
A. Appendix

In the Appendix we will derive in detail the numerical discretization scheme for
the committor equation associated with the Smoluchowski and Langevin dynamics,
respectively. The main challenge will be to devise a stable finite difference scheme
for the hypoelliptic committor equation. In Section A.3, we will proof the existence
and uniqueness of a weak solution of the elliptic mixed-boundary value problem
associated with the elliptic committor equation. Moreover, we will explain the link
between the derived discretization schemes and the approximation of diffusion pro-
cesses via Markov jump processes. We will end the Appendix by giving definitions
and the technical proofs for the probability current of reactive trajectories and the
expression for their rate.

A.1. Discretization of the Committor Equation

For the sake of a compact notation, we will write the (forward) committor equa-
tion (3.6) in the following form{

Lbwq = 0 in R
d \ S

q = gD on ∂S

where Lbw is the generator of the considered Markov diffusion process, the set S =
A∪B is the union of two disjoint closed sets A,B ⊂ R

d and the Dirichlet condition
on the boundary ∂S is given by the function gD : ∂S → R, defined according to

gD(x) =

{
0, if x ∈ ∂A

1, if x ∈ ∂B.
(A.1)

The numerical treatment of the committor equation requires the choice of a bounded
discretization domain Ω ⊂ R

d such that the probability to find the equilibrated
diffusion process in Ω is almost one. As explained in Section 2.1.9, the restriction of
the diffusion process on Ω leads to additional conditions for the committor function
q(x) on the boundary ∂Ω, that are

0 = a∇q · n̂ = ∇q · an̂, (A.2)

where a(x) is the diffusion matrix and n̂ is the unit normal on ∂Ω pointing outward
Ω. Hence, the committor function q(x) considered on a domain Ω has to satisfy the
mixed-boundary value problem⎧⎪⎨

⎪⎩
Lbwq = 0 in ΩS

q = gD on ∂S
∇q · an̂ = 0 on ∂Ω.

(A.3)
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Ω
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Figure A.1.: Schematic representation of the mesh ΩS
h and its disjoint boundaries

∂Ωh and ∂Sh.

A.1.1. Discretization via Finite Differences

In this section we will introduce the framework for the finite difference discretization
of the mixed-boundary value problem (A.3) on a two dimensional domain Ω ⊂ R

2.

Remark A.1.1. We will consider only rectangular domains with boundaries which
are piecewise parallel to the axis of the coordinate system. Furthermore, we assume
that the shape of the sets A and B are such that their boundaries ∂A and ∂B can
be discretized by an appropriate discretization of the domain. The reasons for that
restrictions are:

• The results of TPT for diffusion processes on rectangular domains already
demonstrate the ability of TPT to capture different dynamical scenarios.

• The schemes are straightforward to derive and are easy to implement.

• The treatment of general domains and sets A and B would go beyond the scope
of this thesis.

Discretization of the Domain

Let Ω = (a, b) × (c, d) ⊂ R
2, a < b, c < d. be a rectangular domain. We discretize Ω

by a uniform mesh which is defined by

Ωh
def
= {x = (a + ihx, b + jhy) : 1 < i < N − 1, 1 < j < M − 1},

∂Ωh
def
= {x = (a + ihx, b + jhy) : 0 ≤ i ≤ N, 0 ≤ j ≤ M} \ Ωh,

where h = (hx, hy) and, e.g., hx = (b − a)/(N + 1) is the mesh width in x-direction
and N + 1 is the number of mesh points in x-direction. Next, we assume that the
boundary ∂S of the set S can be represented as a closed polygon which is piecewise
parallel with respect to the axes of the coordinate system. We discretize the set S
by

Sh
def
= Ωh ∩ S

and denote its complement with respect to the mesh Ωh by

ΩS
h

def
= Ωh \ Sh.
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A.1. Discretization of the Committor Equation

Moreover, the boundary ∂Sh of Sh is defined by (cf. A.1.1)

∂Sh
def
= Ωh ∩ ∂S.

The boundary conditions on the disjoint boundaries ∂Ω and ∂S requires the in-
corporation of their respective discretizations ∂Ωh and ∂Sh into the mesh ΩS

h . We
define

ΩS
h

def
= ΩS

h ∪ ∂Ωh,

ΩS
h

def
= ΩS

h ∪ ∂Ωh ∪ ∂Sh.

In Figure A.1 we give a schematic representation of the mesh ΩS
h and its disjoint

boundaries ∂Ωh and ∂Sh.

Restrictions

For the proof of consistency and stability it is convenient to introduce an operator
which restricts a continuous function onto the mesh ΩS

h . Let u : R
2 → R then we

define the restriction RS
h : u 	→ R

|ΩS
h | by

(RS
hu)(x)

def
= u(x) ∀x ∈ ΩS

h .

The restriction R
S
h with respect to the mesh ΩS

h and RS
h with respect to the mesh

ΩS
h is defined analogously. We call a function uh a mesh function if uh is only defined

on a mesh.

Discretization Matrix and Elimination of Boundary Conditions

In the following, Dh ∈ R
|ΩS

h |×|ΩS
h | denotes the matrix which results from the dis-

cretization of the operator Lbw on the mesh ΩS
h under consideration of the mesh

points in ΩS
h where, e.g. |ΩS

h | is the number of mesh points in ΩS
h . One option to

deal with the Neumann boundary conditions on ∂Ω is their incorporation into the
discretization stencils of the operator Lbw for mesh points in the direct vicinity of
the boundary ∂Ωh. Since we deal here with homogeneous Neumann boundary con-
ditions, we chose an alternative option. Here we discretize the Neumann conditions
on ∂Ωh explicitly and denote the resulting matrix by Nh ∈ R

|∂Ωh|×|ΩS
h |. Combining

both matrices in one matrix, we end up with

Dh
def
=

(
Dh

Nh

)
∈ R

|ΩS
h |×|ΩS

h |. (A.4)

Let uh be a mesh function on ΩS
h . If we apply the vector uh on the matrix Dh,

then the entry (Dhuh)(x) corresponding to a mesh point x ∈ ΩS
h can be written as

(Dhuh)(x) =
∑

y∈ΩS
h

Dh(x,y)uh(y) +
∑

z∈∂Sh

Dh(x, z)u(z). (A.5)
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If we assume that uh(z) = gD(z) for all z ∈ ∂Ωh, then (A.5) reduces to

(Dhuh)(x) = (Lhuh)(x) +
∑

z∈∂Sh

Dh(x, z)gD(z),

where (Lhuh)(x) is a compact notation for the first sum in (A.5). Finally, we can
write the finite difference discretization of the mixed-boundary value problem (A.3)
after elimination of the Dirichlet boundary conditions as the following linear system

Lhuh = Fh,

where the matrix on the left hand side is defined by

Lh
def
=

(
Lh

Nh

)
∈ R

|ΩS
h |×|ΩS

h | (A.6)

and for x ∈ ΩS
h the right hand side is given by

F h(x) =

{
−∑

z∈∂Sh
Dh(x, z)gD(z), if x ∈ ΩS

h

0, if x ∈ ∂Ωh.

A.1.2. Finite Difference Discretization of the Smoluchowski Committor
Equation

In this section, we state a stable finite difference scheme of the committor equation
for the Smoluchowski dynamics (2.37) on a two dimensional domain Ω ⊂ R

2. The
associated mixed-boundary value problem (A.3) reduces to the problem⎧⎪⎪⎨

⎪⎪⎩
Lbwq = 0 in ΩS

q = gD on ∂S
∂q

∂n̂
= 0 on ∂Ω,

(A.7)

where the operator Lbw, given by

Lbwq = β−1Δq −∇V · ∇q

is an elliptic linear second order partial differential operator. Notice, that for the
sake of simplicity, we set the friction matrix Γ = diag(1, 1) ∈ R

2×2.
There is a long list of literature on stable finite difference discretization schemes

of elliptic partial differential operators, e.g. [44, 42]. The discretization schemes we
use here are standard schemes which are found in, e.g. [44].

