
6. Detecting Reaction Pathways via
Shortest Paths in Graphs

We have demonstrated that discrete TPT is a powerful tool to analyze transition
events in Markov jump processes. The central object is the infinitesimal generator
of the process which finally allows to compute reaction rates and to determine a
hierarchy of dominant reaction pathways. In the case where the process is only
discretely observed in time the generator of the underlying Markov jump process has
to be estimated. Alternatively, if the observation time lag is constant, the underlying
process can be modeled as a Markov chain, i.e., as a Markov process discrete in space
and time.

In this chapter, we will consider the use of shortest-path algorithms in the context
of reaction pathway computation in Markov chains. The crucial question for this
undertaking is the choice of a weight function that defines the length of an edge. We
will present two such functions [22] which both have a natural motivation. We will
apply both resulting methods on the examples which have already been investigated
with discrete TPT in Section 4.3 and we will compare the results.

6.1. Shortest Path in Graphs

6.1.1. Dijkstra Algorithm

The standard algorithm used for computing shortest paths in a graph G = G(V, E)
is the Dijkstra algorithm. It solves the so called Single Source Shortest Path Problem
where the shortest paths from one source vertex vs ∈ V to all other vertices v ∈ V
have to be determined. The Single Source, Single Destination Shortest Path Problem
is a special case in which only one path from vs to a designated destination vertex
vd has to be determined. In both cases the runtime of the Dijkstra algorithm is
O(|V | log(|V |) + |E|). For a profound discussion of this standard algorithm we refer
to, e.g. [54, 18]. In the following we will only roughly sketch its basic principle.

Given a vertex vs as starting vertex, the algorithm maintains a list of distances to
vs assigned to every other vertex that is initialized with the value ∞ and in the end
contains the lengths of the shortest paths from vs to any vertex. In the first step,
the distances of all neighbors of vs are set to the weight of the edge connecting them
to vs. These vertices form the initial halo set, i.e. they are the vertices for which one
path from vs is known but it is not known whether this path is a shortest path. In
the main loop of the algorithm, it removes a vertex vmin with the minimum known
distance from the halo set, and considers all neighbors of vmin. If a neighbor is also
in the halo set, the algorithm checks whether a path through vmin would result in
a distance from vs less than the current known distance. If a neighbor is not yet in
the halo set, it is added to it, with its distance value being the sum of the distance
of vmin and the length of the edge connecting the neighbor to vmin. The algorithm

117



6. Detecting Reaction Pathways via Shortest Paths in Graphs

terminates when a prescribed target vertex is reached or when the halo set becomes
empty.

By a slight modification, the Dijkstra algorithm can be generalized to find a
shortest path from any vertex of a source set Vs ⊂ V to all remaining vertices
w ∈ V \ Vs. Unlike in the original algorithm, here the source set Vs forms the initial
halo set and in the initialization step all vertices of Vs are assigned the distance
value zero.

Algorithm 7 Generalized Dijkstra’s Algorithm
Input: A directed graph G = (V, E), weights w : E → R+. Source set Vs ⊂ V
Output: Shortest paths from all v ∈ Vs to all u ∈ V and their lengths.

(1) Set dist(vs) = 0 ∀vs ∈ Vs, dist(v) := ∞ ∀v ∈ V \ Vs.
(2) Initialize halo set H := Vs.
(3) v := argminu∈Hdist(u), set H := H \ {v}.
(4) FOR ALL (v, u) ∈ E DO:
(5) IF dist(u) > dist(v) + w(v, u)
(6) THEN Set dist(u) := dist(v) + w(v, u), pred(u) := v.
(7) IF u /∈ H THEN H := H ∪ {u}.
(8) END FOR
(9)IF H �= ∅ THEN go to step (3).

If a vertex v ∈ V \ Vs is not reachable from the source set Vs then dist(v) = ∞
and pred(v) is not defined. Otherwise, the shortest path from Vs to a vertex v can
be reconstructed by following recursively the predecessors until a vertex in vs ∈ Vs

is reached. If we subsequently reverse the order of the vertices in that path, we end
up with a shortest path z(v) from Vs to v,

z(v) = (vs, . . . ,pred(pred(v)),pred(v), v).

