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Summary
The C1 conjecture states that every separably rationally connected variety over
a C1 field has a rational point. The conjecture has been proven in several cases
by the works of Esnault, Graber, Harris, Starr, de Jong and Colliot-Thélène. The
conjecture is still open in the case when the C1 field is the fraction field K of
a Henselian discrete valuation ring R of mixed characteristic with algebraically
closed residue field k. In this thesis we prove the conjecture in this setting for a
special case. Fix integers r,d coprime with r≥ 2. Let XK be a smooth, projective,
geometrically connected curve of genus g ≥ 2 defined over K and LK a fixed
invertible sheaf on XK of degree d. The moduli space of geometrically stable
locally free sheaves of rank r and determinant LK on the curve XK is a separably
rationally connected variety. In this thesis we prove the C1 conjecture for this
variety under the assumption that the curve XK has a semistable model XR→
Spec(R) with the special fibre Xk, a generalised tree-like curve whose singular
components do not normalise to a rational curve. In order to show the existence
of a K-rational point, we prove the existence of a geometrically stable locally free
sheaf of rank r and determinant LK on the curve XK under our assumptions.

By modifying the classical proof by Le Potier, we first prove the existence of a
semistable locally free sheaf of fixed rank and determinant on a smooth curve of
genus g ≥ 1, defined over an algebraically closed field of arbitrary characteristic.
Then using the theory of generalised parabolic sheaves we prove the same result
on an irreducible nodal curve defined over an algebraically closed field of arbitrary
characteristic. Using these results and stability conditions given by Teixidor i
Bigas, we prove the existence of a semistable locally free sheaf with fixed rank and
determinant on the special fibre Xk. Then using Grothendieck algebraisation and
Artin approximation, we lift this semistable locally free sheaf of fixed rank and
determinant to the model XR. Finally using standard arguments, we conclude
that the pull back of this sheaf to the generic fibre XK gives a geometrically stable
locally free sheaf of required rank and determinant on XK .
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Zusammenfassung
Die C1-Vermutung besagt, dass jede separabel rational zusammenhängende Va-
rietät über einem C1-Körper einen rationalen Punkt besitzt. Die Vermutung wurde
in mehreren Fällen in den Arbeiten von Esnault, Graber, Harris, Starr, de Jong
und Colliot-Thélène bewiesen. Sie ist jedoch noch immer offen im Fall, dass der C1-
Körper der Quotientenkörper K eines Henselschen diskreten Bewertungsringes R
von gemischter Charakteristik mit algebraisch abgeschlossenem Restklassenkörper
k ist. In dieser Arbeit beweisen wir die Vermutung in dieser Situation für einen
Spezialfall. Wir fixieren koprime ganze Zahlen r, d mit r ≥ 2. Sei XK eine glatte,
projektive, geometrisch verbunden, Kurve über K vom Geschlecht g ≥ 2 und sei
LK eine fixe invertierbare Garbe aufXK vom Grad d. Der Modulraum geometrisch
stabiler lokal freier Garben vom Rang r und mit Determinante LK auf der Kurve
XK ist eine separabel rational zusammenhängende Varietät. In dieser Arbeit be-
weisen wir die C1-Vermutung für diese Varietät unter der Voraussetzung, dass die
Kurve XK ein semistabiles Modell XR → Spec(R) besitzt, in dem die spezielle
Faser eine generalisierte baumartige Kurve ist, deren singuläre Komponenten eine
nicht-rationale Normalisierung haben. Um die Existenz eines K-rationalen Punk-
tes zu beweisen, zeigen wir die Existenz einer geometrisch stabilen lokal freien
Garbe vom Rang r und mit Determinante LK auf der Kurve XK unter unseren
Voraussetzungen.

Indem wir einen klasischen Beweis von Le Potier modifizieren, beweisen wir zuerst
die Existenz einer semistabilen lokal freien Garbe mit festgelegtem Rang und De-
terminante auf einer glatten Kurve vom Geschlecht g ≥ 1 über einem algebraisch
abgeschlossenen Körper von beliebiger Charakteristik. Dann benutzen wir die
Theorie der generalisierten parabolischen Garben, um dasselbe Resultat für eine
irreduzible nodale Kurve, die über einem algebraisch abgeschlossenen Körper be-
liebiger Charakteristik definiert ist, zu beweisen. Mit Hilfe dieser Resultate und
von Stabilitätsbedingungen von Teixidor i Bigas beweisen wir die Existenz einer
semistabilen lokal freien Garbe von festem Rang und fester Determinante auf
der speziellen Faser Xk. Dann benutzen wir Grothendieck-Algebraisierung und
Artin-Approximation, um diese semistabile lokal freie Garbe auf das Modell XR

zu heben. Schließlich benutzen wir Standardargumente, um festzustellen, dass die
Zurückziehung dieser Garbe auf die generische Faser eine geometrisch stabile lokal
freie Garbe von benötigtem Rang und Determinante ergibt.

vii





Acknowledgements
I am grateful to my advisor Prof. Dr. Dr. h. c. mult. H. Esnault for giving me
the question and reading the thesis. A large part of this thesis was written on one
of the laptops bought by my advisor for the group. I thank her for letting me use
it. I am grateful to Dr. K. Ruelling for several discussions on algebraic geometry.

I am indebted to Prof. U. Bhosle and Prof. M. Teixidor i Bigas for discussing
their work with me and reading the thesis. I also benefited from discussions with
Prof. G. Farkas, Prof. E. Sernesi, Prof. D. S. Nagaraj and Prof. A. Langer. I am
grateful to Angel Munoz Castaneda for several discussions on vector bundles and
for lending me one of his books. I thank everyone with whom I shared my office:
Giulia, Elena, Adeel, Tanya, Sina, Gabriel, Wouter, Efstathia, Yun and Pedro, for
a cordial atmosphere. I am grateful to the Berlin Mathematical School for the
Phase II Scholarship which funded three years of my PhD. I thank the One Stop
office for all their help, in particular Nadja Wisniewski. I thank Gregor Bruns for
translating the summary of the thesis into German.

A part of this thesis was written while I was a visiting scholar at the Tata Institute
of Fundamental Research, Mumbai. I am grateful to the institute for hospitality
and in particular to Prof. R. Rao and Prof. A. J. Parameswaran. I thank the
faculty and students for a stimulating atmosphere.

Lastly, I thank all those who have taught me, discussed with me and inspired me.

ix





Contents
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Notations
Table 1: Notations

R a Henselian discrete valuation ring.
m the maximal ideal of R.
k residue field of R, assumed to be algebraically closed.
K fraction field of R.
K algebraic closure of K.
Rn R/mn+1 for n≥ 1.
Yn the spectrum of the ring Rn.
R̂ completion of the discrete valuation ring R.
K algebraic closure of K.
XK smooth, projective, geometrically connected curve of genus g≥ 2, defined

over K.
XR semistable model of XK over R with special fibre a generalised tree-like

curve whose singular components do not normalise to a rational curve.
LK a fixed invertible sheaf on XK .
LR a lift of LK to XR.
Quotr,dX/S/H see Notation A.2.3.
µ(E) slope of a sheaf E , see Definition A.1.3.
µsesh(E) Seshadri slope of a sheaf E , see Definition A.1.1.
Ms
XK

(r,d) see Definition 2.3.4.
Ms
XK ,LK (r,d)see Proposition 2.3.6.

T 0 internal nodes of a generalised tree-like curve T , see Notation A.4.3.
T b boundary nodes of a generalised tree-like curve T , see Notation A.4.3.
B(i) see Lemma A.4.2.
G(i) see Lemma A.4.2.
ν(i) see Lemma A.4.2 and Notation A.4.3.
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Chapter 1

Introduction

A field L is said to be C1 if any hypersurface in Pn
L of degree d≤ n has a rational

point. The C1 conjecture states that every separably rationally connected variety
over a C1 field has a rational point. The conjecture has already been proven in the
case when the C1 field is a finite field (see [Esn03]). For the case when the C1 field
is a function field of a curve defined over an algebraically closed field of charac-
teristic zero (resp. arbitrary characteristic), it was proven by Graber, Harris and
Starr in [GHS03] (resp. by de Jong and Starr in [JS03]). The conjecture has also
been understood for the quotient field of an equal characteristic Henselian discrete
valuation ring with algebraically closed residue field using [CT10]. However, little
is known in the case of mixed characteristic. In this thesis we prove the conjec-
ture for a specific rationally connected variety defined over the quotient field of a
Henselian discrete valuation ring of mixed characteristic with algebraically closed
residue field.

Notation 1.0.1. Let R be a Henselian discrete valuation ring with fraction field
denoted K, of characteristic 0 and algebraically closed residue field denoted k, of
characteristic p > 0. Fix integers r,d coprime with r ≥ 2. Let XK be a smooth,
projective, geometrically connected curve of genus g ≥ 2 defined over K and LK
a fixed invertible sheaf on XK of degree d.

Consider the moduli space, denoted Ms
XK ,LK (r,d) of geometrically stable locally

free sheaves of rank r and determinant LK on XK . This is a Fano variety (see
Proposition 2.3.7) and as K is of characteristic 0, it is rationally connected and
also separably rationally connected (see Remark 2.3.8). By the statement of the
C1 conjecture, this variety has a K-rational point. In order to prove the existence
of this rational point, it suffices to prove the existence of a geometrically stable
locally free sheaf with the required rank and determinant on the curve XK .

The moduli of (semi)stable locally free sheaves of fixed rank and degree over a
curve, have been studied for decades and there is a plethora of results on the
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Introduction 2

subject. However, for most of these results the curve is defined over an algebraically
closed field. In fact when the field is non-algebraically closed, there may not even
exist invertible sheaves of certain degrees over a smooth, projective curve (see for
example [BB08]). To the best of our knowledge, there is no result proving the
existence of a stable locally free sheaf of rank ≥ 2 and fixed determinant on a
smooth, projective curve of genus g ≥ 2, defined over a non-algebraically closed
field.

We now discuss the possible approaches one can take and survey existing tech-
niques. Let XR → Spec(R) be a semistable model for the curve XK and de-
note by Xk := XR×Spec(R) Spec(k) the special fibre. It is natural to ask whether
Ms
XK ,LK (r,d) specializes to a moduli space say Ms

Xk,Lk(r,d), as XK specializes to
the semistable curve Xk and LK specializes to an invertible sheaf Lk := LR⊗R k.
One could then use the fact that k is algebraically closed to prove the non-
emptiness of Ms

Xk,Lk(r,d) and check if the k-point can be lifted to an R-point.
However, this approach only works in the case when Xk is smooth. This is be-
cause to define a moduli space (i.e. a scheme corepresenting a moduli functor) of
stable, pure sheaves with determinant an invertible sheaf, one needs to define the
determinant morphism

det :Ms
Xk

(r,d)→ Picd(Xk)

where Picd(Xk) is the Picard group of invertible sheaves on Xk of degree d and
Ms
Xk

(r,d) is the moduli space of stable, pure sheaves of rank r and degree d. Note
that for stable pure sheaves which are not locally free, one defines the determinant
by taking a locally free resolution of the sheaf (see [HL97, Proposition 2.1.10]),
which is finite when the underlying curve is smooth. However, if the underlying
curve is nodal, the locally free resolution need not be of finite length, so one cannot
use this definition for the determinant. As a result, there is no good definition
of a moduli functor for stable locally free sheaves of arbitrary rank and fixed
determinant (where determinant is an invertible sheaf) on an irreducible nodal
curve. Some results using the theory of generalised parabolic bundles have been
proven but only for the case when the rank is 2 and the degree is coprime to the
rank (see [Sun03, Theorem 2]).

Another approach one may consider is to study the degeneration of the moduli
space of semistable torsion free sheaves of rank r and degree d on the generic fibre
to the corresponding moduli space on the special fibre and use further arguments
for the determinant. One of the first results concerning the degenerations of mod-
uli spaces over families of curves is due to Gieseker [Gie84]. Denote by X0 an
irreducible, projective curve with one node {δ} defined over the complex numbers.



Introduction 3

Let U(r,d) (resp. U(r,d)0) denote the moduli space of stable torsion free (resp. lo-
cally free) sheaves of rank r and degree d on X0. In the case of rank 2 and degree 1,
Gieseker constructed a compactification denoted G(2,1) for U(2,1)0. The points
of G(2,1)\U(2,1)0 consist of locally free sheaves E , on curves say X which are
semi-stably equivalent to X0 (i.e., there exists a morphism π : X →X0 such that
π is an isomorphism over X0\{δ} and π−1(δ) is a chain of projective lines). One
of the interesting features of Gieseker’s compactification is that when (r,d) = 1, it
has good specialization properties i.e. if a smooth, projective curve X specializes
to X0, then the moduli space of stable locally free sheaves of rank r and degree d
on X specializes to G(r,d). In [NS99], Nagaraj and Seshadri generalised Gieseker’s
construction for higher ranks. For the case when X0 is reducible, the construction
was generalised by Xia in [Xia95] for rank 2 and by Schmitt in [Sch04] for higher
ranks. Unfortunately, none of these results can be used in our setting because
in all of these results the curve X0 is defined over the field of complex numbers.
The discrete valuation ring in all of these constructions is of equal characteristic
and is in fact a complex algebra. This assumption is used crucially for obtaining
the specialization property mentioned above (see for example [NS99, Proposition
8]). One expects that these results could be used with some modifications for
when the curve XK is defined over a C1 field K of same characteristic as k. How-
ever, in that case the moduli spaces Ms

XK ,LK (r,d) already has a rational point
by [GHS03], [JS03] and [CT10] as mentioned in the first paragraph. Moreover by
[HN75, Proposition 1.2.1] that rational point corresponds to a semistable locally
free sheaf on XK of rank r and determinant LK .

Note that the moduli space Ms
XK ,LK (r,d) is non-empty (see Corollary 2.4.8) and

of finite type. Since Ms
XK ,LK (r,d) is a coarse moduli space, a K point corresponds

to a stable locally free sheaf FL with determinant LL on XL, where L is a finite
extension of K. Denote by RL the integral closure of L in K and since k is
algebraically closed, the residue field of RL is also k. Then one could consider the
degeneration of the stable locally free sheaf FL to the special fibre Xk. However FL
need not degenerate to a locally sheaf on Xk unless XRL→ Spec(RL) is regular (see
[Oss14, Proposition 4.1]). As regularity is not preserved under base change this
approach only works if we assume XR→ Spec(R) to be a smooth model. However
using a semistable locally free sheaf with fixed determinant on the special fibre (not
necessarily obtained as a degeneration) one can still obtain a semistable locally
free sheaf on the generic fibre. This is the key idea in the approach we take.

We now discuss our approach in detail and the main results of this thesis. The
results in this thesis are proven under the following assumption:

Assumptions 1.0.2. Assume that there exists a semistable model XR→ Spec(R)
for the curve XK with the special fibre Xk being a generalised tree-like curve (see
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Definition 2.4.12), whose irreducible singular components do not normalise to a
rational curve.

Denote by Y1, . . .YN the irreducible components of Xk. In the first step, we prove
the existence of semistable locally free sheaves Ei of fixed rank and determinant
on the irreducible components Yi. The proof of existence of a semistable locally
free sheaf of fixed rank and degree on a smooth curve of genus g ≥ 1 defined over
the field of complex numbers is given in [LP97, Theorem 8.6.1]. In Theorem 2.4.6,
we modify this proof by replacing the steps which fail in positive characteristic.
We then prove the following:

Theorem 1.0.3 (see Theorem 2.4.6 and Corollary 2.4.8). There exists a semistable
locally free sheaf of fixed rank and determinant on a smooth, projective curve Y
of genus g ≥ 1 defined over an algebraically closed field.

However, a locally free sheaf is semistable on a rational component of Xk only if
its degree is a multiple of its rank. Therefore to produce semistable locally free
sheaves on the non-singular, rational components of the curve Xk, we prove the
following lemma.

Lemma 1.0.4 (see Lemma 3.2.4). Let r be a fixed integer. Denote by S the set
of indices of the rational components of Xk. There exists an invertible sheaf LR
on XR such that LR⊗OXK = LK and for all si ∈ S, deg(LR⊗OYsi ) is a multiple
of r.

For any component Y of Xk which is irreducible, nodal with normalisation Ỹ a
smooth curve of genus g ≥ 1, we use the theory of generalised parabolic bundles
and Theorem 1.0.3 to produce a semistable locally free sheaf with fixed rank and
degree. We then use arguments related to the Picard group of the normalisation
Ỹ and that of Y to prove that we can also get the required determinant. Namely,
we prove the following:

Theorem 1.0.5 (Theorem 3.1.9). Let Y be an irreducible, nodal curve with nor-
malisation Ỹ a smooth curve of genus g≥ 1. Denote by Q an invertible sheaf on Y
of degree d. There exists a semistable locally free sheaf on Y of rank r and degree
d with determinant Q.

Then we obtain a locally free sheaf, say Ek of fixed rank and determinant on the
curve Xk by gluing the semistable locally free sheaves Ei on the components Yi.
However, Ek need not be semistable. In [Big91, Step 2], we see a sufficient criterion
for a locally free sheaf to be Seshadri semistable (for any choice of polarisation),
over a tree-like curve given the restriction of the sheaf is semistable on each of
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the irreducible components of the curve. In Theorem A.4.11, we check that the
criterion given holds also for generalised tree-like curves which include rational
components (see Remark A.4.1). In the proof of the following theorem we show the

existence of a line bundle OXk(
N∑
i=1

aiYi), ai ∈Z such that Fk := Ek⊗kOXk(
N∑
i=1

aiYi)
satisfies the criterion given in [Big91, Step 2]. The key observation is that this line
bundle comes from irreducible components of the curve Xk. As a consequence of
this, det(Fk)' LR⊗R k where LR is an invertible sheaf on XR such that LR⊗R
K ' LK .

Theorem 1.0.6 (see Theorem 3.2.6 and Lemma 3.2.9). There exists a Gieseker
semistable locally free sheaf Fk of rank r on Xk with det(Fk)'LR⊗OXk on Xk,
where LR is an invertible sheaf on XR such that LR⊗OXK ∼= LK .

In Chapter 4, using Grothendieck formal function theorem in Proposition 4.1.15
and Artin approximation in Proposition 4.2.6 we lift this Gieseker semistable lo-
cally free sheaf on Xk to a Gieseker semistable locally free sheaf on the model XR.
Finally, using the fact that Gieseker geometric stability is an open condition we
prove the following theorem under our assumptions.

Theorem 1.0.7 (see Theorem 4.3.1). Keep Notations 1.0.1 and Assumptions
1.0.2. Then, there exists a geometrically stable locally free sheaf FK on XK of
rank r and determinant LK .