Finite Difference Scheme

For notational simplicity, we henceforth assume that the mesh Ωh is total uniform,
i.e. hx = hy. Let x ∈ ΩS

h then we discretize the elliptic operator Lbw in x by the
5-point stencil

β−1h−2

⎡
⎣ 0 1 0

1 −4 1
0 1 0

⎤
⎦ + (2h)−1

⎡
⎣ 0 v2 0

−v1 0 v1

0 −v2 0

⎤
⎦ , (A.8)
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A.1. Discretization of the Committor Equation

where we set (v1, v2) = −∇V (x) and h = hx = hy. The stencil (A.8) leads to a
consistent scheme of second order, i.e. for a function u ∈ C2(Ω) we have∥∥∥DhRS

hu − RS
hLbwu

∥∥∥
∞

= O(h2). (A.9)

For reasons of stability, we have to ensure that all off-diagonal entries in the resulting
discretization matrix Lh are non-negative. This leads to a condition on the mesh
width h, namely

h < 2β−1

(
max
x∈ΩS

h

{|v1|, |v2| : (v1, v2) = −∇V (x)}
)−1

. (A.10)

We discretize the Neumann conditions on ∂Ω explicitly by a single sided difference
scheme. For example, consider a mesh point x = (x, y) ∈ ∂Ωh on the left boundary,
i.e. the piece of the boundary ∂Ω which confines the rectangular domain Ω from
the left and let n̂(x, y) ≡ (−1, 0) be the corresponding unit normal vector pointing
outward Ω. To ensure the M-matrix property and without lack of generality, we
discretize the Neumann conditions in the boundary mesh point x = (x, y) by

∂

∂n̂(x, y)
q(x, y) = 0 � h−1(q(x − h, y) − q(x, y)) = 0

which is represented by the stencil

h−1

⎡
⎣ 0 0 0

1 −1 0
0 0 0

⎤
⎦ . (A.11)

The stencils for the right, upper and lower boundaries are derived analogously. Notice
that the stencils in the corners result from the combination of the stencils of the two
adjacent boundaries. For example, for the upper-right corner the stencil takes the
form

h−1

⎡
⎣ 0 0 0

1 −2 0
0 1 0

⎤
⎦ . (A.12)

Properties of the Discretization Matrix

As a preparation for the proof of stability, we show that the discretization matrix Lh

(after elimination of the Dirichlet boundary conditions) is up to its sign an M-matrix.
To be more precise, the following properties hold for the matrix −Lh:

1. For a mesh point x ∈ ΩS
h in the direct vicinity of the boundary ∂Sh the

following strict inequality holds

|Lh(x,x)| >
∑
y∈ΩS

h
y �=x

|Lh(x,y)|.
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2. The entries of the matrix −Lh satisfy the following sign conditions

−Lh(x,x) > 0, ∀x ∈ ΩS
h ,

−Lh(x,y) ≤ 0, ∀x,y ∈ ΩS
h ,x �= y.

(A.13)

which immediately follow from the discretization schemes (A.8) and (A.11).

3. Under the assumption that Ω \ (A∪B) is connected, the matrix −Lh is essen-
tially diagonally dominant.

Finally, from Theorem (A.6.6) it follows that the matrix −Lh is an M-matrix and
in particular invertible.

Proof of Stability

To prove that our scheme is stable, we have to show

suph>0

∥∥∥L
−1
h

∥∥∥
∞

< ∞.

To be more precise, we have to show that there exists a constant C > 0 and a
sufficiently small h0 > 0 such that∥∥L−1

h

∥∥
∞ ≤ C, ∀h ∈ (0, h0). (A.14)

The idea of the proof is to find a function s ∈ C2(Ω)∩C1(Ω) and a sufficiently small
h0 > 0 such that we have

(−LhR
S
hs)(x) ≥ 1, ∀x ∈ ΩS

h ,∀h ∈ (0, h0). (A.15)

Then by virtue of Theorem A.6.7 we deduce the desired result (A.14).
In the case of a pure elliptic Dirichlet boundary value problem, one can state

explicitly a function s(x) which leads to (A.15) (see [44], Theorem 5.1.9.). Unfortu-
nately, in our case of the mixed-boundary value problem (A.7) we cannot state such
a function explicitly. Instead, we consider the following auxiliary mixed-boundary
value problem ⎧⎪⎪⎨

⎪⎪⎩
Lbws = −1 in ΩS

s = 0 on ∂S
∂s

∂n̂
= −1 on ∂Ω,

(A.16)

where the operator Lbw is again the generator of the Smoluchowski dynamics and
we show that a solution s(x) ∈ C2(Ω) ∩ C1(Ω) of (A.16) is the right candidate to
deduce (A.15). For an interpretation of the solution of (A.16) see Remark A.1.2.

Theorem A.1.1. The discretization scheme (A.8) and (A.11) is stable. The stabil-
ity constant is given by

C = 2 max
x∈Ω\S

{|s(x)|},

where the function s(x) is the solution of the problem (A.16).
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A.1. Discretization of the Committor Equation

Proof. Let s(x) ∈ C2(Ω) ∩ C1(Ω) be the solution of the stability equation (A.16).
We define the auxiliary mesh function uh = 2RS

hs and we deduce

−Dhuh = −2(DhRS
hs − RS

hLbws) − 2RS
hLbws

= 2 − 2(DhRS
hs − RS

hLbws)

From the consistency of our scheme follows that there exists an h0 > 0 such that∥∥∥DhRS
hs − RS

hLbws
∥∥∥
∞

<
1
2
, ∀h ∈ (0, h0)

and we deduce
(−Dhuh)(x) ≥ 1, ∀x ∈ ΩS

h , ∀h ∈ (0, h0).

But this immediately implies

(−Lhuh)(x) ≥ 1, ∀h ∈ (0, h0)

for any mesh point x ∈ ΩS
h which is not in the direct vicinity of the boundary

∂Ah∪∂Bh. Next, consider a mesh point x ∈ ΩS
h which is in the direct vicinity of the

boundary ∂Ah ∪ ∂Bh. But since the function s(x) is equal to zero on the boundary
of the set S we have ∑

y∈(∂Sh)

Dh(x,y)uh(y) = 0

and, thus, we finally obtain

(−Lhuh)(x) = (−Lhuh)(x) ≥ 1 ∀x ∈ ΩS
h ,∀h ∈ (0, h0). (A.17)

It remains to show that (A.17) also holds true for mesh points on the boundary ∂Ωh.
But since the matrix Nh results from the consistent discretization of the Neumann
condition, the same reasoning as above yields that there exists an h̃0 > 0 such that

(−Lhuh)(x) = −(Nhuh)(x) ≥ 1 ∀x ∈ ∂Ωh,∀h ∈ (0, h̃0).

All together we have shown that

(−Lhuh)(x) ≥ 1 ∀x ∈ ΩS
h , 0 < h < min{h0, h̃0}

and by Theorem (A.6.7) we obtain∥∥∥L
−1
h

∥∥∥
∞

≤ ‖uh‖∞ ≤ 2 max
x∈Ω\S

{|s(x)|} < ∞, 0 < h < min{h0, h̃0}.

Remark A.1.2. The stability equation (A.16) admits a partial interpretation if one
realizes that its solution s(x) can be decomposed such that

s(x) = s1(x) + s2(x),
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Figure A.2.: Contour plot of the numerical solution |s(x)| of the mixed-boundary
value problem (A.16) for the Smoluchowski dynamics in the three-hole
potential (given in (3.45)) for a low temperature β = 6.67 (left panel)
and for a high temperature β = 1.67 (right panel).

where the function s1 is the solution of the problem⎧⎪⎪⎨
⎪⎪⎩

Lbws1 = −1 in ΩS
s1 = 0 on ∂S

∂s1

∂n̂
= 0 on ∂Ω

(A.18)

and the function s2(x) satisfies⎧⎪⎪⎨
⎪⎪⎩

Lbws2 = 0 in ΩS
s2 = 0 on ∂S

∂s2

∂n̂
= −1 on ∂Ω.

