . . . 11

1.5 Challenges of single-cell data analysis . . . . . . . . . . . . . . . . . . . . 12
1.5.1 Limitation of traditional analysis strategies . . . . . . . . . . . . 13
1.5.2 Self-organizing map machine learning . . . . . . . . . . . . . . . 14

1.6 Aims of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Materials and methods 18
2.1 Lab methods and computational analysis . . . . . . . . . . . . . . . . . 18

2.1.1 Cell culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Macrophage di↵erentiation and treatment . . . . . . . . . . . . . 19
2.1.3 Cell cycle analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.4 Cell harvest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.4.1 Cell harvest for population analysis . . . . . . . . . . . 20
2.1.4.2 Cell harvest for single-cell analysis . . . . . . . . . . . . 21

2.1.5 FACS for sc-qPCR and sc-mRNA-seq . . . . . . . . . . . . . . . 21
2.1.6 Post-FACS cell preparation for Fluidigm C1 workflows . . . . . . 22
2.1.7 Single-cell mRNA-sequencing . . . . . . . . . . . . . . . . . . . . 22
2.1.8 Population mRNA-sequencing . . . . . . . . . . . . . . . . . . . . 26
2.1.9 qPCR expression analysis of population samples . . . . . . . . . 26

2.1.9.1 RNA isolation for population measurements . . . . . . 27
2.1.9.2 Reverse transcription for population measurements . . 28
2.1.9.3 Quantitative real-time PCR for population measurements 28
2.1.9.4 Primary data analysis of qPCR results . . . . . . . . . 29

i








2.1.9.5 qPCR Expression data analysis for population measure-
ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.10 qPCR expression analysis of single cells . . . . . . . . . . . . . . 30
2.1.10.1 FACS sorting for single cell analysis . . . . . . . . . . . 31
2.1.10.2 Reverse transcription . . . . . . . . . . . . . . . . . . . 31
2.1.10.3 Single-cell quantitative real-time PCR . . . . . . . . . . 32
2.1.10.4 Absolute quantification . . . . . . . . . . . . . . . . . . 33
2.1.10.5 High-throughput qPCR analysis for primary macrophages 33

2.1.11 Protein expression analysis . . . . . . . . . . . . . . . . . . . . . 35
2.1.12 Immunofluorescence staining . . . . . . . . . . . . . . . . . . . . 36
2.1.13 RNA fluorescence in situ hybridization . . . . . . . . . . . . . . . 37
2.1.14 Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.15 Live-cell imaging analysis . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Analysis of sequencing data . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.1 Primary analysis of population RNA sequencing data . . . . . . 40
2.2.2 Primary analysis of single-cell RNA sequencing data . . . . . . . 41
2.2.3 Assessment of technical noise . . . . . . . . . . . . . . . . . . . . 41
2.2.4 Normalization of single-cell sequencing data . . . . . . . . . . . . 41
2.2.5 Dimension reduction and cell distance visualization . . . . . . . . 41
2.2.6 Exploratory single-cell analysis . . . . . . . . . . . . . . . . . . . 42
2.2.7 Functional annotation of gene lists . . . . . . . . . . . . . . . . . 43
2.2.8 Responsiveness analysis . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.9 Stability analysis and intra-cluster correlation . . . . . . . . . . . 43
2.2.10 Entropy analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Results 45
3.1 Model system and mRNA population measurements in activated macrophages

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Single-cell response of selected markers . . . . . . . . . . . . . . . . . . . 47
3.3 Transcriptome-wide assessment of macrophage heterogeneity . . . . . . 51
3.4 Macrophages are present in three transcriptional states . . . . . . . . . 53
3.5 Gene expression of macrophage states suggest di↵erent biological functions 59
3.6 Macrophage states exhibit di↵erent levels of responsiveness . . . . . . . 68
3.7 Macrophage state characteristics upon environmental changes . . . . . . 71
3.8 Transcriptional networks unveil major regulatory hubs for di↵erent macrophage

states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.9 Independent experiments confirm mutually exclusive expression of pro-

inflammatory and anti-inflammatory genes . . . . . . . . . . . . . . . . . 81
3.10 Elevated stimuli doses segregate cells towards pro- and anti-inflammatory

signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.11 Knockdown and activation of state-specific factors shift macrophage ex-

pression signatures towards an M2-like status . . . . . . . . . . . . . . . 85

ii








3.12 Di↵erent macrophage morphologies correlate with state-specific gene
expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 Discussion 92
4.1 Macrophages feature three transcriptional states . . . . . . . . . . . . . 93
4.2 Increasing evidence supports the model of intrinsic M1/M2 dichotomy . 96
4.3 External cues shape macrophage state dynamics towards segregate popu-

lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Summary 102

6 Zusammenfassung 104

7 Supplementary data 106
7.1 Supplementary figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 Supplementary tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Bibliography 120

8 List of publications 137

iii








List of Figures

1 Workflow depicting the steps involved in performing single-cell mRNA-seq
using the Fluidigm C1 system and Illumina sequencing. . . . . . . . . . 10

2 Microscopic observations of THP-1 and primary macrophages and cell
cycle analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Gene expression changes upon innate macrophages activation. . . . . . . 48
4 LPS-responsive genes show partial and coordinated gene expression. . . 50
5 Single-cell sequencing workflow. . . . . . . . . . . . . . . . . . . . . . . . 52
6 Quality evaluation for single-cell sequencing data. . . . . . . . . . . . . 54
7 Cell distance estimation with non-dimension reduced single-cell data. . . 55
8 Macrophage segregate towards three transcriptional states. . . . . . . . 57
9 Cell-to-cell distance visualizations uncovers relations of defined macrophage

states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10 Cell states show distinct gene expression signatures. . . . . . . . . . . . 60
11 Characterization of state-specific pathway terms. . . . . . . . . . . . . . 61
12 Pathway annotation analysis suggests distinct functional properties for

macrophage states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
13 Di↵erential pathway analysis of pro-inflammatory macrophage states. . 66
14 Analysis of macrophage responsiveness towards LPS stimulation. . . . . 69
15 Stability, intra-cluster correlation and signaling entropy. . . . . . . . . . 73
16 Signaling entropy for selected pathways. . . . . . . . . . . . . . . . . . 76
17 Prediction of hub genes underlying gene regulatory modules. . . . . . . 79
18 Validation of mutual exclusive expression of pro- and anti-inflammatory

marker genes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
19 Mutually exclusive protein expression of pro- and anti-inflammatory genes. 83
20 Elevated LPS-doses induce increasing numbers of cells with pro- and

anti-inflammatory gene expression. . . . . . . . . . . . . . . . . . . . . . 85
21 Di↵erential expression analysis of MyD88 knockdown and GR activation

in activated macrophages . . . . . . . . . . . . . . . . . . . . . . . . . . 86
22 State-specific gene expression upon MyD88 knockdown or GR activation 88
23 Macrophage morphology as a proxy for state identity. . . . . . . . . . . 90
24 Macrophages show dynamic morphology transitions. . . . . . . . . . . . 91

iv








25 Model of macrophage states for resting and activated macrophages. . . . 95
26 Proposed models of macrophage state dynamics. . . . . . . . . . . . . . 100

27 Estimation of gene expression cut-o↵s to select genes with high biological
variability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

28 Microfluidic integrated fluidic circuit (IFC) micro-chamber screening. . . 107
29 IL1B/IL8 expression in resting THP-1 macrophages and clonal expanded

THP-1 macrophages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
30 ICA projection of common pathways. . . . . . . . . . . . . . . . . . . . . 109
31 ICA projection of distinct pathways. . . . . . . . . . . . . . . . . . . . . 110
32 Gene regulatory modules of activated macrophages. . . . . . . . . . . . 111
33 Gene regulatory modules of resting macrophages. . . . . . . . . . . . . 112
34 FISH double staining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

v








List of Tables

1 Di↵erential pathway analysis. . . . . . . . . . . . . . . . . . . . . . . . . 67

2 Cell discrimination - Fluidigm IFC screening . . . . . . . . . . . . . . . 114

3 Pathway analysis for up-regulated genes. . . . . . . . . . . . . . . . . . . 115

4 Pathway analysis for down-regulated genes. . . . . . . . . . . . . . . . . 116

5 Top 20 state-specific genes. . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Pathway analysis for state-specific gene expression. . . . . . . . . . . . . 118

7 Pathway analysis for state-specific gene expression. . . . . . . . . . . . . 119

iii

vi








.

1



Chapter 1

Introduction

Cells rely on evolutionary inherited structural components to respond to a large

variety of environmental changes. Imperfect specification and redundancies of

biological circuits allow for flexible short-term and long-term evolutionary adap-

tation to a variety of incoming signals. As a consequence, cellular response to

environmental changes is noisy in nature contributing to heterogeneity in gene

expression levels across individual cells of genetically homogeneous cell populations

(Shalek et al. 2013). Cellular heterogeneity is a phenomenon molecular biologists

were for a long time aware of. Understanding the mechanism and higher-level

function of single-cell heterogeneity may be the key to understand multi-cellular

systems. However, limitation of sensitivity and throughput impeded for a long

time the detection of heterogeneity of cells, at least for unbiased analysis of full

transcriptomes.

1.1 Cellular diversity in the immune system

Cellular diversity is an important aspect of the immune system. Immune cells

derive from the same progenitor cells - the hematopoietic stem cells in the bone

marrow. Hematopoietic stem cells can di↵erentiate to cells of more limited potential

and finally mature to common lymphoid progenitor cells and myeloid progenitor

cells. Lymphoid progenitor cells give rise to the lymphocytes including T cells and

B cells. Most of those cells contribute to the slow and specific immune response and
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CHAPTER 1. INTRODUCTION

constitute adaptive immunity. Myeloid progenitor cells develop to macrophages,

dendritic cells, granulocytes, and mast cells that constitute the rapid and non-

specific innate immune response (Janeway et al. 2001). Beside the broad spectrum

of di↵erent cell types of the immune system, there exists a significant heterogeneity

even within specific types of immune cells. Heterogeneity of cell types linked to the

adaptive immune response may be intuitive, for example by considering the need of

single-cell specific pathogen recognition patterns maintained by antibody diversity

(B and T cells). However, it is also apparent that rather unspecific macrophages

exist in numerous phenotypical states (Gautier et al. 2012). This makes sense from

an evolutionary perspective because the innate immune system is evolutionary

older compared to the adaptive immune response. About 95% of all animals do

not possess T or B cells (Dzik 2010). Macrophages serve as their primary defense

system in a rich environment of pathogens with constantly changing threats (Stoy

2001). Thus, macrophages appear to be heterogeneous to maintain survival under

changing environmental conditions and threats.

1.2 Macrophages

Macrophages are key-regulators and e↵ector cells of the immune system, for example

in the context of inflammation, and are part of various branches of the immune

system. Macrophages originate from circulating peripheral-blood mononuclear cells

(PBMCs, monocytes), which migrate into tissue in the steady state or in response

to inflammation (Mosser and Edwards 2008). Monocytes develop from common

myeloid precursor cells in the bone marrow that give also rise to several other cell

types, including neutrophils, eosinophils, basophils, dendritic cells and mast cells.

After monocyte maturation, monocytes are released from the bone marrow into

the bloodstream. Circulating monocytes then home to di↵erent tissues to replenish

long-lived tissue-specific macrophages (Mosser and Edwards 2008). Prototypically,

as part of the innate immune response, together with eosinophils, neutrophils

and natural killer cells, macrophages function as a first level of defense to sense,

ingest and eliminate invading microorganisms and other toxic macromolecules by

phagocytosis (van Furth et al. 1972). If innate immunity is insu�cient to cope
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CHAPTER 1. INTRODUCTION

with invading microorganisms, cells of the adaptive immunity (including T and

B cells), trigger macrophages in an antigen-specific way. Beside its functions in

phagocytosis, macrophages respond to diverse environmental signals and play a

crucial role in tissue repair and homeostasis, for example by phagocytic clearance of

dying cells (Henson and Hume 2006). Thus, macrophages feature a multiplicity of

crucial functions beside pathogen defense, including wound healing and resolution

of inflammation, coordinating cell migration, matrix remodeling and angiogenesis,

scavenging, elimination of pathogen and tumor cells, clearance of senescent cells,

control of tissue cell growth and modulation of the extracellular milieu (Vega

and Corbi 2006). As part of the mononuclear phagocyte system macrophages

are present in almost every part of the human body. Highly specialized tasks of

macrophages depend on external signals from their tissue environments (Davies

et al. 2013) and local microenvironments (Stout and Suttles 2004, Gordon and

Taylor 2005). Macrophages adapt and respond to these external environmental

signals by highly flexible and heterogeneous gene expression programs that thereby

orchestrate other cell types and the local macrophage population.

1.2.1 Innate macrophage activation

Innate macrophage activation is induced directly by microbial products via pattern

recognition receptors (PRRs), of which the family of Toll-like receptors (TLRs)

had been studied most extensively (Akira et al. 2006). TLRs detect distinct

evolutionarily conserved structures on pathogens, termed pathogen-associated

molecular patterns (PAMPs) (Mogensen 2009). Lipopolysaccharide (LPS), a

major determinant of responses to gram-negative microorganisms, is a prototypical

PAMP that serves as M1 macrophage signal recognized by TLR4 (Martinez

and Gordon 2014, Wang et al. 2014). Mainly two adaptor proteins, MyD88

and TRIF, mediate the signaling downstream of TLR4 upon LPS binding. The

LPS response involves coordinated regulation of hundreds of genes and triggers

strong gene expression changes towards including expression of pro-inflammatory

cytokines (i.e. TNF, IL-1b, IL-6 and IL-8) and chemokines (CCL2, CCL4, CCL5

and CXCL11, Hu and Ivashkiv 2009, Martinez and Gordon 2014). These gene

sets are coordinately regulated by dedicated transcription factors with temporal
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characteristics including primary response genes (0.5-2 hours after stimulation) and

secondary response genes. Transcription factors of the primary (early) response

are mainly activated in a protein synthesis-independent manner by TLR signaling

(Ramirez-Carrozzi et al. 2009). Primary response genes include nuclear factor of

kappa light polypeptide gene enhancer (NF-kB) activator protein 1 (AP-1) and

interferon-regulatory factor (IRF) proteins. Feed-forward loops lead to production

of TNFa and type I interferons that initiate the secondary response. Secondary

(late) response transcription factors are synthesized de novo after LPS stimulation

to regulate subsequent waves of gene expression over a prolonged period of time

with more complex gene expression patterns and changes of chromatin states

(Ramirez-Carrozzi et al. 2009, Medzhitov and Horng 2009).

1.2.2 M1-M2 concept

Many macrophage functions appear to be opposing in nature: pro-inflammatory

versus anti-inflammatory functions, immunogenic versus tolerogenic activities, and

tissue-destructive versus tissue-restorative activities (Stout and Suttles 2004). The

concept of classical (M1) versus alternative (M2) macrophage activation phenotypes

has become popular (Mills et al. 2000). This M1-M2 concept mimics the T helper

cell (Th) nomenclature as M1 and M2 macrophages promote Th1 and Th2 adaptive

immunity responses, respectively. Classical macrophage activation (M1) was

initially described as antigen-dependent but non-specific response of macrophages

upon secondary exposure to microbial products (Mackaness 1962, Martinez and

Gordon 2014). Resulting macrophage activity to inhibit infection was linked with

T helper 1 (Th1) secreted, activating cytokines such as interferon gamma (IFNg)

and tumor necrosis factor (TNF) as functional external cues for macrophage

activation (Nathan et al. 1983). Contrary, alternative macrophage activation

(M2) was linked with T helper 2 (Th2) secreted modulating cytokines such as

interleukin-4 (IL-4) and interleukin-13 (IL-13) (Stein et al. 1992, Gordon 2003).

Upon infection M2 macrophages contribute to resolution of inflammation through

high endocytic clearance capacities and trophic factor synthesis, accompanied by

reduced pro-inflammatory cytokine secretion (Martinez et al. 2008). Mills and

colleagues challenged the dominating view that T cells are required to activate
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macrophages towards M1 or M2 (Mills 2012). Accordingly, M1 and M2 macrophage

activities exist as a result of transitions from inflammation to healing without

T or B cell influence (Mills et al. 2000). Moreover, it was shown that M1 and

M2 macrophages would even stimulate T cells toward Th1- or Th2-like activities,

respectively. However, macrophage M1 and M2 activity can be elevated by T cell-

derived cytokines (Pulendran et al. 1999, Iwasaki and Medzhitov 2010). In general,

the M1-M2 concept demonstrated the importance of innate immunity and its link

to adaptive immunity in a counterbalanced system in which macrophages represent

a central element with potentially intrinsic M1-M2 dichotomy. As a consequence,

it appears reasonable to term macrophage activation, that is promoted directly by

microbial products as classical innate macrophage activation (classified as M1b).

In contrast to this, the traditional term classical macrophage activation (M1a) is

induced by IFNg (Martinez et al. 2008, Mukhopadhyay et al. 2006).

1.2.3 Macrophage diversity

De-regulation of macrophage heterogeneity is implicated in various disorders.

Specifically, many diseases exhibit inappropriate M1/M2 macrophage balances

that play a role in pathologies, including infectious diseases (El Kasmi et al. 2008),

atherosclerosis (Johnson and Newby 2009), cancer (Dvorak 1986, Komohara et al.

2014), allergy (Wills-Karp et al. 2010) and autoimmune disease (Maloy and Powrie

2011, Mills 2012).

In view of recent advances in macrophage research a rethinking of the traditional

M1-M2 concept may be required. The M1-M2 concept of macrophage heterogeneity

seems to represent a simplified conceptual framework describing a continuum

of diverse functional states, of which M1 and M2 states rather represent the

extremes of a broad spectrum of possible functional macrophage subsets (Italiani

and Boraschi 2014). Especially the classification of di↵erent subtypes of M2

macrophages has enormously expanded by applying arrays of specific immune

stimulations. Simplified, M2 macrophages can be further subdivided into M2a

(triggered by IL-4 or IL-13), M2b (immune complexes in combination with IL-1B or

LPS) and M2c (IL-10, TGFbeta or glucocorticoids) subtypes (Mosser and Edwards

2008). Moreover, numerous combinations of di↵erent immunoactive regulatory
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molecules assayed separately or in combination, all produce distinct and partly

overlapping macrophage subsets (Xue et al. 2014). Therefore, a macrophage

spectrum model was proposed that included a macrophage classification based on

three major functions of macrophages for maintaining homeostasis: host defense,

wound healing, and immune regulation (Mosser and Edwards 2008). Plasticity

and flexibility are key features of macrophages and of their activation states. It

remains controversial to what extent di↵erent macrophage states can develop

into stable subsets or can undergo phenotypical shifts in response to changing

microenvironments (Stout and Suttles 2004, Italiani and Boraschi 2014). It remains

speculative if the numerous macrophage subsets are phenotypically distinct to serve

various functions in di↵erent phases or locations involved in inflammatory reactions.

Contrary, macrophage subsets may rather represent intermediate flux states to

accomplish complex changes (Mills and Ley 2014). The current controversy is a

result of the unsolved mechanisms that might underlie macrophage transitions

in vivo (Au↵ray et al. 2007, Nahrendorf et al. 2007). For example, it is not fully

understood if identical macrophage cells can shift from one to another functional

state in response to microenvironmental signals (Debien et al. 2013, Italiani and

Boraschi 2014). Although some examples provide evidence that macrophages

can undergo dynamic transitions between di↵erent functional states from M1

to M2 (Italiani et al. 2014) or from M2 to M1 (Mylonas et al. 2009, Stout

et al. 2005), it is possible that a mixture of M1/M2 phenotypes (Mills 2012,

Mills et al. 2000) underlies these conditions or that newly recruited macrophages

are confounding those observations in vivo (Jenkins et al. 2011). Thus, it is

still controversial how to interpret apparent macrophage heterogeneity in the

context of time (progressive model of inflammation) and space (di↵erent tissues or

microenvironments). Moreover, there are discrepancies in observations between

human and mouse (Schroder et al. 2012), di↵erent mouse strains (Wells et al. 2003)

and between observations in vivo, ex vivo and in vitro (Murray et al. 2014).
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1.3 Criteria for a simple model system

Conflicting models exist to explain cause and consequences of macrophage hetero-

geneity. Methodologies of past research were restricted to investigate macrophage

heterogeneity with limitations. i) Our understanding of macrophage heterogeneity

in terms of di↵erent functional macrophage states mostly originated from average

population experiments in which the transcriptional state of individual cells is lost.

ii) The use of selected stimulations with high doses of di↵erent combinations of

purified immunoactive signaling molecules (i.e. IL4 to trigger M2 macrophages)

hardly reflects the situation in native macrophage microenvironments. iii) Once

analyzed at the single-cell level most investigations were biased towards a limited

number of marker genes, mostly derived from previous research. Therefore, a

promising strategy to shed light on the basis of macrophage heterogeneity is to

move away from complicated model systems with average readout. Modulation of

macrophage function may be e�ciently investigated at hight resolution with a sys-

tem that is as simple as possible, yet, meeting the following aspects: i) An analysis

technique with readouts at the single-cell level for many individual macrophages

with genome-wide resolution to identify novel gene modules in an unbiased way. ii)

A homogenous macrophage environment with a limited number of clearly defined

parameters for macrophage modulation with ideally one single stimulation that

leads to native, specific innate macrophage activation. iii) A human model system

assayed at a time-point where primary responses instead of secondary response

e↵ects can be observed.

1.4 Single-cell mRNA sequencing

In transcriptome analyses with average cell population readouts, it is not feasible

to distinguish changes in gene expression from changes in the cellular composition

of the population. A particular gene could be measured at a specific expression

level, but it is unclear if this expression level is representative for all or only a

few cells in the population. Moreover, co-expressed genes at the population level

may in fact be mutually exclusively expressed if observed at the level of single
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cells. To study single-cell heterogeneity and its biological consequences, researchers

have used low-throughput approaches - such as single-cell qPCR (St̊ahlberg and

Kubista 2014), fluorescent reporters (Han et al. 2014) and RNA fluorescence in

situ hybridization (FISH) techniques (Raj et al. 2008) - that allow quantification

of a limited number of genes in individual cells (Junker and van Oudenaarden

2014). Recent emerging high-throughput single-cell sequencing technologies have

enabled high-resolution measurements of genome-wide gene expression in single

cells (Tang et al. 2009, Treutlein et al. 2014, Shalek et al. 2014, Kolodziejczyk

et al. 2015b, Zeisel et al. 2015, Nagano et al. 2013, Klein et al. 2015), resulting in

a growing appreciation for the extent of individual expression variability (Dueck

et al. 2016). All studies found that transcriptomes of individual cells, even from

seemingly homogenous populations, were highly heterogeneous, opening up new

avenues to understand gene regulation. To sequence mRNA from a single cell, two

challenges need to be met: i) Isolation of individual cells and ii) Amplification

of minute amounts of mRNA from a cell for next generation sequencing library

construction.

1.4.1 Single-cell isolation

Capturing single cells quickly and accurately with high e�ciency is one of the

main challenges of single-cell sequencing (Kolodziejczyk et al. 2015a). Several

techniques exist to accomplish single-cell capturing: Fluorescence activated cell

sorting (FACS), laser capture microdissection (LCM), manual cell picking via

micromanipulators, and microfluidics techniques. FACS, and microfluidics-based

techniques allow for random capturing of single cells from cell suspensions, whereas

LCM and micromanipulator-based techniques allow targeted retrieval of individual

cells directly from the tissue. Although time consuming and low throughput, both

techniques are suited to capture single cells from samples with few cells of interest

(i.e. Yan et al. 2013). In most cases, microfluidics workflows include both cell

capturing to individual reaction spaces and subsequent processing of material for

library preparation for next generation sequencing. FACS-based cell capturing to

individual wells of microtiter plates is popular and flexible due to considerable

throughput and speed (Gross et al. 2015). Enrichment of particular cells of interest
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is possible using fluorescent tagging. A major drawback of using microtiter plates

is that, unlike microfluidic methods, reactions often cannot be downscaled to

nanolitre volumes using traditional liquid handling robotics (i.e. Beckman Coulter

BioMek) or manual liquid handling (Kolodziejczyk et al. 2015a). However, acoustic

dispensing liquid handlers (i.e. Labcyte Echo 525) are becoming available leading

to significant cost reduction by down-scaling to 500 nl reaction volumes without

sacrificing data quality (Sackmann et al. 2016, Agrawal et al. 2016). Moreover,

commercial assays are being launched that enable high throughput and low-volume

microtiter plates-based single-cell library preparation (BD Precise Assays).

Recent developments in microfluidic technology have enabled new methods for

capturing and processing of single cells with high throughput and low reaction

volumes (Kimmerling et al. 2016). Mature techniques are for example integrated

fluidics circuits (Fluidigm C1 method Pollen et al. 2014), microdroplet-based

methods (inDrop (Klein et al. 2015), Drop-seq (Macosko et al. 2015) and Chromium

(Zheng et al. 2017)). Moreover, random seeding methods have been developed

(CytoSeq, Fan et al. 2015)

Recent, microdroplet-based methods for scRNA-seq are scalable to many

thousands of cells. Fluid flows are precisely controlled to generate nanoliter

aqueous reaction droplets embedded in oil, which can then be channeled, fused

and manipulated. In these approaches, single cells are individually encapsulated in

droplets, together with a bead containing millions of copies of a barcoded primer

(a di↵erent barcode sequence per droplet) and additional reagents. After cell lysis,

the barcoded primers capture transcripts released within that droplet and are then

used for reverse transcription and sequencing library preparation. Further library

preparation and high-throughput sequencing are carried out on pooled samples,

and the cell-of-origin of transcripts is inferred from the barcode sequence (Burgess

2015).

In this thesis the first commercial microfluidics single-cell system was mainly

used – the Fluidigm C1 Single-Cell Auto Prep System. For Fluidigm C1 methods

cells are captured using integrated fluidic circuits (IFCs), which enable analysis

of up to 96 or 800 cells per IFC. Cell capturing is achieved by input of >800

cells into one inlet well of the IFC. Cells are being separated into individual
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Figure 1: Workflow depicting the steps involved in performing single-cell
mRNA-seq using the Fluidigm C1 system and Illumina sequencing. 1: Cells
of interest are enriched using fluorescence-activated cell sorting (FACS). 2: Single-
cell suspension of known concentration is transferred to one “cell inlet” of a Fluidigm
microfluidic integrated fluidic circuit (IFC) plate. Cells are captured in IFC micro-
chambers using the Fluidigm C1 instrument. 3: Micro-chambers are documented
using microscopy. 4: Lysis, reverse transcription (RT) and cDNA amplification is
performed using the Fluidigm instrument. 5: Harvested material is subjected to Illumina
NexteraXT library preparation. 6: Pooled single-cell libraries are sequenced using
Illumina sequencing. 7: Derived sequencing data is processed and analyzed. Shown
images were obtained from the websites of BD Biosciences, Fluidigm, Leica and Illumina.

micro-chambers that, by design, promote homing of individual cells. Cell capture

is followed by microscopic screening, on-chip cell wash, lysis, reverse transcription

and preamplification in nanoliter volumes. Library preparation for sequencing

is carried out using individual samples for 96 cell IFCs and 20 pools (each with

indexed 40 cells) for 800 cell IFCs. The cell-of-origin of transcripts is inferred from

barcode sequences (Figure 1).

One limitation of the Fluidigm C1 method is that it only works for cells

relatively homogeneous in size, since the capture sites are tuned to three size

ranges (5–10, 10–17, and 17–25 microns in diameter). A second limitation is that

the capture rate can be low for sticky, small or non-spherical cells, which can result

in less cells being captured and sequenced (Kolodziejczyk et al. 2015a). However,

overall single-cell capture rates are higher compared to droplet-based microfluidics

techniques. Gained data quality, measured by number of detected genes per cell

and uniform gene body coverage outperforms other microfluidics techniques to

date. Additionally, the workflow is well established with optimized chemistry, low
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hands-on-time and high protocol flexibility to sequence i.e. DNA or to apply other

custom protocols.

1.4.2 Protocols for single-cell sequencing preparation

Many protocols have been developed to generate mRNA sequencing libraries from

single cells (Tang protocol (Tang et al. 2009), STRT-Seq (Islam et al. 2011, Islam

et al. 2012), SMART-Seq (Ramsköld et al. 2012), CEL-seq (Hashimshony et al.

2012), Quartz-Seq (Sasagawa et al. 2013), DP-Seq (Bhargava et al. 2013), MARS-

Seq (Jaitin et al. 2014), CytoSeq (Fan et al. 2015), SC3-Seq (Nakamura et al. 2015),

G&T-Seq (Macaulay et al. 2015)). Each protocol may be divided into the following

steps: Cell lysis, reverse transcription, cDNA amplification, and sequencing library

preparation. To avoid partial loss of material liquid manipulation is minimized

and one-tube reactions are commonly used. Fast turn-around-times, cooling and

chemistry selection for minimum inhibition e↵ects (for subsequent steps) increase

sensitivity. Most published methods use poly(T) priming to perform reverse

transcription. Subsequent second-strand synthesis can be achieved by poly(A)

tailing (Tang et al. 2009, Sasagawa et al. 2013) or, as used in this work, by template-

switching mechanism at the 5’ end of RNA template (SMART-Seq, Ramsköld

et al. 2012). SMART-Seq protocols allow full-length transcript coverage, leading

to reduction of 3’ coverage biases originating from incomplete reverse transcription

(Kolodziejczyk et al. 2015a). After reverse transcription, minute amounts of cDNA

have to be amplified, which is achieved by either in vitro transcription (IVT,

Hashimshony et al. 2012) or PCR (i.e. SMART-Seq). As for the SMART-Seq

method applied with the Fluidigm C1 workflow, PCR-amplified cDNA constitutes

the output material. Amplified cDNA samples are multiplexed, further processed

for library prep and sequencing primers are added to increase throughput for next

generation sequencing. Most protocols were designed for Illumina sequencing.

Protocols for SOLiD sequencing (SC3-Seq, Nakamura et al. 2015) and PacBio

sequencing (G&T-Seq, Macaulay et al. 2015) were recently developed.
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1.5 Challenges of single-cell data analysis

Cells of the same type can show distinct transcriptomic signatures leading to

phenotypic variation (Grün and van Oudenaarden 2015, Snijder and Pelkmans

2011). The goal of single-cell sequencing experiments is to find relations of cell

types according to their similarity based on individual transcriptomes (Poulin et al.

2016).

Once, di↵erent sub-populations are found, their relationship needs to be de-

ciphered. For example, the final output of data analysis can consist of a list

of cell clusters, and a specific set of genes that can di↵erentiate between found

sub-populations. Alternatively or additionally, gene-centric analyses may be used.