As a consequence, the moduli space Ms
XK ,LK (r,d) has a K-rational point:

Theorem 1.0.8 (see Theorem 4.3.2). Keep Notations 1.0.1 and Assumptions
1.0.2. Denote by Ms

XK ,LK (r,d) the moduli space of geometrically stable locally
free sheaves over XK of rank r and determinant LK . Then Ms

XK ,LK (r,d) has a
K-rational point.

Therefore the C1 conjecture is true for the variety Ms
XK ,LK (r,d).

The appendices cover all the preliminary definitions and lemmas which are spe-
cific to this thesis and not necessarily covered in a standard algebraic geometry
textbook. Also we use certain known results under different hypothesis and there-
fore we reprove them in the appendices. We define the notations necessary for
each section at the beginning of the section. However, to prevent the reader from
getting lost, we also include a list containing the most commonly used notations.
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Chapter 2

Preliminaries

In this chapter we introduce some necessary preliminaries and state the question
we will be answering in this thesis (see Question 2.4.14). We use definitions and
notations from Appendices A.1 and A.2.

2.1 A brief overview of C1 fields

In this section we recall the definition of a C1 field and state some examples.

Definition 2.1.1. A field K is called a C1 field if for any integer d > 0, every
homogeneous form over K of degree d in n> d variables has a non-trivial solution.

Example 2.1.2. We state without proof some examples of C1 fields:

1. An algebraically closed field is trivially C1.

2. Finite fields are C1 (see [Che35]).

3. The function field of an irreducible curve defined over an algebraically closed
field is C1(see [Tse33]).

In this thesis, we will be mainly interested in the following example of a C1 field.

Theorem 2.1.3 ([Lan52, Theorem 14]). Let R be a Henselian discrete valuation
ring of characteristic 0 with residue field denoted k, of characteristic p and fraction
field denoted K. If k is algebraically closed, then K is C1.

7



Prerequisites 8

2.2 Rationally connected varieties and the C1 conjecture

In this section we recall the basic definitions and facts related to rationally con-
nected varieties that we require. We recall the C1 conjecture and state known
results.

Notation 2.2.1. Let K be a field and K its algebraic closure.

Definition 2.2.2. Let Y be a variety over K. We have the following definitions:

1. The variety Y over K is called unirational if there exists a dominant, rational
map from Pn

K
99K Y for some integer n > 0.

2. A variety Y of dimension n is called uniruled if there exists a variety Z over
K of dimension n−1 and a dominant rational map P1

K
×Z 99K YK .

3. A variety Y is called Fano if the anticanonical divisor of Y denoted ω∨Y is
ample.

Lemma 2.2.3. Let Y be a smooth unirational variety of dimension n over an
algebraically closed field K of characteristic 0. Then the canonical divisor ωY is
not numerically effective.

Proof. Since Y is a unirational variety and the field K has characteristic 0, it is
uniruled. By [Deb01, Corollary 4.11], there is a free rational curve f : P1 → Y
which implies by [Deb01, Remark 4.6] that H1(P1,f∗TY ⊗OP1(−1)) = 0, where
TY denotes the tangent bundle of Y . Since the variety Y is smooth, f∗TY is
a rank n = dim(Y ) locally free sheaf on P1. By Grothendieck’s theorem, f∗TY
decomposes as a sum of invertible sheaves

f∗TY 'OP1(a1)⊕·· ·⊕OP1(an)

where we can assume a1 ≥ ·· · ≥ an. Since f is nonconstant, f∗TY contains

TP1 ' OP1(2) and a1 ≥ 2. Therefore, ωY · f∗OP1 = −
n∑
i=1

ai ≤ −2. Hence, ωY is

not numerically effective.

Lemma 2.2.4. Let Y be a variety defined over K and YK := Y ×K SpecK, its
base change to the algebraic closure. If the variety YK is Fano, then so is Y .

Proof. Let f : Y → SpecK, g : SpecK → SpecK the natural morphisms and f ′ :
YK → SpecK, the base change by g. By [Har77, Proposition II.8.10], we have
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ωY
K
' g′∗ωY , where g′ : YK → Y is the natural morphism. Note that (g′∗ωY )∨ '

g′∗ω∨Y .

Since the variety YK is Fano, the anticanonical divisor ω∨Y
K

is ample. By [Gro65,
Corollary 2.7.2], this implies ω∨Y is also ample. Hence, the variety Y is Fano.

Definition 2.2.5. Over a general field K, a variety Y over K is rationally con-
nected if there exists a K-scheme T of finite type and a morphism

F : T ×P1
K → Y

(which one can think of as a family of rational curves on Y parametrised by T )
such that the induced morphism

T ×P1×P1 −→ Y ×Y

(t,u,u
′
) 7−→ (F (t,u),F (t,u

′
))

is dominant.

Theorem 2.2.6 ([Kol13, Corollary V.2.15]). A Fano variety over an algebraically
closed field of characteristic 0 is rationally connected.

Definition 2.2.7. A variety Y over an algebraically closed field K is separably
rationally connected if there exists a morphism f : P1 → Y such that f∗(TY ) is
ample.

Remark 2.2.8. Note that over an algebraically closed field K of characteristic 0,
rationally connected is equivalent to separably rationally connected (see [Kol13,
Proposition IV.3.3.1]).

Conjecture 2.2.9. The C1 conjecture (Lang-Manin-Kollár): A smooth, proper,
separably rationally connected variety over a C1 field always has a rational point.

Known results: The conjecture has already been proven for various C1 fields.
We state without proof the known cases.

1. Esnault [Esn03] proved the conjecture for finite fields.
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2. Graber, Harris and Starr [GHS03] settled the conjecture in the case of the
function field of an irreducible curve defined over an algebraically closed field
of characteristic 0.

3. The previous result was generalised by de Jong and Starr [JS03] to the case
when the underlying field is of arbitrary characteristic.

4. Using [CT10] the conjecture has also been understood in the case of the
quotient field of an equal characteristic Henselian discrete valuation ring
with algebraically closed residue field.

Remark 2.2.10. The conjecture remains open in the case when the C1 field is the
fraction field of a maximal unramified discrete valuation ring with algebraically
closed residue field of mixed characteristic. The goal of this thesis is to verify the
conjecture in this case for a certain separably rationally connected variety. We
describe this variety in the next section.

2.3 The moduli space of stable locally free sheaves with fixed deter-
minant

In this section we introduce the moduli space of (semi)stable locally free sheaves
with fixed determinant on a smooth, projective curve defined over a C1 field. We
also recall the proof that this variety is Fano.

The basic definitions and results necessary for this section are covered in Appendix
A.2.

Notation 2.3.1. Let R be a Henselian discrete valuation ring with maximal ideal
m, fraction field K of characteristic 0 and algebraically closed residue field k of
characteristic p > 0. Let XK be a smooth, projective, geometrically connected
curve of genus g ≥ 2 defined over K. Fix integers r,d coprime with r ≥ 2. Denote
by LK an invertible sheaf of degree d on XK . Let K denote the algebraic closure of
K and XK :=XK×K SpecK the base change of XK . Denote by LK := LK⊗KK
the pull back of the invertible sheaf LK to K.

Definition 2.3.2. Let Sch/K denote the category of schemes of finite type over
K and Sch◦/K its opposite category. Denote by XT :=XK×Spec(K)T and let r,d
be as in Notation 2.3.1. We define a functor MXK (r,d) as follows:

MXK (r,d) : Sch◦/K→ Sets
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such that for a K-scheme T ,

MXK (r,d)(T ) :=


S-equivalence classes of locally free sheaves F on
XT such that for every geometric pointt ∈ T,Ft is a
slope semistable sheaf of rank r and degree d on Xt.

/∼

where F ∼ F ′ if and only if there exists an invertible sheaf L on T , such that
F ' F ′⊗π∗TL where πT :XT → T is the second projection map.

We denote by Ms
XK

(r,d) the subfunctor for stable sheaves.

Remark 2.3.3. We observe the following:

1. Since XK is a curve over a field, fixing the rank and the degree of a locally
free sheaf is the same as fixing its Hilbert polynomial. Therefore on a smooth
curve Gieseker semistability coincides with slope semistability (see Lemma
A.1.4).

2. By assumption, the rank r and degree d of the locally free sheaves in Def-
inition 2.3.2 are coprime and XK is integral. Then by Lemma A.1.5 the
semistable locally free sheaves of rank r and degree d are in fact stable.
Hence MXK (r,d) and Ms

XK
(r,d) coincide.

Definition 2.3.4. By Remark 2.3.3 and Theorem A.2.9, the functor MXK (r,d)
is universally corepresented by a projective K-scheme. We denote this scheme by
Ms
XK

(r,d) .

Now we define the functor of stable locally free sheaves with fixed determinant on
the curve XK .

Definition 2.3.5. Let LK be as in Notation 2.3.1. Denote by XT :=XK×Spec(K)
T and let r,d be as in Notation 2.3.1. We define a functorMXK ,LK (r,d) as follows:

MXK ,LK (r,d) : Sch◦/K→ Sets

such that for a K-scheme T ,

MXK ,LK (r,d)(T ) :=


S-equivalence classes of locally free sheaves F on XT

such that for every geometric point t ∈ T,Ft is a slope
semistable sheaf of rank r and degree d on Xt and for

some invertible sheaf Q on T,det(F)' π∗XKLK ⊗π
∗
TQ

/∼
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where πXK : XT →XK , πT : XT → T are the first and second projections respec-
tively and F ∼ F ′ if and only if there exists an invertible sheaf L on T such that
F ' F ′⊗π∗TL.

We denote by Ms
XK ,LK (r,d) the subfunctor for the stable sheaves. By Remark

2.3.3(2), Ms
XK ,LK (r,d) coincides with MXK ,LK (r,d).

Recall the Picard functor PicXK and the natural transformation Ms
XK

(r,d)→
PicXK which is defined by taking the determinant of the locally free sheaves. This
induces the determinant morphism det :Ms

K(r,d)→ Pic(XK).

Proposition 2.3.6. The functorMs
XK ,LK (r,d) is corepresented by a K-scheme of

finite type. We denote this scheme byMs
XK ,LK (r,d) . Furthermore, Ms

XK ,LK (r,d)'
det−1(LK).

Proof. We know from the proof of Theorem A.2.9 that there exists a subset of
the Quot scheme, denoted Rs, such that Ms

XK
(r,d) is a categorical quotient of

this subset by the action of a certain general linear group. Denote by α :Rs→
Ms
XK

(r,d) this quotient.

By composing the morphism det with α we obtain, a morphism

detR :Rs→Ms
XK

(r,d)→ Pic(XK).

LetRsLK := det−1
R (LK) denote the fibre of the map detR at the point corresponding

to LK and NK,LK := det−1(LK). It is easy to see that Ms
XK ,LK (r,d) is corepre-

sented by a K-scheme Ms
XK ,LK (r,d) which is the categorical quotient of RsLK by

the same general linear group.

Furthermore, by the universal property of categorical quotients, there exists an
unique morphism φ : Ms

XK ,LK (r,d)→NK,LK . Since the characteristic of the field
K is 0, [HL97, Theorem 4.2.10] implies φ is an isomorphism. This completes the
proof.

Let us recall the proof of Ms
XK ,LK (r,d) being a Fano variety.

Proposition 2.3.7. The moduli space Ms
XK ,LK (r,d) is Fano.

Proof. By [DN89, Theorem B], the smooth, projective variety Ms
K,L

K

(r,d) has
Picard group isomorphic to Z. Therefore, we can assume that it is generated by
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an ample invertible sheaf, say L′. Moreover by [Ses, pp 53], Ms
X
K
,L
K

(r,d) is a uni-
rational variety. Hence by Lemma 2.2.3 the canonical divisor ωs0 of Ms

X
K
,L
K

(r,d)
is not numerically effective. Therefore it cannot be ample or trivial. Then by
[Har77, Proposition II7.5], ω∨0 is ample. Therefore, the variety Ms

X
K
,L
K

(r,d) is
Fano and by Lemma 2.2.4, so is Ms

XK ,LK (r,d) .

Remark 2.3.8. By Theorem 2.2.6 and Proposition 2.3.7, Ms
XK ,LK (r,d) is ra-

tionally connected. Moreover, since the field K is of characteristic 0, [Kol13,
Proposition IV.3.3.1] it is also separably rationally connected. Therefore if the C1
conjecture is true, the variety Ms

XK ,LK (r,d) has a K-rational point. In this thesis
we prove that this is indeed the case under certain assumptions.

2.4 An example of the C1 conjecture in mixed characteristic

In this section we prove that there always exists a semistable locally free sheaf
of fixed rank and determinant on a smooth, projective curve defined over an al-
gebraically closed field of arbitrary characteristic. Using this we prove that the
variety Ms

K,LK (r,d) is non-empty. We then state the question we will be answering
in this thesis.

Remark 2.4.1. By [LP97, Proposition 8.6.1], we know that that there always
exists a semistable locally free sheaf of degree d and rank r on a smooth, projective
curve defined over the field of complex numbers. The proof as it is given holds
true for any algebraically closed field of characteristic 0. However the proof fails
when the curve is defined over an algebraically closed field of characteristic p. In
particular, the use of Bertini’s theorem does not hold in characteristic p > 0. To
circumvent this problem we replace the Bertini argument by Lemma 2.4.4 proven
below. Hence we give a proof for the existence of a semistable locally free sheaf of
degree d and rank r on a smooth curve defined over an algebraically closed field
of arbitrary characteristic.

It should be noted that there are other proofs for the existence of (semi)stable
locally free sheaves of fixed rank and degree over algebraically closed fields. We
give the proof that works in any characteristic since we will be using this result
several times in this thesis and over fields of different characteristics.

Notation 2.4.2. Let F be an algebraically closed field and XF a smooth, pro-
jective curve on F of genus at least 1. Given any F -variety S, denote by XS :=
XF ×Spec(F ) S. For any triple (S,XS ,F), where S is a F -scheme and F a coher-
ent sheaf on XS , denote by Quotr,dXS/S/F the relative Quot scheme parametrizing
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coherent quotients of F of degree d and rank r. Denote by π : Quotr,dXS/S/F → S

the natural morphism. In the case S = Spec(F ) we will simply denote the Quot
scheme by Quotr,dXF /F .

We need the following lemma to replace a step in the original proof of [LP97,
Proposition 8.6.1] which does not hold in characteristic p > 0.

Definition 2.4.3. We say that a scheme X is densely reduced if there exists a
open dense subset U of X such that for all u ∈ U , the local ring OX,u does not
contain any nilpotent element.

Lemma 2.4.4. Let f : Y → Z be a dominant morphism of F -schemes, locally of
finite type. Suppose that the geometric generic fiber of the induced morphism
h : Yred→ Zred is densely reduced. Then, for every irreducible component Y ′ of
Y mapping dominantly onto Z and a general x ∈ Y ′ closed point (by general we
mean outside finitely many proper closed subsets),

dimTxY −dimTxf
−1(f(x))≥ dimxY −dimx f

−1(f(x)).

Proof. Denote by g the pull-back of f by the morphism Zred→ Z i.e., g : Y ′ :=
Y ×Z Zred→ Zred is the pull-back of f . Consider the following diagram:

Yred ⊂ - Y ′ ⊂ - Y

�

Zred

g

?
⊂ - Z

f

?

As f is assumed to be locally of finite type between schemes of finite type over
a field, closed points map to closed points. But closed points are reduced, hence
for x closed, x lies in Yred (see [Har77, Ex. II.2.3]). Then by the commutativity
of the above diagram, g(x) and f(x) are the same point on Z. Moreover we have
the following diagram:

g−1(g(x)) ⊂ - Y ′ ⊂ - Y

� �

g(x)

g

?
⊂ - Zred

g

?
⊂ - Z

f

?
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As g(x) = f(x), by the universal property of pullback, we can check f−1(f(x))∼=
g−1(g(x)) (scheme-theoretic isomorphism). Hence

dimTxY −dimTxf
−1(f(x))≥ dimTxY

′−dimTxg
−1(g(x)). (2.1)

Denote by h : Yred = Y ′red ↪→ Y ′
g−→ Zred. Hence, for any x ∈ Yred, the natural

morphisms Txh−1(h(x))→ Txg
−1(g(x)) and TxYred→ TxY

′ are injective. We have
the following commutative diagram of exact sequences:

0 - Txh
−1(h(x)) - TxYred

dhx- Tg(x)Zred

	 	

0 - Txg
−1(g(x))

?

∩

- TxY
′

?

∩

dgx- Tg(x)Zred

Id

?

Therefore, dimTxY
′− dimTxg

−1(g(x)) ≥ dimTxYred− dimTxh
−1(h(x)). As the

geometric generic fiber of h is densely reduced, [Gro66, Corollary 12.1.17] implies
for every irreducible component Y ′ of Y mapping dominantly onto Z and a general,
closed point x ∈ Y ′, h−1(h(x)) is densely reduced. Hence

dimx f
−1(f(x)) = dimxh

−1(h(x)) = dimTxh
−1(h(x)).

Combining with (2.1) we get,

dimxY −dimx f
−1(f(x)) = dimTxYred−dimTxh

−1(h(x))≤

≤ dimTxY −dimTxf
−1(f(x)).

This completes the proof of the lemma.

We will use the following proposition to satisfy the hypothesis of Lemma 2.4.4.
This will play a vital role in the proof of Theorem 2.4.6 below.

Proposition 2.4.5. Let A be a regular F -algebra and f :X→ Spec(A) a dominant
morphism of finite type between F -schemes. Suppose that X is reduced and f
has non-reduced geometric generic fiber. Then, there exists a normal affine ring
A′ with the same Krull dimension as A and a dominant morphism from Spec(A′)
to Spec(A) such that the geometric generic fiber of the composition

(X×A Spec(A′))red→X×A Spec(A′)→ Spec(A′)

is densely reduced.
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Proof. As reducedness is a local property, it suffices to prove the statement for
the restriction of f to an affine open dense subscheme Spec(B) such that f |Spec(B)
is also dominant. Denote by g : A→ B the morphism induced by f |Spec(B), L′ =
Frac(A) and L′ an algebraic closure of L′. As a finite type morphism is stable
under base-change, L′→ L′⊗AB is of finite type. Hence, L′⊗AB is a noetherian
ring. This implies that the nilradical N ⊂ L′⊗AB is generated by finitely many
elements, say x1, ...,xm.