(A.19)

As shown in Remark (3.1.2), the function s1(x) is the mean first passage time
of the Smoluchowski dynamics (2.37) with respect to the set A∪B. In Figure A.2 we
show the contour plot of the numerical solution s(x) of the equation in (A.16) for
the Smoluchowski dynamics in the three-hole potential (3.45) (see section (3.7.1))
for two different temperatures.

Proof of Convergence

For the convenience of the reader, we state the proof that our scheme converges
which, as usual, follows from the consistency and stability.

Theorem A.1.2. Let u be the exact solution of the mixed-boundary value problem
(A.7) and let uh denote the approximated solution computed via uh = L

−1
h F h. Then

we have
lim
h→0

∥∥∥uh − R
S
hu

∥∥∥
∞

= 0

Proof. Let ũh be the extension of the mesh function uh on the boundary of S, that
is

ũh(x)
def
=

{
uh(x), if x ∈ ΩS

h

gD(x), if x ∈ ∂Sh
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A.1. Discretization of the Committor Equation

Next, we define the auxiliary mesh function wh = ũh − RS
hu and deduce

Dhwh = Lh(uh − R
S
hu)

because of wh(x) = 0 on the boundary of S. Now we can estimate the cut-off error
by ∥∥∥uh − R

S
hu

∥∥∥
∞

=
∥∥∥L

−1
h Dhwh

∥∥∥
∞

≤
∥∥∥L

−1
h

∥∥∥
∞

·
∥∥∥Dh(ũh − RS

hu)
∥∥∥
∞

≤C · max{
∥∥∥Dhũh − DhRS

hu
∥∥∥
∞

,
∥∥∥Nhũh − NhRS

hu
∥∥∥
∞
},

where the last inequality follows from the stability of the scheme and the definition
of the matrix Dh (cf. (A.4)). Now observe that

(Dhũh)(x) = (RS
hLbwu)(x) ∀x ∈ ΩS

h ,

(Nhũh)(x) = (RS
h

∂u

∂n̂
)(x) ∀x ∈ ∂Ωh,

and, hence, since the schemes are consistent, we finally get∥∥∥uh − R
S
hu

∥∥∥
∞

−→ 0 as h → 0

which completes the proof.

A.1.3. Finite Difference Discretization of the Langevin Committor
Equation

In this section we derive a stable finite difference scheme of the forward committor
equation for the Langevin dynamics (2.33) on a two dimensional domain Ω ⊂ R

2.
For the sake of simplicity, we set the mass equal to one (m1 = 1) and consider
the velocity instead of the momentum. The mixed-boundary value problem (A.3)
reduces to the problem⎧⎪⎨

⎪⎩
Lbwq = 0 in ΩS = Ω \ S

q = gD on ∂S
∇q · an̂ = 0 on ∂Ω,

(A.20)

where the operator Lbw, given by

Lbwq = γβ−1Δvq + v · ∇xq −∇xV · ∇vq − γv · ∇vq, (A.21)

is a degenerate elliptic linear second order partial differential operator.
In contrast to the Smoluchowski dynamics where the involved operator is elliptic,

here the degenerate ellipticity of Lbw imposes geometric restrictions of the domain Ω.
Recalling that the diffusion matrix for the Langevin dynamics on a two-dimensional
phase space is given by

a = β−1γ

(
0 0
0 1

)
∈ R

2×2,
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the Neumann conditions for the forward committor function q(x, v) in a boundary
point (x, v) ∈ ∂Ω reduces to

0 = ∇q(x, v) · an̂ =
dq(x, v)

dv
n̂v,

where n̂ = (n̂x, n̂v)T is the unit normal in (x, v) ∈ ∂Ω pointing outward Ω. But
this immediately implies that if the shape of boundary in the (x, v) was such that
n̂v = 0 then this would lead to an empty boundary condition in that point and the
resulting linear system would be under-determined. Consequently, any domain Ω
whose boundary consists of pieces which are parallel to the v-axis is inappropriate
for the finite difference discretization. Furthermore, in order to be able to impose
the Dirichlet boundary conditions on ∂A and ∂B, the unit normal to these sets at
(x, v) must span the velocity degrees of freedom everywhere except maybe on a set
of zero measure on ∂A and ∂B. One option could be to change the shape the domain
and the sets A and B such that their boundaries are not piecewise parallel to the
v-axis. But this option would lead to complicated finite difference schemes for the
boundary conditions and, hence, it seems not practical.

As a remedy, we introduce a coordinate transformation such that

1. the transformed Langevin dynamics exhibits diffusion in all new coordinates,

2. the Neumann boundary conditions for a rectangular domain in the new coor-
dinate system lead to non-empty conditions on the committor function.

To this end, we rotate the coordinate system by π/4 which can formally be done
by introducing the transformation T : (x, v) 	→ (η(x, v), ξ(x, v)) with{

η(x, v) = c(x − v),

ξ(x, v) = c(x + v), c =
√

2/2.
(A.22)

Then the Langevin dynamics in the new coordinates (η, ξ) takes the form{
dη = c2(ξ − η)(1 + γ) + c∇xV (c(η + ξ)) − c

√
2γβ−1 dWt

dξ = c2(ξ − η)(1 − γ) − c∇xV (c(η + ξ)) + c
√

2γβ−1 dWt

(A.23)

where Wt is a 1-dimensional Wiener process and affects both coordinates simulta-
neously. Now notice that the transformed dynamics (A.23) can be written in the
shape of (2.8) by setting

b(η, ξ) =
(

c2(ξ − η)(1 + γ) + c∇xV (c(η + ξ))
c2(ξ − η)(1 − γ) − c∇xV (c(η + ξ))

)
, c =

√
2/2 (A.24)

and

σ = c
√

2γβ−1

(
0 −1
0 1

)
.

The generator Lbw of the transformed Langevin dynamics (A.23) is given by

Lbwu(η, ξ) = a : ∇∇u(η, ξ) + b(η, ξ) · ∇u(η, ξ) (A.25)
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A.1. Discretization of the Committor Equation

with the diffusion matrix

a = c2γβ−1

(
1 −1
−1 1

)
.

Notice that here ∇ = (∇η,∇ξ). Finally, we end up with the mixed-boundary value
problem in the new coordinates, that is⎧⎪⎨

⎪⎩
Lbwq = 0 in T (Ω) \ T (S)

q = g̃D on ∂T (S)
∇q · an̂ = 0 on ∂T (Ω)

(A.26)

where g̃D(x) = gD(T−1(x)).
The same reasoning as above leads to the mixed-boundary value problem associ-

ated with the backward committor equation⎧⎪⎨
⎪⎩

LR
bwqb = a : ∇∇qb + bR · ∇qb = 0 in T (Ω) \ T (S)

qb = 1 − g̃D on ∂T (S)
∇qb · an̂ = 0 on ∂T (Ω),

(A.27)

where the reversed drift field bR(η, ξ) is given by

bR(η, ξ) = −
(

c2(ξ − η)(1 − γ) + c∇xV (c(η + ξ))
c2(ξ − η)(1 + γ) − c∇xV (c(η + ξ))

)
, c =

√
2/2. (A.28)

Remark A.1.3. In order to keep the notation simple, we do not introduce a new
symbol for the transformed domain T (Ω) as well as for T (S). In what follows, Ω and
S are sets with respect to the new coordinate system. Moreover, instead of solving the
problem (A.26) on the transformed domain, we choose a rectangular domain in the
new coordinate system and after solving the problem we transform back the resulting
solution into the original coordinate system.

Discretization Scheme

In this section we derive a stable 7-point discretization scheme for the transformed
forward committor equation (A.26). The scheme for the transformed backward com-
mittor equation follows analogously. Again, the transformed principle part as well
as the transformed drift field are discretized by standard schemes which are found
in [44]. The key observation in the derivation of the scheme is that we can decom-
pose the transformed drift field such that the M-matrix property of the resulting
discretization matrix is achieved.