Gene-to-gene correlation analysis aids to define gene-regulatory modules (regulons,

transcriptional circuits) that show synchronized expression of specific gene groups

(Wagner et al. 2016). Although the single-cell data sets harbor a high resolution

and a wealth of information, they are complex in nature and pose specific analyti-

cal and technical challenges (Wagner et al. 2016, Poirion et al. 2016). Single-cell

data has a low signal-to-noise ratio (owing to technical noise and biological noise)

(Brennecke et al. 2013), a high rate of dropout events (missing values, sparsity)

(Macaulay and Voet 2014) and a small sample size compared to a high number

of genes (Grün and van Oudenaarden 2015). Variation in gene expression values

determined by scRNA-seq is in principal composed of i) technical variation, ii)

intrinsic variation (transcriptional bursting, stochastic variation, “uncorrelated”

variation) and iii) putatively functional extrinsic biological variation (“correlated”

variation, single-cell variability).

Technical variation is introduced due to low amounts of starting material in

individual cells. Mammalian cells contain about 1–50 pg of RNA with mRNA

amounts of 0.01-2.5 pg mRNA per cell (Kawasaki 2004, Carter et al. 2005, Boon

et al. 2011). Major contributors to technical variation include RNA degradation,

absorption of molecules to liquid contacting materials, non-uniform PCR amplifi-

cation, and varying sequencing e�ciency (Bacher and Kendziorski 2016). These

factors influence the usually low percentage of mRNA molecules from a cell that

can be captured, amplified and finally sequenced (Liu and Trapnell 2016).

12



CHAPTER 1. INTRODUCTION

In addition, intrinsic biological variation may a↵ect the overall noise level of

single-cell gene expression data. Transcription is not a linear process but happens

in bursts over time. This transcriptional bursting is a conserved phenomenon

observed with many techniques ranging from microscopy (Raj et al. 2006) to other

highly sensitive single-cell techniques such as single-cell qPCR (Bengtsson et al.

2005). The promoter of a gene switches between an active and an inactive state,

which is intrinsically caused by the interplay between RNA polymerases on DNA

(Fujita et al. 2016).

Extrinsic biological variation, single-cell variability or single-cell heterogeneity

are the major target properties to be elucidated using single-cell transcriptome

analysis. In this work, these terms are used to describe the diversity within an

ensemble of macrophage cells, which has been previously considered as principally

homogenous. Note that single-cell variability is not meant to refer to diversity of

cell types that are clearly distinct (Dueck et al. 2016). Coordinated expression

signatures of genes, derived from variation in single-cell gene expression, constitute

a cell’s identity. However, there may be partial dependencies between the multiple

facets of a cell’s identity, such that variation in one biological dimension may be a

confounder for another (Wagner et al. 2016). For example, confounding factors

such as the cell cycle can obscure biologically relevant molecular signatures in

scRNA-seq data sets, i.e. single-cell variation inherent to the immune response

(Stegle et al. 2015).

1.5.1 Limitation of traditional analysis strategies

Primary analysis of single-cell RNA-seq data follows similar workflows as for tra-

ditional bulk RNA sequencing, including data preprocessing (adapter trimming,

paired-end data processing, nucleotide quality filtering), alignment, quality filter-

ing (low quality cell removal, outlier cell removal and filtering genes with high

biological variation) and normalization (confounding factor removal, size factor

normalization, and normalization to internal controls). However, the problem

of high data complexity, high dimensionality and high intrinsic variation levels

entails further analytical challenges. Many standard multivariate analysis methods

(i.e. hierarchical clustering or principal component analysis (PCA)) are limited in
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defining cellular states based on whole transcriptomes (Grün and van Oudenaarden

2015). These methods are for example not robust for dealing with missing data

and rare outliers. For PCA, high variability in expression levels among cells of the

same type can cause a potentially underlying structure to be undetected by this

otherwise useful approach (Bacher and Kendziorski 2016). Hierarchical clustering

may define groups of cells with similar expression patterns but fails to represent

the multivariate structure of the data (Wirth et al. 2011).

1.5.2 Self-organizing map machine learning

It becomes clear that studying multi-faceted biological processes at the single-cell

level crucially depends on novel computational techniques that e�ciently mine

single-cell data sets. As for the remarkable growth of data from information

technology (i.e. social media), unsupervised machine learning represents an ideal

approach for exploiting the structures hidden in complex single-cell data. Especially,

methods based on artificial neural network algorithms such as self-organizing

maps (SOMs, Kohonen 1982) combine e↵ective noise-tolerant data processing and

dimension reduction with strong visualization capabilities (Lö✏er-Wirth et al. 2015).

SOM analysis summarizes input data (i.e. a single-cell gene expression matrix) by

gene vector quantization (“training“) and simultaneously carries out topological

preserving gene vector projection (“mapping“). Optimization of neighborhood

kernels controls the extent to which the gene vector projection influences the vector

quantization (Zhang and Fang 2012). By mapping from a higher-dimensional input

space to a lower-dimensional map space, SOMs display similarity relationships

of genes in two dimensional maps in which spatial proximity reflects expression

pattern similarity (coordinately expressed gene sets) (Kim et al. 2015). Each node

on the map (SOM component) is expressed as a prototype gene expression vector

for the high-dimensional space. Thus, genes with the same or similar expression

patterns are mapped to the same or nearby SOM component in the consensus of

all cells. The density of genes mapped to this two-dimensional map follows the

data density in the high-dimensional space.

SOM reduces the dimension of the expression data from thousands of genes to a

few SOM components each component representing a cluster of co-expressed single
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genes. SOM analysis arranges and classifies genes with high information content

in the consensus of all cells. Those high-information-content-genes feature high

expression and high correlation in a su�ciently large number of cells. It is assumed

that genes with uncoordinated (random) expression values have low information

content. Thereby, SOM analysis accounts for technical noise in single-cell data.

Genes with high technical variation are separated from those genes with high

biological variation, without the need of conservative filtering strategies (Brennecke

et al. 2013). Importantly, SOM analysis improves the performance of downstream

multivariate methods like hierarchical clustering, by maintaining representativeness

and reducing noisiness (Wirth et al. 2011). Thus, it allows for robust cell state

definitions. SOM component clusters that comprise co-expressed genes aid in

defining cell state-specific gene signatures and co-expression modules. Therefore,

this dimension reduction method helps to link clusters with prior knowledge to

support functional interpretation.

1.6 Aims of the thesis

Immune cells such as macrophages show exceptional resilience and heterogeneity,

instrumental to their function in immunity and homeostasis (Mosser and Ed-

wards 2008). The objective of this work is to shed light on cellular strategies of

macrophages at the onset of response towards external stimuli that mimic invading

bacteria. As a model system, di↵erentiated THP-1 macrophages left unstimulated

is compared to macrophages stimulated with bacteria-derived lipopolysaccharide

(LPS). By investigating isogenic cells under homogenous conditions macrophage

heterogeneity in the absence of classical polarization strategies is explored using

single-cell mRNA sequencing. Our main focus is to ask how non-genetic (or phe-

notypic) heterogeneity among individual macrophages might interact to causally

generate higher-level function.

Firstly, we aim to unbiasedly characterize transcriptome signatures of individual

macrophages by assessing multivariate distance and similarity of reconstructed

cellular states. Instead of considering stimulation-induced changes only, we consider

the use of self-organizing map machine-learning to holistically characterize vectors
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of cellular identity and to guide functional annotation. Secondly, we analyze how

cells adapt stimulation by quantifying cellular response of activated macrophage

states. Distinct approaches are being implemented to mathematically describe

the e�ciency of intracellular signaling transduction and resulting transcriptional

response under “normal” and disordering conditions. Thirdly, we predict central

regulatory hubs that underly antagonistic gene-regulatory modules by integrative

analysis strategies. Mutually exclusive expression of competing gene-regulatory

factors is further confirmed in THP-1 and primary human macrophages using

independent single-cell techniques, including single-cell qPCR, RNA-fluorescence in

situ hybridization (RNA-FISH) and immunofluorescence. Fourthly, we aim to more

functionally address macrophage dynamics. For example, we ask how macrophage

state balance is shaped under elevated environmental triggers. Moreover, we aim

to characterize how targeted perturbations of antagonistic factors influence cellular

dynamics and shift macrophages towards di↵erent transcriptional and phenotypical

identities.

Collectively, this work aims to provide an initial comprehensive conceptual

framework for understanding intrinsic macrophage heterogeneity as a cellular

strategy towards variant environmental conditions. We anticipate this single-cell

data set of human macrophage activation to contribute to an enhanced appreciation

of general mechanisms of transcriptional control, as well as the development of

new mathematical models for signal integration and new therapeutic strategies for

human disease.
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Chapter 2

Materials and methods

2.1 Lab methods and computational analysis

2.1.1 Cell culture

Human THP-1 monocytic-like leukemia cells (ATCC, Cat. no. TIB-202, Auwerx

1991), THP1-XBlue cells (InvivoGen, Cat. no. thpx-sp) and THP1-XBlue-defMyD

cells (InvivoGen, Cat. no. thpx-dmyd) were cultured with RPMI 1640 medium

(Biochrom, Cat. no. FG1215) supplemented with 10% fetal bovine serum (FBS,

Biochrom, Cat. no. S0615). Medium was filtered using 0.22 µm vacuum filtering

system (Millipore, Stericup (Cat. no. SCVPU02RE) and Steritop (Cat. no.

SCGPS01RE)). Cells were seeded from supplied stocks and initially cultured in

T25 culture flasks (TPP, Cat. no. P90026). Following cultivation of cells was done

in T75 flasks (Biochrom, Cat. no. P90076). Cells were incubated at 37 �C in a

5% CO2 atmosphere. Subculturing was done three times per week by the addition

of fresh medium to gain final cell concentrations of 2⇥ 105 cells/ml. Cells were

washed by centrifugation at 300 g for 5 minutes at RT and subsequent replacement

of supernatant by fresh complete medium. Cell numbers were determined using

C-Chip disposable counting chambers (Biochrom, Cat. no. PDHC-N01).

Human primary macrophages were isolated from at least four individual bu↵y

coats donated by healthy volunteers (kindly provided by DRK- Berlin). Peripheral

blood monocytes (PBMC) were isolated from bu↵y coats with Ficoll Paque by
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density centrifugation for 40 minutes at 400g and subsequent washing steps with

PBS supplemented with 0.5% BSA and 2mM EDTA. Afterwards, monocytes were

isolated with MACS Monocyte Isolation Kit II with MACS LS columns (Miltenyi

Biotec). Purity (>95%) was assessed using FACS analysis. Primary monocytes

were cultured and di↵erentiated to macrophages in RPMI 1640 medium (Biochrom,

Cat. no. FG1215) supplemented with 10% human serum (Human Serum Type

AB, PAN-BIOTECH, P30-2501) for 7 days at 37 �C in a 5% CO2 atmosphere.

2.1.2 Macrophage di↵erentiation and treatment

THP-1 monocytes were di↵erentiated to macrophages-like cells with 10 nM phorbol-

12-myristate-13-acetate (PMA, Sigma, Cat. no. P8139) for 72 hours prior to LPS

stimulation (Maeß et al. 2014). After 48 hours of di↵erentiation cell medium was

changed with fresh complete medium including 10 nM PMA. As a standard setting

6-well plates (Corning, Cat. no. 3736) were used with 1⇥ 106 cells total in a

volume of 4 ml. Primary macrophages were seeded at the same cell concentration

in 6-well plates. For 12-well plates and microscopic slide preparation (Corning,

Cat. no. 3737) macrophages were seeded with 1 ml at a cell concentration of

2.5⇥ 105 cells/ml. Cells were treated with 100 ng/ml lipopolysaccharide (LPS,

Sigma-Aldrich, Cat. no. L5293) unless mentioned otherwise for 2 hours. One

µM dexamethason (kindly provided by Dr. Sebastiaan H. Meijsing) was used for

macrophage treatments as indicated.

2.1.3 Cell cycle analysis

Cell cycle analysis was carried out by applying propidium iodide (PI)/RNase Stain-

ing Solution (Cell Signalling, Cat. no. 4087). Di↵erentiated THP-1 macrophages

were washed twice with 4ml pre-warmed (37°C) 1 x phosphate bu↵ered saline (PBS,

Sigma-Aldrich, Cat. no. D8537-24X500ML). One ml pre-warmed (37°C) TrypLE™
Express (Gibco, Cat. no. 12604021) was added and samples were incubated for

8-12 minutes at 37°C in a 5% CO2 atmosphere. Non-di↵erentiated THP-1 mono-

cytes were washed twice with 4ml pre-warmed (37°C) 1 x PBS. Centrifugation was

carried out for 5 minutes at 180g on room temperature (25°C). Di↵erentiated and
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non-di↵erentiated THP-1 cells were resuspended in 10ml of complete RPMI 1640

medium (Biochrom, Cat. no. FG1215) supplemented with 10% fetal bovine serum

(FBS, Biochrom, Cat. no. S0615). Afterwards, samples were spun for 5 minutes

at 180g at room temperature (25°C), washed with 1 x PBS and spun again as

described. Finally, cell pellets were resuspended with 1ml 1⇥PBS. Fixation of cells

was carried out by drop-wise addition of 2333ul ice cooled ⇠100% ethanol while

carefully shaking the sample. Then, samples were incubated for 15 minutes on

ice or overnight at -20°C. Afterwards, cells were spun down at 200g for 5 minutes

at room temperature (25°C). Pellets were resuspended in 500ul propidium iodide

(PI)/RNase Staining Solution and incubated for 15 minutes at room temperature.

Finally, samples were analyzed with analytical flow cytometry analysis using the

BD FACSAria II.

2.1.4 Cell harvest

Supernatants from 6-well plate were discarded. Wells were washed twice with

⇠4ml 1 ⇥ phosphate bu↵ered saline (PBS, Sigma-Aldrich, Cat. no. D8537) that

was pre-warmed to 37 �C in a water bath prior to use. One ml pre-warmed TrypLE

Express (Gibco, Cat. no. 12604021) was added to each well. Incubation was for

8-12 minutes at 37 �C in a 5% CO2 atmosphere.

2.1.4.1 Cell harvest for population analysis

For population measurements, bottom of wells were flushed multiple times to

recover incompletely detached cells. Samples were transferred into ice-cooled

1.5ml or 15ml tubes. Subsequently, each well was flushed again with 0.5ml PBS

(2% FBS) and transferred into corresponding 1.5ml or 15ml tubes. Tubes were

spun for 5 minutes at 2000 g and 4 �C. Supernatants were discarded and pellets

were washed with ice-cold PBS. Samples were spun again for 5 minutes at 2000 g

and 4 �C. Supernatants were again discarded, pellets were washed once more with

1ml ice-cold PBS and transferred into 1.5ml tubes. After an additional spun

supernatants were discarded. To remove residual PBS a final centrifugation was

carried out for 3 minutes at 2000 g and 4 �C. Remaining liquid was removed and
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pellets were put on dry ice and finally stored at �80 �C.

2.1.4.2 Cell harvest for single-cell analysis

For single-cell measurements (including single-cell qPCR and single-cell mRNA-

seq) 4ml of ice-cooled medium with FBS was added to detached cells. Samples

were transferred into ice-cooled 15ml tubes. Tubes were centrifuged for 5 minutes

at 150 g and 4 �C. Supernatants were discarded and pellets were initially gently

resuspended with 1ml ice-cooled PBS including 2% BSA (Sigma-Aldrich, Cat. no

A7030). Addition of BSA to PBS was done because it prevents cell clumping.

Thirteen ml of ice-cooled PBS including 2% BSA was added to resuspended cells

gently. Samples were spun for 4-5 minutes at 150 g and 4 �C. Supernatants were

discarded and final resuspension was in 450 µl PBS including 2% BSA. Five µl of
7-amino-actinomycin D (7-AAD, BD Biosciences, Cat. no 559925) per 1⇥ 106 cells

were added to exclude dead cells during fluorescence activated cell sorting (FACS).

After 5 minutes incubation in the dark on ice, resuspended cells were filtered

through a 40 µm cell strainer (BD Biosciences, Cat. no. 352340). Finally, cells

were transferred to FACS tubes (VWR, Cat. no 734-0443) and subjected to FACS

sorting and analysis using BD FACS Aria II.

2.1.5 FACS for sc-qPCR and sc-mRNA-seq

For C1 single-cell mRNA sequencing workflows and C1 single-cell pre-amplification

workflows cells were subjected to FACS sorting into 1.5ml tubes prior to loading

into Fluidigm IFCs. Target tubes for FACS sorting were pre-coated with PBS

including 10% BSA to prevent cell damage if cells were hitting the tube wall.

Tubes were stored at 4 �C. Hundred ul 1 x PBS with 2% BSA was added to tubes

prior to spotting. For individual cell spotting to 96-well plates, cells were spotted

into 5 µl water (Ambion, Cat. no. AM9937) and processed as described in 2.1.4.2.

FACS cell selection (gating) was configured to ensure single-cell spotting specificity

by subsequent gating of a) side scatter area (SSC-A) versus forward scatter area

(FSC-A), b) forward scatter width (FSC-W) versus forward scatter area (FSC-A)

and c) side scatter width (SSC-W) versus side scatter area (SSC-A). For a) the main
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cell population was selected narrowly as guided by cell density visualizations. For

b) and c) FACS event outliers with high width estimates were excluded (potential

cell doublets). 7-AAD was detected using both a Cy5-5 filter (PerCP-Cy5-5,

695/40) and a mCherry filter (mCherry/mKate2, 615/20). Visualization of events

was done by plotting SSC-W versus signals derived from filters mentioned above.

Events were discriminated if they showed a higher fluorescence compared to the

main population (intact cells).

2.1.6 Post-FACS cell preparation for Fluidigm C1 work-

flows

Applying cell preparation and FACS analysis as described (see 2.1.4.2 and 2.1.5)

1.5 - 3.5⇥ 105 cells were captured per tube. Cell sorting took 10-15 minutes per

treatment group with a flow rate of 1 or up to 2. Target tubes were cooled

to 8 �C by the use of a FACS Aria II cooling tube holder. After spotting cells

were kept on ice whenever possible. After gentle resuspension, cells were counted

using C-Chip disposable counting chambers (Biochrom, Cat. no. PDHC-N01).

Cells were spun at 200 g for 5 minutes at 4 �C and supernatant was discarded.

Pellets were resuspended in PBS with 2% BSA to reach a final concentration of

400 cells/µl. Cells were counted again to ensure that the final cell concentration

was 300 - 400 cells/µl. Sixteen µl of cell mix was subsequently used for the Fluidigm

C1 single-cell workflows.

2.1.7 Single-cell mRNA-sequencing

The Fluidigm C1 single-cell Auto Prep System was used to generate single-cell

cDNA libraries for mRNA sequencing using C1 Single-Cell Auto Prep Arrays for

mRNA Seq (IFCs, Fluidigm, Cat. no. 100-5761 and 100-5760) in combination

with the C1 Single-Cell Auto Prep Reagent Kit for mRNA Seq (Fluidigm, Cat. no.

100-6201), the SMARTer Ultra Low Input RNA for Illumina Sequencing (Clontech,

Cat. no. 634828) and the Advantage 2 PCR Kit (Clontech Cat. no. 639206).

The workflow was done according to the Fluidigm protocol “Using C1 to Generate

Single-Cell cDNA Libraries for mRNA Sequencing”. The protocol in brief was as
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follows. Lysis mix was prepared using 1ul C1 DNA loading reagent (Fluidigm),

0.5 µl RNase inhibitor (Clontech), 7 µl 3’ SMART CDS primer IIA (Clontech)

and 11.5 µl Clontech dilution bu↵er. For preparation of the lysis mix for cells

treated with LPS 1 µl RNA spike mix dilution was added to the lysis mix instead

of C1 DNA loading reagent. The RNA spike mix dilution was prepared as follows:

ArrayControl RNA spikes (Thermo-Fisher
”
Cat. no. AM1780) were thawed, and

spikes #1, #4, and #7 were used. 1.5 µl spike #7 was added to 13.5 µl of RNA
storage solution (Thermo-Fisher, The RNA Storage Solution, Cat. no. AM7000),

1.5 µl spike #4 was added to 12 µl of RNA storage solution and 1.5 µl spike #1

was added to 148.5 µl of RNA storage solution. Spike #7 mix was resuspended

and spun briefly and 1.5 µl of the solution was added to the spike mix #4. Spike

mix #4 was also mixed and spun briefly and 1.5 µl of the solution was added to

the spike mix #1. Spike #1 mix was resuspended and spun briefly and 1 µl was
finally added to 99 µl loading reagent (Fluidigm). One µl of the generated RNA

spikes mix dilution was added to the lysis solution as described above.

For preparation of the reverse transcription (RT) reaction mix 1.2 µl loading
reagent (Fluidigm), 11.2 µl 5⇥first-strand bu↵er (Clontech), 1.4 µl dithiothreitol
(Clontech), 5.6 µl dNTP mix (dATP, dCTP, dGTP, and dTTP, each at 10 nM,

Clontech), 5.6 µl SMARTer IIA oligonucleotide (Clontech), 1.4 µl RNase inhibitor

(Clontech) and 5.6 µl SMARTScribe reverse transcriptase (Clontech) was combined,

mixed and briefly spun.

For preparation of the PCR mix 63.5 µl PCR-grade water (Clontech), 10 µl
10⇥Advantage 2 PCR bu↵er (Clontech), 4 µl 50X dNTP mix (Clontech), 4 µl IS
PCR primer (Clontech), 50⇥Advantage 2 polymerase mix (Clontech) and 4.5 µl
loading reagent (Fluidigm) were combined, mixed and briefly spun.

To prime the Fluidigm IFCs, 200 µl C1 harvest reagent (Fluidigm) was added

into accumulators A1 and A2 of the IFC. Twenty µl C1 harvest reagent was added

into inlets P1 and P2 (40 wells total). Twenty µl C1 preloading reagent was added

into inlet 2. Fifteen µl of C1 blocking reagent was added into the cell inlet (inlet

C1) and cell outlet (inlet C2). Twenty µl of cell wash bu↵er was added into inlets

5 and 6. Afterwards, the IFC was placed into the Fluidigm C1 system and the

Script “mRNAseq: Prime” was run. Runtime as ⇠12 minutes.
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For cell loading 60 µl of prepared cell mix (see 2.1.6) was added to 40 µl
suspension reagent (Fluidigm). The cell mix was gently resuspended by setting

a P200 pipette to 60 µl and slowly pipetting up and down 5-10 times. Blocking

solution was then removed from the primed IFC from cell inlet (inlet C1) and

outlet (inlet C2). Again, cell mix was gently mixed as described above. Six µl of
cell mix was finally added to the cell inlet (inlet C1) and 20 µl cell wash bu↵er

(Fluidigm) was added into inlet 1. The IFC was placed into the Fluidigm C1

system and the script “mRNAseq: Cell Load” was run. Execution of the complete

script took ⇠30 minutes.

After cell loading was completed, micro-chambers of the IFC were screened

manually within 20-30 minutes using Zeiss Observer Z1 with a phase contrast

20⇥Objective. All cell pictures were summarized in Figure 28 on page 107. It was

documented simultaneously if micro chambers were empty, had more then one cell,

contained damaged cells or contained one intact individual cell.

As soon as microscopic documentation was completed, the IFC was prepared

to run lysis, reverse transcription, and PCR. Therefor, 180 µl of C1 harvest reagent

was added into four harvest inlet reservoirs of the IFC. Nine ul of lysis mix and

9 µl reverse transcription mix were added into inlet 3 and inlet 4, respectively.

Twenty-four µl of PCR mix was added into inlet 7 and 8. Afterwards, the IFC was

placed into the Fluidigm C1 system and the Script “mRNAseq: RT & Amp” was

run over night (⇠8.5 hours). The script contained the following thermal cycling

protocols. Lysis was carried out for 3 minutes at 72 �C, 10 minutes at 4 �C and

1 minute at 20 �C. For reverse transcription 40 �C were applied for 90 minutes and

70 �C were applied for 10 minutes. The PCR started with heating for 1 minute at

95 �C followed by 5 cycles of 95 �C for 20 seconds, 58 �C for 4 minutes and 68 �C

for 6 minutes. Afterwards, 9 cycles were run with 95 �C for 20 seconds, 64 �C for

30 seconds and 68 �C for 6 minutes. Subsequently, 7 cycles were run with 95 �C

and 64 �C for 30 seconds each and 68 �C for 7 minutes. Finally, 72 �C were applied

for 10 minutes.

After lysis, reverse transcription and PCR the IFC was removed from the

C1 system. Three and a half µl from each of the 96 single-cell libraries (C1

harvest amplicons) were transferred from harvest outlets of the IFC into 10 µl of
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C1 DNA dilution reagent (Fluidigm) placed into a 96-well plate (diluted harvest

plate, Biozym, Cat. no. 621601) following pipetting instructions from Fluidigm.

Afterwards, the plate was sealed, mixed for 10 seconds and spun to collect harvest

products.

For library preparation for Illumina sequencing the Nextera XT DNA Sample

Preparation Kit (Illumina, Cat. no. FC-131-1096) and Illumina Index Kit (Illumina,

Cat. no. FC-131-1002, Illumina) were used. Two µl of harvest products were

transferred into a new 96-well plate containing 2 µl C1 harvest reagent per well

(diluted sample plate). After sealing and mixing for 20 seconds the plate was

spun for 1 minute at 1500 g. Each well of a new 96-well plate (library prep plate)

was filled with 3.75 µl tagmentation reaction mix that contained per well 2.5 µl
tagmentation DNA bu↵er (Illumina) and 1.25 µl amplification tagmentation mix

(Illumina). Finally, 1.25 µl of diluted samples from the diluted sample plate were

added to 3.75 µl of tagmentation reaction mix. Plates were mixed for 20 seconds

and spun at 4000 g for 5 minutes to collect contents and to remove bubbles. The

plate was then transferred into a thermal cycler. Samples were incubated with a

heated lid for 10 minutes at 55 �C followed by 10 �C for a maximum of 10 minutes.

Once the sample reached 10 �C, 1.25 µl NT bu↵er (Illumina) was added to the

tagmented samples of the library preparation plate for neutralization. Afterwards,

the plate was sealed, mixed for 20 seconds and spun at 4000 g for 5 minutes. To

amplify and index the DNA, 3.75 µl of Nextera PCR master mix (NPM, Illumina)

was added to each well of the library prep plate. Subsequently, index 1 (N7xx)

and index 2 (S5xx) primers (Illumina) were aligned to the rows and the columns

of the 96-well plate, respectively. Firstly, 1.25 µl of index 1 primers (N7xx) were

added into the corresponding well of each row of the library preparation plate.

Secondly, 1.25 µl of index 2 primers (S5xx) were added into the corresponding wells

of each column of the library preparation plate. Afterwards, the plate was sealed,

mixed for 20 seconds, spun at 4000 g for 2 minutes and placed into a thermal cycler

with lid heated during the incubation. The following thermal cycling protocol

was used: Initial heating for 3 minutes at 72 �C, followed by 30 seconds at 95 �C.

Twelve cycles of 95 �C for 10 seconds, 55 �C for 30 seconds and 72 �C for 60 seconds,

followed by incubation for 5 minutes at 72 �C, and final cooling to 10 �C. Amplified
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and indexed products were then subjected to pooling and purification. Therefor,

1 µl of each library (96 µl total) was mixed by pipetting with 87 µl of AMPure XP

beads (Beckman Coulter, Cat. no. A63880). The bead mix was incubated for

5 minutes at room temperature and placed on a magnetic stand for 2 minutes.

Afterwards, supernatant was carefully removed and 180 µl of freshly prepared 70%

ethanol was added. Incubation of ethanol on the magnetic stand was 30 seconds

before ethanol was removed. After repeated ethanol wash, beads were allowed

to air-dry at room temperature for 10 minutes. DNA was eluted with 96 µl of
C1 DNA dilution reagent (Fluidigm). The tube was then mixed for 3 seconds,

incubated at room temperature for 2 minutes and placed on a magnetic stand for

another 2 minutes. The entire volume of supernatant was transferred to a new

tube and AMPure cleanup was repeated, as described above except that elution

was carried out with 144 µl of C1 DNA dilution reagent. The material was then

tested with Agilent Bioanalyzer (Figure 5 D).

Libraries were quantified using Kappa Library Quant (Kapa Biosystems, Cat.

no. KK4854). Illumina 100 nt paired-end sequencing was done on a Illumina

HiSeq2000 by using TruSeq PE Cluster Kit v3 - cBot - HS (Illumina, Cat. no.

PE-401-3001), TruSeq SBS Kit v3 - HS (Illumina, Cat. no FC-401-3001) and

TruSeq Dual Index Sequencing Primer Box (Illumina, Cat. no. PE-121-1003).

2.1.8 Population mRNA-sequencing

RNA concentration measurement and quality control was carried out using Qubit

3.0 Fluorometer (Thermo Fisher Scientific) and Agilent 2100 Bioanalyzer (Agilent

Technologies) with RNA 6000 Nano Kit (Agilent Technologies). Sequencing

libraries were prepared using Illumina TruSeq RNA Library Prep Kit v2 (Illumina)

and paired-end sequencing 2x100bp was performed on HiSeq 2000 (Illumina).

