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Abstract

Land use and land cover maps are crucial information products required for various pur-
poses in scientific, administrative and commercial domains. Such maps can be efficiently
derived by supervised classification of remote sensing data. In many such mapping
projects the collection of reference data, which is required for building the classification
model, is one of the largest items of expenditure. When only one or a few classes need
to be mapped, e.g. an invasive species, one-class classification (OCC) is an attractive
pattern recognition approach. It allows for the learning of a classification model from
labeled reference data for the class of interest only. There is no need for a represen-
tative dataset for the counter-class which consists of all other classes and is therefore
often much more difficult to generate. However, in real-world applications it can be very
challenging to handle flexible state-of-the-art OCC algorithms.

There is a large body of scientific literature addressing OCC which can be grouped in
methodological and applied research. Likewise, the scientists generating this research can
be grouped in two communities: the developers and users of OCC algorithms. This thesis
reflects on the differences between the prevalent methods, objectives and datasets in the
two communities. It identifies and closes knowledge, methodological and technological
gaps that are particularly relevant from a user’s perspective.

In particular, this thesis provides an in-depth comparative study including three base
classifiers and several parameter and model selection approaches. The study is innovative
since, in contrast to other comparative studies, it incorporates the potential performance
of the base classifiers and analyses the performance loss due to the model selection ap-
proaches. It shows that in many cases a high performance loss has to be accepted when
relying on fully automatic approaches. Furthermore it shows that the potential perfor-
mance of MaxEnt, one of the most frequently used algorithms in the user community, is
poorer than the biased SVM, a less frequently used algorithm that is perceived as more
difficult to tune. The results directly motivate the development of strategies and ana-
lytical tools which support the user during model selection and improves the handling
of flexible but complicated algorithms such as the biased SVM. Finally, an objective was
to study a specific type of OCC problem in which the class of interest is very rare in the
area to be mapped and where the number of positive labeled training samples is small.
While such data characteristics are frequently met by users they are rather unusual in
the benchmark datasets used by developers. A novel OCC approach is developed which
is designed for handling such problems.
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Zusammenfassung

Landbedeckungs- und Landnutzungskarten sind wesentliche Informationsprodukte für
zahlreiche wissenschaftliche, administrative und kommerzielle Aufgaben. Solche Karten
können mit Hilfe der überwachten Klassifikation effizient aus Fernerkundungsdaten ge-
wonnen werden. In vielen Kartierungsprojekten ist die Generierung von Referenzdaten
für das Training des Klassifikators ein wesentlicher Kostenpunkte. Wenn nur wenige
Klassen kartiert werden müssen, z.B. eine invasive Art, stellt die 1-Klassen Klassifikation
(1KK) einen attraktiven Ansatz dar. Sie ermöglicht das Lernen eines Klassifikations-
modells aus gelabelten Refernzdaten der Zielklasse. Ein representativer Datensatz für
die Gegenklasse ist nicht nötig. Diese Gegenklasse besteht aus allen anderen Klassen des
Untersuchungsgebietes und ist daher schwer zu charakterisieren. In realen Anwendungen
können flexible 1-Klassen-Klassifikatoren allerdings schwer zu handhaben sein.

Die existierende wissenschaftliche Literatur zu 1KK kann in methodische und ange-
wandte Forschung gruppiert werden. Ebenso lassen sich die Wissenschaftler in zwei
Gruppen einteilen, die Entwickler und die Nutzer von 1KK-Algorithmen. In dieser Dok-
torarbeit werden die Unterschiede zwischen den vorherrschenden Methoden, Zielen und
Datensätzen in den beiden Gruppen kritisch reflektiert. Forschungsbedarf, der insbeson-
dere aus der Perspektive des Nutzers von Relevanz ist, wird identifiziert.

Im Rahmen dieser Arbeit wurde eine vergleichende Studie durchgeführt, in welcher drei
Basisklassifikatoren, verschiedene Modellselektionsverfahren untersucht wurden. Die
Studie ist innovativ, da sie die potentielle Performanz der Basisklassifikatioren und
den Performanzverlust aufgrund der Modellselektionsverfahren offenlegt. Das zeigt,
dass mit voll-automatischen Modellselektionsverfahren in vielen Fällen ein hoher Per-
formanzverlust in Kauf genommen werden muss. Außerdem wird deutlich, dass die
potentielle Performanz von MaxEnt, einer der am häufigsten verwendenten Klassifika-
toren in der Gruppe der Anwender, schlechter abschneidet als die biased SVM, ein
weniger häufig verwendeter Algorithmus, der als schwieriger in der Handhabung gilt.
Die Ergebnisse motivieren die Entwicklung einer Strategie und analytischer Werkzeuge,
welche den Nutzer während der Modellselektion unterstüzen und die Handhabung flexi-
bler und komplizierter Algorithmen wie der biased SVM vereinfachen. Schließlich ist
ein Ziel dieser Arbeit, die Untersuchung der 1KK besonders schwieriger Datensätze
mit ungleicher Klassenverteilung und einer kleinen Menge an gelabelten Trainingsdaten.
Während Datensätze mit solchen Charakteristika unter Nutzern häufig auftreten, sind
diese eher selten unter den Benchmark-Datensätzen der Entwickler anzutreffen. Ein
neuartiger 1KK-Ansatz wurde entwickelt, welcher besonders für die Lösung solcher Prob-
leme geeignet ist.
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2 CHAPTER I. INTRODUCTION

1 Motivation

Human activities dominate and change the earth’s ecosystem in an unprecedented way
(Vitousek, 1997). We are faced with a variety of social-ecological challenges from the
local to the global scale (Steffen et al., 2004). Social-ecological issues are complex due to
increasing interconnectedness and interdependency. Human action is driven by and has
consequences on various components of the social-ecological system, including different
spatial, temporal and institutional scales (Biermann et al., 2016). Sustainable and
equitable management of resources requires understanding and monitoring of social-
ecological systems. Amongst other spatial variables land-use and land-cover (LULC) are
essential pieces of information for planning and resource management and for modeling a
variety of environmental variables. They are an essential input to models in meteorology
(Schicker, Arias, and Seibert, 2015), hydrology (Wagner and Waske, 2016), biodiversity
(Roy and Tomar, 2000), ecosystem services (Andrew, Wulder, and Nelson, 2014), and
many more. They are also used for impact assessments in environmental (Banse et al.,
2008) and economic (Hertel, Rose, and Tol, 2009) analyses.

In these areas of application LULC information is required in a variety of spatial and
temporal scales and thematic detail. Remote sensing data provides a unique source of
data for repeatedly mapping LULC over extensive areas in a cost-efficient way. The im-
age data consists of pixels which capture the radiation of different wavelength reflected
or emitted from discrete spatial units on the earth’s surface. Categorical LULC classes
can be extracted from the data by means of visual interpretation or automated image
processing techniques. Accuracy is considered the principle advantage of visual inter-
pretation. However, visual interpretation is expensive since it requires a large amount of
working hours of trained experts (Ozdogan, 2015). More cost-efficient is the information
extraction from remote sensing data by using classification techniques (Mather and Tso,
2016) based on methods from the fields of statistical learning (Trevor Hastie, 2009),
pattern recognition and machine learning (Bishop, 2006).

Traditionally, classification methods are grouped into unsupervised and supervised meth-
ods. Unsupervised classification algorithms group pixels based on the similarity of their
values into clusters or spectral classes. Clusters do not necessarily correspond to the in-
formation classes to be mapped, e.g. LULC classes. Thus, human-guided pre-processing,
e.g. stratification and masking, and post-processing, e.g. merging and splitting clusters,
are important for the success of cluster algorithms and extracting the desired information
classes (Gómez, J. C. White, and Wulder, 2016). Supervised classification algorithms
learn from labeled examples (training data) and return the information classes as re-
sults. Often, the acquisition of training data needs to be done carefully since the quality
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is crucial for the classification outcome (Foody, Pal, et al., 2016). It often requires
considerable in-situ campaigns or on-screen collection by trained experts.

In the last decades the cost for deriving remote sensing based information in general
and LULC information in particular has decreased tremendously. First, more and more
earth observation data is available (Toth and Jóźków, 2016), often free of cost such as
Landsat (Woodcock et al., 2008) and Sentinel (Berger et al., 2012) data. Second, the
price for hardware required for data processing is relatively low due to technological
advancements. Nowadays, it is possible to conduct remote sensing analysis for the local
scale on a common computer. Even without purchasing a high performance computing
environment large scale analysis is possible using cloud services, such as the Google
Earth Engine (Google Earth Engine Team, 2015) or Amazon Elastic Compute Cloud
(Amazon, 2016). Third, more and more powerful open source software for remote sensing
analysis has become available and is constantly being further developed. This includes
user-friendly open source software with graphical user interfaces, such as the EnMap-
Box (Linden et al., 2015) or QGIS plugins such as the Orfeo-Toolbox (Inglada and
Christophe, 2009) and STEM (Nex, 2015). Additionally, there are a variety of remote
sensing specific and general purpose data analysis packages/application programming
interfaces (API) in high-level programming languages such as R and Python. Fourth,
the cost of training data acquisition can be reduced by different approaches. If avail-
able, training data can be extracted automatically from existing but outdated LULC
maps and, eventually, auxiliary information (Radoux et al., 2014; Balzter et al., 2015).
Furthermore, the required amount of training data can be reduced by using methods
from advanced learning paradigms such as semi-supervised learning (Zhu, 2005), active
learning (Settles, 2010; Tuia et al., 2009) and one-class classification (Minter, 1975), to
name a few.

This thesis addresses one-class classification (OCC) which is an emerging advanced
method for LULC classification with remote sensing data. OCC is an option when
only one specific class of interest needs to be mapped and when distinguishing between
all the other classes is not necessary. In this case all other classes can be conceptualized
as one counter-class, i.e. the complement of the class of interest. Such a task might
be solved with any binary classifier using training data of both classes. However, the
acquisition of representative training samples for the counter-class can be very expensive
since it consists of a variety of sub-classes. It is also possible to use a non-representative
sample for the counter-class, e.g. by using only informative training cases or a sample
of the sub-classes facing the class of interest in the feature space (Foody, Mathur, et al.,
2006). But in practice this is difficult to achieve since it is usually unknown which of the
cases or sub-classes are most relevant. One-class classifiers are able to solve the binary
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classification problem only with labeled training samples of the class of interest, even-
tually by additionally using unlabeled data which is available at no cost. The eventual
high acquisition costs for the counter-class training samples can thus be avoided. It is
important to stress that in this thesis the term one-class classification is used in a very
strict way and is used only if the full model building process, including parameter and
threshold selection, is performed without using negative data. This also excludes the
case when negative data is used for selecting parameters and/or a threshold for a one-
class classifier, which here would be denoted as supervised classification with a one-class
classifier.

Unfortunately, the convenience of OCC with respect to the training data collection may
come at the cost of difficulties when building the classification model. The successful
implementation of an accurate one-class classifier may require more analytical work than
pressing one button or calling one function. However, reading the scientific literature
on one-class classification as an optimistic beginner might convey the impression that
OCC can be easily solved with many different approaches. There is a large number of
methodological scientific papers in which a new fully automatic OCC method is proposed
and proved to perform well on a variety of OCC problems. There is also a large number
of applied scientific papers in which fully automatic OCC approaches are shown to work
on specific applied classification problems. It is more rare to find negative OCC results
which is likely due to the positive publication bias. Thus, reading the scientific literature
on one-class classification as an enthusiastic and optimistic beginner might convey the
impression that OCC is easy. Starting as a new practitioner might then be a frustrating
experience when the one-shot methods fail and there is no guidance on how to proceed
and little information on what might cause a problem. This might particularly occur to
users of these methods who have a strong background in fields such as ecology, biology,
geology, etc., but a weaker background in machine learning and pattern recognition.

The overarching goal of this dissertation is to advance the understanding and usability
of applied one-class classification in real world remote sensing applications for practi-
tioners who are neither pattern recognition/machine learning experts nor highly skilled
programmers. To achieve this, this thesis focuses on three main objectives: First, the
performance of the three base classifiers, MaxEnt, biased SVM and one-class SVM is
investigated. Each of the base classifiers is tuned with different parameter and thresh-
old selection approaches. Particularly, this study focuses on the comparison between
MaxEnt and biased SVM. Biased SVM is more often used in comparative analyses in
methodological research studies but perceived as more complicated to use in the applied
sciences (Skowronek, Asner, and Feilhauer, 2017). MaxEnt is one of the most frequently
used one-class classifier in applied studies since it is easier to use but it is rarely com-
pared to other algorithms. Furthermore, this study reports the performance loss due



1. MOTIVATION 5

to different fully automatic parameter and threshold selection approaches with respect
to the potential performance of the base classifiers. Such deeper insights are usually
not reported in comparative studies despite being highly informative. When selecting
a base classifier this information is helpful, e.g., for a practitioner who feels confident
to manually proof and – if necessary – adjust the parameter(s) and threshold, or for a
researcher to select a suitable base classifier, e.g. for conducting research on improved
model selection approaches.

