
Development of an Autonomous
Humanoid Robot Team

Dissertation zur Erlangung des Grades

eines Doktors der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich Mathematik und Informatik

der Freien Universität Berlin

von

Hamid Mobalegh

Berlin

Oktober 2011

i

Development of an Autonomous
Humanoid Robot Team

Dissertation

Autor Hamid Mobalegh

Verlegt im Oktober 2011

Disputation am 16. Dezember 2011

Erstgutachter Prof. Dr. Raul Rojas

Zweitgutachter Prof. Dr. Felix von Hundelshausen

ii

Acknowledgements

I thank my parents for my education and their strong support in my life. Thanks to my wife

Zahra Vedaei for her motivation and all her support during our immigration to Germany and the

time I worked hard on my project. My special thanks to Prof. Dr. Raul Rojas, for giving me the

opportunity to research in his work group, strongly supporting my work and my family and advising

me trough out my PhD project. Then I want to thank all my RoboCup team members for their hard

work and their support of the project, especially Greta Hohl, without whose administrative support it

was not possible to have success in RoboCup competitions. I also like to thank Daniel Seifert for his

valuable work in porting the code from our 2008 platform to the 2009 robot and Naja von Schmude

for her contribution in the implementation of my GVG idea. Finally I thank Leko Murphy and Daniel

Seifert for correcting my English.

Hamid Mobalegh

Freie Universität Berlin

October 2011

iii

Abstract

In this thesis I describe the design and development of a fully autonomous humanoid team to

participate in the RoboCup, the world robot soccer championship. The team has had several suc-

cessful participations in RoboCup competitions, and had won many awards including 3rd place at

RoboCup2007, and twice second place at RoboCup2009 and 2010.

After a short introduction, I begin the thesis with the description of the robotic platform, where I

explain my contributions in the mechanical, electrical and software design of the robots. The next part

of the thesis is concerned with the stabilization methods for bipedal locomotion. I �rst developed a

simulation platform. The control algorithms are designed based on this platform and then completed

and �ne tuned on the real robot. My methodology facilitates rapid and robust omnidirectional walking

with a velocity of over 40 cm/s for a humanoid robot of 60 cm overall height. The method is much

simpler than the current state-of-the-art methods and is capable of compensating large perturbations.

The approach described here does not necessarily use accelerometers and relies on position feedback

from the motors and ground contact of the feet.

Afterwards, I describe several computer vision solutions I developed for the robot. The devel-

opment of a color-based object recognition module is presented �rst. The module uses on a small

low-cost CMOS camera and a low power microcontroller and provides microcontroller compatible

output, in form of serial access to the list of recognized objects.

Finally, I propose two new methods for shape-based object recognition. The �rst method uses a

grid of cells and clusters the edge points based on their orientations and reports a connection graph

of the edge structure in the image. The second algorithm uses the statistics of the edge orientations

in the image to �nd a round object using a recursive method.

The ideas and methods presented in this thesis were implemented in the RoboCup humanoid

team of the Free University of Berlin, the FUmanoids.