2.1.9 qPCR expression analysis of population samples

Reverse transcription was performed using qScript cDNA SuperMix (VWR, Cat.

no. 733-1177) in standard thermal cycler (5 minutes 25°C, 30 minutes 42°C,
5minutes 85°C). HPLC-purified primers were obtained from Sigma Aldrich. Primer
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working solutions (2 µM) were freshly prepared. PerfeCTa SYBR Green SuperMix

(VWR, Cat. no. 733-1246) was used for all qPCR reactions. qPCR reactions

were prepared in 10µl volume in 384-well plates (Fisher Scientific GmbH, Cat.

no. PCR-384-LC480-W) and used LightCycler 480 II system (LC480, Roche) to

perform a qPCR. Following primers were used:

Gene name Ensemble gene ID Forward primer Reverse primer

CCL20 ENSG00000115009 CTGGCTGCTTTGATGTCAGTG AGTCAAAGTTGCTTGCTGCTTC

CCL3 ENSG00000277632 CAAGGGGGCCCTCAGAGTGTCCT TGTGACCTGACTTGGGGCTGGAG

CSF1 ENSG00000184371 TGCTGGAGAAGGTCAAGAATGT TCACCACATCTTGGCTGGAG

GAPDH ENSG00000111640 CTCCTCCTGTTCGACAGTCA CGACCAAATCCGTTGACTCC

HIF1A ENSG00000100644 GGACAGCCTCACCAAACAGA TCAGGAACTGTAGTTCTTTGACTC

IL1B ENSG00000125538 GGACAGGATATGGAGCAACAAG AACACGCAGGACAGGTACAG

IL8 ENSG00000169429 CTGATTTCTGCAGCTCTGTG GGGTGGAAAGGTTTGGAGTATG

IRAK3 ENSG00000090376 AGAGCTCTGCGCTGTTCTG ACTCAACACTGCTCCCAGG

JAK2 ENSG00000096968 GGGGTTTTCTGGTGCCTTTG CACTCCCAAAATTACCCTTGCC

MYD88 ENSG00000172936 AGCATTGAGGAGGATTGCCA GGCCACCTGTAAAGGCTTCT

NFKB1 ENSG00000109320 TGAGTCCTGCTCCTTCCA GCTTCGGTGTAGCCCATT

NR3C1 ENSG00000113580 CCGGGCCCAAATTGATATTCAC ACATCTCCCCTCTCCTGAGC

PPARG ENSG00000132170 TGGAAGACCACTCCCACTCC GCAGGCTCCACTTTGATTGC

RUNX2 ENSG00000124813 CGCCGAGCTCCGAAATGCCT AACTCTTGCCTCGTCCGCTCC

SOD2 ENSG00000112096 GGCACTCGTGGCTGTGGTGG CCTGCTGGTGCCGCACACT

TNF ENSG00000232810 CTCAGCTTGAGGGTTTGCTAC GGACAGGATATGGAGCAACAAG

2.1.9.1 RNA isolation for population measurements

For RNA isolation samples were processed as described (see 2.1.4.1) and subse-

quently processed using RNeasy Mini Kit (Qiagen, Cat. no. 74106). RNA from

each sample was derived following the manufacturers protocol “Purification of

total RNA from animal cells using spin technology”. DNase digest was done for

30 minutes on-column using RNase-free DNase set (Qiagen, Cat. no. 79254). RNA

was eluted from columns with 30 µl RNase-free water. Elution was done twice

to maximize RNA recovery. RNA was finally stored at �80 �C. Quality of RNA
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was tested using gel electrophorese. Therefore, 1% agarose gels were prepared

with agarose (Biozym, Cat. no 840000). For running gels 1⇥lithium borate bu↵er

(Faster Better Media LLC, Cat. no. LB20-1) was used according to (Brody et al.

2004). Sample preparation for electrophoresis was done with 1 µl RNA, 2 µl 5⇥LB

loading medium (Faster Better Media LLC, Cat. no. LB5N-8) and 9 µl RNase-free
water. Separation of RNA was done by applying 300V for 5 minutes. 1 kb plus

DNA ladder (Invitrogen, Cat. no 10787018) was used as reference marker. RNA

concentrations were determined with NanoDrop 2000 (Thermo Scientific). For

normalization of samples, isolated RNA samples were adjusted by the addition

of ice-cooled RNase free water to reach similar concentration. RNA samples sub-

jected to mRNA sequencing workflows were additionally measured using Agilent

Bioanalyzer following manufacturer instructions.

2.1.9.2 Reverse transcription for population measurements

For reverse transcription of RNA into cDNA for qPCR workflows a reaction mix

was generated that contained 2 µl qScript cDNA SuperMix (VWR, Cat. no. 733-

1177) and 8 µl of RNA sample. Reaction was performed in PCR strips (Biozym,

Cat. no 710990) in thermal cycler with heated lid (PC-100, MJ Research). Samples

were incubated for 5 minutes at 25 �C, 30 minutes at 42 �C and 5 minutes at 85 �C,

followed by final cooling to 4 �C. cDNA was stored at �20 �C or �80 �C (long term

storage).

2.1.9.3 Quantitative real-time PCR for population measurements

Primer working solutions with forward and reverse primers were freshly prepared

from 10mM primer stocks to a final working concentration of 2 µM. PCR master

mix was prepared consisting of nuclease-free water (Ambion, Cat. no. AM9937)

and PerfeCTa SYBR Green SuperMix (VWR, Cat. no. 733-1246). The mix was

stored on ice in the dark whenever possible. cDNA samples were thawed on ice

and appropriate cDNA volumes were added to the according volume of prepared

master mix. Samples were mixed and spun to collect contents. Two µl primer

working solution was added into wells of a 384-well plate (Fisher Scientific GmbH,

Cat. no. PCR-384-LC480-W) using a 12.5 µl Matrix pipette (Thermo Scientific,
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Cat. no. 2009) or a Xstream dispenser (Eppendorf, Multipette Xstream ”Kary

Mullis” Limited Edition, Cat. no. 4986000203). Final concentration of primers

was 0.2 µM per reaction. Eight µl master mix that contained cDNA as described

was added using a 125 µl Matrix pipette (Thermo Scientific, Cat. no. 2011) or

a Xstream dispenser. Finally, plates were sealed (Roche, with LightCycler480

Sealing Foil, Cat. no. 04729757001) and spun at 3000 g on room temperature.

Then, plates were analyzed using the LightCycler 480 II system (Roche, LC480).

The cycling protocol was as follows. For pre-incubation, heating was applied for

3 minutes at 95 �C. Afterwards, 40 to 50 cycles were carried out with denaturation

for 10 seconds at 95 �C and annealing and extension for 45 seconds at 60 �C.

Subsequently, melting curve analysis was done by heating up the plate from 65 �C

to 95 �C over 10 minutes. Finally, temperature was hold at 40 �C until the plate

was removed from the instrument.

To check if genomic DNA contributed to qPCR measurements, ValidPrime

Human - SYBR assay was used (TATAA Biocenter, Cat. no. A105S25) according

to (Laurell et al. 2012). The following calculation was used to evaluate if genomic

DNA substantially contributed to observed signals: Cq is the detected Cq values

for primer assays for genes of interest (gene), the ValidPrime primer assay for

either the run cDNA samples (sample), a genomic DNA standard (gDNA).

CqgeneRT� = CqgenegDNA + (Cqvpsample - Cq
vp
gDNA)

2.1.9.4 Primary data analysis of qPCR results

Raw data was derived from the LightCycler 480 II system using the LC480 analysis

software (Roche, v1.5.0.39). Abs Quant/2nd Derivative Max method was applied

to calculate Cq values and curve profiles and the TM calling methods was used

to calculate Tm values and melting curve profiles. Outputs were saved as tab-

delimited text files that were used as input for custom-made R scripts to visualize

derived values and curve profiles for quality assessments.
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2.1.9.5 qPCR Expression data analysis for population measurements

For di↵erential gene expression analysis log 2 fold-change expression method was

used (Livak and Schmittgen 2001). Cq values from three PCR replicates (same

cDNA tested in three di↵erent wells of the assay plate) were averaged and DCq

was calculated as follows where ref indicates the reference gene (i.e. GAPDH) and

gene indicates the gene of interest for a given treatment.

4Cq = Cqreftreatment - Cq
gene
treatment

This calculation was done individually for cell culture replicates (material from

cells cultured in a di↵erent culturing unit, i.e. a di↵erent well plate). Subsequently,

4Cq-values of three cell culture replicates were averaged. The 44Cq was calcu-

lated as follows using values from a reference samples (reference) and a sample

subjected to a treatment (treatment).

44Cq = Cqgenereference - Cq
gene
treatment

In a final step fold changes were calculated for each cell culture replicate per

treatment and gene as follows:

FCgene
treatemnt = 2�44Cq

For estimation of statistical significance, t-test was conducted with DCq-values.

The statistical test was configured as a two-tailed non-paired test according to

Goni et al. 2009.

2.1.10 qPCR expression analysis of single cells

Single cells and 40-cells controls were sorted into 5 µl of RNase-free water in 96-well

plates using BD FACSAria II. After cell spotting, samples were snap-frozen. Single-

cell and bulk samples were reverse transcribed using qScript cDNA SuperMix

(Quanta Biosciences, Cat. no. 95048). Quantitative PCR was performed using

PerfeCta SYBR Green SuperMix (Quanta Biosciences, Cat. no. 95054) on Roche

LightCycler 480 II System. We used custom designed primers from Sigma-Aldrich

(Supplementary Table 2) and RT2 Profiler Toll-Like Receptor Signaling Pathway

PCR Array (Qiagen).
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2.1.10.1 FACS sorting for single cell analysis

The FACSAria II cytometer (BD Biociences) with a BD Automated Cell Deposition

Unit (ACDU) setup was used as described in 2.1.5. Individual cells were spotted

into wells of 96-well plates (Biozym, Cat. no. 621601). Sporting to the center

well bottom was calibrated by spotting 50-100 drops (Beads, BD Biosciences, Cat.

no. 349502) and precise sledge adjustment. Practically, spots were hit on the

center right region at well tops. Capture plates were filled with 5 µl nuclease-free
water (Ambion, Cat. no. AM9937) per well and plates were kept at 4 �C or on

ice. Single cells were spotted into wells A-H/1-11 and 40 cells were spotted into

well A12 and B12. Fife µl 2 µM interplate calibrator (IPC, TATAA Biocenter, Cat.

no. IPC250S) was added into wells C-E/12. Spotting took ⇠1 minute per plate.

Immediately after spotting, plates were sealed with adhesive aluminum foil (VWR,

Cat. no. 60941-126) and frozen on a conductive aluminum 96-well rack placed on

dry ice. Plates were stored at �80 �C.

2.1.10.2 Reverse transcription

All steps after thawing of frozen 96-well plates containing single cell material were

done as quickly as possible, and samples were kept on a conductive aluminum rack

on ice whenever possible. Plate contents were thawed for maximum 5 minutes

at room temperature and spun for 1 minute at 2000 g at 4 �C. One µl qScript
cDNA SuperMix was diluted at the ratio of 1:1 with RT-PCR grade water (Life

technologies, Cat. no. AM9935). One µl diluted qScript was added into each

well (total volume 6 µl) using multipette Xstream. The plates were sealed with

adhesive aluminum foil, mixed and spun down briefly at 4 �C to collect contents.

Reverse transcription was performed in a Peqlab thermal cycler (VWR, peqSTAR

96X Universal Gradient, Cat. no. 732-2887). Thermal cycling was performed as

described in 2.1.9.2 for bulk RNA samples. After reverse transcription, 96-well

plates were spun down at 2000 g at 4 �C and adhesive aluminum foils were removed.

For testing 8 genes 35 µl nuclease-free water (Ambion, Cat. no. AM9937) was

added into wells to dilute samples (total volume of 41 µl). Plate was sealed with

adhesive sealing foil (Bio-Rad, Cat. no. RSN100033), spun at 2000 g at 4 �C and
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put on ice. Foil was removed subsequently and samples were aliquoted into two

384-well plates (Fisher Scientific GmbH, Cat. no. PCR-384-LC480-W) using an

automated 96-channel liquid handling robot (BiomekNXP ) using sterile P20 filter

tips (AP96, Beckman Coulter, Cat. no. 71256). Aspiration volume was 20 µl and
dispension volume was 5 µl. Finally, 384-well plates were sealed with sealing foil,

spun at 3000 g at 4 �C and put on ice.

2.1.10.3 Single-cell quantitative real-time PCR

For each plate, master mix was prepared with gene specific forward and reverse

primers (100 µM) and PerfeCTa SYBR Green SuperMix, and stored at 4 �C in

the dark. Five µl master mix with primers were pipetted into appropriate cDNA

containing wells and into water control containing wells of 384-well plate using

multipette Xstream. Following primers were used:

Gene name Ensemble gene ID Forward primer Reverse primer

CCL20 ENSG00000115009 CTGGCTGCTTTGATGTCAGTG AGTCAAAGTTGCTTGCTGCTTC

GAPDH ENSG00000111640 CTCCTCCTGTTCGACAGTCA CGACCAAATCCGTTGACTCC

HIF1A ENSG00000100644 GGACAGCCTCACCAAACAGA TCAGGAACTGTAGTTCTTTGACTC

IL1B ENSG00000125538 GGACAGGATATGGAGCAACAAG AACACGCAGGACAGGTACAG

IL8 ENSG00000169429 CTGATTTCTGCAGCTCTGTG GGGTGGAAAGGTTTGGAGTATG

IRAK3 ENSG00000090376 AGAGCTCTGCGCTGTTCTG ACTCAACACTGCTCCCAGG

JAK2 ENSG00000096968 GGGGTTTTCTGGTGCCTTTG CACTCCCAAAATTACCCTTGCC

NR3C1 ENSG00000113580 CCGGGCCCAAATTGATATTCAC ACATCTCCCCTCTCCTGAGC

TNF ENSG00000232810 CTCAGCTTGAGGGTTTGCTAC GGACAGGATATGGAGCAACAAG

Four genes per 384-well plate were tested on 88 single-cell samples. Additionally,

5 µl PerfeCTa SYBR Green SuperMix were added into IPC containing wells. Finally,

plates were sealed with adhesive aluminum foils, spun down at 3000 g and stored

at �80 �C. Before samples were analyzed, 96-well plates were defrosted on ice and

spun down at 2000 g. Then, adhesive aluminum foil was removed and plate was

sealed with LightCycler480 sealing foil and spun down at 3000 g. Using LightCycler

480 II system cooled plates were analyzed using the cycler protocol below:
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Step Time Temperature

Pre-incubation 180 s 95 �C

Denaturation 10 s 95 �C

Annealing, Extension 45 s 60 �C

Melting curves analysis 180 s 65 - 95 �C

Cooling hold 40 �C

2.1.10.4 Absolute quantification

To estimate absolute mRNA transcript number, commercially available Inter-

plate Calibrator (IPC) standard (c = 106 copies/ul, TATAA Biocenter, Cat. no.

IPC250S) was diluted with yeast-tRNA (Ambion, Cat. no. AM7119). Dilution

series (undiluted, 1:1, 1:10, 1:100, 1:1.000, 1;10.000, 1:100.000 and 1:1.000.000)

were prepared in triplicates in PCR strips (Biozym, Cat. no. 710990). A master

mix with IPC primer solution (2 µM) and PerfeCTa SYBR Green SuperMix was

prepared. Three µl IPC dilution series was pipetted into a 384-well plate (Fisher

Scientific GmbH, Cat. no. PCR-384-LC480-W) using a 12.5 µl Matrix pipette

(Thermo Scientific, Cat. no. 2009). Afterwards, 5.4 µl master mix with IPC primer

was pipetted into 384-well plate using a 125 µl Matrix pipette (Thermo Scientific,

Cat. no. 2011). Plate was sealed with LightCycler480 sealing foil and spun down

at 3000 g. Finally, cooled plates were analyzed using LightCycler 480 II system.

Absolute quantification relative to the IPC standard curve (see below) was done

according to Bustin 2000.

2.1.10.5 High-throughput qPCR analysis for primary macrophages

To generate pre-amplified cDNA from human PBMC-derived primary macrophages

for subsequent Biomark HT-qPCR procedures were followed as described for

Fluidigm C1 single-cell sequencing. C1 Single-Cell Auto Prep Array for PreAmp

(17-25um, Cat. no. 100-5758) were used with C1 Single-Cell Auto Prep Reagent

Kit (Cat. no. 100-5319) according to the protocol ’Using C1 to capture cells from

cell culture and perform preamplification using delta gene assays’ (PN 100-4904
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K1 and PN 100-5875 C1, Fluidigm).

BioMark HT-qPCR was performed at TATAA Biocenter AB (Göteborg,

Sweden). The pre-amplified samples were analyzed undiluted together with gDNA,

IPC template and NTC controls with customer assays (Qiagen RT2 Profiler

Array assays) together with ValidPrimeTM assay (TATAA Biocenter) to test if

assays give heavy amplification of gDNA and Interplate calibrator assay (TATAA

Biocenter) to compensate for variations between runs. The qPCR was performed

using TATAA EvaGreen GrandMaster Mix Low ROXTM (Cat. no. TA06-250LR,

TATAA Biocenter) and GE 96.96 Dynamic ArrayTM Sample & Assay Loading

Reagent Kit (Cat. no. 85000802-R, Fluidigm), respectively. Sample Mix for

BioMark (Fluidigm) for one sample was 5.5µl TATAA Probe GrandMaster® Mix

LowROX, 0.55µl 20X Evagreen mix (Biotium), 0.5µl GE Sample Loading Reagent

(Fluidigm), 0.12µl DNase/ RNase free water and 3.33µl undiluted pre-amplified

sample. Assay Mix for BioMark (Fluidigm) for one sample was 4µl Assay and 4µl
GE Assay Loading Reagent (Fluidigm). The qPCR was performed on BioMark

(Fluidigm) using the 96.96 Dynamic ArrayTM IFC (Integrated Fluidic Circuit).

The thermal protocol was a mixture of the recommended settings from the

manufacturer for Qiagen RT2 Profiler Array assays. Settings are shown here:

Step Temperature Time Cycles

Thermal Mix 50°C, 70°C, 25°C 120 s, 1800 s, 600 s 1

Pre-denaturation 95°C 1 min 1

Denaturation, Annealing/Elongation 95°C, 60°C 10 s, 35 s 40

Melting curve 60°C – 97°C Continuous 1

Data were analyzed using the Fluidigm Real-Time PCR Analysis Software

applying the linear derivative baseline correction. No amplification in the NTC

was detected. Data indicated no detectable amplification of gDNA. Comparing

amplification and melting curves of the gDNA control sample for ValidPrime and

customer assays, a big di↵erence was observed, indicating only true amplification

for the ValidPrime assay. Some samples for few assays showed more than one
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product or unspecific product in the melting curve analysis. Those assays were

excluded from further analysis.

2.1.11 Protein expression analysis

Lysis bu↵er was prepared with 1 µM Trizma hydrochloride (pH 8.0) (Tris-HCL,

Sigma, Cat. no. T2788-1L), 10mM ethylenediaminetetraacetic acid (EDTA, Roth,

Cat. no. 80402), 1% sodium dodecyl sulphate (SDS, Sigma, Cat. no. 71736-

100ML) and freshly prepared 1⇥PIC and 1⇥PS. Lysis bu↵er was added and cells

were sonicated for two times 5 cycles using a Biorupter sonification instrument

(Diagenode). Subsequently, samples were centrifuged for 5 minutes at 14 000 g

and 4 �C. Finally, supernatant was transferred into new 1.5ml tube and stored at

�80 �C.

Protein contents from cell lysate were determined with Pierce 660 nm Protein

Assay (Thermo Scientific, Cat. no. 22660) in combination with the accessory

Ionic Detergent Compatibility Reagent (IDCR, Thermo scientific, Cat. no. 22663).

The bovine serum albumin (BSA, Sigma, Cat. no. A3912-100G) standard curve

was used to determine the protein concentrations. Following BSA standards were

used in technical replicates: 1.53, 0.76, 0.38, 0.19, 0.05, 0mg/ml. Ten µl of each
BSA standard and sample lysates were transferred into a 96-well plate (TPP, Cat.

no. 92096). Samples lysate were analyzed in biological and technical replicates.

Pierce mix was prepared with Pierce 660 nm Protein assay solution and 50mg/ml

IDCR. Then, 150 µl Pierce mix was pipetted into the appropriate sample, and BSA

standard, containing wells of a 96-well plate. Plates were shaken for 1 minute at

600 g at room temperature. Five minutes after adding IDCR solution, absorbance

was measured at 660 nm using POLARstar Omega (BMG LABTECH). Raw data

was generated using POLARstar Omega analysis software.

NuPAGE LDS sample Bu↵er (1⇥) (Life technologies, Cat. no. NP0007),

1M Dithiothreitol (DTT, Life Technologies, Cat. no. D-1532) and nuclease-free

water were added to sample lysates. Samples were denatured for 10 minutes at

70 �C. Using LDS-PAGE, proteins were separated according to their molecular

weight in a polyacrylamide gel. 10 µl of each prepared sample (20 µg protein)

was loaded onto NuPage 15-well Novex 4 - 12% Bis-Tris gel (1mm, Invitrogen,
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Cat. no. NP0329BOX). Additionally, 5 µl of a 1:1 marker, consisting of Precision

Plus Protein Dual Color Standard (Bio Rad, Cat. no. 161-0374) and western

MagicMark XP Western Protein Standard (Invitrogen, Cat. no. LC5602) was

added. Using XCell SureLock™ Mini-Cell Electrophoresis System (Invitrogen) gel

run was performed at 80V for about 10 minutes and subsequently at 150V for

2.5 hours. As running bu↵er, NuPAGE MOPS SDS Running Bu↵er (Invitrogen,

Cat. no. NP001) was used.

Separated proteins from SDS-PAGE were plotted on nitrocellulose mem-

brane (Hybond ECL Nitrocellulose Blotting Membrane 0.45 µM, GE Health-

care/Amersham, Cat. no. RPN78D) at 400mA for 2 hours at 4 �C. Blotting was

done in an EasyPhor PAGE WetBlotter Mini System (Biozym).

After blotting, membrane was briefly washed in distilled water and stained with

Ponceau S solution (Applichem, Cat. no. A2935.0100) to confirm protein transfer.

Subsequently, membrane was destained in distilled water. Finally, membrane was

cut to allow detection of di↵erent target proteins simultaneously.

Membranes were blocked with blocking solutions for each antibody for 1 hour

at room temperature on a shaker. Afterwards, membranes were incubated with

appropriate primary antibody at 4 �C over night. To remove unbound antibody,

membranes were washed three times with washing solution (1⇥TBS + 0.1%

Tween20 (Sigma, Cat. no. P1379-500ML)) for 10 minutes at room temperature.

Then, membranes were incubated with a corresponding second antibody conjugated

with horseradish peroxidase (HRP) for 1 hour at room temperature on a shaker.

After three washing steps, luminescence was detected using chemiluminescence-

reagent (ECL, Perkin Elmer, Cat. no. 104001EA) and visualized using FUSION-SL

Advance 4.2 MP gel documentation system (Peqlab).

2.1.12 Immunofluorescence staining

THP-1 cells or primary monocytes were seeded on poly-L-lysin (Sigma-Aldrich)

coated glass slides in 24-well cell culturing plates (Corning). After di↵erentiation

and treatment, cells were fixed and permeabilized using Transcription Factor

Bu↵er Set (BD Pharmingen), and immunofluorescent double labelling for di↵erent

antibodies pairs was prepared as follows: Cells were washed twice with ice cold PBS.
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100µl of Fix/Perm bu↵er was added into each well and plates were incubated on 4°C
for 45 minutes. After incubation cells were washed twice with Perm/Wash bu↵er.

Two-hundred µl of primary antibodies mix was added into each well and plates were

incubated at 4°C overnight. Primary antibodies used were GR (H-300, sc-8992,

dilution 1:200, rabbit polyclonal), IL1B (sc-52012, 1:100, mouse monoclonal), IL-8

(H-60, sc-7922, 1:200, rabbit polyclonal) FKBP51 (D-4, sc-271547, 1:200, mouse

monoclonal) and IRAK-M (XX-6, sc-100389 1:100, mouse monoclonal). Primary

antibodies mix was prepared by combining 200µl of Perm/Wash bu↵er and a

pair of primary antibodies (mouse and rabbit) to obtain working concentration of

1.5µg/ml for each antibody. After incubation with primary antibodies, glass slides

with attached cells were washed twice with 200µl of Perm/Wash bu↵er and 100µl of
secondary antibodies mix was added to each well, followed by one hour incubation

in the dark at 4°C. Secondary antibodies mix was prepared by combining 100µl of
Perm/Wash bu↵er per well with a pair of goat anti-mouse and goat anti-rabbit

fluorescently labelled secondary antibodies to obtain a concentration of 4mg/ml

for each antibody. Secondary antibodies from Thermo Fisher Scientific used were

Novex Goat anti-Mouse IgG (H+L, Alexa Fluor 594, A11032), Novex Goat anti-

Rabbit IgG (H+L, Alexa Fluor 488, A11034), Novex Goat anti-Rabbit IgG (H+L,

Alexa Fluor 594, A11012). Glass slides with cells were washed twice with 200µl ice
cold Perm/Wash bu↵er and mounted on microscopic slides using ProLong Gold

Antifade Reagent with DAPI (Thermo Fisher Scientific). Samples were dried at

room temperature overnight and stored at 4°C in the dark over night until imaging

was performed.

2.1.13 RNA fluorescence in situ hybridization

RNA fluorescence in situ hybridization (RNA FISH) was performed following

the Stellaris RNA FISH protocol preparation, which is based on the methods

of Raj et al. 2008. Therefor, 106 cells (microscopy: 3⇥ 102 cells on poly-L-lysin

coated coverglass) after treatment were fixed with fixation bu↵er (3.7% formalde-

hyde (Sigma, Cat. no. F8772-25ML), 10⇥PBS (Sigma, Cat. no. P5493-1L),

and nuclease-free water (Ambion, Cat. no. AM9937) for 10 minutes at room

temperature. Fixed cells were washed and and permeabilized in 75% ethanol
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at 4°C overnight. After washing (wash bu↵er: 20 x saline sodium citrate (SSC,

Sigma, Cat. no. S6639-1L), 10% formamide (Sigma, Cat. no. F9037-100ML),

and nuclease-free water) for 5 minutes at room temperature, cells were incubated

(37°C, 4,5 hours) with 125nM of di↵erent RNA FISH fluorescent probes (order

from Stellaris via Biosearch Technologies, design of probes was done using on-

line probe design software from BT) in hybridization bu↵er (100 mg/ml dextran

sulfate (Sigma, Cat. no. D8906-10G), 20 x SSC, 10% formamide, nuclease-free

water). Afterwards, cells were resuspended in wash bu↵er for 30 minutes at room

temperature. Finally, cells were resuspended in 1⇥PBS and analyzed with BD

Biosciences FACSAria II flow cytometer. For microscopic analysis, cells were finally

washed with 2⇥SSC bu↵er for 5 min at room temperature. Microscope slides were

prepared with Prolog Gold anti-fade reagent with DAPI (ThermoFisher, Cat. no.

P36931). Probes for NR3C1, KAK2, FKBP5, IRAK3, IL1B and IL8 were labeled

with Quasar 670. Probes for IL1B were labeled with TAMRA. Probes for GAPDH

(Biosearch Technologies, SMF-2026-1) and XIST (BioCat GmbH, SMF-2038-1-BS)

were labeled with Quasar 570. Following custom probes probes were used:

NR3C1 JAK2 FKBP5 IRAK3 IL8 IL1B
cgcagccgagataaacaact ttctgaaaccggctacacag tagagaacctggaaggaggg aggtcgaacagcagcgtgtg actagagaacttatgcaccc ttgtgcctcgaagaggtttg
ctttggagtccatcagtgaa ccatttctgtcatcgtaagg acaatctttaatactcccct cagaacagcgcagagctctc cggtggctttttatatcatc gattggctgaagagaatccc
tcttctctaccaggagttaa tttcttctgcaacatactcc gcctttgccaagactaaaga gaaggactcaacactgctcc tctctgaaagtttgtgcctt tgcttcagacacttgagcaa
ctcctcttagggttttatag tacacaggtgtgataccaca catatctctcctttcttcat accttcctgataactcttct ctagaagcttgtgtgctctg atcatttcactggcgagctc
agggtgaagacgcagaaacc gtagagtacattatgcctgg catattctggtttgcacagt attatccacggtgacattgg gcttggaagtcatgtttaca cctcattgccactgtaataa
ggagtctgattgagaagcga cactgcaataccaacgagga gaattttagggagactgcca cctttttcattatgttcagg ctgcagaaatcaggaaggct gccatcagcttcaaagaaca
caaccaaaagtcttcgctgc gagatattccatgccgatag gtttggttctccggataatg gctgatggaagatttaagca gcaaaactgcaccttcacac aggagcacttcatctgttta
attgcttactgagccttttg attcttcctgtgtttcatga ctccttcgtttggatttgaa tttctagttccttctatgat tctaagttctttagcactcc cggagattcgtagctggatg
tatacagtcccattgagagt tttgatcgttttctttggct attggaatgtcgtggtcttc tccactctgtatacctcaaa ctctcaatcactctcagttc tggccacaacaactgacgcg
tttgcaatgctttcttccaa ttctctgtgtagaaggcaga aaccatatcttggtccaaga gacagcatatgttaggtttt ataatttctgtgttggcgca aaggtctgtgggcagggaac
gaacactggtcgacctattg gttgcaaaaatctcctcacc ctcagcattaggttcaatgc gtttgggtgatgaaacagta tctcttccatcagaaagctt gatgaagggaaagaaggtgc
cagtggatgctgaactcttg gtaaatcctgttctgtcagt attctttggccttttcgaag aatatgcagccaactctagt agccctcttcaaaaacttct tcccatgtgtcgaagaagat
tttggaaactccttctctgt ggatagttacaactcggctt gctccaatttttctttggta gacagaacttctcagtctct attcttggataccacagaga catcgtgcacataagcctcg
ccttcaaatgttgctgttct cttcccttaatgagctaagt ttcccttctctttgacaatg gtgttccatttctcatgtat aagtttcactggcatcttca cagttcagtgatcgtacagg
tacaatttcacattgccacc tgtgcatctgcagttaatct atcttcccatactgaatcac ctacacactgcaatctgtca agtgttgaagtagatttgct caagcttttttgctgtgagt
atgtcaaaggtgctttggtc tcgaaattgggccatgacag tattccatctctaaccagga attcgaatgtgccaagggag caacagacccacacaataca ggtacagattcttttccttg
ggggacccagaagaaaactc tgattacctgctttcttcag cagaagctttcgattccttt gaatggctttggatattcct agttcggatattctcttggc tgtagagtgggcttatcatc
gactctcattcgtctcttta atgacattttctcgctcgac ggtgtattctctaagcttca catggttgaacgttgtgcag cattctagcaaacccattca ttttgggatctacactctcc
tggaggagagcttacatctg ctgctgaagttcttctttgt ttgtcacagcattcaacagc atatactgccacagatgacc ccatcatttttatgtgatgc ggaactgggcagactcaaat
tgacatcctgaagcttcatc acagtttccatctggtaaca atacaagcctttctcattgg tccaaaaggatgtttgcact attcatcttctatttttcca cttgagaggtgctgatgtac
ctttacagcttccacaagtt tgggggacagcatttagtaa ttggctgactcaaactcgtt gttagtttgggttgaaactg ctggcaatgacaagactggg aggaagacgggcatgttttc
ttccactgctcttttgaaga caccattcgttctgaagact ttttctggcacatggagatc ggaagtgtgccatggcaaaa tcaacacagcactaccaaca gaagtcagttatatcctggc
tccagcacataggtaattgt ctctgtaatgttggtgaggt gaacatgttggcgtatatcc aactctgatgttctaggtgg gttctaactcattattccgt gctctctttaggaagacaca
gggcagttttttcttcgaat tgccaactgtttagcaactt ttcctttttcattagtgacc gcatgtaccacagatgttta attgactgtggagttttggc ctagggattgagtccacatt
acattttcgatagcggcatg gcacatacattcccatgaat catttgcttccagaatcaca taatggaaagtttcccctgt acaagtttcaaccagcaaga caaaaacctttctgttccct
ttaccaggattttcagaggt tgccaggatcactaagtttg ttgttaggatgatctccagg ccaaagctgtagacatctgt acaggaaagtccaggctata
ggtgagttgtggtaacgttg tcctgaagaatgtcctttgg taagtcagcaagcaagtggc cactactctacatcctgtta atggacaggagatcctctta
ttcaggttcaataacctcca tttcaatgcattcaggtggt gaaagccactctcacaagga gctggatatgttttggatca cctgaaaggagagagctgac
agctatcatatcctgcatat actgcagatttcccacaaag tcattgctgaagggtgtttt aattctctaaggagatcccg ctggctcaacaaaagggctg
ctccaagttgagtctggaac ctttgagaatccagagcact atccagaaactctcatctgc agagaaattccgagggcagg tcaggcgggctttaagtgag
catgttgagcgtagtcatga gctctgaaagaaggcctgaa gcacaattctgattgctctt ctgccaaacagaagagcttg tgctcatcagaatgtgggag
catttcactgctgcaatcac taggtgctcttcagtactat ctgggaggaagtactgtgta aagctggcttgagtactttc ttgccccctttgaataaatt
aaacatccaggagtactgca aatgttgtcatgctgtaggg aaatagatccactccaggtc ggacacctgaaggactttag aggctcttttacagacactg
ttgtctatatgatctccacc ccttgcatatctgagatgtg ccctagtgtagaagagcaac cattctccaggaatagagga attgaattgattccatagct
ggagcaaaacacagcaggtt cctgtggatatacctttttg cgagcaactgcgtgtcaaac tcttccactggaatacttgg taaagagagcacaccagtcc
cagcatgtgtttacattggt ggagcataccagaatatggg aagcttgacagggcaggaaa attgttattctggctttcat
atacctgaagcctgtgtaac tacagaaccactccaaagct tttcacaactcacgccagaa aggccttcatcagaaggtag
tctaggccttcatatttcat gtggacttttactcttctca catgggaagctgtcttcaac gttttctgagtcattctgtc
atcttggtgtcacttactgt cttgtttgtcattgccaatc ctggagatttaggctactgg tcagactggctgcattcaaa
tcatatacctctctgtttct cattattgttccagcattct cacatttaagacttgcccta ctttttgtccaagctcagaa
tcttatcaacagagatccct gagctagatccctaaaggag gtttacccgtaaggactgaa gtcctgggatggaactatat
aagcacaccttttctaggat ttatcccttatttgatccac catgagtgtttcttaggctg atatttaccttatagggcct
atgctatgttaaccaatccc atcacacaagatgccaaggt tcagcttttgctcttcatat ctggagcttctgaagaagga
aatctctgacaatccagctc gacaatattcctggcattct tcccaacagtttagcaagta ttcatattcatcccaggaaa
tgcaacatccatagcttaca aatgttattggcagtcagca gttatttgctcagaaccact aaggtcatacctatgctcag
agatgaatgtgcgctttgga gttcatgagcataaatccca cgtgaagtgtcttcttgagt cttatggagccaatgtcttc
atctttatcgggttctcttg taacctgctgcacttcttaa gtctgtggacttctacacaa attgatcattctcttggcat
aagtgtaccgctacaggtaa ggtgtctaaagtggagtagc tccatatgcagcctaaaagg ttatctgcatcacccaaact GAPDH4as4provided4(SMFA2026A1)
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2.1.14 Microscopy

Images were taken with a Zeiss Z1 Observer wide-field fluorescence microscope

with a 60x oil immersion objective or a Plan-Apochromat 40x/1.4 Oil DIC (UV)

VIS-IR M27 objective using Zen Software (Version 2.31). Five Z spacings with

0.3µm were done. For each sample, 8x8 or 10x10 tiles were recorded. Binning

was set to 3x3. Scaling per pixel was 0.330µm x 0.330µm. Bit depth was 14 bit.