The second main objective is to develop a strategy and tools to support the practi-
tioner in the evaluation, comparison and improvement of OCC results in the absence
of representative and complete test data. Due to the low reliability of fully automatic
OCC approaches, such developments are maybe one of the most urgent needs in applied
one-class classification. However, so far it is not discussed explicitly in the remote sens-
ing community. As mentioned previously, the methodological research focuses on new
methods that are always proved to perform well on a variety of classification problems.
However, it is not discussed what to do when such an approach fails on a specific real
world task – which might often occur when trying to solve a more challenging OCC
problem.

The third main objective is to develop an approach for solving a specific type of OCC
problem, i.e. a dataset where the class of interest only occurs rarely in the area to be
mapped and the available labeled dataset is small. It is worth noting that such problems
are rarely found in the benchmark datasets that are commonly used in methodological
research papers. The method has been developed to specifically map raised bogs but
can be transferred to map other classes of interest.

The remainder of this thesis is structured as follows: This section provides an illus-
trative introduction to one-class classification. It can be read as a starting point for
(potential) users of one-class classification methods having a less profound background
in machine learning, pattern recognition and statistical learning. It focuses on concepts
and challenges a user is faced with when using any OCC algorithm to solve a real-world
problem. A simple two-dimensional artificial dataset is used such that it is possible to
visualize the data, distributions and models in the feature space. The introduced matter
is of practical relevance for the user of OCC algorithms. It focuses on aspects which can
and should be controlled by the user for successfully solving real-world OCC problems
with high-dimensional datasets, complex class distributions and limited training data.
Section 2 reveals some practical difficulties users of OCC are confronted with. Based
on this background Section 3 describes the prototype characters of OCC algorithm de-
velopers and users. It then raises the question about the relevance of the developers’
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advancements for improving the users’ capabilities to handle OCC algorithms in prac-
tice. Some gaps between the two communities that have already been addressed briefly
above are carved out in more detail and motivate the contributions of this thesis. A
more detailed overview over the main objectives is provided in Section 4. The main
contributions are then presented in the Chapters II–,IV and a synthesis of this thesis is
provided in Chapter V.

2 Background

2.1 One-Class and Binary Classification

The goal of OCC is to separate a class of interest, or positive class C+, from all other
classes, or negative class C−. Thus, the goal of OCC and binary classification is the same
and it makes sense to first introduce binary classification together with the artificial
dataset.

The artificial remote sensing image used for illustration in this chapter has a size of
500× 500 pixels and consists of two grayscale images (Figure I.1 B&C). Each pixel (also
sample or example) of the image can be represented by a feature vector x =

[
x1
x2

]
which

lives in a two-dimensional feature space. Figure I.1 A shows such a feature space with 100
samples selected randomly from the image. The set of samples are colored according to
their real class label. In the real world it is often expensive to assign the class label to an
adequate amount of samples since it has to be done by a trained expert. Such a reference
set with a limited number of labeled samples is enough to train a classification model.
With the trained model all image pixels can be classified, or predicted, in order to create
a classification image, or more specifically a land use/land cover map (Figure I.1 D).

Most learning algorithms are designed such that the output is the predicted class. How-
ever, internally the binary classifier generates a real-valued continuous output which is
then converted into a class label by applying a threshold. Figure I.1 H shows such a
continuous output together with the threshold, or decision boundary, which separates
the feature space in the positive and negative class regions. Specifically, the figure shows
the probability of class membership for the positive class derived from Bayes’ theorem
using the full knowledge of the parameters which generated the data. The Bayes’ the-
orem allows for easily deriving a classifier which maximizes the classification accuracy.
This is usually the goal during model building. Understanding Bayes’ theorem is useful
for two reasons. First, it is intuitive and shows the components required for deriving
the most accurate classification model. Second, it can be used to show how good we
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Figure I.1: In remote sensing, a labeled dataset (A) usually consists of a subsets of
image pixels with known class labels (B&C). Such a dataset can be used to estimate the
joint density (E) and the class-conditional density of the positive (F) and negative (G)
class which are useful to build a classification model (H). The model can be applied to
the whole image data to derive a classification image land cover over the whole imaged

area (D).

can get with one-class classification, which will be discussed below. Bayes’ theorem is a
straightforward formula:

p(C+|x) = p(x|C+)P (C+)
p(x) ,

where p(C+|x) is the probability of class membership, or posterior probability, for the
positive class (Figure I.1 H), p(x|C+) is the conditional density of the positive class (Fig-
ure I.1 F), p(x) is the evidence or joint density (Figure I.1 E) and P (C+) is the prior
probability of the positive class. In order to convert the continuous output p(C+|x) to a
class estimate a threshold is applied. Since the continuous output is the probability of
class membership a threshold of 0.5 is optimal in terms of the classification accuracy.

In the case of binary classification the following equations apply:

P (C−) = 1− P (C+),

p(x|C−)P (C−) = p(x)− p(x|C+)P (C+),
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Thus, the conditional density of the negative class (Figure I.1 G) is also hidden in the
Bayes’ theorem above.

Based on the supervised training set shown in Figure I.1 A it is possible to approximate
all these quantities. The class conditional densities can be estimated from the respective
reference samples. Since the reference set is a random sample from the whole dataset,
the prior probabilities can be estimated from the respective class fractions in the training
set.

A great plenty of classification approaches exist to solve a classification problem. Some
explicitly model the class-conditional and/or joint densities and the class probabilities
and then derive the posterior probabilities based on which classification is performed.
Some directly determine the posterior class probabilities based on which classification
is performed. Others directly derive the class estimates and do not provide class proba-
bilities (Bishop, 2006). However, most algorithms, including the ones of the last group,
allow access to a continuous output which together with a particular default threshold
is converted into a class estimates.

Particularly in the case of classification approaches where a model has to be learned
from a difficult training dataset, such as in the case of one-class classification it can be
crucial to explicitly analyze this continuous output and not rely on any default binary
class estimates. This is according to what (Provost, 2000) stresses for the problem of
learning from imbalanced data: ”The bottom line is that when studying problems with
imbalanced data, using the classifiers produced by standard machine learning algorithms
without adjusting the output threshold may well be a critical mistake (depending on
your research question).”

2.2 P- and PU-Learning

According to (Khan and Madden, 2014) one-class classification has been studied exten-
sively under three broad learning paradigms:

• Learning from positive examples only (P-Learning),

• Learning from positive examples and some amount of poorly sampled negative
examples (PNpoor-Learning)1 and

• Learning from positive and unlabeled examples (PU-Learning).

1PNpoor-learning is not discussed in detail in this thesis. However, it is important to note that the
strategies developed for user assisted model and threshold selection Chapter I Section 2.3 can also be
used to improve the handling of such learning approaches.
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Figure I.2: The continuous outputs (B&E) and best achievable decision boundaries
(red lines in B&E) that can be approximated with the P- (A) and PU- (D) training
dataset differ significantly due to non-uniform class-overlaps. The histograms of the
continuous output of all image pixels (C&D) colored by their true class label shows
that the separability of the P-based model (C) is lower than the one of the PU-based
model (F). Note that the color in B&E corresponds to the x-axes of C&F as well as the

red decision boundaries correspond to the vertical black thresholds.

P-learning only allows for estimating the class-conditional probability of the positive
class or similar continuous outputs (Tax, 2001). As a consequence, the decision boundary
of a P-learner has a structure similar to any density level of p(x|C+). The best achievable
decision boundary in terms of the maximum classification accuracy of a P-learner is
shown in Figure I.2 B. It results in a producer’s and user’s accuracy of 81 % and 80 %
respectively.

With PU-learning it is possible to derive continuous outputs that implicitly take the
density of the negative class into account by exploiting the unlabeled data (Figure I.2 E).
It is possible to estimate p(x|C+)

p(x) or similar continuous outputs that are proportional to
the posterior probability. Since the posterior probability contains the optimal decision
boundary in terms of the minimum classification error it can thus also be derived from
the continuous output of a PU-learner. This is possible without additional labeling cost
since p(x) can be derived from unlabeled image data. With the best decision boundary
based on p(x|C+)

p(x) it is possible to achieve a producer’s and user’s accuracy of 86 % and
89 % respectively. It has already been shown in the early days of remote sensing that it
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is possible to solve the one-class classification problem with Bayes’ theorem and PU-data
given that the a priori probability is also known (Minter, 1975; Lin and Minter, 1976).

Considering the class-conditional densities of the artificial dataset (Figure I.1 F&G) it
is intuitive to understand why the P-learner cannot be optimal. Setting the threshold
on p(x|C+) to a high value avoids false positive classifications (positive predictions on
pixels belonging to the negative class) in the regions of the feature space where the
positive and negative class distributions overlap. However, unnecessary false negative
classifications (negative predictions on pixels belonging to the positive class) have to be
accepted in regions without class overlap. Instead, a low threshold avoids false negative
classifications but at the cost of a high amount of false positive classifications in the
overlapping area. More generally, a decision boundary derived from a P-learner cannot
be optimal unless the negative class distribution p(x|C−) is uniform on the support of
the positive class distribution p(x|C−) or if there is no class overlap (Blanchard, G. Lee,
and Scott, 2010).

Given the strong impact of unlabeled data on the theoretical properties of the decision
boundary it is important to be aware of the difference between P- and PU-learning
when selecting a suitable one-class classifier for a specific application. Particularly, if it
is assumed that there is some class overlap between the positive and the negative class
it is not recommendable to use a P-learning approach, such as the OCSVM or SVDD2.

A variety of PU-learners have been proposed in the last decades. In practical applications
however, only a few are frequently used, such as MaxEnt (Phillips and Dud́ık, 2008) and
the so called PUL-algorithm (Li, Guo, and Elkan, 2011).

2.3 Model selection

So far, two potential continuous outputs have been analyzed p(x|C+) and p(x|C+)
p(x) which

can be approximated by learning from P- or PU-data respectively. However, given the
dataset type (P or PU) it has been assumed that the exact data generating distribu-
tions can be found. Furthermore, for identifying the classification accuracy, the optimal
thresholds have been found by using the one leading to the best achievable accuracies
over all possible thresholds.

In real-life OCC applications the challenge is to find a classification model based on P-
and PU-data. A variety of methods have been proposed in the scientific literature for
solving the problem of OCC. In early approaches it has been assumed that p(x|C+) can
be modeled as a multivariate Normal distribution from the positive training samples

2This statement is valid when using SVDD as a P-learner. However, it can also be used as a PNpoor-
learner and it might return similar results as a PU-learner if the negative samples are suitable.
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and p(x) as a mixture of multivariate Normal distributions for the unlabeled data (Lin
and Minter, 1976). Such assumptions and approaches might be valid for simple classes
and datasets, such as the artificial dataset in this chapter or a single-date optical image.
However, such assumptions and approaches are not adequate for modern classification
problems. The features of modern datasets come from different bands, acquisition dates,
sensors, additional features derived from the spatial neighborhood, auxiliary data such
as digital elevation models or soil categories, etc. In such high-dimensional feature spaces
the structure of the class distributions is unknown and complex and therefore difficult
to approximate. This is particularly true with limited (labeled) training data. The
difficulty and performance loss with increasing dimensionality is well known as the curse
of dimensionality or the Hughes phenomenon (Hughes, 1968).

State-of-the-art machine learning approaches, such as Support Vector Machines or Neu-
ral Networks, can be converted to one-class classifiers in different ways (B. Liu et al.,
2003; Elkan and Noto, 2008). They are able to learn complex distributions and are
less susceptible to the curse of dimensionality. However, since the complexity of such
data-fitting models can be arbitrarily high they must be tuned carefully in order to avoid
over-fitting on the training data and assure good generalization on new unseen data.

Choosing the model complexity controlling parameters and the threshold converting a
continuous output to binary predictions are crucial elements of most, if not all, OCC
algorithms. Often, the algorithms are designed in a way that the user is not confronted
with model selection, i.e. the algorithm is fed with the training data and returns a model
that internally adjusted parameters and uses a default threshold to directly return class
estimates when applied to new unseen data. However, particularly in the case of OCC it
is challenging to build fully automatic parameter and threshold selection methods which
reliably provide good results for a wide range of different OCC problems.

