
1. Introduction

Transition events in complex systems between long lived states are a key feature of
many systems arising in physics, chemistry, biology, etc. It was early recognized that
transition processes are characterized by rare but important events, i.e., transition
processes are phenomena that take place on a long time scale compared to the time
scale characterizing the states of local stability, also called metastable states. For
example, the timescale for folding of a small protein, i.e. the transition from an
unfolded in a folded state is in the range of microseconds to milliseconds, whereas
that for small-amplitude motions of amino acid side chains and water solvent is
1 femtosecond.

The first step towards an understanding of rare events was to realize that escape
from a metastable state can only happen via noise-assisted hopping events where
the amplitude of the noise reflects the finite temperature at which the process takes
place. In other words, the dynamics of the process is subject to random perturba-
tions. If we relate the fluctuation induced by the noise to an appropriate energy
scale Enoise, escape from a metastable state will be rare whenever the condition
Ebarrier/Enoise � 1 holds, where Ebarrier denotes the energy barrier height which
separates the metastable state.

Under physical assumptions on the governing dynamics of the process, the time
scale of escape from a metastable state depends exponentially on the ratio
Ebarrier/Enoise. This means that one has to wait exponentially long to observe a
single transition. On the other hand, the impact of the motion on the fastest time
scale on the global behavior of the process is not negligible. Consequently, any di-
rect numerical simulation of the dynamics in order to get a sufficient statistics on
transition events would fail. Hence, alternative and effective strategies are required
and had been developed such as Transition State Theory, Transition Path Sampling,
and more recently Transition Path Theory.

In the present work we give a unified presentation of Transition Path Theory
(TPT) for time-continuous Markov processes and we elucidate its range of applica-
bility on the example of conformational dynamics of bio-molecules.

We consider the most interesting results to include the following:

• Illustration of TPT on several low dimensional examples for Smoluchowski and
Langevin dynamics arising from the stochastic modeling of molecular dynam-
ics.

• Derivation of a stable finite discretization scheme of the committor function
equation associated with the hypoelliptic Langevin dynamics.

• Adaptation of TPT to the class of time-continuous Markov processes with
discrete state space (Markov jump processes).

• Development of efficient graph algorithms for identifying transition pathways
for Markov jump processes and in Markov chains.
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• Presentation, improvement and comparison of methods to estimate an in-
finitesimal generator of a Markov jump process if only an incomplete observa-
tion of the process is available.

• Derivation of an Metropolis Monte Carlo Markov chain method to investi-
gate the error propagation in the discrete committor function computation for
Markov chains.

Rare Events in Molecular Dynamics In the classical description of molecular pro-
cesses the dynamics of the molecule’s microscopic configurations (position and mo-
menta) are mathematically modeled in terms of ordinary differential equation, result-
ing from formulations of Lagrange and Hamilton. Within these models, the physical
interactions of atoms are encoded in the interaction potential which is composed
of sums of contributions of different physical origin as the bond structure of the
molecule and electrostatic interactions. But most biomolecular processes can only
be understood within a thermodynamical context; instead of a single molecular sys-
tem as a solution of the classical equations, one is interested in statistical ensembles,
since only such ensembles can be object of experimental investigation. Throughout
this thesis we will focus on that ensemble view.

Functions of bio-molecules depend on their dynamical properties, and especially on
their ability to undergo transitions between long-living states, called conformations.
A conformation of a molecule is understood as a mean geometric structure of the
molecule which is conserved on a large time scale compared to the fastest molecular
motions where the system may well rotate, oscillate or fluctuate. From the dynamical
point of view, a conformation typically persists for a long time (again compared
to the fastest molecular motions) such that the associated subset of microscopic
configurations is almost invariant or metastable [82] with respect to the dynamics.
Hence transitions between different conformations of a molecule are rare events
compared to the fluctuations within each conformation.

A very popular model to describe molecular systems including thermal noise is
the stochastic Langevin dynamics or Smoluchowski dynamics. A Langevin system
can be regarded as a mechanical system with additional noise and friction where
the noise can be thought of modeling the influence of a heat bath surrounding the
molecule and the friction is chosen such as to counterbalance the energy fluctuations
due to the noise [45]. The Smoluchowski dynamics [87] is a Brownian motion which
results from the Langevin dynamics in the high friction limit and acts only on the
position space.

Mathematically, the Langevin and Smoluchowski dynamics are time-continuous
Markov diffusion processes on a continuous state space. Under weak conditions both
admit a unique stationary (equilibrium) distribution in configuration space which
corresponds to the stationary (canonical) ensemble in experiments under constant
volume and temperature, respectively.