Channel settings were as follows:

Channel 1 Channel 2 Channel 3

Reflector 50 Cy 5 38 HE Green Fluorescent Protein 49 DAPI

Beam Splitter 660 495 395

Filter Ex. Wavelength 625-655 450-490 335-383

Filter Em. Wavelength 665-715 500-550 420-470

Contrast Method Fluorescence Fluorescence Fluorescence

Light Source HXP120 V HXP120 V HXP120 V

Channel Name Alexa Fluor 594 Alexa Fluor 488 DAPI

Excitation Wavelength 280 493 353

Emission Wavelength 618 517 465

Imaging Device Axiocam 506 Axiocam 506 Axiocam 506

For background subtraction and normalization of tiles Gaussian processing

with high kernel density settings (⇠400) was performed to generate a background

model for shading correction. Tiles and Z-stacks were aligned. Maximum intensity

projection of deconvoluted images was used for fluorescence intensity quantification

using EBimage (Pau et al. 2010). Briefly, for FISH analysis images from di↵erent

channels were normalized by subtracting the channel mean intensity from every

pixel of the image, nuclei were segmented and used for propagation to accomplish

cell segmentation, as described by Pau et al. 2010. After cell intensity-based

background subtraction, mean intensities per cell per channel were calculated and

transformed ((SDcell-SDac)⇥Mcell)2, SDcell: standard deviation of cell intensity,
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SDac: mean standard deviation of all cells per acquired picture, Mcell: mean

intensity per cell). Cell size and eccentricity were calculated as described (Pau

et al. 2010).

2.1.15 Live-cell imaging analysis

Live-cell imaging was done on a heated stage using Zeiss AxioObserver Z1 wide-field

fluorescence microscope with a 10x objective at 37°C in a 5% CO2 atmosphere.

Cells were seeded in standard 6-well plates as described for cell culture cells.

2.2 Analysis of sequencing data

Most analyses were carried out using R-project statistical environment

(http://www.r-project.org) and Bioconductor (http://www.bioconductor.org) or

using Python. Primary data analysis was done within Unix shell environment.

2.2.1 Primary analysis of population RNA sequencing

data

BCL Illumina files were demultiplexed and converted to FASTQ file format using

bcl2fastq Conversion Software v1.8.4 (Illumina). Quality of raw reads was assessed

with FASTQC (Andrews 2010) and RseQC (Wang et al. 2012a). Reads were

mapped to the human reference genome (GRCh37/hg19) using STAR aligner

version 2.4.0d (Dobin et al. 2013). Adapter trimming was omitted because STAR

aligner removes adapter sequences at the end of reads (soft clipping, Wilson

and Stein 2015). Gene expression estimation was determined using htseq-count

(from HTSeq version 0.6.1, Anders et al. 2015). Di↵erential expression analysis of

population RNA-seq data was done with DESeq2 (Love et al. 2014) with standard

settings. Unless otherwise mentioned, p-value cut-o↵ was < 0.001 and fold change

(log2) was >2 or a percentile range as described in figure captions.
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2.2.2 Primary analysis of single-cell RNA sequencing data

Initial steps of data analysis were as described for primary analysis of population

RNA-seq (see above). Quality of libraries was comparable to published SMART-

seq data. Data from selected libraries was excluded due to low quality (see

Supplementary Table 2). Aggregated single-cell expression data was in agreement

with the matching bulk controls (see Figure 6 E). Gene expression estimation

was determined using htseq-count (from HTSeq version 0.6.1, Anders et al. 2015)

for raw reads. Gencode annotation (release hg19/GRCh37.p13) was used as

reference. Cells were filtered based on microscopic observations, mean expression

and sequencing quality (see Supplementary Table 2 on page 114).

2.2.3 Assessment of technical noise

To determine a way to distinguish biological variation from technical variation,

sequencing of mRNA from population samples near single-cell quantity together

with RNA-spike assays (ERCC RNA Spike-In Mix, Cat. no. 4456740, Life

Technologies) was applied using the Fluidigm C1 single-cell Auto Prep System.

At mean expression levels of >20 counts per gene population RNA samples and

spike RNA but not single-cell RNA showed normal distribution of gene expression

values (Supplementary Figure 27). Analysis was done according to Piras and

Selvarajoo 2015 using shapiro.test R function. To enrich for genes with high

biological variability and low technical noise levels, genes were selected with mean

count >20 (5367± 267 genes (average± s.d.)).

2.2.4 Normalization of single-cell sequencing data

Expression values of single cell data vectors were log10-transformed, divided by

the mean expression per cell and quantile normalized.

2.2.5 Dimension reduction and cell distance visualization

To separate cells based on their transcriptome-di↵erences, dimension reduction

using Kohonen’s Self-Organizing Maps (SOM) following methods implemented

41



CHAPTER 2. MATERIALS AND METHODS

in oposSOM (Lö✏er-Wirth et al. 2015) were used. The grid size was 10⇥10

for analysis and 30⇥30 for transcriptome visualization. The dimension reduced

matrices were used to build correlation matrices with rcorr (R, Hmisc package).

Significant pairwise correlations were kept (p-value < 1⇥10�5) for hierarchical

clustering analysis to determine basic cell states. For assessing the uncertainty

in hierarchical clustering reproducibility was estimated with bootstrapping using

pvclust (Suzuki and Shimodaira 2006).

SOM-reduced gene expression matrices were used for independent component

analysis (ICA) using fastICA R package to visualize distances for cells. In ICA-

space cells were annotated according to results from hierarchical clustering (Figure

9 B). For treatment-independent cell distance visualization cell-cell-correlation

networks were computed using iGraph R package (Csardi and Nepusz 2006, Figure

9 A).

T-distributed stochastic neighbor embedding (t-SNE) analysis was done with

Rtsne R package.

2.2.6 Exploratory single-cell analysis

To identify genes specific for cell-states, di↵erential gene expression analysis was

performed including computation of fold-changes, weighted average di↵erence

(WAD) scores and shrinkage t-scores according to Wirth et al. 2012. State-

specific genes were then used for gene set analysis (over-representation analysis)

to characterize cell states (see 2.2.7, Kamburov et al. 2013). Next, we moved

from cell-specific markers to marker genes expressed in sub-clusters of cells. Using

treatment-specific average SOM-portraits we identified ⇠10 correlation clusters

(CCs) for each treatment (Figure 17 A). Some CCs showed strong restriction of

CC-specific gene expression (high t-scores and beta-score) and expression in a

high percentage of cells. For each treatment-specific macrophage state the most

representative CC was identified by gene-overlap analysis. Thus, strong mean

gene expression of genes from these CCs in the respective macrophage states in

ICA space was observed. Additionally, similarity of CCs for each treatment was

determined to align similar CC for further analysis (see Supplementary Figure 32

and 33).
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To identify state-specific major regulatory hubs, CC-specific genes were used as

input for FANTOM4 EdgeExpressDB analysis (Severin et al. 2009). GeneOverlap

R package (v. 1.10.0) was used for gene overlap analysis. Overlap was tested by

hypergeometric test.

2.2.7 Functional annotation of gene lists

Molecular concept-based analysis of gene lists (pathway analysis) was carried

out using ConsensusPathDB (http://consensuspathdb.org/, Herwig et al. 2016,

Kamburov et al. 2013) Over-representation analysis and Wilcoxon enrichment

analysis was done to define pathway-based sets. Minimum number of measured

genes per term was 4 and p-value cuto↵ was 0.01. However, for small gene lists

p-value cuto↵ was set to 1 to aid annotation of genes.

2.2.8 Responsiveness analysis

Characterization of single-cell responsiveness upon external stimuli was achieved

by projection of bulk RNA-seq di↵erential expression analysis to cell-specific genes.

Cell-specific genes were determined with sample-specific SOM portrait analysis

by selecting SOM components that were over-expressed (over-expression spots)

for a given cell as described (Wirth et al. 2012). Di↵erential expression of bulk

data was done with Deseq2 (Love et al. 2014). Upper-quartiles (80th percentile for

up-regulated and down regulated) of di↵erential expressed genes (p-value<0.001)

were joined to cell-specific genes. Mean expression for all cell-specific genes was

calculated per cell.

2.2.9 Stability analysis and intra-cluster correlation

Stability scores were calculated using silhouette function from the R package

’cluster’. Intra-cluster correlations as shown were derived from pair-wise Pearson

correlation coe�cients of cell correlation matrices for each cell cluster.
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2.2.10 Entropy analysis

Entropy analysis was done according to Teschendor↵ et al. 2014 and Teschendor↵

2016. Log-transformed data from genes with mean expression of >75 counts were

quantile normalized and joined with (PPI) network from the Human Protein

Reference Database (HPRD, v13Jun12) for high-confidence (small size) network

construction. For entropy analysis of low-confidence (maximum size) PPI networks

all genes were selected showing counts in at least one cell. The average of the

normalized local entropies for each gene in the network was calculated to maintain

cell/sample entropy rates for further analysis of variance (ANOVA, non-parametric,

Kurskal-Wallis test, Dunns post test with a = 0.05 (95% confidence interval)).
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Results

3.1 Model system and mRNA population mea-

surements in activated macrophages

Stimulation with LPS is widely considered to produce M1-like macrophage phe-

notypes (Martinez and Gordon 2014, Wang et al. 2014). M1-like macrophages

express for example IL1B, IL8 and other genes associated with the primary innate

immune response triggered by TLR-4 signaling. THP-1 cells have become one of

most widely used cell lines to investigate the function and regulation of monocytes

and macrophages (Auwerx 1991). To analyze to which extent archetypical innate

immune response markers (i.e. IL1B, IL8 and HIF1A) are expressed among indi-

vidual macrophages the following model was used: THP-1 monocytes were first

di↵erentiated for three days in the presence of 10 nM PMA. PMA-induced di↵er-

entiation of monocytes (suspension cells) to a macrophages-like status (adherent

cells) was accompanied by morphological changes (Figure 2A). Flow cytometry

analysis of DNA content showed that ⇠97% of cells were in G0 phase (cell cycle

arrested) after three days of di↵erentiation (Figure 2B). For primary macrophages

isolated from human blood, CD14 positive PBMCs were cultured in human serum

for 7 days to accompany di↵erentiation. Primary macrophages showed similar

morphological properties compared to THP-1 macrophages (Figure 2C).

To assess innate immune response di↵erentiated macrophages were either
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Figure 2: Microscopic observations of THP-1 and primary macrophages and
cell cycle analysis. A: Microscopic observation of THP-1 monocytes (MO) and THP-1
macrophage cells di↵erentiated with 10nM PMA for 72 hours (MA). B: Flow cytometric
analysis of cell cycle with propidium iodide in non-di↵erentiated THP-1 monocytic cells
and di↵erentiated THP-1 macrophage cells. This experiment was repeated three times,
and similar results were obtained. The representative flow cytometry pattern is shown.
The cycle of G0 (resting phase) / G1 (gap 1 phase), S (DNA synthesis phase), G2
(gap 2 phase), M (mitosis) and G1 is shown schematically. C: Microscopic observation
of human primary macrophages di↵erentiated with human serum for seven days from
healthy human donor blood-derived monocytes.
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left unstimulated (resting macrophages, untreated, UN) or were stimulated with

100ng/ml LPS (activated macrophages, LPS-treated, LPS) for two hours (Figure

3A). Stimulation with high, near-saturation levels of LPS for two hours renders an

early inflammatory response. The selection of this early time-point was done to

detect primary response transcriptional networks rather than secondary response

e↵ects (Parnas et al. 2015, Ramirez-Carrozzi et al. 2009).

At the population level RT-qPCR results from LPS-treated THP-1

macrophages showed strong up-regulation of immune-response markers including

IL1B, IL8, NFKB and TNF and down-regulation of RUNX2, which is inhibited by

TNF and IL1B (Ding et al. 2009, Figure 3B). Strongest expression was observed

after 2 hours of LPS stimulation for selected marker genes IL1B, IL8 and RUNX2

(Figure 3C). Also transcriptome-wide population RNA-seq data showed strong

macrophage response towards LPS: 775 (log2 fold-change > 2) to 4061 (log2 fold-

change > 0) genes were up-regulated and 3228 (log2 fold-change < 0) to 295 (log2
fold-change < -2) genes were down-regulated (q-value <0.001, Figure 3D), includ-

ing many known inflammatory marker genes. Top pathways for up-regulated genes

(292 pathways) and down-regulated genes (16 pathways) were general pathway

terms associated to signal transduction and immune response. More specific path-

ways were found including TNF signaling, MYD88/TLR4 signaling and nuclear

receptor meta-pathway for up-regulated genes and G protein–coupled receptor

(GPCR) signaling for down-regulated genes (Figure 3E, Supplementary Table 3 for

pathways including up-regulated genes and Supplementary Table 4 for pathways

including down-regulated genes).

3.2 Single-cell response of selected markers

To tackle the question to what extent theses global results (based on population

measurements) reflect the expression landscape in individual cells di↵erent single-

cell expression analyzes were carried out. Results from single-cell RT-qPCR (sc-

qPCR), fluorescence in situ hybridization (FISH) coupled to microscopic screening

and FISH coupled to flow cytometry analysis (FISH-flow) showed that IL1B, and

other pro-inflammatory transcripts, although highly expressed on average, were
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Figure 3: Gene expression changes upon innate macrophages activation. A:
Monocyte derived THP-1 macrophages left untreated (resting macrophages, UN) or
treated with 100ng/ml LPS for 2 hours were used to investigate macrophage heterogeneity.
B: RT-qPCR analysis of selected LPS-responsive genes. All fold changes were significant,
p-value < 0.05. C: RT-qPCR analysis carried out with cells treated for 1, 2, 4 or 8 hours
with LPS showed peak expression of two hours after LPS stimulation. D: Volcano plot
representation (fold-change vs. p-value) and heatmap (top up- and down-regulated genes
with biological replicates) of di↵erentially expressed genes from population RNA-seq
data determined from activated macrophages compared to resting macrophages (LPS vs.
UN). Dot size is relative to to the abundance of a given transcript (base expression). E:
Pathway enrichment analysis for up- and down-regulated genes (see 2.2.7).
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heterogeneously expressed within individual cells.

Single-cell qPCR results showed expression of IL1B and IL8 in

20.5±4%(mean+s.e.m) and 25.4±1.3% of activated macrophages treated with

LPS, respectively (Figure 4A). In resting macrophages expression of IL1B and IL8

was virtually absent. However, rare cells were observed by sc-qPCR analysis, which

showed expression of IL1B or IL8 for resting macrophages (Supplementary Figure

29A). In comparison GAPDH was found expressed in 89±8% of macrophages

(Figure 4A). FISH-flow analysis showed the presence of 46±8% IL1B positive cells

and 92±5% GAPDH positive cells. To rule out that heterogeneity in the original

THP-1 cell culture material had an impact on partial IL1B expression in activated

macrophages, assays were repeated for clonal macrophages, derived from individ-

ually cultured and expanded single THP-1 cells, with highly similar outcomes

(Supplementary Figure 29C). In agreement with sc-qPCR results and FISH-flow

analysis FISH microscopy screenings also showed that IL1B and IL8 expression

was restricted to a fraction of activated THP-1 macrophages (Figure 4C). Some

cells clearly did not express any of the highly di↵erentially inflammatory genes

identified from population measurements of activated macrophage transcriptomes.

As in sc-qPCR, rare IL1B positive cells were found in resting macrophages using

FISH analysis (Supplementary Figure 29B).

Considering these findings, it remains uncertain if observations for IL1B/IL8

positive cells were only due to stochastic fluctuations of mRNA transcripts over time.

To assess if inflammatory gene expression is likely to co-occur in some cells mRNA

expressions of several genes was assayed in the same cells. Sc-qPCR data suggested

that functional related genes (i.e. IL1B and IL8 and HIF1A, a LPS-inducible

transcription factor) were expressed in a coordinated fashion. Gene pairs with

functional relation showed high Pearson correlation values (IL1B vs. HIF1A r=0.82

and IL1B vs IL8 r=0.78) compared to genes with no direct biological association

that showed low Pearson correlation coe�cients (GAPDH vs IL1B r=-0.07, Figure

4D). Similarly, FISH microscopy analysis showed overlapping expression patterns

of IL1B and IL8 (Figure 4E). This relation was quantified for ⇠800 cells per

gene pair by acquisition of multiple pictures and subsequent per-cell fluorescence

quantification. High Pearson correlation values were determined for IL1B and
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Figure 4: LPS-responsive genes show partial and coordinated gene expres-
sion. A: Distribution of gene expression in individual activated macrophages determined
by sc-qPCR analysis. B: Distribution of IL1B and GAPDH expression from activated
and resting macrophages analyzed by RNA fluorescence in situ hybridization coupled
to flow cytometry analysis (FISH-flow). XIST is not expressed in THP-1 cells and
acts, together with unstained cells (no-probe), as background subtraction control. C:
RNA-FISH analysis of selected transcripts and schematic representation of the analysis
workflow. D: Correlation analysis of sc-qPCR readouts for selected transcripts. E:
RNA-FISH analysis and correlation analysis for selected gene pairs based on relative
fluorescence quantification. F: sc-qPCR analysis for selected transcripts treated with
LPS for 1, 2 or 4 hours or left untreated. Two times ⇠88 cells per time point were
analyzed. r indicates Pearson’s correlation coe�cient.
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IL8 (r=0.57) and lower Pearson correlation values were determined for IL1B and

GAPDH (r=0.24, Figure 4E). The e↵ect of partial inflammatory gene expression

was also found 4 hours after LPS stimulation (Figure 4F) The number of cells that

were positive for selected inflammatory genes remained constant (IL8) or declined

(IL1B) from 2 hours to 4 hours after LPS stimulation. However, approximately at

most half of the cells did not express any of the classical inflammatory genes but

expressed GAPDH homogeneously in almost all cells.

To conclude, in the case of IL1B and IL8 a specific function, the LPS-induced

primary response, is restricted to a subpopulation of cells rather than a↵ecting

the whole macrophage population. Results corroborate a model including digital

all-or-none gene expression. Similarly, this was observed for dendritic cells at

single-cell resolution (Shalek et al. 2013, Shalek et al. 2014). For inflammatory

marker genes transcriptional heterogeneity upon a specific stimulation appeared to

be highly synchronized at the single-cell level. This suggests that high correlation of

gene expression observed in single-cell gene expression measurement is a potential

proxy to evaluate putative joined functions of gene groups by the guilty-by-

association principle (Oliver 2000, Wolfe et al. 2005). Using whole transcriptome

data this property may aid the definition of cellular states. Moreover, this approach

would help characterize those cells that surprisingly showed absence of classical

inflammatory expression signatures. In summary, these results suggest that gene

expression response of macrophages towards LPS results in subpopulations or

cellular states with distinct transcriptomes.

3.3 Transcriptome-wide assessment of

macrophage heterogeneity

To examine cellular heterogeneity of individual THP-1 macrophages transcriptome-

wide the Fluidigm C1 workflow was used to generate single-cell cDNA libraries for

mRNA sequencing (Figure 5A). After FACS-based discrimination of cell debris, cell

aggregates and dead cells (Figure 5B), 93 resting macrophages and 96 LPS-treated

cells were captured in Fluidigm integrated fluidics circuits (IFCs) micro-chambers

(examples see Figure 5C). Cells were screened in individual micro-chambers of IFCs.
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Figure 5: Single-cell sequencing workflow. A: Fluidigm C1 workflow to generate
single-cell cDNA libraries for Illumina sequencing. B: FACS plots show final gating used
to isolate viable single cells based on forward scatter (FSC) and side scatter (SSC). C:
Selected images of microfluidic integrated fluidic circuit (IFC) micro-chambers (carrier
wells) empty, loaded with one cell or loaded with two cells. See Supplementary Figure
28 for images of all micro-chambers. D: Representation of electrophoresis traces of
multiplexed sequencing ready cDNA libraries.

Three micro-chambers were empty on the IFC used for resting macrophages and

cell doublets or deformed cells were found in 8 and 7 micro chambers for resting

and activated macrophages, respectively (Supplementary Figure 28). Individual

single-cell cDNA libraries (not shown) and pooled and indexed libraries showed

expected patterns in gel electrophoresis (Supplementary Figure 28D).

Paired-end low-coverage sequencing of pooled libraries showed high base call

accuracy (Figure 6A). Mapped reads covered full length transcripts and reads

showed only mild bias towards the 3’-end of gene bodies (Figure 6B). Gene-

mappable sequencing reads per cell ranged from 1.564 (empty wells) to 15.534.370

(on average 4.093.295 reads/cell) reads for resting macrophages and from 13.248 to

1.715.592 (on average 588.692 reads/cell) for activated (LPS-treated) macrophages.

Data of IFC micro-chambers with cell doublets, no cell or damaged/deformed cells

or cells with low sequencing quality were excluded to generate a clean dataset

from 73 and 83 intact single cells for untreated and LPS-treated macrophages,

respectively (Supplementary Table 2). Complexity of single-cell transcriptomes is

low compared to population RNA-seq derived transcriptomes. High sequencing

depth is not required to capture single-cell library complexity (Pollen et al. 2014).

Sequencing-depths of ⇠ 0.5-3 million mappable reads per cell were su�cient, as
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indicated by saturation curve analysis estimating the number of detected genes in

subsampled sequencing data (Figure 6C).

The entire single-cell dataset datasets comprised 15.684 genes with a cut-o↵ of

one read. Individual cells showed on average 3047 genes expressed with more than

20 sequencing reads per gene and 6724 genes with more than one read count (Figure

6D). In total, for both resting and activated macrophages 5420 unique genes were

detected with an average minimum gene expression cut-o↵ of 20 reads per gene.

At a mean expression level of 20 reads per gene, data derived from minute amounts

of IFC-processed bulk RNA but not single-cell data showed normal (Gaussian)

distribution. This suggests that genes with mean gene expression counts above 20

reads in single-cell data show transcriptional variability above technical noise levels

(Piras and Selvarajoo 2015, see Materials and methods 2.2.3 and Supplementary

Figure 27). Number of detected genes was comparable to other studies with

similar setups (i.e. Björklund et al. 2016). Despite the higher sequencing coverage

compared to activated macrophages, resting macrophages showed 1.25 times higher

numbers of detected genes per cell under di↵erent cut-o↵ settings (Figure 6D).

Comparison of results from population RNA-seq data (from aliquots from the

same cells subjected to IFCs) with mean expression from single-cell data, indicated

coherent single-cell sequencing results (Figure 6E). Pearson correlation coe�cients

of 0.95 and 0.93 were determined for untreated and LPS-treated cells, respectively.

3.4 Macrophages are present in three transcrip-

tional states

The generated single-cell dataset builds a complex and high-dimensional dataset

manifested as a gene expression matrix with hundreds of experimental samples

(cells) and thousands of genes. Thus, inferring cellular heterogeneity requires

sophisticated data sorting, simplification and visualization strategies to exhibit

gene modules and distances of single-cell transcriptomes. To gain an initial insight

into the single-cell expression landscape, data from top expressed ⇠2500 genes was

clustered using hierarchical clustering. Heatmap representation of the data showed

good separation between activated (LPS–treated) and resting macrophages but
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Figure 6: Quality evaluation for single-cell sequencing data. A: Per base
phred quality scores indicated good sequencing accuracy for single-cell libraries generated
from activated (LPS) and resting (UN) macrophages. B: Distribution of mapped
sequencing fragments shown along gene bodies (gene body coverage). C: Sequencing
depth saturation curve analysis. Each dot was generated by random downsampling of
raw reads from each single-cell datafile, subsequent mapping, quantification and final
counting of genes with mean expression of >10 counts. Error bars indicate standard
error. D: Number of detected genes per expression bin. E: Correlation between average
single-cell expression values and population RNA-seq gene expression measurements.
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Figure 7: Cell distance estimation with non-dimension reduced single-cell
data. A: Hierarchical clustering of ⇠2500 top expressed genes. B and C: Hierarchical
clustering of pair-wise Pearson correlation matrix of top highly expressed genes for
cells from both treatments together (B, resting, UN and activated, LPS) and for the
treatment models individually as indicated (C).

intra-treatment di↵erences could not be easily observed (Figure 7A). Similarly,

this was the case for cell-to-cell correlation matrix analysis performed on combined

data for resting and activated macrophages (Figure 7B).

Cell-to-cell correlation analysis represents an obvious classification strategy for

potentially detecting di↵erent cellular states. Once cell-to-cell correlation analysis

was performed individually for both macrophage models, distinct clusters were

observed indicating the presence of transcriptionally di↵erent macrophage states

(Figure 7C). However, determined clusters were not reproducible as indicated by

low bootstrap probability (BP) values (median BP=0.11 for resting macrophages

and median BP=0.15 for LPS-treated macrophages, Figure 8D). A BP value of 1

would indicate that a dataset could be clustered with maximum reproducibility.

The observation of incomplete separation with low reproducibility is not surpris-

ing, because the power of many multivariate statistical methods (i.e. hierarchical

clustering) is limited owing to the character of single-cell data. Single-cell data

has a low signal-to-noise ratio, missing values and small sample size compared to

a high number of genes. Thus, hierarchical clustering of normalized expression

matrices gained an initial visualization of the data but remained impractical for

further exploratory analysis and reproducible macrophage state definition.

Inspired by studies with similar challenges (high sample numbers with unknown

relation) machine learning-based self-organizing maps analysis (SOM analysis,
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Lö✏er-Wirth et al. 2015) was used to initially reduce the dimensions of the

dataset from several thousand genes to 100 SOM components to facilitate further

downstream analysis (Figure 8A). 5280 genes for untreated macrophages and 5115

genes for LPS-treated macrophages (mean gene expression > 20 counts) were

mapped to 100 SOM components. Genes gathered in one SOM component exhibit

coordinated, most similar and high level expression patterns. Thus, genes with

high information content can be conveniently identified.

SOM analysis-derived, single-cell SOM portraits are simplified two dimensional

visualizations of detectable single-cell transcriptomes (Figure 8B). SOM portraits

visualize the similarity relationships of genes in which spatial proximity reflects

expression pattern similarity. The locations of genes on the SOM portraits from

di↵erent cells remain constant. SOM portraits intuitively revealed that only a

fraction of expressed genes were coordinated and highly expressed in each individual

cell. On average 130 genes for resting macrophages and 279 genes for activated

macrophages showed high expression with high correlation within groups of cells

in the dataset (Figure 8C). Compared to clusters gained with normalized raw

counts (Figure 7) clusters were robust to bootstrapping and reproducible after

SOM components were subjected to hierarchical clustering of cell correlation

matrixes (median BP of 0.9 for untreated macrophages and 0.82 for LPS-treated

macrophages, Figure 8D). Cell-to-cell correlation matrixes computed with SOM

components showed clear separation of at least three sub-clusters for activated

and resting macrophages. This suggests the presence of three distinct macrophage

states (clusters I-III, Figure 8E and F).