Let L be a finite field extension of L′ over which x1, ...,xm are defined i.e., there
exists y1, ...,ym ∈B⊗AL such that under the induced morphismB⊗AL→B⊗AL′,
yi maps to xi. As A is regular, it is integrally closed in L′. Denote by A′ the integral
closure of A in L. Then, the Krull dimension of A is the same as A′. Denote by

gA′ : Spec(B)×A Spec(A′)→ Spec(A′),

the base change of g by the dominant morphism Spec(A′)→ Spec(A). Denote by
N ′ the nilradical of the ring B⊗AA′. The geometric generic fiber of the morphism

gA′red
: Spec(B⊗AA′)red→ Spec(B⊗AA′)→ Spec(A′)

is isomorphic to Spec((B⊗AA′)/N ′⊗A′L′). It now remains to prove that Spec((B⊗A
A′)/N ′⊗A′ L′) is reduced i.e., (B⊗AA′)/N ′⊗A′ L′ does not contain any nilpotent
element.

Consider the short exact sequence,

0→N ′→B⊗AA′→ (B⊗AA′)/N ′→ 0

and tensor it by −⊗A′ L. As (B⊗AA′)⊗A′ L ∼= B⊗AL, N ′⊗A′ L is a nilpotent
ideal of B⊗AL and (B⊗AA′)/N ′⊗A′L is reduced, we have (B⊗AA′)/N ′⊗A′L∼=
(B⊗AL)/(y1, ...,ym) (uniqueness of reduced scheme structure). Consider now the
short exact sequence:

0→ (y1, ...,ym)→B⊗AL→ (B⊗AL)/(y1, ...,ym)→ 0.

Tensoring this by −⊗LL′ and observing (y1, ...,ym)⊗LL′ ∼= (x1, ...,xm), we have
(B⊗AL)/(y1, ...,ym)⊗LL′ ∼= (B⊗AL′)/(x1, ...,xm). But (B⊗AL′)/(x1, ...,xm) is
reduced. To summarise, we have

(B⊗AA′)/N ′⊗A′ L′ ∼= ((B⊗AA′)/N ′⊗A′ L)⊗LL′ ∼= (B⊗AL)/(y1, ...,ym)⊗LL′

which is isomorphic to (B⊗AL′)/(x1, ...,xm) is reduced. This completes the proof
of the proposition.
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Now we recall the following theorem from [LP97, Proposition 8.6.1] with some
modifications so that it holds in arbitrary characteristic.

Theorem 2.4.6. For any pair of integers r,d with r > 1, there exists a semistable
locally free sheaf of rank r and degree d on XF .

Proof. Take Q an invertible sheaf of degree d on XF . Then E :=Q⊕O⊕r−1
XF

is a
locally free sheaf of rank r and degree d. By Serre’s vanishing theorem, there exists
m>> 0 such that h1(E(m)) = 0 form� 0 and E(m) is generated by global sections.
Take such m and E ′ := E(m). Denote by d′ := deg(E ′). Let H := H0(E ′)⊗OXF .
If E ′ is semistable then so is E as twisting by a invertible sheaf does not change
semistability. Then we are done.

Suppose E ′ is not semistable. Denote by S0 := Spec(F ). Since E ′ is locally free,
there exists an affine open neighbourhood S ⊂ Quotr,d

′

XF /S0/H such that every ele-
ment of S corresponds to a locally free sheaf. Denote by F the restriction of the uni-
versal quotient of Quotr,d

′

XF /S0/H to XF ×S. Furthermore, by upper-semicontinuity
theorem, we can assume that for any s ∈ S, the corresponding element [H� F(s)]
satisfies: h1(F(s)) = 0. By [Har10, Theorem 7.1], infinitesimal deformation of
locally free sheaves along families of curves is unobstructed (use Grothendieck
vanishing theorem). Hence, S is non-singular. It suffices to prove that a general
element of S is semistable. Indeed, for such an element [H� F(s)], F(s)(−m) is
semistable of degree d and rank r.

Let s∈S be a closed point and the corresponding quotient ofH sits in the following
short exact sequence:

0→K(s)→H→ F(s)→ 0.

Let F(s) � G be a coherent quotient of F(s). Denote by j the composition
H→ F(s)→G. Since deg(H) = 0 (degree of trivial sheaves is zero) and degree is
additive, −deg(kerj) = deg(G). Moreover, trivial bundles are semistable, hence
deg(kerj) ≤ 0. Therefore, deg(G) ≥ 0. To summarize, every coherent quotient of
F(s) has degree non-negative.

Note that, there are finitely many choices of r′′,d′′ satisfying 0 < r′′ < r,0 ≤ d′′

and d′′/r′′ < d′/r. Since for any s ∈ S, the degree of any coherent quotient of F(s)
is non-negative, as seen above, it suffices to prove that for any such pair r′′,d′′,
the image of the natural morphism πr

′′,d′′ : Quotr
′′,d′′

XF×S/S/F→ S is not the whole
of S. Indeed, for any such r′′,d′′ the image of πr′′,d′′ consists of all points s ∈ S
such that there exists a coherent quotient F(s)� G such that rk(G) = r′′ and
deg(G) = d′′ in particular, F(s) is not semistable. Conversely, for any closed point
s ∈ S corresponding to a non-semistable sheaf F(s) there exists such a pair r′′,d′′
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such that s ∈ Imπr
′′,d′′ . Since there are finitely many choices of such r′′,d′′, we

have our claim.

Suppose πr′′,d′′ is dominant of finite type. Applying Proposition 2.4.5 to the mor-
phism (

Quotr
′′,d′′

XF×S/S/F

)
red
→Quotr

′′,d′′

XF×S/S/F
πr
′′,d′′

−−−−→ S,

there exists a normal affine scheme S of the same dimension as S and a dominant
morphism S→ S of finite type such that the fiber product

Quotr
′′,d′′

XF×S/S/F
- Quotr

′′,d′′

XF×S/S/F

�

S

πr
′′,d′′

?
- S

πr
′′,d′′

?

satisfies the property: the geometric generic fiber of the composition
(

Quotr
′′,d′′

XF×S/S/F

)
red
→Quotr

′′,d′′

XF×S/S/F
πr
′′,d′′

−−−−→ S

is densely reduced. Using Lemma 2.4.4 we conclude that for any irreducible com-
ponent of Quotr

′′,d′′

XF×S/S/F
mapping dominantly onto S and a general closed point

x on it,

dimS = dimxQuotr
′′,d′′

XF×S/S/F
−dimx

(
πr
′′,d′′

)−1
(πr

′′,d′′(x))≤

≤ dimTxQuotr
′′,d′′

XF×S/S/F
−dimTx

(
πr
′′,d′′

)−1
(πr

′′,d′′(x)).

Recall by [Ser06, Corollary 4.4.5] for such a general closed point x∈Quotr
′′,d′′

XF×S/S/F
,

corresponding to a short exact sequence of the form,

0→E(x)→ F(πr
′′,d′′(x))→G(x)→ 0,

Tx
(
πr
′′,d′′

)−1 (
πr
′′,d′′(x)

)∼= Hom(E(x),G(x)). Denote by s= πr
′′,d′′(x). As

h1(F(s)) = 0, h1(Hom(H,F(s))) =⊕h1(F(s)) = 0.

By the Grothendieck spectral sequence, this implies Ext1(H,F(s)) = 0 (recall
Ext1(H,F(s)) = 0 asH is locally free). By Lemma A.2.4, we conclude the Kodaira-
Spencer map κ is surjective. Therefore, ω is surjective by Lemma A.2.6. Using
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the short exact sequence (A.1) we finally have,

dimS ≤ dimTxQuotr
′′,d′′

XF×S/S/F
−dimTx

(
πr
′′,d′′

)−1
(s) =

= dimTsS−dimExt1(E(x),G(x)).

Note that, rk(Hom(E(x),G(x)) = rk(E(x)).rk(G(x)) and

deg(Hom(E(x),G(x))) = deg(E(x)∨⊗G(x)) = rk(G(x))deg(E(x)∨)+

+rk(E(x))deg(G(x)) = rk(E(x))deg(G(x))− rk(G(x))deg(E(x)).

Since rk(G(x)) = r′′,deg(G(x)) = d′′,rk(F(x)) = r, degF(x) = d′ and rank and de-
gree of vector bundles are additive, we have rk(E(x)) = r− r′′ and deg(E(x)) =
d′−d′′.

The Riemann-Roch theorem for a vector bundle E on XF states,

χ(E) = deg(E) + rk(E)(1−g(XF )).

Hence,

χ(Hom(E(x),G(x)) = (r− r′′)d′′− r′′(d′−d′′) + r′′(r− r′′)(1−g(XF )) =

= r′′(r− r′′)
(
d′′

r′′
− d
′−d′′

r− r′′
+ 1−g(XF )

)
.

As E(x) is locally free, Ext1(E(x),G(x)) = 0. Applying Grothendieck Spectral
sequence once again, we have Ext1(E(x),G(x)) =H1(Hom(E(x),G(x))). We then
have

dimExt1(E(x),G(x)) = h1(Hom(E(x),G(x))) =−χ(Hom(E(x),G(x)))+

+h0(Hom(E(x),G(x)))≥−χ(Hom(E(x),G(x))) =

= r′′(r−r′′)
(
d′−d′′

r− r′′
− d
′′

r′′
+g(XF )−1

)
= (d′r′′−rd′′)+r′′(r−r′′)(g(XF )−1)> 0

as g(XF ) ≥ 1 and d′′/r′′ < d′/r. Hence, dimS < dimTsS = dimS where the last
equality follows from the fact that S is normal and s is general, closed. This
contradicts the assumption, πr′′,d′′ is dominant. This completes the proof of the
theorem.
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Proposition 2.4.7. Replace in Definition 2.3.2, K by F and XK by XF . The
determinant morphism det :Ms

XF
(r,d)→ Picd(XF ) is surjective.

Proof. By Theorem 2.4.6 there exists a semistable locally free sheaf say E on XF

with rank r and degree d. Let ρ denote the morphism

Pic0(XF )→MXF (r,d) det−−→ Picd(XF ), L 7→ E ⊗L 7→ det(E ⊗L).

Since the det map is closed, so is ρ. Note that the kernel of ρ is the r-th torsion
subgroup of Pic0(XK) i.e

kerρ= Pic0(XF )[r] := {L ∈ Pic0(XF )|Lr =OXF }.

This is because

det(E ⊗L) = det(E ⊗L′)⇔L⊗r⊗ (L′−1)⊗r =OXF ⇔L⊗L
′−1 ∈ Pic0(XF )[r].

This induces a map:

ρ′ : Pic0(XF )
Pic0(XF )[r]

↪→ Picd(XF ).

Since
dim

(
Pic0(XF )

Pic0(XF )[r]

)
= dim(Pic0(XF )) = dim(Picd(XF )),

Im(ρ′) is dense in Picd(XF ). Hence ρ is dominant in Picd(XF ). Since ρ is closed,
this implies that ρ is surjective. Therefore the morphism

det :Ms
XF

(r,d)→ Picd(XF )

is surjective.

Corollary 2.4.8. Let F be an algebraically closed field (of arbitrary characteris-
tic), XF a smooth, projective curve of genus g≥ 1 over F and r,d a pair of integers
with r > 1. Let LF be a fixed invertible sheaf of degree d on XF . There exists a
semistable locally free sheaf on XF of rank r and determinant LF .

Proof. By Theorem 2.4.6, there exists a semistable locally free sheaf of rank r and
degree d on XF . Hence Ms

XF
(r,d) is non-empty. By Proposition 2.4.7 Ms

XF
(r,d)→

Picd(XF ) is surjective. Therefore there exists at least one semistable locally free
sheaf of rank r and degree d with determinant LF .
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Remark 2.4.9. Replace F by K and LF by LK , a fixed invertible sheaf of degree
d, in Corollary 2.4.8. Then by Corollary 2.4.8 the variety MXK ,LK (r,d) has a
K-point. By Remark 2.3.3, Ms

XK ,LK (r,d) has a K-point In this thesis we prove
that under certain assumptions, it also has a K-point.

In order to state these assumptions we need the following definitions.

Definition 2.4.10. Let S := Spec(R).

1. A fibred surface over S is an integral projective S-scheme C� S of dimension
2.

2. Let C be a smooth, projective connected curve over K. A model of C over
S is a fibred surface C f−→ S together with an isomorphism Cη ' C, where Cη
is the generic fibre of f . The model is said to be smooth if the morphism f
is smooth. It is said to be regular if C is regular .

3. Given a smooth curve C over a discretely valued field K, a stable (resp.
semistable) model of C over R is a flat, proper morphism C → S with a spec-
ified isomorphism Cη 'C and the special fiber Cs is a curve which is reduced,
connected, has only nodal singularites, all of whose irreducible components
which are rational meet the other components in at least 3 points (resp. 2
points).

The following theorem gives the existence of a stable model for certain curves.

Theorem 2.4.11 ([DM69, Theorem 2.4.11]). Let C be a smooth, geometrically
connected curve over K, of genus g ≥ 2. Then there exists a finite field extension
L|K such that the curve CL has a stable model.

Definition 2.4.12. Given a curve C with irreducible components C1, . . . ,Cn we
can associate a dual graph to it as follows: every irreducible component Ci of C is
a vertex weighted by its genus and two vertices are linked by an edge if and only
if the corresponding irreducible components share a nodal singularity.

A curve is called a generalised tree-like curve if after ignoring the singularities of
the individual components, the dual graph associated to the curve does not have
any loops.

Assumptions 2.4.13. Throughout this thesis, we assume that there exists a
semistable model XR → Spec(R) of XK with special fibre Xk := XR ×Spec(R)
Spec(k) a generalised tree-like curve whose singular components do not normalise
to a rational curve.
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Now we state the question we aim to answer in this thesis.

Question 2.4.14. Given Assumptions 2.4.13, does there exist a K-point of the
moduli space Ms

K,LK (r,d)?

We answer this in §4.3 (see Theorem 4.3.2).



Chapter 3

Existence of semistable locally free sheaves with fixed
determinant

Keep Notations 2.3.1 and Assumptions 2.4.13. This chapter uses definitions and
notations from Appendices A.1, A.3 and A.4.

By Corollary 2.4.8, we know that there always exists a Gieseker (and slope)
semistable locally free sheaf of rank ≥ 2 and fixed determinant on a smooth curve
of genus g≥ 1, defined over an algebraically closed field of arbitrary characteristic.
In this chapter we prove the same result for the semistable generalised tree-like
curve Xk whose irreducible components do not normalise to a rational curve.

We do this by first proving the existence of a slope semistable locally free sheaf
of fixed rank and determinant on an irreducible nodal curve defined over an al-
gebraically closed field of arbitrary characteristic, which does not normalise to a
rational curve (see Theorem 3.1.9). For this we use Corollary 2.4.8 and the theory
of generalised parabolic bundles. It is possible that our semistable, generalised
tree-like curve Xk contains non-singular rational components. In order to obtain
semistable locally free sheaves on these components, we prove the existence of an
invertible sheaf LR on XR such that Lk := LR⊗R k has degree a multiple of r
on any irreducible, non-singular rational component of Xk and LR⊗K 'LK (see
Lemma 3.2.2 and Lemma 3.2.4). Then using Corollary 2.4.8, Theorem 3.1.9 and
Lemma 3.2.4 we prove the existence of a locally free sheaf of rank r and determi-
nant Lk on the whole curve Xk such that its restriction to each of the irreducible
components is semistable. However, this sheaf need not be Seshadri semistable
(see Definition A.1.3) with respect to any polarisation. In Appendix A.4 we recall
results on Seshadri semistability for locally free sheaves on generalised tree-like
curves. We use these results in Theorem 3.2.6, to prove the existence of a Se-
shadri semistable locally free sheaf Fk of rank r and determinant Lk on the curve
Xk, for any choice of polarisation. Finally we show that there exists a choice of
polarisation for which this sheaf is also Gieseker semistable (see Lemma 3.2.9).

23
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3.1 Existence of a semistable locally free sheaf with fixed determinant
on a nodal curve

We recall preliminary definitions and results for this section in Appendix A.3.
Here we directly apply them to our situation.

Notation 3.1.1. Let Y be an irreducible nodal curve defined over an algebraically
closed field of arbitrary characteristic. Denote by π : Ỹ → Y the normalisation map
and assume that Ỹ has genus g ≥ 1. Let Q be an invertible sheaf on Y of degree
d. Denote by J the set of singular points of Y and let γ be the number of singular
points. For all 1≤ i≤ γ, let pi, qi be the two points in Ỹ lying over the double point
xi ∈ Y and let Di := pi + qi be an effective divisor on Ỹ . Let E be a semistable
locally free sheaf on Ỹ of rank r and determinant π∗Q, the existence of which we
have proven in Corollary 2.4.8.

Denote by E|Di :=H0(E ⊗ODi)⊗ODi . For xi ∈ J , let

E(pi) := Epi⊗k(pi), E(qi) := Eqi⊗k(qi),

where k(pi) and k(qi) are the residue fields at the points pi and qi respectively.
Fix a set of basis elements {ej}rj=1 and {fj}rj=1 of Epi and Eqi , respectively. By
abuse of notation, we will again denote by ej and fj their image in E(pi) and E(qi),
respectively.

In this section we prove the existence of a semistable locally free sheaf with fixed
rank and determinant on an irreducible nodal curve. Our main tool is the theory
of generalised parabolic bundles given in [Bho92].

Using the existence of a semistable locally free sheaf with fixed determinant proven
in Corollary 2.4.8, we define a generalised parabolic bundle on the normalisation
Ỹ (see Definition 3.1.3). We then use the theory of generalised parabolic bundles
to prove the existence of a locally free sheaf of fixed rank and degree on the curve
Y (see Lemma 3.1.5 and Lemma 3.1.6). Moreover we use parabolic semistability
to prove the slope semistability of this locally free sheaf (see Lemma 3.1.7 and
Proposition 3.1.8). Finally in Theorem 3.1.9 we prove that there exists a locally
free sheaf of fixed rank and determinant on the nodal curve Y .

Remark 3.1.2. Assume that there exists a semistable torsion free sheaf with fixed
determinant say Q, on an irreducible nodal curve of genus g ≥ 2 defined over the
complex numbers. Then given this assumption, in [Sun03, Lemma 1.7] X. Sun
proves the existence of a semistable locally free sheaf with determinant Q on the
irreducible nodal curve. We do not have this assumption.
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Instead, we obtain a semistable locally free sheaf with determinant Q on an irre-
ducible nodal curve (defined over an algebraically closed field of arbitrary charac-
teristic) using a semistable locally free sheaf with determinant π∗Q on its normal-
isation, the existence of which we have proven in Corollary 2.4.8.

Definition 3.1.3. Recall the definition of a generalised parabolic bundle (see
Definition A.3.3). We define a generalised parabolic structure σ of E over the
divisors Di as follows. Denote by F i1(E) the k-vector space generated by ej ⊕ fj
for all i= 1, . . .γ. We assign to each singular point xi, 1≤ i≤ γ:

1. a flag of vector subspaces Λi : F i0(E) = E|Di ⊃ F i1(E)⊃ F i2(E) = 0.