Discretization of the principle part Without loss of generality, the principle part
of (A.25) can be written as

a : ∇∇q = c2γβ−1(Δq − 2
∂2q

∂η∂ξ
). (A.29)

In contrast to the elliptic case, here we additionally have to deal with a mixed-
derivative part. The discretization is done by utilizing again a standard scheme (see
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[44], page 91). Unlike to the elliptic case, here it is necessary that the mesh Ωh is
total uniform, i.e.

hη = hξ
def
= h, (A.30)

where hη is the mesh width of Ωh in η-direction and hξ the mesh width in η-direction.
Doing so, we have

∂2

∂η∂ξ
� 1

2
h−2

⎛
⎝ 1 −1 0

−1 2 −1
0 −1 1

⎞
⎠ .

Together with the 5-point stencil for the Laplace operator (cf. (A.8)) we end up with
a 3-point stencil for the principle part:

c2γβ−1(Δ − 2
∂2

∂η∂ξ
) � c2γβ−1h−2

⎛
⎝ 1 0 0

0 −2 0
0 0 1

⎞
⎠ . (A.31)

Discretization of the drift part In order to ensure invertibility of the final dis-
cretization matrix Lh we decompose the transformed drift field b(η, ξ) = b1(η, ξ) +
b2(η, ξ) + b3(η, ξ) according to

b(η, ξ) =
ξ − η

2

(
0
1

)
︸ ︷︷ ︸

=b1(η,ξ)

+
ξ − η

2

(
1 + γ
−γ

)
︸ ︷︷ ︸

=b2(η,ξ)

+ c

( ∇xV (c(η + ξ))
−∇xV (c(η + ξ))

)
︸ ︷︷ ︸

=b3(η,ξ)

(A.32)

and separately discretize the vector fields b1,b2 and b3 by means of the first-order
standard stencil

h−1

⎡
⎣ 0 b+

i2 0
−b−i1 −|bi

1| − |bi
2| b+

i1

0 −b−i2 0

⎤
⎦ ,

where we set b+
ij = max{bi

j , 0}, b−ij = min{bi
j , 0} and bi

j is the jth component of the
drift field bi = (bi

1,b
i
2)

T evaluated in a mesh point. Combining the resulting three
stencils in one, we end up with a 5-point stencil for the drift part

h−1

⎛
⎝ 0 b+

12 + b+
22 + b+

32 0
−b−11 − b−21 − b−31 −[

∑3
i=1

∑2
j=1 |bi

j |] b+
11 + b+

21 + b+
31

0 −b−12 − b−22 − b−32 0

⎞
⎠ . (A.33)

Discretization of the Neumann-like boundary conditions We exemplify the deriva-
tion of the Neumann-like boundary condition (A.2) in a mesh point on the right
boundary. Let x = (η, ξ) ∈ ∂Ωh be a mesh point on the right boundary and
n̂ = (1, 0)T the corresponding unit normal vector. The boundary condition (A.2)
reduces to

0 = ∇u(x) · an̂ =
∂u(x)

∂η
− ∂u(x)

∂ξ

which is consistently discretized by the scheme

0 = h−1[u(η − h, ξ) − u(η, ξ)] + h−1[u(η, ξ) − u(η, ξ + h)].
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A.1. Discretization of the Committor Equation

The derivation of the schemes for the left, upper and lower boundary are analogously.
Eventually, we end up with the following stencils for the right and left boundary

h−1

⎡
⎣ 0 1 0

1 −2 0
0 0 0

⎤
⎦ , h−1

⎡
⎣ 0 0 0

0 −2 1
0 1 0

⎤
⎦ (A.34)

and for the lower and upper boundary

h−1

⎡
⎣ 0 1 0

1 −2 0
0 0 0

⎤
⎦ , h−1

⎡
⎣ 0 0 0

0 −2 1
0 1 0

⎤
⎦. (A.35)

Finally, we state the discretization stencils for the corners. Since the mesh is total
uniform, we can simply use the following stencils for the top-left and the bottom-
right corner:

h−1

⎡
⎣ 0 0 0

0 −1 0
0 0 1

⎤
⎦ , h−1

⎡
⎣ 1 0 0

0 −1 0
0 0 0

⎤
⎦. (A.36)

Unfortunately, we cannot simply apply one of the above schemes in the bottom-left
and top right corner of the rectangular mesh Ωh but the boundary condition (A.2)
in a corner xc ∈ Ωh is in particular satisfied if

0 =
∂u(xc)

∂η
=

∂u(xc)
∂ξ

.

The stencils for these relaxed boundary conditions in the bottom-left and top-right
corner then take the form

h−1

⎡
⎣ 0 1 0

0 −2 1
0 0 0

⎤
⎦ , h−1

⎡
⎣ 0 0 0

1 −2 0
0 1 0

⎤
⎦. (A.37)

Discretization matrix Like in the elliptic case, we discretize the operator Lbw on
ΩS

h in ΩS
h (cf. Sect. A.1.1) and denote the resulting discretization matrix by Dh. The

combination of Dh with the matrix Nh which results from the explicit discretization
of Neumann conditions is denoted by Dh. Finally, the elimination of the Dirichlet
condition leads to the matrix Lh.

M-matrix property In this section it is convenient to use the notation introduced
in Section A.6. In the elliptic case, the irreducibility of the matrix Lh is a direct
consequence of the symmetry of the discretization stencils (cf. (A.8)). Here, the
irreducibility of Lh follows from the special decomposition of the transformed vector
field in (A.32).

For the sake of a compact notation, we define for a mesh point z = (z1, z2) ∈ Ωh

a diagonal by

Dz = Ωh ∩ {z + α

( −1
1

)
: α ∈ R}.
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xij

Dxi,j

Dxi,j−1 Dxi,j+1

xij−1

xi,j+1

Figure A.3.: Schematic representation of the graph induced by the discretization
stencils in (A.31), (A.33) and in (A.34)-(A.37). The diffusion stencil
(A.31) ensures the connection of all mesh points lying on the same
diagonal whereas the connection among diagonals in the direct vicinity
is guaranteed by the stencil in (A.33) via Lemma A.1.4.

A first observation is that the diffusion stencil (A.31) guarantees the mutually con-
nection of all mesh points lying on the same diagonal.

Furthermore, we can prove that diagonals in the direct vicinity to each other are
connected too.

Lemma A.1.4. Let xi,j = (η0+ih, ξ0+jh) ∈ ΩS
h be a mesh point. Then the diagonal

Dxi,j is connected at least with one of the diagonals Dxi,j+1 and Dxi,j−1. If xi,j ∈ ΩS
h

then Dxi,j is connected with both.

Proof. Let xi,j ∈ Ωh and, firstly, assume that neither xi,j+1 nor xi,j−1 lies on the
boundary ∂Ωh and that ηi �= ξj . Consider the vector field decomposition in (A.32)
and the stencil given in (A.33); provided that γ > 0 we deduce

b12 �= 0 ⇔ −γ
ηi − ξj

2
�= 0 ⇔ b22 �= 0.

But this immediately implies that either

b+
12 �= 0 and b−

22 �= 0 or b−
12 �= 0 and b+

22 �= 0

holds true and, hence, xi,j is directly connected with xi,j−1 and xi,j+1, respectively.
Next, let xi,j ∈ ∂Ωh. The stencils in (A.34) and (A.34) for the discretization of the

Neumann-like condition show that xi,j is directly connected to a mesh point in Ωh

and hence Dxi,j is connected at least with one of the diagonals Dxi,j+1 and Dxi,j−1 .
The same reasoning holds true for the corners.