To maintain a framework to further explore the molecular identities of individual

single cells, di↵erent cell distance visualizations were performed. Cell-to-cell

correlation network visualization was applied for activated and resting macrophages

individually to intuitively arrange cells from the di↵erent clusters according to

their whole-transcriptome correlation distance. Each cell was assigned a color

according to its location in hierarchical clustering readouts (Figure 9A). While

all three clusters from activated macrophages (LPS) were well separated from

each other, cluster I and II from resting macrophages (UN) showed a less distinct

pattern (Figure 9A). These results may indicate that many cells might have been in
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Figure 8: Macrophages segregate towards three transcriptional states. A:

Schematic presentation of the data analysis workflow using SOM machine learning
dimension reduction. B: SOM portraits (“expression landscapes”) for selected cells with
di↵erent grid sizes. Every dot represents a SOM component, representing a gene group
of co-expressed genes and indicating the mean expression of genes within the component
by gradient coloring (over-expression spots (red) and under-expression spots (blue)).
Gene population maps indicate how many genes were associated to each component. C:
Box plot showing the number co-expressed genes per cell (cell-specific genes). Genes
were defined by selection of samples-specific over-expression spots from SOM portraits.
D: Distribution of Bootstrap Probability (BP) values computed by normal bootstrap
resampling, indicating how strong clusters (hierarchical clustering) are supported by
the data (RAW: non-dimension-reduced single-cell data; SOM: dimension reduced data
(SOM components). E: Hierarchical clustering of pair-wise Pearson correlation matrices
of SOM components for cells for both treatments analyzed together (resting, UN and
activated, LPS) and individually, as indicated. Main clusters were color assigned, based
on similarity of clusters between both treatment models. F: Percentage of cells that
were assigned to the classified clusters.
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Figure 9: Cell-to-cell distance visualizations uncovers relations of defined
macrophage states. A: Correlation networks for activated (LPS) and resting (UN)
macrophages visualizing the distances between cells based on Pearson correlation. B:
Two-dimensional independent component analysis (ICA) representation visualizing
the distances between cells from both treatment model. Arrows highlight that states
from both treatments are positioned in close proximity. C: Three-dimensional ICA
representation indicates that clusters II from both treatment models are related (arrow).
D: Representation of t-distributed stochastic neighbor embedding (t-SNE) analysis.

transition between two macrophage states and thus showed a mixed transcriptome

profile.

In general, combined visualization of clusters from resting and activated

macrophage models by means of correlation distance analysis is impractical due to

the di↵erences of transcriptomes from activated and resting macrophages (Figure

8E). Therefore, visualization of cell distances for both macrophage models was

accomplished by independent component analysis (ICA) of SOM components com-

puted with the combined dataset from activated and resting macrophages (Figure

9B). ICA representation showed that cells of di↵erent clusters separated partially

on IC2 (I and II resting macrophages and II and III activated macrophages) and

IC1 (resting I/II and III). Separation of resting and activated macrophages was

observed along IC1. Although distantly separated in two-dimensional ICA space,

three-dimensional ICA representation underlined the association of clusters II from

resting and activated macrophages (Figure 9C). These cluster relations were also

supported by t-SNE analysis of SOM components, in which cells from resting and

activated macrophages states were mirrored along t-SNE axis 1 (Figure 9D).
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3.5 Gene expression of macrophage states sug-

gest di↵erent biological functions

After having defined groups of cells based on distinct correlation patterns using

clustering and association of cells from di↵erent clusters in terms of transcriptome

distances, integrative analysis was carried out to characterize molecular identities

of macrophage states based on genes and pathways. SOM component visualization

indicated strikingly di↵erential gene expression patterns per gene cluster for both

macrophage models (Figure 10A). Irrespective of intra-cluster heterogeneity a

broad definition of cluster-specific genes was achieved based on SOM portrait

analysis to select most representative cluster-specific genes for resting and activated

macrophages (Figure 10B). Projection of mean expression of most significant cluster-

specific genes (p-value < 0.01) underlined macrophage state-restricted expression in

ICA space (Figure 10C). While cells of cluster I and III showed similar expression

pattern for treatment-specific genes, cluster II showed more di↵erential expression

patterns between activated and resting macrophages. Inspection of derived gene

lists revealed that archetypical pro-inflammatory marker genes (i.e. IL1B, IL8 and

CCL3) with strong di↵erential expression in population measurements (Figure 3D)

showed high and coordinated expression in cluster II in activated macrophages

(Figure 10D and Supplementary Table 5). In cluster II of resting macrophages

pro-inflammatory marker gene expression was absent. Inspection of cluster-specific

genes from the other clusters I and III did not intuitively indicate its associations

to specific macrophage-related functions. However, the three clusters from both

macrophage models showed also common gene expression signatures, as supported

by overlap analysis (Figure 10E).

To gain a better picture on the putative function of found macrophage states,

selected genes from di↵erent clusters were subjected to over-representation pathway

analysis. 564 pathway terms were determined with >5 genes per pathway term

and a pathway significance of q-value < 0.05. 328 pathway terms overlapped for

any cluster of both macrophage models (Figure 11A). 219 pathways overlapped

significantly for the associated clusters from both macrophage models. Deter-

mined pathways for cluster I showed highest significance estimates for pathway
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Figure 10: Cell states show distinct gene expression signatures. A: Heatmaps
illustrating state-specific gene expression for resting (UN) and activated (LPS)
macrophages (mean gene expression per SOM component). B: Strategy of state-specific
gene selection and gene ranking guided by average state-specific SOM portraits for
di↵erent clusters. Black numbers indicate the number of all state-specific genes derived
from over-expression spots. Grey numbers indicate the number of most significant
cluster-specific genes (p-value < 0.01). C: Schematic representation of cells in ICA
space. Projection of mean gene expression (indicated by red gradient) of most significant
cluster-specific genes onto ICA coordinates. Note, that expression values were scaled.
Red circles mark calculated kernel density estimations that highlight cells with high
expression values for a particular gene. D: Projection of normalized gene expression
(not from SOM components) for selected state-specific genes onto ICA coordinates. E:
Overlap analysis of state-specific genes indicates relation between states for resting and
activated macrophages. Significant overlap was determined for clusters I and III but not
for clusters II.

60



CHAPTER 3. RESULTS

A"

0" 0.5"

Jaccard"index"

LPS"

U
N
"

AB
D

_5
_0

.0
1

IF
H

_5
_0

.0
1

JC
G

_5
_0

.0
1

JI_5_0.01

HFG_5_0.01

BD_5_0.01

N.S.: Not Significant; −−: Ignored

N.S. N.S. 2e−03

N.S. 1e−48 N.S.

1e−29 N.S. N.S.

Jaccard Index

0 0.2 0.4
Value

Color Key

71" 6" 12"

18" 122" 26"

18" 29" 26"

U
N
"

Cluster"I" Cluster"II" Cluster"III"

N
um

be
r"o

f""
co
m
m
on

"p
at
hw

ay
s"

Te
st
"o
f"o

ve
rla

p"

ABD
_BD

IFH
_H

FG
JC

G
_JI

0.0
00

0
0.0

02
5

0.0
05

0
0.0

07
5

0.0
10

0

0
5

10
15
20
25

0

50

100

0.0
2.5
5.0
7.5

10.0
12.5

p−value
N

um
be

r o
f p

at
hw

ay
s

B" hom inf reg

LPS
U

N

25 50 75 100 25 50 75 100 25 50 75 100

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

Percentage high expressed

T−
sc

or
e 

(g
en

es
)

hom

inf

reg

LPS"
U
N
"

Cluster"I" Cluster"II" Cluster"III" D"

LPS UN

0 2 4 6 8 2 4 6 8
0.0
0.1
0.2
0.3

T−score (genes)

p−
va

lu
e

C"

E"

LPS UN

0.0 2.5 5.0 7.5 0 2 4 6 8
T−score (genes)

Figure 11: Characterization of state-specific pathway terms. A: Overlap
analysis for determined pathway terms comparing pathway terms found for resting (UN)
and activated (LPS) macrophage states/clusters. Top: Number of found pathways.
Bottom: Representation of results from tests for significance of overlaps. Overlap
analysis indicates relation between all states for resting and activated macrophages. B:
Distribution of determined pathway significance estimations. C: Density plots showing
the relation of t-score estimates per gene relative to the percentage of cells the gene is
expressed in. Every data point underlying the density distribution represents a gene.
Note that many genes for cluster I have high t-scores but show expression in a high
percentage of cells. D: Distribution of t-scores of state-specific genes. E: Relation of
p-value estimates and t-score estimates indicate that gene expression restriction towards
a state is significant for t-scores ⇠>2.5.

enrichments (Figure 11B).

Calculated gene-specific shrinkage t-scores linked di↵erential gene expression

(fold-change) between clusters with variance estimates. This facilitated robust gene

ranking. Thus, t-scores were calculated for every gene to get a significance measure

of how well a gene expression is restricted for its associated cluster. Generally,

t-scores were higher for cluster I and cluster II compared to cluster III (Figure

11D). However, t-score estimates together with the percentage of cells showed

that cluster II and III have a high degree of cluster-restricted gene expression

compared to gene expression in cluster I (Figure 11C). This is because a gene may

be expressed in almost every cell but its expression maximum lies within a specific

cluster. At a t-score level of >2.5 the t-score estimate was evaluated significant

(p<0.05, Figure 11E). Consequently, genes from cluster I have a lower restriction

of gene expression compared to cluster II and III.

Twenty-nine pathways with the highest degree of overlap to major molecular

pathways were selected (Herwig et al. 2016). The following classification was

gained for the three main cell clusters in untreated and LPS-treated macrophages,
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indicating functionally di↵erent states (Figure 12 and Supplementary Figure 30).

• Homeostasis-preserving macrophages (cluster I): Similarity associated clusters

I for both macrophage models showed significant enrichment of pathway

terms mostly unrelated to immune functions (Figure 12A). Pathway terms

were associated to metabolic pathways including metabolism, glycolysis and

gluconeogenesis and mitochondrial electron transport chain but to a low

extent to immune-related processes (i.e. interferon-gamma signaling). For

example, the expression of genes associated to metabolism-related pathways

was similar and significantly restricted (average p-value<0.0013) in untreated

(resting) and activated macrophages. However, metabolism associated genes

were expressed above average in ⇠78% cells in resting macrophages compared

to ⇠33% of cells in activated macrophages. Taken together, found pathways

suggest that macrophage cells associated to cluster I exhibit low response

upon LPS stimulation. In this work, these cells are termed “homeostasis-

preserving macrophages” according to their putative function within the

whole macrophage population. The presence of these cells may prevent

excessive population transition in response to LPS stimulation and maintain

homeostasis for the macrophage population.

• Pro-inflammatory macrophages (LPS, clusters II) or macrophages with pro-

inflammatory potential (UN, cluster II): Cluster II for resting and activated

macrophages showed over-represented pathways associated to classical inflam-

mation (i.e. NF-kB, TNF- and TLR-signaling, average p-value<0.004, Figure

12B). Both cases showed restricted expression of genes from the canonical NF-

kB pathway including TNFAIP3, IKBKB, NFKBIA, and ERC1. Those genes

represent regulators of the NF-kB response rather than pro-inflammatory

NF-kB response gene products. For example, TNFAIP3 is critical for limiting

inflammation by terminating TNF-induced NF-kB responses (Zhou et al.

2016). Only in activated macrophages, additional NF-kB e↵ector genes

including IL1B and IL8 were expressed (Supplementary Table 6). Constitu-

tively expressed genes of the NFKB machinery were expressed in fewer cells

in resting compared to activated macrophages. Those cells did not show i.e.
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Figure 12: Pathway annotation analysis suggests distinct functional proper-
ties for macrophage states. A-C: Determined pathway terms that overlap for resting
(UN) and activated (LPS) macrophages, along with distributions of t-scores for pathway-
specific genes, mean pathway-specific gene expression per cell and the percentage of cells
that show high expression for pathway-specify genes (mean expression > 0.3). Asterisk
indicate di↵erential state restriction. D: Visualization of pathway gene expression in
ICA space. Horizontal color bars indicate mean expression levels of pathway-specific
genes. White indicates low expression and red indicates high expression per cell.
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IL1B expression and therefore did not show classical M1-like macrophage

expression patterns. Resting macrophages with expression of NF-kB genes

may represent cells with pro-inflammatory potential. For most pathways

gene expression was similarly restricted to associated clusters of activated

and resting macrophages. However, PPAR signaling pathways showed a

switch like cluster-specific expression pattern. Genes of the PPAR signaling

pathways were detected in homeostasis-preserving cells (cluster I) or pro-

inflammatory cells for resting or activated macrophages, respectively (Figure

12B, asterisk). Strikingly, pathway analysis revealed that only ⇠30% of cells

from activated macrophages showed gene expression signatures of classical

M1-like macrophages with high expression for pro-inflammatory pathways.

• Anti-inflammatory macrophages (clusters III): Clusters III from untreated

and LPS-treated macrophages showed overrepresented pathways associated

with immune regulatory pathways with genes connected to reduced inflamma-

tion (Figure 12C) including regulatory IL-signaling (average p-value<0.003,

Supplementary Table 6), JAK-STAT signaling (p-value<0.004, including

JAK2) and cytokine signaling (p-value<0.0007, including IRAK3) and gluco-

corticoid receptor regulatory network (p-value<0.0020, including FKBP5).

Thus, these cells showed pathways associated to anti-inflammatory M2-like

macrophage states. Intriguingly, cluster III grouped functionally tightly

related genes such as NR3C1 (glucocorticoid receptor, GR) and IRAK3. Glu-

cocorticoid receptor, promotes suppression of pro-inflammatory regulators

such as NF-kB or activator protein 1 (AP-1) (Luecke and Yamamoto 2005,

Busillo and Cidlowski 2013). Similarly, IRAK3 is a negative regulator of

Toll-like receptor signaling and promotes alternative macrophage activation

(Kobayashi et al. 2002, Ballinger et al. 2015). Both factors function in con-

cert, as GR suppresses inflammation via the up-regulation of IRAK3 (also

called IRAK-M, Miyata et al. 2015). Although JAK2 inhibition prevents

innate immune responses (Peña et al. 2010), M2 polarization was shown

to be enhanced through Jak2-mediated signaling in human macrophages

(Yuan et al. 2014, Bhattacharjee et al. 2011). The number of cells expressing

regulatory signaling pathways was higher in activated macrophages compared
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to resting macrophages. IL2/4/5/6 pathway terms here again render the

basal pathway machinery (i.e. PTK2B, Interleukin-6 receptor subunit beta

precursor (IL6ST) and RASGRP3) of macrophage regulatory programs in-

cluding sensing of anti-inflammatory interleukins. Classical pro-inflammatory

gene expression with e↵ector gene expression of chemokines, cytokines or

interleukins was low or absent in the anti-inflammatory state of macrophages.

Despite the strong expression changes upon LPS-stimulation, pathway analysis re-

vealed similar cluster-specific pathways for activated and resting macrophages. How-

ever, the lowest overlap of cluster specific genes (Figure 10E) and cluster-specific

pathways (Figure 11A) was determined for the pro-inflammatory macrophages

state (cluster II). This indicated that the majority of the di↵erentially expressed

gene was restricted to cells of the pro-inflammatory state.

However, to systematically gain further insight of the changes for this cluster

upon LPS-stimulation, di↵erential pathway analysis was performed for cluster II

(Figure 13A, Table 1 and Supplementary Figure 31). As expected, typical pro-

inflammatory pathways were again found for activated macrophages (i.e. NFkB

pathway, p-value<6.9⇥10�6) as well as genes related to oxidative stress. For

macrophages oxidative stress and inflammation are two major responses to fight

invading bacteria. Oxidative stress is the result of elevated reactive oxygen species

(ROS) production that is critical for the activation and functions of M1 macrophages

(Covarrubias et al. 2013). Found genes for the oxidative stress pathway were those

that reduce ROS-induced stress (i.e. SOD2 Kozakowska et al. 2015). Interestingly,

nuclear receptors meta-pathway was found as LPS-exclusive pathway including

the inflammation-limiting RXRa target gene GCLC (Wu et al. 2004).

Classical pro-inflammatory pathways including TNF-a signaling pathway (p-

value<0.004) and HIF-1a signaling pathway (p-value<4.4⇥10�5) were also found

for resting macrophages. The example of TNF-a signaling pathway highlights the

separation of non-response genes for resting macrophages versus the responsive

inflammatory genes in activated macrophages that show clearly distinct expression

patterns (Figure 13B). Surprisingly, di↵erential pathway analysis revealed the ex-

pression if IL-signaling pathways (average p-value<7⇥10�5) similar to the pathway

terms found for anti-inflammatory macrophages (clusters III). This for example in-
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Figure 13: Di↵erential pathway analysis of pro-inflammatory macrophage
states. A: Pathway analysis was restricted to those pathway terms that showed
di↵erential state-specific gene expression between pro-inflammatory state activated
macrophages (LPS) and resting macrophages (UN) with pro-inflammatory potential.
TNF-a signaling pathway was selected as an example to highlight di↵erential gene
expression between the two states. Left: Distributions of t-scores for pathway-specific
genes, mean pathway-specific gene expression per cell and the percentage of cells that
show high expression for pathway-specify genes (mean expression > 0.3). B: Visualization
of mean expression from pathway specific genes and expression for selected genes for cells
in ICA space. Horizontal color bars indicate mean expression level of pathway-specific
genes. White indicates low expression and red indicates high expression per cell.
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Pathway p(value q(value Source Number5of5genes Pathway5size Genes
Oxidative)Stress 9.84E207 4.96E204 Wikipathways 6 30 GCLC,)MGST1,)GSR,)SOD2,)NQO1,)TXNRD1

TNF)signaling)pathway)2)Homo)sapiens)
(human)

4.74E206 7.96E204 KEGG 11 110
TNFRSF1B,)TRAF1,)CXCL2,)MMP9,)CCL20,)TNFAIP3,)IL1B,)PIK3R5,)

CXCL1,)MAP4K4,)RFFL

Nuclear)Receptors)Meta2Pathway 6.89E205 4.96E203 Wikipathways 13 316
GCLC,)MGST1,)GCLM,)AHRR,)GSR,)CCL20,)TNFAIP3,)IL1B,)SLC39A8,)

SLC7A11,)SERPINB9,)NQO1,)TXNRD1
NF2kappa)B)signaling)pathway)2)Homo)

sapiens)(human)
9.53E205 5.30E203 KEGG 7 95

TRAF1,)CXCL2,)TNFAIP3,)IL1B,)BCL2A1,)CXCL8,)LYN

Cytokine2cytokine)receptor)interaction)2)
Homo)sapiens)(human)

9.42E204 1.28E202 KEGG 10 265
TNFRSF1B,)TNFRSF9,)CXCL2,)CCL20,)IL1B,)CCR7,)IL18,)IFNAR2,)CXCL1,)

CXCL8
IL62mediated)signaling)events 9.62E206 1.57E204 PID 7 48 MAPK14,)SOS1,)RAC1,)LMO4,)PIK3R1,)IL6R,)GRB2

Innate)Immune)System 1.36E205 1.80E204 Reactome 41 1309

ITGAL,)RNASET2,)TIMP2,)PIK3CB,)KCNAB2,)NFATC3,)APBB1IP,)MEF2C,)
MAP3K1,)SNAP29,)CYB5R3,)TNRC6B,)PYGL,)DNAJC5,)PYCARD,)DUSP3,)

MLEC,)MAPK14,)LY86,)GCA,)SOS1,)WIPF1,)QSOX1,)PADI2,)CTSD,)
LRMP,)TRIM25,)CAT,)ARHGAP9,)RAC1,)CNPY3,)IDH1,)PFKL,)PIK3R1,)

MNDA,)SYK,)GUSB,)PIK3CD,)GRB2,)LAMP1,)NHLRC3
IL2 3.04E205 2.84E204 NetPath 8 76 PIK3CB,)PIK3CG,)MAPK14,)SOS1,)PIK3R1,)SYK,)PIK3CD,)GRB2

HIF21)signaling)pathway)2)Homo)sapiens)
(human)

4.35E205 3.56E204 KEGG 9 103
PIK3CB,)MKNK2,)PIK3CG,)LTBR,)EGLN1,)PFKL,)PIK3R1,)IL6R,)PIK3CD

IL4 7.53E205 4.87E204 NetPath 7 64 MAPK14,)PIK3R1,)SYK,)INPP5D,)PIK3CD,)GRB2,)FES
IL3 1.65E204 8.83E204 NetPath 6 51 PIK3R1,)SYK,)INPP5D,)PIK3CD,)GRB2,)FES

Interferon)type)I)signaling)pathways 1.77E203 4.43E203 Wikipathways 5 54 MAP3K1,)MAPK14,)RAC1,)PIK3R1,)PIK3CD

Adaptive)Immune)System 2.11E203 4.98E203 Reactome 24 807
ITGAL,)MRC2,)AP2S1,)PIK3CB,)BTBD1,)PAG1,)FYB,)FBXO7,)TNRC6B,)
FBXO9,)RNF130,)ITGA4,)SOS1,)CTSD,)CLTA,)HERC2,)RAC1,)HERC3,)

PIK3R1,)UBE2Q1,)SYK,)INPP5D,)PIK3CD,)GRB2
CXCR42mediated)signaling)events 2.70E203 6.15E203 PID 6 88 PIK3CB,)PAG1,)PIK3CG,)RAC1,)PIK3R1,)INPP5D
TNF)alpha)Signaling)Pathway 3.99E203 8.24E203 Wikipathways 6 93 MAP3K1,)PYGL,)SOS1,)RAC1,)GRB2,)MAP3K3

LPS

UN

Table 1: Di↵erential pathway analysis. Results from di↵erential pathway analysis
as shown in Figure 13.

cludes the IL2-signaling pathway (p-value<3⇥10�5) and several PIK3 isoforms that

are involved in limiting lipopolysaccharide-induced activation of signaling pathways,

for example the expression of inflammatory mediators (Guha and Mackman 2002).

Other pathway terms and associated genes putatively explain how a di↵erent cellu-

lar status is maintained in resting macrophage cells with pro-inflammatory potential.

For example, the M2 macrophage marker gene TIMP2 (innate immune system

pathway, p-value<1.4⇥10�5) is exclusively expressed in resting macrophages with

pro-inflammatory potential and not in pro-inflammatory macrophages. TIMP2

is known to inhibit i.e. MMP9, a classical pro-inflammatory M1 macrophages

factor that is required for inflammatory macrophage migration (Bourboulia and

Stetler-Stevenson 2010, Laquerriere et al. 2004). Similarly, found interferon type

I signaling pathway (p-value<0.002) induces the MYD88-independent pathway

(Michalkiewicz et al. 2015) and activates RAC1 to down-regulate phagocytosis

in human monocytic cells (Frausto-Del-Rı́o et al. 2012). Taken together, these

observations suggest that resting macrophage cells with pro-inflammatory potential

are inhibited but maintain a basic machinery of pro-inflammatory pathway genes

to rapidly react towards potentially invading bacteria.
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3.6 Macrophage states exhibit di↵erent levels of

responsiveness

State-specific expression of NF-kB e↵ector genes (i.e. IL1B) in activated

macrophages suggested that macrophage states exhibit heterogeneous responsive-

ness upon LPS stimulation. To assess cellular responsiveness to LPS in individual

macrophages systematically, di↵erential gene expression was assessed in respect

to population RNA-seq readouts from activated and resting macrophages. To

connect di↵erential population expression data to single-cell data, cell-specific

genes were identified by SOM analysis (Figure 8C). Specifically, for every cell those

SOM components were selected that showed high level of gene expression and high

correlation in the consensus of similar cells (SOM portrait over expression spots,

Wirth et al. 2012). This allowed to classify cell-specific genes for every cell. Asso-

ciated macrophage clusters in activated and resting macrophages showed di↵erent

numbers of cell-specific genes (Figure 14A). Further, it was evaluated if these

genes were di↵erentially expressed in activated compared to resting macrophages

at the average cell population level (bulk RNA-seq, Figure 14B). The number of

cell-specific di↵erentially expressed genes and the degree of di↵erential expression

(fold-change) thus allowed to analyze if and in which way (up- or down-regulation)

a cell globally reacts upon stimulation.

Response of 45% of cells remained overall low for activated macrophages (Figure

14C and D). Macrophages from the pro-inflammatory state showed strikingly

more cell-specific di↵erentially expressed genes compared to other macrophage

states (up to ⇠100 di↵erentially expressed genes per cell, Figure 14C). Notably,

the distribution of cells with low and high numbers of cell-specific di↵erentially

expressed genes was bimodal for pro-inflammatory and anti-inflammatory state

macrophages (Figure 14C). Remarkably, homeostasis-preserving cells showed overall

low response levels (low response state, Figure 14D). The term low-response

macrophages can be therefore used as alternative term for homeostasis-preserving

cells. Whereas, almost all pro-inflammatory state macrophages showed LPS-

response with average up-regulated cell-specific gene expression (Figure 14D, 93%

of cells defined as high response state), only half of anti-inflammatory macrophages
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Figure 14: Analysis of macrophage responsiveness towards LPS stimulation.
A: Distribution of cell specific genes per cell determined by SOM analysis and visualized
for defined states for resting (UN) and activated (LPS) macrophages. B: Determined
fold-change cut-o↵s for selecting di↵erentially expressed genes from population RNA-
seq data (LPS vs. UN). C: Number of cell-specific di↵erentially expressed genes per
macrophage state. D: Histograms show the distribution of cells agains the number
of assigned cell-specific di↵erentially expressed genes. E: ICA visualization of mean
fold-changes (log2) per cell. F: Scatter plots show genes in respect to their fold-change
(log2) vs. the number of cells the gene is expressed in (cell-specific genes) for each
macrophage state.
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showed response with average up or down-regulated gene expression (Figure 14D,

53% of cells defined as medium response state).

In homeostasis-preserving state low-response macrophages only 31 genes were

expressed (>5 cells) with an average fold-change of 0.7 (log2, Figure 14F, Supple-

mentary Table 7). Genes with the highest di↵erential expression were for example

BIRC3 and DUSP2. While BIRC3 is an important regulator of innate immune

response and inhibits apoptosis (Wang et al. 2012b), DUSP2 is required to initiate

LPS-triggered TLR cascades via MAPK signaling (Lang et al. 2006).

For activated macrophages, the strongest gene expression in respect to deter-

mined gene-specific fold-changes (275 genes with average fold-change of 2.8 (log2))

was observed for cells of the pro-inflammatory state (Figure 14F, Supplementary

Table 7). In several cells genes were expressed with high fold-changes compared

to resting macrophages; i.e. NAMPT, CCL4, IL8, IL1B and TNFAIP6. The

M1-macrophage marker NAMPT, once secreted as protein, promotes cell survival

for macrophages and other cells in inflammatory environments (Halvorsen et al.

2015, Li et al. 2008). Also CCL4 (MIP-�) is a typical M1-marker responsible

for early inflammation induction and a chemoattractant for natural killer cells,

monocytes and a variety of other immune cells (DiPietro et al. 1998, Bystry et al.

2001). TNFAIP6 can be induced by pro-inflammatory cytokines and is involved

in positive regulation of cell migration but also balancing inflammatory response

(Dyer et al. 2016). Few genes were down-regulated in pro-inflammatory state

macrophages including GCLC and CLEC7A. Down-regulation of GCLC leads to

elevated inflammation (Wu et al. 2004) and CLEC7A (Dectin-1) is suggested a

M2-marker (Lefèvre et al. 2010).

The alternative, anti-inflammatory macrophage state showed weaker response

(262 genes with average fold-change of 1.9 (log2 up-regulated) and -1.0 (log2 down-

regulated)). Forty percent of anti-inflammatory cells showed overall up-regulated

cell-specific gene expression with known anti-inflammatory functions (i.e. FKBP5,

GCH1 and RASGRP1, Figure 14F, Supplementary Table 7). GCH1 promotes

macrophage M2-like polarization and its inhibition shifts the phenotype of tumor

associated macrophages from the proangiogenic M2 towards M1 macrophages (Pick-

ert et al. 2013). RasGRP3 limits Toll-like receptor-triggered inflammatory response
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in mouse macrophages (Tang et al. 2014). FKBP5 is involved in glucocorticoid

receptor coordinated anti-inflammatory response (Chinenov et al. 2014). Genes

down-regulated in anti-inflammatory state macrophages included for example

FAM46A and CASP2 whose functions are unknown or not linked to macrophage

biology.

In summary, projection of average population di↵erential expression data to

single-cell data suggested that defined macrophage states are similar to previously

defined M1/M2-like polarization models. This is remarkable because this clearly

suggests intrinsic macrophage heterogeneity towards M1/M2 signatures indepen-

dent of targeted polarization (with i.e. IL4 towards M2 macrophages). In this

regard it is not surprising that state-specific gene expression signatures do not fully

recapitulate M2 macrophage profiles for found anti-inflammatory macrophages.

Many genes were classified according to macrophage states that are still in-

completely functionally described or not specifically associated to macrophage

biology (Supplementary Table 7). Remarkably, single-cell analysis showed that

only a fraction of cells react strongly upon LPS-stimulation (M1-like, high response

cells). Therefore, most of the cellular response is restricted to macrophages of

cluster II (pro-inflammatory state macrophages). This underlines that top dif-

ferentially expressed genes classified with population gene expression readouts

(Figure 3D) are biasedly derived from ⇠30% of the whole macrophage population.

Contrary, gene expression of cells with low pro-inflammatory potential or cells

with anti-inflammatory gene expression characteristics (M2-like, medium response

cells, Figure 14D and E) were underrepresented in population expression data.

3.7 Macrophage state characteristics upon envi-

ronmental changes

To further mathematically characterize the di↵erential response of macrophages

to changing environmental triggers in respect to defined macrophage states, gene

expression stability, intra-cluster correlation and signaling robustness was analyzed

by means of whole transcriptional noise characteristics and by means of signaling

entropy, respectively.

