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1.1 Energy deposition in laser irradiated materials

“The history of laser-induced breakdown is almost as old as the history of the laser

itself” [Blo74]

The goal of this chapter is to introduce the main mechanisms for energy absorption

(with the result in rapid build up of free carriers), and deposition (coupling with the lattice

subsystem) in laser irradiated dielectric materials, when the photon energy is small compared

to the material band-gap.

A quantitative estimation of the energy transport in laser irradiated transparent materials

has to take into account the fact that laser radiation interacts primarily with the electronic

system.

The deposited energy is then transferred to the lattice as heat via collisions with

phonons. For very short pulses both processes can be temporarily decoupled (although some

phonons can be created in the process of laser absorption by electrons, the main energy

transfer takes place from the hot electron sink after the pulse has stopped).

For pulses longer than a few tens of picoseconds, the generally accepted picture of laser

damage/ablation involves the heating of conduction band electrons by the incident radiation

and transfer of this energy to the lattice in a quasi-equilibrium, steady-state fashion during the

laser pulse (in a photon-electron-phonon and electron-phonon interaction). Damage occurs via

conventional heat deposition resulting in a phase transformation of the dielectric material

[JBC89, ArC92].

In order to reach the breakdown level, the transparent, dielectric, material has to be

initially transformed into an absorber, so a high density of electrons (around the critical

density) have to be “pumped” into the conduction band. Therefore the theories of laser

induced damage must explain the primary process of production of sufficient free-carriers for

efficient light absorption into the initially transparent solid and then the energy deposition to

the lattice. The basic channels for free-electron generation in the presence of intense optical

fields were identified either in (a) multiphoton interband transitions or in (b) electron impact

(avalanche) ionization [Yab71, Blo74, JBC89, SFR95, TBK99]. In this respect the

multiphoton theory is somewhat straightforward in principle but the multiphoton cross
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sections are rather small and difficult to calculate, while the avalanche theory must explain the

energy gain of the free electron in the high frequency electric field in sufficient quantity to

liberate another electron from the valence band and place it in the conduction band. The

solution has been identified in the possibility of fast momentum change by collisions so that

the electrons will be synchronized with the field oscillations (i.e. will maintain the appropriate

phase relations with the electric field) and the average energy gain would be nonzero [JBC89

and references therein].

The main experimental approach in determining the optical breakdown conditions for

transparent materials is given by optical damage measurements [MaP86, SFH96, DLK94, and

VAR96] at different pulse durations. Thermal effects have been observed for pulses longer

than 20 ps, below this value a deviation from the thermally induced τL
1/2 dependency of the

optical damage threshold on the pulse duration τL is seen [SFR95].

Jones et al. [JBC89] among others, have also underlined the role of investigations of

pre-breakdown phenomena, especially the build up and temporal behavior of the electronic

population [JBC89, QGM99], trapping and defect formation [JBC89, SaG93, PDG96] or

lattice heating at subthreshold laser intensities [JBC89]. High order excitation has been

evidenced as expected for multiphoton transitions [QGM99], with strong absorption very

close to the damage threshold [JCB89] reinforcing the idea of avalanche breakdown.

However, since in the case of an avalanche mechanism, the absorption would be effective

only at the threshold, the pre-breakdown investigations can offer only a very limited quantity

of information on electron impact ionization.

Historically, the optical damage threshold experimental approach turned out to be

difficult to realize in order to obtain reliable data describing an “intrinsic” threshold free of

external causes [MaP86, JBC89].

The initial, early, predictions have emphasized that avalanche processes are mainly

responsible for optical damage of different transparent materials [Blo74, Yab71], especially at

IR and NIR wavelengths, based on arguments related to the statistical character of laser

induced damage threshold, similarities with DC threshold and reduced sensitivity to the laser

wavelength up to the visible region. The main idea relied on the statistical presence of a small

number of free electrons in the conduction band within the irradiated volume to initiate the

avalanche. This explains the probabilistic character of the breakdown threshold, with a large

interval of possible values in similar conditions. For nanosecond pulses, the threshold does

not have a sharp, well-defined character. Instead, a probability distribution can be defined

with a probability for breakdown increasing from zero to unity in an interval of electric field
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values. This accounts for the spread in the experimental values. The simple avalanche picture

has been criticized and the discussion has been completed with additional effects like free-

electron heating (photon absorption by free electrons with creation of phonons for momentum

conservation and subsequent lattice heating) or polaron heating [ArC92, MaP86, JBC89 and

references therein]. The idea of a statistical model of damage based on the probability of

liberating one or a few starting electrons to initiate the avalanche has now been abandoned,

and it has been concluded that even large order multiphoton absorption can provide a large

number of starting electrons [JBC89].

The availability of ultrashort pulsed lasers for applications in material processing has

emphasized this picture in the sense that multiphoton ionization is greatly enhanced and the

generation of electrons in the conduction band does not rely on an arbitrary number of initial

“seed“ electrons. This leads to better control in the processing parameters and decreases the

fluctuations associated with the ablation threshold [SFR95, SFH96, DLK94, and DLM96].