2. weights αi = (0,1).

We define a generalised parabolic locally free sheaf (E ,Λ,α) where Λ = (Λ1, . . . ,Λγ)
and α = (α1, . . . ,αγ).

Definition 3.1.4. We associate to the generalised parabolic bundle (E ,Λ,α), the
torsion free sheaf φ(E) of rank r and degree d on the nodal curve Y as the kernel
of the composition:

π∗(E)→
γ⊕
i

π∗(E)⊗k(xi)→
γ⊕
i

π∗(E)⊗k(xi)
F i1(E)

→ 0 (3.1)

Our choice of F i1(E) in Definition 3.1.3 gives the following.

Lemma 3.1.5. The torsionfree sheaf φ(E) on the curve Y is locally free of rank
r and degree d.

Proof. Recall, the projection morphisms prij as in Proposition A.3.8. By definition

pri1 : F i1(E) '−→ k(pi)⊕r and pri2 : F i1(E) '−→ k(qi)⊕r.

Therefore by Proposition A.3.8, the torsionfree sheaf φ(E) is locally free.

We now show that φ(E) has the same rank and degree as E . Since Y is irreducible
and π is birational, rk(π∗(E)) = rk(E). Furthermore, the rank of π∗(E)⊗k(xi)

F i1(E) = 0
since it is supported on points. Then using the additivity of rank, we have

rk(φ(E)) = rk(π∗(E)) = rk(E).
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Moreover χ(π∗(E)) = χ(φ(E))+
γ∑
i=1

dim(F i1(E)). Since pushforwards preserve Euler
characteristic, using Riemann-Roch for locally free sheaves, we have

r(1− (ρa(Y )−γ)) + deg(E) = r(1−ρa(Y )) + deg(φ(E)) + rγ.

where ρa denotes the genus. Therefore deg(φ(E)) = deg(E). As E has degree d, so
does φ(E).

Using this we can prove the following.

Lemma 3.1.6. Let E and φ(E) be as above. Then

π∗φ(E)∼= E .

Proof. Consider the pull-back of the morphism φ(E)→ π∗E under the normalisa-
tion map π and the natural map π∗π∗E → E . Denote by τ the composition

π∗φ(E)→ π∗π∗(E)→E .

Denote by K the kernel of τ . Note that the localization of τ at x is an isomorphism
for all x 6∈ π−1(J). Hence K is supported at finitely many points and is therefore a
torsion sheaf. However, π∗φ(E) is locally free since by Lemma 3.1.5, φ(E) is locally
free and the pull back of a locally free sheaf is locally free. Hence π∗φ(E) cannot
contain a non-zero torsion sheaf implying K = 0. Therefore τ is injective.

Since τ is an isomorphism for all x 6∈ π−1(J), coker(τ) is a skyscraper sheaf with
support in π−1(J). But degree of a non-trivial skyscraper sheaf is strictly positive.
Since degree is additive, by the short exact sequence

0→ π∗φ(E) τ−→ E → coker(τ)→ 0

deg(π∗(φ(E)) ≤ deg(E) with strict inequality if τ is not surjective. Since π is
the normalisation map, deg(π∗φ(E)) = deg(φ(E)). By Lemma 3.1.5, deg(φ(E)) =
deg(E). Hence, τ must be surjective.

Therefore τ is an isomorphism and hence π∗φ(E)∼= E as required.

The following lemma follows easily from definitions.

Lemma 3.1.7. Recall the definition of parabolic semistability for generalised
parabolic bundles (see Definition A.3.6). The generalised parabolic bundle (E ,Λ,α)
defined in Definition 3.1.3 is parabolic semistable.
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Proof. By definition the generalised parabolic bundle (E ,Λ,α) is parabolic semistable
if for any sub-bundle K ⊂ E with the induced parabolic structure

parµ(K)≤ parµ(E).

Since we take weights αi = (0,1) for all 1≤ i≤ γ, we have

parµ(E) = deg(E) +γ(rk(E))
rk(E) .

Note that dim
(
F i1(K)
F i2(K)

)
= dim(F i1(K)) because F i2(E) = 0, where

F ij (K1) = F ij (E)∩ (π∗K1⊗k(xi)) for j = 1,2.

Moreover
dim(F i1(K)) = dim(F i1(E)∩H0(K⊗ODi))≤ rk(K).

Therefore
parµ(K)≤ deg(K) +γ(rk(K))

rk(K) .

Since E is a semistable locally free sheaf we have

parµ(K)≤ deg(K) +γ(rk(K))
rk(K) ≤ deg(E) +γ(rk(E))

rk(E) = parµ(E)

and therefore (E ,Λ,α) is a semistable generalised parabolic bundle.

The following proposition is proven in [Bho92]. We include it here for the sake of
completion with small elaborations.

Proposition 3.1.8 ([Bho92, Proposition 4.2]). The torsion free sheaf φ(E) is
(semi)stable if and only if the generalised parabolic bundle (E ,Λ,α) is (semi)stable.

Proof. Recall, π∗φ(E)∼= E . Take K ⊂ φ(E) a coherent subsheaf. Denote by K1 :=
Image(π∗K→ π∗φ(E)∼= E). Composing π∗π∗K→ π∗K1 with the natural morphism
K→ π∗π

∗K, one defines ρ :K→ π∗π
∗K→ π∗K1. Since π is an isomorphism when

restricted to U := Ỹ\π−1(J), for all u ∈ U ,

(π∗K)u ∼−→K1u and Ku ∼−→ (π∗π∗K)u.
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Hence, ker(ρ) is supported on finitely many points of Y which implies it is a torsion
sheaf. But K is a torsion-free subsheaf, hence does not contain any non-trivial
torsion sheaf. Therefore, ρ is injective.

Using the following diagram:

0 - K
ρ

- π∗K1

	

0 - φ(E)
?

∩

- π∗E
?

∩

-
γ⊕
i=1

(
π∗E ⊗k(xi)
F i1(E)

)
- 0

we observe,
coker(ρ) =⊕xi∈J(π∗K1⊗k(xi)/F i1(K1)),

where F i1(K1) = F i1(E)∩(π∗K1⊗k(xi)). By arguments as in proof of Lemma 3.1.5,
we have

deg(π∗K1) = deg(K1) +γrk(K1) and rk(π∗K1) = rk(K1).

Since K1 is locally free, dimπ∗K1⊗k(xi) = 2rk(K1) for all xi ∈ J . Hence,

degcoker(ρ) = 2γ(rk(K1))−
γ∑
i=1

dim(F i1(K1)).

As degree and rank are additive, we have:

deg(K) = deg(π∗K1)−degcoker(ρ)

= deg(K1) +γ(rk(K1))−2γ(rk(K1)) +
γ∑
i=1

dim(F i1(K1)) and rk(K) = rk(K1).

By Lemma 3.1.7 (E ,Λ,α) is a semistable generalised parabolic sheaf, therefore

deg(K1) +
γ∑
i=1

dimF i1(K1)

rk(K1) = µ par(K1)≤ µ par(E) = deg(E) +γ dimF 1
1 (E)

rk(E) .
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Since E is locally free of rank r, dimF 1
1 (E) = r, hence we have the following in-

equality:

deg(K)
rk(K) =

deg(K1) +
γ∑
i=1

dimF i1(K1)−γrk(K1)

rk(K1) ≤ deg(E)
rk(E) = deg(φ(E))

rk(φ(E)) .

Hence, φ(E) is semistable.

We now prove the main result of this section.

Theorem 3.1.9. Let Y be an irreducible nodal curve defined over an algebraically
closed field of arbitrary characteristic with normalisation Ỹ a smooth curve of
genus g ≥ 1. Denote by Q an invertible sheaf on Y of degree d. There exists a
semistable locally free sheaf on Y of rank r and determinant Q.

Proof. By Corollary 2.4.8, there exists a semistable locally free sheaf E of rank
r and determinant π∗Q on the normalisation Ỹ. Let (E ,Λ,α) be the generalised
parabolic locally free sheaf as in Definition 3.1.3. Denote by φ(E) the corresponding
torsion free sheaf as in Definition 3.1.4. By Lemma 3.1.5, this is a locally free
sheaf on Y of rank r and degree d. The generalised parabolic bundle (E ,Λ,α) is
semistable by Lemma 3.1.7. Then by Proposition 3.1.8, φ(E) is semistable.

By assumption det(E) = π∗Q. For any x ∈ Y , denote by ÕY,x the integral closure
of OY,x. For any xi ∈ J , Õ∗Y,xi/O

∗
Y,xi
∼= k∗. By [Har77, Ex. II.6.9], we have a short

exact sequence

0→⊕xi∈Jk
∗→ Pic(Y ) π∗−→ Pic(Ỹ)→ 0. (3.2)

Since pull-back commutes with tensor product,

π∗(Q⊗det(φ(E))−1) = π∗(Q)⊗π∗(det(φ(E))−1).

By Lemma 3.1.6, π∗φ(E)∼= E . Hence,

π∗(Q)⊗π∗(det(φ(E))−1) = π∗(Q)⊗ (det(E))−1 =OỸ .

Therefore, the invertible sheaf R :=Q⊗OY (det(φ(E))−1 is in the kernel of π∗. As
k is algebraically closed, the morphism

[r] :⊕xi∈Qk
∗→⊕xi∈Qk

∗; [r](a1,a2, . . .an) = (ar1,ar2, . . .arn)
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is surjective. Therefore there exists an invertible sheaf, say R′ on Y such that
R∼=R′⊗r.

Let G := φ(E)⊗R′. It is easy to see that G is locally free and as twisting with
an invertible sheaf does not change local freeness or the rank, rank(G) = r. By
Lemma A.1.6, stability is also preserved under twisting with a invertible sheaf. By
earlier arguments, φ(E) is semistable, therefore so is G. Moreover,

det(G)∼= det(φ(E)⊗R′)∼= det(φ(E))⊗R′⊗r ∼= det(φ(E))⊗R∼=Q.

The degree of a locally free sheaf is the same as that of its determinant, hence
deg(G) = d. This proves the theorem.

3.2 Existence of a semistable locally free sheaf with fixed determinant
on Xk

Notation 3.2.1. Keep Notations 2.3.1 and Assumption 2.4.13. Denote by Y1, . . . ,YN
the irreducible components of the semistable, generalised tree-like curve Xk. Re-
call Lemma A.4.2 and Notations A.4.3. For 1≤ i≤N , denote by Yν(i) the unique
component in B(i) which intersects Yi. Let S denote the set of indices si such
that the irreducible component Ysi of Xk is a rational curve and let |S|=m. We
recall the basic definitions and results needed for this section in Appendix A.4.

In this section we prove the existence of a Gieseker semistable locally free sheaf
Fk on Xk such that det(Fk)'LR⊗R k where LR is an invertible sheaf on XR and
LR⊗RK ' LK .

We do this as follows. We first prove the existence of an invertible sheaf, say L′R on
XR such that L′R⊗OXK = LK and for all si ∈ S, deg(L′R⊗OYsi ) is a multiple of
r (see Lemma 3.2.4). Using this we obtain semistable locally free sheaves of rank
r and fixed determinant on the rational components of Xk. Combining this result
with Corollary 2.4.8 and Theorem 3.1.9, we show that there exists a semistable
locally free sheaf Ei of rank r and degree d on each component Yi with determinant
Lk|Yi . We then glue the sheaves Ei to obtain a locally free sheaf E of rank r and
determinant Lk on the entire curve Xk which is slope semistable on each of the
irreducible components of Xk. However, this sheaf need not be Seshadri semistable

on the curve Xk. For this we prove the existence of a line bundle OXk

(
N∑
i=1

aiYi

)
,

ai ∈ Z such that Fk := E ⊗kOXk(
N∑
i=1

aiYi) satisfies the stability criterion given in
Definition A.4.6 which is a sufficient criterion for a sheaf to be Seshadri semistable
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for any choice of polarisation (see Theorem A.4.11). Note that the determinant of
Fk is still the restriction of a lift of LK to XR. Finally in Lemma 3.2.9, we show
that there exists a choice of polarisation such that Fk is also Gieseker semistable.

By the following lemma we know that for a locally free sheaf to be semistable on
a rational component of Xk, its degree must be a multiple of its rank.

Lemma 3.2.2. The only semistable locally free sheaves of rank r on P1 are of
the form ⊕ri=1OP1(d) for some d ∈ Z.

Proof. Let E be a locally free sheaf on P1 of rank r. By Grothendieck’s theorem
any locally free sheaf on P1 is of the form

E ' OP1(a1)⊕·· ·⊕OP1(ar).

Note that the degree of E is Σr
i=1ai. By definition E is µ semistable if for every

subsheaf F ⊂ E ,

deg(F)
rank(F) ≤

r∑
i=1

ai

r

Let b= max{ai} and consider the invertible sheaf F :=OP1(b) of E .

Then

µ(F) = b≥

r∑
i=1

ai

r
= µ(E)

with equality if and only if for all 1≤ i≤ r, ai = b. This proves the lemma.

Therefore a locally free sheaf on a irreducible, non-singular rational component of
Xk is semi-stable only if its degree is a multiple of its rank. Our goal is to obtain
a semistable locally free sheaf say Fk, on Xk of rank r with det(Fk) ' LR⊗R k
where LR is an invertible sheaf on XR such that LR⊗RK ' LK . Therefore both
the rank and the degree of Fk are fixed.

Note that there may be lifts of LK on XR such that the restriction of the sheaf
on the irreducible, non-singular rational components of Xk does not have degree a
multiple of r. We now prove that for any r, there does exist atleast one invertible
sheaf on XR which fulfills this property. Moreover, using sequence (3.3) we observe
that this invertible sheaf has restriction LK on the generic fibre XK .
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Recall the following exact sequence:

⊕i∈I Z[Yi]→ Pic(XR) ψ−→ Pic(XK)→ 0 (3.3)

where ψ is induced by the immersion XK →XR. Since the morphism ψ need not
be injective, the lift of LK to XR need not be unique. However ψ is surjective
because given any divisor D on XK , its closure D in XR defines a Cartier divisor
on XR which restricts to D in XK .

We use this observation in proving Lemma 3.2.4 below.

Notation 3.2.3. Recall, the notations of G(i) and B(i) as given in Lemma A.4.2.

Lemma 3.2.4. Let r be a fixed integer. There exists an invertible sheaf LR on
XR such that LR⊗OXK = LK and for all si ∈ S, deg(LR⊗OYsi ) is a multiple of
r.

Proof. Consider any lift L′R of LK on XR. By the sequence (3.3), twisting L′R by

OXR(
N∑
i=1

aiYi) does not change its restriction to XK . Therefore, we need to find

integers ai such that L′R⊗OXR(
N∑
i=1

aiYi)⊗OYsj is a multiple of r for every sj ∈ S.
We find such ai by decreasing induction on sj for j = 1, ...,m for m= |S|.

Using the ordering of the irreducible components of Xk, we numbering s1, s2, .., sm
on the indices of S such that s1 < s2 < ... < sm. As Xk is a semistable curve, every
rational component must intersect at least two other irreducible components of
Xk i.e., Ysj .(Xk\Ysj )≥ 2 for all j = 1, ...,m. By Lemma A.4.2, Ysj .B(sj) = 1. As
Xk\Ysj =B(sj)∪ (G(sj)\Ysj ) for each 1≤ j ≤m, this implies Ysj .(G(sj)\Ysj )≥ 1.
In particular, G(j) contains at least one curve other than Ysj . For each j, choose
an index s′j 6= sj such that the corresponding curve Ys′j is contained in G(sj) and
intersects Ysj . Note that by Lemma A.4.2, s′j < sj and Ys′j does not intersect any
curve in B(sj) for all j = 1, ...,m.

Base Case: sj = sm. Suppose that deg(Lk|Ysm ) is not a multiple of r. As Xk is
a tree-like curve Ys′m .Ysm = 1. Then there exists (by the Euclidean algorithm) an
integer as′m such that

deg(Lk⊗OXk(as′mYs′m)⊗OYsm ) = deg(Lk⊗OYsm ) +as′m

is a multiple of r.
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Inductive hypothesis: Assume for some t < m, we have integers a1,a2, ...,aN such
that

deg
Lk⊗OXk

 N∑
i=1

aiYi

⊗OYsj
 t < j ≤m

is a multiple of r.

Inductive step:(j = t) As Ys′t .Yst = 1, similarly as above, there exists b such that

deg
Lk⊗OXk

bYs′t +
N∑
i=1

aiYi

⊗OYst


is a multiple of r. As Ys′t .B(st) = 0 and Ysj ∈B(st) for all j > t, Ys′t .Ysj = 0 for all
j > t. Hence,

deg
Lk⊗OXk

bYs′t +
N∑
i=1

aiYi

⊗OYsj
= deg

Lk⊗OXk
 N∑
i=1

aiYi

⊗OYsj


is a multiple of r, for all j > t. Finally, reassign the values for ai as follows: Keep ai
unchanged if i 6= s′t and replace as′t by as′t +b. Therefore, we get integers a1, ...,aN ,
such that

deg
Lk⊗OXk

 N∑
i=1

aiYi

⊗OYsj
 t≤ j ≤m

is a multiple of r. This gives us the induction step and the proof of the lemma.

The following lemma tells us that twisting a locally free sheaf on the whole curve
with a divisor coming from its components does not change the Euler characteristic
of the sheaf.

Lemma 3.2.5. Let Z be a connected subcurve of Xk and E be a locally free sheaf
on Xk. Denote by Z1, ...,Zt the irreducible components of Z. Fix integers a1, ...,at
such that ai = 0 if Yi intersect Xk\Z. Denote by

L0 :=OXR

(
t∑
i=1

aiZi

)
⊗OZ .

Then, χ(E ⊗OZ) = χ(E ⊗L0⊗OZ). In particular,

t∑
i=1

χ(E ⊗OZi) =
t∑
i=1

χ(E ⊗L0⊗OZi).
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Proof. First observe that it suffices to prove the statement in the case L0 :=
OXR(Zj)⊗OZ where Zj does not intersect Xk\Z. Then the argument can be
completed by recursion. Denote by Ei := E ⊗OZi . Let r := rk(E). Using Lemma
A.4.4, one obtains the short exact sequences

0→E⊗OZ →
t⊕
i=1
Ei→

⊕
P∈Z0

OrP → 0,

and 0→E⊗L0⊗OZ →
t⊕
i=1
Ei⊗L0→

⊕
P∈Z0

OrP → 0.