For a schematic representation of the connectivity of diagonals induced by the
discretization matrix Lh see Figure A.3. Now we are prepared to prove

Lemma A.1.5. The matrix −Lh is an M-matrix.
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A.2. Weak Formulation for the Elliptic Mixed-Boundary Value Problem

Proof. The matrix −Lh satisfies the sign conditions (A.60) and (A.61) and for every
mesh point in the direct vicinity of ∂Ah ∪ ∂Bh we have

|Lh(x,x)| >
∑
y �=x

|Lh(x,y)|. (A.38)

But from the connectivity within the diagonals, by Lemma A.1.4 and the discretiza-
tion of the Neumann-like boundary conditions it immediately follows that for every
mesh point z ∈ ΩS

h we can find a directed path p = (z = x0, . . . ,xn), x0, . . . ,xn ∈ ΩS
h

in the graph associated with Lh to an xn which satisfies the inequality in (A.38).
For schematic presentation of the associated graph see Figure A.3. This proves that
−Lh is essentially diagonally dominant and, finally, by virtue of Theorem A.6.6 we
are done.

Stability and Convergence

The proof that the discretization scheme for the Langevin committor equation is
stable as well as the proof of convergence is analogously to the proof for the Smolu-
chowski case, given in Section A.1.2 and Section A.1.2 because we only exploited the
M-matrix property of the discretization matrix and the consistency of the schemes.

We summarize both results in

Theorem A.1.3. The discretization scheme resulting from (A.31),(A.33) together
with the stencils in (A.34)-(A.37) is stable. The stability constant is given by

C = 2 max
x∈Ω\S

{|s(x)|},

where the function s(x) ∈ C2(Ω) ∩ C1(Ω) is the solution of the auxiliary mixed-
boundary value problem ⎧⎪⎨

⎪⎩
Lbws = −1 in Ω \ S

s = 0 on ∂S
∇s · an̂ = −1 on ∂Ω.

(A.39)

Let u be the analytical solution of the mixed-boundary value problem (A.26) and
let uh = L

−1
h F h denote the approximated solution with respect to the total uniform

mesh width h. Then we have

lim
h→0

∥∥∥uh − R
S
hu

∥∥∥
∞

= 0.

A.2. Weak Formulation for the Elliptic Mixed-Boundary
Value Problem

In this section we will derive a weak formulation of the elliptic mixed-boundary value
problem ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
β−1Δu + ∇V · ∇u = f in ΩS

def
= Ω \ S

u = gD on ∂S
∂u

∂n̂
= gN on ∂Ω

(A.40)
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Figure A.4.: Contour plots of solutions of the mean first passage times equa-
tion (3.10) with respect to the set S = A∪B (first column) and solutions
|s(x)| of the auxiliary problem in (A.39) (second column). Results for
constant temperature β = 1 and for three different friction constants:
from top to bottom: γ = 10, γ = 1 and γ = 0.001.
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A.2. Weak Formulation for the Elliptic Mixed-Boundary Value Problem

where Ω ⊂ R
d is a domain (open and connected) and S ⊂ Ω is a close subset.

In particular, we show the existence of a weak solution of the problem (A.7) and
(A.16). For the derivation we follow the usual steps, except that we introduce a
suitable weight function which simplifies the resulting bilinear form in the weak
formulation.

As the weight function, we choose the equilibrium probability density function of
the Smoluchowski dynamics (2.37), that is

α(x)
def
= exp (−βV (x)),

where β > 0 is usually referred to as the inverse temperature. Provided that the
potential V (x) is sufficiently smooth, we have

0 < α0 ≤ α(x) ≤ α1 < ∞, ∀x ∈ ΩS ,

where we set α0 = minx∈ΩS{α(x)} and α1 = maxx∈ΩS{α(x)}. For a compact nota-
tion we abbreviate the inner product on L2(ΩS) by

(u, v)
def
=

∫
ΩS

u(x)v(x) dx.

In the first step of the derivation of the weak formulation we multiply the equation
in (A.40) with a test function φ ∈ C∞(ΩS) and with the weight function α(x).
Integrating over the domain ΩS yields

β−1(Δu, φα) − (∇V,∇u φα) = (f, φα). (A.41)

By Green’s first integral identity and ∇α = −β∇V α we expand the first integral in
the equation (A.41)

β−1(Δu, φα) = (∇V,∇u φα) − β−1(∇u,∇φ α)

+ β−1

∫
∂S

∂u

∂n̂
φα dσ∂S(x) + β−1

∫
∂Ω

∂u

∂n̂
φα dσ∂Ω(x).

(A.42)

Substituting the left hand side of (A.42) in (A.41) and recalling that the normal
derivative is prescribed on ∂Ω we end up with

(∇u,∇φ α) −
∫

∂S
∂u

∂n̂
φα dσ∂S(x) −

∫
∂Ω

gN φα dσ∂Ω(x) = −β(f, φα).

The last equation motivates the following weak formulation

Find u ∈ H1(ΩS) such that{
a(u, φ) = lf,gN

(φ), ∀φ ∈ H1(ΩS)
u = gD on ∂S

(A.43)

where we define

a(u, φ)
def
= (∇u,∇φ α), (A.44)

lf,gN
(φ)

def
= −β(f, φα) +

∫
∂Ω

gNφα dσ∂Ω(x). (A.45)
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A. Appendix

Notice that the function a(·, ·) is a symmetric bilinear form and the function lf,gN
(·)

is linear. Provided that the function gD ∈ H
1
2 (∂S) we can use its continuation

gD(x) to decompose the unknown function u(x) by u(x) = w(x) + gD(x), where the
new unknown function w(x) has to vanish on ∂S. This leads to an equivalent weak
formulation

Find w ∈ H such that

a(w, φ) = lf,gN
(φ) − a(gD, φ), ∀φ ∈ H1(ΩS)

(A.46)

where the Sobolev space H is defined by

H def
= {v ∈ H1(ΩS) : tr∂Sv = 0}. (A.47)

A.2.1. Existence of a Weak Solution

The existence of a unique solution of the weak problem (A.46) is usually proved by
showing that the prerequisites of the Lemma of Lax-Milgram are satisfied. In doing
so, we have to show that the bilinear form (A.44) is H-elliptic, i.e,

∃c1 > 0 : a(v, v) ≥ c1 ‖v‖2
H1 ∀v ∈ H (A.48)

∃c2 > 0 : |a(v, w)| ≤ c2 ‖v‖H1 ‖w‖H1 ∀v, w ∈ H (A.49)

and that the linear function defined on the right hand side of (A.46) is an element
in the dual space (H1(ΩS))′ = {l : H1(ΩS) → R : l is linear and continuous}.

We first prove that our bilinear form (A.44) satisfies the condition (A.48). Let
v ∈ C∞(ΩS) such that v|∂S = 0. Then we deduce

a(v, v) =
∫

ΩS
∇v · ∇v α dx ≥ α0 ‖ |∇v| ‖2

L2 .

In the last step we estimate the H1-norm of v by

α0 ‖v‖2
H1 = α0

(
‖v‖2

L2 + ‖ |∇v| ‖2
L2

)
≤ α0

(
C ‖ |∇v| ‖2

L2 + ‖ |∇v| ‖2
L2

)
≤ (1 + C)a(v, v),

where the first inequality follows from the Poincaré-inequality for functions vanishing
only on a part of the boundary (see Theorem A.6.3 in Appendix). Since C∞(ΩS)
is dense in H1(ΩS) we get for 0 < c1 = (1 + C)/α0 the desired result. The second
condition (A.49) is a simple consequence of the Cauchy-Schwartz-inequality in R

2

and in L2. We deduce

|a(v, w)| ≤ α1

∫
ΩS

|∇v · ∇w|dx

≤ α1

∫
ΩS

|∇v| · |∇w|dx

≤ α1

(∫
ΩS

|∇v|2
) 1

2

·
(∫

ΩS
|∇w|2

) 1
2

≤ α1 ‖v‖H1 ‖w‖H1
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In the last step we have to show that the right hand side in (A.46)

lf,gN ,gD
(v)

def
= −β−1(f, αv) +

∫
∂Ω

gN αv dσ∂Ω(x) − a(gD, v)

belongs to (H1(ΩS))′. Hence, we have to show that

∃K > 0 : ‖lf,gN ,gD
‖(H1)′ = sup

‖v‖H1=1
|lf,gN ,gD

(v)| ≤ K.

which immediately follows from

1.) |(f, αv)| ≤ ‖fα‖L2 · ‖v‖H1 ,

2.) |a(gD, v)| ≤ α1 ‖gD‖H1 ‖v‖H1 ,

3.) |
∫

∂Ω
gN αv dσ∂Ω(x)| ≤ ‖gNα‖L2(∂Ω) · ‖v‖H1 .