71



CHAPTER 3. RESULTS

In order to measure stability of macrophage states, each cell’s estimated stability

level was assessed in the context of its associated state within the whole macrophage

population. Therefore silhouette coe�cients (stabilities) were calculated. Silhouette

coe�cients hereby contrast the average distance of one cell to other cells in the

same state with the average distance to samples in the other states (Rousseeuw

1987). Silhouette coe�cient has a value between -1 and 1 where a higher value

indicates that the sample is well-matched to its own group, and poorly-matched to

the other groups (Xiong et al. 2014). Homeostasis-preserving state macrophages

showed highest (median S = 0.39) and lowest (median S=-0.05) stability for

resting and activated macrophages, respectively (Figure 15A and B). Homeostasis-

preserving cells present the dominating state in resting macrophages and form a

high-stability population. These cells may generate a reservoir from which cells

change states towards a more responsive pro-inflammatory or anti-inflammatory

condition. Upon macrophage activation anti-inflammatory and pro-inflammatory

macrophages remained at similar stability medians suggesting a similar status of

paired states in activated and resting macrophages (Figure 15A).

In order to calculate the degree of macrophage similarity within macrophage

states, irrespective of the whole macrophage population, intra-state correlations

were computed between all cell pairs of their respective clusters. Therefore, Pearson

correlation coe�cients were determined for each state based on SOM components.

Similar to results from responsiveness analysis (see 68) pro-inflammatory (median

r=0.92) and anti-inflammatory (median r=0.89) state activated macrophages

showed higher intra-state correlation compared to homeostasis-preserving cells

(median r=0.81, Figure 15C). This suggests, that upon LPS-stimulation, both

responsive states develop towards increased coordination. Compared to data from

activated macrophages, resting macrophages showed higher spread of Pearson

correlation coe�cients. Notably, in this case, cells from di↵erent states did not

show significant changes for Pearson correlation coe�cients. This observation

highlights that pro-inflammatory and anti-inflammatory states, specifically for

activated macrophages, feature a high degree of coordination. This would represent

a strategy to generate e�cient pathogen defense functionality by still maintaining

balanced macrophage states for flexible responses and to maintain homeostasis of
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pyFigure 15: Stability, intra-cluster correlation and signaling entropy. A: Sta-

bility scores were used here to quantify if a cell lies well within its cluster (high stability)
or tends to lie rather in between clusters. Box plots summarize the cells stability scores.
B: Stability per cell projected to ICA representation. C: Single-cell heterogeneity was
assessed by intra-cluster correlations of gene expression. High coe�cients reflect lower
heterogeneity of cells within a defined state and vise versa. D-H: Signaling entropy
quantifies signaling pathway promiscuity computed from the integration of single-cell
gene expression data with an interactome (PPI network, Teschendor↵ et al. 2014). High
signaling entropy indicates high amount of uncertainty, whereas low signaling entropy
suggests a more deterministic cellular response. D: Schematic representation for inter-
pretation of the signaling entropy concept. E: Normalized local signaling entropy per
cell for activated and resting macrophages using small high-confidence PPI networks.
F: Signaling entropy per cell for low response cells (grey, LPS) and medium and high
response cells (black, LPS) using small high-confidence PPI networks. See Figure 14
for definition of cellular responsiveness. G: Normalized local signaling entropy per cell
for activated and resting macrophages using low-confidence PPI networks with maxi-
mum network size. H: Signaling entropy per cell, shown for defined macrophage states
using small high-confidence PPI networks. UN: resting macrophages. LPS: activated
macrophages. Statistical analysis was done with one-way ANOVA followed by Dunn’s
multiple comparison test (n.s. p-value > 0.05; * p-vale < 0.05; ** p-value < 0.01; ***
p-value < 0.001).
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the entire macrophage population (Figure 15C). Significantly lower intra-cluster

correlations were determined for homeostasis-preserving cells in activated and

resting macrophages.

Neither stability nor intra-state correlation analysis took into account the under-

lying gene regulatory pathways that are triggered upon stimulation. These analyses

depend on the single-cell transcriptome data alone. Instead, signaling entropy

quantitatively captures a system’s e�ciency to transduce signals by making use of

protein-protein-interaction (PPI) network constructed pathways (Teschendor↵ et al.

2014). Normalized local signaling entropy quantifies the degree of coordination

for cells and selected pathways in di↵erent treatment situations. To quantify the

amount of uncertainty of signal transduction, combined analysis of PPI networks

and single-cell gene expression data was applied to determine mean signaling

entropy per cell according to Teschendor↵ 2016 using small high-confidence PPI

networks. Loosely defined, signaling entropy of a system refers to the amount

of overall “disorder” of underlying pathways. High signaling entropy indicates

high amount of uncertainty of events, whereas low signaling entropy suggests low

uncertainty and a more deterministic, coordinated response of cells (Figure 15D).

Intriguingly, activated macrophages exhibited a significantly lower entropy

rate compared to resting macrophages (p-value<9.7⇥10�8, Figure 15E). Thus,

LPS-stimulation resulted in quantifiable lower levels of uncertainty and more

deterministic signaling, which might help to shape cellular function. Lower entropy

rates were also determined for high/medium response activated macrophages

compared to activated macrophages with low response (as defined in 3.6 and

Figure 14D). Low response cells showed entropy rates closer to those of resting

macrophages (Figure 15F).

High-confidence PPI networks were constructed using genes with high expression

levels (on average >75 counts per gene). However, these interaction networks

did not show scale-free topology and constituted small PPI networks with several

hundreds of genes connected. Thereby, a basic requirement for the entropy approach

described by Teschendor↵ was neglected. Low-confidence interaction networks

constructed with all genes that showed any expression (count >0) in any cell

generated bigger networks with scale-free (or near scale-free) topology. Activated
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macrophages exhibited a significantly higher entropy rate compared to resting

macrophages (p-value<2.1⇥10�3, Figure 15G) if low-confidence networks were

used. Therefore, computing cell-specific entropy estimates with maximum network

size (low-confidence networks) or small network size (high-confidence networks)

showed opposite trends. The work presented here considered high-confidence

networks. This strategy was chosen because the selection of high expressed genes

minimizes the impact of low expressed genes for entropy estimations. However,

low-confidence network-based entropy estimation may represent a more wholistic

approach to qualify a system’s e�ciency to transduce signals.

For defined macrophage states, homeostasis-preserving state macrophages

showed high entropy rates using small high-confidence PPI networks, similar

to rates observed for resting (untreated) homeostasis-preserving macrophages

(no significant di↵erence, Figure 15H). Anti-inflammatory and pro-inflammatory

state macrophages showed significantly lower signaling entropy rates compared to

other macrophage states. While pro-inflammatory cells of activated macrophages

showed low entropy rates, resting macrophages with pro-inflammatory potential

showed remarkable higher entropy rates (p-value<1.2⇥10�7) indicating that those

cells exhibit highly promiscuous signaling in the absence of LPS stimulation.

In summary, determined signaling entropy rates revealed for both responsive

states more deterministic signaling to putatively generate a balanced response of

macrophages to bacterial triggers like LPS.

The signaling entropy framework was primarily developed for quantifying a

samples mean entropy. However, di↵erential gene-specific entropy rates showed sim-

ilar trends for selected pathways inferred from constructed PPI-expression datasets

(Figure 16A). For activated macrophages in particular pathways including TNFR1

signaling, TNF-a, NF-kB signaling and TLR4 cascade showed significantly higher

degree of organization compared to resting macrophages, as indicated by lower

signaling entropy rates (Figure 16B). Entropy rates helped to identify pathways

with more deterministic signaling in resting macrophages including IL-12 signaling

(p-value < 0.001). Other pathways showed only trends of lower entropy rates

for resting macrophages, including CD28 dependent signaling, androgen receptor

signaling, IL-2 signaling and Notch signaling. Although significantly changed
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Figure 16: Signaling entropy for selected pathways. Genes (nodes within PPI-
networks) were ranked according to di↵erential entropy using Wilcoxon rank sum tests to
derive for each gene a p-value, which reflects the statistical significance of the di↵erence in
the local normalized entropy of the given gene between the two treatments (Teschendor↵
2014). A: Selected pathways enriched in gene lists integrated in PPI networks with single-
cell gene expression including pathways with genes. B: Visualization of gene-specific
entropy estimates per pathway per treatment model (LPS: activated macrophages, UN:
resting macrophages). C: Same as in B but shown for defined macrophage state. Note
that for B and C outliers are not shown and axis was scaled for better representation.
Statistical analysis was done with nonparametric Kruskal-Wallis test followed by Dunn’s
post hoc multiple comparison method (n.s. p-value > 0.05; * p-vale < 0.05; ** p-value
< 0.01; *** p-value < 0.001). Note that all genes, except of genes from pathways termed
“Innate”, “Adaptive”, “IL6”and“IL4” showed di↵erential pathway entropy using Wilcoxon
rank sum tests.
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entropy rates between macrophage states were determined if considering all 557

investigated genes of the PPI network, genes of general pathways including genes

from terms ’innate immune system’ and ’adaptive immune system’ and EGFR1

showed similar entropy rates (Figure 16C). Inflammatory (TNFR1, TNF, NF-kB

and TLR4) and regulatory (IL3, CD28, AR, IL2, IL6, and IL4) pathway terms

showed lower entropy rates for defined pro-inflammatory or anti-inflammatory

macrophage states, respectively. Interestingly, genes from Notch signaling path-

way showed lower entropy rates for homeostasis-preserving state macrophages.

Notch signaling is considered a central molecular switch towards M1 macrophages,

producing a systemic low-grade inflammation state (Bi and Kuang 2015). This sug-

gests that Notch signaling may be functionally important to regulate macrophage

activation from a low response state (M0-like) towards and a pro-inflammatory

state (M1-like).

Di↵erent approaches were used to characterize individual cells based on whole-

transcriptome data. All approaches feature di↵erent properties of the data. Stabil-

ity of cells compared to the entire macrophage population was similar for pro- and

anti-inflammatory macrophages. Homeostasis preserving cells showed higher sta-

bility scores for resting macrophages. Within-cluster correlation suggested highest

“cellular synchronization” for pro- and anti-inflammatory macrophages confronted

with LPS. Similarly, signaling entropy indicated a more deterministic signaling for

these states and promiscuous signaling in case of homeostasis-preserving cells and

cells with pro-inflammatory potential in case of resting macrophages.

3.8 Transcriptional networks unveil major regu-

latory hubs for di↵erent macrophage states

After definition of cell-specific and state-specific genes and pathways and subsequent

quantification of cellular information transduction in untreated and LPS-treated

macrophages, these findings were integrated with underlying co-expression networks

(regulatory modules). Regulatory module classification by means of gene to gene

correlation analysis was achieved by analyzing SOM components. Ten gene

correlation clusters were defined using SOM portrait analysis (Figure 17A) and
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visualized as Euclidean distance heatmap representations (Figure 17B).

The high number of identified correlation clusters suggested a more detailed

representation of the diversity of coordinated gene expression fluctuations. Defined

macrophage states and correlation clusters were aligned to characterize the way

correlation clusters operate through di↵erent macrophage states. Three correlation

clusters with highest beta test statistics (Binder et al. 2014, Läuter et al. 2009)

for included correlation clusters matched best with defined macrophage states

(Figure 17C). Other correlation clusters showed intermediate expression patterns

with expression in more than one defined macrophage state. For example, genes of

correlation cluster E for activated macrophages are expressed in anti-inflammatory

state macrophages and homeostasis preserving cells.

To identify hub genes that putatively drive macrophage state-specific functions,

correlation clusters were aligned to macrophage states and rendered the association

to either pro-inflammatory, anti-inflammatory and homeostasis-preserving cells

(Supplementary Figure 32 (LPS) and Supplementary Figure 33 (UN)). Genes

from correlation clusters were then subjected to FANTOM4 edge express analysis

(Severin et al. 2009). This analysis allows to join genes based on regulatory

interactions in THP-1 cells, that were investigated by functional and correlation-

based high-throughput experiments. Central hub genes with high connectivity tend

to encode regulatory essential genes (Goh et al. 2007). Notably, most central hub

genes with high degree of connectivity were not strongly di↵erentially expressed

between resting and activated macrophages, which does not depreciate these factors

as functionally less relevant (Figure 17D).

The generated map of degree-ranked hub genes provided an enriched selection

of putatively important regulators (mostly transcription factors and chromatin

remodeling enzymes) in the context of macrophage heterogeneity (Figure 17E).

Many of the identifies hub genes represent rather novel findings in the context of

M1/M2 macrophage biology.

For activated pro-inflammatory macrophages ETS1, ETS2, MITF and HIF1A

were identified with treatment-specific regulation. Forkhead box O3 (FOXO3)

and ARID5B were not regulated in activated macrophages in respect to resting

macrophages (Figure 17E, correlation cluster J, LPS). Considering previous knowl-
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Figure 17: Prediction of hub genes underlying gene regulatory modules. A: Representation of

correlation cluster (CC) selection from defined spots of co-regulated SOM components for resting (UN) and

activated (LPS) macrophages. B: Heatmap indicating co-expression between SOM components measured by

Euclidean distances. C: Multi-test-adjusted correlation test based on beta-test statistics to estimate significance

of coordinated expression of genes in each of the selected CCs (as defined Binder et al. 2014). D: Representation

of interacting (FANTOM) genes per treatment. Fold-change (reciprocal for UN) and p-value from population

RNA analysis. Degree from interaction connectivity within CC networks. T-score estimates indicate significant

CC-specific expression. E, i: Representation of interaction networks for CCs (A-J). ii: Gradient illustrating

associations of CCs to defined macrophage states. iii: Properties (FC and t-score) of listed hub genes assigned

in D. iv: Degree sorted hub genes. Color represents gene-specific t-score estimates. Black arrows indicate

that particular hub genes were found in associated CCs (i.e. LPS-A vs. UN-B) between resting and activated

macrophages. Green arrows indicate that hub genes were found in non-associated CCs. Red arrows mark NR3C1

and HIF1A.79
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edge, determined factors may indeed constitute functional state-specific regulators

in macrophages. For example, ETS2 determines the inflammatory state of endothe-

lial cells in advanced atherosclerotic lesions (Cheng et al. 2011). FOXO3 is known

to maintain vitality and prevent apoptosis during inflammation (Jonsson et al.

2005). Notably, many pro-inflammatory hub genes for this regulatory network

were associated to homeostasis-preserving cells of resting macrophages (Figure 17E,

green arrows). Many hub genes for resting macrophages with pro-inflammatory

potential represent crucial factors that are required for macrophage activation,

including NFYA, JUND (AP-1), high-mobility group protein B3 (HMGB3) and

POU2F1 (OCT1). NFYA is associated with lipid metabolism by PPARa. AP-1

is a determinant of macrophage activation. AP-1 knockdown in rat and human

primary macrophages led to significantly reduced macrophage activity and cytokine

secretion (Behmoaras et al. 2008). HMGB3 is a known mediator of inflammation

and tissue regeneration and regulates the balance between cells with self-renewal

and di↵erentiation potential in hematopoietic stem cell (Andersson and Rauvala

2011, Nemeth et al. 2006).

Several hub genes overlapped for homeostasis-preserving cells in resting and

activated macrophages. These factors, including trans-acting transcription factor

1 (SP1), ELF1 and GABPA, may be associated to suppress inflammation. For

example, SP1 induces IL-10 expression and IL-10 in turn inhibits macrophage

activation (Brightbill et al. 2000, O’Farrell et al. 1998).

Anti-inflammatory state cells in activated macrophages were associated i.e.

to ELF2, nuclear respiratory factor 1 (NRF1), NFYC and HMG-box transcrip-

tion factor 1 (HBP1) transcriptional regulation, pointing towards repression of

specific inflammatory programs and M2-like promotion of anti-inflammatory sig-

naling (Martinez et al. 2013, Galván-Peña and O’Neill 2014). For example, HBP1

down-regulates the inflammatory cytokine macrophage migration inhibitory factor

(MIF, Tian et al. 2014). Intriguingly, NFKB1 was down-regulated in resting

anti-inflammatory state macrophages. Further, highly ranked hub genes included

also cAMP responsive element binding protein 1 (CREB1). In the setting of

acute overnutrition of macrophages CREB inhibits the production of inflamma-

tory mediators and contributes to the maintenance of insulin sensitivity (Luan
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et al. 2015). Importantly, for resting and activated macrophages, nuclear receptor

subfamily 3 group C member 1 (NR3C1) transcripts, which encode glucocorticoid

receptor (GR), showed highest state-restricted expression (high t-scores) towards

anti-inflammatory cells.

3.9 Independent experiments confirm mutually

exclusive expression of pro-inflammatory

and anti-inflammatory genes

Single-cell qPCR and FISH analyses were performed to independently validate the

state-exclusive expression of hub genes from both sides of the macrophage spectrum

(Figure 17E), including NR3C1 (anti-inflammatory) and HIF1A (pro-inflammatory)

and other anti-inflammatory macrophage associated genes, including the GR

target gene FKBP5, as well as JAK2 and IRAK3. In agreement with sequencing

data cell state-specific expression of antagonistic transcriptional regulators was

observed (Figure 18A and B). For example, in activated macrophages a clear

trend of mutually exclusive expression was found for IL1B versus NR3C1 (r=0.05),

JAK2 (r=-0.06) and IRAK3 (r=0.11) (Figure 18B). Contrary, highly correlated

expression of HIF1A (r=0.82) or IL8 (r=0.79) with IL1B, and NR3C1 with IRAK3

(r=0.79) was observed, suggesting coordinated action of these inflammatory and

anti-inflammatory regulators, respectively. Strikingly, high-throughput single-cell

qPCR experiments using CD14+ peripheral blood mononuclear cells (PBMCs)

derived primary human macrophages with a diverse genetic and physiological

background of healthy donors supported these results (Figure 18C).

Considering IL1B as a proxy for pro-inflammatory macrophages, another

independent experiment confirmed state-exclusive expression in ⇠1000 cells using

FISH analysis (Figure 18D and E and Supplementary Figure 34). IL1B and IL8

showed highly correlated expression (r=0.57), whereas low correlation was found

for IL1B versus NR3C1 (r=0.1), IRAK3 (r=-0.13), JAK2 (r=-0.11) and FKBP5

(r=0.04), indicating once more mutually exclusive cellular expression of these

antagonistic genes (Figure 34D).
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Figure 18: Validation of mutual exclusive expression of pro- and anti-
inflammatory marker genes. A: Activated macrophages in 2-dimensional inde-
pendent component analysis (ICA) space for state-specific genes that were selected for
validation experiments. Each dot represents a cell. Expression levels are indicated by
color gradients. White indicates low expression and red indicates high expression per
cell. B: ICA representation for activated macrophages and sc-qPCR analysis results
(�88 cells). Cq-values were transformed (2Cq/-3.32) and scaled. C: ICA representation of
HT-sc-qPCR results from human PBMC-derived primary macrophages. Single-cell pro-
cessing was done as described in 2.1.10.5. Color indicates macrophage state associations.
D: FISH analysis for indicated gene pairs. Relative expression per cell was computed
from 8⇥8 tiled images as described in 2.1.14. E: Representative images from acquired
and segmented FISH images. Samples were prepared as described in 2.1.13. r indicates
Pearson’s correlation coe�cient. Cells were stimulated with 100ng/ml LPS for 2 hours.
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Figure 19: Mutually exclusive protein expression of pro- and anti-
inflammatory genes. THP-1 macrophages and human PBMC-derived primary
macrophages left unstimulated (UN) or treated with 100ng/ml LPS for 4 hours were
double stained. Expression of pro-inflammatory marker genes IL1B and IL8 and anti-
inflammatory marker genes GR and FKBP5 were visualized by immunofluorescence.
Cell nuclei were stained with DAPI. (see Materials and methods 2.1.12 and 2.1.14).

Although mRNA data can reveal basic transcriptional mechanisms, proteins

do execute major biological functions. Therefore, qualitative microscopic analysis

of proteins in isogenic THP-1 and primary human macrophages were preformed

using immunofluorescence double staining for selected gene pairs. Consistent

with single cell mRNA expression data, protein analyses showed mutually ex-

clusive expression of proteins from central antagonistic gene pairs such as anti-

inflammatory/inflammatory GR (NR3C1) or FKBP5 vs. IL1B and IRAK3 or

FKBP5 vs. IL8 (Figure 19). Nuclear localization of GR was observed in some cells

for resting macrophages. Images suggested that LPS-treated cells with nuclear

GR occupancy were less likely to express IL1B. Similarly, this was observed for

anti-inflammatory factors IRAK3 and GR target gene FKBP5 with LPS-induced

cytoplasmic translocation.

3.10 Elevated stimuli doses segregate cells to-

wards pro- and anti-inflammatory signa-

tures

To investigate in which way higher doses of external signals such as LPS would

influence the expression of state-specific genes, macrophages were stimulated with
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di↵erent doses of LPS over two hours and subjected to single-cell qPCR analysis.

The number of macrophages expressing primary pro-inflammatory response genes

HIF1A or IL1B increased significantly with the concentration of LPS (Figure 20A,

top). Notably, for a di↵erent macrophage state, a simultaneous increase of the

number of cells expressing anti-inflammatory NR3C1 was observed. The level

of expression of all these first-line regulatory genes remained generally constant

within individual macrophages (Figure 20A, bottom). Only for the e↵ector gene

IL1B elevated levels of transcripts per cell were detected.

Interestingly, NR3C1-induced secondary response genes (modifiers) such as

IRAK3 appeared to be expressed at higher levels within few macrophages but

remained largely una↵ected by increasing concentrations of LPS. The entirety of

these results suggests that increasing levels of external stimuli may result in an

overall balanced transcriptional response of pro- and anti-inflammatory macrophage

states. Accordingly, the number of cells with pro- and anti-inflammatory marker

gene expression increased with elevated LPS doses, suggesting that responsive

macrophage states increase. Although, marker genes from homeostasis-preserving

macrophages were not specifically assessed, this suggests that pro- and anti-

inflammatory state macrophages could be recruited from low these response cells.

Thus, the population of these macrophages may act as a reservoir and decrease in

number upon higher elevated LPS stimulation.

These single-cell data challenges the common perception of a direct molecular

antagonism of major anti-inflammatory transcriptional regulators such as NR3C1.

Instead, results corroborate a model including digital all-or-none gene expression

switches of primary transcriptional events (Figure 20B). Cellular expression of

antagonistic regulators such as NR3C1 can lead to an almost complete depletion

of inflammatory mediators within the same cell. In contrast, cells devoid of such

antagonistic factors might more freely express pro-inflammatory genes.
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Figure 20: Elevated LPS-doses induce increasing numbers of cells with
pro- and anti-inflammatory gene expression. A: Single-cell qPCR analysis of
macrophages treated with 10ng/ml, 100ng/ml or 1µg/ml LPS or left untreated. Two
times 88 cells per dose were analyzed. Shown is mean (bars) and standard deviation
(error bars). Absolute quantification was done relative to IPC standards (see Materials
and methods 2.1.10.4 on page 33). Statistical analysis was done with one-way ANOVA
followed by Dunn’s multiple comparison test (n.s. p-value > 0.05; * p-vale < 0.05; **
p-value < 0.01; *** p-value < 0.001). B: Model of analog or switch-like digital response.

3.11 Knockdown and activation of state-specific

factors shift macrophage expression signa-

tures towards an M2-like status

It was functionally evaluated how perturbations of major state-specific regulatory

factors would influence transcriptional profiles of macrophage states. LPS-treated

THP-1 macrophages deficient in MyD88 expression (Figure 21A) and activated

macrophages subjected to dexamethason-induced GR activation were analyzed

using RNA-sequencing. Di↵erential gene expression data was joined with cell-

specific gene expression as previously applied to determine responsiveness of

macrophage states (see 3.6 and Figure 14). While MyD88 represents a major

factor required for pro-inflammatory state macrophages, GR is considered here as

a regulator of anti-inflammatory state macrophages.

As expected, pro-inflammatory signaling was markedly reduced in activated

macrophages deficient in MyD88 activity determined by population RNA-seq

(Figure 21B). 288 genes were significantly up-regulated (log2 fold-change > 2)

and 722 genes were down-regulated (log2 fold-change < -2, q-value <0.001). Up-
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Figure 21: Coordinated Expression heat map of TLR4 responsive genes from sc-RNA-seq data and gene-regulation in 

various knockdown situations. (A) Hierarchial clustering of sc-RNA-seq data delivered a gene cluster (IL1B, IL8 and TNF) 

with high pair-wise Pearson correlation. The reference genes RPLP0, B2M and HSPD1 showed no distinct Pearson correlation 

coefficients and did not correlate with observed gene cluster (IL1B, IL8 and TNF). (B) THP1-XBlue and THP1-XBlue-defMyD 

cells were differentiated into macrophages with PMA for 72 hours and subsequently treated with LPS for 2 hours or left 

untreated. Normalization was done against untreated control cells. Down-regulation of MYD88-dependent genes (IL1B, IL8 and 

TNF) confirmed  the gene cluster as ssen in sc-RNA-seq data. (C-D) siRNA knockdown material (MyD_5_4exp and 

TICAM1_1_3exp) was previously generated. In brief, THP-1 cells were differentiated into macrophages with PMA for 72 hours. 

Differentiated cells were treated with 100 nM Myd_5 or 50 nM TICAM1_1 siRNA (MyD_5 or TICAM1_1) in combination with 

HiPerFect transfection reagent (2 µl) for 72 hours. Subsequently, cells were treated with LPS for 2 hours. GAPDH was used as 

reference gene. Normalization was done against corresponding negative siRNAs. (C) Significant down-regulation of MYD88-

dependet genes was observed. (D) TICAM1 knockdown cells revealed mild up-regulation of MYD88-dependent genes. Data are 

means ± standard deviation (SD) from three technical replicates from biological triplicates and were analysed by t-test (p<0,05 = 

*; p<0,01 = **; p<0,001 = ***). Diagrams were generated using ggplot2 R package. 

 

 

 

 

Figure 22: Down-regulation of MYD88 in THP-1 defMyD macrophages. Gene expression analysis and western blot analysis 

revealed the down-regulation of MYD88 on mRNA as well as protein level. THP1-XBlue (control) and THP1-XBlue-defMyD 

(defMyD) cells were differentiated into macrophages with PMA for 72 hours and subsequently treated with LPS for 2 hours or 

left untreated. (A) Down-regulation of MYD88 on protein level. Twenty µg protein of control and defMyD cells were applied for 

western blot analysis using antibodies against MYD88, GAPDH, b-actin (Actin). (B) Down-regulation of MYD88 mRNA 

expression level. Bar graph indicates relative expression between 2 hours LPS-treated control and defMyD cells. Normalization 

was done against GAPDH. Data are means ± standard deviation (SD) from three technical replicates from biological triplicates 

and were analysed by t-test (p<0,05 = *; p<0,01 = **; p<0,001 = ***). Diagram was generated using ggplot2 R package.  
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Figure 21: Di↵erential expression analysis of MyD88 knockdown and GR
activation in activated macrophages. A: Western blot analysis of THP1-XBlue-
defMyD and THP-1 cells confirmed markedly decreased Myd88 protein levels. Analysis
was carried out in triplicates. The knock-down e�ciency was >90% determined by
qPCR analysis (not shown). B: Volcano plot representation of di↵erentially expressed
genes (population RNA-seq data) determined with activated macrophages compared
to activated macrophages with MyD88 deficiency (LPS vs. LPSdefMyd88). Tables
show significantly enriched pathways for up-regulated genes (left) and down-regulated
genes (right). C: Data visualization as in B determined with activated macrophages
compared to activated macrophages additionally treated with 1 µM dexamethason (LPS
vs. LPS+Dex).

regulated genes were associated to i.e. chemokine signaling and down-regulated

genes significantly overlapped with classical inflammatory pathways, such as TLR

signaling and NF-kB signaling (Figure 21B).

E↵ects of Dexamethasone (Dex), a synthetic activating GR ligand, ren-

dered similar pathway enrichments in activated macrophages (Figure 21C). Anti-

inflammatory e↵ects of Dex-induced GR activation in macrophages are known

(Meijsing et al. 2007). GR acts as a coordinating hub in anti-inflammatory responses

via coordinated transcription factor-dominated regulatory networks (Chinenov

et al. 2014). Beside down-regulation of genes involved in pro-inflammatory path-

ways, genes associated to nuclear receptor pathways and cytokine signaling were

up-regulated (Figure 21C).

Integration of these population measurements with single-cell data allowed to

dissect those genes with a potential involvement in macrophage heterogeneity. For

activated macrophages deficient for MyD88 significant changes in transcriptome

signatures were mainly found for pro-inflammatory state macrophages with striking
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specificity (Figure 22A). Precisely, the majority of di↵erentially expressed genes

specific for pro-inflammatory cells was down-regulated in MyD88-deficient activated

macrophages. Homeostasis-preserving cells and cells with anti-inflammatory profiles

were less a↵ected. However, anti-inflammatory state macrophages showed increased

expression of IRAK3 and other anti-inflammatory mediators, suggesting that

macrophages are shifted towards M2-like profiles.

In contrast, GR activation triggered a more specific regulation of smaller

gene sets in pro-inflammatory cells (Figure 22B). These included down-regulation

of NF-kB pathway genes (IL1B, IL8, IL18 and DUSP6) and up-regulation of

inflammation-limiting factors (i.e. ADAM28, ACSL1, MAFB) and macrophage

polarization pathways (i.e. PPAR signaling pathway, and, FOXO signaling and

NRF2 pathway). This is intriguing from a functional perspective. For example,

the metalloproteinase ADAM28 is a sheddase of TNF-a implicated in negative

regulation of inflammation in obesity and type 2 diabetes (Jowett et al., 2012).

Similarly, ACSL1 protects macrophages from the inflammatory e↵ects in diabetes

models (Kanter et al. 2012). Activation of MAFB was shown to directly influence

macrophage M1/M2 polarization balance and to induce alternative macrophage

fates (Bakri et al. 2005).

Intriguingly, highly significant changes were observed for genes specific for

anti-inflammatory cells upon Dex treatment. SOCS2, JAK2, FKBP5 and IRAK3

expression was up-regulated (Figure 22B). An important role for SOCS2 in driving

M2 polarization and limiting M1 polarization has been shown (Wilson 2014).

Contrary, genes of the NCAM1 interactions pathway were down-regulated in

anti-inflammatory cells, indicating attenuation of cell adhesions in these cells.