Because there are no statistical fluctuations in the number of starting electrons, a sharp,

intrinsic, material damage threshold can be defined.

Multiphoton induced free electrons are rapidly heated in the laser field and multiplied

by an avalanche mechanism. The electrons gain energy in the field of an ultrashort laser pulse

generally much faster than they are able to transfer energy to the lattice. All processes related

to optical damage and ablation occur after the pulse has passed, when the electron energy is

coupled into the lattice. Thus, during the pulse, there is no appreciable heating of the lattice

and, hence, no significant change in the electron-lattice scattering rates. Also thermal and

mechanical stresses are greatly reduced.

Any attempt to model the occurrence of optical damage and ablation should address the

following points:

� the mechanism of laser absorption and the balance between multiphoton/tunnel

ionization and impact ionization.

� electron-electron thermalization and the energy redistribution

� photoelectron emission and surface charging

�  electron trapping and the characteristic times in traps as precursors to stable defects

� defect formation and incubation

� electron-phonon inelastic scattering and lattice heating

� lattice thermalization and phase transformation

Typically, the description of the electron avalanche development is based on the

solution of a kinetic equation for the electron distribution function. A Fokker-Plank equation
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is used to describe the temporal behavior of the number density of the electrons f(ε,t)dε with a

kinetic energy between ε and ε+dε at time t for dielectrics with the band-gap energy (UI)

much higher than the photon energy (hν).

A detailed description of the avalanche process using the Boltzmann transport equation

would involve a complete knowledge of all electron and phonon collision processes including

energy dependencies of the excitation and ionization cross sections, difficult to predict in

condensed matter. It is nevertheless possible to understand the general characteristics of the

breakdown phenomenon recognizing that the electron density will increase since some

electrons will be accelerated to energies higher than the band-gap.

The problem of electron transport and impact ionization in the case of dielectrics subject

to high laser fields has been extensively addressed in the literature (see [ArC92, TBK99] and

references therein) and elaborate calculations and computer assisted simulations have been

performed [ArC92]. Some of the aspects such the relative balance between the different

channels for free electron production and lattice heating (multiphoton ionization, impact

ionization, free-electron heating, electron-phonon scattering) as well as the exact

dependencies for the parameters involved (avalanche ionization rates and the electron

distribution functions) are still under discussion. As we have stated before, the intention of

this chapter is to present an intuitive analytical formalism which is illustrative for the

mechanism of laser coupling to transparent materials and subsequent damage and which is

also in good agreement with the observed experimental behavior [SFH96].

Below is given a general mathematical description of the avalanche process as

responsible for optical damage of transparent materials in intense laser fields.

The main channels for accumulation and energy redistribution will be presented in

connection with the development of a significant free electron population. Energy dispersion

and the temporal behavior of these channels will be underlined.

The idea is to show that an analytical expression for the avalanche rate can be derived,

displaying a simple laser intensity dependence. This will find application in a simple rate

equation for the electron population to describe the avalanche process.

This is the consequence of two major assumptions, which will be developed below:

1. Flux doubling (i.e. as soon as the electron reaches an energy sufficient to ionize, a

second electron is generated by impact ionization and both electrons are left at zero

energy).

2. During the avalanche, the energy distribution of the electrons grows in magnitude

without changing shape.
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The model which follows has been developed by Holway [Hol72, Hol74], and Holway

and Frandin [HoF75] based on previous theories of electron multiplication and dielectric

breakdown by Seitz and Fröhlich [Sei49, FrS50] and transport equations by Uhlenbeck and

Orstein [UhO30] and refined by Stuart et al. [SFH96].

We have decided to follow the argumentation presented by Stuart et al. [SFH96]. This

produces an intuitive and straightforward outcome in an analytical form.

The Fokker-Plank equation has been developed from the Boltzmann transport equation

[Hol74] with no source term involved.
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electron energy, and from here, energy dependent relaxation times, as a function of the
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The electron energy ε is measured with respect to the bottom of the conduction band, E

is the electric field oscillating at frequency ω ( ( )[ ] 2/1
0/2 cnIE ε= with n the refractive index, ε0

the vacuum permittivity, I the laser intensity, and c the velocity of light) Uphon is the

characteristic phonon energy, and γ(ε) is the rate at which electron energy is transferred to the
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lattice. The quantity ν=1/τm(ε) is the transport (momentum) scattering rate (with both polar

and non-polar components).
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Both τm(ε) and γ(ε) are energy dependent (e.g. they vary by two orders of magnitude for

energies in the conduction band in the case of fused silica [SFH96]).

The space diffusion of the carriers can be neglected for times less than 10-10s (in the

range of nanometers, much less than the laser focal dimensions), although evidence of

ballistic effects for the electrons has been seen for metal targets [HMW97].