A.2.2. Classical Solution vs. Weak Solution

The following theorem gives an answer to the question under which conditions a
weak solution is also a classical solution.

Theorem A.2.1. Let u ∈ C2(ΩS)∩H1(ΩS) be a solution of the weak problem (A.43).
Then u is a classical solution, i.e. u ∈ C2(ΩS)∩C1(ΩS), of the mixed-boundary value
problem (A.3).

Proof. First notice that we have the following sequence of inclusions

H1
0 (ΩS) ⊂ H ⊂ H1(ΩS),

where H is the Sobolev space defined in (A.47). Since u is a solution of the weak
problem (A.43),

−β−1(∇u,∇φ α) + β−1

∫
∂Ω

gNφα dσ∂Ω(x) = (f, φα) ∀φ ∈ H,

we get by applying Green’s integral identity

(β−1Δu −∇V ∇u, φα) + β−1

∫
∂Ω

(gN − ∂u

∂n̂
)φα dσ∂Ω(x) = (f, φα) ∀φ ∈ H

and in particular

((β−1Δu −∇V ∇u − f)α, φ) = 0 ∀φ ∈ H1
0 (ΩS).

Because of the strict positivity of the weight function α(x) we conclude

β−1Δu −∇V ∇u = f in ΩS .

Moreover, we obtain∫
∂Ω

(gN − ∂u

∂n̂
)φα dσ∂Ω(x) = 0 ∀φ ∈ H1(ΩS)

which shows that the Neumann boundary conditions are also satisfied,

∂

∂n̂
u = gN on ∂Ω.

By assumption, the function u satisfies the Dirichlet boundary conditions on ∂S
which completes the proof.
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A.3. Approximation of Diffusion Processes via Markov
Jump Processes

In this section we will show that the Birth-Death process in Section 4.3.1, given
by its generator (4.44), is indeed an approximation of the considered Smoluchowski
dynamics.

It is a well-known fact that every diffusion process of the form (2.8) can be ap-
proximated under weak conditions on the diffusion matrix by a Birth-Death process.
In general, the opposite implication does not hold. According to Gardiner [41], Sect.
7.2, the basic idea of the proof that a family of Birth-Death processes, parameterized
by a scaling parameter ε, approximates a diffusion process is to show that in the
limit ε → 0 the associated Master-equations passes to the Fokker-Planck equation
associated with the diffusion process. In order to explain that idea in more detail
and to motivate our alternative approach, we present the construction given in [41],
page 248. Consider a 1-dimensional diffusion process Xt ∈ R of the form

dXt = A(Xt)dt +
√

B(Xt)dWt (A.50)

with sufficiently smooth coefficients A : R → R and B : R → R
+. The jump rates

of the approximating Birth-Death process on the state space S = εZ are defined
according to

Wε(x, x′) def
=

(
A(x)
2ε

+
B(x)
2ε2

)
δx′,x+ε +

(
−A(x)

2ε
+

B(x)
2ε2

)
δx′,x−ε (A.51)

such that for a sufficiently small ε > 0, (A.51) is positive for all x ∈ S. Next it is
shown, that in the limit ε → 0, the Master-equation

∂pε(x, t)
∂t

=
∫

R

[
Wε(x′, x)pε(x′, t) − Wε(x, x′)pε(x, t)

]
dx′

=Wε(x − ε, x)p(x − ε, t) + Wε(x + ε, x)pε(x + ε, t)
− (Wε(x, x + ε) + Wε(x, x − ε))pε(x, t)

(A.52)

becomes the Fokker-Planck equation

∂p(x, t)
∂t

= Lfwp(x, t) =
1
2

∂2

∂x2
(B(x)p(x, t)) − ∂

∂x
(A(x)p(x, t)). (A.53)

An alternative way to see that the Master-equation passes in the limit ε → 0 to
(A.53) bases on the observation that from the view point of finite differences, the
right hand side in (A.51) results from a second order finite differences discretization
of the operator

Lbw =
1
2
B(x)

∂2

∂x2
+ A(x)

∂

∂x
,

which is the generator associated with the diffusion process in (A.50). For the sake of
simplicity we consider the diffusion process of a finite interval [a, b] ⊂ R and assume
periodic boundary conditions. Let Wε ∈ R

|S|×|S| denote the matrix resulting from
the jump rates in (A.51) where S = εZ ∩ [a, b] and we additionally set

Wε(x, x)
def
= −(Wε(x, x + ε) + Wε(x, x − ε)).
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A.4. Proofs

Notice that the Master equation in (A.52) can now be written in a compact form,

∂pε

∂t
= W T

ε pε,

where pε = (pε(x))x∈S . Encouraged by a Remark in [44], page 94, we next show that
the transposed matrix W T

ε is a consistent discretization of the operator Lfw on the
right hand side in the Fokker-Planck equation (A.53). With the notation introduced
in Section A.1, we have for any p ∈ C2

Lemma A.3.1. ∥∥W T
ε Rεp − RεLfwp

∥∥
∞ → 0 as ε → 0.

Proof. Let x ∈ S be a mesh point. We deduce

(W T
ε Rεp)(x) =Wε(x − ε, x)p(x − ε) + Wε(x + ε, x)p(x + ε)

− (Wε(x, x + ε) + Wε(x, x − ε))p(x)

=
1

2ε2
[B(x − ε)p(x − ε) − B(x)p(x) + 2B(x + ε)p(x + ε)]

− 1
2ε

[A(x + ε)p(x + ε) − A(x − ε)p(x − ε)]

=
1
2

∂2

∂x2
(B(x)p(x)) + O(ε2) − ∂

∂x
(A(x)p(x)) + O(ε2),

which proves the assertion.

The view point that the construction of the jump rates of an approximating Birth-
Death process can also be obtained via finite difference discretization of the generator
Lbw allows a straightforward generalization for the approximation of diffusion pro-
cesses in higher dimension. For example, the generator of the Birth-Death process
considered in Section 4.3.1, results from the discretization of the generator

Lbw = β−1Δ −∇V ∇

via the second order scheme in (A.8) where we additionally included reflecting
boundary conditions.

A.4. Proofs

A.4.1. Proof for the Representation of the Probability Current of
Reactive Trajectories

To derive (3.15), we take first the limit as T → ∞ in (3.14) using ergodicity to
obtain

lim
s→0+

1
s

(∫
S

ρ(x)qb(x)Ex

(
q(X(s))1Rd\S(X(s)))

)
dx

−
∫

Rd\S
ρ(x)qb(x)Ex

(
q(X(s))1S(X(s))

)
dx

)
=

∫
∂S

n̂∂S(x) · JAB(x)dσ∂S(x),

(A.54)
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where Ex denotes expectation conditional on X(0) = x. Taking the limit as s → 0+

can now be done using

lim
t→0+

1
t

(
Exφ(X(t)) − φ(x)

)
=

d∑
i,j=1

aij(x)
∂2φ(x)
∂xi∂xj

+
d∑

i=1

bi(x)
∂φ(x)
∂xi

≡ (Lbwφ)(x),

where φ(x) is any suitable observable. However, taking the limit on (A.54) is some-
what tricky because of the presence of the discontinuous functions 1S(x) and 1Rd\S(x).
The proper way to avoid ambiguities on how to interpret the derivatives of 1S(x)
and 1Rd\S(x) is to mollify these functions, that is, replace them by functions varying
rapidly on ∂S but smooth, then let s → 0+ and finally remove the mollification. Let
then fδ(x) be a smooth function which is 1 in S at a distance δ from ∂S, 0 out of S
at a distance δ from ∂S and varies rapidly but smoothly from 0 to 1 in the strip of
size 2δ around ∂S. Thus (A.54) is the limit as δ → 0 of

Iδ = lim
s→0+

1
s

∫
Rd

ρ(x)qb(x)

×
(
fδ(x)Ex

(
q(X(s))(1 − fδ(X(s)))

)−
(1 − fδ(x))Ex

(
q(X(s))fδ(X(s))

))
dx.