iv

Contents

Acknowledgements iii

Abstract iii

I Introduction x

Chapter 1 Introduction 1

1.1 Motivation . 2

1.2 RoboCup Humanoid League . 3

1.3 The FUmanoid Robots . 3

1.4 Related Work . 4

1.5 Organization of the Thesis . 4

II Description of the Platform 5

Chapter 2 Mechanical Design 7

2.1 Introduction . 7

2.2 Actuation . 8

2.2.1 Pneumatics Cylinders and Air Muscles . 8

2.2.2 Hydraulics . 9

2.2.3 Electro-active Polymers . 9

2.2.4 Shape Memory Alloys . 10

2.2.5 Electric Motors . 10

2.2.6 Conclusion . 11

2.2.7 Selection of the Servomotors . 12

v

2.3 Mechanical Construction . 13

2.3.1 Prototypes and Test Platforms . 13

2.3.2 2007 Platform . 15

2.3.3 2008 Platform . 17

2.3.4 2009 Platform . 18

Chapter 3 Electronic Design 19

3.1 Introduction . 19

3.2 Central Processor . 19

3.2.1 On-Board Computer in 2007 and 2008 Versions 19

3.2.2 On-Board Computer in 2009 Robot . 22

3.2.3 Camera Board . 22

3.2.4 Communication Bus . 23

3.2.5 Power Management . 24

3.2.6 Sensors . 25

Chapter 4 Software Design 28

4.1 Low-level Software . 28

4.1.1 Servo Motor Firmware Update and PID Control 28

4.1.2 Operating System . 29

4.2 High Level Software . 30

4.2.1 Computer Vision . 31

4.2.2 Communication . 31

4.2.3 Planning, Behavior and Motion Control . 31

4.2.4 Implementation of CSBP . 34

III Control and Stabilization of Dynamic Walking 36

Chapter 5 Modeling and Simulation of the Robotic Platform 38

5.1 Mathematical Modeling . 38

5.2 Numerical Simulation in Physics Engine . 39

5.2.1 Simulation of the Actuators . 40

5.2.2 Simulation of the Sensors . 41

5.2.3 Simulation of the Mechanical Model . 42

vi

5.3 Visualization of the Simulated Results . 42

Chapter 6 Parameter Space Conversion and Inverse Kinematics 44

6.1 Pseudo Inverse Kinematics . 45

6.2 Inverse Kinematics . 51

6.2.1 Parameter Space De�nition for Inverse Kinematics 52

6.2.2 Forward Kinematics . 53

6.3 Numerical Solution of Inverse Kinematics Based on Forward Kinematics 55

6.3.1 Gradient Descent Method . 56

6.3.2 Stochastic Iterative Method . 57

6.3.3 Jacobian Pseudo Inverse Method . 57

6.3.4 Jacobian Transpose Method . 59

6.4 Closed Form Solution of IK Based on Pieper's Method 60

Chapter 7 Analysis and Stabilization of Dynamic Walker in Lateral Plane 63

7.1 Introduction . 63

7.2 Dynamic Walking vs. Static Walking . 63

7.3 Open Loop Dynamic Walking . 64

7.4 Energy Analysis of the Biped . 65

7.4.1 Energizing the Walker Using Knees . 67

7.4.2 Energizing the Walker Using Ankle Joint Actuation 68

7.4.3 Passive Dynamic Walking . 70

7.5 Closed Loop Lateral Stabilization of the Bipedal Walking 71

7.5.1 Stabilization Using Foot-Ground Contact Measurement 73

7.5.2 Stabilization Using Ankle Joint Torque . 76

7.5.3 Step Length Control . 77

7.5.4 Stance Leg Length Control . 78

Chapter 8 Analysis and Stabilization of Dynamic Walker Model in Frontal Plane 81

8.1 Frontal Plane Analysis of the Bipedal Walking . 82

8.1.1 Analysis of the Swing Phase . 83

8.1.2 Analysis of the Heel Strike Phase . 84

8.2 Steady State Condition and Working Point . 85

8.3 Transient Analysis . 86

8.3.1 Delayed and Premature Heel Strike . 86

vii

8.3.2 Limit Cycle Stability and Transient Analysis of Frontal Plane Vibrations . . . 86

8.4 Results . 87

8.4.1 Simulated Results . 87

8.4.2 Experimental Results . 87

IV Computer Vision and Object Recognition 90

Chapter 9 Computer Vision in RoboCup Scenario 92

9.1 Color Based Object Recognition . 93

9.2 Shape Based Object Recognition . 96

Chapter 10 Embedded Object Detection 98

10.1 Hardware Description . 99

10.2 Software Architecture . 99

10.2.1 Color Based Region Growing Algorithm . 101

10.2.2 Image Griding Algorithm . 103

10.2.3 On-Line Edge Clustering Algorithm . 105

Chapter 11 Shape Based Object Detection 108

11.1 Object Detection using Gradient Vector Griding . 109

11.1.1 Gradient Vector Calculation . 109

11.1.2 Position and Direction Accumulation . 110

11.1.3 Connection Graph Extraction . 113

11.1.4 Edge Trace Extraction . 113

11.1.5 Implementation and Experimental Results . 116

11.2 Shape Based Ball Detection Using Edge Orientation Histogram 120

11.2.1 Structure of the Method . 120

11.2.2 Gradient Vector Calculation and Thresholding 121

11.2.3 Histogram of Edge Orientations . 121

11.2.4 Integral Histogram Image . 123

11.2.5 Overlapped Binary Search . 125

11.2.6 Outlier Elimination . 126

11.2.7 Results . 127

viii

V Summary, Conclusion and Future Work 129

11.3 Future Work . 130

11.3.1 Mechanics . 130

11.3.2 Electronics . 131

11.3.3 Control Software . 131

11.3.4 Behavior Control . 132

11.3.5 Computer Vision . 132

Bibliography 133

ix

Part I

Introduction

x

Chapter 1

Introduction

This thesis is about the design and development of an autonomous humanoid robot team. The

team has several successful participations in local and world RoboCup competitions, and has won the

third place in RoboCup 2007 and the second place in 2009 and 2010.