The first term in the right part of Eq. E 1.1-1 (<∆ε>/∆t) represents the average rate of

change in energy for the average electron (gain in the electric field and losses by exciting

phonons) and the second term (<(∆ε)2>/∆t) is the dispersion.

The net number of electrons per unit volume whose energy increases from a value less

than ε to a value greater than ε per unit time can be defined as the current in energy space

J(ε).

Eq. E 1.1-1 can be written as:
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The current J(ε) represents direct heating and energy loss, as well as an energy diffusion

with the coefficient D(ε) which is proportional to both the conductivity and laser intensity.

RJ accounts for Joule heating of electrons in terms of the conductivity per electron σ(ε).
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The final term in Eq. E 1.1-9 S(ε,t) includes sources and sinks of electrons.

( ) ( ) ( )S t R t R timp piε ε ε, , .= +

Impact ionization at rate Rimp was included assuming that excess kinetic energy is

equally divided between the resultant electrons [HoF75].

( ) ( ) ( ) ( ) ( )R t f U f Uimp i i I Iε ν ε ε ν ε ε, = − + + +4 2 2

The electron impact ionization rate νi(ε) was approximated by the Keldysh formula

[Rid93] as ζ(ε/U-1)2 (ζ=1.5x1015 s-1 [ACD92]). The factor of 4 in the second term of Eq. E

1.1-15 can be justified by integrating Eq E 1.1-15 over energy [SFH96]. This shows that the

net rate of electron production is simply ∫νi(ε)f(ε)dε. The source term also includes

multiphoton ionization at rate Rpi(ε,t). The boundary conditions for Eq. E 1.1-9 require the

vanishing of the distribution at ε=∞ and the current at ε=0.

Due to the rapid growth of the impact ionization rate for energies above the band gap,

some researchers have replaced the source term Rimp(ε,t) in Eq. E 1.1-15 by the boundary

conditions:

( ) ( ) ( )f U t J t J U tI I, ; , ,= =0 0 2

These conditions imply that every electron that reaches the energy UI generates a

second electron by impact ionization and leads to two electrons at zero energy. The second of

these is known as the “flux doubling“ condition, mentioned above. This formulation is

advantageous if an exponential growth exp(βt) that substitutes ∂f/∂t by βf(ε) is assumed. The

kinetic equation can than be replaced by an eigenvalue equation with β as the eigenvalue

(flux-doubling model). The equivalence of the two formulations (the kinetic, diffusion

equation and the eigenvalue equation) depends on the impact ionization rate being much

larger than the rate at which the band-gap energy is being absorbed. That is,

( )U U EI i Iυ ε σ2 2+ >> max

for small ε. For ultrashort intense pulses, this inequality no longer holds. For example, in

fused silica at 1053 nm σmaxE
2=UIνi(1.5UI) at an intensity on the order of 10 TW/cm2.
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Thus, the equivalence of the two formulations cannot be taken for granted, but must be

checked.

1.2 Flux-doubling model

The flux-doubling model (see [SFH96] and the reference therein) consists of Eq. E 1.1-9

with S(ε,t)=0 together with the flux-doubling boundary conditions of Eq. E 1.1-16. The

quantity to be evaluated is the electron avalanche rate β. Previous theoretical estimates

[SMW81] have been made for constant scattering rates, or by assuming vanishingly small β.

Neither of these assumptions is valid in the short-pulse limit. Moreover, the calculation

assuming small β used perturbation theory based on the solution of the steady-state equation

∂J/∂ε=0 which violates the flux-doubling condition, J(0)=2J(UI). Hence, the applicability of

this result is not clear.

Under the conditions of the flux-doubling model, the equation E 1.1-9 becomes:
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By integrating the equation E 1.1-9 with respect to energy it is found:
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Making use of Eq. E 1.2-4 the result is:
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From Eq. E 1.2-4 one can conclude that J is a monotonically decreasing function of the

energy (negative derivative), changing from 2J(UI) to J(UI) within the conduction band.

For high laser intensities, when losses to the lattice are negligible, we can rewrite Eq. E

1.1-10 as:
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Making use of the boundary conditions E 1.2-9, we obtain:
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Substituting the maximum and minimum values for the flux J into Eq. E 1.2-15 gives:
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where p=0.5 or 1 corresponding to the limiting values for J. Fortunately, the ε weighting of

the numerator in the integral part of E 1.2-15 means that low-energy values (bottom of the

conduction band) are relatively unimportant in determining β.

This shows that β is proportional to the laser intensity:

Iαβ =

This model has been used to develop a straightforward analytical solution for the

avalanche rate.

The important physical quantities are n (electron number density) and <ε> (average

kinetic energy):
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Integrating E 1.1-9 over energy using E 1.1-15 and neglecting photoionization in E

1.1-14 we obtain after appropriate substitution and simplifications:
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The corresponding equations for the flux-doubling model are similar, except for the

impact ionization term, which is replaced by the boundary conditions. Thus, it is expected that

J(0) is smaller for the full kinetic equation than for the flux-doubling model.