Inserting
0 = −ρ(x)qb(x)fδ(x)

(
q(x)(1 − fδ(x))

)
+ ρ(x)qb(x)(1 − fδ(x))

(
q(x)fδ(x)

)
under the integral then letting s → 0+, we obtain

Iδ =
∫

Rd

ρ(x)qb(x)
(
fδ(x)

(Lbw(q(1 − fδ))
)
(x)

− (1 − fδ(x))
(Lbw(qfδ)

)
(x)

)
dx.

Expanding the integrand, several terms cancel and we are simply left with

Iδ = −
∫

Rd

ρ(x)qb(x)
(Lbw(qfδ))

)
(x)dx.

Using the explicit form for L and expanding, this is

Iδ = −
∫

Rd

ρ(x)qb(x)
(
fδ(x)Lbwq(x)

+
d∑

i,j=1

aij(x)
∂

∂xi

(
q(x)

∂fδ(x)
∂xj

)

+
d∑

i=1

∂fδ(x)
∂xi

(
bi(x)q(x) +

d∑
j=1

aij(x)
∂q(x)
∂xj

))
dx.
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By (3.6), Lbwq(x) = 0 and integrating by parts the second term in the parenthesis
under the integral, we arrive at

Iδ = −
∫

Rd

d∑
i=1

∂fδ(x)
∂xi

(
q(x)qb(x)Ji(x)

+ qb(x)ρ(x)
d∑

j=1

aij(x)
∂q(x)
∂xj

− q(x)ρ(x)
d∑

j=1

aij(x)
∂qb(x)
∂xj

)
dx.

Now let δ → 0 and recall that for any suitable F (x) = (F1(x), . . . , Fd(x))T

lim
δ→0

∫
Rd

d∑
i=1

∂fδ(x)
∂xi

Fi(x)dx

= − lim
δ→0

∫
Rd

fδ(x)
d∑

i=1

∂Fi(x)
∂xi

dx

= −
∫
S

d∑
i=1

∂Fi(x)
∂xi

dx

= −
∫

∂S

d∑
i=1

n̂S,i(x)Fi(x)dσ∂S(x),

where the first equality follows by integration by parts, the second by definition
of fδ(x), and the third by the divergence theorem. Using this result, we conclude
that the limit of the expression above for Iδ as δ → 0 is the surface integral of the
current JAB(x) given in (3.15), as claimed.

A.4.2. Proof for the Representation of the Transition Rate via a Volume
Integral

To check that (3.19) gives the rate, let ∂S(ζ) = {x : q(x) = ζ} be the (forward)
isocommittor surface with committor value ζ ∈ [0, 1], and consider the integral

A(ζ) =
∫

∂S(ζ)
ρ(x)

d∑
i,j=1

n̂∂S(ζ),i(x)aij(x)
∂q(x)
∂xj

dσ∂S(ζ)(x).

Since ∂S(0) ≡ ∂A, is easy to see from (3.17) and (3.18) with ∂S = ∂A that:

A(0) =
∫

∂A
ρ(x)

d∑
i,j=1

n̂∂A,i(x)aij(x)
∂q(x)
∂xj

dσ∂A(x)

≡ kAB,

where we used q(x) = 0 and qb(x) = 1 on ∂A. Next, we show that A(ζ) = A(0) = kAB

for all ζ ∈ [0, 1]. Using the Dirac delta function we can express A(ζ) as

A(ζ) =
∫

Rd

ρ(x)
d∑

i,j=1

∂q(x)
∂xi

aij(x)
∂q(x)
∂xj

δ(q(x) − ζ)dx
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and hence
dA(ζ)

dζ

= −
∫

Rd

ρ(x)
d∑

i,j=1

∂q(x)
∂xi

aij(x)
∂q(x)
∂xj

δ′(q(x) − ζ)dx

= −
∫

Rd

ρ(x)
d∑

i,j=1

∂q(x)
∂xi

aij(x)
∂

∂xj
δ(q(x) − ζ)dx.

Integrating by parts, this gives

dA(ζ)
dζ

=
∫

Rd

ρ(x)
d∑

i,j=1

aij(x)
∂2q(x)
∂xi∂xj

δ(q(x) − ζ)dx

+
∫

Rd

d∑
i,j=1

∂q(x)
∂xi

∂

∂xj
(aij(x)ρ(x))δ(q(x) − ζ)dx

= −
∫

Rd

ρ(x)
d∑

i=1

bi(x)
∂q(x)
∂xi

δ(q(x) − ζ)dx

+
∫

Rd

d∑
i,j=1

∂q(x)
∂xi

∂

∂xj
(aij(x)ρ(x))δ(q(x) − ζ)dx,

where in the second step we used (3.6). Using the definition (3.16) for the equilibrium
current J(x), the two integrals in the last equality can be recombined into

dA(ζ)
dζ

= −
∫

Rd

d∑
i=1

∂q(x)
∂xi

Ji(x)δ(q(x) − ζ)dx

= −
∫

∂S(ζ)

d∑
i=1

n∂S(ζ),i(x)Ji(x)dσ∂S(ζ)(x) = 0,

(A.55)

where in the last equality we use the fact that the probability flux of the regular (by
opposition to reactive) trajectories through any surface is zero at equilibrium. (A.55)
implies that A(ζ) = A(0) = kAB for all ζ ∈ [0, 1] as claimed. Hence,

∫ 1
0 A(ζ)dζ = kAB

which gives ∫ 1

0

∫
Rd

ρ(x)
d∑

i,j=1

∂q(x)
∂xj

aij(x)
∂q(x)
∂xj

δ(q(x) − ζ)dxdζ

=
∫

ΩAB

ρ(x)
d∑

i,j=1

∂q(x)
∂xj

aij(x)
∂q(x)
∂xj

dx = kAB.

This is (3.19).

A.5. Short Account to Free Energy

An important quantity to characterize the transition behavior of a diffusion process
in a (non-trivial) potential landscape is the free energy with respect to a reaction
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coordinate. A reaction coordinate can be seen as an observable providing information
on the progress of a reaction between a reactant state and a product state. Formally,
a reaction coordinate is a continuous and smooth function ξ : R

d 	→ R
n whose level

sets ξ−1(c) = {x ∈ R
d : ξ(x) = c}, c ∈ R

n foliate the state space and comprise all
states which are indistinguishable with respect to the reaction, respectively. In the
traditional way, the free energy is defined by means of the marginal distribution of
the equilibrated process with respect to a given reaction coordinate. Here we give
only a short introduction to the free energy. For details see, e.g. [45, 46]. To formalize
things, consider the Smoluchowski dynamics in a potential landscape

dXt = −∇V (Xt)dt +
√

2β−1dWt,

where Xt ∈ R
d and the remaining parameters are as in (2.37). The probability to

find the equilibrated system in a certain region, say D ⊂ R
d, is given in terms of the

equilibrium density function exp(−βV (x)), that is

P(Xt ∈ D) = Z−1

∫
D

exp(−βV (x))dx,

where Z is the normalization factor.
In order to define the free energy, consider the marginal probability density func-

tion with respect to the reaction coordinate ξ, that is

Z(c) =
∫

Rd

exp(−βV (x))δ(ξ(x) − c)dx,

where δ(x) is the famous delta-function. The standard free energy is defined as the
logarithm of the marginal probability density function Z(c),

Vfree : R
n → R

Vfree(c)
def
= −β−1 log Z(c).

A.6. Definitions and Theorems

Wiener process The Wiener process Wt is a mathematical model of the Brownian
motion of a free particle in the absence of friction.