Using the above short exact sequences we notice,

χ(E ⊗OZ)−χ(E ⊗L0⊗OZ) =
t∑
i=1

(χ(Ei)−χ(Ei⊗L0)) . (3.4)

Our goal is to show that the right hand side is 0. Since tensor product by an
invertible sheaf does not change the rank of a locally free sheaf, rk(Ei) = rk(Ei⊗L0),
for all i. Now,

deg(Ej⊗OZ(Zj)) = deg(Ej) + r(Z2
j ) = deg(Ej)− r

N∑
i=1,Yi 6=Zj

Yi.Zj

which is equal to deg(Ej)− r
∑

i=1,i6=j
ZiZj because Yi.Zj = 0 for Yi not in Z. Also,

deg(Ei⊗OZ(Zj)) = deg(Ei) + rZi.Zj for i 6= j.

Hence,
t∑
i=1

deg(Ei⊗OZ(Zj)) =
t∑
i=1

deg(Ei). Therefore,
t∑
i=1

χ(Ei) =
t∑
i=1

χ(Ei⊗OZ(Zj)),
which implies the lemma.

Now we prove the main result of this chapter.

Theorem 3.2.6. For any polarisation λ := (λ1,λ2, ...,λN ), there exists a Seshadri
semistable locally free sheaf Fk of rank r on Xk with det(Fk) ' LR⊗R k on Xk,
where LR is an invertible sheaf on XR such that LR⊗RK ∼= LK .

Proof. By assumption Xk is a semistable generalised tree-like curve having at
worst nodal singularities. Hence the irreducible components are either smooth
curves of genus g≥ 0 or irreducible nodal curves of genus g≥ 2 with normalisation
a smooth curve of genus g ≥ 1. By Lemma 3.2.4, there exists a lift of LK , say L′R
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such that deg(L′R⊗Ysi) is a multiple of r, for Ysi any rational component of Xk,
si ∈ S. Denote by L′k := L′R⊗R k and by L′i := L′k|Yi . In the case Yi is rational
(resp. smooth of genus g ≥ 1, resp. irreducible nodal with normalisation of genus
g ≥ 1) there exists a slope semistable locally free sheaf Ei with determinant L′i on
the component Yi by Lemma 3.2.2 (resp. Corollary 2.4.8, resp. Theorem 3.1.9).
Define E to be the locally free sheaf on Xk obtained by glueing Ei for 1 ≤ i ≤ n,
on the intersection points. Then det(E) =L′k. If E is Seshadri semistable, then we
are done. Suppose not.

We now prove by recursion the existence of integers a1,a2, . . .aN such that E ⊗k
OXk(

N∑
i=1

aiYi) is λ-semistable i.e for all 1≤ i≤N , E ⊗OXk(
N∑
i=1

aiYi), satisfies the
following inequality:

(
∑

Yj∈G(i)
λj)χ(E⊗OXk(

N∑
i=1

aiYi))+r(|G(i)|−1)≤
∑

Yj∈G(i)
χ(E⊗OXk(

N∑
i=1

aiYi)⊗OYj )≤

≤ (
∑

Yj∈G(i)
λj)χ(E ⊗OXk(

N∑
i=1

aiYi)) + r|G(i)|. (∗)

By Theorem A.4.11 if a locally free sheaf is λ-semistable, then it is Seshadri
semistable, so it suffices to obtain a λ-semistable sheaf.

Note that as a consequence of the ordering given in Lemma A.4.2, any locally free
sheaf E is λ-semistable on YN . Indeed, for i = N , we have

N∑
i=1

λi = 1, G(N) = Xk

and |G(N)|=N . Hence the inequality (∗) can be written as,

(
∑

Yj∈Xk
λj)χ(E) + r(N −1)≤

∑
Yj∈Xk

χ(E ⊗OYj )≤

≤ (
∑

Yj∈Xk
λj)χ(E) + rN.

By Lemma A.4.4 we have

N∑
i=1

χ(E ⊗OYi) = χ(E) +
N−1∑
i=1

χ(E ⊗OPi).

where Pi are the nodes in Xk connecting two irreducible components. Since there
are n−1 such nodes and dim(E ⊗OPi) = r for all i, we have
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(
∑

Yj∈Xk
λj)χ(E) + r(N −1)≤ χ(E) + rN − r ≤

≤ (
∑

Yj∈Xk
λj)χ(E) + rN.

Therefore E is λ-semistable on YN .

Assume that for some n0 ≤ N , E is λ-semistable on Yn0+1, . . .YN . Therefore for
i= n0, we have

∑
Yj∈G(n0)

deg(E ⊗OXk(an0Yn0)⊗OYj ) =
∑

Yj∈G(n0)

(
deg(E ⊗OYj ) + ran0Yn0 .Yj

)
.

Note that for any i, Yi.Yν(i) = 1 and ν(i) > i. By [Liu02, Proposition 9.1.21],
Y 2
i =−Yi.Yν(i)−

∑
Yj∈G(i)\Yi

Yj .Yi. Therefore for i= n0 we have

∑
Yj∈G(n0)

(
deg(E ⊗OYj ) + ran0Yn0 .Yj

)
=

 ∑
Yj∈G(n0)

deg(E ⊗OYj )

− ran0 .

Since the rank of E does not change after twisting with a invertible sheaf, the Euler
characteristic depends only on the degree. Furthermore for any i, the difference
between the upper-bound and the lower bound in the inequality ∗ is equal to r.
Then by the Euclidean algorithm, there must exist an integer an0 such that

(
∑

Yj∈G(n0)
λj)χ(E ⊗OXk(an0Yn0)) + r(|G(n0)|−1)≤

≤
∑

Yj∈G(n0)
χ(E⊗OXk(an0Yn0)⊗OYj )≤ (

∑
Yj∈G(n0)

λj)χ(E⊗OXk(an0Yn0))+r|G(n0)|.

Hence, E ⊗OXk(an0Yn0) is λ-semistable at Yn0 .

Note that E ⊗OXk(an0Yn0) is also λ-semistable on Yt for all n0 < t < n. This is
because Yn0 does not intersect any curve in B(n0)\Yν(n0), neither does any curve
in G(n0) (the only curve in G(n0) that intersects B(n0) is Yn0). By Lemma 3.2.5,
this implies
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∑
Yj∈G(n0)∪Yν(n0)

χ(E ⊗OXk(an0Yn0)⊗OYj ) =
∑

Yj∈G(n0)∪Yν(n0)

χ(E ⊗OYj ).

Furthermore, for any curve Yj ∈B(n0)\Yν(n0),

χ(E ⊗OXk(an0Yn0)⊗OYj ) = χ(E ⊗OYj ).

Note that G(n0)∪Yν(n0) is connected. Hence, for any t > n0, either G(n0)∪Yν(n0)
is entirely contained in G(t) or in B(t). Therefore for any t > n0,∑

Yj∈G(t)
χ(E ⊗OXk(an0Yn0)⊗OYj ) =

∑
Yj∈G(t)

χ(E ⊗OYj ).

By hypothesis, E is λ-semistable at Yt for all t > n0. Furthermore by Lemma 3.2.5,
we have

χ(E) = χ(E ⊗OXk(an0Yn0)).

Since the sum of the Euler characteristics of E when restricted to curves in G(t)
is the same as that of E ⊗OXk(an0Yn0), this implies E ⊗OXk(an0Yn0) is also λ-
semistable for all t > n0.

By recursion we can find integers ai for all 1≤ i < N such that E ⊗OXk(
N∑
i=1

aiYi)

is λ-semistable on Yi. Therefore the locally free sheaf Fk := E ⊗OXk(
N∑
i=1

aiYi) is
λ-semistable. By Theorem A.4.11 it is also Seshadri semistable. Note that

det(Fk)'
L′R⊗

OXR(
N∑
i=1

aiYi)
r⊗Ok.

Denote by LR := L′R⊗
(
OXR(

N∑
i=1

aiYi)
)r

. Then by the exact sequence (3.3)

LR⊗RK ' L′R⊗RK ' LK .

This proves the theorem.

Remark 3.2.7. Theorem 3.2.6 proves the existence of a Seshadri semistable (with
respect to any polarisation) locally free sheaf of given rank and determinant, on a
semistable generalised tree-like curve (defined over an algebraically closed field of
arbitrary characteristic) whose singular components do not normalise to a rational
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curve, provided that the degree of the restriction of the determinant to any non-
singular, irreducible rational component of the curve is a multiple of the rank.

Remark 3.2.8. In Theorem 3.2.6, we have proven that for any choice of polarisa-
tion, there exists a Seshadri semistable locally free sheaf Fk on Xk. We now prove
that there exists a choice of polarisation for which Fk is also Gieseker semistable.
We use this fact in the next chapter.

Lemma 3.2.9. The Seshadri semistable sheaf Fk on Xk obtained in Theorem
3.2.6 is also Gieseker semistable.

Proof. Recall the notations from Definition A.1.1. To prove that the sheaf Fk is
Gieseker semistable, we need to show that for any subsheaf G ⊂ Fk,

χ(G⊗OXk(t))
αd(G) ≤ χ(Fk⊗OXk(t))

αd(Fk)
.

Since Xk is a curve, the dimension of support of any sheaf on Xk is at most 1.
Therefore d= 1. By Lemma A.4.5 we have

χ(G⊗Xk(t)) =
N∑
i=1

χ(G|Yi⊗Xk(t))−
∑
P∈X0

k

dim(G|P ⊗Xk(t)).

Using this and the fact that dimension of G|Pi⊗OXk(t) is zero since Pi are points,
we get

α1(G) = α1(G1) +α1(G2) + · · ·+α1(GN ) (∗)

where Gi := G⊗Yi and α1 is the leading coefficient of the Hilbert polynomial. Since
Fk is locally free of rank r and Seshadri semistable we have

χ(G)
Σλili

≤ χ(Fk)
Σλir

.

where li denotes the rank of Gi. Let λi = α1(OYi)
α1(OXk ) . Then

Σλili = 1
α1(OXk)(α1(OY1)l1 +α1(OY2)l2 + · · ·+α1(OYm)lm).
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By definition li = α1(Gi)
α1(OYi)

. Substituting for li we get

Σλili = 1
α1(OXk)(α1(OY1) α1(G1)

α1(OY1) +α1(OY2) α1(G2)
α1(OY2) + · · ·+α1(OYN ) α1(GN )

α1(OYN )).

Using the inequality (∗), we have

Σλili = 1
α1(OXk)(α1(G1) +α1(G2) + · · ·+α1(GN )) = α1(G)

α1(OXk) .

Hence,

χ(G)
α1(G)/α1(OXk) = χ(G)

Σλili
≤ χ(Fk)

r
= χ(Fk)
α1(Fk)/α1(OXk) .

As χ(G⊗OXk(t)) (resp. χ(Fk⊗OXk(t)) are linear polynomials with leading coef-
ficient α1(G) (resp. α1(Fk)) and constant term χ(G) (resp. χ(Fk)), we have the
inequality:

χ(G⊗OXk(t))
α1(G) ≤ χ(Fk⊗OXk(t))

α1(Fk)
This proves the lemma.



Existence result 40



Chapter 4

Verifying the C1 conjecture for a particular example

This chapter uses definitions and notations from Appendices A.1 and A.2.

Notation 4.0.1. Keep Notations 2.3.1 and Assumption 2.4.13. Denote by R̂ the
completion of the discrete valuation ring R and by XR̂ :=XR×RSpec(R̂). Denote
by LR a lift of LK to XR such that the degree of the restriction of LR to the
rational components of Xk is a multiple of r. By Lemma 3.2.4, this is always
possible. Denote by LR̂ := LR⊗R R̂ and by Lk := LR⊗R k.

The goal of this chapter is to answer Question 2.4.14. We answer this in §4.3 in
the affirmative (see Theorem 4.3.2). We show the existence of a K-rational point
of the moduli space Ms

XK ,LK (r,d) by proving the existence of a geometrically
stable locally free sheaf of rank r and determinant LK on the curve XK . Using
results from Chapter 3 and Grothendieck formal function theorem, we first prove
the existence of a locally free sheaf with determinant LR̂ on XR̂ (see Proposition
4.1.15). Note that for this we require the underlying ring to be complete (see
Proposition 4.1.3 and Theorem 4.1.14), therefore we use R̂ instead of R. Then
using Artin approximation and properties of semistability of sheaves, we obtain a
geometrically semistable locally free sheaf FR with determinant LR on the model
XR (see Proposition 4.2.6). Finally in Theorem 4.3.1 we obtain a geometrically
stable locally free sheaf on the curve XK with determinant LK as required.

Remark 4.0.2. Throughout this chapter semistability always refers to Gieseker
semistability. We proved in Lemma 3.2.9 that there exists a polarisation such that
the Seshadri semistable locally free sheaf Fk (with respect to this polarisation)
obtained in Theorem 3.2.6 is also Gieseker semistable. We use the property of it
being Gieseker semistable in Proposition 4.2.6 and Theorem 4.3.1. As we know
from Lemma A.1.4 Gieseker semistability is the same as slope semistability on the
smooth curve XK .

41
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4.1 Lifting locally free sheaves with fixed determinant

Notation 4.1.1. Keep notations 3.1.1 and 4.0.1. Denote by Fk the semistable
locally free sheaf on Xk obtained in Theorem 3.2.6. For n≥ 1, let Rn :=R/mn+1.
Denote by Yn, the spectrum of the ring Rn and by R̂ the projective limit of the
rings Rn. Let Xn :=XR̂×R̂ Spec(Rn). Since XR̂ is flat over Spec(R̂), the scheme
Xn is flat over Spec(Rn) and Xk 'Xn×Rn Spec(k). Therefore Xn is a deformation
of Xk over Rn. Let Fn be a locally free sheaf on the curve Xn with determinant
Ln := LR̂⊗R̂Rn.

In this section using Grothendieck’s formal function theorem we show how to lift
the Gieseker semistable locally free sheaf Fk on Xk with determinant Lk, obtained
in Theorem 3.2.6, to a locally free sheaf FR̂ on XR̂ with determinant LR̂.

Recall the following general definitions.

Definition 4.1.2. We define a ringed space called the formal spectrum of R, de-
noted Y := (Spf(R),OY) as follows: The topological space Spf(R) consists of the
closed point Spec(k), with the discrete topology and the sheaf of rings OY is R̂.

Proposition 4.1.3 ([Har10, Proposition 21.1]). Let (R̂,m) be a complete local
ring with residue field k, and for each n, the schemes Xn flat and of finite type
over Yn and maps Xn→Xn+1 inducing isomorphisms Xn 'Xn+1×Yn+1 Yn. Then
there is a noetherian formal scheme X , flat over Y , the formal spectrum of R̂, such
that for each n, Xn 'X ×R̂ Yn.

Definition 4.1.4. Let Fn (resp. Fk) be a coherent sheaf on Xn (resp. Xk). We
define an extension Fn+1 of Fn (resp. Fk) over Rn+1 to be a coherent sheaf
Fn+1 on Xn+1 flat over Rn+1, together with a map Fn+1→Fn (resp. Fn→Fk)
inducing an isomorphism Fn+1⊗Rn+1 Rn 'Fn (resp. Fn⊗Rn k 'Fk).

The following theorem tells us when is it possible to extend a sheaf on Xn to a
sheaf on Xn+1. Note that the following theorem is general i.e. it applies to any
locally free sheaf Fk on a curve Xk, one does note require our assumptions.

Theorem 4.1.5 ([Har10, Theorem 7.3]). Let Fk denote a locally free sheaf on Xk

and suppose that Fn is a locally free sheaf on Xn such that Fk ' Fn⊗Rn k. We
have the following:

1. If Fn+1 is an extension of Fn on Xn+1, then the group Aut(Fn+1/Fn) of
automorphisms of Fn+1 inducing the identity automorphism on Fn is iso-
morphic to H0(HomXk(Fk,Fk)⊗kmn+1/mn+2).
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2. Given Fn onXn, there is an obstruction inH2(HomXk(Fk,Fk)⊗kmn+1/mn+2)
whose vanishing is a necessary and sufficient condition for the existence of
an extension Fn+1 of Fn over Xn+1.

3. If an extension Fn+1 of Fn over Xn+1 exists, then the set of all such is a
torsor under the action of H1(HomXk(Fk,Fk)⊗kmn+1/mn+2).

Now, we show that the extension of a locally free sheaf if it exists is again locally
free.

Proposition 4.1.6 ([Har10, Exercise 7.1]). Assume that we can extend the sheaf
Fn to Fn+1 over Xn+1. If Fn is locally free on Xn, then Fn+1 is a locally free
sheaf on Xn+1.

To prove this we first recall a lemma from commutative algebra.

Lemma 4.1.7. Let (R,m) be a local ring with nilpotent maximal ideal m. Let M
be a flat R-module. If A is a set and xα ∈M , α ∈ A is a collection of elements of
M , then the following are equivalent:

1. {xα}α∈A forms a basis for the vector space M/mM over R/m, and

2. {xα}α∈A forms a basis for M over R.

where xα is the image of xα under the quotient map M →M/(mM).

Proof of Lemma. The implication (2) ⇒ (1) is immediate. We will prove the
other implication by using induction on n to show that {xα}α∈A forms a basis
for M/mnM over R/mn. The case n = 1 holds by assumption (1). Assume the
statement holds for some n≥ 1. By Nakayama’s Lemma the elements xα generate
M , in particular M/mn+1M . The exact sequence

0→mn/mn+1→R/mn+1→R/mn→ 0

gives on tensoring with M the exact sequence

0→mnM/mn+1M →M/mn+1M →M/mnM → 0.

Here we are using that M is flat. Moreover, we have mnM/mn+1M =M/mM⊗R/m
mn/mn+1 by flatness of M again. Now suppose that ∑fαxα = 0 in M/mn+1M .
Then by induction hypothesis fα ∈ mn for each α. By the short exact sequence
above we then conclude that ∑fα⊗xα is zero in mn/mn+1⊗R/mM/mM . Since
xα forms a basis we conclude that each of the congruence classes fα ∈ mn/mn+1

is zero.
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Proof of Proposition. We have that Xk→Xn+1 is a closed immersion, giving the
following exact sequence

0→ kerf →OXn+1
f−→OXk → 0.

Let us localise at a point x ∈Xn+1. Since Rn+1 is a local Artin ring , by [Mat80,
Proposition 3.G], OXn+1,x is a free Rn+1-module. Let {fα}α∈I with fα ∈ OXn+1,x

be the basis of this module. Denote by fα the image of fα under the natural
morphism OXn+1,x→OXn+1,x/mOXn+1,x where m is the maximal ideal of R. By
Lemma 4.1.7, {fα}α∈I is the k-basis of OXn+1,x⊗Rn+1 k 'OXn+1,x/mOXn+1,x.

