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Chapter 1

Introduction

Geometry processing is a rapidly growing research field combining concepts
from mathematics, scientific computing and engineering. Out of the many
challenging problems to focus on in this field, this thesis deals with three
particular problems: one problem related to computer generated animation
and two problems related to shape analysis, specifically differential operator
design and surface segmentation.

We present the corresponding results in three independent chapters. Our
shape animation approach that generalizes the common spline keyframe in-
terpolation to a physically based keyframe interpolation is discussed in Chap-
ter 2. The results in differential operator design that are based on the defi-
nition of a certain feature sensitive surface energy are discussed in Chapter
3. Our surface segmentation approach that aims for a decomposition that is
aware of surface features is discussed in Chapter 4. And finally in Chapter
5, we close with a list of open problems.

In computer animation, the spacetime-constraint paradigm was intro-
duced in [Witkin and Kass, 1988] to generate physically plausible motion.
In general, this approach involves the solution of a high-dimensional con-
straint optimization problem. Usually the problem’s dimension depends on
the degrees of freedom of the object to be animated.

Our method allows the user to create and edit physically plausible motion
at interactive rates for objects with a large number of degrees of freedom,
e.g., elastic soft bodies or thin shells. To achieve this speed, we linearize
and reduce the underlying (possibly) high-dimensional variational problem.
By decoupling the resulting system of ordinary differential equations we can
then reformulate the spacetime problem as a small set of independent one-
dimensional boundary value problems. The solutions to these boundary value
problems are found in the space spanned by the wiggly splines introduced
in [Kass and Anderson, 2008]. In addition to our reduction strategy, the
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8 CHAPTER 1. INTRODUCTION

achieved fast response times also result from our closed-form representation
of the wiggly splines. Generating motion for deformable objects using a re-
duced formulation of the full nonlinear problem is also considered in [Barbič
et al., 2009], but their solution curve is found by a numerical optimization
procedure. To avoid effects resulting from the use of a linearization, we pro-
pose two alternatives that are based on multi-point linearization. We demon-
strate the versatility of our approach on a broad class of shapes, including
one-, two-, and three-dimensional geometries.

In shape analysis, the spectrum and eigenfunctions of the discrete Laplace
operator are excessively explored to identify application relevant isometry
invariant surface properties as discussed in [Clements and Zhang, 2006] and
[Lévy and Zhang, 2009].

We introduce a family of operators that can serve as an alternative to
the discrete Laplace operator for applications in modal shape analysis. In
contrast to the extrinsic-feature insensitive discrete Laplace operator, we in-
troduce operators that are sensitive to extrinsic features. The feature sensi-
tivity of an operator, that is, of its spectrum and eigenfunctions, is controlled
by a single scalar. The operators are constructed from Hessians of quadratic
surface energies that act on surface functions, so they have a concise matrix
representation. The Laplace operator is a member of the introduced operator
family. It corresponds to the feature insensitive operator of this family.

We further show that the spectrum of a certain operator of this family
can be used to estimate the unconstrained stability index of constant-mean-
curvature (cmc) surfaces [Polthier, 2002]. Our estimates for three minimal
surfaces coincide with the results given in [Polthier and Rossmann, 2002].

As an example of a possible shape analysis application, we derive a feature
sensitive point signature and associated feature metric that is based on our
extrinsic-feature sensitive spectra and eigenmodes. We compare the results
of identified surface points by our signature to results given by the Laplace
related heat kernel signature introduced in [Sun et al., 2009].

The generation of a meaningful decomposition of a surface mesh is a
challenging task in shape analysis [Shamir, 2006]. For example, in reverse
engineering, a scanned triangle mesh must be divided into a set of patches
that allows the conversion of this triangle mesh into a low-order spline surface
representation [Várady et al., 2007]. We provide an algorithm for the gener-
ation of a patch layout for CAD surfaces that consists of smoothly connected
weakly curved parts. The construction is based on the generation of a net
of smooth surface curves that run along features, that is, the feature graph.
The final patch layout is then generated by a thickening of the feature graph
curves.
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The following summarizes our contributions to the three problems we con-
sidered.

Animation

• creating and editing of physically based animation for deformable ob-
jects at interactive rates

• closed form solution of the wiggly spline basis functions

• reduced formulation, that allows interpolation and least square approx-
imating of keyframes

• two procedures to overcome linearization artifacts

Differential operators

• introduction of an operator derived from a modified Dirichlet energy
possessing a feature sensitive spectrum and eigenfunctions

• introduction of a family of operators derived from weighted sum of
Dirichlet energy and the modified Dirichlet energy

• a simple operator whose spectrum can be used to estimate the uncon-
strained stability index of a cmc-surface

• a multi-scale point signature and an associated multi-scale feature dis-
tance to identify surface points with respect to extrinsic surface features

Segmentation

• a method to generate a net of curves, running along geometric surface
features

• a curve thickening-offsetting procedure

The results presented in this work have been published in the following ref-
ereed articles:

“Interactive Spacetime Control of Deformable Objects”

Klaus Hildebrandt, Christian Schulz, Christoph v. Tycowicz, and Konrad Polthier

Transactions on Graphics, 31, 2012 (presented at Siggraph2012)

“Modal Shape Analysis beyond Laplacian”

Klaus Hildebrandt, Christian Schulz, Christoph v. Tycowicz, and Konrad Polthier

Computer-Aided Geometric Design, 29, 2012 (presented at GMP2010)

“Patch Layout from Feature Graph”

Matthias Nieser, Christian Schulz, and Konrad Polthier

Computer-Aided Design, 42, 2010
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1.1 Preliminaries and notation

In this work we restrict ourselves to certain types of discrete geometry. They
are described by compact sets Ω ⊂ Rl, where we assume l ≤ 3. Our definition
of these discrete geometries is based on the definition of a simplicial complex
given in [Munkres, 1984] and [Polthier, 2002]. An n-simplex is defined by:

Definition 1 (n-simplex) Let {p1, . . . , pn+1} be a finite set of geometrically
independent points pi ∈ Rl. Then we define the n-simplex σ to be the convex
set

σ (p1, . . . , pn+1) =

{
x ∈ Rl

∣∣∣∣∣x =
n+1∑
i=1

tipi,

n+1∑
i=1

ti = 1, ti ≥ 0

}
.

The dimension d of an n-simplex σ is d = n. We refer to any simplex
spanned by a subset of {p1, . . . , pn+1} as a face of σ. In this work, we will
only deal with low-dimensional n-simplices, that is, n ≤ 4. By σ0, σ1, σ2,
σ3, we refer to a zero-, one-, two-, or three-dimensional simplex, respectively.
They correspond to vertices, edges, triangles, or tetrahedra.

Definition 2 (Simplicial Complex) A simplicial complex K in Rl is a
finite collection of simplicies in Rl such that:

1. every face of a simplex contained in K is in K; and

2. the intersection of any two simplices of K is a face of each of them.

A subset L ⊂ K that is itself a simplicial complex is called a subcom-
plex. An example of a subcomplex is the complex containing all simplices
of dimension at most d, denoted by K(d). The simplices of K(0) are called
vertices.

For a simplicial complex K, the compact set |K| ∈ Rl is defined by

|K| =
⋃
k

σk
(
pk1 , . . . , pkn+1

)
, with σk ∈ K. (1.1)

The topology of the set |K| is the induced topology of Rl. For pi ∈ K(0) we
define the set A∗(pi) ⊂ Rl as the union of all simplices σ ∈ K containing
pi. The set A∗(pi) corresponds to the union of a finite number of closed sets.
Therefore A∗(pi) is closed.
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Figure 1.1: Two examples of geometric realizations: a triangulated surface,
which is a simplicial geometry on the left and two tetrahedra connected by
a line, which is not a simplicial geometry on the right.

Definition 3 (Abstract Simplicial Complex) Let V = {v1, . . . , vm} be
a finite set of abstract points. A set S(V ) ⊂ P(V ), where P(V ) denotes the
power set of V , is called an abstract simplicial complex if for all elements
σ ∈ S(V ), every subset τ ⊂ σ is also contained in S(V ).

The set V is called the vertex set of the abstract simplicial complex S(V ).
The elements σk ∈ S(V ) are called simplices or, simply, cells.

Given a map P : V → Rl, where for brevity P (vi) = pi, we define a map
σk 7→ |σk| ⊂ Rl for each n-simplex σk ∈ S(V ) where |σk| = σ

(
pk1 , . . . , pkn+1

)
with pki = P (vki) and vki ∈ σk.

We call the result of a general mapping P a realization of S(V ). If the
resulting set of n-simplices forms a simplicial complex K (see Definition 2)
then K is called a geometric realization of S(V ). Two examples of geometric
realizations are shown in Figure 1.1.

The canonical realization of an abstract simplicial complex S(V ) is a
certain mapping Pca : V → Rn with Pca(vj) = [δ1,j, . . . , δi,j, . . . , δn,j], where
δi,j denotes the Kronecker delta.

Using the canonical realization, we can define a certain abstract simplicial
complex which we call:

Definition 4 (Simplicial Geometry) A simplicial geometry Sd(V ) is an
abstract simplicial complex S(V ) whose canonical realization is a simplicial
complex K with the following properties:

1. Sd(V ) only contains n-dimensional cells, with n ≤ d

2. for each pi ∈ K(0), the closed set A∗(pi) ⊂ Rn is homeomorphic to the
closed unit d-ball.

The realization of Sd(V ) given by a map P : V → Rl is denoted by Kd,l. In
particular, we call K2,3 a simplicial surface and K3,3 a simplicial volume. For
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Figure 1.2: Illustration of the possible homeomorphic mappings of A∗(pi) to
the closed unit disc for points of a simplicial geometry S2(V )

a simplicial surface, we refer to S2(V ) and K2,3 byM andMh, respectively.
The two possible homeomorphic mappings of A∗(pi) with vi ∈M to the unit
disc are shown in Figure 1.2. For a simplicial volume, we refer to S3(V ) and
K3,3 by V and Vh, respectively.



Chapter 2

Interactive Spacetime Control

In traditional computer animation, the motions of objects or characters are
typically generated from keyframes that specify values for all of the object’s
or character’s degrees of freedom at a sparse set of points in time. The con-
tinuous motion is obtained by fitting splines through the keyframes. This
technique is attractive since it offers an adequate amount of control over the
motion at a low computational cost. One drawback for this technique, how-
ever, is that it offers little help to an animator who wants to create physically
plausible motion. Moreover, splines are designed to produce functions with
high fairness, e.g., functions with few extrema and inflection points, whereas
the motion of objects or characters is often oscillatory.

Physical simulation can produce realistic motion, but it is a delicate task
to explicitly determine forces and physical quantities that produce the mo-
tion that matches an animator’s intentions. This is aggravated by the fact
that physical simulations are integrated forward in time, which means that
small changes at some point in time can have a large impact on the state
of the system at a later time. Control over a simulation can be achieved by
computing optimal physical trajectories that are solutions of a variational
spacetime problem. Such techniques calculate acting forces that minimize
an objective functional while guaranteeing that the resulting motion satisfies
prescribed spacetime constraints, e.g., that it interpolates a set of keyframes.
Resulting forces are optimally distributed over the whole animation and show
effects like squash-and-stretch, timing, or anticipation that are desired in an-
imation. However, the computational cost for obtaining these results is that
of solving a spacetime optimization problem. To date, recent methods —
even those that use dimension reduction techniques — still require at least
several minutes to solve the optimization problem for an interesting motion
of an object or character.

We describe the elementary assumptions on which our approach is based

13



14 CHAPTER 2. INTERACTIVE SPACETIME CONTROL

in Section 2.2. This includes a definition of a class of objects and a description
of the expected dynamical properties and their implications. Then we show
one-, two-, and three-dimensional example shapes and dynamic models that
fit into this setting in Section 2.3. A description of the spacetime problem
and a derivation of its linearization is given in Section 2.4. We then present
two strategies to combine multiple linearized dynamic models to capture
nonlinear behavior in Section 2.8. How the method can be applied to objects
possessing a large number of degrees of freedom is shown in Section 2.7.
Finally, in Section 2.8.3 we discuss our results.

2.1 Background

Variational problems with spacetime constraints were introduced to com-
puter animation by [Witkin and Kass, 1988]. Their example of the jumping
Luxo lamp nicely demonstrates the benefits of this approach. Since then the
spacetime constraints paradigm has stimulated much research (see [Fang and
Pollard, 2003,Safonova et al., 2004] for a detailed summary).

Based on spacetime constraints, techniques for generating physically plau-
sible motions for various types of physical systems including ropes and strings
[Barzel, 1997], rigid body motions [Popović et al., 2003], fluids [Treuille et al.,
2003, McNamara et al., 2004], particle systems [Wojtan et al., 2006], and
elastic solids [Barbič et al., 2009] have been proposed. The generation of hu-
man motions was also attempted using a spacetime constraint formulation,
see [Gleicher, 1997, Fang and Pollard, 2003, Safonova et al., 2004, Chai and
Hodgins, 2007].

The associated constrained optimization problems are typically high di-
mensional and are usually solved with gradient-based approaches or Newton
methods. Local-to-global strategies, called spacetime windowing, were de-
veloped to speed up the solvers by [Cohen, 1992] and by [Treuille et al.,
2003]. A particular problem when determining the optimal trajectory is the
calculation of the derivatives of the objective functional that captures the
physical plausibility of the motion. Automatic and symbolic differentiation
has been used by many researchers such as [Witkin and Kass, 1988,Fang and
Pollard, 2003,Safonova et al., 2004] and spacetime constraints serve as one of
the main target applications for the development of algorithms for automatic
differentiation in graphics, see [Guenter, 2007].

Model reduction is an established technique in solid mechanics that can
be used to accelerate simulations of elastic solids [Nickell, 1976,Idelsohn and
Cardona, 1985,Krysl et al., 2001]. In graphics [Pentland and Williams, 1989]
pioneered work in this area by using modal analysis to automatically gener-
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ate reduced spaces. Based on an efficient representation of the forces in the
reduced space, [Barbič and James, 2005] obtained real-time rates for forward
simulation of elastic solids. In addition, they extended the automatic gener-
ation of subspaces to include modal derivatives, which helps to improve the
approximation of large deformations. [Treuille et al., 2006] and [Wicke et al.,
2009] used reduced spaces constructed from eigenmodes for fluid dynamics.

In geometry processing, reduced spaces were used for interactive mod-
eling of triangular meshes by [Huang et al., 2006] and [Hildebrandt et al.,
2011]. [Kim and James, 2009] used model reduction to speed up the calcula-
tion of large simulations for animation by skipping full steps if the reduced
steps satisfy an accuracy condition. The reduced model is not built in a
preprocess but online as the simulation progresses. Reduced spaces have also
been used for spacetime constraints. For human motions, [Safonova et al.,
2004] and [Sulejmanpašić and Popović, 2005] constructed reduced spaces
from motion capture data. [Barbič et al., 2009] constructed reduced spaces
for deformable objects automatically from the keyframes by using vibration
modes and tangents of a deformation curve that is fitted to the keyframes.
This technique for constructing reduced spaces is similar to the way we con-
struct reduced spaces. However, our method allows us to work in larger
reduced spaces than theirs.

Geometric interpolation between two or more shapes is also related to
spacetime constraints. The variational problem for geodesics in shape spaces
has a comparable complexity and solvers need to deal with varying curves in
shape spaces as well. Efficient multiresolution solvers for computing geodesics
in shape spaces were proposed by [Kilian et al., 2007] and by [Wirth et al.,
2009].

2.2 Setup

We start with the definition of the shape space in Section 2.2.1. It will be used
to describe all possible configurations of a discrete geometry. In Section 2.2.2
we describe a general procedure to define the dynamic behavior of a discrete
object with respect to its configuration space representation. This includes a
description of the linearized dynamic model around a certain state. We show
that the dynamics are based on two mappings: a scalar valued function and
a metric. A certain type of this scalar valued function is described in more
detail in Section 2.2.3.
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2.2.1 Shape space

In general, discretizing a smooth object by a finite set of samples results in
a point set equipped with a mesh structure. This mesh usually describes
the smooth object’s extension in space. Common mesh types are triangula-
tions, quadrangulations, tetrahedral grids, or cubical grids. We will restrict
ourselves to meshes describing simplicial geometries, see Section 1.1. Since
the method can be easily extended to more general mesh types, we refer to
the simplicial geometry as a discrete object with a grid structure given by
G = S(V ). We will also assume that the discrete object’s grid structure G
is fixed.

We follow [Kilian et al., 2007] for the definition of a shape space. Given
a simplicial geometry Sd(V ), a configuration is a mapping P : V → Rl,
where V denotes the vertex set of Sd(V ). Then we can define the set of all
configuration by:

Xall =
{
P | P : V → Rl

}
. (2.1)

A mapping P ∈ Xall corresponds to P (V ) = {p1, . . . , pn} with pi ∈ Rl. It
can be identified with a point p ∈ Rnl. In coordinates this identification
reads p = [p1i , . . . , p1l , . . . , pni , . . . , pnl ], so we have Xall ∼= Rnl.

We refer to the number of degrees of freedom of a discrete object by d. In
the constraint free case, each pi can vary in l directions, so we have d = nl.
We will also consider constraints of the form:

c([p1, . . . , pn]) = 0. (2.2)

This results in a reduced number of degrees of freedom, that is, d = nl− nc,
where nc is the number of constraints, each given by Equation 2.2. We denote
by X ⊆ Xall the corresponding set of configurations meeting the constraints,
i.e.,

X =
{
p ∈ Xall | c1(p) = 0, . . . , cnc(p) = 0

}
. (2.3)

In accordance with [Kilian et al., 2007], we refer to the set X ⊆ Rnl as the
shape space. In the constraint free case we have X = Rnl.

2.2.2 Dynamics

To derive the dynamics for a discrete object, we follow the Lagrange for-
malism. In classical mechanics this formalism is usually used to derive the
equations of motion for constrained and unconstrained physical systems. For
a good introduction, we refer to [Josef Honerkamp, 1993] and [Scheck, 2007].
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We will assume that we have nc regular constraints given by Equation 2.2
that define a d-dimensional manifold of permissible configurations X. Fur-
thermore, we assume a proper choice of d local coordinates xi that parametr-
rize an open set U ⊆ X. That is, for an open set V ⊆ Rd we have a mapping
A : V → U ⊆ Rnl or, in coordinates, p = A(x) with x = (x1, . . . , xd) for
each configuration p ∈ U. According to the Lagrange formalism, these d
coordinates are referred to as generalized coordinates.

With this parametrization we will describe the motion of a discrete object
by curves in Rd. We refer by Ck [a, b] to k-times differentiable functions
f : R→ R. Further by Ck

0 [a, b] ⊂ Ck [a, b] we denote the subset of compactly
supported functions. Then we define the set of k-differentiable curves as:

Cka,b
(
Rd
)

=
{
x : [a, b]→ Rd |a, b ∈ R, x(t) = [x1(t), . . . , xd(t)]

with xi(t) ∈ Ck [a, b]
}
.

The final motion in the shape space is then given by A(x(t)) ∈ U.
Now we briefly review the quantities that are needed for a finite dimen-

sional space Rd to set up the dynamics for a discrete object with respect
to its generalized coordinates. For a thorough discussion of these quantities
we refer to [Jost, 2008]. The tangent space and dual space at x ∈ Rd are
denoted by Tx and T ∗x , respectively. In addition to the subscript ·i to denote
the i-th coordinate of a point, vector, or dual vector, we use [·]i. Elements
v ∈ Tx correspond to vector fields on the discrete object. The space of sym-
metric and symmetric positive definite d × d matrices is denoted by SYMd

and SYM+
d , respectively. Then a metric on V is defined by a smooth map-

ping M : V → SYM+
d . We denote the associated inner product and norm

by 〈v, w〉M(x) and ‖v‖M(x), respectively, with v, w ∈ Tx. For a differentiable

function f : V→ R the dual vector df and the symmetric bilinear form d2f
at x are given by:

df =
[

∂f
∂x1

. . . ∂f
∂xd

]T
and

d2f =

d
2f1,1 d2f1,d

. . .

d2fd,1 d2fd,d

 (2.4)

where the entries of d2f are

d2fi,j =
∂2f

∂xj∂xi
−

d∑
k=1

∂f

∂xk
Γki,j.
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The Γdi,j are the Christoffel symbols of the metric M(x). Then for a differ-
entiable function f : V→ R, its gradient ∇f is defined by:

〈∇f, v〉M(x) = df(v) ∀v ∈ Tx
∇f = M−1(x)df

and its Hessian ∇2f is:〈
∇2fv, w

〉
M(x)

= d2f(v, w) ∀v, w ∈ Tx
∇2f = M−1(x)d2f

with respect to the inner product 〈·, ·〉M(x).
In terms of classical mechanics, our constraints given by Equation 2.2

are of holonomic and scleronomic type. Therefore the resulting equation of
motion for an unconstrained system and for a constrained system have the
same form, see [Scheck, 2007].

Following the Lagrange formalism, we have to express the kinetic energy
and the acting forces in generalized coordinates xi. The kinetic energy is a
quadratic functional and is given by:

Ekin(x, v) =
1

2
vTM(x)v with v ∈ Tx,M(x) ∈ SYMd

+.