Definition A.6.1 (Wiener process and white noise). The standard d-dimensional
Wiener process Wt is a d-dimensional, time-homogeneous Markov process on R

d

with independent and stationary N (0, (t−s)I)-distributed increments Wt−Ws, with
initial value W0 = 0, and with almost certainly continuous sample functions.

A d-dimensional stochastic process η is said to be a white noise if it is a Gaussian
process with mean zero and covariance 〈ηi(t)ηj(s)〉 = δijδ(t − s).

Existence and Uniqueness of Solution

Theorem A.6.1. ([3], page 105) Suppose that we have a stochastic differential
equation

dXt = b(t,Xt)dt + σ(t,Xt)dWt, X0 = c, 0 ≤ t ≤ T < ∞, (A.56)
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where Wt is standard d-dimensional standard Wiener process and c is a random
variable independent of Wt − W0 for t ≥ 0. Suppose that the R

d-valued function
b(t, x) and the (d×d)-valued function σ(t, x) are measurable on [0, T ]×R

d and have
the following properties: There exists a constant K > 0 such that

a) (Lipschitz condition) for all t ∈ [0, T ], x, y ∈ R
d,

‖b(t, x) − b(t, y)‖ + ‖σ(t, x) − σ(t, y)‖ ≤ K‖x − y‖.

b) (Restriction of growth) For all t ∈ [0, T ], x ∈ R
d,

‖b(t, x)‖2 + ‖σ(t, x)‖2 ≤ K2
∥∥1 + ‖x‖2

∥∥ .

Then, equation (A.56) has on [0, T ] a unique R
d-valued solution {Xt, 0 ≤ t ≤ T},

continuous with probability 1, that satisfies the initial condition X0 = c.

Time reversal of diffusion The following theorem on time reversal of a diffusion
process {Xt, 0 ≤ t ≤ T}, T > 0 satisfying the stochastic differential equation

dXt = b(t,Xt)dt + σ(t, Xt)dWt,

where b : [0, T ]× → R
d, σ : [0, T ] × R

d → R
d×d, is found in [47] which generalizes

results in [14].

Define the reversed time process by XR
t

def
= XT−t, then

Theorem A.6.2. If for almost all t > 0, the law of Xt has a probability density
v(t, x) such that for all s > 0 and any open bounded set C ⊂ R

d

∫ T

s

∫
C
‖v(t, x)‖2 +

d∑
i=1

‖
d∑

j=1

σij(t, x)v(t, x)xj‖2dx dt < ∞,

where v(t, x)xj denotes the partial derivative of v(t, x) in the distribution sense, then
the reversed time process XR

t is a Markov diffusion process satisfying the SDE

dXR
t = bR(t,XR

t )dt + σR(t,XR
t )dWt,

where

bR
i (t, x) = −bi(T − t, x) + 2

∑d
j=1

d
dxj

[
aij(T − t, x)v(T − t, x)

]
v(T − t, x)

, 1 ≤ i ≤ d,

σR
ij(x, t) = σij(x, T − t), 1 ≤ i, j ≤ d,

a(x, t) =
1
2
σ(x, t)σT (x, t).
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Poincaré Lemma The proof of the existence of a unique weak solution of the
elliptic mixed-value boundary problem (A.40) bases on the general version of the
Poincaré-Lemma.

Theorem A.6.3. ([20], page 127-130)Assume that the Lipschitz domain Ω ⊂ R
d

is bounded, connected and open and the subset Σ ⊂ ∂Ω is Lipschitz continuous and
has a positive Hausdorff measure. Then there exists an CΩ > 0 such that∫

Ω
|∇v|2 dx ≥ CΩ

∫
Ω

v2 dx, ∀v ∈ H1
Σ(Ω)

where the Sobolev space H1
Σ(Ω) is defined by

H1
Σ(Ω) = {u ∈ H1(Ω) : trΣu = 0}.

Hypoelliptic operators

Definition A.6.2. ([71], page 139) A linear second order operator G with infinitely
often differentiable coefficients defined in a domain Ω ⊂ R

d is called hypoelliptic
in Ω if for any distribution u in D(Ω) and any domain Ω1 ⊂ Ω the condition that
Gu ∈ C∞ implies that u is infinitely often differentiable in Ω1.

Theorem A.6.4. ([71],page 139) If the second order operator

Gu = a : ∇∇u + b · ∇u + cu

with real coefficients aij(x), bi(x), c(x) in the class C∞(Ω) is hypoelliptic in the do-
main Ω, then for any point x ∈ Ω

either
d∑

i,j=1

aijξiξj ≥ 0 or
d∑

i,j=1

aijξiξj ≤ 0

for all ξ ∈ R
d.

Theorem A.6.5. ([96],page 9) If the operator (− d
dt +Lfw) is hypoelliptic, then the

law of Xt has a smooth density p(t, x) on (0,∞) × R
d, i.e.,

P(Xt ∈ dy) = p(t, y)dy,

and p(t, x) satisfies the Fokker-Planck equation

dp

dt
= Lfwp.

M-matrix The following definitions and Lemmata are found in [44]. The elements
of a matrix A are denoted by aij , i, j ∈ I. Here A and the index set I assume the
places of Lh and ΩS

h . The index i ∈ I is said to be directly connected with j ∈ I if
aij �= 0. We say that i ∈ I is connected with j ∈ I, denoted by i → j, if there exists
a connection

i = i0, i1, . . . , in = j with aik−1ik �= 0, (1 ≤ k ≤ n).
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Definition A.6.3. A matrix A ∈ R
I×I is called irreducible if every i ∈ I is con-

nected to every j ∈ I.

Definition A.6.4. A matrix A ∈ R
I×I is called strictly diagonally dominant if

|aii| >
∑
j �=i

|aij |, ∀i ∈ I, (A.57)

weakly diagonally dominant if

|aii| ≥
∑
j �=i

|aij |, ∀i ∈ I, (A.58)

irreducible diagonally dominant if A is irreducible and weakly diagonally dominant
and if, furthermore,

|akk| >
∑
j �=k

|akj | for at least one k ∈ I (A.59)

and essentially diagonally dominant if A is weakly diagonally dominant and every
i ∈ I is connected to a k ∈ I for which the inequality in (A.59) holds true.

Now we turn our attention to special subclass of positive matrices.

Definition A.6.5. A matrix A ∈ R
I×I is said to be an M-matrix if A satisfies

aii > 0, for all i ∈ I, (A.60)
aij ≤ 0, for all i �= j, (A.61)

A is regular and A−1 ≥ 0 componentwise.

Theorem A.6.6. Let A ∈ R
I×I be strictly or essentially or irreducibly diagonally

dominant. If the sign conditions (A.60),(A.61) are satisfied then A is an M-matrix.

The proofs for stability of the discretization schemes derived in Section A.1.2 and
Section A.1.3 are based on the following theorem.

Theorem A.6.7. Let A ∈ R
d×d be an M-matrix. If a vector w ∈ R

d exists with
Aw ≥ 1 then ∥∥A−1

∥∥
∞ ≤ ‖w‖∞ ,

where
∥∥A−1

∥∥
∞ = sup‖w‖∞=1

∥∥A−1w
∥∥
∞ is the matrix-norm with respect to the max-

imum norm ‖·‖∞.

Two theorems on the existence of generators The following Theorems are found
in [53]. They give sufficient conditions for the existence of a generator of a given
transition matrix.

Theorem A.6.8. Let P be a transition matrix and suppose that

(a) det(P ) ≤ 0, or

(b) det(P ) >
∏

i pii, or
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(c) there are states i and j such that j is accessible from i, but pij = 0.

Then, there is no generator L ∈ G such that P = exp(L).

Theorem A.6.9. Let P be a transition matrix.

(a) If det(P ) > 1
2 , then P has at most one generator.

(b) If det(P ) > 1
2 and ‖P − I‖ < 1

2 (using any operator norm), then the only
possible generator for P is the principal branch of the logarithm of P .

(c) If P has distinct eigenvalues and det(P ) > e−π, then the only possible gener-
ator for P is the principal branch of the logarithm of P .
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