We have to note that Eq. E 1.2-21 looks formally like the simple Drude theory used to

describe electron energy gain by Joule heating and loss by transfer to the lattice, but the

effective transport coefficients, such as:
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depend on averaging over the non-Maxwellian distribution function f(ε). When exponential

avalanche growth occurs, the shape of f(ε) remains unchanged and <σ> is time independent.

For the clarity of the demonstration, the assumptions and approximation made should be

recapitulated:

•  In the avalanche process the excess energy is equally divided between the two

electrons involved in the collisions.

•  The equivalence of the two formulations (the full kinetic equation and the flux-

doubling model) depends on the impact ionization rate being much larger than the

rate at which the band-gap energy is being absorbed.

•  A temporal exponential growth for the electron density number f has been assumed

Two different behavioral regimes can be distinguished:

For low-intensity long duration pulses it is possible to have a balance between the

energy gain and loss (the first two terms on the right-hand side of the last equation from the

group E 1.2-21). In this case, the few initial electrons in the conduction band cannot gain

enough energy to initiate an avalanche. The energy absorbed by these electrons from the

external field is used not to excite more electrons into the conduction band but it is transferred

directly into the lattice (the free-electron heating regime). In the long-pulse regime, the source

of initial seed electrons can be local defects or impurities. The damage occurs due to high

lattice temperatures causing fracture or melting.

E 1.2-22
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At high laser intensities, the energy absorbed from the field cannot be transferred to the

lattice as fast as it is deposited in the electrons. In this case, the absorbed energy is used to

feed the avalanche. The average energy per electron is high but remains fixed.

An estimation of the frontier intensity Ib, between the long- and short- pulses can be

made on the basis of Eq. E 1.2-21. Initially all electrons are concentrated near the bottom of

the conduction band and the derivative term in Eq. E 1.2-21 is small and σ(ε) and γ(ε) can be

evaluated at zero energy. The condition for avalanche dominated regimes is:

( ) ( )σ γ0 02E U phon≥

For fused silica this gives Ib=80 GW/cm2, that means tb about 60 ps at a fluence of 5

J/cm2.

For pulse durations much smaller than tb the temperature of the lattice can be considered

constant and σ(ε) and γ(ε) unchanged during the pulse.

1.3 Solutions of the kinetic equation

The transport scattering rates depend on various types of phonon interaction

Some results are summarized in Arnold, Cartier, and DiMaria [ACD92], which gives a

good account of electron scattering in fused silica.

It has been assumed [SFH96 and references therein] that during the avalanche the

electron distribution grows in magnitude exponentially without changing shape. At constant

laser intensity we have:

( ) ( ) ( )f t g tε ε β, exp=

with a stationary but non-Maxwellian distribution

It has been shown above that, under the conditions of the flux-doubling model (E

1.2-16):
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ε

σ ε

α= =

∫
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d
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2

0

with p-a numerical factor between 0.5 and 1 and I∝ E2.

Typical values for α are about 0.01cm2ps-1/GW [SFH96].
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Based on the numerical calculations in [SFH96] (the avalanche is established extremely

quickly, within a few femtoseconds) the solution in the case of a time-varying pulse shape

(I(t)) has the form:

( ) ( ) ( )f t g tε ε β, exp= ∫
with β α= I  holding throughout nearly the entire pulse.

Strictly speaking, the scaling of the distribution function f(ε) and the current J(ε) with

intensity as well as the proportionality β=αI are assured only if the flux-doubling boundary

conditions are valid. In addition, the average electron energy <ε> is independent of intensity

under these conditions. The impact ionization terms in Eq. E 1.1-15 formally spoil the scaling.

However, the number of electrons with energy above UI remains relatively small and there

does not appear to be much effect on β. With impact ionization explicitly accounted for, <ε>

increases with increasing intensity but the values for α are almost equal in the two models and

also the intensity dependence for J(ε)/nI is not extremely strong.

So, with the proportionality between β and I and the exponential growth in E 1.3-3, we

can rewrite Eq. E 1.3-3.

df

f
dt= β

So,

( )dn

dt
n I t n= =β α

Reintroducing the multiphoton ionization Rpi(ε,t) in the source term S(ε,t) in Eq. E 1.1-9

we can write:

( ) ( )R P I Fpi = ε

where P(I) is the multiphoton ionization rate and F(ε) is the distribution function normalized,

so that ∫F(ε)dε=1.

Photoionization can be treated according to Keldysh theory [Kel65] (being sensitive to

the Keldysh parameter z=ω (2mUI)
1/2/eE)) in both cases: z>>1 multiphoton ionization (the

electron has time for many oscillations in the binding potential before being ionized) and

z<<1 tunneling respectively (in the case of extremely short intense pulses, tunneling through

the binding barrier takes place during a time shorter than a laser period).