Humanoid robots have been an attractive research area for the last two decades. A main reason

for this is that these robots are theoretically capable of performing similar tasks and acting in similar

environments as the human. Even more, there are also tasks which are too complex to be performed

by simple robots and too hazardous for human to undergo. Therefore humanoid robots provide a

generic platform for researching and developing technologies on a wide range of areas. Some examples

are bipedal walking, stereo vision, self localization and human-robot interaction. Despite the long

research on development of humanoid robots there is still a huge lack of functionality and performance,

compared to an actual human.

At the time this thesis is being written, the greatest challenge is the stabilization of bipedal

walking. This is a key problem in development of humanoid robots. There are several examples of

humanoid robots which can walk acceptably stable but require one order of magnitude more power

compared to human walking. On the other hand, the new studies in passive dynamic walking introduce

a class of bipedal walkers with the energy e�ciency of a human. Passive dynamic walkers are however

pretty far from being robust[1, 2] and su�er from lack of controllability.

I therefore focus on the problem of bipedal walking, and suggest solutions for a simple closed loop

stabilization of the motion system. The proposed solutions are simple and platform independent, so

that they can be applied almost to every humanoid robot.

The second issue I address in the thesis is computer vision and object recognition. Due to

1

Chapter 1. Introduction

RoboCup Soccer
Simulation League
Small-Size League
Middle-Size League

Standard Platform League
Humanoid League

RoboCup Rescue
Rescue Simulation League
Rescue Robot League

RoboCup Junior
RoboCup Junior Soccer
RoboCup Junior Rescue
RoboCup Junior Dance

RoboCup@Home

Table 1.1: RoboCup Leagues

the speci�c guidelines in design of humanoid robots for RoboCup competitions, there are signi�cant

restrictions in the weight and available on-board processing power of them. Together with the special

color/shape coding of the objects in RoboCup scenarios, implementation of new techniques becomes

unavoidable for the computer vision. I follow two main approaches in computer vision. There I present

my achievement in developing a small computer vision module with the capability of color-based object

detection, and then present my suggested algorithms to reduce the role of colors in computer vision

for RoboCup scenarios.

1.1 Motivation

The idea of soccer playing robots was proposed to the arti�cial intelligence community by Alan

Mackworth [3]. The idea was to develop robots, which could perceive and interact with the ball,

avoid obstacles, communicate and cooperate in real-time. After �ve years of discussion, the RoboCup

initiative was founded in 1997. The �rst RoboCup leagues included �Small Size� with a �eld size of a

ping-pong table and �Middle Size� with 3 times the area. Worldwide RoboCup competitions have been

held annually since then, adding more and more leagues and advancing the existing ones. The latest

RoboCup was held with close to 4,000 competition participants in over 500 teams. The competitions

are distributed in 15 major leagues in 4 categories. Table 1.1 shows the main RoboCup leagues.

2

Chapter 1. Introduction

Figure 1.1: Field of RoboCup Humanoid Teen Size League[4]

1.2 RoboCup Humanoid League

RoboCup Humanoid is one of the leagues of RoboCup Soccer. It was originaly divided into two

sub-leagues based on the size of the robots. Robots of the overall height below 60 centimeters compete

in the Kid-Size class. Others were categorized as Teen-Size robots. In 2009 a new Adult-Size class

was introduced. A set of rules exists for each league, which de�nes constraints for robot design as

well as how the games are played and the competition is organized [4]. Each RoboCup league has a

technical committee which is responsible for updating the rules. The members are partly elected by

the participating team leaders and partly set by RoboCup organization. Figure 1.1 shows the �eld of

the teen size league with an example robot.

1.3 The FUmanoid Robots

The FUmanoid project belongs to the Arti�cial Intelligence group at Free University of Berlin.

The research group has had a successful and long history in RoboCup with its FU-Fighters team. FU-

Fighters won World Champion 2004, 2005, European Champion 2000 and German Open 2005, 2004,

2003, 2002. The team stopped its RoboCup activities in 2006 and started developing autonomous

vehicles.

This is the time when FUmanoids were born. Feasibility studies were conducted before and

during RoboCup 2006. As the required knowledge level in software and hardware development of

multi-agent robotic platforms was already achieved with the wheeled FU-Fighters, humanoid robots

could o�er an advanced research area with many attractive unsolved problems. The development

began with simulations, then moved on to a commercially available robot kit and �nally continued

with self -designed and constructed robots.

The team showed an excellent performance in its �rst year of activity by winning the 3rd place of

the world RoboCup in the Kid Size humanoid league, presenting the lightest and the least expensive

football playing robots in their class. Having improved the software and hardware and having intro-

3

Chapter 1. Introduction

duced new solutions for the existing problems, the team improved its rank by achieving the �rst place

in RoboCup Iran Open 2008 and second place in RoboCup German Open 2008. In 2009 and 2010

the team became the vice champion in RoboCup Humanoid league. This was achieved by advancing

several solutions in the areas of hardware and software, which I will present in my thesis.