As mentioned above, the problem of identifying conformations amounts to the
identification of metastable sets in configuration space. The characterization of
metastability within the canonical ensemble hence requires the mathematical de-
scription of the propagation of sub-ensembles. This is accomplished by the transfer
operator approach [80]; if we define a transition probability from a sub-ensemble C
into another sub-ensemble B in time τ , denoted by p(τ, C,B) then C will be called
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metastable on a time slice τ if the fraction of the systems in that sub-ensemble which
stays in C after time τ is almost one, i.e. p(τ, C, C) ≈ 1 [51]. Finally, the algorithmic
strategy to decompose the state space into metastable states is based on spectral
properties of the transfer operator [24].

Transition State Theory Since the 1930s transition state theory (TST) and evolu-
tions thereof based on the reactive flux formalism have provided the main theoretical
framework for the description of rare events [37, 95, 97, 7, 15]. Originally, TST was
derived in the context of analyzing the rate of chemical reactions R → P , where R
denotes the reactant and P the product. The idea behind TST is to approximate
the reaction rate k by the mean crossing frequency kTST of transitions from R to P
through a transition state, the dynamical bottleneck for the reaction. Generally, the
transition state can be any dividing surface separating the reactant state R from
the product state P . Then the TST rate, kTST , is proportional to the total flux of
reactive trajectories, i.e., trajectories from the reactant to the product side of the
dividing surface, and can be expressed in terms of thermodynamical quantities.

The TST rate is always an upper bound of the true reaction rate because reac-
tive trajectories can recross the transition state many times during one reaction.
Therefore, the true rate is given by

k = κkTST ,

where κ, the transition coefficient, is a correcting factor accounting for these re-
crossings. Due to this overestimation, several strategies have been proposed to im-
prove the TST rate. For example, the earliest one is called variational TST [50] and
amounts to choose the dividing surface which minimizes the TST rate constant (see
also [91, 94]).

Performing the computation in practice, however, may prove very challenging, and
this difficulty is related to a deficiency of the theory. TST is based on partitioning
the system into two, leaving the reactant state on one side of a dividing surface
and the product state on the other, and the theory only tells how this surface is
crossed during the reaction. As a result, TST provides very little information about
the mechanism of the transition, which has bad consequences e.g. if this mechanism
is totally unknown a priori. In this case, it is difficult to choose a suitable dividing
surface and a bad choice will lead to a very poor estimate of the rate by TST (too
many spurious crossings of the surface that do not correspond to actual reactive
events). The TST estimate is then extremely difficult to correct. The situation is
even worse when the reaction is of diffusive type, since in this case all surfaces are
crossed many times during a single reactive event and there is simply no good TST
dividing surface that exists.

Transition Path Sampling How to go beyond TST and describe rare events whose
mechanism is unknown a priori is an active area of research and several new tech-
niques have been developed to tackle these situations. Most notable among these
techniques are the transition path sampling (TPS) technique of Bolhuis, Chandler,
Dellago, and Geissler [72, 21] and the action method of Elber [35, 36] which allow to
sample directly the ensemble of reactive trajectories, i.e. the trajectories by which
the reaction occurs.
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The basic idea behind TPS is a generalization of standard Monte Carlo Markov
Chain (MCMC) [39, 56] procedures on the trajectory space of the considered dy-
namics. Generally, an MCMC procedure performs a biased random walk on the
configuration space such that the number of visits of a configuration x is propor-
tional to its probability p(x). In TPS a configuration X(T ) = (x0, xΔt . . . , xT ) is a
sequence of states representing a time-discretization of a true dynamical trajectory
of fixed length T rather than individual states of the dynamics itself. The statistical
weight p(X(T )) depends on the initial conditions and on the underlying dynamics.
Since one is only interested in reactive trajectories connecting A and B, TPS finally
performs a random walk on the transition path ensemble with respect to the reactive
path probability

pAB(X(T )) = Z−1
AB(T )1A(x0)p(X(T ))1B(xT ),

where ZAB normalizes the distribution of the transition path ensemble and the char-
acteristic 1A(x) is equal one if x ∈ A and 0 otherwise (1B(x) is defined analogously).

Following [72]:

Metaphorically, TPS is akin to ”throwing ropes over rough mountains
passes, in the dark” where ”throwing ropes” stands for shooting trajecto-
ries, attempting to reach one metastable state from another and ”in the
dark” because high-dimensional systems are so complex that it is gener-
ally impossible to make any prediction on the relevant energy surfaces.