E 1.3-3

E 1.3-4
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For example, for 1054-nm light and eight photon absorption, the strong field Keldysh

formula (for z>>1, and Ueffective=Ugap+e2E2/(4mω2)) [Kel65] yields for P(I) [SFH96]:

P(I)=9.52x1010I8 [cm-3ps-1]

This expression is valid in the range of intensities (TW/cm2) used in the ablation

experiments where multi-photon/strong field ionization dominates over tunneling processes.

Other expressions for the multiphoton ionization rates in fused silica have been derived by

Lenzner et al. [LKS98] and Ming Li et al [LMn99] based on experimental fits and are with 2

up to 6 order of magnitudes smaller as compared to the prediction of the Keldysh formula.

Results using other authors estimations for 200 fs IR irradiation based on E 1.3-8 are

presented in Table 1.3-1 (ncr=1.74x1021 cm-3).

References [SFH96] ApH2000] [LKS98] [LMN99] [TBK99] [DLK94]

λ [nm]

P(I)[cm-3ps-1]

MPI-order

Method

α [cm2/J]

Decay term

Npulses

1053

9.52x1010I8

8

[Keldysh]

α=11

No

600

800

1.599x1016I6

6

[Keldysh]

α=11

No

-

800

6x108±0.9I6

6

Exp. Fit

α=4±0.6

No

50

800

3x104I6

6

Exp Fit

α=9

1/60 fs-1

1

800

tunneling

[Keldysh]

No

1

800

n0~1011

cm-3

1

Threshold

[J/cm2]
1.52 0.86 4.68 4.18 3.8 >10

Table 1.3-1 Estimations on the optical damage threshold based on parameters used in literature for
200 fs laser irradiation of fused silica at 1053 nm and 800 nm. The damage threshold
criterion is defined by a critical density ncr=1.74x1021 cm-3. The exact values for the MPI
and avalanche rates remain somewhat controversial.

The presence of photoionization perturbs the distribution function. But if the transient

time in Eq. E 1.2-20, E 1.2-21 is short in comparison with the typical time for electron density

increase due to photoionization, the distribution function will remain close to g(ε). Under

these conditions, the avalanche development can be described by a simple rate equation.

( ) ( )∂
∂

β
n

t
I n P I= +

with:

( )
( ) nIIP

II

∝

∝β

E 1.3-7

E 1.3-8

E 1.3-9
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Even for high photoionization rates, the rate equation can be justified as follows. The

photoionization is peaked at the center of the pulse, after that it becomes unimportant. These

electrons can be considered as seed electrons for the avalanche.

Fig. 1.3-1 illustrates the evolution of electron density produced by a 100 fs, 1053 nm

10.95 TW/cm2 pulse incident on fused silica as calculated by Stuart et al. [SFH96] using Eq.

E 1.3-8 (the calculation parameters are: α=0.011 [cm2/psGW] and P(I)=9.52x1010I8 [cm-3ps-1]

in the eight photon absorption case). The pulse intensity and electron density produced by

photoionization alone are included for reference. Because photoionization is extremely

intensity dependent, the electron production takes place principally at the peak of the pulse.

After these seed electrons are produced, the critical density is achieved by electron avalanche.

The dense electron plasma is produced at the end of the pulse. Only this part of the pulse

experiences strong absorption and reflection. The transient reflectivity has been neglected in

the simulation. Also, the threshold is more sensitive to the pulse temporal shape for longer

pulses where avalanche becomes significant.

An approximate analytical expression can be derived for the optical damage threshold,

assuming that multiphoton ionization and avalanche can be temporarily separated. The

damage criterion employed is the condition to reach the electron critical density. With these

simplifications, the multiphoton ionization (from the valence band or from intrinsic defect

states present in the gap) provides the initial density n0 of seed electrons for the avalanche.

Incubation effects can alter the initial number of absorbing sites due to a defect formation

process, so the number of electrons seeding the avalanche can be enhanced. This means firstly

that MPI can be treated alone (assuming that multiphoton and avalanche ionization can be

separated), and that, after the development of the seed population, this can be considered as

the border conditions for integration in the rate equation E 1.3-8 with only avalanche acting as

a source.

Thus, ( )∫
∞

∞−

= dtIPn0  is the total number of electrons produced by multiphoton ionization.

For a Gaussian laser pulse of duration τL (FWHM),

( ) ( )22
0 /2ln4exp LtItI τ−=

with the corresponding fluence:

( )
2/1

0

2ln2





== ∫

∞

∞−

πτ LI
dttIF

and the total number of electrons produced by the avalanche is then approximately given by:
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We have stressed that damage occurs when the electron density reaches the critical

density when substantial absorption takes place in the electron plasma.

The threshold fluence Fcr corresponding to the critical density ncr is then given by:







=





=

0

2/1

0 ln
2

2ln2 n

nI
F crL

cr α
πτ

where 2/α=0.15-0.2 J/cm2 for fused silica [SFH96].