Then a trajectory x ∈ C2
a,b(R

d) solves the following system of d differential
equations for t ∈ [a, b]:

d

dt

∂Ekin (x, ẋ)

∂ẋi
− ∂Ekin (x, ẋ)

∂xi
= Fi, (2.5)

where F denotes the generalized force given by a dual vector field on Rd. We
split the generalized force into two components F = Fc + Fnc. In contrast
to the nonconservative force Fnc, the conservative force Fc(x) can be derived
from a potential. That is Fc(x) = −dEpot(x) with the potential Epot : V →
R. Usually the potential is a sum of potentials Epot = VI + VE. Inner
conservative forces, i.e., forces resulting from shape changes, are modeled by
VI . External conservative forces, e.g., gravitation or center force fields, are
described by the potential VE. Then the acting force can be rewritten as

F = −dEpot + Fnc.

Using this split force, the trajectory defining Equation 2.5 yields

d

dt

∂L (x, ẋ)

∂ẋi
− ∂L (x, ẋ)

∂xi
= [Fnc]i , (2.6)
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where the Lagrangian L(x, ẋ) is defined by

L(x, ẋ) = Ekin (x, ẋ)− Epot(x).

By also considering dissipation effects, we add a damping term D(x, ẋ) to
the Langrangian. Then the equations of motion derived from Equation 2.6
become

M(x)ẍ+D(x, ẋ) + dEpot(x) = Fnc. (2.7)

Equation 2.7 covers discretizations of mechanical systems with finite ele-
ments, finite differences, simple spring systems, and geometrically moti-
vated discrete systems, see [Terzopoulos et al., 1987,Pentland and Williams,
1989,Shabana, 1997,Baraff and Witkin, 1998,Barbič and James, 2005,Chao
et al., 2010]. In simulation, a trajectory x ∈ C2

a,b(R) is then given as a solution
to the initial value problem given by the d second-order nonlinear ordinary
differential equations of Equation 2.7.

A common damping assumption is to use Rayleigh damping. ThenD(x, ẋ)
has the form:

D(x, ẋ) = (αM(x) + β d2Epot(x))ẋ with α, β ∈ R. (2.8)

We set Fnc = 0 to guarantee the decoupling of the linearized equations
of motion. To linearize Equation 2.7 around a state x ∈ Rd, we set x(t) =
x+u(t) where u : R→ Tx. By Taylor expansion, a first-order approximation
of the conservative forces in a direction v ∈ Tx is given by

dEpot(x + tv) ≈ dEpot(x) + td2Epot(x)v. (2.9)

Replacing G = dEpot(x), K = d2Epot(x) and M = M(x) in Equation 2.7 the
linearized equations of motion around the state x are then given by

Mü+ (αM + βK)u̇+ Ku+ G = 0. (2.10)

The set of equations defined by Equation 2.10 is a system of second order
coupled linear ordinary differential equations.

By construction, we have M ∈ SYM+
d and K ∈ SYMd. Following [Pent-

land and Williams, 1989], the solution to the generalized eigenvalue problem

λiMφi = Kφi (2.11)

can be used to decouple Equation 2.10. We assemble the eigenvectors φi ∈ Tx
and eigenvalues λi into the matrices Φ and Λ, where

Φ =

 | |
φ1 . . . φd
| |


d×d

Λ =

 λ1

. . .

λd


d×d
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We refer to the coordinates with respect to the decoupling basis Φ as ω-
coordinates. The expressions for M, K and G in ω-coordinates are

1 = ΦTMΦ

Λ = ΦTKΦ

g = ΦTG.

Then the system of d decoupled equations of motion in ω-coordinates now
takes the form

1ω̈(t) + (α1+ β Λ)ω̇(t) + Λω(t) + g = 0, ω(t) ∈ Rd. (2.12)

The linearized solution to the full system in Equation 2.7 with respect to
ω-coordinates is mapped to a trajectory x(t) in generalized coordinates by

x(t) = x + Φω(t).

In mechanics, the decoupling is usually performed around an equilibrium
state x ∈ Rd, i.e., where dEpot(x) = 0. The eigenvectors φi are then referred
to as vibration modes, see [Pentland and Williams, 1989]. We can see from
the expansion in Equation 2.9 that at an equilibrium state x, an eigenvalue
λi denotes a change in the potential when deformed along the corresponding
eigenvector φi ∈ Tx up to the third-order, that is, λi ≈ (Epot(x) + φi) −
Epot(x).

We refer to the set of decoupled equations in Equation 2.12 as the linear
dynamic model around x. We see that to determine a linear dynamic model,
two mappings are required: a metric M(x) and a potential V (x).

2.2.3 Inner potentials

An inner potential V (x) is used to measure shape changes of a discrete object.
We assume a d-dimensional set of generalized coordinates so that the inner
potential or, simply, a potential can be expressed by a mapping VI : V→ R,
where V ⊆ Rd as defined in Section 2.2.2. A certain type of potential can
be derived from a deformation energy, that is, from a differentiable function
ED : V×V→ R+ with ED (x, x) = 0. For a discrete objects equipped with
a grid structure G, we define a cell based energy ED(x1, x2) by:

ED(x1, x2) =
1

2

∑
σi∈GE

ωσi(x1)
(
f sσi(x2)− f sσi(x1)

)2
, ωσi ∈ R+. (2.13)

The sum in Equation 2.13 runs over a subset of mesh cells given by GE ⊆ G.
The functions f sσi : Rd → R are evaluated for each mesh cell σi ∈ GE, where
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s denotes the number of points pi on which it depends. We define these
functions as a composition of two mappings, that is, f sσ(x) = hsσ ◦ πsσ(A(x)).
The mapping hsσ : Rsl → R is associated to the cell σ. The function πsσ :
Rnl → Rsl is the projection given by

πsσi


 p1

...
pn


 =

 pi1
...
pis

 .
The energies defined by Equation 2.13 measure the deviation of the state x2

from state x1 based on weighted differences of f sσ on each mesh cell σi ∈ GE.

Fixing a configuration x ∈ Rd, the inner potential derived from a de-
formation energy becomes VI(x) = ED (x, x). We refer to the set R ={
x ∈ Rd V (x) = 0

}
as the set of rest states of the potential function. The

derived inner potential measures how much the given state x deviates from
the set of rest states R. For x ∈ R, the potential V (x) reaches its global
minimum, that is, we have dV (x) = 0 and the matrix d2V (x) is at least pos-
itive semi-definite. In this case, the eigenvectors φi corresponding to smaller
eigenvalues point into the directions with the least increase in energy. For
the potential V (x), the partials needed for the computation of dV (x) and
d2V (x) are given by:

∂V (x)

∂xj
=
∑
σi∈GE

ωσi
(
f sσi(x)− f sσi(x)

) ∂f sσi(x)

∂xj

∂2V (x)

∂xk∂xj
=
∑
σi∈GE

ωσi

(
∂f sσi(x)

∂xk

∂f sσi(x)

∂xj
+
(
f sσi(x)− f sσi(x)

) ∂2f sσi(x)

∂xk∂xj

)
.

For x ∈ R the computation of the entries of d2V (x) simplifies because it
only involves the first partials of the f sσi ’s. Furthermore since dV (x) = 0, we
see from Equation 2.4 that the entries depending on the Christoffel symbols
vanish for the computation of d2V (x).

For the deformation energy in Equation 2.13, we further state

Lemma 1 (Kernel) Let V (x) be a potential and Φ(t, x) : R × Rd → Rd

a mapping for which f sσi(x) = f sσi(Φ(t, x)), ∀σi ∈ GE. Then for x ∈ R the

linearized variation v ∈ Tx defined by v = dΦ(t,x)
dt

∣∣∣
t=0

is contained in the kernel

of d2V (x).

Proof. Since Φ(t, x) is an invariant of the component function f sσi(x), we
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have

df sσi(Φ(t, x))

dt

∣∣∣∣
t=0

=
∂f sσi(x)

∂x1

dΦ(t, x)1

dt

∣∣∣∣
t=0

+ . . .+
∂f sσi(x)

∂xd

dΦ(t, x)d
dt

∣∣∣∣
t=0

=
∑
j

∂f sσi(x)

∂xj
vj

= 0.

The Taylor expansion of V (x) with x ∈ R up to second order is given by

V (x+ tw) =
∑
σi∈GE

t2
ωσi
2
wT


∂fsσi (x)

∂x1

∂fsσi (x)

∂x1
. . .

∂fsσi (x)

∂x1

∂fsσi (x)

∂xd
. . .

∂fsσi (x)

∂xd

∂fsσi (x)

∂x1
. . .

∂fsσi (x)

∂xd

∂fsσi (x)

∂xd

w
=
∑
σi∈GE

t2
ωσi
2

(∑
j

∂f sσi(x)

∂xj
wj

)(∑
k

∂f sσi(x)

∂xk
wk

)
.

Set w = v and we have V (x+ tv) = 0, as stated.

The dimension of the kernel of d2V (x) equals the multiplicity of the eigen-
value λ = 0. We can deduce that if we have n invariants Φi(t, x), the mul-
tiplicity of λ = 0 for d2V (x) with x ∈ R is at least of the dimension of
span {dΦ1(t, x)/dt, . . . , dΦn(t, x)/dt}.

This concludes our description of a system with a finite number of degrees
of freedom and the necessary quantities to define a linearized dynamic model.
We will now show some examples that meet these requirements.

2.3 Examples

In this section we give examples of shape spaces X for one-, two-, and three-
dimensional discrete objects and a possible choice of generalized coordinates.
For each type, we present functions V (x) and M(x) to set up the dynamics
as described in Section 2.2.2.

In Section 2.3.1, we give two examples of discrete objects that can be
modeled by polygonal structures. These two examples have a small number
of degrees of freedom and use a kinetic energy that corresponds to a metric
given by a dense matrix.

Discrete objects modeling deformable objects having a large number of
degrees of freedom are presented in Section 2.3.2 and Section 2.3.3. We con-
sider the dynamics for a geometric based thin shell energy for triangulations
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Figure 2.1: Two examples of n-chain models: planar rod model of consisting
of four point masses using a 3-chain (left) and the Luxo lamp from [Witkin
and Kass, 1988] modeled by a 6-chain (middle). On the right is an illustration
of the angle measured by the component function f 3

σ0
i
(x) which is used in the

definition of the potentials for n-chains.

and a model for a three dimensional linear elastic material for tetrahedral
sets. For these two object types we use a metric that is given by a sparse,
in particular a diagonal, matrix. Thus with the corresponding kinetic energy
these objects are treated as a set of point masses.

2.3.1 n-Chain

By an n-chain, we refer to a discrete object equipped with a mesh structure
consisting of n edges. This type of discrete object can be used to model
a connected system of joints. Two examples are shown in Figure 2.1. We
assume that the polygonal mesh corresponds to a connected circle-free graph
and that pi ∈ R2, i.e., l = 2. In the constraint-free case we have d = 2(n+ 1)
degrees of freedom. We will fix the edge lengths li,j. That is, we impose n
constraints of the form in Equation 2.2 by

ci(p1, . . . , pn) = ‖pi1 − pi2‖ − li1,i2 ∀σ1
i {vi1 , vi2} ∈ G.

These n constraints reduce the number of degrees of freedom to d = n + 2.
We choose as generalized coordinates the position of one vertex and the edge
orientations, i.e., a configuration is given by x = A(x1, y1, θ1, . . . , θn), see
Figure 2.1.

An example of an n-chain is a planar rod shown in Figure 2.1, left. It
consists of n+ 1 connected points pi with mass mi. Choosing a certain con-
figuration x, we additionally fix the position of p1 to the length constraints.
Then a possible set of generalized coordinates to parametrize an open set
U ⊂ X are the edge orientations, i.e., p = A(x)., with x = (θ1, . . . , θn) (see
Figure 2.1, left). The quadratic form M(x) defining the kinetic energy of
this system is described in the Appendix.
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λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

Figure 2.2: Vibration modes for a planar rod having point masses set to
one. The rest state is shown in grey. Four vibration modes with non-zero
gravitation, i.e., g = 9.81 with 0.024 < λi < 78.0 (left) and four vibration
modes with zero gravitation, i.e., g = 0.0 with 0.01 < λi < 1.25 (right).

The deformation energy is defined for the vertices GRod
E =

{
σ0

1, . . . , σ
0
n−1

}
.

In the general form of Equation 2.13, it is described by:

ωσ0
i

=
1

2
, f sσ0

i
(x) =

{
f 2
σ0
1
(x) = θ1 σ0

i = σ0
1

f 3
σ0
i
(x) = θi − θi−1 otherwise

σ0
i ∈ GRod

E

The associated potential V (x) measures the deviation of the actual config-
uration x to x based on differences in θ1 and relative edge orientations f 3

σ0
i
,

see Figure 2.1 right. Examples of all four vibration modes for a 4-chain for
a planar rod are shown in Figure 2.2.

The Luxo lamp model was introduced in [Witkin and Kass, 1988]. It
can be described by the 6-chain shown in Figure 2.1 middle. In addition
to fixing the edge lengths, we also fix the angle between the edges {v1, v2}
and {v1, v6} and the angle between the edges {v1, v2} and {v1, v7}. Then a
possible set of generalized coordinates to parametrize an open set U ⊂ X
is x = (x1, y1, θ1, θ2, θ3, θ4), that is, the position of one vertex and four edge
orientations. In [Witkin and Kass, 1988] the edges σ1

i are assumed to model
planar rigid bodies. In this case, the quadratic form M(x) describing the
kinetic energy corresponds to the sum of the kinetic energy of the connected
six planar rigid bodies. Its entries are given in the Appendix. The deforma-
tion energy is defined for the vertices GLuxo

E = {σ0
2, σ

0
3, σ

0
4}. In the general

form of Equation 2.13, it is described by:

ωσ0
i

=
1

2
, f 3

σ0
i
(x) = θi − θi−1 σ0

i ∈ GLuxo
E

The component functions f 3
σ0
i

(see Figure 2.1 right) are invariant with respect

to planar rigid motions. Hence the kernel of d2V (x) is two-dimensional for
x ∈ R. The vibration modes corresponding to the four remaining nonzero
eigenvalues, i.e., λi > 0, for the Luxo model are shown in Figure 2.3.
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λ3 λ4 λ5 λ6

Figure 2.3: Vibration modes for the Luxo model with equal mass distribution.
Vibrations for λ1 = λ2 = 0 correspond to planar translations. From left to
right: rest state and the Luxo model deformed along the four vibrations
modes corresponding to the nonzero eigenvalues {λ3, λ4, λ5, λ6}.

2.3.2 Discrete shells

Thin shells are a class of three-dimensional objects that can be modeled by
a two-dimensional surface with thickness h > 0, where h is small compared
to its diameter. The middle surface of a thin shell is used to describe its
dynamic behavior. Two possible ways to derive a dynamic model are by
asymptotic analysis or by using geometric considerations.

By using asymptotic analysis, a thin shell energy can be derived by a limit
process from an energy defined for a three-dimensional object. For a thorough
discussion of asymptotic analysis for thin shells, see [Ciarlet, 2004, Ciarlet,
1997].

Energies based on geometric assumptions use quantities from differential
geometry evaluated on the middle surface to define an energy for thin shells.
Usually the energies are designed in such a way that they share certain prop-
erties with general energies for shape changes used in classical mechanics,
e.g., invariance with respect to rigid motions.

Let f be a smooth surface given by a mapping f : Ω ⊂ R2 → R3. Its
metric tensor is denoted by gf : Ω → SYM+

2 and its curvature tensor by
bf : Ω → SYM2. Given the undeformed and deformed state of a surface by
mappings f0 and fd, respectively, a geometric energy that is invariant to rigid
motions to measure the deviation is defined by:

E(f, h) =

∫
Ω

(α ‖gf0 − gfd‖
2 + β ‖bf0 − bfd‖

2)dA, (2.14)

see [Terzopoulos et al., 1987]. This equation measures the change between
f0 and fd with respect to differences in metric and curvature properties. The
constants α, β ∈ R+ in Equation 2.14 determine the energy’s sensitivity to
intrinsic and extrinsic surface changes, respectively. Alternatively geometric
energies can be derived from distances between the differential of a deforma-
tion and the rotation group, see [Sorkine and Alexa, 2007].
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λ7 λ9 λ11 λ18

Figure 2.4: Lower vibration modes for the flour sac model. The rest state
is shown on the left. Deformations along the vibration modes corresponding
to the eigenvalues λ7, λ9, λ11 and λ18 (from left to right). The vibrations for
λ1 = · · · = λ6 = 0 correspond to linearized rigid motions.

We will assume that the discrete object describing a smooth surface is
given by a simplicial surface M with Mh ⊂ R3 (see Section 1.1). In the
constraint-free case we can choose the set of generalized coordinates by x = p,
i.e., x ∈ R3n. To derive a potential, we consider the discrete shells energy
introduced in [Grinspun et al., 2003]. This energy is a weighted sum of two
energies given by

EDS(x1, x2) = αEF (x1, x2) + βEM(x1, x2). (2.15)

The components are referred to as the flexural energy EF (·, ·) and the mem-
brane energy EM(·, ·). The flexural term measures differences in mesh prop-
erties related to curvature, whereas the membrane term is sensitive to metric
changes.

This separation into an intrinsic and extrinsic term resembles the split-
ting used in the smooth case given in Equation 2.14. The weights α and
β reflect properties of the material to be simulated, for example, in cloth
simulation the membrane energy is usually given a high weight due to the
stretch resistance of cloth.

The energies used for the parts EF (·, ·) and EM(·, ·) fit into the class of
cell based deformation energy defined in Equation 2.13. The flexural term
is given as a summation over the edges σ1

i ∈ M of the triangulation. In the
general form of Equation 2.13, it is described by:

f 4
σ1
i
(x) = θi(x) and ωσ1

i
(x) =

3lσ1
i
(x)2

Aσ1
i
(x)

.

Here θi(x) is the dihedral angle at the edge σ1
i . The combined area of the two

triangles incident to edge σ1
i is denoted by Aσ1

i
(x) and lσ1

i
(x) is the length of

the edge.
The membrane energy EM(·, ·) is a sum of two terms: EM(x1, x2) =

EL(x1, x2) + EA(x1, x2). The first term EL(x1, x2) is a sum over edges mea-
suring the change in length. In the general form of Equation 2.13, it is
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described by:

f 2
σ1
i
(x) = lσ1

i
(x) and ωσ1

i
(x) =

1

lσ1
i
(x)

.

EA(x1, x2) is a sum over triangles measuring changes in area. In the general
form of Equation 2.13, it is described by:

f 3
σ2
i
(x) = Aσ2

i
(x) and ωσ2

i
(x) =

1

Aσ2
i
(x)

,

where Aσ2
i
(x) denotes the area of the triangle σ2

i . The discrete shell energy
EDS(·, ·) is only computable on a set of appropriate triangulations ΩDS ⊂ X.
This set contains only triangulations having triangles of nonzero area, i.e.,

ΩDS =
{
x ∈ Rd | Aσ2

i
(x) > 0, ∀σ2

i ∈M
}
.

Its complement Ω{
DS = X\ΩDS can be written as the union of a finite number

of closed sets:

Ω{
DS =

⋃
A0
σ2
i
∀σ2

i ∈M

A0
σ2
i

= {x ∈ Rd | Aσ2
i
(x) = 0}.

Hence ΩDS is open. We will assume that a given triangulation corresponds
to a configuration x ∈ ΩDS. This guarantees that the associated discrete
shell potential VDS(x) is differentiable.

For the matrix MDS(x) that defines the kinetic energy we use mass lump-
ing. This means MDS(x) is diagonal with entries:

m3i,3i = m3i−1,3i−1 = m3i−2,3i−2 =
1

3

∑
vi∈σ2

j

Aσ2
j
(x) 1 ≤ i ≤ n.

Restricting to configurations x ∈ ΩDS ensures that MDS(x) ∈ SYM+
3n. Thus

for x ∈ ΩDS we can determine the linearized decoupled dynamical model by
Equation 2.11.

For a given triangulation, the dihedral angles, edge lengths, and triangle
areas are invariant with respect to rigid motions. This gives six invariants for
the component functions f 4

σ1
i
, f 2

σ1
i
, and f 3

σ2
i

used in the definition of the flexural

and membrane part of EDS(·, ·). Thus the kernel of d2VDS(x) with x ∈ R
is at least six-dimensional containing the linearized directions of translations
and rotations. Deformation captured by vibration modes for the flour sac
model are shown in Figure 2.4.
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2.3.3 Solids

A configuration of a three-dimensional body is given by a set Ω ⊂ R3, see
[Ciarlet, 2005]. In elasticity, changes in Ω are measured with respect to a
certain rest state configuration Ω0 ⊂ R3. We denote the set of k differentiable
vector fields on Ω by V k(Ω), that is,

V k(Ω) =
{
u = (u1, u2, u3) |ui : Ω→ R and ui ∈ Ck for i = 1, 2, 3

}
.

For hyperelastic materials, the possible deformations away from the rest state
are described by vector fields u ∈ V k(Ω0). Furthermore, the forces resulting
from a deformation can be derived from a potential V : V k(Ω0)→ R. Under
the assumption of a St.Venant-Kirchhoff material, i.e., a material that ex-
hibits hyperelastic, isotropic, and homogenous behavior, the potential V (·)
is given by:

V (u) =

∫
Ω0

W (u(x))dx for u ∈ V 1(Ω0)

where

W (u) =
λ

2
(trE(u))2 + 2µtrE(u)2

with λ, µ ∈ R and E ∈ SYM3 with entries eij defined by

eij =
∂ui
∂xj

+
∂uj
∂xi

+
3∑

k=1

∂uk
∂xi

∂uk
∂xj

.

