Chapter 1

Nonlocal modelling of phase separation

In this chapter we introduce the different existing models, which describe phase separation.

1.1 Cahn-Hillard model

In this section we will describe the derivation procedure of the Cahn-Hillard model of
isothermal phase separation. For isotropic heterogeneous binary systems with constant
volume filling a domain €2, the standard total free energy functional is postulated in the
form

Fon(u) :/F(u)dx, (1.1)

with the energy density
A
F(u) :f(u)+/-€u(1—u)+§|Vu|2, (1.2)

which comprises the free energy density f(u)+ru(1—u) (for sufficiently large x, and convex
f) for the concentration u and the gradient term with a positive constant \, representing
an interfacial energy ("penalty term") between the phases. Qualitative speaking f(u) +
ru(1l —u) forms a so-called double well potential. If the system is isolated at the boundary
(it means that there is no mass flux across the boundary) its isothermal equilibria are given
by the stationary points of (1.1) subject to the additional constraint on the mean value of
the concentration

‘1‘ /u(:c)da: = . (1.3)

with a given constant @. This constraint means that the total mass of components A and
B in the sample Q is prescribed. Minimizing (1.1) under the constraint (1.3) one gets the
corresponding FEuler-Lagrange equation

f(u)+K(1—2u)—Nu=v inQ,
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subject to the natural boundary condition
Vu-n=0 onI =099,

where n denotes the outward unit normal to I'. Here v is the Lagrange multiplier corre-
ponding to constraint (1.3), given by

v=—F(u),

5oL (W)
where (6/0u)Foy denotes the (formal) first variational derivative of the free energy func-
tional Fop, which may be interpreted as a generalized thermodynamic force, acting at each
point x € €, that tends to decrease the value of the total free energy (see [6]). The first
variational derivative of Fry is defined by

<<, %F(u)> = %

We remark that the gradient term in (1.2) has a smoothing effect on interfaces between
different phases. In consequence, jumps of u (spatial inhomogenities) are not allowed,
instead different phases are separated by walls, that are small subregions with rapid changes
of u. The thickness of these walls is related to the value of \. It is well-known that in the
limit A — 0 the surface area of the interface is minimized locally in €2. This corresponds
to a free energy of the form

Fer(u+ €).
e=0

F(u) = oH*(S(u)),

where o is the surface tension, S(u) is the discontinuity set of u and H? denotes the 2-
dimensional surface measure (see [25|). The dynamics of phase separation is described
as follows. Let u(t) be the concentration at time ¢, and v be the difference between the
chemical potentials vy, v9 of the components A and B. It is defined as the first variation
(see [32]) of the free energy functional

v = @F(u), (1.4)

that is
v=f'(u) + r(1 —2u) — NAu.

Let j = 71 and j5 denote the mass fluxes of A and B. Is is assumed that j; + jo = 0, and
generalized Fick’s law,

is postulated, where p > 0 is a parameter (function) denoting a suitable diffusive mobility.
Considering the mass balance law

du+V-j=0, (1.6)
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one ends up with the classical Cahn-Hillard equation
Ou — V- [puV(f'(u) + k(1 — 2u) — AAu)] =0, (1.7)

where the boundary condition guarantees mass conservation

/u(t,x)da: = /u(O,x)d:ﬁ.

Q Q

A slightly more complicated model is the so called viscous Cahn-Hillard equation. This
equation is derived by postulating the chemical potential in the following way

J
V= @F(u) + uy. (1.8)

Here v contains an additional rate term w;, which describes viscosity. For example (see
[26]) in viscous systems, such as polymer-polymer systems, the viscosity can be important.
Another justification for (1.8) was made by Gurtin |21] and is based on a new balance law
for microforces and which takes into account the working of internal microforces (we can
note that microforces describe forces which are associated with microscopic configurations
of atoms, whereas standard forces are associated with macroscopic lengthscales, hence a
reason to consider separate balance laws for microforces and standard forces). For an
isotropic material, (1.8) leads to the following generalization of equation (1.7):

Ou— V- [uV(f'(u) + 5(1 — 2u) — Mu + u,)] = 0,

where the term w; in (1.8) describes the influence of the internal microforces. These equa-
tions (1.7) and (1.8) have been studied intensively; see e.g. the review articles [12| and
[27].

1.2 Nonlocal Cahn-Hillard equation

Inspecting Cahn-Hillards arguments (see [7], "... would expect that the local free energy
per molecule, F(u), in region of nonuniform composition will depend both on the local
composition and on the composition of the immidiate environment...") establishing (1.1)
as the free energy of binary systems it seems to be reasonable and even more adequate |15]
to choose an alternative expression for the energy density like

F(u) = f(u) + %uw,

where

w(a) = / Kl — ) (1 — 2u(y))dy. (1.9)

Q
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The kernel K of the integral term (1.9) describes nonlocal interactions |8]. The nonlocal
total free energy reads

Fyp(u) = [ F(u)dz. (1.10)
/

In equilibrium Statistical Mechanics functionals of the form (1.10) arise as free energies of
continuum limits of Ising spin systems on lattices; in that setting u represents a macroscopic
magnetization density and K is a ferromagnetic Kac potential (cf. [16] and references
therein). By using (1.4) and the symmetry of w we get

v=f"(u)+w. (1.11)
Together with (1.5)-(1.6) this yields the nonlocal Cahn-Hillard equation
ug =V - (uV(f'(u) +w)) = 0.

Assuming that f is strictly convex, the strictly monotone function f” has an inverse function
f'7L. Thus, as a consequence of (1.11) we automatically get the a priori estimate

u(z) € Im(f"7h).
In standard cases one usually chooses for f the convex (Information) entropy function
f(u) =ulog(u) + (1 — u)log(l —u).
Consequently we have

1
~ 1+exp(v—w)

() = log <L) and  w=f"'(v—w)

1—u

Here the function f’~! is the Fermi function, whose image is the interval [0, 1]. Thus, the
nonlocal model naturally satisfies the physical requirement

0<u(z)<1, Vt>0.

and the maximum principle is available, which is not true for fourth order equations like
in the case of the local Cahn-Hillard equations.

Nonlocal viscous model: We aim to formulate a general nonlocal model, which also
takes into accout viscosity effects. In the local theory this was done by adding a rate term
to the chemical potential (1.8). Now we are going to formulate this additional term in
the nonlocal philosophy, so we not only want to get nonlocality in space (1.11) but also
nonlocality in time. The chemical potential in our case is given by

)
V= @F(U) + 1, YAy +1p = wy,, 7> 0. (1.12)
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Here 7 is a modell parameter, which is positive and guarantees the nonlocal structure of the
additional term 1) in v. This means in Gurtin’s language that the influence of microforces
is nonlocal. At this moment we are not able to formulate a new nonlocal balance law for
nonlocal microforces similar to the balance law in Gurtin [21]. We think that we recover the
previous local viscous model (1.8) by choosing v = 0. Thus our model is a real expansion
to previous existing models. From mathematical point of view the term —yAt), in our
model has a regularizing effect. Taking into account (1.12) we get the nonlocal viscous
Cahn-Hillard equation:

w—V-uVo=0, v=f"(u)+w+1,
wi@) = [ Klle = y)(1 - 2u(w))d. (1.13)
Q

—YAY + Y =, > 0.

Here we have to complement (1.13) with suitable initial and boundary conditions. This
will be done in the next chapter.
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