If the number of seed electrons n0 is independent of intensity (e.g. due to defects) the

breakdown threshold Fcr would be almost independent of pulse duration. Since n0 increases

rapidly with intensity, at low pulse durations avalanche is becoming less important.

Also, one can see from Eq. E 1.3-13 that for low values for the product αFcr/2 the

avalanche ionization is not significant i.e. the MPI process alone is sufficient to reach the

critical electron density.

Several observations can be made:

E 1.3-12

E 1.3-13
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Fig. 1.3-1 Total (solid) and multiphoton produced (dashed) electron densities are plotted along with
the Gaussian pulse shape (I=10.95 TW/cm2, 100 fs). Seed electrons are produced by
multiphoton ionization at the pulse peak after which, at the threshold, an avalanche process
produces a critical density~1.74x1021 cm-3. (According to [SFH1996]).
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•   The present argumentation does not take into account the lattice heating and

thermal transformation as a criterion for optical damage. The criterion employed is

related only to the critical electron density. It is assumed implicitly that absorption at

critical density will manifest in the optical damage (by subsequent heat deposition and

phase transformation or fracture). Also the transient increasing of the reflectivity was

neglected since it becomes effective just at the end of the pulse. For lattice heating

different heating formalisms can be employed, either the Drude model [Blo74, SFH96]

or a free-electron heating and diffusion model developed by Epifanov [Epi74, ArC92].

Heat transfer to the lattice can be calculated this way.

•  The role of multiphoton effects for delivering the seed electrons for avalanche has

been outlined by many authors [SFH96, JBC89, DLM96, Ret99]. Evidence for

multiphoton effects has been obtained by different experimental techniques such as

photoacoustic investigations [JBC89] or photoelectron emission [DGK94] and optical

spectroscopy [JGM92], and their suppression has been advocated by Du et al. [DLM96]

based on damage thresholds measurements which appeared to be independent of laser

polarization. Their quantitative importance has not been completely clarified so far.

•  It has to be added that the formalism presented above is truly valid for bulk damage.

In the case of surface damage, the presence of structural and morphological defects,

inclusions or different types of physical imperfections can result in a decrease of the

damage threshold, due to either an increased absorption cross section or field

enhancement. It also has to be noted that other highly non-thermal or non-collisional

processes can play a role in increasing lattice instability and subsequently leading to

optical damage. Some of these processes will be treated in the following sections and

they are basically a consequence of a fast electrostatic accumulation of energy.

•  The extrapolation of this type of argumentation to multiple irradiation is not evident

since accumulation effects have to be considered [JBC89, Mat97] and the role of defects

and application of the derived equations in the case of incubation will be presented in

Chapter 3. A probabilistic avalanche mechanism would fail to explain the observed

reduction in the ablation threshold at repetitive irradiation [JBC89]. In the probabilistic

formalism, the statistical nature of the avalanche mechanism is governed by the first one

or two ionization sequences, subsequent ionization becoming thus highly probable, with

equal probability for each step in the avalanche process. The idea behind it is that if a

probabilistic approach is used, then each step in the damaging avalanche process would

imply a critical field large enough to make the probability unity and the multiple shot
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damage will not occur at power densities below the single shot threshold [JBC89]. Thus

a cumulative process has to be considered.

Another observation to be made here is that this model holds for moderate intensities

and laser fields (below 100 MV/cm) where the multiphoton regime dominates over tunneling.

At higher intensities (and very short pulse durations) the applicability of an avalanche rate

linearly scaled with laser intensity is doubtful since the assumption of a constant distribution

shape is violated in strong fields [TBK99]. In this case more complicated dependencies for the

avalanche ionization rates have been employed and numerical methods were applied [ACD92,

TBK99, DLK94].

Regarding the rate equation E 1.3-8 some observation should be made. It has been

deduced under the conditions that there are no significant electron population losses during

the laser pulse. For materials with strong electron-phonon coupling (e.g. quartz, fused silica,

fluorides where electrons are self-trapped on a time scale of few hundreds of fs as compared

to sapphire or magnesium oxide where electrons can survive in the conduction band for tens

of ps [PDG96]) and for pulse durations longer than a few hundreds of femtoseconds, an

electron trapping term should be added [LMN99]:

( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( )∑ ∑ −−++=
∂

∂
l i i

m
m

l
l tEtntItptIRtntI

t

tn

τ
σβ 1

( ) ( ) ( ) ( )∑+−=
∂

∂
i i

m
m tntItp

t

tp

τ
σ 1

where β(I)=αI is the avalanche rate, RlI
l=P(I)=P(I)VB+P(I)D are the multiphoton terms from

the valence band and extrinsic or initially present (i.e. induced by previous irradiation) defect

states (Dl) (Rl=σlNl is the multiphoton rate, σl-is the multiphoton cross section for the valence

band and defect states ionization, Nl is the density of the ionization centers corresponding to

an l-order process, I is the laser intensity unaffected by transient reflectivity), σmpIm are the

multiphoton terms originating from the transient defect population (self trapped

excitons/unrelaxed Frenkel pairs with the density p(t)) that builds up during the pulse

duration, τi are the characteristic times for recombination, trapping, etc. E(t) represents the

photoelectrons emission term (both direct multiphoton emission and free electron heating,),

which has significance for surface excitation. An example of the trapping effect on the

electron population is given in Fig. 1.3-2.