The integrand W (·) defining the potential is called the stored energy func-
tion. The matrix E(u) is the Green-St.Venant strain tensor. By defini-
tion it removes translational and linearized rotational components from the
vector field u. The two scalars λ and µ defining the material properties
are referred to as Lamé parameters. If µ > 0 and 3λ + 2µ > 0, then
W (u) ≥ 0 ∀u ∈ V 1(Ω0). Thus this choice of Lamé parameters ensures
that d2V (0) is positive semi-definite.

Discrete objects describing three-dimensional solids are equipped with
meshes containing volumetric cells. We assume that a solid is described by a
tetrahedral mesh V describing a volume Vh ⊂ R3 (see Section 1.1). In [Barbič
and James, 2005, Capell et al., 2002a, Capell et al., 2002b] a St.Venant-
Kirchhoff material is modeled by tetrahedral sets. In the constraint-free
case we have p = x, i.e., x ∈ R3n. We fix a rest state x ∈ R3n. A pointwise
vector field v ∈ TxR3n is mapped to a piecewise linear vector field vPL on Vh
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λ7 λ9 λ12 λ16

Figure 2.5: Lower vibration modes for an elastic dumbell model. The rest
state is shown on the left. Deformations along the vibration modes are shown
corresponding to the eigenvalues λ7, λ9, λ12 and λ16 (from left to right).
Vibrations for λ1 to λ6 correspond to linearized rigid motions.

using the Lagrange basis functions. A vector field vPL is continuous along
boundaries of the tetrahedral cells and linear within each tetrahedra |σ3

i |.
Then a discrete St.Venant-Kirchhoff potential is defined by

VStV K(v) =
∑
σ3
i ∈V

∫
|σ3
i |

W (vPL(x))dx with v ∈ TxR3n.

As shown in [Capell et al., 2002b] this discrete St.Venant-Kirchhoff potential
becomes a fourth order polynomial in the components of v. Using the Green-
St.Venant strain measure, the kernel of d2VStV K(0) is at least six-dimensional
and contains the linearized rigid motions.

For the matrix MStV K(x) that defines the kinetic energy we use mass
lumping. Using Vσ3

j
(x) for the volume of the tetrahedron σ3

j this means

MStV K(x) is diagonal with entries:

m3i,3i = m3i−1,3i−1 = m3i−2,3i−2 =
1

4

∑
vi∈σ3

j

Vσ3
j
(x) 1 ≤ i ≤ n

To ensures the positive definiteness of the mass matrix MStV K(x), we only
consider configurations x ∈ R3n for which all volumes are nonzero. Restrict-
ing to these configurations we can then determine the linearized decoupled
dynamical model by Equation 2.11. Deformations captured by the lower
vibration modes for an elastic dumbell model are shown in Figure 2.5.

2.4 Spacetime constraint problem

In the beginning of this section, we will give a brief general description of the
spacetime constraint problem. In Section 2.4.1 the nonlinear spacetime con-
straint problem is described. We then derive its linearization in Section 2.4.2.
For the linearized model, we will derive its corresponding Euler–Lagrange
equations.
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The spacetime constraint problem is used to generate physically plausible
trajectories x ∈ Cka,b(Rd) where a and b denote the start and end time, respec-
tively. The physical plausibility of the motion x is measured by a functional
Esp : Cka,b(Rd)→ R. The spacetime constraint problem is then formulated as
a constraint minimization problem with the objective function set to Esp(·).
Usually, the set of constraints includes interpolation constraints. We ex-
pect this set of interpolation constraints to be given by a set of poses P
with respect to generalized coordinates, i.e., P = {x1, . . . ,xm} with xi ∈ Rd

and corresponding interpolation times T = {t1, . . . , tm} with ti ∈ R and
ti−1 < ti. In particular, the solution to the spacetime constraint problem is
then the curve x ∈ Ckt1,tm(Rd) that minimizes Esp(·) meeting the constraints,
i.e., x(ti) = xi. We can see from the formulation of the problem that the
desired behavior of the resulting trajectory is strongly affected by the choice
of the energy. Hence the physical aspects being considered have to be en-
coded in the energy. We will use an energy that depends on velocities and
accelerations of a curve x ∈ Cka,b(Rd). The energy measures the deviation of
the given interpolating trajectory to a certain constraint free trajectory.

2.4.1 Nonlinear case

As an energy for trajectories, we choose the energy Ef2(x) : C2
a,b(R

d) → R+

proposed in [Kass and Anderson, 2008]. Given a metric M(x), a poten-
tial V (x), and a trajectory x, this energy is based on the pointwise defined
artificial force given by:

Fart(x, ẋ, ẍ) = M(x)ẍ+D(x, ẋ) + dV (x), (2.16)

where D(x, ẋ) is the Rayleigh damping term from Equation 2.8. Then the
nonlinear energy Efull

f2 (x) is defined as the integral:

Efull
f2 (x) =

tm∫
t1

∥∥M−1(x)Fart(x, ẋ, ẍ)
∥∥2

M
dt. (2.17)

We see that if Efull
f2 (x) = 0, the considered curve x solves the initial value

problem given in Equation 2.7. Hence the energy measures the deviation
of a curve x(t) from a real trajectory determined by a chosen kinetic and
potential energy. Then the associated spacetime constraint problem can be
stated by:

Problem 1 (Nonlinear Spacetime Problem) In the space of admissible
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motions x ∈ C2
t1,tm

(Rd) find

arg min
x

Efull
f2 (x) (2.18)

meeting the interpolation constraints

x(tk) = xk ∀ k ∈ {1, . . . ,m}.

We can see from this formulation that the solution to Problem 1 will be the
solution to a nonlinear constraint optimization problem with the objective
function set to Equation 2.17.

2.4.2 Linearization

The artificial force Fart(x, ẋ, ẍ) can be approximated by the linearized dynam-
ical model given in Equation 2.10. Replacing the nonlinear force in Equation
2.17 by the linearized force, the corresponding energy becomes

Elin
f2 (u) =

tm∫
t1

∥∥M−1 (Mü+ (αM + βK)u̇+ Ku+ G)
∥∥2

M
dt. (2.19)

Similar to the nonlinear energy case (see Equation 2.17), the curves u for
which Elin

f2 (u) = 0 solve a certain system of differential equations. In the case
of the linearized energy in Equation 2.19, solutions to the linearized dynamics
in Equation 2.10 have zero energy. Expressing the linearized artificial force
in ω-coordinates, the energy in Equation 2.19 is given by the sum:

Elin
f2 (ω) =

d∑
i=1

Ef2(ωi), (2.20)

where ω(t) = [ω1(t), . . . , ωd(t)] and

Ef2(ωi) =

b∫
a

f 2(ωi(t))dt

=

b∫
a

(ω̈i(t) + (α + β λi)ω̇i(t) + λi ωi(t) + gi)
2 dt.
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In ω-coordinates, the energy in Equation 2.19 is split into d independent one-
dimensional integrals Ef2(ωi). We use κk ∈ Tx̂ to denote the k-th pose ex-
pressed in ω-coordinates, i.e., κk = ΦTM(xk− x̂). Thus using the decoupled
expression from Equation 2.20, the linearized spacetime constraint problem
can be formulated by d independent one-dimensional problems. That means
we have to solve d problems, where the i-th problem with 1 ≤ i ≤ d is of the
form

Problem 2 (Decoupled Spacetime Problem) In the space of admissible
curves ωi ∈ C2

t1,tm
(R) find

arg min
ωi

Ef2(ωi), (2.21)

where ωi meets the interpolation constraints

ωi(tk) = [κk]i ∀ k ∈ {1, ...,m}.

An extremizer of Problem 2 is characterized by the corresponding Euler–
Lagrange equation, which is given by

Lemma 2 The Euler–Lagrange equation of the one-dimensional Problem 2
is the fourth-order ODE

....
ω i(t) + 2(λi − 2δ2

i ) ω̈i(t) + λ2
i ωi(t) + λi gi = 0

with δi =
1

2
(α + β λi),

(2.22)

where the admissible variations away from a minimizer ωi are given by ωh =
ωi + hu with u ∈ C2

0 [t1, tm], u(tk) = 0, h ∈ R.

Proof.

The energy of the variation ωh is given by

Ef2 (ωh) =

tm∫
t1

(ω̈i + hü+ 2δi (ω̇i + hu̇) + λi (ωi + hu) + gi)
2 dt.

Split the integral into a sum over m − 1 segments, and denote by ωi,k the
restriction of ωi to [tk, tk+1]. We have

Ef2 (ωh) =
m−1∑
k=1

tk+1∫
tk

( ω̈i,k + hü+ 2δi (ω̇i,k + hu̇) + λi (ωi,k + hu) + gi )2 dt.
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Now differentiate.

δiEf2(ωh)

δih

∣∣∣∣
h=0

=
m−1∑
k=1

tk+1∫
tk

( ω̈i,k + 2δiω̇i,k + λiωi,k + gi) (ü+ 2δiu̇+ λiu) dt

Rearranging terms gives

=
m−1∑
k=1

tk+1∫
tk

( (ω̈i,k + 2δiω̇i,k + λiωi,k + gi)︸ ︷︷ ︸
Ik

ü

+
(
2δiω̈i,k + 4δ2

i ω̇i,k + 2δiλiωi,k + 2δigi
)︸ ︷︷ ︸

IIk

u̇

+
(
λiω̈i,k + 2δiλiω̇i,k + λ2

iωi,k + λigi
)︸ ︷︷ ︸

IIIk

u ) dt.

Integrating by parts twice yields

=
m−1∑
k=1

tk+1∫
tk

(
Ïk − ˙IIk + IIIk

)
u dt+ (Iku̇− İku+ IIku)︸ ︷︷ ︸

Bk

∣∣∣∣tk+1

tk

.

Using the fact that successive boundary terms for tk with 1 < k < m cancel
each other, we get

=
m−1∑
k=1

 tk+1∫
tk

(
Ïk − ˙IIk + IIIk

)
u dt

+Bm(tm)−B1(t1).

As required, u has compact support. Hence the boundary terms Bm(tm) and
B1(t1) vanish. Since ωi is a minmizer, that is,

δiEf2(ωh)

δih

∣∣∣∣
h=0

= 0 ∀u ∈ C2
0 [t1, tm] ,

we conclude that (
Ïk − ˙IIk + IIIk

)
u = 0.

Expanding Ik, IIk, and IIIk, we get
....
ω i,k(t) + 2(λi − 2δ2

i ) ω̈i,k(t) + λ2
i ωi,k(t) + λi gi = 0

as desired.

We can further characterize the extremizer ωi(t) by:
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Lemma 3 The energy Ef2(ωi) is positive definite with respect to variations
of type ωh = ωi + hu with u ∈ C2

0 [t1, tm].

Proof.

The second variation of Ef2(ωh) is given by

δ2Ef2(ωh)

δh2
=

m−1∑
k=1

tk+1∫
tk

(ü+ 2δiu̇+ λiu)2 dt.

Therefore for u 6= 0 we get
δ2Ef2(ωh)

δh2
> 0 as stated.

Since the energy is positive definite, a solution to the Euler–Lagrange equa-
tion must minimize the linearized spacetime constraint Problem 2.

From Equation 2.22, we conclude that a minimizer u of the linearized
spacetime Problem 2.19 is a function that is four times continuously differ-
entiable within all intervals (tk, tk+1) and is twice continuously differentiable
at tk ∈ T.

The fourth-order Euler–Lagrange Equation 2.22 can be rewritten as two
coupled second-order equations h1(x) and h2(x) by:

0 = ḧ1 (x)− (α + βλ)ḣ1 (x) + λh1 (x)

h1 (x) = ḧ2 (x) + (α + βλ)ḣ2 (x) + λh2 (x) + g

A solution to Equation 2.22 also solves this system of second-order differential
equations. We see that a solution h2(t) describes a forced vibration. The force
driving the motion is given by h1(t), which is a solution to a second order
differential equation.

2.5 Solving the linearized problem

We showed in Section 2.4 that the minimizer of the linearized problem is
characterized by a fourth-order linear ordinary differential equation. We
start this section with the computation of the explicit solutions to the Euler–
Lagrange equation derived in Section 2.5.1. Based on these explicit solutions,
we demonstrate two strategies to compute a trajectory. In Section 2.5.2 we
show how the trajectory can be defined as a minimizer of a quadratic energy.
As an alternative, we show in Section 2.5.3 that the computation of the
curve by boundary constraints amounts to solving a low-dimensional banded
structure system.
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2.5.1 Wiggly base

The solutions to the Euler–Lagrange Equation 2.22 solve a fourth-order lin-
ear ordinary differential equation. The solutions are contained in a four-
dimensional (affine) vector space. Therefore the restriction of the minimizer
to any interval [tk, tk+1] is a combination of four basis functions bli(t) with
l ∈ {1, 2, 3, 4}. Then, for every k ∈ {1, 2, ...,m−1} there are four coefficients
w1
i,k, w

2
i,k, w

3
i,k, w

4
i,k such that

ωi(t) | [ tk,tk+1 ) = ωi,k(t) =
4∑
l=1

wli,kb
l
i(t)− ci. (2.23)

In the generic case where δi 6= 0 and δ2
i − λi 6= 0 the space of complex

solutions of the Euler–Lagrange Equation 2.22 is spanned by the four complex
functions

bli(t) = e

(
±δi±
√
δ2i−λi

)
t
, l ∈ {1, 2, 3, 4} . (2.24)

We will only use solutions of the one-dimensional spacetime constraint prob-
lem over the real numbers. However, the complex solutions are interesting
as well; [Kass and Anderson, 2008] show great examples of how they can be
used for designing and augmenting motions of characters.

The type of functions that are in the space of real solutions depends on
the values of λi and δi. We classify these different types into six cases and
explicitly list the basis functions {b1

i (t), b
2
i (t), b

3
i (t), b

4
i (t)} that span the spaces

of solutions. For brevity, we set ηi =
√
|δ2
i − λi|, which is the frequency in

the case of oscillation.
We split the six fundamental solutions into two categories. We distinguish

between two main cases and four special cases. The two main cases are:

I. When δ2
i − λi < 0, the mesh oscillates in the direction of the mode φi

(the square root in Equation 2.24 is imaginary) and the basis functions
are:

b1
i (t) = e−δit cos (ηit) b2

i (t) = e−δit sin (ηit)

b3
i (t) = eδit cos (ηit) b4

i (t) = eδit sin (ηit) .

II. When δ2
i − λi > 0, the mesh exponentially decays or grows in the

direction of φi and the basis functions are:

b1
i (t) = e(−δi+ηi)t b2

i (t) = e(−δi−ηi)t

b3
i (t) = e(δi+ηi)t b4

i (t) = e(δi−ηi)t.
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The four special cases are

1. δi = 0 and λi > 0 with basis functions:

b1
i (t) = cos (ηit) b2

i (t) = sin (ηit)

b3
i (t) = t cos (ηit) b4

i (t) = t sin (ηit) .

2. δi = 0 and λi < 0 or ηi = 0 and λi > 0 with basis functions:

b1
i (t) = e−

√
|λi|t b2

i (t) = e
√
|λi|t

b3
i (t) = t e−

√
|λi|t b4

i (t) = t e
√
|λi|t.

3. δi 6= 0 and λi = 0 with basis functions:

b1
i (t) = 1 b2

i (t) = t

b3
i (t) =

e−2δit

4δ2
i

b4
i (t) =

e2δit

4δ2
i

.

4. δi = λi = 0. In this case ωi(t) is a B-spline with basis functions:

b1
i (t) = 1 b2

i (t) = t

b3
i (t) = t2 b4

i (t) = t3.

The constant ci in Equation 2.23 is given by

ci =

{
0 λi = 0

gi/ |λi| λi 6= 0.

Now that we have the analytic expressions of the basis functions we can
compute the following type dependent quantities for a wiggly spline ωi(t):

bl,αi (t) =
dαbli(t)

dtα

Bl,α
i,k =

∫ tk+1

tk

bl,αi (t)dt

Bl1,l2,α1,α2

i,k =

∫ tk+1

tk

bl1,α1

i (t)bl2,α2

i (t)dt

with l ∈ {1, 2, 3, 4}, a ∈ N0 and k ∈ [1, . . . ,m− 1].
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With these quantities we are able to define the vectors bαi (t), Bα
i,k, and the

matrix Bα1,α2

i,k by:

bαi (t) = [b1,α
i (t), b2,α

i (t), b3,α
i (t), b4,α

i (t)]

Bα
i,k =

[
B1,α
i,k , . . . B

4,α
i,k

]
Bα1,α2

i,k =

B
1,1,α1,α2

i,k . . . B1,4,α1,α2

i,k
...

. . .
...

B4,1,α1,α2

i,k . . . B4,4,α1,α2

i,k

 . (2.25)

Furthermore, we collect the wiggly coefficients ωli,k of the k-th segment in

ωωωi,k =
[
ω1
i,k, ω

2
i,k, ω

3
i,k, ω

4
i,k

]T
. (2.26)

Using the previously defined quantities, the evaluation of the wiggly spline
and its first and second derivative can be written as;

ωi(t) | [ tk,tk+1 ) = b0
i (t)ωωωi,k − ci

ω̇i(t) | [ tk,tk+1 ) = b1
i (t)ωωωi,k

ω̈i(t) | [ tk,tk+1 ) = b2
i (t)ωωωi,k.

(2.27)

Since we want curves x(t) ∈ C2
t1,tm

(Rd), corresponding C2 regularity condi-
tions have to be enforced for ω(t) = [ω1(t), . . . , ωd(t)]. To guarantee these
regularity requirements for ω(t), we require that two successive segments
ωi,k(t) and ωi,k+1(t) meet smoothly at tk+1. The continuity assumption is
given by the interpolation constraint ω(tk) = κk. It is expressed for each
segment by the two conditions:

ωi,k(tk) = [κk]i and ωi,k(tk+1) = [κk+1]i . (2.28)

The C2 transition between two successive segments ωi,k(tk) and ωi,k+1(tk) at
tk+1 is enforced by:

ω̇i,k(tk) = ω̇i,k+1(tk) and ω̈i,k(tk) = ω̈i,k+1(tk). (2.29)

This amounts to 4m− 6 constraints for 4m− 4 unknown wiggly coefficients
ωli,k. In the following sections, we present two approaches to uniquely deter-
mine the wiggly spline ωi(t): by using a quadratic energy or by the prescrip-
tion of boundary conditions.
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ω(t)

t

ω(t)

t

ω(t)

t

ω(t)

t

Figure 2.6: Comparison of curves (black) minimizing Ef2(ωi(t)) with reg-
ularized minimizers Ereg(ωi(t)) with α = 1 and β = γ = 0. Also plotted
is the squared artificial force f 2(ωi(t)) (light grey). The two curves on the
left are computed for a slightly pertubed boundary condition. Both have
Ef2(ωi(t)) = 0. The two curves on the right are computed for the same
boundary conditions using a regularizing term resulting in Ef2(ωi(t)) > 0.

2.5.2 Energy minimizer

As shown in Section 2.2.2, the metric expressed in ω-coordinates is given by
the identity. Using the definitions of Bα

i,k and Bα1,α2

i,k (see Equation 2.25),

we can compute the energy Elin
f2 (ω(t)) (see Equation 2.20) explicitly. The

corresponding d independent energy terms are given by:

Ef2(ωi(t)) =
m−1∑
k=1

ωωωTi,k
(
B2,2
i,k +4δiB

1,2
i,k + 2λiB

0,2
i,k

+4δ2
iB

1,1
i,k + 4δiλiB

0,1
i,k + λ2

iB
0,0
i,k

)
ωωωi,k.

(2.30)

The computation of Ef2(ωi(t)) involves only quadratic terms, the constant
term and the linear term vanish. The set of minimizers, i.e., curves for
which Ef2(ωi(t)) = 0, solve the initial value problem given in Equation 2.10.
These minimizing solutions can also be characterized as solutions to a bound-
ary value problem associated to the initial value problem from Equation
2.10. Depending on the constraints, this boundary value problem can have
a unique solution, but possibly also multiple or no solution. Thus the set of
our energy minimizers (see Equation 2.19) also contains the corresponding
ill-conditioned solutions. These motions typically oscillate with a large am-
plitude as shown in Figure 2.6 left. Therefore, we add a regularizing term to
Ef2(ωi(t)). Using Bα

i,k and Bα1,α2

i,k (see Equation 2.25), we can compute the
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following energies explicitly:

EL2(ωi(t)) =

tm∫
t1

ωi(t)
2dt =

m−1∑
k=1

ωωωTi,kB
0,0
i,kωωωi,k − 2ci(B

0
i,k)ωωωi,k + c2

i

Ev(ωi(t)) =

tm∫
t1

ω̇i(t)
2dt =

m−1∑
k=1

ωωωTi,kB
1,1
i,kωωωi,k

Ea(ωi(t)) =

tm∫
t1

ω̈i(t)
2dt =

m−1∑
k=1

ωωωTi,kB
2,2
i,kωωωi,k.

Similar to the computation of Ef2(ωi(t)), these energies are defined as sums
of quadratic terms for each segment. So for α, β, γ ∈ R+ we can define a
general type of regularized energy by:

Ereg(ωi(t)) =Ef2(ωi(t)) + αEL2(ωi(t)) + βEv(ωi(t)) + γEa(ωi(t)). (2.31)

In Figure 2.6 an ill-conditioned minimizer of Ef2 is compared to minimizer
of Ereg using the same boundary conditions.