1.4 Related Work

The thesis covers a wide area of research including several disciplines. The state of the art is

therefore surveyed separately in each chapter.

1.5 Organization of the Thesis

The thesis is organized as follows. The next part describes the platform developed for the research.

Chapters 2, 3 and 4 explain my developments in three major directions: mechanics, electronics and

software. It includes all prototypes along with �nal versions and revisions made to them. Details of

the design are presented using images, schematics and block diagrams.

Part III focuses on the problem of bipedal walking, its generation and stabilization. I present

a simulation-based approach to stabilization of dynamic walking in chapter 5. This provides a basic

tool for analysis of the bipedal walking as well as development of control methods. It is followed by

chapter 6, in which I introduce an interface between methods developed using simulation and the real

robot by conversion of the parameter space. Chapters 7 and 8 introduce di�erent proposed methods

for stabilization of the biped based on the results provided from the previous chapters.

Part IV of the thesis addresses the problem of computer vision for the developed humanoid

platform. It is organized in three chapters. After an introduction to the problem of computer vision

for RoboCup in chapter IV I present two di�erent approaches in the following two sections: embedded

color-based object detection is explained in chapter 10. Here my achieved results from a developed

hard- and software are presented. Chapter 11 includes some suggested solutions for shape-based object

detection.

4

Part II

Description of the Platform

5

In this part I describe the design of the robotics platforms used in FUmanoids team. It includes

several versions of humanoid robots ranging from initial prototype bipeds used for testing and im-

proving bipedal walking algorithms to fully functional versions designed and developed to participate

in the RoboCup humanoid league.

The next chapter explains the hardware design of the platform in two main parts. Mechanical

design of di�erent versions is presented �rst. It is then followed by the description of the electronics. I

discuss several design ideas and solutions in this context. Software solutions developed for the platform

is described in the following chapter. Complete software structure of the system, together with some

useful external tools for the development are described in the chapter.

6

Chapter 2

Mechanical Design

2.1 Introduction

In the last decade, many studies have been focused on development of humanoid robots. Honda

R&D's humanoid robots[5], WABIAN series of Waseda University[6, 7], ASIMO[8], Partner, QRIO,

H6 & H7[9], HRP-4C[10] and JOHNNIE[11] are well known examples.

It is theoretically possible to make a biped robot walk on an even surface with a very small

number of actuators. It has been shown in a large group of publications that a biped model can walk

without any joint actuation if it receives the energy of walking in some way[12, 13, 14, 15, 1, 16, 17].

This is known as passive dynamic walking [1, 16]. The research was pioneered by Tad McGeer, who

built the �rst physical passive dynamic walking machine. Passive dynamic walking is known to be

energy su�cient and have a human-like walking gait. On the other hand, a large number of actuated

degrees of freedom is needed for a general purpose humanoid robot. There is a group of motions other

than walking, which cannot achieve success with under-actuation. A good example of this is standing

up.

Typically, 12 degrees of freedom are required in the lower limb of a humanoid robot: 2 (pitch and

roll) in the ankle joint, 1 (pitch) in the knee joint and 3(pitch, roll and yaw) in the hip joint per leg.

The upper trunk usually has a less important impact in the robot's locomotion, however arms can be

used to compensate body yaw due to leg motion reaction [13] and a degree of freedom in the torso

can be used for frontal plane stabilization as it is also the case in human walking . The arms can also

be used to stabilize lateral or frontal plane motion as described in [12].

7

Chapter 2. Mechanical Design

Figure 2.1: An Example Behavior Curve of a PAM from Festo.

2.2 Actuation

One of the very �rst considerations which should be taken in the mechanical design of a humanoid

robot is which type of actuation should be used. A variety of actuators has become commercially

available during the last decade. This section gives a brief introduction to several existing actuation

methods, and continues with the discussion of which actuators are suitable for a humanoid robot. An

overview of di�erent actuation methods is also given in [18].

2.2.1 Pneumatics Cylinders and Air Muscles

Pneumatic actuators, usually cylinders, are widely used in industry for automation. Robotics

also takes advantage of pneumatic actuation more recently. Pneumatics has become famous because

of the low weight and the compliance of the actuators due to the compressibility of air. The degree of

compliance is a direct function of the pressure. This is an important feature in di�erent areas, such as

the handling of fragile objects. Several types of pneumatic actuators are available today. Cylinders and

pneumatic engines are common examples. A more interesting type specially for actuation of humanoid

robots are the so-called �Pneumatic Arti�cial Muscles�1. PAMs contract as a result of in�ation due

to the air pressure applied to them. A non-linear spring-like behavior is shown. Properties of the

force-length curve are adjustable with the pressure applied to the muscle[19]. An example behavior

curve is presented in �gure 2.1.