For sub-ps pulses, when trapping is not important, the critical electron density criterion

holds, especially since the threshold values are not very sensitive to variations in the electron

E 1.3-14

E 1.3-15
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density. For ps pulses when fast and efficient electron trapping can lead to a serious depletion

in the free electron population, the breakdown threshold should not be defined as the

achievement of a critical excitation density [QSM99]. In this case, free electron heating

becomes important as underlined by Jones and coworkers [JBC89] and thermal effects are

supposed to play a dominant role.

Applying the formalism used in Eq. E 1.3-10-E 1.3-13, we can write for laser pulse

durations comparable with the trapping time τ (i.e. there is no substantial decay in the electron

population at the laser pulse end):
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Some applications of the above-presented formalism will be given in Chapter 3.

In order to obtain information on the influence of various parameters (multiphoton

ionization rate-P(I), avalanche coefficient-α, critical density-ncr, trapping time-τtrapping) in the
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Fig. 1.3-2 Total (solid) and decay corrected (squares) electron densities are plotted along with the
10.95 TW/cm2, 100 fs Gaussian pulse shape at 1053 nm for fused silica. Electron
characteristic time for being trapped into STE’s states is 150 fs [QGM99] (a value of 250
fs is given in [SaG93]). The multiphoton excitation process from the transient defect pair
population was neglected, only carrier trapping has been considered.
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rate equations: E 1.3-8 and E 1.3-14, and to asses their relative contribution to the optical

damage threshold value, sensitivity tests have been performed on the solutions of these

equations [ApH2000]. The results are summarized in Table 1.3-2 and give a useful indication

on the importance of the accuracy of the input parameters. These results pertain for fused

silica at 1053 nm laser irradiation at a critical density of ncr=1.74x1021 cm-3; the nominal

parameter values being: P(I)=9.52x1010I8 cm-3ps-1 and α=0.011 cm2/psGW .

Parameters τL=100 fs τL=200 fs τL=2.8 ps

P(I)/10 +14% +11% +6%

10P(I) -13% -11% -6%

P(I)/100 +28% +23% +13%

100P(I) -26% -22% -13%

α/2 +39% +48% +69%

2α -33% -36% -42%

ncr/10 -13% -11% -6%

τtrapping=150 fs +6% +9% +69%

Table 1.3-2 Percentage changes in the threshold fluence for laser pulses of different durations at
1053 nm when the input parameters (MPI rate, avalanche rate, critical density and
trapping times) vary.

1.4 Lattice heating and thermal processes

If we assume that the thermalization within the electronic system is very fast and that

the electron subsystem and the lattice can be characterized by their temperatures (Te and Ti)

the energy can be described by a one-dimensional, two-temperature model [CMN96]

( ) ( ) STTg
z

zQ

t

T
C ie

e
e +−−

∂
∂−=

∂
∂

( )( ) ( )ie
i

i TTgTTK
t

T
C −+∇∇=

∂
∂

( )
z

T
kzQ e

e ∂
∂

−=

( ) ( )azAatIS −= exp

Here z is the direction perpendicular to the target surface, Q(z) is the heat flux, S is the

laser heating source term, I(t) is the laser intensity, A=1-R and a are the surface transmissivity

E 1.4-1
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and the material absorption coefficient, Ce and Ci are the heat capacities (per unit volume) of

the electron and lattice subsystems, g is a parameter characterizing the electron-lattice

coupling, ke is the electron thermal conductivity and K is the thermal conductivity of the

lattice.

The femtosecond irradiation regime, when the pulse duration is comparable to the

electron relaxation time, is characterized by non-significant coupling between the electrons

and the lattice. After the laser pulse, the electrons are cooled due to energy transfer to the

lattice, and heat conduction to the bulk [CMN96]. For ps pulse durations, the electron

temperature becomes quasi-stationary, the losses being compensated by “continuous” laser

absorption during the pulse. Heating of the lattice occurs during the laser pulse, although the

equilibration with the electron system takes place after the pulse ends. For ns pulses, the

electrons and the lattice can be considered in equilibrium for most of the pulse duration. The

main source of energy loss is the heat conduction into the solid target. The phase

transformation takes place within the pulse duration.

In the case of ablation, the heat-diffusion for the lattice should be solved with

appropriate boundary conditions that include phase-transformations (solid-to-liquid, liquid-to-

vapor) [vAl87, PDD95] after the initial estimation of the thickness of the homogeneous

melted layer.