The wiggly spline shape can also be controlled by prescribing soft inter-
polating constraints, i.e., an interpolation that is optimal in the least square
sense. Denoting the pose that has to be soft interpolated at time t̄ by κ̄, the
corresponding least square energy is given by:

‖ω(t̄)− κ̄‖2 =
m−1∑
k=1

d∑
i=1

Ek,soft (ωi(t̄), [κ̄]i)

where

Ek,soft (ωi(t̄), [κ̄]i) =

{
Ek,ls (ωi(t̄), [κ̄]i) t̄ ∈ [tk , tk+1)

0 otherwise

with

Ek,ls (ωi(t̄), [κ̄]i) = ωωωTi,kb
0
i (t̄)

Tb0
i (t̄)ωωωi,k − 2([κ̄]i + ci)b

0
i (t̄)ωωωi,k + ([κ̄]i + ci)

2

Using the relations from Equation 2.27, soft interpolation constraints for
velocities and accelerations can be formulated in a similar manner. We can
now define a C2 interpolating wiggly spline ωi(t) as the extremizer of a con-
strained optimization problem. For the objective function, we choose an
energy described in Equation 2.31. The C2-regularity assumption enters as
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Figure 2.7: An example of a wiggly splines (black curve) with soft interpola-
tion constraints (blue polygon) Also shown is the resulting squared artificial
force f 2(ωi(t)) (light grey). The least square weights are varied, that is, from
left to right they are set to: {1, 10, 10, 1}, {10, 1, 1, 10} and {10, 10, 10, 10}.

equality constraints. Using Langrange multipliers lik and assuming nls soft
interpolation constraints with weights ηj ∈ R, we define the wiggly spline
coefficient to be the extremizer of:

E(ωi(t)) =Ereg(ωi(t)) +

nls∑
j=1

ηj

m−1∑
k=1

Ek,soft(ωi(t̄j), [κ̄j]i)

interpolation at tk: ωi,k(tk)=[κk]i︷ ︸︸ ︷
−

m−1∑
k=1

l1k
(
[κk]i − b0

i (tk)ωωωi,k(tk) + ci
)

interpolation at tk+1: ωi,k(tk+1)=[κk+1]i︷ ︸︸ ︷
−

m−1∑
k=1

l2k
(
[κk+1]i − b0

i (tk+1)ωωωi,k(tk+1) + ci
)

C1 at tk: ω̇i,k−1(tk)−ω̇i,k(tk)=0︷ ︸︸ ︷
−

m−1∑
k=2

l3k
(
b1
i (tk)ωωωi,k−1 − b1

i (tk)ωωωi,k
)

C2 at tk: ω̈i,k−1(tk)−ω̈i,k(tk)=0︷ ︸︸ ︷
−

m−1∑
k=2

l4k
(
b2
i (tk)ωωωi,k−1 − b2

i (tk)ωωωi,k
)

. (2.32)

Since this is a quadratic energy the computation of the extremizer involves
solving a linear system of equations of dimension 8m − 10. By the con-
struction of Ereg and Esoft the found wiggly spline coefficients also minimize
Equation 2.32. An example of an energy minimizing spline with soft inter-
polation constraints is shown in Figure 2.7.
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ω(t) ω(t) ω(t) ω(t)

t t t t

Figure 2.8: Wiggly splines (black) with varying stiffness and damping pa-
rameters, interpolating polygon (blue), and boundary conditions (turquoise).
From left to right the parameters are: (λ = 0, δ = 0, g = 0), (λ = 5, δ =
0, g = 0), (λ = 5, δ = 5, g = 0), (λ = 5, δ = 0, g = 1).

2.5.3 Boundary conditions

At the end of Section 2.5.1, we showed that there are two degrees of freedom
left to uniquely determine the wiggly spline ωi, i.e., its 4m− 4 wiggly coeffi-
cients ωli,k. Here we will to prescribe boundary conditions. In particular, we
fix a start velocity vstart ∈ Tx and an end velocity vend ∈ Tx. Expressing these
vectors in ω-coordinates, we have Ψstart = ΦTMvstart and Ψend = ΦTMvend.
Then the coressponding boundary conditions become:

ω̇i,1(t1) = [Ψstart]i and ω̇i,m−1(tm) = [Ψend]i . (2.33)

With these two additional conditions, the 4m − 4 wiggly spline coefficients
of ωi(t) are uniquely determined. As an alternative to these boundary con-
ditions, we could also have set start and end acceleration.

By exploiting the structure of the interpolation and regularity constraints,
they can be arranged to form a band matrix of bandwidth 8 by

b1
i (t1)

. . .

b1
i (tk) -b1

i (tk)
b2
i (tk) -b2

i (tk)
b0
i (tk)

b0
i (tk+1)

b1
i (tk+1) -b1

i (tk+1)
b2
i (tk+1) -b2

i (tk+1)
. . .

b1
i (tm)





ωωωi,1
...
...

ωωωi,k−1

ωωωi,k
ωωωi,k+1

...

...
ωωωi,m−1


=



[Ψstart]i
...
0
0

[κk]i +ci
[κk+1]i +ci

0
0
...

[Ψend]i


.

Since the number of poses m is typically small, solving such a system
requires only fractions of a millisecond; even on a custom laptop and without
parallelization, one can compute 10K wiggly splines within a second. An
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x1

x x(t)

x2 Rd

x3

Figure 2.9: An illustration of the one-point dynamic approach. The interpo-
lation poses are x1, x2 and x3. The linarized dynamic model is determined
at x. It controls the dynamics in Rd (concentric circles). The resulting
trajectory is x(t) ∈ C2

t1,t3
(Rd) (black curve).

example of a wiggly spline with fixed boundary velocities and varying λ, δ,
and g is shown in Figure 2.8.

2.5.4 Remarks

The proposed computation of the wiggly splines has three major advantages
over a finite difference scheme. The first is that the result is a wiggly spline
in closed form, not just an approximation. The second is that it has a
significantly lower computational cost. Thirdly, we do not need to deal with
stability issues caused by discretization. For a thorough discussion of the
stability problem caused by a finite difference approximation of derivatives,
we refer to [Kass and Anderson, 2008].

Our algorithm directly generalizes to the calculation of complex wiggly
splines. Then, to determine a complex wiggly spline, the interpolation Equa-
tion 2.28, continuity Equation 2.29, and boundary constraints Equation 2.33
need to be treated as complex equations.

2.6 One-point dynamics

Using the one-point dynamic approach means that the resulting curve x(t) ∈
C2
t1,tm

(Rd) is based on a single linearized model around a state x. As described
in Section 2.2.2, the linearized dynamic model is derived from a metric M(x)
and potential V (x). An illustration of the one-point dynamic approach is
shown in Figure 2.9. The necessary steps to generate a motion using the
one-point dynamic approach are summarized in Algorithm 1. The proposed
construction in Algorithm 1 can be split into two parts.

At first, the decoupled linearized model is determined, that is, Φ and Λ
are computed. This part involves the computation of first- and second-order
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derivatives of V (x) followed by the solution to the associated d-dimensional
generalized eigenvalue problem (see Equation 2.11).

In the second part, the poses and boundary constraints are expressed in
ω-coordinates, that is, m + 2 projections have to be performed, followed by
the actual computation of the wiggly coefficients of the d curves ωi(t).

The first part contains the computationally expensive operations. There-
fore by restricting to operations that leave the linearized dynamic model un-
affected, we can shift the expensive computation of the decoupled linearized
model to a preprocess.

Algorithm 1: one point dynamics

Data: base for dynamic model x, metric M(x), potential V (x),
poses P = {x1, . . . ,xm}, times T = {t1, . . . , tm}

Result: trajectory x(t) ∈ C2
t1,t2

(Rd) with x(ti) = xi
Preprocess
compute G, K and M
solve λiMΦi = KΦi

Interaction Phase
foreach xi do

map xi to ω-coordinates
end
map boundary constraints to ω-coordinates
for i=1 to d do

solve for wiggly spline coefficients [ωωωi,1, . . . ,ωωωi,m−1]
end

We call the second step the interaction phase. Within this step we allow
all operations that do not involve a recomputation of the decoupling base.
The set of allowed operations include:

• change of damping parameters

• change of boundary conditions

• choice of interpolation times (including changing the order of poses)

• deformation/addition/removal of poses xi

• stiffness control through the use of a scaled potential s · V (x).

In particular, changing the stiffness involves only the uniform rescaling of the
λi’s and gi’s by s. From Section 2.5.1 we see that if λi = 0 the corresponding
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Figure 2.10: Snapshots of two one-point dynamic animations using the same
boundary conditions but different stiffness scalings. Low scaling results in
only one swing (top row). High scaling causes two swinging motions (bottom
row).

curve ωi(t) corresponds to a cubic interpolating spline. In case of boundary
constraints the coefficients ωωωi,k are determined as the solution to d banded
linear systems of dimension 4(m− 1).

To compute the entries of K = dV 2(x) with x ∈ R for a potential V (x)
derived from a general deformation energy, see Equation 2.13, we only need
first partials of the component functions f sσi ’s (see Lemma 1). We use the
automatic-differentiation library ADOL-C [Griewank et al., 1996] to deter-
mine the entries of K.

2.6.1 Experiments

We present three examples using the one point dynamic approach. Two
examples are computed for a low-dimensional shape space, a planar rod con-
sisting of four points, and the Luxo model. The last example shows results
computed for a thin shell model of a block that is described in a 1800-
dimensional shape space.

The planar rod is given by a 4-chain (see Figure 2.10 left). In addition to
the length constraint, we fix the the position of the top point. The motion
is computed to move from the straight state (see Figure 2.10, left) to the
deformed state (see Figure 2.10, right). The results from using different
stiffness scalings are shown in Figure 2.10. Higher stiffness causes two swings
to reach the final state in contrast to the single swing used in the less stiff
setup.

A jump of the Luxo lamp is modeled by three poses as shown in Figure
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Figure 2.11: The jumping Luxo lamp created from an energy minimizing
wiggly spline and soft interpolation. Constant high weights are used for start
and end poses and the weight for the middle keyframe is changed. Keyframes
in yellow (left). Low least square weight (middle) and increased least square
weight (right).

2.11 left. The motion was generated using an energy minimizing wiggly
spline, where all poses enter as soft interpolation constraints. Results from
varying weights for the middle pose are shown in Figure 2.11 middle and
right. Observe that the choice of weight controls the height of the jump.

In the third example, we compute a jumping block animation. The final
jump is composed of three wiggly splines resulting in a continous motion.
The three curves describe the three parts of the motion: preparing the jump,
jumping, and landing.

During the first and last part, the base of the block is fixed to the ground
with equality constraints. Each of the three wiggly splines interpolates two
successive keyframes and satisfies boundary conditions which prescribe first
derivatives (velocities) at all vertices of both keyframes. The prescribed
velocities at the first keyframe vanish and all vertices of the second keyframe
(except those at the base) have the same upward pointing velocity.

The first and second wiggly spline meet at the second keyframe. Both
splines interpolate the second keyframe and have the same velocities at this
point. Therefore, the compound curve is differentiable at this keyframe. As
a result, the motion anticipates the jump and the force required to accelerate
the block is distributed over the time interval.

All vertices of the third keyframe (including the base) have the same
velocity pointing to the ground. This models a collision with the ground.
Since the base of the block is fixed in the third wiggly spline, the compound
curve is continuous but not differentiable at the third keyframe. The effect
is that there is no anticipation of the landing and the block collides with
the ground. Since the block cannot bounce upwards, the collision causes a
deformation of the block and a wave travels up the block.

Snapshots of the final block jump animation are shown in Figure 2.12. For
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Figure 2.12: Snapshots from an animation of a jumping block that inter-
polates keyframes (yellow) and velocities at the keyframes (black arrows).
Before the jump, the block deforms in order to achieve the prescribed veloc-
ity at the second keyframe. During the first part of the animation, the base
of the block is fixed to the ground with equality constraints.

Figure 2.13: Snapshots from an animation of a jumping block using cubic
B-splines with the same interpolation and boundary constraints shown in
Figure 2.12.

comparison, a motion generated with cubic B-splines that satisfy the same
interpolation and boundary conditions is shown in Figure 2.13. Our motions
show physical behavior, like waves that travel up and down the block, but
the B-spline animation only varies the length of the block. Details for the
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Rd

ΩV
xb

xb x1

x2 x3

x(t)

Figure 2.14: Illustration of the reduction approach. The affine subspace
ΩV

xb
⊂ Rd (blue plane) is shown. The subspace is given by a base point

xb ∈ Rd and a base V . The motion x(t) (blue curve) is contained in ΩV
xb

and
interpolates poses x1,x2,x3 ∈ ΩV

xb
.

block example are summarized in Table 2.1 including timings.

2.7 Reduction

In general, working with discrete objects describing shells or three-dimensional
solids involves high dimensional shape spaces, that is, objects with a large
number of degrees of freedom as shown in the third example described in
Section 2.6.1. We introduce a strategy based on modal analysis to drasti-
cally reduce the number of degrees of freedom. Analogous to the full set of
d degrees of freedom, we can solve a corresponding reduced linearized space-
time problem for the discrete objects with respect to the reduced set of d̄
generalized coordinates, with d̄� d.

Our reasons to use a reduced set of generalized coordinates are three-
fold. Firstly, the accurate representation of a geometry usually needs high
dimensional discrete representation whereas animations often require only a
fraction of the degrees of freedom, see [Kim and James, 2009]. Secondly,
by using a smaller number of degrees of freedom the computational cost
decreases dramatically. Finally, our reduced spaces cut off high frequency
modes and thereby lower the stiffness of the optimization problem which in
turn increases the numerical robustness of the resulting method.

2.7.1 Reduced dynamic model

We refer to the subset ΩV
xb
⊆ Rd as the reduced space, where xb ∈ Rd and

V is a linear subspace of Rd. Then the reduced space is defined by

ΩV
xb

=
{
xb + v | xb ∈ Rd, v ∈ V

}
. (2.34)
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We refer to xb the base point of ΩV
xb

. The set of directions spanning V ⊆ Rd

is given by a matrix Vb whose columns form a basis for V , that is,

Vb =

 | |
v1 . . . vd̄
| |


d×d̄

vi ∈ Rd.

Hence the corresponding reduced space is d̄-dimensional. Coordinates with
respect to the basis Vb are referred to as x̄-coordinates. To determine the set
of reduced linear equations of motion at a point x ∈ ΩV

xb
, we express M, K

and G in x̄-coordinates by:

Mr =V T
b MVb

Kr =V T
b KVb

Gr =V T
b G.

Then in x̄-coordinates, the equations of motion become:

Mr q̈(t) + (αMr + βKr)q̇(t) + Kr q(t) + Gr = 0. (2.35)

Because Mr ∈ SYM+
d̄

and Kr ∈ SYMd̄, we can follow the steps from Section
2.2.2 to compute a basis Φr to decouple the system from Equation 2.35.
Then the d̄-dimensional decoupled system is given by

1rω̈(t) + (α1r + β Λr)ω̇(t) + Λr ω(t) + gr = 0. (2.36)

Restricting to poses xi ∈ ΩV
xb

, we can now formulate and solve a d̄-dimensional
linearized spacetime problem as described in Section 2.5.

2.7.2 Reduction based on a deformation energy

We propose a strategy to create the set of directions spanning a reduced
space that is based on vibration modes of a deformation energy E(·, ·). The
necessary steps are summarized in Algorithm 2. The intermediate set of
vectors S consists of two vector types: finite differences xi − xb and eigen-
vectors Φi,j. The finite differences ensure that the poses xi are contained in
the final subspace. By setting E(xi,xi), we solve the generalized eigenvalue
problem for semi positive definite matrices d2E(xi,xi). Hence the vectors
Φi,j considered for the base construction are vibration modes, see Figure 2.4
and Figure 2.5. For each pose xi, we add the first k lower vibration modes
to S. The final orthonormal base Vb is obtained by an orthonormalization
using a Singular Value Decomposition of S. Depending on the complexity
of the motion, we choose k between 5 and 30. Hence the reduced space V
constructed by Algorithm 2 contains a set of d̄ ≤ (k ·m) directions of least
energy changes for every keyframe.
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Algorithm 2: Orthonormal basis for affine subspace in the shape space

Data: poses P = {x1, . . . ,xn}, base point xb, metric M(x),
deformation energy E(·, ·) and k ∈ N

Result: orthonormal base Vb = [v1, . . . , vd̄], vi ∈ Rd

S = ∅ ;
foreach xi do

S ∪ (xi − xb) ;
solve λi,jM(xi)Φi,j = d2E(xi,xi)Φi,j ;
S ∪ {Φi,1, . . . ,Φi,k} ;

end
Vb = orthonormalize (S) ;

2.7.3 Experiments

We present two examples using a reduced space. The first example is a thin
shell model whose parts are held fixed during the animation. The second
example creates a motion of a solid using sliding constraints.

In the first example, a walking cycle of a running bug is enriched with
secondary motion. The primary motion interpolates 12 keyframes that form
a walking cycle, which we took from the book [Ritchie et al., 2005]. The
secondary motion is added onto the motion from the walking cycle, that is,
we overlaid the walking cycle motion with a second motion. For this second
motion, we used two keyframes and constrained a part of the models (grey
area in Figure 2.15) that has been carefully crafted and should not be affected
by secondary motion. Then we computed a reduced space and added simple
vector fields to the keyframes (black lines). We used the projections of these
vector fields into the reduced space as derivatives of the motion and forced
the wiggly splines to interpolate them.

The second example shows a sliding motion of a cactus modeled as a
three-dimensional solid consisting of 1.7k vertices (see Figure 2.16) computed
within a reduced space with d̄ = 15 . The sliding constraints were applied to
the vertices on the bottom. The start and end poses coincide. The motion
was generated by the prescription of start and end velocities. The start
velocity is nonzero at the trunk and the end velocity is set to zero. These
boundary conditions result in a motion where the cactus branches follow the
trunk in a swinging motion.

Details for these two examples are summarized in Table 2.1 including
timings.
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Figure 2.15: Snapshots from an animation of a walking bug enriched with
secondary motion is shown in top row. The generation of the secondary
motion from a simple vectorfield (black lines) is illustrated in the bottom
row. The yellow/grey models describe start and end pose, i.e., grey parts are
fixed and the yellow parts are deformable. The green models are snapshots
from the resulting head swinging motion.

Figure 2.16: Sliding motion for a tedrahedral model of a cactus. The sliding
constraints are applied to the vertices at the bottom. Start and end poses
conicide and are shown in yellow. Start velocity is nonzero at the trunk point-
ing sideways (black lines on the left). The end velocity is zero. The resulting
deformations in between generated by one-point dynamics in a reduced space
are shown in green.
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Figure 2.17: Comparison between one-point dynamics and multi-point dy-
namics for one step of a walking cycle for the dinosaur model. Keyframes
(yellow) and reststate (orange) are shown on the left. The two green models
in the middle are results from one point dynamics. The last two green models
depict the same results from multi-point dynamics using coupling.

2.8 Multi-point dynamics

A problem when using the set of linearized equations of motion is that arti-
facts may develop for larger deformations away from the base pose x of the
linearized model (see Figure 2.17). To counteract such problems, we intro-
duce the multi-point dynamic approach. This approach generates motions
x(t) ∈ Cka,b(Rd) that are composed of various wiggly spline curves. These
wiggly splines are allowed to differ in type, i.e., λi and δi can vary over time.
The resulting motions are generated from multiple linearized dynamic mod-
els. An illustration of the multi-point dynamic approach is shown in Figure
2.18. We describe the multi-point strategy with respect to x-coordinates,
but the proposed steps are also applicable in the reduced x̄-coordinates in-
troduced in Section 2.7. Given a set of points Z = {z1, . . . , zn} with zj ∈ Rd,
a metric M(x), and a potential V (x), we can compute the linearized dynamic
model at each zj. Following the notions given in Section 2.2.2, we denote
the quantities describing the j-th linearized dynamic model at a point zj by
Mj = M(zj), Kj = d2V (zj), Gj = dV (zj), and the decoupling base by:

Φj =

 | |
Φj,1 . . . Φj,d

| |


d×d

.

This corresponds to a sampling of the nonlinear dynamics described by M(x)
and V (x) at n points zj ∈ Rd.

We propose two strategies to construct an animation that is sensitive to
multiple linearized dynamic models. They are called blending and coupling.

In both approaches, an influence interval Ij = [t−j , t
+
j ) needs to be given

for the j-th linearized dynamic model with t−j < t+j . The choice of the interval
depends on the strategy used. The final motion x(t) is then constructed as
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Figure 2.18: An illustration of the multi-point dynamic approach. The in-
ter polation poses are: x1, x2, x3 and x4. Linearized dynamic models are
computed at z1, z2 and z3, that have a limited influence within regions
of Rd(concentric circles). The resulting trajectory x(t) ∈ Ckt1,t4(R

d) (black
curve).

a weighted sum of n curves zj(t). Using hj : R → R for the j-th interval
dependent weighting function, the final motion x(t) is given by:

x(t) =
n∑
j=1

hj(t)zj(t) (2.37)

where

zj(t) =zj + Φjωzj(t)

The curves zj(t) are wiggly splines computed for the linearized dynamic
model around the sample point zj. The two approaches differ in the com-
putation of the wiggly coefficients for the curves zj(t) and the weighting
functions hj(t). Blending can smoothly change between curves zj(t). In
contrast, coupling performs hard switches between linearized models.

For both approaches, we show how an interpolating curve x(t) ∈ C2
t1,tm

(Rd)
is constructed if Z = P.