By assumption, Fn+1,x⊗OXn+1,x
(OXn+1,x⊗Rn+1 k) is a free OXk,x module with

basis say, x1, . . .xr. Hence, {fαx1, . . . ,fαxr}α∈I is an k-basis of Fn+1,x⊗OXn+1,x

(OXn+1,x⊗Rn+1 k).

Let x̃i be a lift of xi under the natural morphism from Fn+1,x to Fn+1,x⊗OXn+1,x

(OXn+1,x⊗Rn+1 k). Using Lemma 4.1.7, we have that {fαx̃1, . . . ,fαx̃r}α∈I is a R-
basis of Fn+1,x. Therefore, {x̃i}ri=1 is a OXn+1,x-basis of Fn+1,x. Hence Fn+1 is a
locally free OXn+1 module as required.

Notation 4.1.8. Let Fn be a locally free sheaf on the curve Xn with determinant
Ln := LR̂⊗R̂Rn.

Now we discuss how the extensions of Fn relate to those of Ln.

Definition 4.1.9. We have the following definitions:

1. The trace map tr :M(r,OXn+1)→OXn+1 is given by taking the trace of the
matrices.

2. We define the map

πntr : πnM(r,OXn+1)→ πnOXn+1 .

πnA 7→ πntr(A)

3. We define the map

1 +πntr : 1 +πnM(r,OXn+1)→ 1 +πnOXn+1 .

1 +πnA 7→ 1 +πntr(A)
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Then we have the natural short exact sequence:

1→ 1 + ker(πntr)→ 1 +πnM(r,OXn+1) 1+πntr−−−−→ 1 +πnOXn+1 → 1. (4.1)

Lemma 4.1.10. Consider the natural surjective morphism

SL(r,OXn+1) α−→ SL(r,OXn).

Then 1 + ker(πntr) = ker(α).

Proof. Note that the morphism α is a group homomorphism because it is in-
duced by the ring homomorphism OXn+1 → OXn . Let N := (aij) be a matrix
in SL(r,OXn+1) with image the identity matrix in SL(r,OXn). Then aij = πnbij
for i 6= j with bij ∈ OXn+1 and aii = 1 + πnbii. Since πn+1 = 0 in OXn+1 and
(aij) ∈ SL(r,OXn+1),

1 = det(aij) = 1 +πn
∑

(bii).

Hence πn∑(bii) must be 0.

Since tr(N − Id) = πn
∑
i bii, this implies N ∈ 1 + ker(πntr). Hence ker(α) ⊆ 1 +

ker(πntr). The reverse inclusion 1 + ker(πntr)⊆ ker(α) is direct.

This gives us the following short exact sequence

1→ 1 + ker(πntr)→ SL(r,OXn+1)→ SL(r,OXn)→ 1. (4.2)

Definition 4.1.11. Recall the determinant map det : GL(r,OXn+1)→O×Xn+1
given

by taking the determinant of the matrices. Since SL(r,OXn+1) are the matrices
with determinant 1, we have the following exact sequence

1→ SL(r,OXn+1)→GL(r,OXn+1) det−−→O×Xn+1
→ 1. (4.3)

Using sequences (4.1), (4.2), (4.3) we obtain the following diagram
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1 ⊂ - 1 + ker(πntr) - SL(r,OXn+1) -- SL(r,OXn) - 1

� �

1 ⊂ - 1 +πnM(r,OXn+1)
?

∩

- GL(r,OXn+1)
?

∩

-- GL(r,OXn)
?

∩

- 1

� �

1 ⊂ - 1 +πnOXn+1

1 +πntr
??

- O×Xn+1

det
?

- O×Xn

det
?

-- 1

.

Note that the short exact sequence (4.1) splits i.e. there exists a section φ to the
trace map,

φ :OXn+1(U)→M(r,OXn+1)(U), λ 7→


λ 0 · · · 0
0 0 · · · 0
... ... . . . ...
0 0 · · · 0


for all U ⊆Xn+1. Since the short exact sequence (4.1) is split exact,

H1(1 + ker(πntr))→H1(1 +πnM(r,OXn+1))

is injective. It follows directly from definition, 1 + ker(πntr) is a sheaf of abelian
groups. Using Grothendieck vanishing, this implies H2(1+ker(πntr)) = 0. There-
fore, we have the following short exact sequence:

1→H1(1 + ker(πntr))→H1(1 +πnM(r,OXn+1))→H1(1 +πnOXn+1)→ 1.

Similarly, the short exact sequence (4.3) splits i.e there exists a section ψ to the
determinant map given by

ψ :O×Xn+1
(U)→GL(r,OXn+1)(U), λ 7→


λ 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1


for all for all U ⊆Xn+1.
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The following diagram summarizes all this.

H1(1 + ker(πntr)) - H1(SL(r,OXn+1)) - H1(SL(r,OXn))

� �

H1(1 +πnM(r,OXn+1))
?

- H1(GL(r,OXn+1))
?

-- H1(GL(r,OXn))
?

� �

H1(1 +πnOXn+1)

1 +πntr
??

ψ1 - H1(O×Xn+1
)

det
?

ψ2 - H1(O×Xn)

det
?

(4.4)

Here the north-east square is a diagram of pointed sets, all the other groups are
abelian.

We can now prove the following:

Theorem 4.1.12. Suppose there exists a locally free sheaf Fn on Xn with de-
terminant Ln := LR̂⊗R̂ Rn which is an extension of Fk. Then there exists an
extension Fn+1 of the locally free sheaf Fn such that det(Fn+1) ' Ln+1 where
Ln+1 := LR̂⊗R̂Rn+1.

Proof. Since Xk is a curve, by Grothendieck’s vanishing theorem,

H2(HomXk(Fk,Fk)⊗kmn+1/mn+2) = 0

for all n ≥ 0. Hence by Theorem 4.1.5, there is no obstruction to extending Fn
to a coherent sheaf say, F ′n+1 over Xn+1. Furthermore, by Proposition 4.1.6, the
sheaf F ′n+1 is in fact a locally free sheaf on Xn+1. Let L′n+1 := det(F ′n+1). If
L′n+1 ' Ln+1, then we are done. Suppose not, we now show how we can modify
the extension F ′n+1 so that its determinant bundle is in fact isomorphic to Ln+1.

By Theorem 4.1.5 the set of extensions of Ln onXn+1 is a torsor under the action of
H1(O×Xn+1

). Hence there exists γ ∈H1(1+πnOXn+1) such that [Ln+1] = γ • [L′n+1]
, where • indicates the torsor action of H1(O×Xn+1

). Since the morphism 1 +πntr
is surjective, there exists a preimage of γ, say Γ∈H1(1+πnM(r,OXn+1)). Denote
by Fn+1 := Γ ◦F ′n+1 in H1(GL(r,OXn+1)) where ◦ indicates the torsor action in
H1(GL(r,OXn+1)). Since the torsor action is compatible with taking determinant,
the commutativity of the lower left square of diagram (4.4) implies det(Fn+1) =
[Ln+1].
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The following theorem tells us that there exists a locally free sheaf on the formal
scheme X .

Proposition 4.1.13 ([Har77, Proposition 9.6]). Given a collection of locally free
sheaves Fn on Xn over Rn and maps Fn'Fn+1⊗Rn+1Rn, we have F̂ = lim←−Fn is a
locally free sheaf on X with det(F̂) = lim←−Ln and for the natural map un :Xn→X ,
u∗nF̂ ' Fn.

However, we would like to obtain a locally free sheaf on XR̂ and not just on X .
For this, we use the following theorem.

Theorem 4.1.14 ([FGI+05, Theorem 8.4.2]). Let XR̂ be a noetherian fibered
surface, separated and of finite type over Spec(R̂), and let X be as in Proposition
4.1.3. Then the functor F → F̂ from the category of coherent sheaves on X whose
support is proper over Spec(R) to the category of coherent sheaves on X whose
support is proper over Y is an equivalence, where Y is as in Definition 4.1.2.

Proposition 4.1.15. There exists a locally free sheaf FR̂ on XR̂ such that Fk '
FR̂⊗R̂ k with determinant LR̂.

Proof. By Proposition 4.1.13, we obtain a locally free sheaf F̂ on the formal scheme
X . Then by Theorem 4.1.14, there exists a locally free sheaf FR̂ on XR̂ such that
for the flat morphism i : X →XR̂, F̂ is isomorphic to i∗(FR̂). By the commuta-
tivity of the following diagram

X
i

- XR̂

Xk

u

6

f

-

and Proposition 4.1.13, we obtain f∗(FR̂) = (i ◦ u)∗FR̂ is isomorphic to u∗F̂ =
Fk.

4.2 Artin approximation for the moduli functor

Keep Notations 4.0.1.
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In this section we obtain a Gieseker semistable locally free sheaf FR of rank r
on XR with the property that determinant det(FR)⊗RK ' LK . We do this
using the locally free sheaf FR̂ on XR̂ obtained in Proposition 4.1.15 and Artin
approximation.

We first recall the relevant definitions and results on Artin approximation we
require. For a full treatment the reader is referred to [Art69].

Definition 4.2.1. Let A be a noetherian ring. A functor F : A−algebras→ Sets
is said to be locally of finite presentation if for every filtered inductive system of
A-algebras, {Bi}, the canonical map

lim−→F(Bi)→ F(lim−→Bi)

is bijective.

We refer to the following result as Artin approximation .

Theorem 4.2.2 ([Art69, Theorem 1.12]). Let R be a field or an excellent discrete
valuation ring and A the henselization of an R-algebra of finite type at a prime
ideal. Denote by m a proper ideal of A, Â the m-adic completion of A and An :=
A⊗R R/mn. Let F be a functor which is locally of finite presentation. Then
given any ξ ∈ F(Â), there exists ξ ∈ F(A) such that under the natural restriction
morphisms:

rn : F(Â)→ F(An) and r′n : F(A)→ F(An),

rn(ξ) = r′n(ξ) for all n ∈ N.

Remark 4.2.3. Recall that a discrete valuation ring R is excellent if the field
extension K̂/K is separable where K denotes the quotient field of R and K̂ its
completion. This condition is trivially satisfied if K has characteristic 0 or R is
complete. Hence Theorem 4.2.2 can be applied to the ring R in Notation 4.0.1.

The following is a consequence of the Quot functor being locally of finite presen-
tation.

Lemma 4.2.4. Let f : XR → Spec(R) be a flat, projective morphism and H a
free sheaf on XR of the form ⊕Ni=1OXR for some N . Recall the Quot-functor
QuotPXR/Spec(R)/H (see Definition A.2.1) for a fixed Hilbert polynomial P . Given
a projective system {Zi}i∈I of affine schemes, the natural morphism

ρ : lim−→
i∈I
QuotPXR/Spec(R)/H(Zi)→QuotPXR/Spec(R)/H(lim←−

i∈I
Zi)

is bijective.



Verifying the C1 conjecture 50

Proof. By [Ser06, Proposition 4.4.1], the Quot-functor QuotPXR/Spec(R)/H is repre-
sented by a projective Spec(R)-scheme. In particular, the natural morphism

φ : QuotPXR/Spec(R)/H→ Spec(R)

is of finite type. Since Spec(R) is locally noetherian, the morphism φ is lo-
cally of finite presentation. Then by [Gro66, Proposition 8.14.2] the Quot-functor
QuotPXR/Spec(R)/H is locally of finite presentation. Hence the lemma follows.

We use the following lemma to prove Proposition 4.2.6.

Lemma 4.2.5. Consider the fiber product:

XR̂

j1 - XR

�

Spec(R̂)

f̂

?
j0- Spec(R)

f

?

where j0 is the natural morphism. Denote by in : Xn ↪→ XR the natural closed
immersion.

If FR is an invertible sheaf on XR satisfying i∗nFR ∼= OXn for all n ≥ 1, then
FR ∼=OXR .

Proof. By Theorem 4.2.2 the natural morphism

i : Pic(XR)→ lim←−Pic(Xn)

is injective. Since i(FR) = i(OXR), we have FR ∼=OXR .

Now we apply Artin approximation to our situation to obtain a Gieseker semistable
locally free sheaf with determinant LR on the model XR.

Proposition 4.2.6. Let FR̂ be the locally free sheaf on XR̂ with determinant
LR̂ := j∗1LR obtained using Proposition 4.1.15. Then, there exists a geometrically
stable locally free sheaf FR on XR with determinant LR.

Proof. By Lemma 4.2.4, the Quot functor is locally of finite presentation. Using
Artin’s approximation theorem [Art69, Theorem 1.12], we conclude that there
exists a coherent sheaf FR on XR such that
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i∗nFR ∼= i′n
∗FR̂, ∀ n≥ 1. (4.5)

where i′n : Xn → XR̂ is the morphism induced by the natural morphism R̂ →
R/mn. By Theorem 3.1.9, Fk 'FR̂⊗R̂k. Note that locally freeness and geometric
semistability are open properties by Lemma A.1.8 and Lemma A.1.10 respectively.
Therefore FR is locally free and geometrically stable.

Let L := det(FR). Using the fact that determinant commutes with pull-back and
the isomorphism (4.5)

i∗nL ∼= deti∗nFR ∼= deti′n
∗FR̂.

By assumption det(FR̂) ∼= j∗1LR. Hence deti′n
∗FR̂ ∼= i′∗n ◦ j∗1LR. By the universal

property of inverse limits j1 ◦ i′n = in, hence i′∗n ◦ j∗1LR ∼= i∗nLR. Therefore for all
n≥ 1,

i∗n(L⊗OXR L
∨
R)∼=OXn .

Hence by Lemma 4.2.5, L ∼= LR i.e., det(FR)' LR. This proves the proposition.

4.3 Rational points of the moduli space of stable locally free sheaves
with fixed determinant

Keep Notations 4.0.1. In this section we answer Question 2.4.14.
Theorem 4.3.1. Let R be a Henselian discrete valuation ring with maximal ideal
m, fraction field K of characteristic 0 and algebraically closed residue field k of
characteristic p > 0. Let XK be a smooth, projective, geometrically connected
curve of genus g≥ 2 defined overK. Fix integers r,d coprime with r≥ 2. Let LK be
an invertible sheaf of degree d on XK . Assume that there exists a semistable model
XR→ Spec(R) of XK with special fibre Xk := XR×Spec(R) Spec(k) a generalised
tree-like curve whose singular components do not normalise to a rational curve.

Then there exists a geometrically stable locally free sheaf say FK on XK of rank
r and determinant LK .

Proof. Let FR be as in Proposition 4.2.6. Denote by FK :=FR⊗RK its pullback
to the generic fibre. Since FR is locally free, so is FK because the pull-back of a
locally free sheaf is locally free. Since LR was chosen to be a lift of LK , determinant
of det(FK) is LK .

The locally free sheaf FR|Xk ∼= Fk and by Lemma 3.2.9 the sheaf Fk is Gieseker
semistable. As k is algebraically closed, it is Gieseker geometrically semistable.
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By Lemma A.1.10, Gieseker geometric stability is an open property. Since any
open set in Spec(R) contains the generic point Spec(K), FK is also (Gieseker)
geometrically semistable. Since XK is a smooth curve, by Lemma A.1.4 FK is also
slope semistable. Moreover, the rank and degree of Fk are coprime. Therefore by
Lemma A.1.5, the sheaf FK is stable. This proves the theorem.

Theorem 4.3.2. Let R be a Henselian discrete valuation ring with maximal ideal
m, fraction field K of characteristic 0 and algebraically closed residue field k of
characteristic p > 0. Let XK be a smooth, projective, geometrically connected
curve of genus g ≥ 2 defined over K. Fix integers r,d coprime with r ≥ 2. Let
LK be an invertible sheaf of degree d on XK . Denote by Ms

XK ,LK (r,d) the moduli
space of geometrically stable locally free sheaves on XK of rank r and determinant
LK . Assume that there exists a semistable model XR → Spec(R) of XK with
special fibre Xk :=XR×Spec(R) Spec(k) a generalised tree-like curve whose singular
components do not normalise to a rational curve.

Then Ms
XK ,LK (r,d) has a K-rational point.

Proof. By Theorem 4.3.1 there exists a geometrically stable locally free sheaf FK
on XK of rank r, degree d and determinant LK . Then there exists a K-rational
point of Ms

XK ,LK (r,d) corresponding to FK .
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Generalities on moduli spaces and locally free sheaves

We now recall some of the basic definitions and facts used in the text which are
specific to the subject of this thesis.

Remark A.0.1. In order to make the main body of the text easy to follow, we
will often state definitions and results in the form that we need them. It should be
noted however that many of the definitions and results hold more generally than
stated here.

A.1 Stability

Keep Remark A.0.1. In this section we briefly recall the different definitions of
stability we use in the thesis. The references for this section are [HL97] and [Ses].

Definition A.1.1. Recall the following:

1. Let X be a smooth, projective curve over an algebraically closed field k and
E a coherent sheaf on X. The slope of E is defined as

µ(E) := deg(E)
rank(E) .

2. Let X be a projective scheme and E a coherent sheaf on X.

a The Hilbert polynomial denoted P (E) is defined as

P (E)(t) := χ(X,E ⊗OX(t)) =
d∑
i=0

αi(E)t
i

i! for t >> 0,

and OX(t) =OX(1)⊗t.

53
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b The reduced Hilbert polynomial is defined as Pred(E) := P (E)
αd(E) .

Remark A.1.2. In the thesis, we often use the property of the Euler characteristic
being additive, i.e. for a short exact sequence

0→E ′→E → E ′′→ 0,

we have χ(E) = χ(E ′) +χ(E ′′).

Definition A.1.3. We recall the different types of stability.

1. Let X be a smooth, projective curve. A coherent sheaf E of dimension
d is called slope (semi)stable if for any proper subsheaf F ⊂ E , we have
µ(F)(≤)< µ(E).

2. Let X be a reducible, projective curve, say X = ∪1≤i≤nYi. Then in [Ses],
C.S Seshadri generalised slope semistability as follows. Let E be a semistable
torsion free sheaf on X with rank ri on each component Yi. Then

µsesh(E) := χ(E)
Σλiri

where λi are rational numbers with 0 < λi < 1 and Σλi = 1. The tuple
(λ1, . . . ,λn) is called a polarisation . We call a sheaf Seshadri-(semi)stable
with respect to the polarisation (λ1, . . .λn) if for every subsheaf

µsesh(F)(≤)< µsesh(E).

By definition Seshadri semistability depends on the choice of the polarisation.
For ease of notation, we do not always specify this but it should be clear
from the context.

3. LetX be a projective curve. A coherent sheaf E is called Gieseker semi(stable)
if for any proper subsheaf F ⊂ E , Pred(F)≤ (<)Pred(E) i.e. the coefficients
of Pred(F) are smaller (strictly) than the coefficients of Pred(E).