The two temperatures model is especially valid for metals [Ret1999] since the coupling

constant is not energy dependent and electron thermalization takes place in few tens of

femtoseconds, so a temperature can be assigned to the electronic system before efficient

coupling to the phonons.

A two-system model with different temperatures (the “hot” electrons and the “cold”

lattice) should be a good but only qualitative description also for dielectrics, although the

temperature source may be difficult to quantify. An additional difficulty arises since electron

trapping and recombination constitute additional channels for energy deposition into the

lattice besides the electron-phonon coupling. It should be noted that also the electron phonon

coupling is highly energy dependent and laser energy absorption is due to take place also by

activating the phonon bath due to free electron heating, before electron-ion coupling takes

over.

Calculations have been made in the frame of this “thermal spike” model by Toulemonde

et al. [TCD96] in the case of swift heavy ion irradiation of dielectrics. Considering that hot

free electrons in the conduction band of a dielectric material behave like hot metal electrons,
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high temperatures (around 3000K for fused silica) have been calculated. The mean electron

diffusion length is found to be ~4 nm.

For a detailed understanding of the occurrence of thermal phenomena, a list of most

probable thermal processes is given below. The material response to laser radiation is not only

controlled by the physics of coupling the laser energy into the material, as we have seen

during this chapter, but also by the subsequent dynamics for latent heat transfer in the

generation of a liquid-solid interface and vapor plume [PDD95]. Heat conduction in laser

irradiated solids is given on a short time scale (determined by electron-electron and electron-

phonon thermalization) by electron heat conductivity (electron transport), and, on a longer

time scale (longer than electron-phonon coupling time) by bulk thermal conductivity as a

parameter describing phonon transport and associated energy redistribution.

As a rule, thermal processes occur after establishing a temperature parameter (after a

temperature notion can be defined), so after the electron relaxation with the phonons, when

the system can be considered to be in a state of local equilibrium.

There are basically four thermal processes to consider:

Normal vaporization

Vaporization from an outer surface is a process, which can operate at basically any

pulse length. Nucleation does not enter. The flux of atoms [atoms cm-2 s-1] is governed by the

Hertz-Knudsen equation [FuS80, MiK95] describing the surface recession:
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or the equivalent forms [MiK95, MiK99]:
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where η is the vaporization coefficient (~1), pb is the “boiling pressure”, (normally similar to

105 Pa [MiK95]), psv –the equilibrium saturated vapor pressure, Tb is the corresponding

boiling temperature, λ is the average spacing ~(m/ρ)1/3, ∆Hv is the heat of vaporization (J/g),

and it is assumed that there is no vapor present in the ambient and no recondensation. Since

the vapor pressure is nonzero at all temperatures exceeding 0 K, it follows that for normal

vaporization the surface temperature (Ts) is not fixed. Claims to the contrary, where a

“vaporization temperature” (Tv) exists, are therefore wrong [MiK95].
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Normal boiling

A second type of process would require that the pulse length is sufficiently long for

heterogeneous nucleation to occur, the target undergoes normal boiling from a zone extending

from the surface to a depth related to the absorption length or thermal length. In this case, the

surface temperature is fixed at Tb and the temperature gradient at and beneath the surface is,

by necessity, 0/ ≈∂∂ xT . This is so because strong temperature gradients cannot exist among

the moving bubbles, which sustain boiling.

Phase explosion (Explosive boiling)

The third type of thermal process requires that the laser fluence is sufficiently high and

the pulse length sufficiently short that the target reaches ~0.90xTtc (Ttc being the

thermodynamic critical temperature). In this case homogeneous bubble nucleation occurs

(instead of heterogeneous nucleation), and the target makes a rapid transition from a

superheated liquid to a mixture of vapor and liquid droplets. The tensile strength of the liquid

falls to zero and pressure fluctuations occur. If superheating occurs and the temperature lies

sufficiently near Ttc, explosive boiling occurs by homogeneous nucleation at a rate of:






 ∆
−×≈

Tk

G
I

B

c
n exp105.1 32  [nuclei/cm3 s]

Here ∆Gc is the free-energy change associated with the formation of a spherical critical

nucleus. The nucleation rate In is significant only for temperatures approaching the critical

thermodynamic value [Mar74]. As in the case of normal boiling, phase explosion gives a

temperature profile with the form 0/ ≈∂∂ xT  at and beneath the surface. At these high

temperatures also strong hydrodynamic effects (rarefaction waves [Bul99]) are likely to

occur.

Subsurface heating

In the case of normal vaporization, atoms are vaporized from the surface and carry away

heat. The target therefore loses the exponential depth temperature profile, and develops in this

case a modified profile such that it is hotter beneath the surface. Investigations by Kelly and

Miotello [KeM96], [MiK95] on aluminium have demonstrated that this effect has a

nonsignificant magnitude.

In all these processes the temperature decays after its peak, due to heat conduction in the

sample on the ps up to ns time scale.
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