2.8.1 Blending

Motions generated by blending are composed of independently computed
curves zj(t) ∈ C2

t1,tm
(Rd), where j ∈ {1, . . . n}. Each curve zj(t) is computed

by Algorithm 1 using the same set of poses P and interpolation times T, but
with the base of the dynamic model set to zj. This results in n independent
interpolating curves zj(t). Then the choice of the blending functions hj con-
trols the smoothness of the final motion and determines how the n solutions
zj(t) affect the final motion (see Equation 2.37).

Hence to compute a motion x(t) during the interactive phase using blend-
ing, we need to solve nd independent banded systems of dimension 4(m−1).
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If the base set Z and pose set X coincide, we have n = m with zi =
xi. Then we can easily design a blending function that ensures that the
resulting motion x(t) interpolates, i.e., x(tk) = zk and corresponds around
the interpolated pose zk to the associated wiggly spline zk(t). We choose for
the intervals Ij the times t−j = (tj − tj−1)/4 and t+j = 3(tj − tj−1)/4 with
tj ∈ T. This choice results in overlapping intervals, that is, Ij−1∩ Ij 6= ∅ and
Ij ∩ Ij+1 6= ∅. Then we define the blending function to be used in Equation
2.37 by:

hj(t) =


1 t ∈ Ij \ (Ij−1 ∪ Ij+1)

s−j (t) t ∈ Ij ∩ Ij−1

s+
j (t) t ∈ Ij ∩ Ij+1

0 otherwise.

(2.38)

For the functions s−j (t) and s+
j (t) that control the transition between two suc-

cessive models, we use cubic splines to fade in and out of a models influence.
By this type of blending, we generate smooth motions, i.e., x(t) ∈ C2

t1,tm
(Rd).

2.8.2 Coupling

Motions generated by coupling are composed of wiggly splines zj(t) ∈ C2
t−j ,t

+
j

(Rd),

where j ∈ {1, . . . n}, whose computation depend on each other. For the in-
fluence intervals Ij, we assume

⋃
Ij = [t1, tm) with Ij ∩ Ii = ∅ if j 6= i, and

t+j = t−j+1. To assemble the final motion from the curves zj(t) (see Equation
2.37) by coupling, we use a weighting function hj defined by

hj(t) =

{
1, t ∈ Ij
0, otherwise.

(2.39)

A curve zj(t) is determined by only 4d wiggly spline coefficients ωlj,k. In

contrast to Section 2.5.1, in this section we use ωlj,k to denote the wiggly
spline coefficients at the j-th base along the k-th direction Φj,k with the
wiggly base index l ∈ {1, 2, 3, 4}.

To construct a curve x(t) ∈ C2
t1,tm

(Rd) by coupling, we formulate transi-
tion conditions between curves zj(t) ∈ C2

t−j ,t
+
j

(Rd) and zj+1(t) ∈ C2
t−j+1,t

+
j+1

(Rd),

where we assume that t+j = t−j+1. Hence we have to ensure zj(t
+
j ) = zj+1(t+j ),

żj(t
+
j ) = żj+1(t+j ), and z̈j(t

+
j ) = z̈j+1(t+j ). To formulate these constraints
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with respect to the unknown 4dn wiggly coefficients, we define:

ΦX,α
j,k (t) =

 | | | |
b1,α
k (t)Φj,k b2,α

k (t)Φj,k b3,α
k (t)Φj,k b4,α

k (t)Φj,k

| | | |


d×4

BX,α
j (t) =

 | |
ΦX,α
j,1 (t) . . . ΦX,α

j,d (t)

| |


d×4d

ωωωXj =
[
ω1
j,1 . . . ω

4
j,1 . . . ω

1
j,d . . . ω

4
j,d

]
4d×1

cXj = [cj,1 . . . cj,d]d×1 .

The constraints ensuring twice differentiable transitions between successive
curves zj(t) and zj+1(t) at time t+j are then given by:

BX,0
i (t+j )ωωωXj −BX,0

i (t+j )ωωωXj+1 = (zj+1 − zj) + (cXj − cXj+1)

BX,1
i (t+j )ωωωXj −BX,1

i (t+j )ωωωXj+1 = 0

BX,2
i (t+j )ωωωXj −BX,2

i (t+j )ωωωXj+1 = 0.

(2.40)

This amounts to 3d(n − 1) constraints for the 4dn wiggly coefficients that
determine the curves zj(t).

If the base set Z and pose set P coincide, we have n = m with zi = xi. We
choose for the intervals Ij the times t−j = (tj − tj−1)/2 and t+j = (tj − tj−1)/2
with tj ∈ T. The interpolation condition x(tj) = zj with ti ∈ T is expressed
by

BX,0
j (tj)ωωω

X
j = cXj . (2.41)

This amounts to nd interpolation conditions and 3d(n− 1) transition condi-
tions for the 4nd unknown wiggly spline coefficients. To uniquely determine
the wiggly coefficients, we define them as the solution to a constraint opti-
mization problem, that is, the objective function is set to a quadratic energy
as defined in Equation 2.31 and the transition conditions (see Equation 2.40)
and interpolating conditions (see Equation 2.41) enter as constraints. Hence
to compute a motion x(t) during the interactive phase using coupling, we
need to solve a 4dn+nd+ 3d(n−1) = 8nd−3d dimensional system of linear
equations.

2.8.3 Experiments

We present two examples that use the multi-point dynamic approach in a
reduced space. In both examples the reduced space was created from the set
of keyframes.
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Figure 2.19: Snapshots from an animtion modeling the controlled flight of a
cloth piece are shown in the top row. The keyframes to create this motion
are taken from three independent simulation runs, shown in the bottom row,
i.e. hanging, blown up and colliding with a cylinder.

The first example shows a piece of cloth that first hangs on a line, then
is blown into the air, and finally gets stuck on a cylinder (see Figure 2.19,
top row). The motion is assembled from three wiggly splines by blending.
The first and last wiggly spline satisfy equality constraints that fix parts of
the piece of cloth to the line and cylinder, respectively. The keyframes were
generated by taking snapshots from three independent forward simulations:
cloth hanging on a line, cloth blown in the air, and cloth stuck on a cylinder
(see Figure 2.19, bottom row). The benefit of our approach is that we can
combine these (otherwise unrelated) animations into one animation in which
the cloth is flying through the air and hits the cylinder.

The second example in Figure 2.20 shows a walking dinosaur. The motion
is composed of five wiggly splines, one for each step. Each step is modeled
with three keyframes and the foot on the ground is fixed with equality con-
straints, see Figure 2.17 left. The boundary conditions for each of the wiggly
splines are finite differences of the keyframes. The animation of each step
were generated by blending. The results are similar to the non-linear method
of [Barbič et al., 2009]. To increase comparability, we used reduced spaces
of approximately the same size. A difference between these two methods is
that their scheme does not interpolate and only approximates the keyframes.
The original keyframes are given as tetrahedral meshes that enclose the tri-
angulated dinosaur mesh. These tetrahedral meshes have 1.8K vertices and
thus are coarser than the triangle meshes, which have 28K vertices. For our
animation, we used the triangle meshes with higher resolution. This explains
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Figure 2.20: Physically based soft-body dinosaur animation that interpolates
animator-specified keyframes, that model five walking steps. Results are
generated by multi-point dynamics using blending.

why we need 500s to construct the reduced space for the whole animation,
while they needed only 25s. After the preprocess, our method needs 0.6s to
compute or update the animation, while their optimization takes 15min.

To generate a similar walking dino animation by coupling, we used a
reduced space of the same dimension, that was created only from vibration
modes computed at the rest state, see Figure 2.17 right.

Details for these two examples are summarized in Table 2.1 including
timings.

2.9 Summary

We linearized and decoupled a nonlinear spacetime formulation. We then
showed that by using the decoupled formulation, the actual trajectory com-
putation is expressed by a number of independent one-dimensional bound-
ary value problems of the same type. The solutions to these problems are
contained in the space of wiggly splines. We then showed that the Euler–
Lagrange equation characterizing the solutuions to the one-dimensional bound-
ary value problems is a linear fourth-order ordinary differential equation. By
solving this ordinary differential equation we determined a closed form rep-
resentation of the wiggly spline basis functions.

We proposed the one-point dynamic algorithm to solve the decoupled
linearized spacetime problem. Then we applied a modal reduction strategy
to enable the motion generation for objects with a large number of degrees of
freedom, e.g., deformable objects. Our reduced space is built from vibration
modes of an energy that measures shape changes. We further proposed two
multi-point dynamic approaches to overcome artifacts caused by the use of a
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Model #Verts #S Dim. #K tp tu

Block 450 3 1350,1350,1350 6 83 0.54
Bug 4358 1 30 2 9 0.03
Cactus 1691 1 15 2 1.6 0.01
Cloth 1861 3 92,143,186 12 74 0.85
Dinosaur 28098 5 18,18,18,18,18 11 505 0.6

Table 2.1: Performance measured on a desktop PC with an Intel Xeon 3.33
GHz CPU (single thread). From left to right we use #Verts for number of
vertices, #S for number of composite splines, Dim. for the dimension, #K
for the number of keyframes, tp and tu for time in seconds for preprocess and
an animation update during the interaction phase, respectively.

single decoupled linearized model used in the one-point dynamic approach.
We presented a variety of animation results including planar rods, thin

shells and solids. This included a comparision with the results from common
b-spline interpolation. We further demonstrated that our reduced formu-
lation allows for the creation and editing of an animation for deformable
objects at interactive rates.

The linear dynamics are computed with respect to a certain rest state
so a possible extension is to automatically determine of an appropiate rest
state in case no rest state is explicitly given. Using a multi-point dynamic
approach allows the use of a varying rest states; how this affects the final
motion could also be studied in the future. Furthermore the differences of
the two multi-point dynamics approaches, i.e., blending and coupling, need
to be better understood.

We further plan to add contact handling including self collisions to the
construction of the reduced space.

We used interpolation and soft interpolation of keyframes. Therefore
another feature to work on is the use of partial keyframes, i.e., only a subset
of vertices of an object enter as boundary constraints.

It would also be interesting to apply our approach to control other phys-
ical systems such as fluids or smoke.
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Chapter 3

Geometry-aware Operators

In this chapter, we derive operators whose eigenmodes and spectra can serve
as an alternative to the spectrum and modes of the Laplacian for applications
in geometry processing and shape analysis. The eigenfunctions of these op-
erators share properties with the eigenfunctions of the Laplacian. They form
an orthogonal basis of a space of variations of the surface. However there are
also fundamental differences. These spectra and eigenfunctions depend not
only on intrinsic quantities but also on the extrinsic curvature of the surface.

The spectrum and eigenfunctions of the Laplace–Beltrami operator of a
surface have stimulated much research in shape analysis and geometry pro-
cessing ranging from parametrization, segmentation, and symmetry detec-
tion to shape signatures and mesh filtering as described in Section 3.1. Such
methods profit from properties of the eigenfunctions of the Laplace–Beltrami
operator. For example, on a curved surface, they form an orthogonal basis of
the space of L2-functions on the surface. Furthermore, the Laplacian depends
only on the metric of the surface, hence the eigenvalues and eigenfunctions
are invariant under isometric deformations of the surface. A consequence of
the invariance to isometric deformations is an insensitivity to extrinsic fea-
tures of the surface, like sharp bends, that are of essential importance for
some applications in shape analysis.

In Section 3.2 we recall the definition of the smooth and discrete Laplace–
Beltrami operator and its associated spectrum and eigenfunctions. We then
consider operators that correspond to the Hessian of energies in Section 3.3.
The energies we consider are functionals defined on a space of functions on
a surface. We show that the Laplace–Beltrami operator can be derived from
the Hessian of the Dirichlet energy that is contained in this energy class. Fur-
thermore we introduce a feature senstive energy called the modified energy
and compare the feature senstive eigenfunctions of its associated operator to
the eigenfunctions of the Laplace–Beltrami operator.

59
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Based on the new modified Dirichlet energy, we define a family of feature
sensitive energies, i.e., a family of feature sensitive operators, in Section 3.4.
In Section 3.5 we show that the spectrum of a certain operator from this
family of feature sensitive operators can be used to estimate the stability of
a cmc surface.

In Section 3.6 we introduce a feature sensitive multi-scale signature based
on the eigenmodes of the modified Dirichlet energy. To measure differences
with respect to this signature, we further propose a corresponding feature
sensitive multi-scale pseudo-metric on the surface. As an application, we
then show on a variaty of examples that the resulting feature distance can
be used to identify features on a mesh and compare the results to the heat
kernel signature in Section 3.7.

3.1 Background

Recently, there has been a large interest in the use the eigenvalues and eigen-
functions of the Laplace–Beltrami operator as an ingredient in algorithms in
geometry processing and shape analysis. An overview of this development
can be found in the survey by [Clements and Zhang, 2006] and in the course
notes of [Lévy and Zhang, 2009]. Here, we briefly outline the work that has
been most relevant for our results.

The spectrum of the Laplace–Beltrami operator of a Riemannian man-
ifold contains a significant amount of information about the manifold and
the metric. Though it does not fully determine the Riemannian manifold, it
can be used as a powerful shape descriptor of a class of isometric Rieman-
nian manifolds. [Reuter et al., 2005,Reuter et al., 2006] used the spectrum of
the Laplace–Beltrami operator to construct a fingerprint of surfaces, which
they call the Shape-DNA. By construction, this fingerprint is invariant un-
der isometric deformations of a surface. The Shape-DNA can be used for
shape matching, copyright protection, and database retrieval, among other
applications. [Rustamov, 2007] developed the Global Point Signature (GPS),
a signature that can be used to classify shapes up to isometry. Based on
the GPS, [Ovsjanikov et al., 2008] developed a method for the detection of
global symmetries in shapes.

[Dong et al., 2006] presented an elegant technique that uses the Morse–
Smale complex (and the quasi-dual complex) of a carefully chosen Laplace
eigenfunction to generate a coarse quadrangulation of a surface mesh. This
approach was extended by [Huang et al., 2008], who used a least-squares
optimization routine that modifies the selected Laplace eigenfunction and,
consequently, its Morse–Smale complex. They also provide the user with
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control over the shape, size, orientation, and feature alignment of the faces
of the resulting quadrangulation.

The computation of the spectrum and eigenfunctions of the Laplacian
is a delicate and computationally expensive task, even for medium sized
meshes. [Vallet and Lévy, 2008] proposes an efficient shift-and-invert Lanczos
method and presents an implementation that is designed to handle even large
meshes.

Using the eigenfunctions of the Laplacian, one can compute the heat
kernel of the surface, that is, one can simulate diffusion processes on curved
domains. [Sun et al., 2009] proposed the heat kernel signature, a surface
signature based on the heat kernel, which they use to derive a measure for
the geometric similarity of different regions of the surface. By construction,
this measure is invariant under isometric deformations of the surface.

Independent from this work, [Gebal et al., 2009] proposed a similar signa-
ture, the Auto-Diffusion-Function, and used it for mesh skeletonization and
segmentation. In the context of shape matching and retrieval, [Dey et al.,
2010] used the persistent extrema of the heat kernel signature to construct a
robust and efficient pose-oblivious matching algorithm for three-dimensional
shapes. Given a corresponding pair of points on two shapes, [Ovsjanikov
et al., 2010] used the heat kernel to construct an isometric map between the
shapes which allows them to find intrinsic symmetries and match partial,
incomplete, or isometrically deformed shapes.

3.2 Laplace modes and spectrum

In this section, we briefly review the eigenvalue problem of the Laplacian on
surfaces. We first state a weak form of the problem for smooth surfaces. This
shows that the spectrum is based on two operators. These two operators will
be defined for discrete surface meshes which are then used in the computation
of the spectrum in the discrete setting.

3.2.1 Smooth setting

Let Σ be a smooth, compact surface in R3. For clarity clear we assume that
Σ has no boundary.

We denote Ck(Σ) to be the set of k-times differentiable functions f :
Σ → R. Then the Laplace–Beltrami operator corresponds to a mapping
∆ : C2(Σ) → C0(Σ). We use ∆f = −div(∇(f)), but depending on the
context it is sometimes also defined by ∆f = div(∇(f)). Using our notation
we define
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Figure 3.1: Illustration of two lower eigenmodes of the Laplace operator
for the plate and the sphere. The eigenmodes for the plate using Dirichlet
boundary conditions shown on the left. The eigenmodes on the sphere are
shown on the right.

Problem 3 (Laplace Eigenvalue Problem) On a compact manifold Σ
find all pairs (λ, f) ∈ R× C∞(Σ) such that ∆f = λf .

Let H1(Σ) denote the Sobolev space of weakly differentiable functions with
square integrable derivative on Σ. Hence we have C∞(Σ) ⊂ H1(Σ). On
H1(Σ), we consider the two bilinear forms for u, v ∈ H1(Σ):

〈u, v〉L2 =

∫
Σ

uv dA and 〈u, v〉H1
0

=

∫
Σ

〈∇u,∇v〉Σ dA. (3.1)

Using integration by parts on Problem 3 we can formulate an eigenvalue
problem for functions in H1(Σ), that is,

Problem 4 (Weak Laplace Eigenvalue Problem) On a compact man-
ifold Σ find all pairs (λ, φ) ∈ R ×H1 such that 〈φ, σ〉H1

0
= λ 〈φ, σ〉L2 for all

σ ∈ H1.

To extend Definitions 3 and 4 to compact surfaces with boundary, corre-
sponding boundary conditions have to be prescribed. In this case, appro-
priate subspaces and terms resulting from possible non-vanishing boundary
integrals have to be considered.

Two prominent examples of solutions to Problem 3 are shown in Figure
3.1. To visualize the eigenfunctions, we use blue for positive values, white for
zero crossings, and orange for negative values. Additionally, we draw isolines
in black. In particular, the eigenfunctions on the plane, see Figure 3.1 left,
correspond to vibration modes restricted to normal directions of a clamped
flat plate. The eigenfunctions on the sphere, see Figure 3.1 right, are also
called spherical harmonics.

3.2.2 Discrete setting

We consider simplicial surfacesMh ⊂ R3 (see Section 1.1) describing smooth
surfaces immersed in R3. We also refer to the associated abstract simplicial
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geometryM as the surface mesh. Furthermore we denote its vertices σ0
i ∈M

and triangles σ2
i ∈ M by vi and Ti, respectively. We refer by |Ti| to the

compact set |σ2
i | ⊂ R3. Then we define on the surface Mh

Definition 5 (Function Space Sh) The space of piecewise linear functions
Sh on Mh is given by

Sh =
{
u :Mh → R | u ∈ C0 (Mh) and u is linear on each |Ti| ⊂ Mh

}
.

The elements of the space Sh form a linear vector space, and a function u ∈ Sh
is determined by its function values ui = u(pi) at the vertices pi ∈ Mh.
Furthermore the bilinear forms 〈·, ·〉L2 and 〈·, ·〉H1

0
are well defined on Sh as

shown in [Dziuk, 1988] and [Hildebrandt et al., 2006].
We choose the Lagrange basis also called the nodal basis for Sh. It is

formed by the linear functions ϕi ∈ Sh defined by

ϕi(pj) = δij with pj = P (vj).

In the Lagrange basis, a function u ∈ Sh is then expressed by

u(x) =
n∑
i

ui ϕi(x) x ∈Mh.

The space Sh is equipped with a constant metric, that is, a matrix M with
entries

mij =
∑
Tk∈M

∫
|Tk|

ϕi(x)ϕj(x) dA.

The associated scalar product to this metric is defined by:

〈u, v〉L2 =
n∑
i

n∑
j

uivjmij with u, v ∈ Sh. (3.2)

The gradient ∇f(x) is constant within a triangle |T |. Then the operator
〈·, ·〉H1

0
can be defined for functions in Sh by splitting the integrals into a

sum over the triangles T ∈M, that is,

〈u, v〉H1
0

=
∑
Tk∈M

∫
|Tk|

〈∇u,∇v〉 dA with u, v ∈ Sh. (3.3)

The matrix representation of 〈·, ·〉H1
0

with respect to the Lagrange basis
becomes the stiffness matrix S, whose entries are

sij = 〈ϕi, ϕj〉H1
0
. (3.4)
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Explicit representations of the matrices M and S can be found in [Pinkall
and Polthier, 1993], [Wardetzky et al., 2007], and [Vallet and Lévy, 2008].
Then the discretization of the eigenvalue Problem 4 is given by:

Problem 5 (Discrete Laplace Eigenvalue Problem) On a simplicial sur-
faceMh without boundary find all pairs (λ, φ) ∈ R×Sh such that Sφ = λMφ.

This is a generalized eigenvalue problem for (possibly large) sparse matrices.
Fast solvers for this problem are discussed in [Saad, 1992, Vallet and Lévy,
2008] and an example of a software package that specializes in such prob-
lems is Arpack (see [Lehoucq et al., 1998]). Since S is symmetric and M
is positive definite, all eigenvalues of Problem 5 are real and there exists an
L2-orthonormal basis of Sh consisting of eigenvectors.

In the following, we always consider the diagonal lumped mass matrix
M as a discrete L2-scalar product [Wardetzky et al., 2007]. It is given by
a diagonal matrix, where the i-th diagonal entry is a third of the combined
area of the triangles adjacent to the i-th vertex of the mesh. We refer to the
i-th diagonal entry as the mass mi of the vertex vi. Because mi > 0, the
lumped mass matrix is a symmetric and positive definite matrix. Hence the
eigenvalue Problem 5 with the lumped mass matrix has real eigenvalues, and
we can always find an orthonormal basis of Sh consisting of eigenvectors of
Problem 5, where orthonormality is now measured with respect to the scalar
product on Sh given by the lumped mass matrix M .