6.1.2. Bidirectional Dijkstra Algorithm

The purely graph theoretic consideration of shortest paths in the previous section has
to be extended by some ideas related to the specialized setting of graphs describing
spatial discretizations of Markov diffusion processes. In particular we have in mind
the fact that the numerical realizations of these graphs necessarily come with a
discretization error which makes it doubtful whether the notion of the shortest path
between two vertices vs and vd is really a meaningful quantity in our applications –
even leaving out the possible existence of several shortest paths. Furthermore, we are
interested in the revealing of all dominant transition channels between metastable
sets. Therefore, we are not only interested in one (or all) precisely shortest paths,
but we are also interested in a family of shortest paths which consists of short paths
being only slightly longer than a path with the shortest length.

Edge based family of shortest paths Let dist(vs, vd) denote the length of the
shortest path between the vertex vs ∈ Vs and the vertex vd ∈ Vd. We want to
calculate all paths from vs to vd which have a slightly longer length than the shortest
path. To be more precise, we determine all paths in the graph which have a length
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of at most
(1 + ε)dist(vs, vd),

where 0 ≤ ε. In order to do so, we need to apply the generalized Dijkstra algorithm,
as stated in Algorithm 7, only twice: Firstly, we calculate all distances from vs to all
other vertices and denote these distances by dist1(v) for all vertices v ∈ V . Among
all distances this also includes the distance between vs and vd. Secondly, we consider
a new graph = (V,ER) where ER consists of the edges in E with direction reversed.
Then, we calculate all distances from vd to all other vertices in GR, and denote these
distances by dist2(v) for all vertices v ∈ V . Note that dist2(v) is also the distance
from v to vd in G for any vertex v ∈ V .

It is now simple to decide whether or not an edge (vi, vj) ∈ E lies on a path
between vs and vd of length at most (1 + ε)dist(vs, vd). Such a path has to consist
of three parts: a path from vs to vi, the edge (vi, vj) itself and a path from vj to vd.
The shortest length for the first part is dist1(vi) and the shortest length of the last
part is dist2(vj). Thus, an edge (vi, vj) lies on a path between vs and vd of length at
most (1 + ε)dist(vs, vd) if and only if

dist1(vi) + w(vi, vj) + dist2(vj) ≤ (1 + ε)dist(vs, vd).

The result is a subset Esp(ε) ⊂ E of edges belonging to the family of short paths. The
algorithm can easily be extended to the case of more than one source and destination
vertex and is stated in Algorithm 8. The computational cost of Algorithm 8 is the

Algorithm 8 Bidirectional Dijkstra algorithm
Input: A directed graph G = (V, E), weights w : E → R+, source set Vs ⊂ V and

destination set Vd ⊂ V , threshold ε.
Output: Set of edges Esp(ε) ⊂ E belonging to the family of short paths.

(1) Compute all distances dist1(v) in G from Vs to all vertices v ∈ V .
(2) Construct new graph GR = (V, ER) by reversing all edges in E.
(3) Compute all distances dist2(v) in GR from Vd to all vertices in v ∈ V (GR).
(4) distmin := minvd∈Vd

{dist1(vd)}.
(5) FOR ALL edges in (vi, vj) ∈ E DO
(6) IF dist1(vi) + w(vi, vj) + dist2(vj) ≤ (1 + ε)distmin

(7) THEN Esp(ε) := Esp(ε) ∪ {(vi, vj)}.
(8) END FOR

same as of Dijkstra’s algorithm (cf. Algorithm 7).

Vertex based family of shortest paths In order to motivate the vertex based
approach, consider for an edge (vi, vj) ∈ Esp(ε) the associated shortest path

zS(vi, vj) =
(
z(vi), zR(vj)

)
,

where zR(vj) denotes the shortest path from vj to Vd in G. The crucial observation
is now that in general the path z(vi, vj) is different from the shortest path composed
of the shortest path from Vs to vi and the shortest path from vi to Vd. In other
words, the edge (vi, vj) does not have to lie on the shortest path connecting Vs and
Vd via vi. The same argument holds for the vertex vj too.
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For this reason, we consider in the vertex based approach the vertex set Vsp(ε) ⊂ V
which comprises all vertices being involved on a short path with length at most
(1 + ε)distmin. Formally, a vertex v ∈ V lies on a short path between Vs and Vd of
length of at most (1 + ε)distmin if and only if

dist1(v) + dist2(v) < (1 + ε)distmin.

