6. Abbildungs- und Tabellenverzeichnis

6.1. Abbildungen

Abbildung 1.1.:	Schematische Darstellung der Proteinkaskade für die Signaltransduktion des
	Interleukin-18.
Abbildung 1.2.:	Schematische Darstellung der Wirkung des IL-18-Bindungsproteins
	entsprechend Abbildung 1.1
Abbildung 1.3:	Schematische Darstellung von Geschwindigkeit der Hirnentwicklung in
	Abhängigkeit vom Alter – "Brain growth spurt period". Hohe
	Wachstumsgeschwindigkeiten korrelieren mit hoher Vulnerabilität [138].
Abbildung 2.1.:	Transportinkubator mit Messgeräten für die Überwachung der
	Sauerstoffkonzentration.
Abbildung: 2.2.:	Schematische Darstellung der Verteilung der Hirnregionen.
Abbildung 2.3.:	Flussdiagramm zur Darstellung der molekularbiologischen Methoden.
Abbildung 2.4.:	Flussdiagramm zur Darstellung der proteinchemischen Methoden.
Abbildung 3.1.:	Hyperoxie verstärkt die Expression von Caspase-1-mRNA.
Abbildung 3.2.:	Verstärkte Protein-Level von Caspase-1 bei Hyperoxie.
Abbildung 3.3.:	Hyperoxie verstärkt die Expression von Interleukin-1β-mRNA.
Abbildung 3.4.:	Verstärkte Interleukin-1
Abbildung 3.5.:	Hyperoxie verstärkt die Expression von Interleukin-18-mRNA.
Abbildung 3.6.:	Hyperoxie verstärkt die mRNA-Expression von Interleukin-18Ra.
Abbildung 3.7.:	Hyperoxie verstärkt die Proteinexpression von Interleukin-18.
Abbildung 3.8.:	Gesteigerte Proteinkonzentration von Interleukin-18Ra bei Hyperoxie.
Abbildung 3.9.:	Immunhistochemische Anfärbung von IL-18.
Abbildung 3.10.:	Immunhistochemische Anfärbung von IL-18Rα.
Abbildung 3.11.:	Immunhistochemische Darstellung Caspase-3 positiver Zellen.
Abbildung 3.12.:	Rekombinantes IL-18 Bindungsprotein reduziert hyperoxie-induzierte
	neuronalen Schäden – Histologischer Nachweis.
Abbildung 3.13.:	Rekombinantes IL-18 Bindungsprotein reduziert hyperoxie-induzierte
	neuronalen Schäden – Statistische Analyse.
Abbildung 3.14.:	IRAK-4 (-/-) Mäuse zeigen im Hyperoxiemodell geringere
	Neurodegeneration.

- Abbildung 3.15.: IRAK-4 (-/-) Mäuse zeigen im Hyperoxiemodell geringere Neurodegeneration – Histologischer Nachweis
- Abbildung 4.1.: Schematische Darstellung der unterbrochenen Signaltransduktion bei IRAK-4 (-/-) Mäusen entsprechend Abbildung 1.1..

6.2. Tabellen

Deparaffinisieren der Hirnschnitte. Tabelle 2.1.: Tabelle 2.2.: Ansatz DNase-Behandlung. Tabelle 2.3.: Reaktionsansatz der reversen Transkription. Tabelle 2.4.: Master Mix für die reverse Transkription. Tabelle 2.5.: Durchführungsschema der semiquantitativen PCR. Tabelle 2.6.: PCR-Ansatz Caspase-1. Tabelle 2.7.: PCR-Ansatz IL-1β. Tabelle 2.8.: PCR-Ansatz IL-18. Tabelle 2.9.: PCR-Ansatz IL-18Rα. Sequenzen der für die semiquantitative RT-PCR verwandten Primer. **Tabelle 2.10.: Tabelle 2.11.:** Zusammensetzung des Polyacrylamidgels (5%ig). **Tabelle 2.12.:** Arbeitsschritte und Komponenten der Silberfärbung 5%iger Polyacrylamidgele. **Tabelle 2.13.:** Probenvorbereitung für den Auftrag auf das SDS-Gel. Verwendete primäre Antikörper, Hersteller und Konzentrationen. **Tabelle 2.14.: Tabelle 2.15.:** Verwendete sekundäre Antikörper, Hersteller und Konzentrationen. Tabelle 3.1.: Die Behandlung mit rekombinantem IL-18BP zeigt einen neuroprotektiven Effekt bei neonatalen Ratten im Hyperoxiemodell.