We want to emphasize that reactive trajectories in the transition path ensemble
are true dynamical trajectories, free of any bias by non-physical forces, constraints or
assumptions on the reaction mechanism. The mechanism of the reaction and possibly
its rate can then be obtained a posteriori by analyzing the ensemble of reactive
trajectories. However, these operations are far from trivial. TPS or the action method
per se do not tell how this analysis must be done and simple inspection of the reactive
trajectories may not be sufficient to understand the mechanism of the reaction. This
may sound paradoxical at first, but the problem is that the reactive trajectories
may be very complicated objects from which it is difficult to extract the quantities
of real interest such as the probability density that a reactive trajectory be at a
given location in state-space, the probability current of these reactive trajectories,
or their rate of appearance. In a way, this difficulty is the same that one would
encounter having generated a long trajectory from the law of classical mechanics but
ignoring all about statistical mechanics: how to interpret this trajectory would then
be unclear. Similarly, the statistical framework to interpret the reactive trajectories
is not given by the trajectories themselves, and further analysis beyond TPS or the
action method is necessary (for an attempt in this direction, see [52]).

Transition Path Theory Recently, a theoretical framework to describe the statisti-
cal properties of the reactive trajectories in the context of Markov diffusion processes
has been introduced [34, 92]. This framework, termed transition path theory (TPT),
goes beyond standard equilibrium statistical mechanics and accounts for the non-
trivial bias that the very definition of the reactive trajectories imply – they must be
involved in a reaction.
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TPT allows to understand the statistical properties of the ensemble of all reactive
trajectories (not only reactive trajectories with respect to a fixed length as in TPS)
by giving precise answers to the following questions:

• What is the probability to encounter a reactive trajectory in a given state, i.e.
what is the probability density function of reactive trajectories?

• What is the net amount of reactive trajectories going through a given state,
i.e. what is the probability current of reactive trajectories?

• What is the mean frequency of transitions between two sets, say A and B, i.e.
what is the rate of reaction?

• What are the mechanisms of transitions, i.e. what are the transition tubes or
transition pathways?

The key ingredient in the main objects provided by TPT is the committor function
qAB(x) ≡ q(x) which is the probability to go rather to the set B than to the set A
conditional on the process has started in the state x. The committor function q(x)
can be seen as an abstract reaction coordinate, because under appropriate conditions
on the dynamics the levels sets of the committor function foliate the state space in
sets of equal probability to rather end up in B than A, i.e. it describes the progress
of reaction from A to B in terms of probabilities.

For Markov diffusion processes, the committor function satisfies a boundary value
problem where the involved partial differential operator is the generator of the dif-
fusion process under consideration. Solving the committor equation numerically in
high dimensions is infeasible and, hence, TPT is impractical for the analysis of high
dimensional complex processes.

As a remedy to avoid the ”curse of dimension” we will follow a two-step procedure.
Instead of considering the system in all its degrees of freedom, we will choose appro-
priate low-dimensional observables which allow to describe the effective dynamics of
the system. In the second step the dynamics in these observables is considered on a
coarse grained level, e.g. on a discretization of the image space of the observables,
and modeled as a Markov jump process. As a result the essential dynamics of the
complex system is captured in a discrete transition network (see Figure 1).

For discrete representatives of the sets A and B, discrete TPT [66] allows to
analyze the statistical properties of the associated reactive trajectories, i.e. these
trajectories by which the walkers transit on the discrete state space from A to B
driven by the underlying Markov jump process. Discrete TPT provides discrete
analogs of the probability density, the transition rate and the probability current of
reaction trajectories. Again, these objects depend on a discrete committor function
which satisfies a linear system of equations involving the infinitesimal generator of
the considered jump process. Within this discrete setting, then it is easy to compute
transition rates and, moreover, to identify transition pathways by utilizing Graph
algorithms.

Finally, it is worth to point out that TPT is the theoretical background beyond
the string method [30, 31, 32, 33, 75, 60], which is a numerical technique to compute
the statistical properties of the reactive trajectories directly (that is, without having
to identify these trajectories themselves beforehand as in TPS or the action method)
in complicated systems with many degrees of freedom.
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Figure 1.1.: In this figure we exemplify our strategy to capture the essential dynam-
ics of a bio-molecule in a coarse grained model. The top left panel shows
the ball-and-stick representation of the trialanine dipeptide analog. Top
right: Projection of the time series (all atomic positions) onto the torsion
angle space spanned by Φ and Ψ, which reveals the metastable behavior.
Bottom left: The Ramachandran plot of the torsion angle time series. At
first glance, trialanine attains three different conformations, indicated
by the three clusters. Bottom right: The discrete free energy, − log π,
associated with the stationary distribution π of a Markov jump process
which models the effective dynamics of a system in terms of the torsion
angles Φ and Ψ. The jump process was estimated from the underlying
time series with respect to a 20×20 box discretization of the torsion an-
gle space. The lighter the color of a box the more probable to encounter
the process in that box.
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