In supervised learning a common approach is to use an independent validation set or
to do cross-validation in order to empirically estimate the performance for all candidate
models and select the best one. The performance metric is usually an accuracy metric,
such as the overall accuracy, F-score, Kappa coefficient, etc. These measures are derived
from the number of correctly and erroneously classified samples that can be summarized
in a confusion matrix (Table I.1 A). Obviously, the difficulty of model selection in OCC
arises from the lack of representative negative examples. In OCC it is not possible to
get an estimate of the false positives (FP) and true negatives (TN) since no negative
labeled samples are available (Table I.1 B).

Several approaches have been proposed to solve the problem of model selection with P-
or PU-data. For example, (Tax and Duin, 2004) proposed a consistency-based model
selection for P-classifiers where the complexity of the model is optimized given a user
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PN-Reference PU-Reference
P N P U

Prediction P True P False P P True P Predicted P
N False N True N N False N Predicted N

Table I.1: Confusion matrix derived from a PN- (left) and PU-dataset. P: positive,
N: negative, U: unlabeled.

defined false negative rate. The algorithm starts with a model having low complexity
and thus a low false positive rate. With increasing complexity the false positive rate also
increases. The last consistent model is then selected, i.e. the last model in which the
empirical false negative rate is still consistent with the pre-defined target false negative
rate. This is a reasonable model selection approach, however the necessity of defining
the target false negative rate is difficult since the optimal value is usually not known,
e.g. if the overall accuracy is to be optimized and not the false negative rate.

Other approaches based on PU-data define PU-performance metrics similar to the ones
derived from PN-data. For example (W. S. Lee and B. Liu, 2003) proposed to use the PU-
metric similar to the F-score which is the harmonic mean of the precision (user’s accuracy
of the positive class) and recall (producer’s accuracy of the positive class). Their PU-
based metric behaves similar as the F-score since it is ”large when both precision and
recall are large and is small if either precision or recall is small” (W. S. Lee and B. Liu,
2003). A very similar PU-based metric has been proposed by (Li and Guo, 2014).

It is also possible to do unsupervised model selection, i.e. without relying on performance
metrics based on P- or PU-data. However, it is then required to make assumptions such
as the clustering assumption. The clustering assumption means that the two classes
form clusters that are separated by low density regions. Based on a low density criterion
it is possible to select the final decision boundary from a variety of candidates (Morsier
et al., 2013).

While P- and PU-based metrics are valuable, they are not guaranteed to be optimal
for all learning problems. Their performance are more or less dependent on various
factors such as the class distribution of the positive class, the number of validation
samples used to estimate the metric, the class separability and the distribution of false
positive and false negative errors (C. Liu, Newell, and M. White, 2015). Likewise,
the assumptions underlying unsupervised model selection approaches are not valid for
all learning problems. The difficulty of finding adequate models in a real-world OCC
application is further complicated when faced with an imbalanced dataset (Section 2.4)
and/or a small positive labeled training set.
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Figure I.3: Illustration of imbalanced dataset and small disjuncts. In the imbalanced
dataset there are still two positive clusters (positive-conditional density in B) and three
negative clusters (negative-conditional density in C). However, the negative data is
much more numerous as can be seen by the joint density in A. Furthermore, two of
the negative clusters are small disjuncts (C), i.e. they only account for a small fraction
of the negative data. In D the posterior probability is shown with the best achievable
decision boundary. With a P-dataset (F) or a PU-dataset with too few unlabeled
samples it is impossible to get close to the optimal decision boundary (D). However,
with sufficient unlabeled samples (H) this is possible. Also a random supervised labeled

training set must be large or it does not contain sufficient information (E).

2.4 Imbalanced datasets and small disjuncts

In Section 2.2 the value of unlabeled data for model building has been discussed. Ex-
ploiting unlabeled data, e.g. for the estimation of p(x), is often expensive in terms of
computational cost. Thus, a random sample of the dataset is usually used instead of
exploiting the whole dataset, i.e. all image pixels. Some studies might suggest the usage
of training sets with a similar number of positive and unlabeled samples, i.e. balanced
PU-training sets (Chen et al., 2016). It is important to understand in which situations
it might be a critical mistake to follow such a recommendation and when it is worth
paying particular attention to the unlabeled samples used for model building.

The problem of a suitable set of unlabeled samples is closely related to the problems of
class imbalance and small disjuncts. The main property of an imbalanced dataset is that
the number of examples differs strongly between the classes. In one-class classification
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the negative class samples, which is usually an aggregation of many classes, often out-
number the positive class samples. Some of these sub-classes may be represented within
small clusters also known as small disjuncts. Selection of unlabeled data becomes par-
ticularly challenging when such small disjuncts are similar or even overlapping with the
positive class.

Figure I.3 shows an imbalanced dataset. The percentage of positive, and negative, sam-
ples is 0.5 %, and 99.5 % respectively. Furthermore, two of the three negative clusters
are small disjuncts and only add up to 0.5% (Figure I.3 C). While the large clusters of
the negative class is easily separable from the positive class, the small disjuncts are more
similar and partially overlapping (Figure I.3 A). The unlabeled data of the PU-training
set is again randomly sampled from the whole data, but the subset does not represent
the two small disjuncts (Figure I.3 G). From such a data set it is not unlikely to build a
model that erroneously classifies the small disjuncts of the negative class as positives. It
is important to be aware that an overall accuracy of 99 % could be achieved with a poor
unlabeled training set. Still, the classification result might over-predict the positive class
with a factor of two which might not be acceptable in a given real-world application.

3 The User’s Needs and the Developer’s Focus

There are some crucial differences between the developer of OCC algorithms and the user
who test them for specific scientific applications or apply them in real-world applications.
The characters described here are of course extremes and many remote sensing scientist
are somewhere in between. The developers’ expertise is in fields such as statistical
learning (Trevor Hastie, 2009), pattern recognition and machine learning (Bishop, 2006)
and good skills in programming and data analysis are usual. The goal is to design
enhanced and fully automatic learning algorithms such that more reliable and more
accurate results can be achieved. The algorithms and analysis of the developer are
self-made and implemented in programming environments such as MatLab which is
widely used in engineering communities. Being aware of the No-Free-Lunch theorem
for machine learning (Forster, 1999; Wolpert, 2002) it is acceptable from the developer’s
view if a novel algorithm fails on some problems as long as it shows significant advantages
on others. Simplified, the theorem says that ”in the lack of prior knowledge [...], any
learning algorithm may fail on some learnable task” (Ben-David, Srebro, and Urner,
2011). Therefore the goal is typically to do better in as many learning tasks as possible.
In order to proof the usefulness of a new algorithm it is usually compared to other
state-of-the-art algorithms based on a set of learning problems. In the training stage of
such comparative exercises negative data is not used but representative and complete
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test data is available for a reliable determination of the algorithm performance. As a
consequence, for the developer it is straightforward to distinguish a successful from a
poor classification result.

Instead, the user has one specific mapping problem and seeks to resolve it as good as
possible by any means. The problem is that a representative and complete PN-testset
might not be available at the moment of model building. Thus, it is not easy to assess
the outcome of a classification model. However, since there is often only one or very
few classification problems to be resolved at a time the method must not necessarily
be fully automatic. If necessary, there is time to invest in manually refined parameter
and threshold selection and analyze different classification outcomes in order to find an
optimal solution. However, the required tools and skills for such an analysis can be
a challenge for the user of an OCC algorithm since the user’s background lies in do-
mains such as ecology, biology, geology, environmental planning, resource management,
etc. and often in a specific geographical region, and might not be strong in pattern
recognition. Furthermore, the users’ do not necessarily have the skills in programming
and data analysis required to implement one-class classification algorithms and properly
analyze their outcomes. As a consequence, only OCC algorithms that are implemented
in accessible and familiar software can be used and are usually employed with default
settings.

Another crucial difference is the nature of the datasets the two communities are faced
with. In many cases the developers benchmark datasets that are relatively small, the
number of labeled samples (for the positive class) is large, the classes are relatively well
separable, the imbalance ratio between the positive and negative class is relatively small
and/or there are no critical small disjuncts of the negative class. A user’s real-world
dataset might be more challenging and one or more of these dataset attributes might
not be favorable (Stenzel et al., 2017). For example, the labeled reference data is often
collected by costly fieldwork conducted under limited time and financial budget and thus
consists of small sample sizes. As a consequence, an OCC algorithm that is successful
on a variety of typical developer datasets does not mean that it also successfully solves
a given real-world classification problem.

With these considerations in mind, it is surprising that there is no active scientific dis-
cussion about how to support manually-guided model and threshold selection in the
absence of representative and complete reference data. Particularly, this is surprising
because it is likely that such decision support tools and strategies are more likely to
advance the usage of OCC algorithms in the applied sciences and in real-world appli-
cations than an additional OCC algorithm that will eventually never be used in these
domains. It is worth stressing that the importance and value of novel algorithms shall
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by no means be questioned here since they are important to advance the methodolog-
ical remote sensing science. However, the issues raised here might have more impact
on the usage and usability of state-of-the-art OCC algorithms by users in practical and
real-world applications.

The MaxEnt algorithm is an interesting case showing in part how separated the two com-
munities work. MaxEnt has been developed for species distribution modeling (SDM), a
common task in biogeography and ecology. The problem is similar to OCC for LULC
classification with remote sensing data since the unavailability of negative training sam-
ples (or absences in SDM terminology) is frequent. In fact, the specific implementation
of the maximum entropy principle estimates p(x|C+)

p(x) based on the positive (or presences)
and unlabeled (or background) data. Furthermore, the features or predictors for model-
ing are usually also present in form of raster datasets. The developers of MaxEnt provide
a software which directly handles raster data and which has a user-friendly graphical
user interface and an extensive tutorial. There is therefore no need to have skills in
any programming language. Additional important advantages of MaxEnt from the user
perspective is that in the SDM community it has a reputation for working with very
small sample sizes and performs well without any user-driven model selection.

These are probably the most important reasons why MaxEnt is the most widely used
OCC approach in applied studies using or investigating OCC for LULC classification
with remote sensing data. In many of these studies MaxEnt has been shown to perform
well by using the default settings. Unfortunately, it is difficult to say how well MaxEnt
performs compared to other machine learning OCC approaches since there is a lack of
comparative studies. The algorithm is mostly ignored in the developer community as a
benchmark approach. This is questionable given its prominence in applied studies. On
the other hand, in the applied studies MaxEnt is often the only investigated algorithm.
Due to the low likelihood that negative results are published (publication bias) it is
however not clear how often MaxEnt performs poorly. Thus, even though MaxEnt
sounds like ”free lunch” it is impossible to rate its performance for LULC classification
applications based on the scientific literature.

4 Objectives and Organization of this Thesis

In the previous sections the background of one-class classification with a focus on the
user’s challenges have been presented (Section 2). Furthermore, a gap between the de-
veloper’s focus and the user’s needs has been described (Section 3). These considerations
motivate the objectives and research questions of this thesis. The main objective is to
advance the usage of OCC for users from geo-scientific domains with limited background



4. OBJECTIVES AND ORGANIZATION OF THIS THESIS 17

in statistical learning, pattern recognition and machine learning. For this purpose, the
following research topics and research questions have been identified.

First, an in-depth comparative study has been conducted including the three base al-
gorithms MaxEnt, biased SVM and ocSVM implemented with various parameter and
threshold selection approaches. The comparison is based on a variety of classification
problems including different classes (8) and image data sets (3). This study was mo-
tivated by two main observations: First, comparing MaxEnt to other state-of-the-art
one-class classifiers was overdue considering the fact that it is rarely part of such studies
despite its popularity in applied research papers. Second, in most if not all comparative
research papers, different base classifiers, e.g. biased SVM or MaxEnt, are implemented
with a single parameter and/or threshold selection approach and compared to each other.
The informativeness of such comparisons is limited first for users when selecting candi-
date classifiers for their purpose and second for developers when prioritizing research.
In the in-depth comparison the potential performance was also reported, i.e., the best
achievable accuracy over all investigated parameter and threshold settings. This infor-
mation is not usually, if at all, reported in comparative studies. However, this is helpful
information about the base classifiers, particularly if it is assumed that the user is even-
tually able to fix automatically selected parameters and/or thresholds. The following
research questions guided the setup of the research presented in Chapter II.

• How do the OCC approaches perform compared with a fully supervised binary
SVM?

• Which OCC approach is most accurate? Particularly,

– which base algorithm has the highest discriminating potential, independent
of parameter and threshold selection,

– how good is the default parameterization of MaxEnt?

