A. Atomdaten

A.1. Fein- und Hyperfeinstruktur im Magnetfeld

A.1.1. Feinstruktur-Aufspaltung

Aus der Spin-Bahn-Kopplung eines Zustandes $(\vec{J} = \vec{L} + \vec{S})$ ergibt sich die Zusatzenergie

$$\Delta E_{LS} = \frac{a}{2} \left\{ J \left(J + 1 \right) - L \left(L + 1 \right) - S \left(S + 1 \right) \right\},\tag{A.1}$$

wobei a die so genannte Spin-Bahn-Kopplungskonstante ist.

A.1.2. ZEEMAN-Aufspaltung / LANDEscher g-Faktor g_J

ZEEMAN-Energie der Feinstruktur-Niveaus im äußeren Magnetfeld:

$$\Delta E_{Zeeman}^{FS} = g_J m_J \mu_B B_0 \qquad \text{mit} \qquad g_J = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)} . \tag{A.2}$$

Tabelle A.1.: Werte des LANDEschen g-Faktors

	$S_{1/2}$	$P_{1/2}$	$P_{3/2}$
<i>g</i> _J	2	$\frac{2}{3}$	$\frac{4}{3}$

Für zwei benachbarte ZEEMAN-Niveaus gilt $\Delta m_J = \pm 1$, wodurch sich ihr Energieabstand bzw. die Übergangs-Frequenz $\Delta v_{Zeeman}^{FS} = \Delta E_{Zeeman}^{FS}/h$ ergibt zu:

$$\Delta v_{Zeeman}^{FS}(\Delta m_J = 1) = g_J \frac{\mu_B}{h} B_0 \approx g_J 13,996 \frac{B_0}{\text{mT}} \text{ MHz} \,.$$

A.1.3. Hyperfeinaufspaltung

Durch die magnetische Wechselwirkung des Hüllmomentes $\vec{\mu}_J$ mit dem Kernmoment $\vec{\mu}_I$ und der elektrostatischen Wechselwirkung zwischen Kernen mit einem elektrischen Quadrupolmoment, d.h. nicht kugelsymmetrischer Ladungsverteilung und dem von der Hülle am Ort des Kerns erzeugten elektrischen

_		$S_{rac{1}{2}}$ und	$P_{\frac{1}{2}}$	$P_{\frac{3}{2}}$				
$I = \frac{1}{2}$	K	$(F=0) - \frac{3}{2}$	$(F=1) \ \frac{1}{2}$	$(F=1) - \frac{5}{2}$ $(F=2) \frac{3}{2}$				
$I = \frac{3}{2}$	K	$(F=1) - \frac{5}{2}$	$(F=2) \frac{3}{2}$	$(F=0) - \frac{15}{2}$	$(F=1) - \frac{11}{2}$	$(F=2) - \frac{3}{2}$	$(F=3) \frac{9}{2}$	
	М			1,25	0,25	-0,75	0,25	
$I = \frac{5}{2}$	K	$(F=2) - \frac{7}{2}$	$(F=3) \frac{5}{2}$	$(F=1) - \frac{21}{2}$	$(F=2) - \frac{13}{2}$	$(F=3) - \frac{1}{2}$	$(F=4) \frac{15}{2}$	
	М			0,7	-0,1	-0,55	0,25	
$I = \frac{7}{2}$	K	$(F=3) - \frac{9}{2}$	$(F=4) \frac{7}{2}$	$(F=3) - \frac{27}{2}$	$(F=4) - \frac{15}{2}$	$(F=5) \frac{1}{2}$	$(F=5) \frac{21}{2}$	
	М			0,536	-0,179	-0,464	0,25	

Tabelle A.2.: Werte des K- und M-Faktors in der Hyperfeinaufspaltung

Feldgradienten ergibt sich die Zusatzenergie durch die Hyperfeinstruktur-Aufspaltung zu [Ari77]:

$$\Delta E_{HFS} = \Delta E_{M1} + \Delta E_{E2} = \frac{1}{2}hAK + hB \underbrace{\frac{\frac{3}{2}K(K+1) - 2I(I+1)J(J+1)}{2I(2I-1)2J(2J-1)}}_{\equiv M}, \quad (A.3)$$

mit K = F(F+1) - I(I+1) - J(J+1). In Gl. A.3 sind *A* die magnetische Dipolkonstante und *B* die elektrische Quadrupolkonstante¹, welche für Zustände mit $J = \frac{1}{2}$ gleich Null ist. Für verschiedene Isotope und Feinstruktur-Zustände sind diese Größen in [Rad85] zusammen gefasst. In Tab. A.2 sind die Werte für *K* und *M* für das $S_{1/2}$ Grundniveau und die beiden ersten angeregten Niveaus $P_{1/2}$ und $P_{3/2}$ eines Alkalimetall-Atoms aufgelistet. Die entsprechenden Werte für die magnetische Dipolkonstante *A* und die elektrische Quadrupolkonstante *B* sind in Tab. A.4 aufgelistet.