3.3 Energy based spectrum

In this section, we consider the modes and spectrum of the Hessian of surface
energies. In Section 3.3.2 we show that the Laplacian eigenvalue problem
appears as the eigenvalue problem of the Hessian of the Dirichlet energy.
Based on this we construct a new energy — the modified Dirichlet energy —
that, unlike the Dirichlet energy, is sensitive to the extrinsic curvature of the
surface in Section 3.3.3. Finally we investigate the modes of this new energy
in Section 3.3.4.

3.3.1 Energies

A surface energy is a twice continuously differentiable mapping E : Sh → R.
The Hessian depends on the second derivatives of E and the scalar product
on Sh. For u, v ∈ Sh, let D2

mE(u, v) be the second derivative at m in the
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direction of u and v. Then we refer to the operator ∇2
mE : Sh → Sh as the

Hessian associated to the energy E at m ∈ Sh. It is given by〈
∇2
mE(u), v

〉
L2 = D2

mE(u, v) (3.5)

for all u, v ∈ Sh.
With respect to the Lagrange basis of Sh and the induced L2-product (see

Equation 3.2), ∇2
mE has the following matrix representation:

∇2
mE = M−1∂2

mE,

where ∂2
mE is the symmetric matrix containing the second partial derivatives

at m and M is the mass matrix. The eigenmodes and eigenvalues of the
energy E at m are the solutions (λ, φ) ∈ R×Sh to the generalized eigenvalue
problem

∂2
mEφ = λMφ or λφ = M−1∇2

mEφ. (3.6)

Since ∇2
mE is self-adjoint with respect to the discrete L2-product, all eigen-

values of ∇2
mE, i.e., the solutions to Equation 3.6, are real and there is an

L2-orthonormal basis of Sh that consists of eigenmodes ∇2
mE. In such a ba-

sis, the matrix representation of D2
mE and of 〈·, ·〉L2 are diagonal matrices.

Assuming that m is the minimum of E, the matrix ∂2
mE is positive semi-

definite which implies that the eigenvalues of Equation 3.6 are non-negative.
Hence for a pair (λ, φ) that solves Equation 3.6 with 〈φ, φ〉M = 1, we have

E(m+ φ)− E(m) ≈
〈
∇2
mE(φ), φ

〉
L2 = λ.

The eigenmodes associated to the smaller eigenvalues of the Hessian at a
minimum of E point in the direction that locally causes the least increase of
energy.

3.3.2 Dirichlet energy

An example of an energy defined in Section 3.3.1 is the discrete Dirichlet
energy. For a compact smooth surface Σ, the Dirichlet energy is defined for
weakly differentiable functions f ∈ H1(Σ) by

E∆(f) =
1

2
〈f, f〉H1

0
. (3.7)

Then, the discrete Dirichlet energy on a surface Mh is defined for functions
u ∈ Sh by

ED(u) =
1

2
uTSu, (3.8)
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where S is the stiffness matrix whose entries are defined in Equation 3.4.
For a rigorous treatment of the discrete Dirichlet energy and a convergence
analysis, see [Dziuk, 1988, Hildebrandt et al., 2006]. The discrete Dirichlet
energy is a quadratic functional and therefore has a constant Hessian. At
any u ∈ Sh, we have ∂2

uED = S. Then the associated generalized eigenvalue
problem from Equation 3.6 corresponds to the Laplace eigenvalue Problem
5.

We set the entries of the stiffness matrix sij to the cotan weights given
in [Pinkall and Polthier, 1993]. We further assume that the corresponding
stiffness matrix S is semi-positive definite.

3.3.3 Modified Dirichlet energy

Assume that Σ is an orientable smooth surface in R3 and let N : Σ → R3

denote the normal vector field of Σ. Then for N = (N1, N2, N3) the three
coordinate functions Nk are smooth functions. Hence for f ∈ H1(Σ), we
have f Nk ∈ H1(Σ). We then define an energy that is sensitive to extrinsic
surface features by:

EN
∆ (f) =

3∑
k=1

E∆(f Nk). (3.9)

The following lemma shows that this energy can be split into two parts: a
feature insensitive part and a feature sensitive part.

Lemma 4 (Modified Dirichlet Energy) The energy defined in Equation
3.9 satisfies

EN
∆ (f) = E∆(f) +

1

2

∫
Σ

f 2(κ2
1 + κ2

2)dA, (3.10)

where κ1 and κ2 are the principal curvatures of Σ.

This means that EN
∆ (f) is the sum of the Dirichlet energy of f and the

f 2-weighted total curvature of Σ.

Proof. Given a function f ∈ H1(Σ), we define a mapping eN4 : Σ→ R by

eN4 =
1

2

3∑
k=1

〈∇ (fNk) ,∇ (fNk)〉 . (3.11)

By construction eN4 is defined almost everywhere on Σ. Expanding the sum
from Equation 3.11 into its three parts and using the product rule we get:

eN4 =
1

2

3∑
k=1

N2
k 〈∇f,∇f〉+ f 2 〈∇Nk,∇Nk〉+ 2fNk 〈∇Nk,∇f〉 .
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Note eN4 from Equation 3.11 is invariant under transformations from the
specialized orthogonal group. We assume local Monge coordinates around a
point x ∈ Σ. Then the normal at x is given by:

N(x) = (0, 0, 1).

By choosing a Monge chart where the coordinate lines are aligned along
principle curvature lines, the extended shape operator [Hildebrandt, 2013]
has the form κ1 0 0

0 κ2 0
0 0 0

 .

Using e1 = [1, 0, 0] and e2 = [0, 1, 0] the normal derivatives in this coordinate
chart is given by

∇Nk(x) =

{
−κkek k = 1, 2

0 k = 3.

Using these relations for the normal and its derivatives, eN4 (see Equation
3.11) can then be rewritten as:

eN4 =
1

2
〈∇f,∇f〉+

1

2
f 2
(
κ2

1 + κ2
2

)
. (3.12)

Finally integrating over the surface Σ yields

EN
4 (f) =

∫
Σ

eN4dA

and we have our desired result.

To define a discrete modified Dirichlet energy, we define the space of
piecewise linear vector fields on Mh by

Vh =
{
w :Mh → R3 |w(x) = (w1(x), w2(x), w3(x)) with wi ∈ Sh

}
.

Then we can define a mapping s : Sh × Vh → Vh that scales a vector field,
that is, s(u,w) = (u(x)w1(x), u(x)w2(x), u(x)w3(x)). Fixing a certain vector
field w ∈ Vh, we can define sw : Sh → Vh by sw(u) = s(u,w). This map
establishes an isomorphism between functions in Sh and vector fields that
are parallel to a certain w ∈ Vh. Similar to the smooth setting (see Equation
3.9), we can then define an energy by
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Definition 6 (Discrete Modified Dirichlet Energy) Given a unit nor-
mal vector field N ∈ Vh the discrete modified Dirichlet energy is a mapping
EN
D : Sh → R defined by

EN
D (u) =

3∑
k=1

ED(sN(u)k) with u ∈ Sh.

In particular the modified discrete energy EN
D (·) has the following matrix

representation

Lemma 5 (Discrete Modified Dirichlet Energy) The discrete modified
Dirichlet energy EN

D (u) is a quadratic form given by

EN
D (u) =

1

2
uTAu

where the entries aij of A are

aij = nijsij

where

nij =

{
〈N(pi), N(pj)〉 σ1

k ∈M, vi ∈ σ1
k and vj ∈ σ1

k

0 otherwise,

where pi = P (vi), pj = P (vj) (see Section 1.1), and sij correspond to the
entries of the stiffness matrix S from Equation 3.4.

Proof. The Dirichlet energy for the k-th component function of the scaled
normal is given by:

ED(sN(u)k) =
1

2
uT N̂T

k SN̂ku,

where N̂k denotes a diagonal matrix with diagonal entries n̂k,ii set to the k-th
normal component at pi. Using this notation we expand EN

D from Definition
6 into its three terms

EN
D (u) =

1

2
uT
(
N̂T

1 SN̂1 + N̂T
2 SN̂2 + N̂T

3 SN̂3

)
u.

We then set

A = N̂T
1 SN̂1 + N̂T

2 SN̂2 + N̂T
3 SN̂3.
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Figure 3.2: Visualization of modes of different energies. The left column
shows the Laplacian eigenmodes, the middle column shows the eigenmodes of
the modified Dirichlet energy EN

D , and the third column shows the vibrations
modes derived from the thin shell energy restricted to normal variations as
described in [Hildebrandt et al., 2012].

Collect terms using the fact that the N̂k are diagonal so the entries aij of A
are of the form

aij = (n̂1,iin̂1,jj + n̂2,iin̂2,jj + n̂3,iin̂3,jj) sij.

Then using the correspondence

〈N(pi), N(pj)〉 = (n̂1,iin̂1,jj + n̂2,iin̂2,jj + n̂3,iin̂3,jj)

we get our result.
We split the matrix representation of EN

D (u) into two parts

uTAu = uTSu+ uTCu. (3.13)

The entries of C are then given by

cij =

{
0 i = j

(nij − 1) sij otherwise.

By construction, the positive definiteness of A depends on the values of nij
and the entries sij. The discrete modified Dirichlet energy is a quadratic
functional and therefore has a constant Hessian. At any u ∈ Sh, we have
∂2
uE

N
D = A.
Given a surface Mh, we assume that the normals satisfy 0 ≤ nij ≤ 1.

Together with our assumptions on the entries sij of the stiffness matrix S
at the end of Section 3.3.2, that is, sij < 0 for i 6= j, the entries cij of C
satisfy cij ≥ 0 (see Equation 3.13). Thus under these conditions A and, in
particular, C are semi-positive definite.
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Figure 3.3: Two eigenmodes of the lower spectrum on the double torus with
sharp features, left: Laplacian, and right: modified Dirichlet energy.

3.3.4 Eigenmodes

We experimented with the eigenfunctions of ∇2EN
D and the eigenfunctions of

the Laplace operator, that is, the eigenfunctions of ∇2ED.

To compute the eigenmodes of a mesh, we solved the generalized eigen-
value Problem 5. Since M is a diagonal matrix, this problem can be trans-
formed into a standard eigenvalue problem as described in [Vallet and Lévy,
2008]. Then we solve the resulting standard eigenvalue problem with the
shift-and-invert Lanczos scheme described in [Vallet and Lévy, 2008]. For
most examples and applications, we do not need to compute the full spec-
trum, but only the lower part of the spectrum.

For the first example, we study how the eigenmodes change when we
isometrically deform a flat plate by sharp bend, see Figure 3.2. On the
undeformed flat plate, the eigenmodes of EN

D coincide with the eigenmodes
of the Laplacian shown in Figure 3.1. As illustrated in Figure 3.2, there
are certain differences between the three types of considered modes when
computed on the deformed plate. Due to its intrinsic nature, the Laplacian
eigenmodes ignore the newly introduced feature, Figure 3.2 left. In contrast,
the eigenmodes of EN

D are sensitive to the feature, Figure 3.2 middle. The
eigenmodes of EN

D corresponding to lower eigenvalues almost vanish at the
feature. For further comparison, eigenfunctions from an operator introduced
in [Hildebrandt et al., 2012] are shown in Figure 3.2 right. In contrast to the
eigenfunctions EN

D , these eigenfunctions place critical points along features.

Investigating the differences between the eigenmodes of the Laplacian and
EN
D further, we compute them on the double torus with sharp features shown

in Figure 3.3. Each of the Laplacian eigenmodes show a more or less equally
distributed set of extrema as well as a certain reflective symmetry, Figure 3.3
left. The corresponding isolines suggest a low influence of the sharp features
to the considered Laplacian eigenmodes. Similar to the Laplacian modes, the
two eigenmodes for EN

D also have a reflection symmetry, Figure 3.3 right. But
here we find that the eigenmodes of the lower part of the spectrum correspond
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Figure 3.4: A qualitative comparison of modes of the modified Dirichlet
energy and modes of the Laplacian is shown. The two left models illustrate
two lower modes of the Laplacian. The three models on the right show lower
modes of the modified Dirichlet energy, which respect the extrinsic features.

to oscillations of flat areas surrounded by sharp edges, Figure 3.3 right. For a
third comparison, we choose a model without sharp edges: a CAD model, see
Figure 3.4. As in the previous cases, we notice that the Laplacian eigenmodes
oscillate equally over the whole surface, see Figure 3.4 left. In contrast, the
eigenfunctions of EN

D respect the extrinsic geometry features, e.g., they align
to the smooth creases on the CAD model, see Figure 3.4 right. Furthermore,
on the CAD model, eigenfunctions corresponding to the lower eigenvalues of
the spectrum tend to concentrate on larger, less curved parts of the surface,
e.g., the cylindrical part of the CAD model.

The eigenfunctions of discrete Laplace operator and EN
D differ signifi-

cantly, see Figure 3.2, 3.3 and 3.4. In our experiments, we observed that
modes of EN

D corresponding to lower eigenvalues hardly move in regions of
high curvature.

A possible explanation for this behavior can be found by examining the
energy changes caused by a variation u ∈ Sh away from a minimum. With
our assumptions on the entries of S and A, the energies EN

D (·) and ED(·) are
minimal at m = 0. Then an energy change caused by a variation u ∈ Sh at
m is given by:

ED(m+ u)− ED(m) =
〈
∇2
mED(u), u

〉
M

= uTSu

EN
D (m+ u)− EN

D (m) =
〈
∇2
mE

N
D (u), u

〉
M

= uTSu+ uTCu.

(3.14)

Hence the energy changes caused by a variation u ∈ Sh differ by a term uTCu.
By our assumptions, uTCu is required to increase the energy for variations u
that are nonzero within surface regions of high curvature. Because variations
φ ∈ Sh in the direction of an eigenmode associated to small eigenvalues
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correspond to a direction with a small change in energy, we deduce that
the modes of low eigenvalues of ∇2

mE
N
D tend to avoid the additional energy

increase by φTCφ occurring in curved regions.

3.4 Extended Dirichlet energy

Based on the modified Dirichlet energy from Section 3.3, we introduce a
new family of extrinsic features sensitive energies. This energy class is
parametrized by a scalar parameter t ∈ R, which controls the feature sensi-
tivity of the corresponding energy. We refer to this family as the extended
Dirichlet energies defined by

Definition 7 (Extended Dirichlet Energy) An extended Dirichlet energy
is given by

EX
∆ (f, t) = E∆(f) +

1

2
t

∫
Σ

f 2(κ2
1 + κ2

2)dA,

the sum of a Dirichlet energy term and a scaled total curvature term.

Using EN
∆ from Equation 3.10 we can represent EX

∆ as a weighted sum of E∆

and EN
∆ . To isolate the total curvature term from EN

∆ , we use the difference
(EN

∆ (u)− E∆(u)). Then EX
∆ is given by

EX
∆ (f, t) = E∆(f) + t(EN

∆ (f)− E∆(f))

= tEN
∆ (f) + (1− t)E∆(f).

(3.15)

Thus choosing a t 6= 0, the total curvature term influences the corresponding
energy. That is, it becomes sensitive to extrinsic surface features. For t =
0 we get the Dirichlet energy from Equation 3.8, i.e., EX

∆ (f, 0) = EX
∆ (f).

Setting t = 1, we get the modified Dirichlet energy from Equation 3.9, i.e.,
EX

∆ (f, 1) = EN
∆ (f). Choosing a larger t, the total curvature term, that is,

the extrinsic feature sensitive part, starts to dominate the energy.

We define the discrete counterpart EX
D to Definition 7 by

Definition 8 (Discrete Extended Dirichlet Energy) A discrete extended
Dirichlet energy is given by a weighted sum of the discrete Dirichlet energy
and the modified Drichlet energy, that is,

EX
D (u, t) = tEN

D (u) + (1− t)ED(u). (3.16)
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λ1 λ2 λ3 λ1 λ2 λ3

Figure 3.5: Lower modes derived from the Hessian of two discrete extended
Dirichlet energy that have different t values. The first three eigenfunctions
on the camel model are shown for t = 0.05 on the left left and t = 0.5 on the
right.

By construction, the extended Dirichlet energy is a quadratic functional on
Sh. We refer to ∇2

tE
X
D as the Hessian of a discrete extended Dirichlet energy

for t ∈ R.

The first three eigenfunctions of the spectra of ∇2
t1
EX
D and ∇2

t2
EX
D with

t1 = 0.05 and t2 = 0.5 for the camel model are shown in Figure 3.5. Notice
that the nonzero variations of the eigenfunctions for ∇2

t2
EX
D are concentrated

in the less curved parts compared to the variations described by eigenfunc-
tions of ∇2

t1
EX
D .

3.5 Stability of discrete cmc-surfaces

In the continuous setting, properties of constant mean curvature surfaces or,
in short, cmc-surfaces have been investigated intensively. We will denote
by H and K the mean curvature and Gauss curvature, respectively. By
Ck

0 (Σ) ⊂ Ck(Σ) we refer to the k-times differentiable compactly supported
functions on Σ. The subset Ck

0,0(Σ) ⊂ Ck
0 (Σ) contains functions that satisfy∫

Σ
fdA = 0. Following [Barbosa et al., 1988] and [Polthier and Rossmann,

2002] stable cmc-surfaces are then defined by

Definition 9 A cmc-surface Σ is stable if J(f) > 0 for all f ∈ C1
0,0, where

the functional J(·) is given by J(f) =
∫

Σ
〈∇f,∇f〉 − (4H2 − 2K) f 2dA.

As shown in [Barbosa et al., 1988] and [Polthier and Rossmann, 2002] the
functional J(f) corresponds to the second-order change in area when the set
of allowed variations is restricted to volume preserving variations. To deter-
mine stability, two indices I and Iu are defined in [Polthier and Rossmann,
2002]. I is the geometric index and corresponds to the dimension of the
subspace of allowed functions f ∈ Ck

0,0(Σ) for which J(f) < 0. Hence for a
stable cmc-surface, we have I = 0.
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The unconstrained index Iu corresponds to the dimension of the space of
unconstrained variations for which J(f) < 0 with f ∈ C1

0(Σ). Hence it can
be used to estimate stability because Iu ≥ I. We can rewrite the functional
J(f) used in Definition 9 by

J(f) = E∆(f)−
∫

Σ

(4H2 − 2K)f 2dA

= E∆(f)−
∫

Σ

(κ2
1 + κ2

2)f 2dA.

Hence the functional J(f) can be represented as a certain energy from the
class of extended Dirichlet energies given in Definition 7, that is, J(f) =
EX

∆ (f,−2). Denoting by Sh,0 ⊂ Sh the subset of functions that vanish on the
boundary of Mh we define its discrete counterpart JD by

JD(u) = EX
D (u,−2) u ∈ Sh,0 (3.17)

=
1

2
uTBu,

where the matrix B and its entries bij are given by

B =
1

2
(−2A+ 3S) and bij = sij (3− 2nij) .

We refer to Λ− as the set of all negative eigenvalues of ∇2JD = M−1B.
Denoting by µ(λi) the multiplicity of an eigenvalue λi, the dimension of the
subspace of h, 0 for which J(u) < 0 is then given by

Īu =
∑
λ∈Λ−

µ(λ).

If Mh is a discrete cmc-surface we call Īu its energy based unconstrained
index. Hence given a family of simplicial surfaces that point- and normal-
converge to a smooth cmc surface we can estimate Iu by Īu.

We determined the energy based unconstrained index Īu for three cmc-
surfaces for the trinoid, catenoid, and Enneper surface. We approximated the
smooth normal vector field by a normal vector field N ∈ Vh, where N(pi) is
computed by averaging the incident triangle normals. The computed energy
based unconstrained indices correspond to the unconstrained indices Iu given
in [Polthier and Rossmann, 2002]. The eigenfunctions φ corresponding to
λ ∈ Λ− are shown for the three surfaces in Figure 3.6 and Figure 3.7.

To determine the number of negative eigenvalues we computed the full
spectrum and all eigenfunctions using the divide-and-conquer algorithm from
LAPACK [Anderson et al., 1999].
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λ1 λ2 λ3

Figure 3.6: Illustration of the three-dimensional subspace for which J(u) < 0
for the trinoid, where λ1 < λ2 ≈ λ3 < 0.

λ1 λ1

Figure 3.7: Illustration of the one-dimensional subspace for which J(u) < 0
for the catenoid and the enneper surface, that is, both λ1 < 0.

3.6 Modal signatures

In this section we introduce a multi-scale surface signature. The feature
signature is based on the eigenfunctions and eigenvalues of the modified dis-
crete Dirichlet energy EN

D . The construction of the signatures follows the
construction of the heat kernel signature defined in [Sun et al., 2009].

Extending the heat diffusion process from Euclidean space to manifolds,
the Laplace operator must be defined on these manifolds. The resulting op-
erator is the Laplace–Beltrami operator. By describing the diffusion process
by the Laplace–Beltrami operator, the geometry around a point determines
its diffusion behavior. The corresponding signature captures the tempera-
ture change over time at any point in time. A signature exploits the fact
that similar neighborhoods result in similar diffusion behavior.

The signature we consider is a multi-scale signature that takes a positive
scale parameter t as its input. For every t, the signature is a function on the
mesh, i.e., it associates a real value to every vertex of the mesh.