The second objective was to develop a user-oriented one-class classification strategy
for supporting the user during the one-class classification process in the absence of a
complete and representative validation set. This contribution has been motivated by
the uncertainty inherent in any fully-automatic OCC approach. There is No-Free-Lunch
and particularly not in OCC and related machine learning domains (such as learning
from imbalanced data) where the training set is incomplete and/or not representative.
As a result, fully-automatic OCC algorithms are more likely to fail when learning a
model from the training data compared to classification algorithms based one complete
and representative training data. While the developers mainly focus on the difficulty of
designing robust and optimal fully-automatic OCC algorithms, the user has to be aware
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that any of them might still fail on the specific classification problem to be solved. Thus,
the research questions motivating the research presented in Chapter III were:

• How can the outcome of any one-class classification model be visualized and in-
terpreted in order to understand

– the rough degree of class separability,

– the suitability of the threshold,

– the appropriateness of the unlabeled training samples.

• How can an optimal model be identified by the user in an efficient way from a
large amount of candidate models.

Finally, the third objective was to design an OCC approach that is particularly suited
for datasets which i) have an imbalanced class distribution, i.e. where only a small
fraction of the image pixels belong to the positive class, where ii) the positive class
potentially overlaps with small disjunct clusters of the negative class (see Section 2.4) and
iii) where the number of positive training samples is very low. In the datasets commonly
used by developers, such classification problems are rarely addressed. Instead, the class
distributions are usually more balanced and the number of labeled training samples is
large. The algorithm to be developed was motivated by the following requirements:

• How can the imbalancedness of a dataset be reduced?

• How can the joint parameter and threshold selection problem be solved more ro-
bustly, particularly when the set of positive labeled training samples is small?

These topics are treated in the main chapters (II-IV) of this thesis each of which is a
self-contained manuscript which has been published in an international peer-reviewed
journal:

II Benjamin Mack and Björn Waske (2017). In-depth comparisons of one-class SVM,
MaxEnt and biased SVM for one-class classification of remote sensing data. Re-
mote Sensing Letters, 8 (3), 290-299.

III Benjamin Mack, Ribana Roscher and Björn Waske (2014). Can I Trust My One-
Class Classification? Remote Sensing, 6 (9), 8779-8802.

IV Benjamin Mack, Ribana Roscher, Stefanie Stenzel, Hannes Feilhauer, Sebastian
Schmidtlein and Björn Waske (2016). Mapping raised bogs with an iterative one-
class classification approach, ISPRS Journal of Photogrammetry and Remote Sens-
ing, in press.
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It is also worth mentioning the open-source R package oneClass that has been devel-
oped while working on this thesis. The package is a collection of user-friendly func-
tions for training and analyzing one-class classification models and results in the ab-
sence of test data (Mack, 2017). It comprises an extensive tutorial which illustrates
how to use the package and find a suitable one-class classification model in a user-
guided and controlled way (https://github.com/benmack/oneClass/blob/master/

notebooks/oneClassIntro.ipynb).
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Abstract

Contrary to binary and multi-class classifiers, the purpose of a one-class classifier for
remote sensing applications is to map only one specific land use/land cover class of inter-
est. Training these classifiers exclusively requires reference data for the class of interest,
while training data for other classes is not required. Thus, the acquisition of reference
data can be significantly reduced. However, one-class classification is fraught with uncer-
tainty and full automatization is difficult, due to the limited reference information that
is available for classifier training. Thus, a user-oriented one-class classification strat-
egy is proposed, which is based among others on the visualization and interpretation
of the one-class classifier outcomes during the data processing. Careful interpretation
of the diagnostic plots fosters the understanding of the classification outcome, e.g., the
class separability and suitability of a particular threshold. In the absence of complete
and representative validation data, which is the fact in the context of a real one-class
classification application, such information is valuable for evaluation and improving the
classification. The potential of the proposed strategy is demonstrated by classifying
different crop types with hyperspectral data from Hyperion.

1 Introduction

In the last decades, remote sensing sensor technology and data quality (in terms of radio-
metric, spectral, geometric, and/or temporal resolutions) improved vigorously (Richards,
2005). The availability of such high quality data will probably increase further due to
new data policies (European Union, 2013). For example, with the recent and planned
Landsat 8 (Roy et al., 2014), EnMAP (Stuffler et al., 2009), and Sentinel (Malenovský
et al., 2012) missions the future availability of high-quality data is secured. Moreover,
the availability of powerful and free/low cost image processing software for the analysis
of remote sensing data, such as R (R Development Core Team, 2013), the EnMAP-Box
(Rabe et al., 2014), and the Orfeo Toolbox (Inglada and Christophe, 2009; Christophe
and Inglada, 2009), fosters the operational use of earth observation (EO) data. In con-
text of decision-making and surveying compliance of environmental treaties, land use
land cover (LULC) classifications of remote sensing data are the most commonly used
EO products. However, continuously increasing performance requirements demand for
the development of adequate classification techniques. It is likely that future develop-
ment in LULC classification of remote sensing images will be driven among others by: (i)
the demand for more detailed as well as accurate LULC classifications; (ii) the interest
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in the distribution of only one or very few classes, e.g., invasive species; and (iii) limited
financial resources and time constraints.

Regarding (ii)–(iii), supervised binary or multi-class classifiers such as the maximum
likelihood classifier or support vector machine (SVM) are not necessarily appropriate
approaches. These classifiers assign each pixel to one of the known classes defined in the
training set. Thus, an accurate supervised classifier requires an exhaustive and mutually
exclusive training set (Russell G. Congalton, 2008). This means that ideally all the
classes in the area of interest have to be defined in the training set. If this condition
is not fulfilled, i.e., if the training set is incomplete, significant classification errors can
occur because all pixels of the unknown classes will be mapped to one of the known
classes. Thus, the larger the area of the unknown classes the higher the commission
errors. Obviously but notably, these errors do not even appear in an accuracy assessment
if the test set does not include the unknown classes (Foody et al., 2006).

Several LULC classification approaches were introduced which can handle incomplete
training sets. In the scientific literature these approaches can be found under the terms
“classification with reject option” (Dubuisson and Masson, 1993; Muzzolini, Yang, and
Pierson, 1998; Fumera, Roli, and Giacinto, 2000), “partially supervised classification”
(Jeon and Landgrebe, 1999), and “one-class classification” (OCC) (Minter, 1975; Tax,
2001). While a common supervised classifier maps each pixel to one of the known classes,
these classifiers reject the classification of a pixel if it does not sufficiently match one of
the known classes. With such algorithms the cost for map production can be significantly
reduced, particularly, if the cost for reference data acquisition is high and the user is
interested in only one or few classes.

Although the lack of need for training samples from the classes of no interest can be
a great facilitation in the training data acquisition step, it turns out to be a burden
during the classification. Independent from the approach, an accurate classification re-
quires adequate training data and parameter settings. When using supervised methods,
estimation of accuracy measures from complete validation data or the training data it-
self by cross-validation is commonly used for the selection of an adequate classifier and
parameter setting (Trevor Hastie, 2009). In contrast, in the case of OCC the full con-
fusion matrix cannot be derived from the reference data available during the training
stage because labeled samples are only available for the class of interest, i.e., the positive
class, but not for the other classes, i.e., the negative class (Table III.1). This is a serious
problem for the user, because for an accurate classification the user’s and producer’s
accuracies (UA and PA) need to be high.
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y+ y− UA

ŷ+ X 7 7

ŷ− X 7 7

PA X 7 7

Table III.1: Confusion matrix with the reference information, y(·) with (·) being the
positive (+) or negative (−) class, in the columns and the classified class ŷ in the
rows. Only y+ samples are available during OCC, which complicates the selection and

training of a suitable model.

Existing one-class classifiers can be separated into several categories, e.g., depending
on the type of the training data and the classifier function. Two main categories, P-
classifiers and PU-classifiers, are distinguished based on whether the training data set
includes positive samples only (P-classifiers) or positive and unlabeled samples (PU-
classifiers). PU-classifiers are computationally much more expensive, due to the fact
that additional information is extracted extracted from an often very large number of
unlabeled samples. However, PU-classifiers can be much more accurate, particularly in
the case of significant spectral ambiguities between the positive and the negative class.
In such cases a P-classifier cannot perform as accurate as a PU-classifier (Jeon and Land-
grebe, 1999; W. Li and Guo, 2010). P-classifiers usually consist of two elements (Tax,
2001): The first element is a similarity measure such as the distance between the positive
training samples and the pixel to be classified. The second element is a threshold that
is applied on the similarity measure to determine the final class membership. Different
approaches to this problem are treated comprehensively in (Tax, 2001).

In the remote sensing community, the one-class SVM (OCSVM) (Schölkopf et al., 2001;
P. Li and Xu, 2010; Muñoz-Maŕı et al., 2010; Sánchez-Azofeifa et al., 2011) and the
Support Vector Data Description (SVDD) (Tax, 2001; Foody et al., 2006; Munoz-Mari
et al., 2007; Sanchez-Hernandez, Boyd, and Foody, 2007; Bovolo, Camps-Valls, and
Bruzzone, 2010) are state-of-the-art P-classifier. As in the case of a supervised SVM two
parameters have to be determined, a kernel parameter and a regularization parameter. In
practice, the regularization parameter is defined via the omission/false negative rate on
(positive only) validation data. This means that the user has to specify the percentage of
the positive training data to be rejected by the model. This parameter has to be chosen
carefully in order to ensure a good classification result. While values such as 1% or 5%
can be suitable when the positive class is well separable (P. Li and Xu, 2010), these
parameter settings will result in a high commission/false positive rate when a significant
class overlap exists.

The SVDD has been applied in a one-class classifier ensemble where the single classifiers
differed in the input features (Munoz-Mari et al., 2007). It has been shown that the
ensemble outperformed feature fusion approach, i.e., the classification with the stacked
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features, which can possibly attributed to the higher dimensionality. It is worth not-
ing that classifier ensembles have also been applied successfully in the field of species
distribution modeling (Drake, 2014; Stohlgren et al., 2010). Furthermore they are a
focus of intense research in pattern recognition and machine learning (Désir et al., 2013;
Krawczyk, Woźniak, and Cyganek, 2014). These are important developments because
multiple classifier systems have been shown to be successful supervised classification of
remote sensing data (Briem, Benediktsson, and Sveinsson, 2002; Du et al., 2012; Waske
and Braun, 2009) and should be further investigated for one-class classification.

The aforementioned approaches can lead to optimal classification results if (i) there is
insignificant class overlap or (ii) if the negative class is uniformly distributed in the part of
the feature space where the positive class lives. In the case of significant classes overlap,
the second condition is usually not true and any P-classifier will lead to relatively poor
results. It is important to note that one-class classifier ensembles based on P-classifiers
are also not suitable for such classification problems.

PU-classifiers try to overcome the problems by exploiting unlabeled data. Usually, it is
not feasible to use all the unlabeled pixels of an image and a random selected subset
is used. This should be as small as possible (such that the algorithm is computational
efficient) but large enough to contain the relevant information. The adequate number
of samples depends on the classification problem, particularly, the complexity of the
optimal decision boundary and the occurrence probabilities of the positive and the over-
lapping negative classes. There are also support vector machine approaches which allow
the exploitation of unlabeled samples such as the semi-supervised OCSVM (S2OCSVM)
(Muñoz-Maŕı et al., 2010) and the biased SVM (BSVM, see also Section 3.2) (B. Liu
et al., 2003; Muñoz-Maŕı et al., 2010).

Another possibility, which is also addressed in this paper, is the usage of Bayes’ rule for
the one-class classification with positive and unlabeled data (Minter, 1975):

p(y+|xi) = p(xi|y+)P (y+)
p(xi)

(III.1)

where p(y+|xi) is the a posteriori probability of the positive class given a pixel xi,
p(xi|y+) the conditional probability of the positive class, P (y+) the a priori probability
of the positive class, and p(xi) the unconditional probability (see also Section 2 for more
details).

There are different ways of solving the OCC problem based on Bayes’ rule. A proba-
bilistic discriminative approach can be implemented to solve the classification problem
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(Elkan and Noto, 2008; W. Li, Guo, and Elkan, 2011). Also different generative ap-
proaches have been proposed. They differ in the way that the probability density func-
tions, p(xi|y+) and p(xi), and the a priori probability are estimated (Lin and Minter,
1976; Jeon and Landgrebe, 1990; Fernández-Prieto, 2002; Mantero, Moser, and S. Ser-
pico, 2005; Fernandez-Prieto and Marconcini, 2011; Marconcini, Fernandez-Prieto, and
Buchholz, 2014). The Maxent approach (Elith et al., 2010; Phillips, Anderson, and
Schapire, 2006; Phillips and Dud́ık, 2008), developed in the field of species distribution
modeling, also estimates the density ratio p(xi|y+)

p(xi) . In contrast to the aforementioned
approaches, Maxent has been used more frequently for one-class land cover classifica-
tion in applied studies (Amici, 2011; Evangelista et al., 2009; W. Li and Guo, 2010;
Morán-Ordóñez et al., 2012; Ortiz, Breidenbach, and Kändler, 2013).