PAMs are extremely lightweight and they can transfer the same amount of energy as cylinders do.

1PAM

8

Chapter 2. Mechanical Design

There are no sliding parts in PAMs. This makes them suitable for applications in robotics. However

the application of PAMs and generally all pneumatic actuators in mobile robotics is seriously limited

due to the drawback of having to carry enough compressed air for a reasonable time of operation.

There are several examples of complete or partial humanoid robots built based on PAM actua-

tion. Björn Verrelst introduces in his Ph.D. thesis an improvement to existing PAMs, called �Pleated

Pneumatic Arti�cial Muscles�2[20, 21]. Further in the thesis he describes the design and construction

of the planar bipedal walking robot �Lucy�. Hosoda et al. [22] describe the design of a biped robot

driven by antagonistic pairs of arti�cial pneumatic muscles with variable joint compliance. Simple

controllers for realizing walking, jumping and running are also presented. [23]

2.2.2 Hydraulics

Hydraulic drive has in contrast to pneumatic drive a very rigid behavior and can only be made to

act in a compliant manner through the use of relatively complex feedback control strategies [19]. In

addition, use of hydraulic actuation is only possible with an external source of hydraulic �uid as well

as a compressor to supply the required pressure. This makes the solution improper for self-contained

mobile robots. If hydraulic �uid can be supplied externally, hydraulic actuators can be used for

humanoid robots. [24, 25, 26] give examples of such platforms.

2.2.3 Electro-active Polymers3

The Polymer Gel Actuator is one of the candidates of arti�cial muscle actuators due to its

compliance and compactness. Electro-active polymers, which respond to electric stimuli with shape

change, were known for a few decades, however their actuating limitations prevented their use in serious

robotic applications. Development of EAP materials in the last decade facilitates their application in

many areas, e.g. robotics, medical service and toy industry.

Among other EAP materials, the Ionic Polymer-Metal Composite4 actuator is one of the most

promising actuators for applications. IPMC bends in response to electrical activation[27]. The actu-

ator is produced by chemically plating gold or platinum on a per�uorosulfonic acid membrane which

is known as an ion exchange membrane. The actuator bends rapidly when an input voltage is applied

to metal layers of both sides. The phenomenon of this motion was discovered by Oguro et al. in 1992

[28].

2PPAM
3EAP
4IPMC

9

Chapter 2. Mechanical Design

Applications of IPMCs are not limited to robotics. The new actuation method continues to

be more recognized and used for di�erent purposes in recent years. [29] describes the development

of a �sh-like, S-shaped swimming micro-robot using IPMC actuator. The swimming speed of the

micro-robot can be controlled by changing the frequency of input voltage. There are, however, still

too few humanoid platforms using this technology for the actuation. A miniature bipedal robot is

manufactured using IPMC actuation, and a preliminary experiment is conducted in [30].

2.2.4 Shape Memory Alloys

The shape memory e�ect5 is a unique property of certain alloys. These materials can recover their

original shape by reaching a critical temperature. The history of shape memory alloys goes back to the

1930s. Today, several alloys with such a property are known[31]. The most commercialized material,

nickel-titanium, was �rst developed in 1962�1963 by the United States Naval Ordnance Laboratory

and commercialized under the trade name Nitinol[32]. SMAs have also other unique properties which

are outside the scope of this section.

So far, there have been limited studies on using SMAs in robotic applications. This might be,

among other reasons, because of several shortcomings of SMA actuators such as the lack of energy

e�ciency, slow response time, temperature dependence, and large hysteresis. Some implementations

are published in [33, 34, 35, 36]. [35] has used SMAs for actuation of a micro biped robot. More

recently, a new approach has been introduced by Kratz et. al. [37] which facilitates the use of SMAs

in larger bipedal robots. He also proposes a control method for the actuator [38].

2.2.5 Electric Motors

A majority of today's humanoid robots use electric motors as their actuation method. Asyn-

chronous AC motors and brush-less DC motors6 are very reliable and have signi�cantly long life

times[39]. However due to the complex and expensive controllers needed for these type of motors,

brushed DC motors have still the best reputation for low-cost humanoid platforms. DC motors are

known to be simple to drive, have a linear behavior and are well understood. The mechanical prop-

erties of the load is linearly re�ected on the electrical side of a DC motor. This phenomenon can be

used to control the compliance of the actuation as well as to provide a controlled torque output.

5SME
6BLDC

10

Chapter 2. Mechanical Design

2.2.6 Conclusion

Servomotors are the most used actuators in biped robot platforms. They have several advantages

compared to the other groups of actuators, which follows:

Modularity and Compactness Servomotors are usually packed in small cases containing all

needed components including the motor, gear box, drive and control electronics. They provide a

well de�ned interface of both electrical and mechanical sides. It is therefore easy to replace a whole

module in case of a malfunction or even replace a module with a compatible improved version.