Lemma A.1.4. LetX be a smooth, projective curve over a field k and E a coherent
sheaf on X. Then E is slope semistable if and only if E is Gieseker semistable.
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Proof. Let E be Gieseker (semi)stable i.e. pred(F)(≤) < pred(E) for any proper
subsheaf F of E . Then by Riemann Roch we have

t+ deg(F)
r(F) −

deg(ωX)
2 (≤)< t+ deg(E)

r(E) −
deg(ωX)

2 .

where t is a variable. This is the same as slope (semi)stability.

Now we recall some well-known results on semistability.

Lemma A.1.5. Let X be an integral scheme and E a coherent sheaf of dimension
d= dim(X) such that (rk(E),d(E)) = 1. If E is µ-semistable, then E is µ-stable.

Proof. If E is not µ-stable, then there exits a subsheaf F ⊂ E with 0< rk(F) and
deg(F).rk(E) = deg(E).rk(F). But this contradicts the assumption (rk(E),d(E)) =
1.

Lemma A.1.6. Let X be an irreducible, projective curve, E a semistable locally
free sheaf. Then, for any invertible sheaf L on X, E ⊗L is a semistable locally free
sheaf on X.

Proof. We prove this by contradiction. Suppose E ⊗L is not semistable. Then,
there exists a coherent subsheaf F ⊂ E ⊗L such that

µ(F)> µ(E ⊗L) = µ(E) + deg(L)⇒ µ(F)−deg(L) = µ(F ⊗L−1)> µ(E).

But this contradicts the semi-stability of E , hence proves the lemma.

Definition A.1.7. Let P be a property of coherent sheaves on noetherian schemes,
P is said to be an open property , if for any projective morphism f : X → S of
noetherian schemes and any flat family F of sheaves on the fibres of f , the set of
points s ∈ S such that Fs has P is an open subset in S. The family of sheaves F
is said to have property P if for all s ∈ S, the sheaf Fs has P .

Lemma A.1.8 ([HL97, Proposition 2.1.8]). Let X → S be a morphism of finite
type of noetherian schemes. Denote by Fs the pullback of F to the fibre Xs :=
X×S Spec(k(s)). Let F be a flat family of coherent sheaves. Then the set

{s ∈ S| Fs is locally free at s}

is an open subset of S.
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Definition A.1.9. Suppose k is not algebraically closed andX a projective scheme
over k. A coherent sheaf E on X is called geometrically stable if E ⊗k Speck is
stable, where k denotes the algebraic closure of k.

The following result is used quite often.

Proposition A.1.10 ([HL97, Proposition 2.3.1]). Gieseker semistability and Gieseker
geometric stability are open properties in flat families.

A.2 The Quot and Moduli functor

We recall basic definitions and results about the Quot functor that we use in the
thesis.

Definition A.2.1. Let f :X→ S be a projective morphism of algebraic schemes
and OX(1) an f -ample invertible sheaf on X. Let H be a coherent sheaf on X,
flat over S, OX×S module and P ∈Q[z] a polynomial. We define the Quot functor
denoted

Q(H,P ) :=QuotPX/S/H : (Sch/S)→ (Sets),

as follows: for T ∈ (Sch/S), Q(H,P )(T ) is the set of T -flat coherent sheaves
HT :=OT ⊗H� F with Hilbert polynomial P . If g : T ′→ T is an S-morphism,

Q(H,P )(g) :Q(H,P )(T )→Q(H,P )(T ′), HT →F 7→HT ′ → g∗XF .

Note that when X is a curve over a field k, the Hilbert polynomial P is linear,
i.e. the leading coefficient gives us the rank and degree. Then we write Qr,d(H)
instead of Q(H,P ).

We have the following:

Theorem A.2.2 ([Ser06, Theorem 4.4.1,Proposition 4.4.3]). Let f : X → S be a
projective morphism of algebraic schemes. The functor Q(H,P ) defined in Defini-
tion A.2.1 is represented by a projective S-scheme π : QuotPX/S/H→ S, called the
associated Quot-scheme .

Moreover, it has the following base change property. For a morphism T → S, the
Quot scheme QuotPX×ST/T/HT = T ×S QuotPX/S/H, where HT is the pullback of H
under the induced morphism X×S T →X.
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Notation A.2.3. If X is a family of curves, the Hilbert polynomial of any S-flat
coherent sheaf on X is uniquely determined by its rank and degree. In this case,
denote by π : Quotr,dX/S/H→ S the associated Quot-scheme when P is the Hilbert
polynomial of a rank r, degree d, S-flat coherent sheaf on X. If S is the spectrum
of a field then we simply denote by Quotr,dX/H the associated Quot-scheme.

Lemma A.2.4 ([LP97, Lemma 8.6.6]). Let r0,d0, r,d be integers with r0 > 0, r > 0
and S an open subset of Quotr,dX

K
/H where H=H⊗OX

K
for some k-vector space

H. Denote by FS the universal quotient over S. Let s ∈ S be a closed point, H�
F(s) the corresponding coherent quotient and K(s) the kernel of the morphism.
Then, the Kodaira-Spencer infinitesimal deformation map of F at the point s is
the morphism

κ : HomX(K(s),F(s))→ Ext1
X(F(s),F(s))

arising from applying HomX(−,F(s)) to the short exact sequence

0→K(s)→H→ F(s)→ 0.

Notation A.2.5. Notations as in Lemma A.2.4. Let x ∈Quotr0,d0
XS/S/F be a closed

point such that π0(x) = s for π0 : Quotr0,d0
XS/S/F → S the natural morphism. Denote

by
0→E ′(s)→ F(s)→E(s)→ 0

the corresponding short exact sequence. Applying the functors HomOX (−,F(s))
and HomOX (E ′(s),−), respectively, we get the following morphisms

i : Ext1
OX (F(s),F(s))→ Ext1

OX (E ′(s),F(s)),

j : Ext1
OX (E ′(s),F(s))→ Ext1

OX (E ′(s),E(s)).

Define the morphism ωx : TsS→ Ext1
OX (K(s),E(s)) to be the composition j ◦ i◦κ.

Lemma A.2.6. Notations as in Lemma A.2.4. Suppose the Kodaira-Spencer map
κ is surjective. If E(s) is locally free then the morphism ωx is surjective.

Proof. By construction, the cokernel of i (resp. j) is isomorphic to Ext2
OX (E(s),F(s))

(resp. Ext2
OX (E ′(s),E ′(s))). As E ′(s) is a subsheaf of a locally free sheaf on a

non-singular curve, it is locally free, hence Exti(E ′(s),E ′(s)) = 0 for i ≥ 1. More-
over, since E(s) is locally free, Exti(E(s),F(s)) = 0 for i ≥ 1. Therefore, by the
Grothendieck spectral sequence, Ext2

OX (E(s),F(s)) (resp. Ext2
OX (E ′(s),E ′(s))) are

isomorphic to H2(Hom(E(s),F(s))) (resp. H2(Hom(E ′(s),E ′(s)))) which vanish
by the Grothendieck vanishing theorem. This implies the lemma.
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Recall, the following results in deformation theory.

Proposition A.2.7 ([Ser06, Proposition 4.4.4]). We have a short exact sequence
of the form

0→ Hom(E ′(s),E(s))→ TxQuotr0,d0
XS/S/F

Txπ0−−−→ TsS
ωx−→ Ext1

OXs (E
′(s),E(s)) (A.1)

We will now recall the basic definitions and results about moduli functors.

Definition A.2.8. Let Y be a scheme of finite type over a universally Japanese
ring R, f :X→ Y a projective morphism of R-schemes of finite type with geomet-
rically connected fibers and OX(1) an f -very ample invertible sheaf. Let T be a
Y -scheme and P a fixed Hilbert polynomial. We have the following definitions:-

1. A family of pure Gieseker semistable sheaves on the fibres of XT :=X×Y
T →T is a T -flat coherentOXT module F such that for every geometric point
t of T ,the restriction of F to the fibre Xt is pure and Gieseker semistable.

2. Let F , F ′ be two families of pure Gieseker semistable sheaves on the fibres of
XT . We say that F and F ′ are equivalent, denoted F ∼F ′ if and only if there
exist filtrations 0 =F0⊂F1⊂ ·· · ⊂Fm =F and 0 =F ′0⊂F ′1⊂ ·· · ⊂F ′m =F ′
by coherentOXT modules such that⊕mi=1Fi/Fi−1 is a family of pure Gieseker
semistable sheaves on the fibres of XT and there exists an invertible sheaf L
on T such that ⊕mi=1F ′i/F ′i−1 ' (⊕mi=1Fi/Fi−1)⊗OT L.

3. We define the moduli functor MX/Y (P ) : (Sch/Y )◦→ (Sets) from the cate-
gory of locally noetherian schemes over Y to the category of sets by

MX/Y (P )(T ) :=


∼ equivalence classes of families of pure Gieseker
semistable sheaves on the fibres of T ×Y X → T,
which have Hilbert polynomial P.


We denote the open subfunctor for stable sheaves by Ms

X/Y (P ).

The following theorem tells us that this functor is uniformly corepresented.

Theorem A.2.9 ([Lan04, Theorem 0.2]). Let R be a universally Japanese ring
and Y a scheme of finite type over R. Let f : X → Y be a projective morphism
of R-schemes of finite type with geometrically connected fibers and OX(1) an f -
ample invertible sheaf. For a fixed polynomial P there exists a projective Y -scheme
MX/Y (P ) of finite type over Y and a natural transformation of functors
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θ :MX/Y (P )→ HomY (−,MX/Y (P )),

which uniformly corepresents the functor MX/Y (P ). For every geometric point
y ∈ Y , the induced map θ(y) is a bijection. Moreover, there is an open scheme
Ms
X/Y (P )⊂MX/Y (P ) which universally corepresents the subfunctor of families of

geometrically Gieseker stable sheaves.

A.3 Generalised parabolic bundles

In this section we recall the basic definitions and results on generalised parabolic
bundles that we need. We refer the reader to Bhosle [Bho92] for a full treatment
of generalised parabolic bundles.

Notation A.3.1. Let Yk be an irreducible nodal curve defined over an alge-
braically closed field k of characteristic p > 0. Denote by π : Ỹk → Yk the nor-
malisation map and assume that Ỹk has genus g ≥ 1. Denote by J the set of
singular points of Yk and γ the number of singular points. For all 1 ≤ i ≤ γ, let
pi, qi be the two points in Ỹk lying over the double point xi ∈ Y . Let Di := pi+ qi
be an effective divisor on Ỹk.

Definition A.3.2. A generalised parabolic structure on a locally free sheaf E over
an effective divisor D of Ỹk consists of

1. a flag Λ of vector subspaces of H0(E ⊗OD) given by

Λ : F0(E) =H0(E ⊗OD)⊃ F1(E)⊃ ·· · ⊃ Fr(E) = 0

2. real numbers α1, . . .αr with 0 ≤ α1 < · · · < αr < 1 called weights associated
to the flag.

Definition A.3.3. A generalised parabolic bundle is a locally free sheaf E together
with parabolic structures over finitely many disjoint divisors, say {Di}i=1,...,γ . We
denote it by a triple (E ,Λ,α) where Λ := (Λ1, . . . ,Λγ) and α := (α1, . . . ,αγ) with

Λi : F i0(E) =H0(E ⊗ODi)⊃ F
i
1(E)⊃ ·· · ⊃ F ir(E) = 0

being the flag on the divisor Di and αi := (αi1, . . . ,αir) the weights associated to it.
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Definition A.3.4. A locally free sub-sheaf K of E gets a natural structure of
a generalised parabolic bundle. Denote by F il (K) = F il (E)∩H0(K⊗ODi). The
induced flag is given by

Λi(K) : F i0(K) =H0(K⊗ODi)⊃ F
i
1(K)⊃ ·· · ⊃ F ir(K) = 0

We associate to the vector space F il (K) the weight βil := αil . We define a subbundle
of a generalised parabolic locally free sheaf (E ,Λ,α) as a locally free subsheafK with
the induced parabolic structure (Λ(K),β) where β = (β1, . . .βγ), βi := (βi1, ...,βir).

Definition A.3.5. Let (E ,Λ,α) be a generalised parabolic locally free sheaf with
generalised parabolic structures (Λi,αi) over the divisors {Di}i=1,...γ .

1. Denote by mi
l := dimF il−1(E)/dimF il (E) for l = 1, . . . r. We define the weight

of E over a divisor Di as wtDi(E) =
r∑
l=1

mi
lα
i
l . The weight of E , denoted

wt(E), is defined as ∑
i
wtDi(E).

2. The parabolic degree of E is defined as pardeg(E) = deg(E) + wt(E).

3. The parabolic slope of E , denoted parµ(E), is defined as pardeg(E)
rank(E) .

Definition A.3.6. A generalised parabolic bundle (E ,Λ,α) is parabolic semistable
(respectively parabolic stable) if for every proper subbundle (K) of E , one has
parµ(K)≤ parµ(E) (respectively < parµ(E)).

Remark A.3.7. Consider the normalisation map, π : OỸk → OYk and a dou-
ble point x ∈ Yk. For {p,q} = π−1(x), there is a natural identification OYk,x ∼=
k[[S,T ]]/(ST ),OX̃k,p = k[[S]] and OỸk,q = k[[T ]], under which the morphism

i#x :OYk,x→OỸk,p⊕OỸk,q

can be identified with the natural morphism

k[[S,T ]]/(ST )→ k[[S]]⊕k[[T ]]
c+Sf(S) +Tg(T ) 7→ (c+Sf(S), c+Tg(T )).
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where c ∈ k and f(S),g(T ) ∈ k[[S,T ]]. The cokernel of i#x is given by the following
short exact sequence,

0→ k[[S,T ]]/(ST ) i#x−→ k[[S]]⊕k[[T ]] ν−→ k→ 0

where ν(f,g) = c0(f)−c0(g) for c0(f), c0(g) the constant terms of f,g, respectively.
In otherwords, the natural restriction morphism ρ : OỸk,p⊕OỸk,q → k(p)⊕ k(q)
satisfies the following condition: for ∆⊂ k(p)⊕k(q) the diagonal, ρ−1(∆)∼=OY,x.

Proposition A.3.8. Let (E ,Λ,α) be a generalised parabolic bundle. For xi ∈ J ,
denote by

E(pi) := Epi⊗k(pi),E(qi) := Eqi⊗k(qi),

where k(pi) and k(qi) are the residue fields at the points pi and qi respectively.
Fix a set of basis elements {ej}rj=1 and {fj}rj=1 of Epi and Eqi , respectively. By
abuse of notation, we will again denote by ej and fj their image in E(pi) and E(qi),
respectively. Let

pri1 : F i1(E)→E(pi)⊕E(qi)→E(pi), pri2 : F i1(E)→E(pi)⊕E(qi)→E(qi)

Suppose that for all singular points xi ∈ Yk, pri1 and pri2 are isomorphisms. Then,
the kernel of the composition

π∗E →
γ⊕
i=1

π∗E ⊗k(xi)∼=
γ⊕
i=1

(E(pi)⊕E(qi))/F i1(E)⊗Oxi → 0

denoted φ(E) is a locally-free sheaf.

Proof. Denote by U the open set Yk\ J . Since φ(E) is defined using the short
exact sequence

0→ φ(E)→ π∗E →
γ⊕
i=1

(E(pi)⊕E(qi))/F i1(E)⊗Oxi → 0 (A.2)

and π is an isomorphism of π−1(U), we have φ(E)x ∼= Ex for all x ∈ U . Therefore,
it just remains to prove for all xi ∈ J , φ(E)xi ∼=O⊕rYk,xi .

Denote by σi := pri2 ◦(pri1)−1 : E(pi)→E(qi). Since pri1,pri2 are isomorphisms, so is
σi. Let {Bjh} be the matrix with Bjh ∈ k(qi) satisfying σi(ej) =

r∑
h=1

Bjhfh. Since
σi is an isomorphism, (Bjh) is invertible. Denote by (Ajh) its inverse. This means

for each l,
r∑
j=1

Blj

(
r∑

k=1
Ajkfk

)
= fl. Denote by Id : E(pi)→ E(qi) the morphism
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sending ej to fj for all j = 1, ..., r and Γσi ,ΓId the graphs of the corresponding
morphisms. Then, the linear transformation

ψ : E(pi)⊕E(qi)→E(pi)⊕E(qi) defined by el⊕fj 7→ el⊕
r∑

k=1
Ajkfk

is an isomorphism and satisfies ψ(Γσi) = ΓId.

Denote by (Ãjh) the lift of the matrix (Ajh). Since det(Ajh) is a unit in k(qi),
det(Ãjh) is also a unit in OỸ,qi (as it is a lift of det(Ajh)). Hence, the morphism

ψ′ : Epi⊕Eqi →Epi⊕Eqi defined by el⊕fj 7→ el⊕
r∑

h=1
Ãjhfh

is an automorphism.

Denote by ρ : Epi⊕Eqi→E(pi)⊕E(qi) the natural restriction morphism. It follows
from definition that ψ ◦ρ= ρ◦ψ′. By Remark A.3.7, ρ−1(ΓId)∼=O⊕rYk,xi . Hence,

O⊕rYk,xi
∼= ρ−1(ΓId)∼= (ψ′)−1 ◦ρ−1(ΓId) = ρ−1 ◦ψ−1(ΓId) = ρ−1(Γσi) = φ(E)xi ,

where the last equality follows from the short exact sequence (A.2). Hence, φ(E)
is locally free.

A.4 Semi-stability results for locally free sheaves on tree-like curves.

In this appendix we review some semistability conditions for locally free sheaves
on tree-like curves given in [Big91]. To make the application of these results in
the main text easier to follow, we have changed the notation.

Remark A.4.1. Let Xk be a generalised tree-like curve with N components Yi.
By a generalised tree-like curve we mean that after ignoring the singularities of the
individual components, the dual graph associated to Xk does not have any loops.
We assume that the singularities are at worst nodal. Note that the assumption
that the singular components do not normalise to a rational curve is not necessary
in this appendix.

It should be noted that in [Big91], the irreducible components are assumed to
be smooth of genus g ≥ 1. However, for the results we use from [Big91], this
assumption is not necessary. We check this here by recalling the proofs.

Lemma A.4.2 ([Big91, Lemma 1]). Let Xk = Y1∪Y2 · · ·∪YN be a tree-like curve.
There is an ordering of the components of Xk such that for every i ≤ N − 1,
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there exists at most one connected component of Xk\Yi which contains curves
with indices greater than i. Denote by B(i) this connected component and by
G(i) :=Xk\B(i). Furthermore, G(i) is connected and intersects B(i) at exactly 1
point.