It is important to note that the probabilistic discriminative and the generative ap-
proaches return a posteriori probabilities which offers the user an intuitive possibility
to solve the thresholding problem. Thresholding these probabilities at 0.5 corresponds
to the maximum a posteriori rule and leads to an optimal classification result in terms
of the minimum error rate. This requires accurate estimates of the terms of Bayes’ rule
(see Equation (III.1)). In (Amici, 2011; Evangelista et al., 2009; W. Li and Guo, 2010;
Morán-Ordóñez et al., 2012; Ortiz, Breidenbach, and Kändler, 2013) P (y+) has not
been available neither has it been estimated from the data. Thus, the derived contin-
uous output is not an a posteriori probability with an intuitive meaning. Instead, the
user has to find a different way to solve the threshold problem, i.e., the conversion of the
continuous Maxent output, often called suitabilities, to a binary classification output.
In (Ortiz, Breidenbach, and Kändler, 2013) the value of 0.5 is applied on the logistic
Maxent output, even though the authors are aware of the fact that they are not dealing
with “true” probabilities. In (W. Li and Guo, 2010) the 5 % omission rate estimated on
a (positive only) validation set is used. A detailed theoretical and empirical comparison
of threshold approaches used in the field of species distribution modeling is provided in
(C. Liu, White, and Newell, 2013). However, it is important to underline that all these
techniques do not generally provide the optimal classification result. The usefulness of
such thresholds in terms of the minimum error rate depends on the specific classifica-
tion problem. Therefore, the result must be evaluated by the user based on the limited
reference data.

Besides the threshold selection, the solution by Bayes’ rule seems further interesting.
The derived posteriori probabilities can be used as input in advanced spatial smoothing
techniques (Roscher, Waske, and Forstner, 2012; Moser and S. B. Serpico, 2013) or for
combining OCC outputs of several classes in one map (Munoz-Mari et al., 2007; Guo
et al., 2012). With a posteriori probabilities it is also straightforward to consider differ-
ent mis-classification costs for false positive and false negative classifications (Bruzzone,
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2000). Finally, error probabilities (both the probability of omission and commission, i.e.,
false negative and false positive) can be estimated by integrating over the probability
densities (Minter, 1975). Unfortunately, it is very challenging to accurately estimate the
required quantities p(xi|y+), p(xi), and P (y+), particularly, if the positive labeled train-
ing data is scarse and the dimensionality of the image is large. This is well known under
the terms Hughes phenomena or course of dimensionality (Hughes, 1968; Shahshahani
and Landgrebe, 1994).

In this paper we propose a user-oriented strategy to support the user in handling one-
class classifiers for a particular classification problem. Thus, the complicated handling of
one-class classifiers can be overcome, the application of a state-of-the-art methodology is
advanced and the increased requirements for effective analysis of remote sensing imagery
may be easier fulfilled. In a nutshell, the user first performs any OCC, e.g., the BSVM as
in this study. To evaluate the classification result, the continuous output of the one-class
classifier is further analyzed, e.g., the distance to the separating hyperplane in case of the
BSVM. The distributions of the classifier output and the positive and unlabeled training
data are visualized. If interpreted carefully, this diagnostic plot is very informative and
helps to understand (i) the discriminative power, or separability, of the classifier; and
(ii) the suitability of a given threshold applied to convert the continuous output to class
estimates. In addition, a posteriori probabilities are estimated by solving Bayes’ rule
in the one-dimensional classifier output space. Therefore, the thresholding problem is
objectively solved.

It is important to note that no new one-class classification algorithm is introduced.
However, to the best of our knowledge the combination of a modern or state-of-the-art
one-class classifiers, e.g., the BSVM, with subsequent analysis of the one-dimensional
one-class classifier output space with Bayes’ rule has not been proposed before. Note,
that one of the most important advantage of this strategy is the ease of visualization in
one-dimensional feature space. In the absence of representative validation data, as in
the case of OCC applications, this is useful to evaluate the quality of particular model
outcomes, e.g., the continuous output, threshold, or a posteriori probabilitites. The
presented strategy should support the user in better understanding a particular one-class
classification outcome in the absence of complete reference data. This is an important
component for successfully apply one-class classification in real-world applications and
has not been addressed in previous studies. These studies propose particular solutions for
the problems of model and threshold selection and prove the functioning of the selected
approach by means of representative test sets. Testing new solutions by means of a
representative test set is an essential element in a scientific research papers. However, it
does not guaranteed that they perform well when applied on different data sets in new
real-world applications. This is the case in general but particularly critical in one-class
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classification where reference data is extremely limited. We want to stress that the results
of this strategy do not necessarily provide improved accuracies compared to other well
working approaches. However, they provide the user with easy to interpret information
in order to assess the quality of a selected threshold (see the synthetic example in
Section 2), estimated a posteriori probabilities (see the example in Section 5.1), and/or
the selected one-class classification model (parameterization) (see the experiment in
Section 5.2). Therefore, poor solutions might be detected even without a representative
reference set which we believe to be of utmost value in real world applications.

This paper is structured as follows: In the the next section we present the proposed strat-
egy and illustrate it with a two-dimensional synthetic data set . The specific methods
for the implementation of the strategy are described in Section 3. The data and exper-
iments conducted to demonstrate the strategy are presented in Section 4. The results
are presented and discussed in Section 5. The conclusions close the paper in Section 7.

2 A User-Oriented Strategy for One-Class Classification

In this section the strategy is illustrated by means of a two dimensional synthetic
data set. In two dimensions we can visualization the data and BSVM model (see Fig-
ure III.1 a.1, a.2) and should facilitate the understanding of this section and the strategy.
In practice, visualization of the original input feature space is usually not possible be-
cause high-dimensional data sets are used for classification. Therefore, we recommend
the analysis of the classification problem in the one-dimensional output space of a given
one-class classifier, which can be visualized in practice (see Figure III.1 b.2).

The synthetic example is generated from three normal distributions (Figure III.1 a.1).
Two of the normal distributions belong to negative class, one with an a priori probability
of 0.96 and the other one with 0.02. The third normal distribution is assumed to generate
the data of the positive class with an a priori probability of 0.02. The positive class
overlaps with the “small negative distribution” but is well separable from the “large
negative distribution” (see Figure III.1 a.1). Additionally a test set X te consisting of
100,000 samples is generated from the three normal distributions according to their a
priori probabilities. First, a one-class classifier g(·) is trained with the training data
xi ∈ X tr,PU with i ∈ {1, . . . , I}, consisting of 10 positive and 250 unlabeled samples
(Figure III.1 a.1). In this paper the BSVM is used to implement g(·) (see also Section 3.2).
The example training set, the mixture of normal distributions p(xi), the output of
the trained classifier zi = g(xi), and the default and optimal decision boundaries are
shown in Figure III.1 a.1, a.2. The default decision boundary of the BSVM, i.e., the
separating hyperplane or z = 0, and the optimal decision boundary are also shown in
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Figure III.1 a.2). The latter is derived by applying the maximum a posteriori rule on
the a posteriori probabilities derived by the known data generating distributions and a
priori probabilites. For explanation and visualisation purposes the synthetic dataset is
chosen to be two-dimensional and the optimal decision boundary is known because we
defined the data generating processes. However, for the proposed user-oriented strategy
for handling OCC, higher dimensional data can be used and the optimal trained classifier
model need not to be known.

Second, the continuous classifier outputs are predicted using the trained classifier with
Z = g(X ). Figure III.1 b.2 shows the so-called diagnostic plot. It comprises the density
histogram of the predictions Z shown in gray and the distributions of the training data
ZPU = ZP∪ZU, where ZP (shown as blue boxplot) and ZU (shown as grey boxplot) are
the cross-validated predictions of the training set X tr,P and X tr,U. In order to ensure
that the predictions ZPU are not biased, the held-out predictions of a ten-fold cross
validation are used.

Third, a posteriori probabilities for the training sample set p(y+|zi) (see Figure III.1 b.1)
are derived with Bayes’ rule

p(y+|zi) = p(zi|y+)P (y+)
p(zi)

(III.2)

where zi ∈ Z is the predicted value for sample xi (see also Equation (III.1)). In the same
way, the a posteriori probabilities for the test set pte(y+|zi) can be obtained. Thus the
estimation of the conditional probabilities p(y+|zi) and the a priori probabilities P (y+)
are conducted in one-dimensional feature space. In this study a standard kernel density
estimation method is used for the estimation of the probability density functions (see
Section 3.2), but also other suitable density estimation techniques can be applied. The
estimation of the a priori probability is done using the approach of (Guerrero-Curieses
et al., 2002) and explained in detail in Section 3.3.

The diagnostic plot provides evidence on the plausibility of the Bayes’ analysis, i.e., the
estimated quantities p̂(zi|y+), P̂ (y+), p̂(zi), p̂(y+|zi), and of given binarization threshold,
such θMAP derived from p̂(y+|zi) or the default threshold θ0 of the BSVM. It may thus
reveal if inadequate models are used for estimating these quantities and/or if critical
assumptions are violated. For example, a certain degree of class separability is usually
assumed for estimating P (y+) (see Section 3.3). The visualized quantities in the diag-
nostic plot constitutes an informative source for interpretation and evaluation of the
classification result, which is especially valuable if no complete and representative test
set is available. Therefore, if implausible estimates are diagnosed, the user can go back
to one of the previous steps in order to improve the results.
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Figure III.1: Illustration of the strategy with the two-dimensional synthetic data set.
The training data (a.1) and the thereof derived BSVM model g(·) (a.2) are shown.
Compared to the default threshold of the BSVM θ0 the threshold derived from the a
posteriori probability θMAP is closer to the optimal threshold θOPT (b.1). The diagnos-
tic plot (b.2) is useful to gain a rough idea of the accuracy of the one-class classification
output and the plausibility of the estimated terms of the Bayes’ rule used to derive the
a posteriori probability. It shows the histogram of the predicted image, the distribution
of X tr,PU in the output space of g(·), i.e., ZPU (boxplots), and the thereof derived
densities. In this example, the diagnostic plot gives evidence to rather trust θMAP than
θOPT (see Section 2 for a detailed explanation). This is confirmed by the threshold
dependent accuracy assessment (b.3), which cannot be estimated in a OCC applica-
tion. Also implausible estimations of the required terms of the Bayes’ rule, i.e., p̂(zi),
p̂(zi|y+), and P̂ (y+) can be detected and sometimes improved by simple approaches
(see (b.4) and (b.5), and Equation (III.5)). After the improvement, the estimated,
p(y+|zi)COR, and test, p(y+|zi)te, a posteriori probabilities are similar over the whole

output range (b.4). Please refer to the text for detailed explanations.

Let us first evaluate the two thresholds θ0 and θMAP based on the diagnostic plot (Fig-
ure III.1 b.2). It can be observed that θ0 and θMAP differ significantly. Apriori, we should
not prefer one of the two thresholds because if any of the estimates p̂(zi|y+), P̂ (y+), p̂(zi)
are not plausible θMAP can lead to poorer binary classification result than θ0. Therefore,
careful interpretation is required in order to decide which threshold is more plausible.
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The histogram of Z shows two main clusters of data which are separated by a low density
region at zi ≈ 0 (Figure III.1 b.2). The default threshold of the BSVM θ0 is located in
this low density region. It is tempting to believe that the data right of θ0 belong to the
positive class and left to the θ0 to the negative class. However, the distribution of the
positive data ZP (the blue boxplot in Figure III.1 b.2) does not support such believes.
It rather provides evidence that only a part of the data right to the low density area
belongs to the positive class. Under the assumptions that (i) the positive training data
X tr,P contains representative samples of the positive class; and (ii) the cross-validated
values ZP of X tr,P are not strongly biased, θMAP can be approved to be more suitable.
More precisely, if the Bayes’ analysis is valid, we have to expect that the threshold θ0

leads to a very high producer’s accuracy (i.e., true positive rate) but also a very low
user’s accuracy (i.e., a high false positive rate). Instead, with θMAP we can expect that
the producer’s and user’s accuracies for the positive class are rather balanced. It is
proved by the threshold dependent accuracies in Figure III.1 b.3 that this interpretation
is correct. Please note that if we would belief that (i) θ0 = 0 is a suitable threshold and
(ii) over-predictions of the hold-out predictions ZP are unlikely, than this implies that
the positive training set is not representative and does not cover an important part of
the positive class exhibiting differing spectral characteristics. In order to draw the right
conclusion, the user should recall all knowledge, expectations and believes to judge the
derived estimations.