Robustness Servos are very robust as long as they work inside the designed range. All parts of the

system are integrated in a small area separated from outside. This reduces the risk factor further by

avoiding dust as well as other mechanical and electrical disturbances.

Integrated drive and control Users don't have to struggle with drive and control issues. It is

often enough to send commands including goal position, speed, etc. to drive the motor.

Linearity As also discussed above, the linearity of the DC motor provides many features such as

torque feedback and control, adjustable compliance and so on.

In contrast, servomotors su�er from following disadvantages:

Maintenance of the Motor Most of the available servomotors are based on brushed DC motors.

These motors have a limited life time and need to be replaced or repaired after a while.

Power to weight ratio Even though some new servomotors are lighter than their competitors in

other classes, it is still a noticeable di�erence between servomotors and actuators such as PAMs. More

recently there are some new technologies which lead to higher power to weight ratios. Some available,

but still too expensive technologies include Harmonic Drive and direct drive BLDCs.

Reliability of the feedback Almost all low cost servos and many of the medium expensive ones

on the market use potentiometer feedback. Potentiometers are easy to use, and can be calibrated

to achieve acceptably high precision and linearity but they all su�er from loose contact in long term

usage. This can lead to strong oscillations and cause permanent damage to the mechanical parts

in feedback control. It is often observed that the problem can even be transmitted to other servos

mechanically connected to the system.

11

Chapter 2. Mechanical Design

Parameter Value
Weight (g) 55

Dimension (mm) 32 x 50 x 38
Gear Reduction Ratio 1/254
Applied Voltage (V) at 7V at 10V

Final Reduction Stopping Torque (kgf.cm) 12 16.5
Speed (Sec/60 degrees) 0.26 0.19

Table 2.1: AX-12 Properties[40]

Parameter Value
Weight (g) 72

Dimension (mm) 35.6 x 50.6 x 35.5
Gear Reduction Ratio 1/193
Applied Voltage (V) at 12V at 16V

Final Reduction Stopping Torque (kgf.cm) 28.3 37.7
Speed (Sec/60 degrees) 0.167 0.126

Table 2.2: RX-28 Properties[40]

Energy dissipation Principally, DC motors are designed for and therefore are most e�cient in a

continues rotation at the nominal power range. This is however not the case for a servomotor the

majority of the time. Servomotors are either used in a torque holding semi-static mode or with a

cyclic changing speed. In both modes DC motors have a weak power e�ciency.

2.2.7 Selection of the Servomotors

Most commercially available servomotors are pulse driven. This means the desired position of

the motor is determined by the width of a rectangular pulse applied to the unit. These products

have two important disadvantages. First, each motor needs a separate pulse, daisy chaining is not

possible with this type of servomotors, which in turn makes the cabling of the robot very di�cult and

reduces the reliability to a great extent. Second, there is no position/speed/load feedback available

from the output shaft. The latter point is very important, as my approach to stabilize walking gate

is dependent on the position feedback received from the joint servomotors.

In the last few years a new generation of servomotors has become commercially available, which

can be easily daisy chained via a bus system. These actuators provide a digital interface which

facilitates accessing several parameters for each unit connected to the bus. FUmanoid robots are

designed based on the product series Dynamixel from ROBOTIS Inc. Hardware features of the servos

are described in tables 2.1, 2.2 and 2.3. The communication protocol of the servomotors is described

in section 3.2.4.

12

Chapter 2. Mechanical Design

Parameter Value
Weight (g) 125

Dimension (mm) 40.2 x 61.1 x 41.0
Gear Reduction Ratio 1/200
Applied Voltage (V) at 15V at 18V

Final Reduction Stopping Torque (kgf.cm) 64.4 77.2
Speed (Sec/60 degrees) 0.188 0.157

Table 2.3: RX-64 properties[40]

2.3 Mechanical Construction

In this section mechanical design of the FUmanoid robots is explained. This includes several

prototypes and �nal versions used for the competitions.

2.3.1 Prototypes and Test Platforms

Before I constructed the �rst functional robot, I veri�ed several design ideas using prototype

platforms. Most of the prototypes contained only the lower limb which was enough for testing the

walking algorithms. The following prototypes have been constructed:

Fallis' Wired Biped One of the oldest known passive dynamic walkers is reported in the U.S.

patent from Fallis [41]. His model is made from two pieces of wire hinged on each other in two

points on the shoulders. Figure 2.2 shows the model. As the �rst step to get familiar with the

problem of bipedal walking, I reproduced and tested this model. Despite its simplicity, the model

could successfully make several steps on a gentle slope when it was appropriately launched.