Reaction pathways and short paths It immediately follows from the definition of a
shortest path that it does not have any self-intersections (loops). Unfortunately, both
presented approaches - the edge and vertex based approach - lead to short paths
which could have self-intersections. To see this, notice that in both approaches a
short path is composed of two shortest paths which are computed independently of
each other. Since we are eventually interested in reaction pathways (cf. Def. 4.1.15),
we finally have to sort out from the family of short paths all short paths with loops.

6.2. Choice of Edge Weights

The choice of the edge weights depends on the way how to compare paths. The
first natural choice of edge weights is based on the likelihood of sample paths. Un-
fortunately, this approach leads in our context to reaction pathways which are in
contradiction to the underlying dynamics and its physical interpretation. As a rem-
edy, we follow an alternative approach which takes into account the free energy
barriers along a reaction pathway. This approach is more adapted to the underly-
ing dynamics and, moreover, is less sensitive with respect to the underlying box
discretization of the state space. In what follows we interpret a Markov chain, de-
scribed by its transition matrix P = (pij)i,j∈S , as a directed graph G = (V, E) (cf.
notations introduced in Section 4.1.1).

6.2.1. Likelihood Approach

Suppose we are given two sample paths p1 and p2 of a Markov chain and, moreover,
suppose that both starting in a state iA and ending in the state iB. One option to
compare these two paths is to ask which of both is the more preferred one by the
dynamics, i.e. which one is more likely? The respective likelihoods of the sample
paths can be expressed in terms of the transition probabilities of the Markov chain.
Let z = (i1, i2, i3, . . . , in) be a finite sample path of the Markov chain. Then the
likelihood of z is given by

Ld(z) =
n−1∏
k=1

pik,ik+1
,

being the probability that the Markov chain produces that sample path conditional
on starting in the state i1. The edge weights are now chosen such that the more
likely a sample paths is the less is its length. To this end, we define the weight of an
edge (i, j) ∈ E by

wL(i, j)
def
= − log(pij) (6.1)
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and the resulting length of a path p,

l(z) =
n−1∑
k=1

wL(ik, ik+1) = − log(
n−1∏
k=1

pik,ik+1
),

is the negative log-likelihood of that sample path (cf. Sect. 5.2). It should be clear
that the shortest path with respect to the weights in (6.1) between two different
states is the most probable one and vice versa.

6.2.2. Free Energy Approach

Motivational Example To motivate the alternative free energy approach we present
an example for which the likelihood approach yields misleading results. To this
end we consider a pure diffusion process, i.e. a diffusion process in a flat potential
landscape, on a squared domain with reflecting boundary conditions. Additionally,
we cut out of the domain a small square and apply reflecting boundary conditions
on its boundary too. In Figure 6.1 we give a schematic picture of the situation. The
decomposition of the domain is chosen such that the probability to encounter the
equilibrated process in the boxes A, 1, 2, 3 and B is 1/8 and for the box 4 is 3/8.
The dynamics between the boxes is given by a reversible Markov chain where the
transition probabilities between adjacent boxes are given by

p(A, 1) = p(1, A) = p(1, 2) = p(2, 1)
= P (2, 3) = p(3, 2) = p(3, B) = p(B, 3)

= p(A, 4) = p(B, 4) = a, 0 < a <
1
2
,

p(4, A) = p(4, B) =
1
3
a,

where the probability a depends on the size of the squares. The condition 0 < a < 1
2

guarantees that the probability to make a self-transition is positive.
Suppose, we start the diffusion process in box A. From the symmetry of the

domain and the nature of diffusion, it should be clear that the probability to reach
the box B via the upper way is the same, namely 1

2 , as for the lower way. The
discrete likelihoods of the upper and lower way in the Markov chain are given by

Ld

(
(A, 1, 2, 3, B)

)
= a4,

Ld

(
(A, 4, B)

)
=

1
3
a2.

The likelihoods of both discrete paths are equal if and only if a =
√

1/3 ≈ 0.577 >
0.5 which contradicts the condition 0 < a < 0.5. But this means that the likelihood
approach would indicate that one of the paths is preferred which is not consistent
with the continuous picture.