This example also shows that the diagnostic plot is useful for understanding if the size
of unlabeled training data |X tr,U| is suitable. Remember ZU are the cross-validated
predictions of the unlabeled training data X tr,U and are visulized by the grey boxplot in
the diagnostic plot (Figure III.1 b.2). Here, the large part of the samples are located at
very low z-values and only seven samples, i.e., 3 % of the unlabeled samples, exhibit z ≥
0. This means that the most relevant region of the feature space, i.e., where the optimal
decision boundary should be located, is not sampled very well (see Figure III.1 a.2). This
also explains why the default BSVM threshold θ0 is very low. Therefore, in a practical
application we would rather re-train the BSVM with a more suitable, e.g., larger, set of
unlabeled training samples. Eventually, this could improve the discriminative power of
the model.

Let us now evaluate the a posteriori probabilities. Figure III.1 b.1 shows that the a
posteriori probabilities derived from the training and test sets are similar over a large
part of the output range. However, at high z-values p̂(y+|zi) is obviously implausible.
We reasonably assume that the a posteriori probability is monotonically increasing in z,
which is not the case in Figure III.1 b.1. Here, the drop of the a posteriori probabilities
are not plausible but rather an artifact of the non-matching densities in Figure III.1 b.2.
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Thanks to the simple structure of the one-dimensional feature space it is easy to correct
for such implausible effects as is shown in Figure III.1 b.4, b.5 (see Section 3.4).

It has already been argued in Section ?? that there is no OCC approach which is likely
to perform optimally in all classification problem. The same is true for the density and
a priori estimation approaches. Thus, it is not the objective of this paper to promote
any particular approach for g(·) or to derive p̂(zi|y+), P̂ (y+), p̂(zi). Instead, it is rec-
ommended to start with simple approaches for all the steps, analyze the outcome and
improve or change the approximations where necessary.

3 Implementation of the Framework

In this section we shortly describe the methods used for the (i) one-class classification;
(ii) density estimation; (iii) estimation of the prior probability; and (iv) optimization of
the density estimation, i.e., g(·), p(zi|y+), p(zi), and P (y+). To keep the paper concise
only one method is considered for each of the estimation problems. However, the user
can chose among different methods to find an optimal solution.

3.1 Biased Support Vector Machine

For the experiments in this paper the biased SVM (BSVM) (B. Liu et al., 2003) is used
to implement the one-class classifier g(·). The BSVM is a special formulation of the
binary SVM which is adapted to solve the OCC problem with a positive and unlabeled
training set X tr,PU.

Two mis-classification cost terms C+ and C0 are used for the positive and unlabeled
training samples. If the unlabeled training set is large enough it contains a significant
amount of positive samples. On the other hand, the positive training set is labeled and
therefore no or only few negative samples are contained in it. Thus, it is reasonable to
penalize the mis-classifications on the unlabeled training samples less strong. As in the
case of the binary SVM the kernel trick can be applied to create a non-linear classifier by
fitting the separating hyperplane in a transformed feature space. The Gaussian radial
basis function is maybe the most commonly applied kernel and is also used here. Thus,
the inverse kernel width σ needs to be tuned additionally to C+ and C0.

Tuning these three parameters is done by performing a grid search over the combina-
tions of pre-specified parameter values. To select the optimal parameter combination
a performance criteria is required which is estimated from the positive and unlabeled
training data. Given the nature of the data, a reasonable goal is to correctly classify
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most of the positive labeled samples while minimizing the number of unlabeled samples
to be classified as positives. This goal can be achieved by the performance criteria PCPU

(X. Li and B. Liu, 2003)

PCPU = P (ŷ+|y+)2

P (ŷ+) (III.3)

where P (ŷ+|y+) is the true positive rate and P (ŷ+) is the probability that a unlabeled
sample is classified as positive. PCPU is estimated by cross-validation from X tr,PU.

The BSVM has been implemented in R (R Development Core Team, 2013) via the
package kernlab (Karatzoglou et al., 2004).

3.2 Density Estimation

For the estimation of p(zi|y+) an univariate kernel density estimation with adaptive ker-
nel bandwidth is used as implemented in the package pdfCluster (Azzalini and Menardi,
2014). An adaptive kernel density estimation has been selected due to the fact that
the size of ZP is relatively small. In contrast, p(zi) can be estimated from the large
data set Z and thus, it is estimated by a univariate kernel density estimation with fixed
bandwidth. This is computationally feasible even with a large data set such as Z. Here
the implementation of the R base environment (R Development Core Team, 2013) is
used.

3.3 Estimation of the a priori Probability

The a priori probability P (y+) is estimated following the approach in (Guerrero-Curieses
et al., 2002), which is straightforward once the estimates p̂(zi|y+) and p̂(zi) are avail-
able. Accurate estimation of p(zi|y+) and p(zi) are thus a prerequisite for an accurate
estimation of P (y+). The approach assumes that the positive and the negative class
distributions do not overlap at the point z̃, i.e., p(z̃|y−) = 0. If this is true P (y+) can
be derived with the following equation

P (y+) = p(z̃|y+)
p(z̃) (III.4)

In the experiments, the median of the cross-validated positive training samples ZP

(the blue boxplots in the diagnostic plot) is used to determine z̃. The visualization of
the estimations p̂(zi) and p̂(zi|y+)P̂ (y+) allows to examine their plausibility and gives
evidence if the separability assumption is reasonable.
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3.4 Optimizing the Density Estimation

If p(zi|y+) and p(zi) are estimated independently, p̂(zi|y+) can be adjusted to match with
p̂(zi) at high z-values. For this region it is usually justifiable to assume that p(zi|y−)
equals zero, or equivalently, to assume that only the positive class contributes to p(zi).
Based on this assumption, p̂(zi|y+) can be adjusted by applying the following rule:

p̂COR(zi|y+) =

 p̂(zi|y+) if z < zCOR

p̂(zi)
P̂COR(y+) otherwise

(III.5)

where zCOR is the z-value where p̂(y+|zi) first reaches one. This means that we force
P̂ (y+)P̂COR(y+) to accurately correspond to p̂(zi) for high z-values (compare Figure III.1 b.4, b.5).

4 Data and Experiments

4.1 Data

In the experiments of this paper, a Hyperion spaceborne imaging spectroscopy dataset
(Figure III.2) is used to demonstrate the strategy. The data was acquired at 24 May
2012 over an agricultural landscape located in Saxony Anhalt, Germany (image center
latitude/longitude: 51◦23′01.62′′N/11◦44′39.12′′E). The Level 1 Terrain Corrected (L1T)
product of the image has been used. In order to further increase the geometric accuracy
the image was shifted with a linear transformation according to eight ground control
points selected uniformly over the image. The nominal size of a pixel at ground is 30 m.

Figure III.2: Image data and reference information used in the experiments.

From the 242 spectral bands 87 bands with low signal to noise ratio have been removed.
The remaining 155 bands are located in the spectral ranges 426 nm–1336 nm (88 bands),
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1477 nm–1790 nm (32 bands), and 1982 nm–2355 nm (35 bands). The pixel values of
each spectral band were independently linearly scaled between 0 and 1.

The reference data used in this study was provided by the Ministry of Agriculture and
Environment, Saxony Anhalt, Germany. The information was gathered in the framework
of the Integrated Administration and Control System of the European Union. In order
to receive financial support from the European Union the farmers need to declare the
outlines of the agricultural parcels and the land use/land cover. It is assumed that all
parcels of the classes of interest analyzed in this study (rapeseed and barley) have been
declared and that irregularities can be neglected.

To evaluate the proposed strategy, the specific objective in our study is the classification
of rapeseed (Example A, Section 5.1) and barley (Example B, Section 5.2). While we
expect that the classification of rapeseed is relatively simple, the classification of barley
is more challenging due to parcel size and spectral ambiguities between different cereal
crop types.

For each class of interest, the following steps are a carried out to create the training and
test sets. First, a fully labeled reference image Y corresponding to the Hyperion image
data X was created. The pixels within a parcel of the positive class were labeled positive
and all other pixels were labeled negative (Figure III.2). Additionally to Y we created
a reference set YINT without pixels at class borders, such that YINT ∈ Y, in order to
prevent dealing with mixed pixels (Table III.2). This was done by excluding the pixels
with positive and negative class occurrences in the spatial 3 × 3 neighborhood.

X tr,PU X te X te,INT

Class P U P N P (y+) P U P (y+)

Rapeseed 30 5000 96,787 775,317 0.11 63,924 732,540 0.08
Barley 75 5000 38,638 836,456 0.04 24,507 809,008 0.03

Table III.2: Overview over the number of positive(P), unlabeled (U) and negative
(N) training (X tr,PU) and test set sizes, where X te comprises all pixels of the test fields

and X te,INT only the interior fields.

In order to generate the training set we randomly selected 50 parcels. The total number
of parcels available for the class rapeseed was 626 and for the class barley 315. The
positive training pixels X tr,P were randomly selected among the non-border pixels of
these parcels to minimize the probability of outliers in the set. For the rapeseed ex-
periment we selected 30 and for the barley experiment 75 positive training samples. In
both experiments 5000 pixels were selected randomly from the whole image and used as
unlabeled training samples for g(·).

It is important to note that for a one-class classification the required number of positive
labeled training data might be higher than in the case of supervised classification in
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order to yield good classification results. This is particularly true for approaches which
estimate a posteriori probabilities in high-dimensional feature space. The number of
labeled training samples used in many of these experiments are moderately to very
large, i.e., between 100 and 3000 (Jeon and Landgrebe, 1999; Mantero, Moser, and
S. Serpico, 2005; W. Li, Guo, and Elkan, 2011; Muñoz-Maŕı et al., 2010; Marconcini,
Fernandez-Prieto, and Buchholz, 2014).

4.2 Experimental Setup

The two experiments presented in this paper are based on the data described in Sec-
tion 4.1 and the methods described in Section 3. They have been selected in order to
demonstrate the usefulness of the diagnostic plots in the context of model selection,
derivation of a posteriori probabilities, and threshold selection.

We first selected suitable model parameters for the BSVM based on PCPU (Equa-
tion (III.3)) by ten-fold cross-validation using the training set X tr,PU. The cross-validation
is also used to generate the sets ZP and ZU used for constructing the diagnostic plots.
The final model is trained with the selected parameters and the complete training data
and used to derive the predicted image, i.e., Z.

Next, we estimate p(zi|y+) with ZP and p(zi) with Z (see Section 3.2). With derived
density models and z̃ derived from ZP we estimate P (y+) with Equation (III.4). Now
the a posteriori probability p(y+|zi) can be calculated by applying Bayes’ rule (Equa-
tion (III.2)) which also gives the θMAP. Finally, Equation (III.5) is used for correcting
p(zi|y+) and p(y+|zi) at high z-values.

Based on these estimates we construct the diagnostic plots.

With the test set X te we perform an accuracy assessment for the binary classification
results over the whole range of possible thresholds. Additionally to the confusion ma-
trix we derive the overall accuracy (OA), Cohen’s kappa coefficient (κ), the producer’s
accuracy (PA), and the user’s accuracy (UA) for the whole range of possible thresholds.
Three thresholds are of particular interest: the “default” threshold θ0, i.e., 0 and corre-
sponds to the hyperplane of the BSVM, the maximum a posteriori threshold θMAP i.e.,
the the z-value where p(y+|zi) first exceeds 0.5, and the optimal threshold θOPT i.e.,
the threshold which maximizes κ. It is worth to underline that θOPT cannot be derived
in context of a real application, due to the incomplete reference data. However, it is
used to analyze the experimental results.
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The a posteriori probabilities are evaluated by estimating p(zi), p(zi|y+), P (y+) and
p(y+|zi) with the test sets X te and X te,INT. Whereas, X te,INT better represents the
population from which the positive samples X tr,P have been sampled.

For the class barley different diagnostic plots are generated to assess the potential of the
plots in context of model selection. This experiment shows that the diagnostic plot can
be helpful for manual model selection when the automatic selection process, here based
on PCPU, selects an unconvincing model.

The statistical significance of the difference in accuracy has been evaluated a two-sided
test based on the kappa coefficient (Foody, 2004) for all compared binary classification
results. The widely used 5 percent level of significance has been used for determining if
there is a difference. Note, that due to the high amount of test samples also relatively
small differences in accuracy are significantly different.

