
Chapter 1Nonlo
al modelling of phase separationIn this 
hapter we introdu
e the di�erent existing models, whi
h des
ribe phase separation.1.1 Cahn-Hillard modelIn this se
tion we will des
ribe the derivation pro
edure of the Cahn-Hillard model ofisothermal phase separation. For isotropi
 heterogeneous binary systems with 
onstantvolume �lling a domain Ω, the standard total free energy fun
tional is postulated in theform
FCH(u) =

∫

Ω

F (u)dx, (1.1)with the energy density
F (u) = f(u) + κu(1 − u) +

λ

2
|∇u|2, (1.2)whi
h 
omprises the free energy density f(u)+κu(1−u) (for su�
iently large κ, and 
onvex

f) for the 
on
entration u and the gradient term with a positive 
onstant λ, representingan interfa
ial energy ("penalty term") between the phases. Qualitative speaking f(u) +
κu(1−u) forms a so-
alled double well potential. If the system is isolated at the boundary(it means that there is no mass �ux a
ross the boundary) its isothermal equilibria are givenby the stationary points of (1.1) subje
t to the additional 
onstraint on the mean value ofthe 
on
entration

1

|Ω|

∫

Ω

u(x)dx = ū. (1.3)with a given 
onstant ū. This 
onstraint means that the total mass of 
omponents A and
B in the sample Ω is pres
ribed. Minimizing (1.1) under the 
onstraint (1.3) one gets the
orresponding Euler-Lagrange equation

f ′(u) + κ(1 − 2u) − λ∆u = v in Ω,1



2 CHAPTER 1. NONLOCAL MODELLING OF PHASE SEPARATIONsubje
t to the natural boundary 
ondition
∇u · n = 0 on Γ = ∂Ω,where n denotes the outward unit normal to Γ. Here v is the Lagrange multiplier 
orre-ponding to 
onstraint (1.3), given by

v =
δ

δu
F (u),where (δ/δu)FCH denotes the (formal) �rst variational derivative of the free energy fun
-tional FCH , whi
h may be interpreted as a generalized thermodynami
 for
e, a
ting at ea
hpoint x ∈ Ω, that tends to de
rease the value of the total free energy (see [6℄). The �rstvariational derivative of FCH is de�ned by

〈

ς,
δ

δu
F (u)

〉

:=
d

dǫ

∣
∣
∣
∣
ǫ=0

FCH(u+ ǫς).We remark that the gradient term in (1.2) has a smoothing e�e
t on interfa
es betweendi�erent phases. In 
onsequen
e, jumps of u (spatial inhomogenities) are not allowed,instead di�erent phases are separated by walls, that are small subregions with rapid 
hangesof u. The thi
kness of these walls is related to the value of λ. It is well-known that in thelimit λ → 0 the surfa
e area of the interfa
e is minimized lo
ally in Ω. This 
orrespondsto a free energy of the form
F (u) = σH2(S(u)),where σ is the surfa
e tension, S(u) is the dis
ontinuity set of u and H2 denotes the 2-dimensional surfa
e measure (see [25℄). The dynami
s of phase separation is des
ribedas follows. Let u(t) be the 
on
entration at time t, and v be the di�eren
e between the
hemi
al potentials v1, v2 of the 
omponents A and B. It is de�ned as the �rst variation(see [32℄) of the free energy fun
tional
v =

δ

δu
F (u), (1.4)that is

v = f ′(u) + κ(1 − 2u) − λ∆u.Let j = j1 and j2 denote the mass �uxes of A and B. Is is assumed that j1 + j2 = 0, andgeneralized Fi
k's law,
j = −µ∇v, (1.5)is postulated, where µ ≥ 0 is a parameter (fun
tion) denoting a suitable di�usive mobility.Considering the mass balan
e law

∂tu+ ∇ · j = 0, (1.6)



1.2. NONLOCAL CAHN-HILLARD EQUATION 3one ends up with the 
lassi
al Cahn-Hillard equation
∂tu−∇ · [µ∇(f ′(u) + κ(1 − 2u) − λ∆u)] = 0, (1.7)where the boundary 
ondition guarantees mass 
onservation

∫

Ω

u(t, x)dx =

∫

Ω

u(0, x)dx.A slightly more 
ompli
ated model is the so 
alled vis
ous Cahn-Hillard equation. Thisequation is derived by postulating the 
hemi
al potential in the following way
v :=