Semi Passive Walker with Step Synchronization Based on the results reported in [17], I built

a partially actuated model to study the e�ect of hip actuation, as well as step synchronization on

the model. The model is presented in �gure 2.3. The biped had a simple DC motor with a gear

box connected to the hip joint. Two micro switches were installed on the feet to measure the foot to

ground contact. These were then directly wired to drive the motor in opposite directions regarding to

the stance foot. Maximum step length was determined using a mechanical limiter connected to the

legs.

Telescopic Leg Biped I designed the prototype to verify the idea of walk stabilization by step

length control using ankle joint feedback. The model was improved in several areas compared to its

predecessor. The uncontrolled hip actuator was replaced with a servo motor. To achieve foot clearance

13

Chapter 2. Mechanical Design

(a) The model is made from two pieces of
wire, hinged on the shoulders. It works
on a similar basis as today's passive dy-
namic walking models. Fallis has also im-
plemented the counter-swinging arms.

(b) The reproduction of the model which
surprisingly works well and can make sev-
eral successful steps upon a good initial
launch.

Figure 2.2: Fallis' Walking Model [41].

Figure 2.3: Semi Passive Walker with Step Synchronization

14

Chapter 2. Mechanical Design

(a) Complete
Model

(b) Hip and Leg Actuation (c) Ankle Joint Sensor

Figure 2.4: Telescopic Leg Biped

and also to energize the model, each leg was coupled to a linear motion mechanism. A two dimensional

potentiometer was built in each ankle joint to measure the pitch and roll angles of the foot. Ground

contact could be measured using a micro switch integrated in the ankle joint sensor. The prototype

is presented in �gure 2.4.

Bioloid Leg Extension and Ankle Joint Feedback As it was often required to change the

mechanical construction of the prototypes for testing di�erent stabilization ideas, I decided to continue

the experiments on a more �exible platform. I selected ROBOTIS Bioloid Advanced kit for this

purpose. Bioloid provides a highly modular platform using the digital AX-12 servomotors, compatible

intermediate parts and connections and a central processing unit. The platform was �rst used to

implement the leg length control method. The requirement of non actuated, frictionless ankle joints

was met by removing a gear from ankle joint servomotors, letting them function only as sensors.

2.3.2 2007 Platform

Robots built for the 2007 competitions are based on the robotics educational kit Bioloid from

ROBOTIS Inc. Bioloid is a 18 DOF humanoid platform with an overall height of 34cm. The model

is entirely actuated using Dynamixel AX-12 servomotors.

Figure 2.5 shows the robotic platform of 2007. I applied the following changes to the original kit

to make it suitable for RoboCup. Two joints servomotors were removed from the elbows. These were

then built in a neck pan/tilt mechanism for the head of the robot. The battery pack in the original

kit contained NiMh cells. It was too heavy and hard to replace. It was therefore replaced with a

Li-Poly pack. To reduce the height of the COM of the robot, the battery pack was placed between

the hip servos by increasing the distance between them. As the original product did not contain any

15

Chapter 2. Mechanical Design

Figure 2.5: Robotic platform used for 2007 competitions

LOLA LOLOS
Overal height 37 cm 57cm

Height of the COM 21cm 27cm
DoF 18 18

Each Leg DOF 6 6
Head and neck DOF 2 2
Each Arm DOF 2 2

Table 2.4: Physical Properties of the 2007 Robots

solutions for computer vision, a vision module was developed and mounted on the head of the robot.

Details of the vision module will be described in chapter 10. The module was mounted into the same

casing as the servo motors to facilitate modularity and compatibility.

The overall height of the robot has reached 37 cm including pan/tilt mechanism and the camera.

However for the goalkeeper to take advantage of the maximum allowed height to block the goal, an

intermediate part was added between the hip servos and the upper limb. It is visible in �gure 2.5.

Table 2.4 presents the physical properties of the robots.

One of the shortcomings of the 2007 version was the low height of the robot, which in turn lead

to lower placement of the camera. Since many other RoboCup participants build their robots with

the maximum allowed height, they usually obstruct many objects from the smaller robots. On the

other hand, the walking speed is, among other parameters, also proportional to the leg length, which

is usually around half of the overall height.

16

Chapter 2. Mechanical Design

Figure 2.6: Robotic platform built for 2008 competitions

Overall height 59cm
Height of the COM 34cm

DoF 18
Each Leg 6

Head and neck 2
Each Arm 2

Table 2.5: Physical Properties of the 2008 Robots

Another problem observed in the 2007 version was the insu�cient torque of the servomotors in

certain motions. This would worsen as the robot grew. AX-12 not only has a high friction in the

gearbox, it also goes into a break mode when it receives a torque disable command. The driver shorts

the motor terminals internally. As it will be discussed later in 7.4.3, energy is a very important concept

in passive dynamic walking. So any loss of energy concerning any type of damping as well as any

impact, should be taken into consideration. AX-12 was therefore not suited for some control rules.