5 Results and Discussion

5.1 Experiment 1: Rapeseed

The class rapeseed can be classified with very high accuracy. Table III.3 show the confu-
sion matrices and additional accuracy measures given the three thresholds θ0 (at z = 0),
θ̂MAP (at z = −0.17), and θOPT (at z = −0.42). The overall accuracy and kappa coef-
ficients exceed 97 % and 0.85 respectively given any of the three thresholds. Although
the three thresholds provide comparable kappa coefficients are statistically significant
at a 5 % percent level of significance (Foody, 2004).

θ0 θ̂MAP θOPT

(+) (−) UA (+) (−) UA (+) (−) UA

(+) 80,941 4838 94.4% 83,119 5906 93.37% 85,899 8057 91.4%
(−) 15,846 770,479 97.98% 13,668 769,411 98.25% 10,888 767,260 98.6%
PA 83.6% 99.4% PA 85.9% 99.2% PA 88.8% 99%

OA/κ 97.6%/0.87 97.8%/0.88 97.8%/0.89

Table III.3: Confusion matrices and accuracy measures for the class rapeseed given
the threshold θ0 obtained by the BSVM (left), θ̂MAP obtained by Bayes’ rule (middle),

and the optimal threshold θOPT (right).

These findings are clearly reflected in the diagnostic plot (Figure III.3b). The predictive
values of the positive class ZP (shown as blue boxplot) correspond well with a distinctive
cluster of predicted unlabeled data with high z-values. The wide low density range
separating the two clusters corresponds to the wide range of thresholds leading to high
classification accuracies. In this experiment, we can be confident to derive a good binary
classification result with any threshold in the low density range.
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Figure III.3: A posteriori probability (a), diagnostic plot (b) and the threshold
dependent accuracy (c) for the rapeseed example. Optimizing the conditional density

(see Section 3.4) leads to improved a posteriori probabilities at high z-values (d,e).

The visual assessment of the classification and error maps underlines this findings (Fig-
ure III.4). It is well known, that spectral properties of boundary pixels might be
a mixture between both classes (e.g., two different crop types). Consequently these
mixed pixels do not represent either of the two land cover classes and consequently a
mis-classification is more likely to occur.

Deriving accurate a posteriori probabilities is more challenging, particularly with few
positive training samples, as in the case here. Under the assumption that the data of the
right cluster in Figure III.3b belongs to the positive class, the distributions p̂(zi|y+)P̂ (y+)
and p̂(zi) should coincide in this range. However, p̂(zi|y+)P̂ (y+) is less skewed towards
high z-values than p̂(zi).

We assume the reason for the discrepancy to be the size of positive training data. It
is possible that the small size, i.e., 30, is not sufficient to accurately capture the real
distribution of the positive class. Moreover, one may argue that the redundancy is
relatively low in a small training data set. When performing cross-validation with such
a small set the hold out predictions are more likely to exhibit significantly lower values
compared to the predictive values of similar data points predicted with the final model
trained with all samples. Furthermore, if p̂(zi|y+) cannot be trusted it is unlikely that
Equation (III.4) provides an accurate estimate of P̂ (y+).

The visualization of the estimated densities (Figure III.3b) and a posteriori probabili-
ties (Figure III.3a) supports the identification of implausible estimations and helps to
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Figure III.4: Classification (upper image and bottom left im-
age) and test errors (middle image and bottom right im-
age) for the class rapeseed realized with the threshold θ̂MAP

(see Figure III.3, Table III.3).

find more suitable solutions. To improve the a posteriori probabilities, P̂ (y+) has been
re-calculated by the fraction of pixels with z ≥ −0.25, i.e., in the middle of the low den-
sity area. Regarding the visual interpretation of the diagnostic plot and the clear high
separability of the classes, it seems adequate to re-calculate P̂ (y+) by this approach.
Remember that P̂ (y+) is calculated by p̂(z̃|y+)

p̂(z̃) , where z̃ is the median of ZP (see Sec-
tion 3.3). Due to the fact that (i) p̂(zi|y+) and p̂(zi) do not match very well at z̃ and (ii)
the separability is very high it is likely that the alternative way of estimating P (y+) is
more accurate.

Then the adjusted p̂COR(zi|y+)P̂ (y+) (Equation (III.5)) has been used to estimate the a
posteriori probability. Figure III.3d,e show that these solutions substantially improved
p̂(y+|zi), which remains at a constant value of one for high z-values. Over the complete
range of z it is now very close to pte,INT(y+|zi), i.e., the a posteriori probabilities derived
with the test set without boundary pixels (Figure III.3d,e). As expected, a stronger
discrepancy exists between p̂(y+|zi) and pte(y+|zi) due to the influence of mixed pixels
and geometric inaccuracies.

5.2 Experiment 2: Barley

As already underlined, in a practical OCC application no complete and representative
validation set is available. Therefore, the OA or other accuracy measures based on
complete validation sets cannot be estimated and cannot be used for the task of model
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selection. Instead, alternative performance measures, such as PCPU(Equation (III.3)),
are used which can be derived from PU-data. However, as is the case in this experi-
ment, these measures do not consequently lead to the optimal models in terms of the
classification accuracy. In this experiment a positive but noisy relationship exists be-
tween PCPU and the OA (see Figure III.5a). The noisiness is typical for PU-performance
measures is a problem, as in this experiment, when the highest PCPU value points to
a model with relatively low overall accuracy. Assuming the optimal threshold can be
found, the selected model (model b in Figure III.5) leads to an overall accuracy of 97.0%
(κ = 0.57) while the optimal model (model g in Figure III.5) to an overall accuracy of
97.9% (κ = 0.73).

Figure III.5: (a) Optimization criteria PCPU and maximum overall accuracy OA of
BSVM models with different parameterizations. The highest PCPU (b) has relatively
low OA. The diagnostic plots of the seven models with highest PCPU (black points in
(a)) are shown in (b–h). (e) is a reasonable choice because the positive data is well
clustered at high z-values and it can be best associated with a distinct bunch of data

in the histogram and p(zi).

It is shown in Figure III.5 that comparing the diagnostic plots of different models can
support the selection of a more suitable model when the automatic approach fails. In or-
der to select a more accurate model the user can sequentially analyze the diagnostic plot
of other models, e.g., in decreasing order of the optimization criteria PCPU. Between
different diagnostic plots we would select the one where (i) the positive data ZP is most
concentrated at high z-values and (ii) where these samples correspond to a distinctive
cluster of unlabeled data. Following these rules we would select the model shown in
Figure III.5e out of the seven options shown in Figure III.5b–h. Table III.4 shows the
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accuracies, given θOPT, of (i) the model with maximum PCPU(model b, see also Fig-
ure III.5b); (ii) the model selected manually following the argumentation above (model
e, see also Figure III.5e); and (iii) the model with the highest overall accuracy (model g,
see also Figure III.5g). The overall accuracy/kappa coefficient of the manually selected
model (97.7%/0.68) is 0.7%/0.11 higher than the ones of the model with maximum PCPU

(97.0%/0.57) and only 0.02%/0.04 smaller than the model with highest overall accuracy.
Thus, in this experiment the diagnostic plot helps to select a model with significantly
higher discriminative power compared to the model selected by maximizing PCPU (see
Figure III.4). The findings are confirmed by a significance test returning statistically sig-
nificant differences of the kappa coefficients at a 5% percent level of significance (Foody,
2004).

θOPT ,b θOPT, e θOPT, g
(+) (−) UA (+) (−) UA (+) (−) UA

(+) 18,530 6022 75.5% 23,158 5039 82.1% 24,904 4821 83.7%
(−) 20,108 830,434 97.6% 15,480 831,417 98.2% 13,734 831,635 98.4%
PA 48.0% 99.3% 60.0% 99.4% 64.5% 99.4%

OA/κ 97.0%/0.57 97.7%/0.68 97.9%/0.72

Table III.4: Confusion matrices and accuracy measures given θOPT for the model b
selected by maximizing PCPU (b), the manually selected model (e), and the optimal
model, in terms of the maximum OA (f). See also the corresponding diagnostic plots

in Figure III.5b,e,g.

Based on the diagnostic plot of the manually selected model (Figure III.6) a substantial
amount of mis-classifications has to be expected. Contrary to the rapeseed example
(Figure III.3) there is no low density region separating the positive and negative class
regions. Thus, the distributions of the two classes overlap and lead to significant mis-
classifications for any given threshold (Table III.5). As in the rapeseed example, the three
thresholds provide comparable accuracies but due to the high amount of test samples
the differences between the kappa coefficients are statistically significant at a 5% percent
level of significance (Foody, 2004).

Also, the classifier performance, which is limited in comparison to the accuracies pro-
vided for rapeseed, can be assessed by the diagnostic plot. The analysis of the diagnostic
plot (Figure III.6b) underlines among others the threshold dependent trade-off between
false positive and false negative classifications. Starting from θ0 = 0 and moving the
threshold to the left apparently increases the false negative classification stronger than
it reduces the false negative classifications. This can be concluded by the steep slope of
p̂(zi) in this region.

The higher class overlap in the feature space is also underlined by the visual interpreta-
tion of the classification map (Figure III.7). As in the rapeseed example, several boudary
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Figure III.6: A posteriori probabilities, diagnostic plot, and threshold dependent
accuracy for the manually selected model (a–c) and the optimal model (d–f) of the

barley example (see also Figure III.5).

θ0 θ̂MAP θOPT

(+) (−) UA (+) (−) UA (+) (−) UA

(+) 24,016 5890 80.3% 26,364 9939 72.6% 23,158 5039 82.1%
(−) 14,622 830,566 98.27% 12,274 826,517 98.54% 15,480 831,417 98.2%
PA 62.2% 99.3% 68.2% 98.8% 59.9% 99.4%

OA/κ 97.7%/0.69 97.5%/0.69 97.7%/0.68

Table III.5: Confusion matrices and accuracy measures for the class barley realized
with the manually selected model (see Figure III.5e) given the threshold θ0 obtained by
the BSVM (left), θ̂MAP obtained by Bayes’ rule (middle), and the optimal threshold

θOPT (right)

pixels are missclassified. The errors at the class border are mainly false negatives, which
is in contrast to the rapeseed example where false positives and false negatives occurred
in similar amounts. However, the significant amount of false negatives was to be ex-
pected, regarding the visual interpretation of the diagnostic plots. As in other studies,
these mis-classifications firstly occur at pixels which lie along the boundaries of two
objects, e.g., two field plots. Moreover, some complete mis-classified fields are obvi-
ous in the north of the study site. However, it is well known that the classification of
agricultural areas can be affected by site-internal variations. Therefore we assume the
reason for the mis-classifications to be crop growing conditions, which are different in
the affected part of the study area.

At this point it is also worth noting that the diagnostic plot extends the interpretability
of the classification map alone (Figure III.7). Usually, noisier classification results (i.e.,
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maps with a strong “salt and pepper” effect), such as the map in Figure III.7, are assumed
to contain more errors. Although this assumption might be fulfilled in specific case
studies (e.g., (Waske and Braun, 2009)), it is not generally recommendable to base
decisions related to model or threshold selection on the appearance of the classification
map alone. For example, a lower threshold could lead to a less noisy classification map
because the additional false positives possibly occur in clumps, e.g., in the fields of the
most similar land cover class. As discussed before, careful analysis of the distributions
of ZP and Z reveal such over-predictions.

The example also shows that the derivation of accurate a posteriori probabilities is
challenging in the case of strongly overlapping classes (Figure III.6). Here, p̂(y+|zi)
deviates significantly from both pte(y+|zi) and pte,INT(y+|zi). Nevertheless, this seems
expectable following the interpretation of the diagnostic plot and the proposed strategy.
Remember that the estimation of P̂ (y+) is based on the assumption that P̂ (y−) is zero
at the median of ZP (Equation (III.4)). But in this example it is unlikely that the
assumption holds because p̂(zi) rises steeply just to the left of this point. Therefore, it
has to be assumed that there is still a significant negative density at z̃ = 0.36, resulting
in a smaller P̂ (y+), lower p̂(zi|y+)P̂ (y+), and a shift of the p̂(y+|zi)-curve towards higher
z-values.

Figure III.7: Classification and test errors for the class barley realized with the
manually selected model and the threshold θ̂MAP (see Figure III.6 and Table III.5).
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6 Conclusions

In the presented study, a novel strategy for solving the problem of one-class classifica-
tion was proposed, tested in experiments, and discussed in the context of classifying
hyperspectral data. Although various approaches have been introduced, the generation
of accurate maps by one-class classifiers is challenging, due to the incomplete and un-
representative reference data. As a matter of fact the model and threshold selection,
cannot be solved based on traditional accuracy metrics, such as the overall accuracy
or the kappa coefficient. Thus, the classification does not necessarily lead to optimal
results.