In summary, both functionally investigated factors had a significant impact

on state-specific gene expression, indicating a shift from M1-like to M2-like

macrophages. While MyD88, as an required adapter protein for TLR-4 signaling,

was highly specific for pro-inflammatory cells only, GR, as a major regulator of

transcription factor networks, influenced both pro- and anti-inflammatory state

macrophages.
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Figure 22: State-specific gene expression upon MyD88 knockdown or GR
activation. A and B: Data analysis for THP1-XBlue-defMyD cells (stable MyD88
knockdown) treated with 100ng/ml LPS for two hours (A) and THP-1 cells treated
with LPS and 1µM dexamethason. Analysis was done as described for responsiveness
estimation (see 3.6, Figure 14 and Materials and methods 2.2.8). Briefly, di↵erential
expression data (LPS vs. LPSdefMyD88and LPS vs. LPS+Dex) from population RNA-seq
was joined to cell-specific genes. Data was compared to the same analysis carried out with
RNA-seq data from the comparison of resting macrophages and activated macrophages
(LPS vs. UN). Violin plots show the number of cell-specific di↵erentially expressed genes
per cell for each macrophage state. Thus, every underlying data point represents a
cell. Statistical analysis was done with one-way ANOVA followed by Dunn’s multiple
comparison test (n.s. p-value > 0.05; * p-vale < 0.05; ** p-value < 0.01; *** p-value <
0.001). Scatter plots show genes in respect to their fold-change (log2) vs. the number of
cells the gene is expressed in (cell-specific genes) for each macrophage state. Selected
genes are shown in blue (down-regulated) and red (up-regulated).
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3.12 Di↵erent macrophage morphologies corre-

late with state-specific gene expression

Di↵erentiated macrophages exhibit distinct heterogenous morphologies, including

cells with round and flattened properties and increased size and granularity (Figure

23A). In contrast, macrophages deficient for Myd88 showed a round shape (Figure

23B). Similarly, macrophages treated with Dex shifted over time towards a small

round morphology, comparable to monocytes, and showed reduced numbers of flat-

tened shaped macrophages (Figure 23C). However, compared to monocytes these

cells stayed attached and viable and did not float in the cell culture medium. Simi-

larly, macrophages develop towards this small/round morphology after polarization

with i.e. IL4 (Buchacher et al. 2015, Vogel et al. 2014).

FISH data was analyzed to evaluate if big/flattened macrophages and

small/round macrophages show M1-like and M2-like gene expression, respec-

tively. Strikingly, activated macrophages expressing IL1B showed a significant

bigger and more elliptic shape (higher eccentricity) compared to cells expressing

anti-inflammatory marker genes (Figure 23D and E). No significant di↵erences

were found if IL1B cells were compared to cells expressing GAPDH (Figure 23E).

Although not computationally evaluated, images from macrophages treated with

LPS for up to two days indicated that these di↵erences between both morphologi-

cal states manifest over time (compare Figure 23A, Figure 23C and Figure 23F).

Live-cell imaging revealed that some macrophages (untreated) change between

morphological states while others remain in one morphological state over time

(Figure 24). Similarly, this was observed for primary human macrophages (not

shown).

Together, these results suggest that macrophage morphology is a proxy for a

cell’s transcriptional M1-like or M2-like identity. Consequently, M1-like or M2-

like states are to some extend transient and conferable to resting macrophages.

However, a more sophisticated computational analysis is required to investigate

this aspect of macrophage dynamics over time in more depth.
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Figure 23: Macrophage morphology as a proxy for state identity. A: 72 hours
di↵erentiated THP-1 macrophages. B: Di↵erentiated THP1-XBlue-defMyD cells. C:
Bright field microscopy images were acquired in one hour intervals at constant positions.
Macrophages were treated with 100ng/ml LPS or with addition of 1µM Dexamethason.
Left image shows cells stimulated for 48 hours. D: Quantification of cell size (arbitrary
units) and eccentricity (0 = circle, 1 = ellipse) for cells with high expression for indicated
genes. The red box plots represent data from IL1B positive cells. White box plots
represent data from cells with high expression of genes indicated at the top. Statistical
analysis was done with one-way ANOVA followed by Dunn’s multiple comparison test
(n.s. p-value > 0.05; ** p-value < 0.01; *** p-value < 0.001). E: FISH analysis example
picture recorded for IL1B (red) and NR3C1 transcripts (green). Bottom image shows
merged image of fluorescence channels and di↵erential interference contrast images. 20
Z-stacks were recorded and images were deconvoluted. F: Bright field images from
THP-1 cells 48 hours after stimulation with 100ng/ml LPS. Light blue and dark blue
circles indicate unstimulated and stimulated M2-like cells, respectively. Light red and
dark red circles indicate unstimulated and stimulated M1-like cells, respectively.
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Figure 24: Macrophages show dynamic morphology transitions. Representa-
tive bright field live-cell tracking results for resting cells with changing morphological
properties. Image acquisition was done every 2 minutes in Z-stack mode for a time period
of 16 hours. Individual images shown were derived manually and by using EBimage (Pau
et al. 2010). Red gradients highlight M1-like morphology and blue gradients highlight
M2-like morphology.
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Discussion

Heterogeneity between individual cells is a common feature of dynamic cellular

processes, including signaling, transcription, and cell fate (Elowitz et al. 2002).

Even simple visual observations of the diverse morphologies of macrophages suggest

that heterogeneity is an intrinsic property of those cells. How macrophages

integrate signals from bacterial pathogen-associated molecular patterns (PAMPs)

to determine cell fate is fundamental to understanding infection biology and finding

novel treatment options for acute and chronic inflammatory disease.

Various diseases, such as atherosclerosis, allergy, autoimmune disorders and

cancer, are associated with or caused by M1- or M2-like macrophage responses

(Mills 2012). Changing the M1/M2 balance promise therapeutic potential. In case

of atherosclerosis, research suggests that M2 macrophages are athero-protective

by promoting e�cient clearance of apoptotic cells within atherosclerotic plaques

and resolution of inflammation (Chinetti-Gbaguidi et al. 2015). However, the

simplified view of pro-inflammatory M1 macrophage as “Fight” (bad) versus anti-

inflammatory M2 macrophage “Fix” (good) seems too short-sighted. For example

in cancer, intratumor macrophages show primarily M2-like characteristics and

promote tumor progression and the presence of intratumor M1 macrophages is very

favorable for survival (Yamaguchi et al., Ohri et al. 2009, Williams et al. 2016).

Because of health implications in various settings, a sustainable knowledge of

macrophage heterogeneity may help to understand macrophage-associated diseases

and to develop diverse therapeutic strategies.
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The here established generation and in-depth analysis of transcriptomic data

sets of single human macrophages, provides a step forward to characterize how

macrophages integrate signals from their local microenvironment under inflamma-

tory and non-inflammatory conditions. Traditionally, macrophage phenotypes were

studied with polarization model systems. Macrophage phenotypes can be induced

by stimulation with IFNg/LPS into pro-inflammatory M1 state macrophages or by

stimulation with i.e. IL4 and IL13 into anti-inflammatory M2 state macrophages

that promote healing processes (Nathan et al. 1983, Stein et al. 1992). Macrophages

usually derive these signals from T helper cells. Whether M1 and M2 macrophages

are discrete subtypes opposed to ends of a continuum of functional states is incom-

pletely evaluated. For example, whether the M1 cells are directly repolarized to

M2 rather than cleared to make way for new monocyte-derived M2 cells remained

unknown. We are only beginning to gather evidence that supports, that M1/M2

state dichotomy exists in the absence of adaptive immune signals.

4.1 Macrophages feature three transcriptional

states

Computational analysis of single-cell transcriptome profiles of resting and activated

macrophages, suggested the presence of three functionally related macrophage

states. These states were initially characterized according to pathway annota-

tions. Two of these states showed overall M1-like (pro-inflammatory) or M2-like

(anti-inflammatory) transcriptional profiles. In contrast, a third state showed

transcriptional profiles similar to unpolarized M0-like macrophages (homeostasis-

preserving).

Based on previous research, the presence of macrophage states with M1-like

and M2-like transcriptome signatures in isogenic THP-1 macrophages, represents

a rather unexpected finding. Evidence for distinct transcriptional states was sup-

ported by clustering analyses of cell-to-cell correlations matrices. This analysis

suggested three sub-clusters for both resting and activated macrophages, respec-

tively (Figure 7C, Figure 8E and Figure 9A). Clustering of gene expression vectors

illustrated distinct transcriptional signatures for the di↵erent states (Figure 10A).
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ICA-projection of state-specific gene expression data revealed spatially distinct

densities of local over-expression areas, co-occurring with defined macrophage

states (Figure 10C).

Several observations supported that macrophage states for resting and activated

macrophages are associated with each other. Overlap of state specific-genes and

pathways showed significant relations and similar gene expression distributions

(Figure 10E, Figure 11 and Figure 12). Single-cell transcriptomes analyzed with

multivariate approaches applying ICA and t-SNE, also indicated these relationships

by the close distance or similar behavior of cells from associated states (Figure

9C and D). More general measurements showed similar trends of distributions,

underlining state associations, including data from shrinkage t-score statistics,

state-stability, intra-cluster correlation and pathway entropy (Figure 11C and D,

Figure 15A and C and Figure 16C).

In summary, functional annotations of genes and pathways and di↵erent mul-

tivariate distance measures indicate distinct transcriptional profiles inherent to

macrophage heterogeneity. These profiles are related to the known macrophage

M1/M2 dichotomy and were used as a conceptual framework to aid further charac-

terization of macrophage dynamics (Figure 25). Especially, the term ’M1-like state’

for a group of resting macrophages seems counterintuitive. However, this terminol-

ogy was used based on the following observations. The M1-like state in resting

macrophages showed state-restricted expression of genes related to inflammatory

pathways (i.e. Toll-like receptor pathway, Figure 12). The genes matching these

pathways represent factors involved in general control and limiting of inflammation

(i.e. TNFAIP3, IKBKB and PIK3). Expression of classical pro-inflammatory e↵ec-

tor genes was absent (i.e. IL1B, IL8 and CCL4). Moreover, di↵erential pathway

analysis revealed additional M2-like pathway terms in resting macrophages for this

particular state (i.e. IL4-signaling, Figure 13A). Thus, this state was classified as

M1-like state with pro-inflammatory potential.
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Figure 25: Model of macrophage states for resting and activated
macrophages. Macrophages exist in three transcriptional states with M0-like, M1-like
and M2-like gene expression for resting and activated macrophages. Stimulation with
LPS leads to pro-inflammatory e↵ector gene expression in M1-like macrophages (high
response) and increased expression of anti-inflammatory factors in M2-like macrophages
(medium response). M0-like macrophages show low response upon stimulation.
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4.2 Increasing evidence supports the model of

intrinsic M1/M2 dichotomy

The work presented here and recent single-cell transcriptomics studies in dendritic

cells (DCs), mouse macrophages and primary human macrophages, similarly

suggested the presence of M1-like and M2-like macrophage states independent of

signals from other immune cells (Shalek et al. 2014, Saliba et al. 2016, Gierahn

et al. 2017).

On the basis of functional and phenotypical characteristics, DCs and

macrophages are closely related. Shalek et al. found substantial variation between

identically stimulated DCs and identified co-expression modules with antiviral

gene expression in addition to pro-inflammatory modules (Shalek et al. 2014).

These modules contributed to separation of distinct states for DCs upon LPS-

stimulation. Using functional experiments, Shalek et al. showed that found cellular

heterogeneity depends to a large extend on paracrine cell-to-cell communication.

Using single-cell mRNA-seq, to analyze mouse bone-marrow-derived

macrophages, exposed to Salmonella typhimurium, Saliba et al. explained

the observed macrophage heterogeneity by pathogen grow rates. Infected

macrophages with non-growing Salmonella showed markers of pro-inflammatory

M1-like macrophages and macrophages containing growing bacteria showed anti-

inflammatory, M2-like state expression signatures. The authors did not observe

M1/M2 polarization in non-infected macrophages analyzed (n=15). Saliba et al.

speculated that intracellular Salmonella drive those macrophages unable to clear

the infection away from the hostile M1 to the more permissive M2 polarization

state (Saliba et al. 2016).

A recent study from Gierahn et al. matched most closely to the model system

studied in this work. These authors found three macrophage clusters by analyz-

ing ⇠2.500 CD14+ PBMC-derived primary human macrophages that were left

unexposed or were exposed to Mycobacterium tuberculosis. Found macrophage

states were not excessively analyzed and only a small number of expressed genes

was defined as cluster-specific (growth, hypoxia and metabolism). Clusters from

exposed and non-exposed macrophages were highly overlapping and, especially two
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of the clusters, did not show strong stimulation-dependent separation (Gierahn

et al. 2017).

Together, the work presented here, and studies of Saliba et al. and Gierahn et

al. represent initial evidence that M1-like and M2-like transcriptional profiles are

inherent parts of macrophage heterogeneity. Although not specifically emphasized

by Gierahn et. al., observations of overlapping states from untreated and treated

macrophages suggest that macrophages might intrinsically separate towards M1/M2

phenotypes with pro- and anti-inflammatory potential. For the ex vivo model

system used by Saliba et al. and Gierahn et al., a predetermination of monocytes

cannot be ruled out. The in vivo collected macrophages may have experienced

signals from other immune cells at the monocytic state before blood collection.

However, predetermination by other immune cells can be secluded in case of here

applied THP-1 macrophages, supporting that M1/M2 dichotomy is a common

principle to explain macrophage heterogeneity.

4.3 External cues shape macrophage state dy-

namics towards segregate populations

Although functionally related, associated states of activated and resting

macrophages showed di↵erential responsiveness in gene expression profiles and

annotated pathways (Figure 13). Upon LPS-induced activation, pro-inflammatory

state macrophages showed around hundred di↵erentially expressed genes, in-

cluding known pro-inflammatory e↵ector genes (Figure 14C-F). Contrary, anti-

inflammatory state macrophages were characterized by lower responsiveness and

expression of anti-inflammatory factors. In contrast, homeostasis-preserving cells

showed low responsiveness comparable to resting macrophages.

In concordance with the observed transcriptional response, macrophage het-

erogeneity was markedly shaped upon stimulation. Synchronization of cells from

each of the responsive states increased and signaling entropy decreased suggesting

more deterministic signal transduction (Figure 15C and G). Together, these results

suggest that states of resting macrophage transit from uncorrelated variation

(unstable) towards highly correlated intra-state variability (stable) in activated
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macrophages, assumingly to shapen functionally distinct cellular states (Figure

26A).

Analysis of state-specific macrophage gene expression indicated mutually ex-

clusive expression of competing gene-regulatory factors. Gained knowledge in

cell biology research often relies on analyses of population assays, based on the

assumption of homogenous cells populations. Thus, fundamental regulatory fea-

tures such as competitive inhibition of transcriptional regulation within a cell have

been postulated for numerous phenomena, thereby reinforcing the viewpoint that

individual cells might be able to supply intracellularly all required functionalities.

This perception is in part challenged by the partly mutually exclusive segregation

of functional macrophage state signatures and targeted experiments observed

here (Figure 18). Instead, cellular heterogeneity with more or less distinct sub-

populations with di↵erent functional capacities may act synergistically together to

generate higher-level population functions. Mutual expression under increasing

doses of LPS stimulation, as shown for NR3C1/IRAK3 vs. IL1B/HIF1A, underline

a stimulus-depended shift towards an increasing number of both M1-like and M2-

like macrophages, possibly accompanied by a decreased number of low-response

macrophages (Figure 20A and Figure 26B). Together, gene expression dynamics

were observed as all-or-none (digital) activation outcomes as previously observed

in 3T3 mouse fibroblasts and mouse macrophages (Tay et al. 2010, Liu et al. 2014).

Analysis of state-specific gene modules allowed to define central molecular hubs

that operate in several macrophage states or classify dominant molecular switches

for both opposing sides of the macrophage spectrum. Thereby, glucocorticoid

receptor (GR, NR3C1) was identified as a major molecular switch, which once

induced by dexamethason, can shift the macrophage population towards an M2-like

transcriptional and morphological status (Figure 22B and Figure 23C). Similarly,

macrophage population transition towards an M2-like status was observed if TLR4

pathway activity was impaired by MYD88 knock down (Figure 22A, Figure 23B and

Figure 26C). These observations helped to link single-cell transcriptome signatures

to observable morphological phenotypes of macrophage cells using FISH analysis

(Figure 23D and E). Having learned how macrophage morphology is linked to

macrophage states, finally will allow to interpret macrophage shape transitions
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over time, suggesting that macrophage states are transient transition events . This

shows that macrophages not terminally di↵erentiate to fixed M1-like or M2-like

polarization states but are highly flexible in reacting towards signaling events in

micro-environments to maintain a balanced and robust cell population. However,

more work is required to validate these observations with independent methods i.e.

by detecting marker gene expression with long-term live cell imaging (Skylaki et al.

2016). Thus, e�cient inhibitory gene regulation mechanisms seem to exist that

either keep macrophages in a pro-inflammatory or in an anti-inflammatory state.

Digital signaling with mutual exclusive expression characteristics may enhance

robustness of cellular decisions in noisy environments.

4.4 Concluding remarks

The results presented in this work, along with other single-cell studies published,

highlight the value of high-throughput transcriptome-wide quantitative measure-

ments with single-cell resolution to shed some light on consequences of cellular

heterogeneity. It is crucial to anticipate that single-cell sequencing measurements

only represent a snapshot in time. In addition to the loss of temporal information,

the spatial context of cell ensembles in micro-environments is obscured, once cells

are collected for sequencing analysis. Responses to receptor stimulation is encoded

by the spatial and temporal dynamics of downstream signaling networks. Therefor,

processes that are actually spatially separated in di↵erent cell populations are

hard or impossible to be deconvoluted (Achim et al. 2015). But for understanding

immune cell dynamics, time and space constitute major determinators that need

to be addressed to guide understanding of regulation of heterogeneity (Kholo-

denko 2006). Interestinlgy, novel strategies are being developed to integrate these

important aspects with single-cell omics datasets:

To measure temporal dynamics, a combination of single-cell omics derived

candidate factors may be investigated by sophisticated live-cell imaging strategies

(Junkin et al. 2016). New methods are being developed that combine live-cell

imaging, dynamic stimulation and subsequent single-cell sequencing preparation

with microfluidics technologies (Wills et al. 2017). Approaches to temporally
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Figure 26: Proposed models of macrophage state dynamics. A: Unstimulated
(resting) macrophages exhibit states with promiscuous signaling dynamics (stochastic
state transition). Upon stimulation M1-like and M2-like macrophages show high gene
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resolve single-cell dynamics often depend on sophisticated equipment. Contrary,

integration of spatial information may be accomplished by computational methods.

Analysis strategies for spatial“back-mapping”of cells locations in complex tissues or

even in more artificial micro-environments have been developed. For example, Satija

and co-workers developed a computational strategy to infer cellular localization

by integrating single-cell mRNA-seq data with in situ RNA patterns in zebrafish

embryos (Satija et al. 2015).

In this work, the dynamic response of macrophages towards external signals was

initially investigated descriptively by the use of guilty-by-association approaches.

While, these approaches are helpful to predict functional factors that control

cellular processes, they do not not imply causation. Although, some aspects

of spatial, temporal and functional dynamics were tackled in this work, it is

important to consider possible limitations and pitfalls of data interpretation.

Several aspects need further evaluation to guide a better understanding. These

include for example the following aspects: i) Experimental evaluation of factors that

control defined homeostasis-preserving cells. ii) Revealing the vectors that define

macrophage states in the absence of stimulation. iii) Identification of fundamental

cues that initiate macrophage dichotomy. Instead of suggesting definite regulators

that drive macrophage population behavior, this work shall rather depict basic

properties of macrophage heterogeneity in an simplified in vitro framework to

guide interpretation of heterogeneity in vivo. Thus, this work, provides insights

into basic modes of macrophage dynamics to optimal strategies of a population

adapting to a changing, i.e. pathogenic environment.
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Summary

Phenotypic and functional flexibility is a key feature of immune cells such as

macrophages, instrumental to their functions in pathogen defense and to maintain

homeostasis. Traditional population average measurements have been widely ap-

plied to characterize macrophage diversity. But population average measurements

obscure the underlying single-cell heterogeneity, and thus hinder an unbiased

characterization of cellular response to external stimulation. Analyzing isogenic

human THP-1 macrophages and primary human macrophages by single-cell RNA

sequencing, we investigated cellular heterogeneity in the context of early innate

activation, using lipopolysaccharide (LPS) as a defined stimulus. For resting and in

particular for activated macrophages, significant di↵erences in expression of central

immune genes was observed in three macrophage states with pro-inflammatory

(M1-like), anti-inflammatory (M2-like) and low-response homeostasis-preserving

(M0-like) characteristics. Results from RNA-fluorescence in situ hybridization

assays for selected transcripts suggest di↵erent morphological phenotypes for pro-

inflammatory and anti-inflammatory macrophages. Macrophages flexibly switch

between these phenotypes over time or shift towards one phenotype upon stimula-

tions. Moreover, identified state-specific hub genes for pro- and anti-inflammatory

cells, including hypoxia-inducible factor 1 (HIF-1) and glucocorticoid receptor

(GR), respectively, revealed digital all-or-none gene expression response to poten-

tially govern macrophage state balance. Notably, observed cellular states featured

di↵erential responsiveness and signaling dynamics after stimulation. While low-
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response cells showed promiscuous signaling, the pro- and the anti-inflammatory

cells showed high response and lower signaling entropy. Titration experiments

suggest, that low-response macrophages act as a reservoir to allow transitions

into pro- or anti-inflammatory cells under increasing doses of applied stimuli. In

summary, the here shown analyses indicate cellular mechanisms to respond e�-

ciently to external stimulation, by inducing cell state specific expression of genes.

Holistic, single-cell based characterization of macrophage states might serve as a

new framework to advance our understanding of cellular heterogeneity in general

and for future research to explore mechanisms of physiological resilience in health

and disease.
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Zusammenfassung

Funktionelle Flexibilität ist eine entscheidende Eigenschaft von Makrophagen, um

Krankheitserreger bekämpfen zu können und gleichzeitig Homöostase aufrecht-

zuerhalten. Um die damit einhergehende Diversität von Makrophagen mittels

Transkriptom-Analysen zu messen, wurden bisher überwiegend Methoden ein-

gesetzt, die keinen Rückschluss auf die Identität einzelner Zellen zulassen. Dies

erschwert die unverfälschte Charakterisierung der tatsächlichen, heterogenen Ma-

krophagenantwort. In dieser Arbeit wurden Sequenzierungsverfahren eingesetzt,

welche die genomweite Analyse von Transkriptomen einzelner Zellen ermöglichen.

Hierbei wurden humane THP-1 Makrophagen sowie primäre humane Makrophagen,

die mit Lipopolysacchariden (LPS) behandelt wurden, als Modellsystem genutzt.

Die Behandlung mit LPS dient als Stimulus, um die angeborene Immunantwort

bei Makrophagen auszulösen und schließlich zu untersuchen. Bei stimulierten

Makrophagen, und im schwächeren Ausmaß bei unbehandelten Zellen, wurden

drei unterscheidbare Makrophagenpopulationen ermittelt. Diese Subpopulationen

wiesen divergente Genaktivitäten auf, die sich mit der etablierten Einteilung von

Makrophagen vergleichen ließen: Proinflammatorische M1-Makrophagen, antiin-

flammatorische M2-Makrophagen und kaum reagierende, homöostatische, M0-

Makrophagen. Mittels Fluoreszenz-in-situ-Hybridisierung (FISH) konnte anhand

ausgewählter Gene gezeigt werde, dass proinflammatorische und antiinflammatori-

sche Makrophagen distinkte morphologische Phänotypen haben, zwischen denen

sie, im zeitlichen Verlauf, flexibel wechseln können. Durch integrative Analysen
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konnten zentrale, regulatorische Gene ermittelt werden, die für proinflammatorische

oder antiinflammatorische Makrophagen spezifisch sind. Die Expression dieser Gene

und deren Proteine (z.B. Hypoxie-induzierter Faktor 1 (HIF1) und Glukokortikoid-

Rezeptor (GR)) hatten binären Charakter und trat im wechselseitigen Ausschluss

in unterschiedlichen Zellen auf. Die Fähigkeit der Makrophagenpopulationen auf

Signale zu reagieren war stark unterschiedlich. Proinflammatorische und antiinflam-

matorische Makrophagen zeigten starke Reaktionen gegenüber externen Signalen.

Homöostatische Makrophagen wiesen hingegen eine sehr schwache Immunantwort

auf. Experimente unter Applikation erhöhter Stimulierung, deuteten darauf hin,

dass homöostatische Makrophagen als Reservoir für eine Umwandelung in Proin-

flammatorische oder antiinflammatorische Zellen dienen. Die hier durchgeführten

Analysen weisen auf Mechanismen hin, welche die e↵ektive Immunantwort von

Makrophagen, durch ihre inhärente Heterogenität ermöglichen.
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Supplementary data

7.1 Supplementary figures
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Figure 27: Estimation of gene expression cut-o↵s to select genes with high bi-
ological variability. Testing normality of gene expression distributions from single-cell
RNA-seq data (UN: resting macrophages; LPS: activated macrophages) and population
spike-in RNA data (Bulk RNA I and II). Shapiro–Wilk test (W ) for normality for 12
bins of 100 genes ranging from low (left), middle (center) to high (right) expression
values. W was obtained by averaging W of each gene within bins. W ⇠ 1 indicates
expression values that are normally (Gaussian) distributed (Piras and Selvarajoo 2015).
See Materials and methods for details (2.2.3). Dashed red line at mean count 20 indicates
cut-o↵ used for most analysis. Dashed grey line at mean count 75 indicates cut-o↵ used
for entropy analysis (Material and Methods 2.2.10).
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Figure 28: Microfluidic integrated fluidic circuit (IFC) micro-chamber
screening. Images of cell-loaded microfluidic integrated fluidic circuit (IFC) micro-
chambers used to evaluate cell integrity and successful loading of single cells.
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Figure 29: IL1B/IL8 expression in resting THP-1 macrophages and clonal
expanded THP-1 macrophages. A: Rare events of IL1B/IL8 expression in resting
macrophages. Single-cell qPCR results from detection of IL1B in resting macrophages
(R1-3: replicated measurement from ⇠88 cells). B: RNA-FISH analysis of resting
macrophages. Spontaneous bursting of inflammatory gene expression in immune cells
under untreated condition as observed by i.e. Diercks et al. 2009 linked to pervasive
transcription (Wade and Grainger 2014). C: Single-cell qPCR results from detection of
IL1B and IL8 in clonal expanded THP-1 cells.
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Figure 30: ICA projection of common pathways. ICA projection of gene
expression from common pathways for activated and resting macrophages. Color gradient
indicates mean expression levels of pathway-specific genes. White indicates low expression
and red indicates high expression per cell.
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Figure 31: ICA projection of distinct pathways. ICA projection of gene ex-
pression from di↵erential pathways of pro-inflammatory (activated) macrophages and
macrophages with pro-inflammatory potential (resting macrophages). Color gradient in-
dicates mean expression levels of pathway-specific genes. White indicates low expression
and red indicates high expression per cell.
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Figure 32: Gene regulatory modules of activated macrophages. Association
of correlation cluster-defined gene regulatory modules to states of activated macrophages.
First row: ICA projection of mean correlation cluster expression. Second row: Bar plot
representation of mean correlation cluster expression per cell. Third row. Summarized
expression for macrophage states. Fourth row: Alternative line graph visualization.
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Figure 33: Gene regulatory modules of resting macrophages. Association of
correlation cluster-defined gene regulatory modules to states of activated macrophages.
First row: ICA projection of mean correlation cluster expression. Second row: Bar plot
representation of mean correlation cluster expression per cell. Third row. Summarized
expression for macrophage states. Fourth row: Alternative line graph visualization.
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A" B"
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Figure 34: FISH double staining. A: Example cells, single-molecule detection. B:
Double staining for the detection of IL1B. Images were taken with a Zeiss Z1 Observer
wide-field fluorescence microscope with a 60x oil immersion objective (Materials and
methods 2.1.14).
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7.2 Supplementary tables

ID UN LPS ID UN LPS ID UN LPS ID UN LPS
1 + + 25 + + 49 + + 73 + +
2 q + 26 + + 50 q + 74 + +
3 + + 27 + + 51 , + 75 q +
4 , + 28 + + 52 + + 76 + +
5 + + 29 + + 53 q + 77 + +
6 + + 30 v + 54 + + 78 + +
7 + + 31 + + 55 + + 79 + +
8 v + 32 + + 56 v + 80 + +
9 + + 33 + + 57 q + 81 + v
10 + + 34 + v 58 + + 82 v +
11 + + 35 q + 59 + v 83 + +
12 + + 36 + + 60 + + 84 + +
13 + + 37 q q 61 + + 85 + +
14 v + 38 v + 62 + + 86 , +
15 q + 39 q v 63 q + 87 + +
16 + + 40 v + 64 + + 88 q +
17 + + 41 + q 65 + + 89 + +
18 + + 42 v + 66 + + 90 + +
19 + + 43 + + 67 + + 91 + +
20 + + 44 + v 68 + q 92 + v
21 + + 45 q v 69 + q 93 + +
23 + + 47 + + 71 + + 95 + +
24 + + 48 + q 72 + + 96 + q

Table 2: Cell discrimination - Fluidigm IFC screening. Cells loaded in micro-
chambers of Fluidigm C1 IFCs were microscopically observed (see Supplementary Fig-
ure 28 on page 107). Data from micro-chambers without cells (-), deformed cells, cell
doublets or damaged cells was removed from further analysis (v). Data from micro-
chambers with cells with low sequencing quality or low mean expression per cell was not
considered for further analysis (q). Data from all remaining cells were used for further
analysis (+). ID indicates the identifier of the micro-wells. LPS indicates activated
macrophages. UN indicates resting macrophages (untreated).
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Nr.$of$genes q,value Pathway Source
122 6.12E&19 Signal.Transduction Reactome
109 4.24E&17 Immune.System Reactome
49 7.74E&13 Signaling.by.Interleukins Reactome
44 1.86E&11 Metabolism Reactome
42 5.95E&11 Adaptive.Immune.System Reactome
38 7.26E&10 GPCR.downstream.signaling Reactome
62 7.26E&10 Innate.Immune.System Reactome
37 9.52E&10 Pathways.in.cancer.&.Homo.sapiens.(human) KEGG
37 9.52E&10 Nuclear.Receptors.Meta&Pathway Wikipathways
37 9.52E&10 Hemostasis Reactome
60 9.94E&10 Cytokine.Signaling.in.Immune.system Reactome
59 1.34E&09 Signaling.by.GPCR Reactome
58 1.81E&09 Cytokine&cytokine.receptor.interaction.&.Homo.sapiens.(human) KEGG
35 2.54E&09 JAK.STAT.pathway.and.regulation INOH
35 2.54E&09 GPCR.ligand.binding Reactome
34 4.76E&09 TNF.signaling.pathway.&.Homo.sapiens.(human) KEGG
33 8.46E&09 Class.A/1.(Rhodopsin&like.receptors) Reactome
33 8.46E&09 PI3K&Akt.signaling.pathway.&.Homo.sapiens.(human) KEGG
32 1.60E&08 GPCR.signaling&G.alpha.s.PKA.and.ERK INOH
31 2.65E&08 Developmental.Biology Reactome
31 2.65E&08 GPCR.signaling&G.alpha.s.Epac.and.ERK INOH
31 2.65E&08 Metabolism.of.proteins Reactome
31 2.65E&08 VEGFA&VEGFR2.Signaling.Pathway Wikipathways
30 4.51E&08 GPCR.signaling&G.alpha.i INOH
30 4.51E&08 GPCR.signaling&pertussis.toxin INOH
30 4.51E&08 GPCR.signaling&cholera.toxin INOH
30 4.51E&08 GPCR.signaling&G.alpha.q INOH
29 8.12E&08 Signalling.by.NGF Reactome
29 8.12E&08 Gastrin&CREB.signalling.pathway.via.PKC.and.MAPK Reactome
29 8.12E&08 Gene.Expression Reactome
28 1.52E&07 HTLV&I.infection.&.Homo.sapiens.(human) KEGG
28 1.52E&07 Signaling.by.PDGF Reactome
27 2.95E&07 Axon.guidance Reactome
26 5.00E&07 miR&targeted.genes.in.lymphocytes.&.TarBase Wikipathways
26 5.00E&07 Fc.epsilon.receptor.(FCERI).signaling Reactome
26 5.00E&07 Signaling.by.SCF&KIT Reactome
26 5.00E&07 Downstream.signal.transduction Reactome
26 5.00E&07 Signaling.by.EGFR Reactome
26 5.00E&07 Focal.Adhesion&PI3K&Akt&mTOR&signaling.pathway Wikipathways
25 9.28E&07 NGF.signalling.via.TRKA.from.the.plasma.membrane Reactome
25 9.28E&07 Signaling.by.VEGF Reactome
25 9.28E&07 DAP12.interactions Reactome
24 1.69E&06 NF&kappa.B.signaling.pathway.&.Homo.sapiens.(human) KEGG
24 1.69E&06 Post&translational.protein.modification Reactome
24 1.69E&06 Jak&STAT.signaling.pathway.&.Homo.sapiens.(human) KEGG
24 1.69E&06 DAP12.signaling Reactome
23 3.00E&06 Disease Reactome
23 3.00E&06 Generic.Transcription.Pathway Reactome
21 9.90E&06 Transcriptional.misregulation.in.cancer.&.Homo.sapiens.(human) KEGG
21 9.90E&06 TNFalpha NetPath
21 9.90E&06 miR&targeted.genes.in.muscle.cell.&.TarBase Wikipathways
21 9.90E&06 G.alpha.(i).signalling.events Reactome
21 9.90E&06 Signaling.by.Leptin Reactome
20 1.66E&05 Metabolism.of.lipids.and.lipoproteins Reactome
20 1.66E&05 Diseases.of.signal.transduction Reactome
20 1.66E&05 Photodynamic.therapy&induced.NF&kB.survival.signaling Wikipathways
20 1.66E&05 Focal.Adhesion Wikipathways
20 1.66E&05 Transmembrane.transport.of.small.molecules Reactome
20 1.66E&05 Peptide.ligand&binding.receptors Reactome

Table 3: Pathway analysis for up-regulated genes. Genes from di↵erential path-
way analysis activated vs. resting macrophages (Log2-Fold-change>2, p-value<0.001).