Proof. Observe that the statement of the lemma is equivalent to proving that
there exists an ordering on the the irreducible components of Xk such that Yi∪
Yi+1∪ ...∪YN is connected. Ofcourse if for all i, Yi+1∪ ...∪YN is connected then
there exists an unique connected component of Xk\Yi containing it, hence proves
the lemma. Conversely, if the conclusion of the lemma is true but there exists i
such that Yi+1∪ ...∪YN is not connected then there exists a subcurve Z ⊂ B(i)
satisfying Z ∪Yi+1∪ ...∪YN is connected and each of the irreducible component
of Z has index strictly less than i. Take any such Yj ⊂ Z, j < i. Then, B(j)
is connected and contains Yi+1∪ ...∪YN but not the entire Z. Hence, there are
two distinct paths connecting Yi+1 to YN . This implies Xk contains a loop which
contradicts the assumption of Xk being tree-like. Therefore, for all i, Yi+1∪ ...∪YN
must be connected.

We prove the equivalent condition by decreasing induction. Denote by YN an
irreducible component of Xk which intersects Xk\YN at exactly one point. The
existence of such a component is guaranteed since the curve is tree-like. Suppose
for some n0, all i > n0 satisfies the equivalent condition. Denote by Y := Yn0+1∪
Yn0+2∪ ...∪YN . As Xk is connected, there exists a curve in Xk\Y which intersects
Y . Denote by Xn0 any such curve. Note that, Xn0 ∪Y is connected. This proves
the induction step and hence the lemma.

Notation A.4.3. Observe that the above Lemma A.4.2 implies that for any 1≤
i ≤ N , Yi intersects exactly one irreducible curve, say Yν(i) in B(i) and ν(i) > i.
Hence, the curve Yi ∪ Yν(i) is connected and for any j < ν(i), j 6= i, Yi ∪ Yν(i) is
contained in B(j). We fix the following notations.

1. Fix from now on an ordering on Xk as mentioned in Lemma A.4.2. For a
given irreducible component Yi of Xk, denote by ν(i) the index such that the
corresponding curve Yν(i) has the property that Yν(i) ∈ B(i) and intersects
Yi at exactly one point.

2. Denote by X0
k the set of internal nodes i.e., all points of intersection of any

two irreducible components of Xk. For Y a subcurve of Xk denote by Y 0

the set of internal nodes of Y i.e., the intersection points of any two curves
in Y . Denote by Y b the nodes on Y which are on the boundary of Y i.e.,
internal nodes of Xk which lie on an irreducible component of Y but is not
an internal node of Y .
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3. For Y a connected curve, denote by |Y | the number of irreducible components
of Y .

4. Let E be a locally free sheaf on Xk, F a subsheaf of E , denote by F|Yi the
image of the natural morphism F ⊗OYi → E ⊗OYi . For any point P ∈Xk,
again denote by F|P the image of the natural morphism F⊗OP →E⊗OP .

We now observe how such a sheaf restricts to the different components of Xk.

Lemma A.4.4. Let F be a non-zero coherent sheaf on Xk. Then, there exists a
natural short exact sequence:

0→F →
N⊕
i=1

(F ⊗OYi)→
⊕
P∈X0

k

(F ⊗OP )→ 0.

Proof. Recall the natural short exact sequence

0→OXk
φ−→OY1⊕...⊕OYN

ψ−→
⊕
P∈X0

k

OP → 0

where φ is induced by the restriction map to each irreducible component and ψ
is defined in the following way: ψ is non-zero only at the points P ∈X0

k . For any
P ∈ X0

k , there exists exactly two curves Yi,Yj such that P = Yi∩Yj . Define the
map ψ at the point P , denoted ψp :OYi,P ⊕OYj ,P →OP by (f,g) 7→ f −g.

Since F is a non-zero coherent sheaf, the induced morphism ψ : F →
N⊕
i=1
F ⊗OYi

is injective. Indeed, since ψ is an isomorphism away from X0
k , it suffices to prove

the morphism is injective at the points P ∈ X0
k . Fix one such P . Denote by M

the kernel of the morphism φP : FP →
N⊕
i=1

(F ⊗OYi)P . As M ⊗OYi,P = 0 for all i,
M⊗OP = 0. Denote by mP the maximal ideal of OXk,P . Tensoring the following
short exact sequence by M ,

0→mP →OXk,P →OP → 0,

we therefore get M.mP
∼= M . Since M is a finitely generated OXk,P -module, the

Nakayama lemma implies M = 0. Hence, φ is injective. Finally, by the right-
exactness of tensor product we get the short exact sequence,

0→F →
N⊕
i=1

(F ⊗OYi)→
⊕
P∈X0

k

(F ⊗OP )→ 0.
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This completes the proof of the lemma.

Using this we have the following.
Corollary A.4.5. Let E be a locally free sheaf and F a coherent subsheaf of E .
Then,

0→F →
N⊕
i=1
F|Yi →

⊕
P∈X0

k

F|P → 0.

In particular, χ(F) =
N∑
i=1

χ(F|Yi)−
∑

P∈X0
k

dim(F|P ).

Proof. Consider the short exact sequence:

0→F → E → G → 0

for some coherent sheaf G. Using Lemma A.4.4, we have the following diagram of
short exact sequences:

0 - F
φ10-

N⊕
i=1
F ⊗OYi

φ9-
⊕
P∈X0

k

F ⊗OP - 0

� �

0 - E
?

∩

φ4-
N⊕
i=1
E ⊗OYi

φ1
?

φ3-
⊕
P∈X0

k

E ⊗OP

φ2

?
- 0

� �

0 - G
??

-
N⊕
i=1
G⊗OYi

??

-
⊕
P∈X0

k

G⊗OP

??
- 0

where the vertical columns are exact and the vertical maps in the last row are
surjective because tensor product is right exact. By the Snake lemma, this means
kerφ1 ∼= kerφ2. Hence, φ1(ker(φ2 ◦φ9)) = φ1(kerφ9). Therefore, φ1(ker(φ3 ◦φ1)) =
φ1(ker(φ2 ◦ φ9)) = φ1(kerφ9) = φ1(Imφ10). Hence, we have the short exact se-
quence:

0→F φ1◦φ10−−−−→ Imφ1
φ3−→ Imφ2→ 0

As Imφ1 =
N⊕
i=1
F|Yi and Imφ2 = ⊕

P∈X0
k

F|P by definition, we have the short exact

sequence in the corollary. Since Euler characteristic is additive, we have later
equality. This completes the proof of the corollary.
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For tree-like curves we have the following semistability defined by Teixidor (see
[Big91, Inequality 1]).

Definition A.4.6. Let E be a locally free sheaf of rank r on Xk such that E ⊗OYi
is semi-stable for each i = 1, ...,N . Given a polarisation, λ := (λ1,λ2, ...,λN ), we
say that E is λ-semistable if for each i≤N , the following inequality is satisfied:

(
∑

Yj∈G(i)
λj)χ(E) + r(|G(i)|−1)≤

∑
Yj∈G(i)

χ(E ⊗OYj )≤ (
∑

Yj∈G(i)
λj)χ(E) + r|G(i)|.

This condition can be simplified for subcurves as follows.

Lemma A.4.7 ([Big91, Lemma 2]). Let Y = Ya1 ∪ Ya2 ...∪ Yat be a connected
subcurve of Xk. Let P1, ...,Pα be the points of intersection of Y and the closure
of Xk\Y . Suppose E is λ-semistable. Then, the following relations are satisfied:

(λa1 + ...+λat)χ(E) + r(t−1)≤ χ(E ⊗OYa1
) + ...+χ(E ⊗OYat )≤

≤ (λa1 + ...+λat)χ(E) + r(t−1 +α).

Proof. For each point Pl where 1≤ l≤ α, denote by Yul (resp. Yml
) the irreducible

component of Y (resp. Xk\Y ) which contains Pl. Note that there are two pos-
sibilities. Either ul > ml for all l or there exists atleast one l such that ul < ml.
Since E is λ-semistable, we have for all 1≤ i≤ t,

(
∑

Yj∈G(i)
λj)χ(E) + r(|G(i)|−1)≤

∑
Yj∈G(i)

χ(E ⊗OYj )≤

≤ (
∑

Yj∈G(i)
λj)χ(E) + r|G(i)|. ?

Case 1 : ul >ml for all l. Then, G(ml) is the connected component in Xk\Y which
contains Yml

. Hence,
α⋃
l=1

G(ml) =Xk\Y . Denote by tl := |G(ml)|−1. Then,

∑
(tl+ 1) = r−|Y |= r− t.

As E is λ-semistable, we have for each l,

(
∑

Yi∈G(ml)
λi)χ(E) + rtl ≤

∑
Yi∈G(ml)

χ(E ⊗OYi)≤ (
∑

Yi∈G(ml)
λi)χ(E) + r(tl+ 1).
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Adding these inequalities, using
N∑
i=1

λi = 1 and χ(E) =
N∑
i=1

χ(E ⊗OYi), we get

(λa1 + ...+λat)χ(E) + r(t−1)< χ(E ⊗OYa1)) + ...+χ(E ⊗OYat )<

< (λa1 + ...+λat)χ(E) + r(t−1 +α).

This proves the lemma in this case.

Case 2 Assume ml > ul for atleast one l and without loss of generality assume
l = 1. By definition of ν(ul) it follows that m1 = ν(u1). Then, G(u1) is the union
of Yu1 and the connected components of Xk\Yu1 which does not contain Yν(u1).
Since Y is connected and Xk is a tree-like curve, Y intersects B(u1) uniquely at
P1. Therefore, Y is contained in G(u1). Furthermore, Yml

intersects Y for all
l≥ 2. So G(ml) is contained in G(u1) for all l≥ 2. Hence Y ∪Ym2 ∪Ym3 ∪ ...∪Ymt

are contained in G(u1). Therefore, ml < u1 for all l ≥ 2, which means G(ml) is
the connected component in Xk\Y containing Yml

. Hence the inequalities (*)
corresponding to the component Yu1 can be written as

(
∑
Yi∈Y

λi)χ(E) +
α∑
l=2

(
∑

Yi∈G(ml)
λi)χ(E) + r(|Y |−1) + r

α∑
l=2

(tl+ 1)<

< (
∑
Yi∈Y

χ(E ⊗OYi)) +
t∑
l=2

∑
Yi∈G(ml)

χ(E ⊗OYi)< (
∑
Yi∈Y

λi)χ(E)+

+
α∑
l=2

(
∑

Yi∈G(ml)
λi)χ(E) + r|Y |+ r

α∑
l=2

(tl+ 1)

where tl = |G(ml)|−1 and

(
∑

Yi∈G(ml)
λi)χ(E) + rtl ≤

∑
Yi∈G(ml)

χ(E ⊗OYi)≤ (
∑

Yi∈G(ml)
λi)χ(E) + r(tl+ 1)

for l ≥ 2. Together this implies

(λa1 + ...+λat)χ(E) + r(t−1)< χ(E ⊗OYa1
) + ...+χ(E ⊗OYat )<

< (λa1 + ...+λat)χ(E) + r(t−1 +α).

This completes the proof of the lemma.

Definition A.4.8. Let F be a locally free sheaf on Xk which is λ-semistable and
let F ⊂ F be a subsheaf. For Y a connected curve, denote by |Y | the number of
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irreducible components of Y . We define DY (F) as follows: For |Y |> 1, define

DY (F) := min
j∈Y 0

dim(F|j)−
∑
Y$T

DT (F)

where T varies over connected subcurves of Xk containing Y . For |Y |= 1,

DY (F) = rk(F|Y )−
∑
Y$T

DY (F)

where T varies over connected subcurves of Xk containing Y .

Lemma A.4.9 ([Big91, Lemma 3]). Let Y be a proper connected subcurve of
Xk and apply Definition A.4.8. Denote by DY (F)0 := minj∈Y 0 dim(Fj) and by
Db
Y (F) := maxj∈Y bdim(Fj).

1. If Db
Y (F)≥D0

Y (F) then DY (F) = 0.

2. If Db
Y (F)≤D0

Y (F) then DY (F) =D0
Y (F)−Db

Y (F).

Proof. We use descending induction on the number of irreducible components of
the curve Y , i.e. |Y |. Base Case: The case |Y | = N − 1 follows directly from
definition.

Inductive hypothesis: assume that for some 0 < t ≤ N − 1, the results hold true
for all connected subcurves Y with |Y |> t.

Inductive step: Take a connected subcurve Y such that |Y | = t. We will prove
the lemma in this case. Let j0 be a point in Y b for which dim(F|j0) = Db

Y (F).
Denote by Y ′ the irreducible component of Xk containing j0 not contained in Y
and W := Y ∪Y ′.

For the first part assume that Db
Y (F)≥D0

Y (F). By construction, j0 is an internal
node of the curve W . Hence, D0

W (F) =D0
Y (F) i.e.,

DW (F) =D0
Y (F)−

∑
W$T

DT (F ) and DY (F) =D0
Y (F)−

∑
Y$T

DT (F).

Therefore,
DY (F) =−

∑
Y$T
W 6jT

DT (F).
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For any such T , D0
T (F) ≤ D0

Y (F) ≤ Db
Y (F) ≤ Db

T (F) where the last inequality
follows from the fact that j0 ∈ T b. By induction hypothesis, then DT (F) = 0.
This proves the lemma in this case.

Assume next Db
Y (F)≤D0

Y (F). Then, D0
W (F) =Db

Y (F) i.e.,

DW (F) =Db
Y (F)−

∑
W$T

DT (F) and DY (F) =D0
Y (F)−

∑
Y$T

DT (F).

Therefore,
DY (F) =D0

Y (F)−Db
Y (F)−

∑
Y$T
W 6jT

DT (F).

For any such T , j0 ∈ T b. By definition, there exist at least one j ∈ Y b∩T 0 such
that dim(F|j) ≤ dim(F|j0) = Db

Y (F). Hence, D0
T (F) ≤ Db

T (F). By induction
hypothesis, then DT (F) = 0. This concludes the proof of the lemma.

Corollary A.4.10 ([Big91, Corollary 4]). For any connected subcurve Y of Xk,
the corresponding DY (F)≥ 0 for any subsheaf F ⊂ E .

The following theorem tells us that λ semistability is a sufficient criterion for a
locally free sheaf to be µsesh semistable.

Theorem A.4.11 ([Big91]). Let E be a locally free sheaf on Xk which is λ-
semistable. Then E is Seshadri semistable.

Proof. Let F be a coherent subsheaf of E . Denote by si := rk(F ⊗OYi). By
definition to prove that E is µsesh semistable we need to show

χ(F)
λ1s1 + ...+λNsN

≤ χ(E)
r

.

By Corollary A.4.5, we have

χ(F)
λ1s1 + ...+λNsN

=

N∑
i=1

χ(F|Yi)−
∑

P∈X0
k

dimF|P

λ1s1 + ...+λNsN
=

=

N∑
i=1

siχ(F|Yi)/si−
∑

P∈X0
k

dimF|P

λ1s1 + ...+λNsN
=
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=

N∑
i=1

(∑
Y
DY (F)

)
χ(F|Yi)/si−

∑
P∈X0

k

( ∑
Y,P∈Y 0

DY (F)
)

λ1s1 + ...+λNsN
=

=

∑
Y
DY (F)

( ∑
Yi∈Y

χ(F|Yi)/si−
∑

P∈Y 0
1
)

λ1s1 + ...+λNsN

where Y ranges over all connected curves in Xk.

Denote by P
(i)
1 , ...,P

(i)
li

the set of all points where Yi intersects other curves in Y

and by Q(i)
1 , ...,Q

(i)
mi the set of all points where Yi intersects other curves in Xk\Y .

One can check that the last identity still holds if we replace every χ(F|Yi) by

siY := χ(F|Yi) +
∑
j

 ∑
T,P

(i)
j ∈T b

DT (F)

−∑
j

 ∑
T,Q

(i)
j ∈T 0

DT (F)

 ,

where T always contains the curve Yi. If P (i)
j is an interior node of Y but a

boundary node of T , then DT (F) appears positive sign in siY but with a negative
sign in siT . By symmetry nothing changes. Hence, there is no overall change in
the expression after the above mentioned substitution.

Note that by adding and subtracting the same expression, we can write siY as

siY = χ(F|Yi) +
∑
j

 ∑
T,P

(i)
j ∈T b

DT (F)



−
∑
j

 ∑
T,Q

(i)
j ∈T 0

DT (F)

+
∑
j

 ∑
T,P

(i)
j ∈T 0

DT (F)

−∑
j

 ∑
T,P

(i)
j ∈T 0

DT (F)


By definition, for any point P (i)

j and Q
(i)
j ,

∑
T,Yi⊂T

DT (F) = si,
∑

T,P
(i)
j ∈T 0

DT (F) = dim(F|
P

(i)
j

) and
∑

T,Q
(i)
j ∈T 0

DT (F) = dim(F|
Q

(i)
j

).

Therefore,

siY = χ(F|Yi)−
∑
P

(i)
j

dimF|
P

(i)
j

−
∑
Q

(i)
j

dimF|
Q

(i)
j

+
∑
P

(i)
j

si =
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= χ(F|Yi(−P
(i)
1 − ...−P

(i)
li
−Q(i)

1 − ...−Q(i)
si )) + lisi.

As E|Yi is semistable, so is E|Yi(−P
(i)
1 − ...−P

(i)
li
−Q(i)

1 − ...−Q
(i)
mi). Using the fact

that the rank of E|Yi = r,

siY ≤
siχ(E|Yi(−P

(i)
1 − ...−P

(i)
li
−Q(i)

1 − ...−Q
(i)
mi))

r
+ lisi

= si
r

(χ(E|Yi)− r(mi+ li)) + lisi.

Therefore, the coefficient of DY (F) is equal to∑
Yi∈Y

siY /si−
∑
P∈Y 0

1≤
∑
Yi∈Y

(χ(E|Yi)/r−mi)−
∑
P∈Y 0

1.

Using Lemma A.4.7 this is bounded above by ( ∑
Yi∈Y

λi)χ(E))/r (the number of

internal nodes of Y equals the number of curves in Y minus one, as Y is connected
tree-like curve).

Furthermore, the denominator of the expression can be written as follows:

N∑
i=1

λisi =
N∑
i=1

λi

 ∑
Yi∈Y

DY (F)
=

∑
Y

DY (F)
 ∑
Yi∈Y

λi

 .
As DY (F)≥ 0 for all Y (see Corollary A.4.10), we have

χ(F)
λ1s1 + ...+λNsN

≤
(χ(E)/r)

(∑
Y
DY (F)

( ∑
Yi∈Y

λi

))
∑
Y
DY (F)

( ∑
Yi∈Y

λi

) = χ(E)
r

.

This completes the proof of the theorem.
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