A.1.4. ZEEMAN-Aufspaltung der Hyperfeinstruktur / g_F -Faktor

Für geringe äußere Feldstärke B_0 , für die die ZEEMAN-Energie der Hyperfeinstruktur-Komponenten klein gegen die Hyperfeinstruktur-Aufspaltung ist, ergibt sich der ZEEMAN-Effekt der Hyperfeinstruktur. Die Aufspaltung der Hyperfein-Niveaus in je 2F + 1 ZEEMAN-Niveaus mit den magnetischen

¹Jeweils in Einheiten von Hz wie sie meistens in der Literatur angegeben werden. Deshalb ist auch in Gl. A.3 und Gl. 2.3 jeweils ein h davor im Gegensatz zu manchen Lehrbüchern.

			-							-	-	-	
	I =	$I = \frac{1}{2} \qquad \qquad I = \frac{3}{2}$				$I = \frac{5}{2}$			$I = \frac{7}{2}$				
	F = 1	F = 2	F = 1	F = 2	F = 3	F = 1	F = 2	F = 3	F = 4	F = 2	F = 3	F = 4	F = 5
$S_{rac{1}{2}}$	1		$-\frac{1}{2}$	$\frac{1}{2}$			$-\frac{1}{3}$	$\frac{1}{3}$			$-\frac{1}{4}$	$\frac{1}{4}$	
$P_{\frac{1}{2}}$	$\frac{1}{3}$		$-\frac{1}{6}$	$\frac{1}{6}$			$-\frac{1}{9}$	$\frac{1}{9}$			$-\frac{1}{12}$	$\frac{1}{12}$	
$P_{\frac{3}{2}}$	$\frac{5}{3}$	1	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	-1	$\frac{1}{9}$	$\frac{7}{18}$	$\frac{1}{2}$	$-\frac{2}{3}$	0	$\frac{4}{15}$	$\frac{2}{5}$

Tabelle A.3.: Werte für den g_F -Faktor (erster Term) in der ZEEMAN-Aufspaltung der Hyperfeinstruktur

Quantenzahlen m_F ist gegeben durch [May85]:

$$\Delta E_{Zeeman}^{HFS} = g_F \, m_F \, \mu_B \, B_0 \tag{A.4}$$

mit

$$g_F = g_J \frac{F(F+1) + J(J+1) - I(I+1)}{2F(F+1)} - g_I \frac{\mu_K}{\mu_B} \frac{F(F+1) - J(J+1) + I(I+1)}{2F(F+1)}$$

Im ersten Term ist $g_J = 1 + \frac{J(J+1)+S(S+1)-L(L+1)}{2J(J+1)}$ der LANDEsche g-Faktor². Der zweite Term kann aufgrund von $\frac{\mu_K}{\mu_B} \approx \frac{1}{1836}$ vernachlässigt werden (Werte vgl. Tab. A.3). Die Aufspaltung der Hyperfein-Niveaus im schwachen Feld erfolgt in 2F + 1 äquidistante Unterniveaus, deren jeweiliger Abstand proportional zum äußeren Magnetfeld ist.

A.2. Alkalimetall-Daten

Größen	³⁹ K	^{41}K	⁸⁵ Rb	⁸⁷ Rb	^{133}Cs	Einheiten	vgl.
nat. Häufigkeit	93,3	6,7	72,2	27,8	100	%	
Kernspin	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{2}$	$\frac{3}{2}$	$\frac{7}{2}$	ħ	
Kernladung Z	1	9	3	7	55	е	
gyromag. Verh. γ	12,5	6,86	25,9	87,8	35,3	MHz/T	Gl. 2.2
Schmelzpunkt	330	5,5	312	312,1		K	
Siedepunkt	10	27	97	73	958	K	
λ_{D1} (Luft)	769	,90	794	,76	894,35	nm	
λ_{D2} (Luft)	766	,49	780	,03	852,11	nm	
nat. Lebensdauer D-Linien τ_a	2	.6	(D1) 28,5		31	ns	Gl. 2.7
			(D2)	26,5			
		1	(D1)	E.C.	5 1		C1 2 7
nat. Limenorette D-Limen Δv_{ag}	6,1		(D1) 5,6		5,1	MHZ	GI. 2.7
			(D2)	0,0			
$f_{ga}(D1)$	0,	35	0,	32	0,39		Gl. 2.5
$f_{ga}(D2)$	0,70		0,	67	0,81		Gl. 2.5
krit. Magnetfeld $B_c(S_{1/2})$	16,5	9,1	109	244	328	mT	
$A(S_{1/2})$	230,86	127,01	1011,9	3417,3	2298,2	MHz	Gl. A.3
$\Rightarrow \Delta v_{HFS}(S_{1/2})$	461.72	254.01	3035.7	6834.7	9192,6	MHz	
$A(P_{1/2})$	27.8	15.2	120.7	406	292	MHz	GLA 3
$\Rightarrow \Delta v_{HFS}(P_{1/2})$	56	30	362	812	1168	MHz	011110
· · · · · · · · · · · · · · · · · · ·				-			
$A(P_{3/2})$	6.1	3.4	25	84.9	50.3	MHz	Gl. A.3
$B(P_{3/2})$	2.8	3.3	26	12.6	-0.4	MHz	Gl. A.3
$\Delta v_{Doppler}(T = 500 \mathrm{K})$	1,0	00	0,6	53	0,466	GHz	Gl. 2.10
$\Delta v_{Druck}(p_{N_2} = 1 \text{ bar})$	2	5	1	4	22	GHz	Gl. 2.16