We define the feature signature for p ∈Mh and scale t ∈ R+ by

SFt (p) =
∑
j

e−λjt φj(p)
2, (3.18)

where the λj are the eigenvalues and the φj ∈ Sh are the L2-normalized
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eigenmodes of the Hessian of the modified discrete Dirichlet energy EN
D .

The weights depend on the eigenvalues λi and on the scale parameter t.
For increasing λ, the function e−λt rapidly decreases. The modes with smaller
eigenvalue receive higher weights than the modes with larger eigenvalues.
Furthermore, for increasing t, all weights decrease and, more importantly,
the weights of the eigenmodes with smaller eigenvalues increase relative to
the weights of the modes with larger eigenvalues.

From the feature signature, we can construct the following multi-scale
pseudo-metric on the mesh. Let p, q ∈Mh, then we define the corresponding
pseudo-metric between p and q by

δ[t1,t2](p, q) =

(∫ t2

t1

(
SFt (p)− SFt (q)∑

ke
−λkt

)2

d log t

) 1
2

. (3.19)

By construction, for any pair of scalar values t1 < t2, δ[t1,t2] is positive semi-
definite, symmetric and satisfies the triangle inequality. We call the pseudo-
metric constructed from SFt the feature distance.

The idea behind the construction of the pseudo-metric is to use the in-

tegral
∫ t2
t1

(
SFt (p)− SFt (q)

)2
dt. However, the actual definition additionally

includes two heuristics. First, since the values SFt (p) decreases for all p for
increasing t, we normalize the value

(
SFt (p)− SFt (q)

)
by dividing it by the

discrete L1-norm of SFt , ∥∥SFt ∥∥L1 =
∑

ke
−λkt.

Second, for a fixed vertex p, the signature SFt (p) varies more for small values
of t compared to large t.

To increase the discriminative power of the pseudo-metric, we associate a
higher weight to the small t and a lower weight to the larger t. We achieved
this by using a weighted integral with weight function dlog t = 1

t
dt. To

discretize this weighted integral, we use a uniform decomposition of the log-
arithmically scaled interval [t1, t2].

3.7 Applications

The feature signature and the feature distance can be used to identify features
of the surface, like sharp bends or sharp corners. The signature could serve as
an indicator function to surface segmentation algorithms. Figure 3.8 shows
the feature signature on the rocker arm model for different scales. Vertices
of the mesh that have a signature value close to zero are colored white in
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p

Figure 3.8: Results of the feature signature on the rocker arm model. The top
row shows the feature signature for increasing scale values. The bottom row
shows on the left the feature distance to the marked vertex p ∈ Mh binary
colored by a threshold, and, on the right, the surface colored by curvature
(
√
κ2

1 + κ2
2).

these images. The white areas seem to include the important features of the
rocker arm model. The lower left image shows in blue all the vertices that are
close (with respect to the feature distance) to a vertex on a sharp bend. For
comparison, we also show a curvature plot (

√
κ2

1 + κ2
2) on the rocker arm.

Concerning the applicability as a feature indicator of the feature signa-
ture, a nice aspect of the feature signature compared to curvature is that the
feature signature naturally comes with a scale parameter whereas for curva-
ture a scale space needs to be constructed. Another interesting difference is
that some areas of the rocker arm model have high curvature but do not in-
dicate features. The curved area inside the hole has a much higher curvature
than, for example, the flat parts on the sides of the model. Still, the feature
distance associates similar function values to both of these parts.

Feature detection is an application that highlights differences between our
feature signature and the heat kernel signature or, in short, HKS. This is due
to the isometry invariance of the HKS, which implies that the HKS marks
only features that remain features under arbitrary isometric deformations.
For example, sharp bends (like the one in Figure 3.2) are not regarded as
features by the HKS. Similar to the example shown in Figure 3.8, we select an
initial point and mark all points that are close to the initial point with respect
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to a modal distance. For comparison, Figure 3.9 shows results obtained
with our feature distance (colored in blue) and with the heat kernel distance
(colored in green) on a collection of models. The first example, the blade
model (top left) shows the features detected for three different initial points
located on corners and sharp bends of the surface. The feature signature
finds almost identical sets of features for all three initial points. The results
the HKS produces vary strongly.

On the turbocharger model (top right), we select two different initial
points: one located on a sharp bend and one point close to a bend. The
images show that in the second case, the feature signature marks points that
have similar distance to a feature as the initial point. Since the sharp bends
on this surface are curved (in the tangential direction orthogonal to the bend),
the HKS detects these features as well and produces comparable results to
the feature signature. A second example where the feature signature and the
HKS produce similar results is the bumpy plate (bottom right).

To determine the eigenfunctions φi, we need to solve a sparse generalized
eigenproblem (see Equation 3.6). One way to solve such a generalized eigen-
value problem is to transform it to a standard eigenvalue problem. In our
case, the mass matrix is a positive definite diagonal matrix. Therefore such a
basis transformation requires only a rescaling of the Lagrange basis vectors.
Details for this procedure can be found in [Vallet and Lévy, 2008].

To compute the feature signature and feature distance, only a fraction of
the lower part of the spectrum is required because the weights e−λjt rapidly
decrease with increasing eigenvalue. Typically, the first 300 eigenvalues and
modes yield a faithful approximation of the signatures and distances. To
efficiently compute a lower portion of the spectrum and its corresponding
eigenvectors we employ the shift-and-invert Lanczos method which does not
need the inverse matrix explicitly. Instead, only a matrix vector product
has to be provided, which can be evaluated by solving a linear system of
equations. We solve these systems using the sparse direct solver implemented
in MUMPS, see [Amestoy et al., 2001]. Once the eigenvalues are computed,
the evaluation of the signatures and distances is relatively fast. To discretize
the integral in Equation 3.19, we use a numeric quadrature. We place the
samples of the interval [t1, t2] so that they are equidistant on the logarithmic
scale, which yields equal weights for all points in the quadrature.
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Figure 3.9: Comparison of our feature signature and the HKS on a collection
of models are shown. For a selected point pi ∈Mh similar points are denoted
by blue for our signature and by green for the HKS.
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3.8 Summary

We presented an approach to derive operators from the Hessians of a certain
type of a surface energy acting on surface functions. These operators are
feature sensitive and have an easy to implement matrix representation.

We derived a modified Dirichlet energy that is quadratic and depends on
the surface normals. In contrast to the spectrum and eigenfunctions of the
Laplacian, its associated operator possesses a spectrum that is sensitive to
extrinsic surface features, i.e., the squared total curvature. We demonstrate
this sensitivity of the eigenfunctions on three examples.

Based on the definition of the modified energy we introduced a family of
energies whose feature sensitivity can be controlled by a scalar. An energy of
this class is given by a weighted sum of the Dirichlet energy and our modified
Dirichlet energy. That means it has a simple matrix representation. By
construction the corresponding family of operators, that is, the Hessians of
these energies, possess feature sensitive spectra and eigenfunctions.

We showed that under certain assumptions for the normals of a surface
mesh, a certain operator of this family can be used to approximate the un-
constrained stability index of cmc-surfaces. We estimated the index for three
minimal surfaces. A possible next step is to estimate the stability using the
operator for non minimal cmc-surfaces, such as the wente torus.

Similar to the Heat Kernel Signature we constructed a point signature
based on the spectra and eigenfunctions of the modified Dirichlet energy.
We applied the signature on various models to identify similar points and
compared it to point identification resulting from the HKS. Having the scale
parameter to control an operator’s feature sensitivity, the properties of the
corresponding scaled signatures still needs to be explored.

Another application for the feature sensitive spectra and eigenfunctions
is to use them in the generation of quadrangulations that align to salient sur-
face features. Further possible research directions are the feature signature’s
potential to place point singularities for quadrangulations/parametrizations
or to determine inter shape correspondence.



Chapter 4

Patch Layout from Feature
Graph

Reverse engineering deals with the reconstruction of CAD surfaces typically
from scanned 3D geometries. Current CAD system are based mainly on
spline geometries. A scanned triangle mesh must be converted into a highly
structured and segmented data structure that can then be used to determine
an appropriate spline representation. Our algorithm helps to automate this
reconstruction process. It consists of two general steps. In the first step, we
generate an abstract description of the final patch layout. This description
is encoded in a feature graph. This means there is a one-to-one relation
between the feature graph elements and the regions of the patches of the final
layout. Furthermore, the feature graph is a graph embedded on the surface
and its smooth edges are oriented along geometric surface features. In the
second step, a geometrically reasonable patch layout is generated from the
feature graph. The resulting patches have a uniform curvature distribution
and are encircled by smooth boundaries. For our decomposition approach,
no primitive fitting, i.e., template matching, is required making it easy and
fast to compute.

In Section 4.2, we explain our basic concepts and underlying notions of a
feature graph and a patch layout. The procedure to generate a feature graph
is contained in Section 4.3. The creation of the patch layout from a given
feature graph is explained in Section 4.4. Finally, we present some results of
our surface decomposition approach in Section 4.5.

81
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4.1 Background

Our patch layout algorithm is related to many known techniques in surface
segmentation and graph smoothing algorithms. A general overview of surface
decomposition methods is given in [Shamir, 2006].

Surface segmentation has its roots in image processing, where surfaces
are treated as height fields, i.e., there exists a canonical parametrization of
the surface over a planar domain as used in [Sapidis and Besl, 1995]. The
main part of [Shamir, 2006] contains a detailed overview of segmentation
algorithms working on general triangulated surfaces showing their variety of
applications and implementations. Segmentation algorithms can be used for
various purposes ranging from remeshing, animation [Bergou et al., 2007],
shape matching [Funkhouser et al., 2004], and mesh editing to geometry
compression and other areas. We focus on the segmentation of CAD parts
for reverse engineering.

Some related work focuses on surface segmentation by approximation
with several kinds of predefined types of primitives. In [Cohen-Steiner et al.,
2004], planes are fitted. [Wu and Kobbelt, 2005] uses a collection of CAD
primitives, such as spheres or rolling ball blends. The use of parametrized
shapes is suggested in [Joris S. M. Vergeest and Jelier, 2001].

Clustering vertices into groups belonging to a specific shape type using
multiresolution is demonstrated in [Attene et al., 2006] and [Garland et al.,
2001]

[Julius et al., 2005, Shatz et al., 2006] show a tiling of a given model
into nearly-developable charts. This kind of chart tiling makes it possible to
recreate the given surface as a paper craft model.

[Lévy et al., 2002] use a region growing algorithm for creating patches
whose boundaries run along sharp features. In the first step, some surface
features are detected; then a set of regions is constructed, which meet at
these features.

There are many approaches to computing a feature layout using Morse
theory. In [Dong et al., 2006], an eigenvector of the Laplacian is computed
and used as a Morse function. The Morse complex which is then built from
this function segments the surface into quads. In [Edelsbrunner et al., 2001,
Cazals et al., 2003], the construction of a Morse-Smale complex is described.
By prescribing an adequate Morse function that represents the important
parts of the surface, one can control the alignment of the feature layout. In
[Edelsbrunner, 2005], a curvature based Morse function is used to construct
a Morse-Smale complex that aligns to surface features. This approach is
applied to CAD models in [Várady et al., 2007].

[Huang et al., 2009] uses vibration modes of a surface to decompose it
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Figure 4.1: Feature graph on CAD part consisting of faces, feature edges
and node points are shown on the left. The dark grey parts within each face
indicate the plane-like or weakly curved parts and the light grey parts show
where the surface starts to curve. Patch layout with face patches, fillets, and
node patches, as well as offset and node curves and offset nodes are shown
on the right.

into physically meaningful parts. They compute the modes of the surface
from the Hessian of a simplification of the As-rigid-As-possible deformation
energy, which was proposed by [Sorkine and Alexa, 2007].

The patch boundaries should be smooth curves. In [Lee and Lee, 2002]
the use of snakes for the generation of smooth curves on triangulated sur-
faces is proposed. This approach requires the repeated projection of the
actual curve onto a two-dimensional domain. The smoothness of the curve
is controlled by an energy term. Recasting the problem of smooth curves
on triangulated manifolds to a high dimensional optimization problem is
described in [Hofer and Pottmann, 2004]. Furthermore, the alignment of
curves along features can be driven by the use of the feature sensitive metric
introduced in [Pottmann et al., 2004]. Thickening of smooth curves is also
mentioned in [Várady et al., 2007] but without going into the actual details
of the thickening procedure.

4.2 Setup

We consider simplicial surfacesMh ⊂ R3 (see Section 1.1) without self inter-
sections. The two-dimensional cells, i.e., its triangles σ2

i ∈ M, are denoted
by Ti. Furthermore, to a set of triangles A = {TA1 , . . . , TAm} with TAi ∈M,
we associate the subset |A| ⊂ Mh with |A| =

⋃
i |TAi|.

The basic idea of our algorithm is to initially decompose the surfaceMh

into disjoint sets given by sets of triangles Ii with
⋃
i |Ii| ⊆ Mh. The sets

Ii and |Ii| are referred to as primitives. The final patch layout is generated
based on this decomposition. The initial primitive guess is already a rough
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approximation of the final layout (Figure 4.1 left, Figure 4.2 left). They
lack smooth boundaries and inherent connectivity information. To create
the patch layout from the initial set of primitives Ii, we introduce the feature
graph (Figure 4.1 left). The feature graph will provide the necessary connec-
tivity information. Additionally the feature graph’s significant points and
curves will meet certain smoothness and alignment requirements to create
the final patch layout (Figure 4.1 right). For a complete description of our
layout generation method we define the feature graph and the patch layout.

A feature graph is a graph on the surface (Figure 4.1 left) that describes
the underlying structure of a CAD surface. The feature graph is a net of
smooth surface curves, which run along surface features. It consists of: faces,
feature edges, and node points. A face is a surface region containing a prim-
itive. These can be any kind of primitive, e.g., planes, cylinders, cones.
We mainly focus on plane-like faces. Feature edges are smooth edges that
separate two adjacent faces. Feature edges run along in cylindrical/conical
regions. Node points are points on the surface where several feature edges
meet, i.e., these points are also incident to more than one feature graph face.
These are isolated points expected to be in spherical/hyperbolic regions.

A patch layout is an embedded graph on the surface that decomposes the
geometry into various cells (Figure 4.1 right). Within each cell of the patch
layout, heavily changing curvature is not allowed. We expect three possible
cell types: almost planar or weakly curved parts called face patches, regions
between two adjacent face patches called fillets, and regions that connect
several fillets called node patches. Face patches, fillets, and node patches
correspond to feature graph faces, edges, and node points, respectively. Usu-
ally, a fillet has a cylindrical or conical shape and node patches are spherical
or hyperbolic.

We will encounter two types of boundaries between cells of a patch layout:
offset curves and node curves. Offset curves encircle face patches. Each offset
curve separates a face patch from an adjacent fillet. The feature edge that
represents this fillet runs more or less parallel to the offset curve. Node curves
separate fillets from node areas. In general, each node patch is bounded by
a sequence of smooth node curves. Start and end points of these curves will
be denoted as offset nodes.

4.3 Feature graph

The basis of a consistent layout is a feature graph representing the layout’s
final structure. So given a simplicial surface Mh, we present a strategy to
build all parts of a feature graph, such as faces, feature edges, and nodes.
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Algorithm 3: Generate the feature graph

Input: surface Mh

Output: feature graph
Compute principle curvatures (values and directions)
Detect initial regions Ii
Expand regions Ii by a region growing process
Extract nodes and edge based face boundaries
Create smooth feature edges from edge based face boundaries

We focus on detecting plane-like regions. The basic idea is to detect these
primitives |Ii| ⊂ Mh with Ii ∩ Ij = ∅ and expand them to cover all of Mh.

Having covered all of Mh, we detect node points. The node points are
connected by curves that separate adjacent expanded primitives. These
curves are very jagged and run only along edges of the underlying mesh.
We take these curves as the first approximation for the later feature edges.
Thus, they need to be smoothed to meet our alignment and orientation re-
quirements.

The result of this last step is a net of smooth curves on the surface – the
feature graph. These curves encircle the feature graph faces containing the
primitives |Ii|; in our case they describe the weakly curved or plane-like part
of each face.

The steps to generate the feature graph are summarized in Algorithm
3. The details for the single steps are explained in detail in the following
subsections.

4.3.1 Computing curvatures

The algorithm starts by computing the curvature information, i.e., principle
curvature values and directions, at each vertex of the mesh. We use an ap-
proximation of the shape operator given in [Hildebrandt and Polthier, 2004].
It is a stable and reliable method and requires no fitting. Other methods,
see [Cohen-Steiner and Morvan, 2003, Pottmann et al., 2007], can also be
applied. Having curvature information at all vertices enables us to assign
curvature information to each triangle Ti ∈ M by averaging the curvature
information of all three incident vertices. Thus, for each triangle Ti, two
averaged unit vectors pointing in principle curvature directions (±Xmax,i,
±Xmin,i) are given together with their corresponding averaged curvature val-
ues (κmax,i and κmin,i) with |κmax,i| ≥ |κmin,i|.
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4.3.2 Detecting primitives

Primitives Ii are taken as seeds for the generation of the feature graph faces
(see Figure 4.1 left, Figure 4.2 left) by a region growing algorithm. We expect
the primitives to be characterized by their curvature properties. Because
we focus on the detection of almost planar primitives only one curvature
threshold τ > 0 is needed. Thus we define the following set of flat triangles
I := {Ti ∈ M| |κmax,i| < τ}. In general, I can be split into a set of simply
connected disjoint components or primitives Ii, i.e., I =

⋃
i Ii with Ii∩Ij = ∅.

Apart from using τ to characterize initial regions, it can also be considered
as a measure of acceptable noise within a primitive, that is a higher value of
τ will ignore more noise.

4.3.3 Edge based feature graph

The result of the expansion of the primitives Ii is a rough approximation
of the feature graph. It defines the combinatorial structure of the feature
graph, that is, it determines the node points and provides connectivity in-
formation between those points. The detected node points are then fixed for
the remainder of the patch layout generation. The primitives Ii are grown

Figure 4.2: Illustration of the expansion step. The primitives |Ii| are shown
(left). The complete covering ofMh by expanded regions |Fi| including parts
of the unsmoothed feature graph are shown (right).

until the whole surface is covered. We denote Fi to be the triangle set that
results from the expansion of the initial set Ii. That is after expansion we
have

⋃
i |Fi| = Mh with Fi ∩ Fj = ∅. Various expansion strategies exist.

Our experiments show that node points are best placed where the absolute
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Gaussian curvature |K| is high and that feature graph edges should be placed
where |κmax,i| is high.

In order to ensure the correct placement of feature graph nodes and edges,
we developed an expansion strategy based on curvature information. We use
a region growing approach to realize the expansion of initial regions |Ii| into
the uncovered part of Mh. The growing is controlled by a feature function,
which assigns curvature related priority values to free triangles Ti /∈ I.

We use |κmax,i| as the feature function for the expansion into cylindrical
surface regions. However, when the surface becomes spherical or hyperbolic,
the values of κmin,i and κmax,i become more and more similar. To ensure
placement of node points where |K| is high, we use |K| as a feature function
within spherical/hyperbolic regions. We use |κmax,i| − |κmin,i| as an estimate
for the stability of |κmax,i|. We classify the free triangles Ti /∈ I into two

Figure 4.3: Results from expanding initial regions with varying growing
strategies. From left to right: geodesic distance approximation by [Kim-
mel and Sethian, 1998], metric from third fundamental form by [Pottmann
et al., 2004], our feature function.

groups: the unstable group N and stable group E, that is,

N := {Ti ∈M| Ti /∈ I, |κmax,i| − |κmin,i| < t}, t ∈ R
E := {Ti ∈M| Ti /∈ (I ∪N)}.

Our region growing is driven by |κmax,i| for Ti ∈ E and by |K| for Ti ∈ N . A
comparison of feature graph nodes placement by our region growing strategy
to results using geodesic distance approximation from [Kimmel and Sethian,
1998] and a metric based on the third fundamental form from [Pottmann
et al., 2004] are shown in Figure 4.3. Our method is similar to a watershed
technique from image segmentation, see e.g., [Mangan and Whitaker, 1999],
with a similar use of a priority queue. After the region growing finishes the
node points of the feature graph are determined, i.e., points pi ∈ Mh where
more than two expanded primitives Fi meet, see Figure 4.2 right.
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4.3.4 Smooth feature graph

The rough approximation to the final feature graph from the last step cor-
responds to the set of boundaries of the expanded primitives Fi, that is, a
set of polygonal curves where each curve runs along edges of the underly-
ing triangulation (Figure 4.2 right and Figure 4.4 left). Because a feature
graph with smooth edges is necessary to generate a consistent patch layout,
we need to smooth these curves (Figure 4.4 right). During the smoothing
process, the node points are fixed. If the feature edges are smoothed using

Figure 4.4: Smoothing with fixed end points. The jagged edge based region
boundary resulting from expansion (left) and the corresponding smoothed
region boundaries describing edges of the feature graph (right).

a standard method, e.g., Laplace smoothing, they cannot be guaranteed to
stay in highly curved feature areas of the surface. Instead, we introduce an
algorithm that alters a curve on a surface so that the curve is aligned to a
given vector field. This approach can be applied to the field of minimal prin-
ciple curvature directions Xmin,i. In practice, this works well since in highly
curved areas, the principal curvature directions are very stable and smooth.
So we are looking for a smooth curve connecting the node points which is
aligned to the Xmin,i field in its vicinity. In the smooth setting, an alignment
energy for a smooth curve γ : R→ Σ can be defined with respect to a given
smooth tangential vector field X on Σ by:

E(γ) =
1

2

∫
γ

(cos (γ̇, JX))2 ds

=
1

2

∫
γ

(
〈γ̇, JX〉
‖γ̇‖ ‖X‖

)2

ds,

(4.1)

where J denotes the rotation by 90 degrees in the oriented tangent plane.
The energy from Equation 4.1 measures how much a curve’s tangents deviate
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from a vector field X. The energy vanishes if the curve tangents are parallel
to the vector field X. In the discrete setting a feature curve γ is a polygonal
curve, that is, γ = {q1, . . . , qn} with qi ∈ Mh. Points on the edges {qi, qi+1}
are not forced to stay on the surface. Then we define a discrete alignment
energy by

ED(γ) =
1

2

n−1∑
i=1

‖ei‖
(
〈ei, JXi〉
‖e‖ ‖Xi‖

)2

, (4.2)

where the edge ei and the edge dependent vector Xi are given by

ei = qi+1 − qi, and Xi = (X(qi) +X(qi+1))/2.