New Choice of Edge Weight

The new choice of edge weights is based on the discrete analog of the free energy
(cf. Sect. A.5).
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Figure 6.1.: Schematic representation of the motivational example.

Recall that under the assumption that the Markov chain admits a unique sta-
tionary distribution π = (πi)i∈S the discrete free energy F = (Fi)i∈S is defined
by

Fi
def
= − log πi > 0, i ∈ S.

The new edge weights are constructed such that the shortest path between two states
is the one which overcomes the lowest discrete free energy barriers. To this end, we
introduce the weights

wF (i, j) = |Fj − Fi|. (6.2)

In order to explain that the free energy weights yield the desired result, firstly
consider a path z = (i1, . . . , is) with monotonously increasing discrete free energies
along it, i.e.,

Fij ≤ Fij+1 ⇔ πij ≥ πij+1 , j = 1, . . . , s − 1. (6.3)

Then the length of such a path z,

l(p) =
s−1∑
j=1

wF (ij , ij+1) = Fis − Fi1 ,

is simply given by the free energy difference between the last and the first state
of the path. Moreover, if we fix the states i1 and is, then all paths connecting
these two states and satisfying (6.3), have the same length. Next, consider a path
z = (i1, . . . , in) which can be decomposed into two parts z1 = (i1, . . . , is) and z2 =
(is, . . . , in) such that {

Fij ≤ Fij+1 , j = 1, . . . , s − 1,

Fij ≥ Fij+1 , j = s, . . . , n − 1.

One immediately verifies that again the length of the path z,

l(z) = 2Fis − (Fi1 + Fin) ≥ 0,

only depends on free energy differences, namely the barriers Fis −Fi1 and Fis −Fin .
Consequently, if we fix the states i1 and in then the shortest path between i1 and in
with respect to the weights in (6.2) is the one which crosses the lowest free energy
barriers.
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Remark 6.2.1. Notice that in the free energy approach every barrier along a certain
path contributes to the length twofold: first from Vs towards Vd and second from
Vd towards Vs. However, in a post-processing step one can determine all barriers
along a reaction pathway and use these information for a further analysis or a re-
computation of the shortest paths. Notice further that in our motivational example
the free energy approach would also tell that the lower discrete path is the preferred
path of the underlying diffusion. Nevertheless, our numerical experiments will show
that the free energy approach is more insensitive with respect to a decomposition of
a diffusion process.

6.3. Numerical Experiments

In this section we will illustrate the method of detecting reaction pathways via
shortest paths in graphs on some examples which have already been investigated via
discrete TPT. In the following, we only use the vertex based approach.

In the first example we consider the Smoluchowski dynamics in the three-hole ex-
ample introduced in Section 3.7.1. In order to start with the shortest paths method,
we have to provide a transition matrix which captures the dynamics on a coarse
grained level. Instead of generating such a transition matrix via a time series result-
ing from a direct numerical simulation of the Smoluchowski dynamics in (3.22), we
utilized the generator L, given in (4.44), of the approximating Birth-Death process
(cf. Sect. 4.3.1). For the time lag τ = 1.2 we generated a transition matrix P (τ) via
the relation

P (τ) = exp(τL).

As the source set A(= Vs), we chose the states (mesh points) in S which cover
the left deep minima. The destination set B(= Vd) was chosen with respect to the
right minima. The stationary distribution π = (πi)i∈S was numerically computed
via P (τ)T π = π. In the following results, we always used the vertex based approach.

For the comparison of the likelihood approach and the free energy approach, we
asked two questions:

1. Do both approaches detect the two transition channels?

2. Do both approaches reproduce the entropic switching behavior?

The Figure 6.2 gives an answer to the first question. In the left column we plot
the families of reaction pathways resulting from the likelihood approach. From top
to bottom we used the thresholds ε = 0.1, ε = 0.3 and ε = 0.6. The right column
shows the families of reaction pathways resulting from the free energy approach for
the thresholds ε = 0.05 (top),ε = 0.06 and ε = 0.08 (bottom). The darker the color
of a drawn edge is the shorter is the path in which the edge is involved, i.e, the
more likely is the path in the likelihood approach and the lower is the overcome
barrier in the free energy approach, respectively. One can clearly see, that with in-
creasing threshold the likelihood approach results rather in reaction pathways which
cross the local maximum than in pathways proceeding from A to B in the upper
channel. This behavior is in contradiction to the underlying diffusion and can be
ascribed to the sensitivity of the likelihood approach with respect to the underlying
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Figure 6.2.: Comparison of vertex based families of reaction pathways resulting from
the likelihood approach (left column) and from the free energy approach
(right column). The darker the color of an edge the shorter is the path-
way in which the edge is involved. For the likelihood approach we chose
from top to the bottom the threshold ε = 0.1, ε = 0.3 and ε = 0.6. For
the free energy approach we chose ε = 0.05, ε = 0.06 and ε = 0.08. The
sets A and B (depicted by boxes) were chosen such that they cover the
two local minima, respectively. Results for a 30×30 mesh discretization
of the rectangular state space and temperature β = 1.67.
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Figure 6.3.: Comparison of reaction pathways resulting from the likelihood ap-
proach (left column, ε = 0.1) and from the free energy approach
(right column, ε = 0.01) at two different temperatures: β = 6.67 (top
row) and β = 1.67 (bottom row). Results for a 40× 40 mesh discretiza-
tion of the rectangular state space.

discretization. As expected, the families of reaction pathways resulting from the free
energy approach are less sensitive to the respective discretization because for the
low threshold ε = 0.08 both channels were detected.

The Figure 6.3 reveals the behavior of both approaches if the temperature in the
underlying diffusion is varied. In the first column we show the reaction pathways
(ε = 0.1) resulting from the likelihood approach for the low temperature β = 6.67
(top) and the high temperature β = 1.67 (bottom). The right column shows the
results of the free energy approach (ε = 0.01) for the same temperatures. Apparently,
only the free energy approach reproduces an entropic switching behavior of the
underlying dynamics. But if we compare the preferred channels with the channels
obtained via the discrete TPT (cf. Fig. 4.7 in Section 4.3.1) we see that the results are
in opposite to each other; e.g., the preferred channel resulting from the shortest path
methods at β = 6.67 corresponds to the preferred channel resulting from discrete
TPT at β = 1.67. This observation can be explained by recalling that the length of a
path in the free energy approach reflects barriers which the path overcomes. At low
temperature (β = 6.67) the only chance to encounter the underlying process is in
one of the minima. Hence, the upper shallow minima is separated from the rest by a
extremely high free energy barrier and, hence, the lower direct channel is detected.

We end this section by presenting the results of the free energy approach applied to
two others examples which have been investigated with discrete TPT in Section 4.3.
The reaction pathways for the genetic toggle switch example (cf. Sect. 4.3.3 extracted
from the vertex based family of short paths (ε = 0.005) are depicted in the left panel
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Figure 6.4.: Left: Reaction pathways for the genetic toggle switch example (cf.
Fig. 4.20 in Section 4.3.3) extracted from the vertex based family of
short paths (ε = 0.005) in the free energy approach. Right: Reaction
pathways in the torsion angles space of the glycine in solvent example
(cf. Sect. 4.3.2) extracted from the vertex based family of short paths
(ε = 0.01) in the free energy approach. The darker the color of an edge
is the shorter is the length of the pathway in which the edge is involved,
i.e., the lower is the overcome free energy barrier of the pathways. The
reaction pathways are embedded in a log-log contour plot of the discrete
free energy, respectively.

of Figure 6.4. Apparently, the reaction pathway crossing the lowest discrete free
energy barrier is consistent with dominant reaction pathways found via discrete
TPT (cf. Fig. 4.20).

The right panel of Figure 6.4 illustrates the reaction pathways in the torsion angles
space of the glycine in solvent example (cf. Sect. 4.3.2) extracted from the family
of short paths (ε = 0.01). The detected reaction pathways suggest that the lower
channel is the preferred one which stands in contradiction to the results found via
discrete TPT (cf. Fig. 4.13).

Finally, we draw the conclusion that only the free energy approach is able to
detect different transition channels which are consistent with the underlying diffu-
sion. But in the case of multiple reaction channels it does not allow to make any
predictions about which channel is preferred one by the underlying diffusion. Nev-
ertheless, the shortest-path approach is useful to get a first impression of possible
reaction channels.
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