Tabelle A.4.: Datensammlung von Alkalimetalle, Werte großteils aus [Rad85]

A.3. ¹²⁹Xe, ³He und Protonen Daten

Größen	¹²⁹ Xe	³ He	$^{1}\mathrm{H}$	Einheiten	vgl.
nat. Häufigkeit	26,4	0,00014	99,985	%	
Kernspin: I	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	\hbar	
Kernladung: Z	54	2	1	е	
Kern-Moment: μ_I/μ_K	-0,778	-2,128	2,793		
$\mu_K \approx 5,05 \cdot 10^{-27} \mathrm{Am}^2 = 5,05 \cdot 10^{-27} \mathrm{J/T}$					
Kern g-Faktor: g_I	-1,556	-4,255	5,586		Gl. 2.1
gyromag. Verh.: $\gamma/2\pi$	-11,8	-32,4	42,6	MHz/T	Gl. 2.2
$P_{therm}(B_0 = 3 \text{ T}, T = 300 \text{ K})$	$\approx 3 \cdot 10^{-6}$	$pprox 8 \cdot 10^{-6}$	$pprox 1 \cdot 10^{-5}$		Gl. 2.23
Selbstdiffusions-Koeff.: $D_{jj}(T = 300 \text{ K})$	0,06	1.6		$\frac{\mathrm{cm}^2}{\mathrm{s} \mathrm{atm}}$	
Diffusions-Koeff.: $D_{inN_2}(T = 300 \mathrm{K})$	pprox 0,09	pprox 0,7		$\frac{\mathrm{cm}^2}{\mathrm{s} \mathrm{atm}}$	
Preis pro Liter bei 1 atm	≈ 20	≈ 200		DM	

Tabelle A.5.: Wichtige Daten der Isotope $^{129}\mathrm{Xe},\,^{3}\mathrm{He}$ und $^{1}\mathrm{H}.$

A.4. Spinzerstörungs- und Spinaustausch-Raten

Tabelle A.6.:

Die wichtigsten Spinzerstörungs- (k_{Alk-X}) und Spinaustausch-Raten $(k_{SE_{Edl-Alk}})$ einer optisch gepumpten Spinaustausch-Quelle (alle Raten in Einheiten von cm³/s). Sofern nicht anders angegeben sind es experimentell bestimmte Werte.

Größen	К	Rb	Cs
k _{Alk-O2}		5,2×10 ⁻¹⁰ [Nag98]	
k _{AIk-AIk}	$1,8 \times 10^{-13}$ [Chu87]	8×10^{-13} [Chu87, Lar91, Wag94] 3,9 × 10 ⁻¹⁴ [Bar98b] 4,4 × 10 ⁻¹⁴ [Kad98]	$7,9 \times 10^{-12}$ [Bha80b]
k _{Alk-N2}		8×10^{-18} [Wag94] 4×10^{-18} [McN62] 5×10^{-18} [Fra76]	3 × 10 ⁻¹⁷ [Fra74]
k _{Alk-He}	2 × 10 ⁻²⁰ [Ber65]	8×10^{-20} [Ber65] 4×10^{-19} [Fra76] $\leq 2 \times 10^{-18}$ [Wag94]	3×10^{-18} [Fra74]
k _{Alk-Xe}		5×10^{-16} [Fra59] 6×10^{-15} [Bou72]	
$k_{SE_{He-Alk}}$ berechnet [Wal98] (×10 ⁻¹⁹) berechnet [Wal89] (×10 ⁻¹⁹)	0,49 1,8	$1,2 \times 10^{-19}$ [Chu87] 6×10^{-20} [Bar98b, Lar91] 0,56 1,7	0,81 2,2
$k_{SE_{Xe-Alk}}$ berechnet [Wal98] (×10 ⁻¹⁶) berechnet [Wal89] (×10 ⁻¹⁶)	0,62 2,1	$3,7 \times 10^{-16}$ [Cat92] 1,2 3,1	2,7 4,7