The alignment energy in Equation 4.2 is non-linear in the vertex positions.
To compute the descent direction at vertex qi ∈ γ, we ignore the non-linear
terms, that is, we approximate the first derivative by

∂ED(γ)

∂qi
≈ 〈ei−1, JXi−1〉
‖ei−1‖ ‖Xi−1‖2JXi−1 −

〈ei, JXi〉
‖ei‖ ‖Xi‖2JXi.

To find the minimum, we apply a simple gradient descent strategy in com-
bination with equidistant resampling of the polygonal curve and projecting
sample points onto Mh during the optimization. The points of the mini-
mizing curve are connected by geodesics, that is, we get a polygonal curve
lying in the surface mesh. A result of this optimization procedure is shown
in Figure 4.4 right.

In regions near the two ends of the edges, that is, in regions of hyper-
bolic/spherical type, the principle curvature directions become unstable. We
perform a matching operation introduced in [Kälberer et al., 2007] to decide
how to extent the stable Xmin,i directions from the fillet regions into these
unstable regions.

4.4 Patch layout

Given a feature graph, we are now able to create the final patch layout, i.e.,
the structure which decomposes the surface into its functional parts such
as faces, fillets, and node areas. Our patch layout generation process can
be visualized as thickening the feature graph edges back into its faces then
cutting off the areas around its nodes. The proposed thickening procedures
ensures the alignment of face boundaries to nearby feature lines. Further-
more, we connect feature oriented boundaries in the vicinity of node areas at
offset nodes. After having computed a consistent loop of smooth offset curves
around each face, we cut out the node areas by node curves. An illustration
of the whole process is given in Figure 4.5.
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Figure 4.5: Generation of offset curves. Compute offset nodes as nearest
points to feature nodes in each adjacent initial patch Ii (top left). Regard
distance to initial patch Ii as a one dimensional graph over the feature line
(top right). Smooth and aligned offset lines (bottom left). Final offset layout
after smoothing the distance function (bottom right).

4.4.1 Offset nodes

Offset nodes are points pi ∈ Mh where offset curves and node curves meet.
For each node point, we determine an offset node for each incident face Fj,
see Figure 4.5 top left. Our choice for an offset node within a certain face
|Fj| is the point that is contained in the corresponding primitive part |Ij| and
is closest to the node point of the feature graph. We use Dijkstra distances
to determine these points. We refer to an offset node within a face by nij,
where the indices i and j denote the feature graph node and the primitive
part, respectively (Figure 4.6 left). In practice, offset nodes of two adjacent
feature nodes may fall onto the same geometric position on the surface, i.e.,
the closest points of different node points coincide. This occurs especially
for nearby feature nodes that are connected by a very short feature edge. In
this case, the corresponding feature edge will not be offset so that the final
offset layout will not be spoiled by these nearby feature nodes, see Figure 4.9
bottom right.
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Figure 4.6: Initial patch Iq of one face with adjacent feature curves γi and
corresponding offset curves δdiri and offset nodes nij on the left. Offsetting a
feature curve γi, definition of the distance function ddiri (t) on the right.

4.4.2 Offset curves

Each feature edge γi is offset into its two adjacent faces resulting in two offset
curves δlefti and δrighti , see Figure 4.6 left. The upper index refers to the offset
direction as seen from γi, whereas the lower index indicates the feature curve
to which this offset curve belongs. Each of these curves is created from a
scalar function denoted by dlefti (t) and drighti (t) defined along γi. Here the
indices of dji (t) are defined in the same manner as for the offset curves. In the
remaining sections, we skip the indices, i.e., dji (t) becomes d(t), to shorten
the notation.

The distance between a feature edge and the primitive part of the corre-
sponding adjacent face is measured by d(t). This is in general a nonsmooth
function, so we apply a convolution to get rid of spikes within the set of dis-
tance values. The resulting distance values then encode points on the final
offset curve.

The parameterized feature edge γ(t) is represented by a set of points
uniformly distributed along the feature edge. From each of these points,
a geodesic ray is shot perpendicularly to the curve until the corresponding
primitive part is hit. To extend a ray geodesically, see [Polthier and Schmies,
1998]. The length of the ray then gives the distance d(t) (Figure 4.5 top
right). If the ray does not intersect the edge based polygon connecting the
offset nodes, defining the start and end of the offset curve to be generated,
the value of d(t) is set to be undefined. The result is a set of distance values
{d(a), . . . , d(b)}. We smooth the set of distance values d(t) by convolution
with a hat function with large support, e.g., half of the length of the fea-
ture curve. By construction, the function values d(a) and d(b) are distance
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samples close to the offset nodes (Figure 4.6 right). By keeping these values
fixed during the smoothing process, the resulting smoothed distance values
will still resemble the distance near the offset nodes. Thus, we have to con-
volute d(t) with a hat function and fix the function values at the endpoints.
Therefore we extend d(t) to a larger domain in R by mirroring at the end-
points.

d(a− x) := 2d(a)− d(a+ x),

d(b+ x) := 2d(b)− d(b− x), x ∈ [0, b− a]

Convolution of this function with a hat function will (by symmetry) not
change the function values at a and b. These convoluted distances define a
sequence of points along the feature curve. The polygonal offset curve lying
on the surface is created from this sequence (Figure 4.5, bottom left) and is
connected to the corresponding node points.

4.4.3 Node curves

There is one node area for each node point of the feature graph. In most
cases, a node area is encircled by a sequence of node lines which start and
end in offset nodes. As illustrated in Figure 4.7, let pl be a feature graph
node and γi a feature line emanating from pl. In general, there are two offset
curves δlefti and δrighti , that arise from offsetting γi into the two adjacent faces.
So a node curve needs to be created between the two corresponding offset
nodes nla, nlb to separate the node area from the fillet area. This is done by

nla

nlb

δlefti

δrighti

γi
γj

γk

pl

γi

γj

nlapl

γi

γj
n0
la

n1
la

pl

Figure 4.7: A general node area type where the node lines (green) connect
the endpoints of offset curves on the left. Two feature edges meet at node
point with angle close to 180, then corresponding offset node gets split into
two new ones on the right.

constructing a plane out of the two points nla, nlb and their normals. The
plane is defined to contain the vector connecting nla and nlb and the average
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Figure 4.8: Patch layout computed on a motorcycle part. The given trian-
gulated model, top left. The generated feature graph with our method, top
right and bottom left, and the final patch layout, bottom right.

of the two normals. The intersection curve of this plane and the mesh will
then be our actual node curve. If two feature curves γi and γj meet at a node
point with an angle close to 180 degrees (Figure 4.7 right), the corresponding
offset node nla is split into two new ones. The two new nodes n0

la and n1
la

are found using the distance map. We look for the first point within a valid
range of d(t). The actual node curve is constructed as in the usual case. In
the actual implementation, we used a threshold of 120 degrees.

4.5 Results

We tested the algorithm on several CAD parts provided by Tebis AG. Here
we discuss two parts in detail. The first part belongs to a scan of a motorcycle
(Figure 4.8). We can see that the algorithm finds a suitable decomposition
of the complex surface. The lower right picture shows the patch layout on
the part. The surface contains approximately 100k triangles and the whole
patch layout generation process took about 1 minute. The main part was the
curve smoothing, which took about 40 seconds. The second part is a scan of
a deformed metal plate, see Figure 4.9. Our decomposition algorithm also
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Figure 4.9: Feature graph on a complex CAD model, top left and top right.
The final patch layout, bottom left. Offset curves and feature graph in regions
with nearby node points, bottom right.

took less than 2 minutes foe this example. We can see that this geometry
contains fillets with varying thickness, see Figure 4.9 bottom left, which are
well detected by our method. The final patch layout also contains nearby
node points showing the ability of our method to work in cases of degenerated
offset curves, see Figure 4.9 bottom right.

4.6 Summary

We presented a surface decomposition method consisting of two steps. The
first starts with the detection of planar like regions that are expanded by a
curvature dependent region growing process. This results in a net of jagged
surface curves. We then proposed a method to smooth these curves by a
simple gradient descent procedure. In the second step, the actual decompo-
sition is generated. We proposed an offsetting procedure that is applied to
smooth curves found in the first step. Finally, we presented results for CAD
geometries that consists of more or less smoothly connected planar surface
parts.

As a possible extension of the method, we can use more complex types of
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initial primitives such as cones or cylinders. The method is designed to work
with geometries having round features, thus we like to also allow sharp edges,
i.e., edges where the corresponding fillet part is not well defined. Further-
more we could consider the inclusion of a feature sensitive point signature,
as presented in Chapter 3 to drive the growing process and to control the
placement of the node points of the feature graph.
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Chapter 5

Outlook

We presented a technique based on the spacetime constraints paradigm that
generalizes traditional spline interpolation. Our method can be used to gen-
erate and/or enhance an animation at interactive response times even for
objects with a large number of degrees of freedom, e.g., deformable objects.
For a detailed summary, see Section 2.9. Some related open problems are:

• to include partial keyframes

• the integration of contact and self collision handling

• to extend the approach to other physical systems, like fluids or smoke,
and for rigged characters

• to include a varying rest state

• to determine a rest state for a given set of poses, similar to mean shape
computation.

We introduced a new family of feature sensitive operators and introduced
two possible applications: the stability index estimation for cmc-surfaces and
a feature sensitive point signature. For a detailed summary, see Section 3.8.
Some related open problems are:

• quadrangulations that align with salient surface features based on fea-
ture sensitive eigenfunctions

• surface decomposition based on feature sensitive eigenfunctions

• the estimation of the unconstrained index for nonzero cmc-surfaces

• to further explore the family multi-scale point signatures and distances.

97
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We presented a method that helps to automate the decomposition of
a given surface into patches appropriate for low order spline fitting. Just
a few parameters, e.g., the curvature threshold, are necessary to drive the
generation process, i.e., to control the look of the final layout. For a detailed
summary, see Section 4.6. Some related open problems are:

• to extend the set of initial primitives, e.g., cylinders, spheres, cones

• to consider feature signature for feature graph generation, e.g., place-
ment of node points

• to include sharp edges.



Appendix

We describe the mass matrix used in the n-chain examples from Section 2.3.1.
In particular we use the notation given in Figure 2.1 for the planar rod and
the Luxo model.

5.1 Planar rod

The generalized coordinates and velocities for the points of the planar rod
consisting of n points are given by x = (x1, y1, θ1, . . . , θn) and ẋ = (ẋ1, ẏ1, θ̇1, . . . , θ̇n),
respectively. We refer to the point masses as mi with i ∈ {1, . . . , n}. Then
the mass matrix used to set up the generalized eigenvalue problem is given
by

M(x) = DT (x)ND(x)

with

D =



1 0 0 0 0 0
0 1 0 0 0 0
1 0 l1 cos θ1 l2 cos θ2 0 0
0 1 −l1 sin θ1 −l2 sin θ2 0 0
1 0 l1 cos θ1 l2 cos θ2 l3 cos θ3 0
0 1 −l1 sin θ1 −l2 sin θ2 −l3 sin θ3 0

. . .

1 0 l1 cos θ1 l2 cos θ2 l3 cos θ3 ln cos θn
0 1 −l1 sin θ1 −l2 sin θ2 −l3 sin θ3 −ln sin θn


and

N =


m1 0 0 0 0
0 m1 0 0 0

0 0
. . . 0 0

0 0 0 mn 0
0 0 0 0 mn

 .
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R2

a

b

θ

R = (ax, ay)

Figure 5.1: Illustration of a two-dimensional rod given by two points a, b ∈
R2.

5.2 Luxo

A single planar rigid body is illustrated in Figure 5.1. With the length
l = ‖b− a‖ fixed, we choose as generalized coordinates x = (R, θ) with
R = (ax, ay). We assume for the planar body, a linear varying density. If ρa
denotes the density at a and ρb at b, we have

ρ (r) = ρa +
r

l
(ρa − ρb) 0 ≤ r ≤ l.

The density dependent scalar quantites needed to determine the kinetic en-
ergy are the total mass

m =

l∫
0

ρ (r) dr =
l

2
(ρa + ρb)

and the two density distribution dependent quantities

I1 =

l∫
0

rρ (r) dr =
l2

3

(ρa
2

+ ρb

)

I2 =

l∫
0

r2ρ (r) dr =
l3

4

(
1

3
ρa + ρb

)
.

We also need the vector quantity

e = I1 v

‖v‖
, with v = b− a.

According to [Josef Honerkamp, 1993], the kinetic energy of a two-dimensional
rigid body with respect to the spatial velocity Ṙ and the angular velocity θ̇
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is then given by

Ekin(Ṙ, θ̇) = E1(Ṙ, Ṙ) + E2(Ṙ, θ̇) + E3(θ̇, θ̇)

E1(Ṙ, Ṙ) = ṘT

[
m 0
0 m

]
Ṙ

E2(Ṙ, θ̇) = ṘT

[
−ey
ex

]
θ̇

E3(θ̇, θ̇) = θ̇I2θ̇.

The Luxo model consits of 6 rigid bodies as shown in Figure 2.1. Hence its
kinetic energy corresponds to

ELuxo
kin (Ṙ1, θ̇1, . . . , Ṙ6, θ̇6) =

6∑
i

Ekin(Ṙi, θ̇i).

We describe the kinetic energy with respect to the generalized coordinates
x = (x1, y1, θ1, θ2, θ3, θ4) introduced in Section 2.3.1. Hence the generalized
velocities are given by ẋ = (ẋ1, ẏ1, θ̇1, θ̇2, θ̇3, θ̇4). We denote by P the projec-
tion onto the θ-components, that is,

P =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .
The mapping from generalized velocities to spatial velocities is given by

D(x) =



1 0 −l1 sin θ1 0 0 0
0 1 l1 cos θ1 0 0 0
1 0 −l1 sin θ1 −l2 sin θ2 0 0
0 1 l1 cos θ1 l2 cos θ2 0 0
1 0 −l1 sin θ1 −l2 sin θ2 −l3 sin θ3 0
0 1 l1 cos θ1 l2 cos θ2 l3 cos θ3 0
1 0 −l1 sin θ1 −l2 sin θ2 −l3 sin θ3 −l4 sin θ4

0 1 l1 cos θ1 l2 cos θ2 l3 cos θ3 l4 cos θ4


.

Then we can define for the i-th planar rigid body, the scalars mi, I
1
i , and I2

i ,
and the vector ei with i ∈ {1, 2, 3, 4, 5, 6}. Then we can set

ELuxo
kin (x) = ELuxo

kin (Ṙ1, θ̇1, . . . , Ṙ6, θ̇6)

= ELuxo
1 (ẋ, ẋ) + ELuxo

2 (ẋ, ẋ) + ELuxo
3 (ẋ, ẋ).
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The three terms in the kinetic energy are

ELuxo
1 (ẋ) =

1

2
ẋTDT (x)ND(x)ẋ

ELuxo
2 (ẋ) = ẋTD (x)C (x)P ẋ

ELuxo
3 (ẋ) =

1

2
ẋP T IP ẋ

with

N =



m1 +m5 +m6 0 0 0 0 0 0 0
0 m1 +m5 +m6 0 0 0 0 0 0
0 0 m2 0 0 0 0 0
0 0 0 m2 0 0 0 0
0 0 0 0 m3 0 0 0
0 0 0 0 0 m3 0 0
0 0 0 0 0 0 m4 0
0 0 0 0 0 0 0 m4


,

C(x) =



−e1,y − e5,y − e6,y 0 0 0
e1,x + e5,x + e6,x 0 0 0

0 −e2,y 0 0
0 e2,x 0 0
0 0 −e3,y 0
0 0 e3,x 0
0 0 0 −e4,y

0 0 0 e4,x


,

and

I =


I2

1 + I2
5 + I2

6 0 0 0
0 I2

2 0 0
0 0 I2

3 0
0 0 0 I2

4

 .
Then the final mass matrix M(x) used to set up the generalized eigenvalue
problem is given by

A(x) = P T IP +D(x)C(x)P +DT (x)ND(x)

M(x) = AT (x) + A(x).



Zusammenfassung

In der mathematischen Geometrieverarbeitung nutzt eine Vielzahl moderner
und etablierter Methoden die Eigenschaften von Spektren und Eigenvekto-
ren. So wurden unter anderem Verfahren zur Segmentierung, Parametrisie-
rung und Deformation von Oberflächen entwickelt, die das Lösen generali-
sierter Eigenwertprobleme erfordern.

In dieser Arbeit werden zwei Anwendungen vorgestellt, die von energie-
basierten Spektren und Eigenfunktionen abhängen.

Im Bereich der physikalisch basierten Computeranimation präsentieren
wir eine Verallgemeinerung der üblichen Spline Interpolationsmethode von
Keyframes. Unsere Verfahren ermöglicht die interaktive Kontrolle über ei-
ne Reihe von animationsrelavanten Parametern selbst für komplexe Formen,
d.h. unter anderem für diskrete Geometrien die deformierbare Objekte, wie
z.B. dünne Schalen oder elastische Körper, beschreiben. Die Interaktivität
wird durch eine geeignete Problemreduktion und einer expliziten Darstellung
der Wiggly Splines erreicht. Die Reduktion und die Darstellung der Wiggly
Splines erfordert das Lösen generalisierter Eigenwertprobleme. Wir demons-
trieren die Vielseitigkeit unseres Verfahrens an einer Reihe von Animationen
für ein-, zwei- und dreidimensionalen Formen.

Im Bereich der Oberflächenanalyse stellen wir eine neue Familie von Ope-
ratoren für Funktionen auf Oberflächen vor. Im Gegensatz zum Laplace-
Operator besitzen diese Operatoren merkmals-sensitive Spektren und Eigen-
funktionen. Wir konstruieren eine Punkt-Signatur, die auf den merkmals-
sensitiven Spektren und Eigenfunktionen basiert. Wir vergleichen die gefun-
denen ähnlichen Punkte bzgl. dieser Signatur mit Ergebnissen der Diffusi-
onssignatur, d.h. einer Signatur die aus dem Laplacespektrum und Eigen-
funktionen konstruiert wird. Weiterhin zeigen wir, dass das Spektrum eines
bestimmten Operators dieser Familie zur Abschätzung des Stabilitätsindexes
einer diskreten Fläche konstanter mittlerer Krümmung verwendet werden
kann.

Abschliessend stellen wir noch eine Methode vor, die eine merkmals-
sensitive Oberflächenstrukturierung ermöglicht.
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tomatic extraction of surface structures in digital shape reconstruction.
Comput. Aided Des. 39, 379–388.

[Wardetzky et al., 2007] Wardetzky, M., Bergou, M., Harmon, D., Zorin, D.
and Grinspun, E. (2007). Discrete quadratic curvature energies. Computer
Aided Geometric Design 24, 499–518.

[Wicke et al., 2009] Wicke, M., Stanton, M. and Treuille, A. (2009). Modular
bases for fluid dynamics. ACM Transactions on Graphics 28, 39:1–39:8.



BIBLIOGRAPHY 115

[Wirth et al., 2009] Wirth, B., Bar, L., Rumpf, M. and Sapiro, G. (2009).
Geodesics in Shape Space via Variational Time Discretization. In Pro-
ceedings of International Conference on Energy Minimization Methods in
Computer Vision and Pattern Recognition.

[Witkin and Kass, 1988] Witkin, A. and Kass, M. (1988). Spacetime con-
straints. SIGGRAPH Comput. Graph. 22, 159–168.

[Wojtan et al., 2006] Wojtan, C., Mucha, P. J. and Turk, G. (2006).
Keyframe control of complex particle systems using the adjoint method. In
Proceedings of SIGGRAPH/Eurographics Symposium on Computer Ani-
mation.

[Wu and Kobbelt, 2005] Wu, J. and Kobbelt, L. (2005). Structure Recovery
via Hybrid Variational Surface Approximation. Computer Graphics Forum
24, 277–284.


	Introduction
	Preliminaries and notation 

	Interactive Spacetime Control 
	Background 
	Setup 
	Examples 
	Spacetime constraint problem 
	Solving the linearized problem 
	One-point dynamics 
	Reduction 
	Multi-point dynamics 
	Summary 

	Geometry-aware Operators 
	Background 
	Laplace modes and spectrum
	Energy based spectrum
	Extended Dirichlet energy 
	Stability of discrete cmc-surfaces 
	Modal signatures
	Applications
	Summary 

	Patch Layout from Feature Graph 
	Background
	Setup
	Feature graph
	Patch layout
	Results
	Summary 

	Outlook 
	Appendix
	Planar rod 
	Luxo 

	Zusammenfassung
	Verfassererklärung