The novelty and potential of the presented strategy lies in the analysis of the one-
dimensional output of any one-class classifier. Based on our experiments, it can be
assessed that the proposed framework for analyzing and interpreting the classifier out-
puts can reveal poor model and/or threshold selection results. A proposed diagnostic
plot for one-class classification results supports the user in understanding the quality
of a given one-class classification result and enables the user to manually select more
accurate solutions, whether an automatic procedures failed. Furthermore, it has been
shown that reliable a posteriori probabilities with small positive training sets can be de-
rive in the one-dimensional output space of any one-class classifier. Overall, due to the
proposed strategy, the use of state-of-the-art OCC can be advanced and the increased
requirements for effective remote sensing image analysis of recent data may be easier
fulfilled.

Future work should extend the strategy to the more general partially supervised classi-
fication problem, i.e., when more than one classes have to be mapped.

The implementations described in this paper have been implemented in the R software
and are partially available in the package oneClass. The package is available via github
(Mack, 2014) and can be installed directly from within R.
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1 Findings

In this thesis one-class classification, an advanced learning paradigm for classifying re-
mote sensing data, has been investigated from the practitioner’s perspective. The main
objective was to enhance the usability of one-class classification methods for users with
limited background in fields such as computing methodologies, machine learning, pattern
recognition and statistical learning. With one-class classification methods it is possible
to map a specific class of interest (or positive class) by training a model with labeled
samples of this class but without the need of a representative set of counter-class (or
negative class) labeled sample. Obviously, this is particularly interesting when reference
data collection is expensive which is often the case.

In Chapter I it has been shown theoretically that OCC models based on positive labeled
and unlabeled data (PU-learner) can be as good as fully supervised binary classifiers.
Instead, the potential performance of models based on positive data only (P-learner) is
lower for typical classification problems. This has been confirmed empirically in Chap-
ter II based on a variety of classification problems. On average over all these experiments
the potential performance of the biased SVM (a PU-learner) has been shown to be simi-
lar to a fully supervised binary SVM while OCSVM (a P-learner) performed significantly
poorer. The potential performance of MaxEnt (a PU-learner) was of special interest since
it is one of the most frequently used approaches in applied OCC studies. It performed
better than OCSVM but not as good as the biased SVM. However, the potential per-
formance of the base algorithms could not be achieved by any of the various parameter
and threshold selection combinations that have been investigated for each of the three
base classification algorithms. This shows how critical model (parameter and threshold)
selection is in OCC applications and how unreliable fully-automatic approaches are.

In Chapter III a user-oriented strategy for OCC has been presented which is based on the
visualization and interpretation of the outcome of any one-class classifier. A diagnostic
plot has been introduced which fosters the understanding of the result in terms of class
separability and the suitability of a particular threshold. Comparing such diagnostic
plots allows to identify poor models and improve the results by manually selecting more
suitable parameter and/or threshold settings. The informativeness of the diagnostic
plot and the suitability of the strategy for improving poor automatic selections has
been demonstrated based on exemplary one-class classification problems. The tools for
the presented analysis strategy together with an interface to the one-class classifiers
OCSVM, biased SVM and MaxEnt has been implemented in the open-source R package
oneClass (Mack, 2017).



2. CONCLUSIONS AND RECOMMENDATIONS 101

Finally, in Chapter IV the focus was on a particularly challenging application of one-
class classification. First, the number of labeled training samples for the class of interest
(raised bogs) was very small (31). Second, the class of interest was rare in the study
site (< 1 % of the mapped area) leading to the complicating situation of imbalanced
classes and eventually small negative disjuncts overlapping with the class of interest (see
Chapter I Section 2.4). In the study an algorithm has been proposed which is particu-
larly designed for such situations. In an iterative pre-classification step, easy to classify
negatives are classified and removed from subsequent analysis. As a consequence, the
dataset remaining in the final classification stage is much more balanced which allows
for the application of parameter and threshold selection approaches that would not be
possible otherwise. In the presented study a joint parameter and threshold selection
approach based on a normal mixture model has been developed which automatically se-
lected an accurate and suitable model. As a useful by-product it provides an extension
of the diagnostic plots developed in Chapter III which helps the user to better rate the
outcome of the automatic algorithm in the absence of complete and representative test
data.

2 Conclusions and Recommendations

OCC algorithms potentially perform as good as fully supervised binary classifiers. How-
ever, in order to realize the full potential of OCC, it is in many cases necessary to use
OCC algorithms that are considered more difficult to handle from the user’s perspec-
tive1. Thus, it is not a good idea to blindly rely on fully-automatic model selection
algorithms but instead critically analyze the classification outcomes. The strategy and
tools developed in this thesis are useful in this respect.

It is also worth stressing the informativeness of reporting the potential performance of
a base classifier together with the performance realized by a model selection approach.
This information is important in order to better understand the different components
of a one-class classifier. In contrast to most, if not all, comparative studies, this in-
formation has been included in the in-depth comparison presented in Chapter II. The
crucial information derived is the high performance loss due to any of the parameter
and threshold selection approaches. Without this information a user might conclude:
”Biased SVM with the best parameter and threshold selection approach performs only
slightly better than MaxEnt with default parameters and a suitable threshold selection
approach. I accept this and spare myself the time to tackle the biased SVM since it

1 ”While for Maxent and BRT, the technique is straightforward, the biased SVM approach required
more effort in model selection and parameter tuning, as compared to the other classifiers” (Skowronek,
Asner, and Feilhauer, 2017).
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is new to me.” With this information and being confident in manually analyzing and
eventually correcting poor automatic parameters and thresholds selections the conclu-
sion might be: ”On average the potential accuracy of biased SVM is substantially higher
than the accuracy of MaxEnt. I will take my time to handle this method even though
it is new to me.”

Sometimes the conclusions of a study might also be misleading without this informa-
tion. For example, (Chen et al., 2016) investigate the performance of the PUL-algorithm
(Elkan and Noto, 2008) dependent on the number of unlabeled training samples. They
observe a performance drop when the number of unlabeled training samples increases
with respect to the positive labeled training samples and conclude that ”a balanced pos-
itive and unlabelled sample size is recommended when PUL-SVM is used” (Chen et al.,
2016 p.1070). Note that the threshold selection implemented in the PUL-algorithm is
a crucial part of the implementation. A natural question is if the performance drop
is due to a poor threshold selection or if any potential threshold perform poor. This
question can easily be answered by reporting the potential performance. But why is
this important to know in order to increase the informativeness and relevance of the
study? First, recall the problem of imbalanced data sets and potential overlap with
small negative disjuncts (see Section 2.4). It has been argued that in such a case it can
be important to sample a large amount of unlabeled training samples for building an
accurate model. In such a case, it is possible that the potential accuracy increases with
an increasing number of unlabeled training samples even though the accuracy of the
classification approach based on a specific threshold selection drops. As a consequence,
the conclusion should be that – in case the class of interest is rare in the study area, it
might require a large number of unlabeled training samples and an adjustment of the
default threshold. Instead, if also the potential accuracy drops with a large number of
unlabeled samples the conclusion would be that the PUL-algorithm – as it is imple-
mented in this study2 – is eventually not suitable for an application where the classes
are imbalanced. In the comparative analysis presented by (Chen et al., 2016) the image
size is very small (400×400 pixels) and the class distribution is fairly balanced. In many
real-world applications this is not the case and it is important to discuss the problem
of imbalanced data when making recommendations about the usage of unlabeled sam-
ples based on such ideal datasets. The potential performance facilitates such a critical
discussion.

Note that in the field of machine learning from imbalanced data (Provost, 2000) stresses
2In this study the implementation is based on a SVM using only the default parameter settings of the

SVM in ENVI 4.8 which is also questionable since it is known that the accuracy of the SVM is sensitive
to the parameter setting.
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the large number of studies where up- or down-sampling does or does not solve the im-
balance problem. However, ”in most of these studies, it never even was asked whether
simply setting the output threshold correctly would be sufficient; without doing so the
research may be misleading” (Provost, 2000 p. 2). As in the case of OCC studies, re-
porting the best potential accuracy is not only relevant for users to make more informed
decisions when selecting candidate classifiers for an application. It also helps develop-
ers to prioritize research that best advances the field of OCC in remote sensing. It
is therefore strongly recommended that studies in the field of OCC, particularly when
introducing new methods, include the potential performance of the investigated base
algorithm(s).

3 Prospect

The usefulness of the user-guided model selection based on the developed diagnostic plot
has been shown. Still, there is a high potential to build better analytic tools for solving
real-world OCC problems. Certainly, OCC methods are more likely to be used in real-
world applications when a powerful and user-friendly system for human-guided model
selection is available. Its design should be a research focus and priority of the developer
and user community and – from the user’s perspective – is more relevant than yet another
specific OCC algorithm. For example, (Provost and Fawcett, 2001) proposed a robust
classification strategy for imprecise environments. According to the authors, the strategy
is ”efficient and incremental, minimizes the management of classifier performance data,
and allows for clear visual comparisons and sensitivity analyses.” The system is based
on the receiver operating characteristic curve (ROC) and since it is valid to build the
ROC with PU-data and rank the predictive power of different classifiers for a given false
negative rate (Phillips, Anderson, and Schapire, 2006) it should be possible to adapt
this strategy for OCC. The diagnostic plot introduced in Chapter III is complementary
to this strategy and together the two approaches can lead to an improved user oriented
system for an efficient user-guided selection of a suitable solution from a large amount
of potential one-class classification models.

One of the most interesting recent trends in remote sensing is large area mapping at high
resolution (10m–30m) (Ozdogan, 2015; Gómez, White, and Wulder, 2016) which is pos-
sible thanks to freely available Landsat, Sentinel-2 and Sentinel-1 data. This opens the
door to new remote sensing based mapping applications, many of them focusing on one
or a few specific classes. State-of-the-art approaches rely on spatially contiguous best-
available-pixel composites (Griffiths et al., 2013; White et al., 2014), spectral-temporal
metrics (Potapov et al., 2012) and/or constructed dense time-series (Hermosilla et al.,
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2016; Vuolo, Ng, and Atzberger, 2017). The creation of training datasets required for
successfully classifying such features over large areas can be very demanding.In general,
the class distributions in such feature spaces are much more complex compared to those
in datasets of smaller areas and full-scene features. This is a consequence of the higher
variability of the manifestation class of interest on the ground. Furthermore, the fea-
tures are less homogeneous compared to the full-scene features mainly dependent on the
number and acquisition time of the valid observations they are derived from. As a con-
sequence, the classification accuracy can decrease critically when the distance between
the training data and the classified data increases (Pelletier et al., 2016).

It is worth to distinguish two typical reference data scenarios for large area mapping:
On the one hand, existing large area covering in-situ reference databases (Mack et al.,
2016) or existing (out-dated and/or coarse resolution) maps (Zhu et al., 2016) exist and
can be used to derive the training dataset for the class of interest and the counter-
class. In this case, OCC is probably not a good choice but instead the focus should
be on selecting a suitable number of samples from the high amount of possible ones
(Zhu et al., 2016) and/or on cleaning the dataset from label noise. In another case,
no auxiliary reference dataset is available that can be used, e.g. because the class of
interest is a new phenomena in the area (e.g. invasive species) or the spatial location of
the class is not persistent over time (e.g. annual crops) which makes out-dated products
uninformative for the current situation. In such a situation OCC is obviously attractive
since it spares the user from generating a representative negative training set. However,
due to the above mentioned reason, even the generation of a representative positive class
training set is challenging for large areas. Active learning (Tuia, Pasolli, and Emery,
2011) is another advanced machine learning paradigm that is worth implementing in
combination with OCC. The idea of active learning is that the learning algorithm starts
with a small reference data set to build a model. Then a query algorithm selects the
most informative sample(s) to be labeled by an expert. The newly labeled samples can
then be used in order to improve the model. These steps are repeated until a suitable
stop criteria is reached. Combining active learning and OCC is a particularly interesting
research direction which might critically reduce the cost for single-class mapping over
large areas. However, substantial adaptation is required to combine the two learning
paradigms and make them suitable for the large datasets to be processed in large area
applications. One strategy might be to first derive a representative positive training set
using active learning and a P-classifier (e.g. similar to Furlani et al., 2012). Next, the
derived P-dataset can be used to derive a subset of the whole data such that the true
positive rate is high while a considerable false positive rate can be accepted (e.g. similar
to the pre-classifier in Chapter IV). Then the final classification can be solved on the
subset by any suitable one-class classification approach or by building a binary classifier
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based on active learning. It needs to be investigated how the individual core elements
as well as the overall processing workflow need to be designed in order to cope with the
immense computational cost of large area datasets.
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