115



CHAPTER 7. SUPPLEMENTARY DATA

Nr.$of$genes q,value Pathway
31 6.80E(08 Signal/Transduction
25 2.18E(06 Immune/System
20 4.64E(05 Signaling/by/GPCR
18 0.000139236 Innate/Immune/System
17 0.000222778 Metabolism
15 0.000742594 GPCR/downstream/signaling
12 0.005092076 GPCR/ligand/binding
11 0.008911133 Metabolism/of/proteins
10 0.014257813 GPCRs,/Class/A/Rhodopsin(like
10 0.014257813 Class/A/1/(Rhodopsin(like/receptors)
8 0.035644531 Transcriptional/misregulation/in/cancer/(/Homo/sapiens/(human)
8 0.035644531 Adaptive/Immune/System
8 0.035644531 G/alpha/(i)/signalling/events
8 0.035644531 Developmental/Biology
8 0.035644531 Rho/GTPase/cycle
8 0.035644531 Signaling/by/Rho/GTPases

Table 4: Pathway analysis for down-regulated genes. Genes from di↵eren-
tial pathway analysis activated vs. resting macrophages (Log2-Fold-change<-2, p-
value<0.001).
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Cluster Symbol T.Score p-value Fdr Mean expr. Symbol T.Score p-value Fdr Mean expr.

ACTB 3.57 8.3E-03 3.1E-02 1745 FTL 5.34 9.3E-05 6.9E-05 12055
CD63 4.15 2.1E-03 1.6E-02 581 EEF1A1 6.32 3.8E-06 1.9E-06 5231
HSPA8 5.38 6.9E-05 1.9E-03 536 B2M 6.72 8.5E-07 1.9E-06 4318
ALDOA 4.3 1.5E-03 1.3E-02 432 CAPZA1 6.45 2.4E-06 1.9E-06 2488
PLAUR 4.35 1.3E-03 1.2E-02 425 SH3BGRL3 5.75 2.6E-05 4.0E-05 1579
PRDX1 3.78 5.2E-03 2.5E-02 387 UBXN11 4.84 4.0E-04 1.2E-04 870

RP11-386G11.10 4.75 4.5E-04 6.4E-03 313 HSPA8 4.22 2.0E-03 3.8E-04 855
TFRC 4.2 1.9E-03 1.5E-02 301 FCER1G 5.55 4.8E-05 4.0E-05 759

SLC20A1 5.56 4.0E-05 1.6E-03 194 RP11-386G11.10 3.9 4.3E-03 9.6E-04 746
SRP14 3.62 7.5E-03 2.9E-02 172 ANXA2 4.29 1.7E-03 3.8E-04 667
SSR1 4 3.1E-03 1.9E-02 158 ALDOA 6.32 3.7E-06 1.9E-06 667
BZW1 4.75 4.4E-04 6.4E-03 138 C6orf62 4.94 3.0E-04 1.2E-04 626

CALM1 3.64 7.1E-03 2.9E-02 125 TMBIM6 4.3 1.6E-03 3.8E-04 611
PRDX3 10.36 1.9E-14 2.4E-12 124 RHOA 4.58 8.1E-04 3.8E-04 536
EIF3I 3.67 6.6E-03 2.8E-02 118 SRSF6 3.94 4.0E-03 9.6E-04 535

PAPSS1 5.35 7.6E-05 1.9E-03 111 PPIA 6.92 4.1E-07 1.7E-06 499
CYCS 3.49 9.8E-03 3.4E-02 107 CD164 4.07 2.9E-03 3.8E-04 468

PSMB3 3.78 5.2E-03 2.5E-02 100 TSPYL1 8.58 3.4E-10 3.6E-08 467
TAGLN2 3.82 4.7E-03 2.4E-02 93 ARPC4 5.55 4.9E-05 4.0E-05 461
ERGIC3 5.54 4.2E-05 1.6E-03 82 S100A11 6.99 3.1E-07 4.6E-07 458

SOD2 5.48 4.2E-06 3.7E-07 4932 MT-ND3 4.56 8.4E-05 1.8E-03 854
SPP1 6.16 2.4E-07 3.3E-08 4133 MTATP6P1 3.16 6.5E-03 1.9E-02 799

TNFAIP2 5.34 7.3E-06 6.0E-07 4122 CTSD 3.41 3.3E-03 1.9E-02 228
SAT1 7.83 5.1E-11 2.0E-11 2050 NUCKS1 3.29 4.6E-03 1.9E-02 169
IL8 3.56 2.8E-03 9.1E-05 1959 MT-ATP8 3.48 2.7E-03 7.8E-03 96

GREP 9.6 6.7E-16 7.0E-16 1617 GUK1 3.55 2.2E-03 7.8E-03 94
CCL3 7.78 6.6E-11 2.3E-11 1412 NFE2L1 3.11 7.4E-03 1.9E-02 91

Lnc-CCL18 7.68 1.1E-10 3.6E-11 1302 HDAC7 3.43 3.1E-03 7.8E-03 73
MARCKS 7.3 8.8E-10 2.2E-10 982 DHRS9 3.11 7.3E-03 1.9E-02 67

IL1B 5.66 2.0E-06 1.9E-07 956 ERP29 3.04 8.9E-03 2.0E-02 55
ALCAM 6.94 5.9E-09 1.2E-09 878 MTND4P12 4.35 1.8E-04 2.3E-03 55
FMNL2 7.49 3.3E-10 9.5E-11 585 MTRNR2L12 4.94 2.1E-05 1.8E-03 53
CCL20 4.78 6.0E-05 3.7E-06 575 MTCO2P2 5.37 3.8E-06 6.0E-04 53
HIF1A 3.42 4.1E-03 1.2E-04 554 RN7SK 3.67 1.6E-03 7.8E-03 52
ITGB8 9 4.4E-14 2.7E-14 529 PTBP1 3.3 4.4E-03 1.9E-02 48

PINLYP 5.08 2.0E-05 1.5E-06 467 RNASET2 3.48 2.7E-03 7.8E-03 47
MMP9 6.11 3.0E-07 4.1E-08 461 LPAR2 3.75 1.2E-03 7.8E-03 44
RIN2 5.22 1.2E-05 9.3E-07 455 CTD-2540B15.11 3.43 3.2E-03 7.8E-03 44

TNFAIP6 9.09 2.4E-14 1.8E-14 451 HNRNPL 3.84 9.5E-04 7.3E-03 39
NAMPT 6.02 4.3E-07 5.5E-08 449 MAN2B2 3.14 6.8E-03 1.9E-02 36
ARID2 4.17 1.3E-03 3.9E-04 1297 PNISR 3.66 3.0E-03 2.1E-02 519

MYCBP2 5.07 9.5E-05 6.4E-05 500 RBM39 3.25 8.4E-03 2.9E-02 507
ZNF117 5.07 9.4E-05 6.4E-05 334 N4BP2L2 3.89 1.6E-03 1.6E-02 462

OGT 4 2.1E-03 4.9E-04 279 STAT2 4.4 3.6E-04 1.0E-02 420
ANKRD36B 7.49 7.9E-09 3.7E-08 251 LUC7L3 3.25 8.3E-03 2.9E-02 325

DAPP1 5.86 6.4E-06 9.7E-06 246 MARCH6 3.38 6.1E-03 2.9E-02 257
ZNF292 4.21 1.2E-03 3.7E-04 221 INSR 3.2 9.5E-03 2.9E-02 199
BMP2K 5.48 2.5E-05 2.3E-05 212 ANKRD36C 5.43 1.1E-05 4.2E-04 186
RASA1 4 2.1E-03 4.9E-04 198 DOCK5 3.82 1.9E-03 1.6E-02 170
INSL6 3.84 3.1E-03 6.2E-04 190 ASH1L 4.75 1.2E-04 3.9E-03 164
JAK2 3.45 7.9E-03 1.2E-03 176 NEMF 3.61 3.4E-03 2.1E-02 135

ANKRD36 5.75 9.7E-06 1.1E-05 163 ANKRD28 3.39 6.0E-03 2.9E-02 134
PAQR3 4.74 2.7E-04 1.5E-04 162 CCDC14 4.24 5.9E-04 1.6E-02 120
CCDC14 4.38 7.4E-04 2.9E-04 157 RC3H1 3.79 2.1E-03 1.6E-02 116
FKBP5 4.47 5.7E-04 2.5E-04 138 RASA1 3.57 3.8E-03 2.9E-02 114

TNRC6B 4.05 1.8E-03 4.6E-04 134 VPS13B 5.28 1.8E-05 3.9E-03 110
ERP27 4.53 4.9E-04 2.3E-04 118 CRLF3 3.24 8.6E-03 2.9E-02 87
PTK2B 6.14 2.3E-06 5.3E-06 115 ZDHHC17 3.22 9.0E-03 2.9E-02 81

ARHGAP15 3.55 6.3E-03 1.0E-03 111 SUZ12P1 3.75 2.4E-03 2.1E-02 68
IRAK3 3.85 3.0E-03 6.0E-04 107 KIAA2026 4.44 3.2E-04 3.9E-03 63

Cluster I

Cluster II

Cluster III

LPS UN

Table 5: Top 20 state-specific genes. Top 20 lists of most significantly restricted
state-specific genes for every defined clusters for activated (LPS) and resting (UN)
macrophages.
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Pathway p(value q(value Source Number5of5genes Pathway5size Genes

Metabolism 6.24E012 1.45E010 Reactome 41 1481

AK2,:NDUFAB1,:SLC25A5,:UQCRC1,:ELOVL5,:MDH1,:NDUFS1,:
SLC2A3,:MPC1,:CTSA,:ELOVL1,:PFKP,:IDI1,:PKM,:PTPLAD1,:ENO1,:
FDFT1,:GSTP1,:HADHA,:B4GALT1,:DLD,:COMT,:ACO2,:PYGL,:GSS,:
IDH3B,:PGK1,:ASAH1,:OAZ1,:GPI,:PLD3,:PNPO,:ENO3,:PRKAR1A,:

NDUFC1,:UGDH,:OSBP,:ATP5B,:PTGES3,:GAPDH,:...

Mitochondrial:Electron:Transport:Chain 5.43E011 1.17E009 SMPDB 13 20
UQCRC1,:ATP5B,:GAPDH,:ATP5F1,:SDHB,:ATP5E,:NDUFA1,:ATP5G2,:

ATP5A1,:ATP5C1,:CYCS,:MT0ATP6,:SDHD

Glycolysis:and:Gluconeogenesis 3.20E010 6.56E009 Wikipathways 19 49
MDH1,:SLC2A3,:MPC1,:PFKP,:PKM,:ENO1,:DLD,:PGK1,:GPI,:ENO3,:
GAPDH,:TPI1,:LDHB,:PDHA1,:MPC2,:MDH2,:ALDOA,:PDHB,:PGAM1

Citric:Acid:Cycle 4.11E008 6.25E007 SMPDB 11 21
MPC1,:DLD,:ACO2,:IDH3B,:SDHB,:PDHA1,:MDH2,:SUCLG1,:IDH3A,:

PDHB,:SDHD
Fatty:acid::beta::oxidation::peroxisome: 6.32E005 9.53E004 HumanCyc 7 19 SCP2,:ACSL3,:HSD17B4,:HADHB,:HADH,:ACOX1,:ACAA2

Regulation:of:IFNG:signaling 8.03E005 1.14E003 Reactome 6 14 IFNGR1,:PTPN6,:SUMO1,:IFNGR2,:PTPN2,:PTPN11

Regulation:of:actin:cytoskeleton:0:Homo:
sapiens:(human):

6.03E004 3.58E003 KEGG 29 215

RHOA,:CDC42,:ACTN1,:ACTB,:PXN,:MYL12A,:PFN1,:ARPC3,:MYL12B,:
GNA13,:RAC2,:ACTN4,:ARPC1B,:RAC1,:PIK3R1,:MSN,:GSN,:ITGB1,:
ITGB2,:ITGA5,:ARPC5,:ITGAM,:CFL1,:ACTG1,:TMSB4X,:NRAS,:MYL5,:

ARPC4,:BRK1
Pentose:Phosphate:Pathway 2.12E003 1.08E002 SMPDB 5 14 GPI,:ALDOA,:TKT,:TALDO1,:RPE

IL1:and:megakaryotyces:in:obesity 3.99E005 2.32E003 Wikipathways 8 24 TIMP2,:ICAM1,:MMP9,:TIMP1,:IL1B,:TLR2,:IL18,:S100A9

TNF:signaling:pathway:0:Homo:sapiens:
(human):

5.53E005 2.56E003 KEGG 44 110

MAPK9,:PIK3CB,:CASP8,:TNFRSF1A,:NFKBIA,:IKBKB,:MAP2K6,:BIRC2,:
AKT3,:TNFAIP3,:ATF4,:MAP3K7,:RIPK1,:MMP14,:FOS,:PIK3CD,:CHUK,:

EIF3A,:RAC1,:RPS6,:CALM2,:PIK3R1,:CALM3,:GRB2,:CALM1,:
TNFRSF1B,:TRAF1,:ITCH,:CXCL2,:DNM1L,:ICAM1,:NFKBIA,:MMP9,:
JAG1,:IKBKB,:MAPK8,:CCL20,:TNFAIP3,:IL1B,:ATF4,:PIK3R5,:CXCL1,:

CASP3,:FOS

HIF01:signaling:pathway:0:Homo:sapiens:
(human)

1.24E004 4.52E003 PID 25 23
HIF1AN,:ELOB,:HIF1A,:EIF4E2,::TFRC,:RPS6,:CUL2,:IL6R,:ENO3,:

PDHA1,:PDHA1ENO1,:PIK3R1,:PGK1,:ENO1,:EGLN1,:PDHB,:RBX1,::
ELOC,:OS9,:LTBR,:MKNK2,:PFKL,:PIK3CB,:PIK3CD,:PIK3CG

Apoptosis:0:Homo:sapiens:(human): 1.40E004 4.85E003 KEGG 24 86
TOMM22,:ACO2,:ATP5B,:TIMM17A,:HSPD1,:ATP5A1,:TOMM70A,:
ATP5G1,:TOMM20,:VDAC1,:BID,:PIK3CB,:CASP8,:TNFRSF1A,:IRAK3,:
CSF2RB,:NFKBIA,:XIAP,:IKBKB,:BIRC2,:AKT3,:RIPK1,:PIK3CD,:CHUK

PPAR:signaling:pathway:0:Homo:sapiens:
(human):

1.96E003 1.95E002 KEGG 11 69
ACSL4,:PLTP,:ACSBG1,:PPARG,:CD36,:CYP27A1,:ACSL1,:FABP5,:OLR1,:

ACSL5,:GK

NF:kappa:B:signaling:pathway:0:Homo:
sapiens:(human):

2.51E003 2.92E002 KEGG 22 91
TNFRSF1A,:ERC1,:NFKBIA,:XIAP,:IKBKB,:BIRC2,:LTBR,:TNFAIP3,:

TRIM25,:MAP3K7,:RIPK1,:CHUK,:TRAF1,:CXCL2,:ICAM1,:CD40,:IL1B,:
BCL2A1,:BCL10,:IL8,:BCL2,:LYN

IL12:signaling:mediated:by:STAT4 6.74E003 4.33E002 PID 6 33 CREBBP,:MAPK8,:IRF1,:STAT4,:IL18,:FOS
AP:1:transcription:factor:network 6.90E003 4.35E002 PID 10 70 CBFB,:FOSL2,:HIF1A,:MMP9,:TIMP1,:BAG1,:DUSP1,:ETS1,:IL8,:FOS

Toll:like:receptor:pathway 8.98E003 5.46E002 BioCarta 12 35
SOAT1,:SQLE,:LIPA,:HMGCS1,:ACAT2,:LSS,:NFKBIA,:IKBKB,:MAP2K6,:

MAP3K7,:FOS,:CHUK
Regulation:of:lipid:metabolism:by:
Peroxisome:proliferator:activated:

receptor:alpha::PPARalpha:
9.87E003 5.44E002 Wikipathways 7 42 HMGCS1,:G0S2,:CD36,:PLIN2,:ACSL1,:ABCA1,:TXNRD1

IL2 1.35E005 1.59E003 NetPath 12 76
MKNK1,:PIK3CG,:NFKB1,:CBL,:MAPK14,:NR3C1,:STAT1,:CREB1,:

PTK2B,:PIK3CA,:RAF1,:VAV1
STAT3:signaling:pathway 4.69E005 1.72E003 BioCarta 5 8 JAK2,:TYK2,:JAK3,:JAK1,:STAT3

IL5 2.56E004 5.54E003 NetPath 25 48
PIK3CB,:MKNK1,:JAK2,:JAK3,:PIK3CG,:NFKB1,:CBL,:MAPK14,:MAPK14,:

NR3C1,:STAM2,:STAT1,:ATF2,:CREB1,:PTK2B,:PTK2B,:PIK3CA,:
STAT5A,:MAP2K2,:RAF1,:VAV1,:JAK1,:STAT3,:GSK3B,::HCLS1

Antiviral:mechanism:by:IFN:stimulated:
genes

6.69E004 8.03E003 Reactome 14 31
PIK3CB,:TAB2,:JAK2,:PIK3CA,:WWP1,:STAT5A,:NCOR1,:ADAM17,:

STAT1,:EIF4E2,:FLNB,:PPM1B,:ARIH1,:UBA7

Cytokine:Signaling:in:Immune:system 7.33E004 1.20E002 Reactome 64 376

PIAS1,:CUL3,:PIK3CB,:TAB2,:EIF4G3,:RASAL2,:APBB1IP,:IRAK3,:JAK2,:
RELB,:TYK2,:JAK3,:DDX58,:RAPGEF2,:SPTBN1,:SOCS2,:PTK2B,:PIK3CA,:
STAT5A,:MAP2K2,:IL6ST,:PPM1B,:VAV1,:RASA1,:ADAM17,:RASGRP3,:

RASA2,:JAK1,:PAQR3,:STAT3,:INPP5D,:NRG4,:STAT2,:RASGRP1,:
TRAF6,:PTPN2,:TNFSF15,:UBA7,:IRAK4,:SPRED2,:PIAS1,:CUL3,:

RASAL2,:JAK2,:NFKB1,:RAPGEF2,:CBL,:STAT1,:PTK2B,:PIK3CA,:RAF1,:
EIF4E2,:FLNB,:PPM1B,:VAV1,:RASA1,:BRAF,:FRS2,:ARIH1,:NRG4,:

STAT2,:UBA7,:NF1,:IRAK4
Glucocorticoid:receptor:regulatory:

network
2.05E003 1.38E002 PID 9 80

NFKB1,:SUV420H1,:MAPK14,:NR3C1,:STAT1,:CREB1,:NFATC1,:
SMARCC2,:NCOA2

Signaling:by:NOTCH 2.58E003 2.11E002 Reactome 21 107
HDAC9,:ST3GAL6,:TNRC6B,:MIB1,:TLE4,:FBXW7,:CCNC,:CREB1,:AGO3,:
CDK8,:AGO4,:NCOR1,:ADAM17,:MOV10,:POGLUT1,:CREB1,:AGO3,:

AGO4,:NCOR1,:MOV10,:POGLUT1
JAK0STAT:pathway 3.63E003 2.73E002 INOH 9 50 JAK2,:TYK2,:JAK3,:CSF3R,:STAT5A,:IL6ST,:JAK1,:STAT3,:STAT2

IL6 4.59E003 2.24E002 NetPath 13 74
JAK2,:NFKB1,:CBL,:MAPK14,:STAT1,:PTK2B,:VAV1,:AR,:JAK3,:STAT5A,:

MAP2K2,:JAK1,:STAT3

IL4 5.69E003 3.28E002 NetPath 10 63
JAK2,:ADRBK2,:TYK2,:JAK3,:MAPK14,:ATF2,:PIK3CA,:JAK1,:STAT3,:

INPP5D
The:information:processing:pathway:at:

the:ifn:beta:enhancer
8.38E003 3.99E002 BioCarta 6 29 NR3C1,:ATF2,:ARID1A,:GTF2F1,:SMARCC2,:HMGB1

Cluster5I

Cluster5II

Cluster5III

Table 6: Pathway analysis for state-specific gene expression. Pathway anno-
tation analysis for state-specific gene expression. For pathway terms “TNF signaling
pathway - Homo sapiens (human)”, “HIF-1 signaling pathway - Homo sapiens (human)”,
“NF kappa B signaling pathway - Homo sapiens (human)” and “Cytokine Signaling in
Immune system” gene names were highlighted if genes were only found for activated
macrophages (blue) or only found for resting macrophages (black). Remaining genes for
these pathways were found for both treatment models.
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Macrophage*state Regulation Gene Cells Fold6change Macrophage*state Regulation Gene Cells Fold6change Macrophage*state Regulation Gene Cells Fold6change
BIRC3 7 2.89 ACSL1 14 4.43 SIK3 6 1.29
IL23A 5 2.45 INSIG1 20 4.40 FAM49A 6 1.28
DUSP2 6 1.76 BCL2A1 18 4.38 CD38 5 1.27
SDC4 6 1.37 DRAM1 14 4.28 LYRM4 6 1.25
GPR84 7 1.22 CHST2 15 4.26 CPM 6 1.18
PLAUR 8 0.95 EBI3 6 4.22 EMILIN2 6 1.17
SHISA2 7 0.88 KANK1 18 4.11 RP11?611O2.5 6 1.17

CTD?2636A23.2 6 0.85 G0S2 17 4.11 TPRG1 5 1.16
TM4SF19?AS1 7 0.71 USP12 14 4.07 SNX11 6 1.12

MAP1B 6 0.64 SERPINE2 17 3.84 ABCA6 5 1.08
FLNA 8 0.63 TNFAIP8 8 3.67 LRRC8B 10 1.08

SNHG16 7 0.48 TNFRSF9 17 3.52 TMEM194A 11 1.04
HSPA8 7 0.48 CRIM1 14 3.49
SLC20A1 8 0.46 LRP12 20 3.47 FAM46A 13 ?1.78

ST6GALNAC2 6 0.43 PELI1 17 3.38 CCSAP 8 ?1.64
TAF13 8 0.41 LUCAT1 22 3.38 CASP2 12 ?1.53
CYCS 7 0.41 BCL11A 6 3.35 PSIP1 10 ?1.41
AP1S2 8 0.41 MARCKS 8 3.24 KIAA1009 7 ?1.37
BZW1 5 0.38 HIVEP2 16 3.24 METTL7A 7 ?1.31
ACTG1 6 0.38 PARP9 9 ?1.30
RAPH1 5 0.37 GCLC 11 ?1.06 SSH2 6 ?1.22
CLIC1 6 0.37 CLEC7A 19 ?1.06 MMS22L 8 ?1.22
CALU 8 0.36 ADAM28 18 ?1.03 MEIS1 6 ?1.19
ACTN1 6 0.35 RNF149 14 ?0.96 NAA16 8 ?1.18
POLR2D 7 0.35 FABP5 6 ?0.76 SESN1 5 ?1.18
ITGB1BP1 7 0.34 CYTH4 6 ?1.16
GOLT1B 5 0.33 GCH1 6 5.70 MS4A14 5 ?1.09

RASGRP1 8 5.25 SUZ12P 6 ?1.03
DAB2 5 ?0.55 MST4 6 3.71 IRF2BP2 8 ?1.02
ECH1 9 ?0.31 ZBTB10 6 3.70 FLT3 7 ?0.95
SNX2 5 ?0.28 MCOLN2 7 3.62 SOCS2 6 ?0.94

GBP2 8 3.60 DCLRE1C 9 ?0.94
CCL4 24 11.63 DENND5A 7 3.50 HMGB2 7 ?0.94
CCL4L1 20 10.60 RP11?212I21.2 7 3.49 NCOA7 9 ?0.93
CCL3 20 10.52 RAP2C 5 3.43 LRRC8C 8 ?0.93

AC069363.1 20 10.45 TFAP2A 6 3.05 TNRC6B 8 ?0.93
TNFAIP6 12 10.27 PDSS1 7 2.78 RCOR3 9 ?0.93
IL1B 20 9.87 SPRED2 5 2.55 PCMTD2 5 ?0.90
IL8 14 9.74 NAV3 8 2.51 GIT2 9 ?0.90

CCL20 20 9.61 PIK3AP1 5 2.48 RP11?295P9.3 5 ?0.89
CCL3L1 20 9.23 GBP5 6 2.38 C2orf68 5 ?0.88
CXCL1 14 9.22 DENND4A 6 2.33 ELF2 6 ?0.87
CCR7 10 9.13 WT1 5 2.27 JMJD1C 5 ?0.86
CXCL2 11 9.07 RP3?325F22.3 7 2.15 S100PBP 10 ?0.86
CCL3L3 19 8.98 LL21NC02?1C16.2 7 2.10 PHF21A 10 ?0.86

RP1?68D18.2 15 6.36 FKBP5 11 2.09 FAM178A 7 ?0.85
RNF144B 20 6.22 MCTP1 7 1.96 FANCM 7 ?0.84
IL7R 5 6.06 STX12 5 1.91 ZNF292 8 ?0.83
EHD1 7 5.76 RP11?37B2.1 8 1.79 BRD8 11 ?0.83
ITGB8 21 5.67 MAP3K5 5 1.75 CSF3R 7 ?0.83
DLL4 15 5.56 LCOR 5 1.71 RAD52 8 ?0.82

ELOVL7 15 5.52 KCNN2 6 1.68 TBC1D8 5 ?0.81
KLF5 11 5.41 HDAC9 6 1.64 C4orf29 9 ?0.81

HS3ST3B1 18 5.31 CTD?2031P19.5 5 1.63 CHKA 5 ?0.80
NAMPT 22 5.24 EYA3 5 1.57 CMYA5 7 ?0.80
TNFAIP2 6 5.01 C21orf91 6 1.57 ARID4A 11 ?0.78
MSC 14 5.01 CCDC82 9 1.53 USP37 9 ?0.78

RP1?68D18.4 10 4.90 PLAGL2 5 1.46 ADRBK2 5 ?0.77
ZC3H12C 9 4.90 FAM65C 5 1.44 METTL17 6 ?0.76
RASGEF1B 5 4.84 CEP85L 6 1.43 TRIM38 5 ?0.75
ATP2B1 23 4.75 NET1 12 1.41 NR2C1 7 ?0.75
LEPREL1 12 4.69 SLC5A6 7 1.36 ERMARD 6 ?0.74

F3 16 4.49 SLC12A6 5 1.35 INSR 6 ?0.74

up?regulated

down?regulated

Homeostasis?
preservingW

macrophagesWW
(ClusterWI)

Pro?inflammatoryW
macrophagesW
(ClusterWII)W

Pro?inflammatoryW
macrophagesW
(ClusterWII)W

Anti?inflammatoryW
macrophagesW
(ClusterWIII)

Anti?inflammatoryW
macrophagesW
(ClusterWIII)

up?regulated

up?regulated

down?regulated

up?regulated

down?regulated

up?regulated

Table 7: Top di↵erentially expressed genes from responsiveness analysis. List
is derived from state-specific di↵erential gene expression induced upon LPS-stimulation
(for visualization see Figure 14F).
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Sueli Marques, Hermany Munguba, Liqun He, Christer Betsholtz, Charlotte Rolny, Gonçalo Castelo-Branco,
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