δ

δu
F (u) + ut. (1.8)Here v 
ontains an additional rate term ut, whi
h des
ribes vis
osity. For example (see[26℄) in vis
ous systems, su
h as polymer-polymer systems, the vis
osity 
an be important.Another justi�
ation for (1.8) was made by Gurtin [21℄ and is based on a new balan
e lawfor mi
rofor
es and whi
h takes into a

ount the working of internal mi
rofor
es (we 
annote that mi
rofor
es des
ribe for
es whi
h are asso
iated with mi
ros
opi
 
on�gurationsof atoms, whereas standard for
es are asso
iated with ma
ros
opi
 lengths
ales, hen
e areason to 
onsider separate balan
e laws for mi
rofor
es and standard for
es). For anisotropi
 material, (1.8) leads to the following generalization of equation (1.7):

∂tu−∇ · [µ∇(f ′(u) + κ(1 − 2u) − λ∆u+ ut)] = 0,where the term ut in (1.8) des
ribes the in�uen
e of the internal mi
rofor
es. These equa-tions (1.7) and (1.8) have been studied intensively; see e.g. the review arti
les [12℄ and[27℄.1.2 Nonlo
al Cahn-Hillard equationInspe
ting Cahn-Hillards arguments (see [7℄, "... would expe
t that the lo
al free energyper mole
ule, F(u), in region of nonuniform 
omposition will depend both on the lo
al
omposition and on the 
omposition of the immidiate environment...") establishing (1.1)as the free energy of binary systems it seems to be reasonable and even more adequate [15℄to 
hoose an alternative expression for the energy density like
F (u) = f(u) +

1

2
uw,where

w(x) :=

∫

Ω

K(|x− y|)(1 − 2u(y))dy. (1.9)



4 CHAPTER 1. NONLOCAL MODELLING OF PHASE SEPARATIONThe kernel K of the integral term (1.9) des
ribes nonlo
al intera
tions [8℄. The nonlo
altotal free energy reads
FNL(u) =

∫

Ω

F (u)dx. (1.10)In equilibrium Statisti
al Me
hani
s fun
tionals of the form (1.10) arise as free energies of
ontinuum limits of Ising spin systems on latti
es; in that setting u represents a ma
ros
opi
magnetization density and K is a ferromagneti
 Ka
 potential (
f. [16℄ and referen
estherein). By using (1.4) and the symmetry of w we get
v = f ′(u) + w. (1.11)Together with (1.5)-(1.6) this yields the nonlo
al Cahn-Hillard equation

ut −∇ · (µ∇(f ′(u) + w)) = 0.Assuming that f is stri
tly 
onvex, the stri
tly monotone fun
tion f ′ has an inverse fun
tion
f ′−1. Thus, as a 
onsequen
e of (1.11) we automati
ally get the a priori estimate

u(x) ∈ Im(f ′−1).In standard 
ases one usually 
hooses for f the 
onvex (Information) entropy fun
tion
f(u) = u log(u) + (1 − u) log(1 − u).Consequently we have

f ′(u) = log

(
u

1 − u

) and u = f ′−1(v − w) =
1

1 + exp(v − w)
.Here the fun
tion f ′−1 is the Fermi fun
tion, whose image is the interval [0, 1]. Thus, thenonlo
al model naturally satis�es the physi
al requirement

0 ≤ u(x) ≤ 1, ∀t ≥ 0.and the maximum prin
iple is available, whi
h is not true for fourth order equations likein the 
ase of the lo
al Cahn-Hillard equations.Nonlo
al vis
ous model: We aim to formulate a general nonlo
al model, whi
h alsotakes into a

out vis
osity e�e
ts. In the lo
al theory this was done by adding a rate termto the 
hemi
al potential (1.8). Now we are going to formulate this additional term inthe nonlo
al philosophy, so we not only want to get nonlo
ality in spa
e (1.11) but alsononlo
ality in time. The 
hemi
al potential in our 
ase is given by
v :=

δ

δu
F (u) + ψ, −γ∆ψt + ψ = ut, γ > 0. (1.12)



1.2. NONLOCAL CAHN-HILLARD EQUATION 5Here γ is a modell parameter, whi
h is positive and guarantees the nonlo
al stru
ture of theadditional term ψ in v. This means in Gurtin's language that the in�uen
e of mi
rofor
esis nonlo
al. At this moment we are not able to formulate a new nonlo
al balan
e law fornonlo
al mi
rofor
es similar to the balan
e law in Gurtin [21℄. We think that we re
over theprevious lo
al vis
ous model (1.8) by 
hoosing γ = 0. Thus our model is a real expansionto previous existing models. From mathemati
al point of view the term −γ∆ψt in ourmodel has a regularizing e�e
t. Taking into a

ount (1.12) we get the nonlo
al vis
ousCahn-Hillard equation:
ut −∇ · µ∇v = 0, v = f ′(u) + w + ψ,

w(x) =

∫

Ω

K(|x− y|)(1 − 2u(y))dy,

−γ∆ψt + ψ = ut, γ > 0.

(1.13)Here we have to 
omplement (1.13) with suitable initial and boundary 
onditions. Thiswill be done in the next 
hapter.
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