2.3.3 2008 Platform

Figure 2.6 presents the robotic platform of 2008. I used a mixture of 12 RX-28s in the lower limb

and 6 AX-12s in the upper limb in this design. RX-28 has much less damping compared to AX-12,

especially when the torque is turned o�. It produces more than two times the torque of the AX-12.

The required intermediate parts and connections were designed in CAD and milled out of PVC sheets

using a 3 axis CNC machine. Physical properties of the robot are presented in table 2.5.

17

Chapter 2. Mechanical Design

Property Value

Height (cm) 60
Weight (kg) 4.4

DoF 21-22
Each Leg DOF 7
Each Arm DOF 3

Neck DOF 1-2

Table 2.6: Physical Properties of the 2009 Robots

2.3.4 2009 Platform

After participation in 2008 competitions it was noticeable that the knee motors su�ered from low

speed for walking motions and also inadequate torque in stand-up motions. Some other joints such

as ankle joints had also not enough torque for walking purpose. It was therefore decided to upgrade

the servo motors of the robot. In the 2009 version, RX-64 servos replaced the RX-28 model in the

legs, and AX-12 servos were replaced by RX-28 model in the upper limb. As presented in table 2.3,

the RX-64 has more than twice the torque of the RX-28 but it is a bit slower.

It is very important that all the motors making a speci�c movement remain synchronous as they

move to their goal positions. The knee motors are especially subject to lose their synchronization.

As it will be discussed further in chapter 6, servos built in the knees move with two times the speed

of the ankle/hip servos to lift the feet. In faster walking motions or under more load these motors

reach their maximum speed and cannot follow the planned trajectory. The situation becomes further

worsened using the RX-64, as it is slower than the RX-28.

A solution to this problem is to connect two motors in series for the knees. This doubles the

speed, makes all motors move with the same speed and remain synchronized with each other. This is

unfortunately at the expense of more weight. In addition, this method increases the power dissipation,

as the load is not shared between series motors, but each of them receives the whole load.

The mechanical construction of the 2009 robot is described in the diploma thesis of Mariusz

Kukulski [42]. The 2009 version had 21 degrees of freedom, 7 in each leg and 3 in each arm, and

depending on the used lens for the camera, one or two in the neck. The elbow joint was added to

make the robot able to pick the ball used for the �rst time for full automatic throw-in behavior. Table

2.6 shows the physical properties of the 2009 robot. The battery pack was placed in the trunk and

consisted of 4 Li-Poly cells. The CPU, together with the camera board explained later in 3.2.3, was

placed in the head of the robot.

18

Chapter 3

Electronic Design

3.1 Introduction

Several important issues should be considered in designing electronics for a humanoid robot.

These are weight, power consumption and last but not least reliability and ease of maintenance.

Based on these criteria the electrical design of the FUmanoid robots is described in the rest of this

section.

3.2 Central Processor

According to the weight and consum criteria, ordinary processing boards cannot be used in the

robots. These are usually equipped with heavy heat sinks or active cooling systems which reduce the

reliability of the system. Additionally, a continuous need of around 10 Watts is far away from the

expectations. In this section, two di�erent approaches are followed which are implemented on two

di�erent generations of the FUmanoid robots. The �rst approach tries to reduce the need of CPU

power by adding a vision module. A small microcontroller is shown to be enough for the rest of the

tasks. The second approach uses a light-weight ARM processor module with a proportionally small

power consumption.

3.2.1 On-Board Computer in 2007 and 2008 Versions

Most of the processing power of an on-board CPU of a humanoid robot is used for image pro-

cessing. This means, if image processing could be done externally in some way, there is no more need

19

Chapter 3. Electronic Design

Architecture 8 bit RISC
Throughput ~16 MIPS @ 16 MHz

Flash 128 KB
RAM 4 KB

EEROM 4 KB
Peripherals 2x USART

4x Timer
8 channel ADC

...

Table 3.1: Features of ATMEGA 128

to have high processing capabilities. This is the idea followed in the versions of 2007 and 2008. In

both versions, computer vision is done using an external module described in chapter 10. The original

robotics kit contains a controller box called CM5. It is based on the Atmel ATMEGA 128 micro

controller, which is an 8 bit RISC micro controller clocked at 16 MHz. A throughput of maximum 16

MIPS can be achieved. Table 3.1 shows a summary of the features of the CPU.

A simpli�ed schematic of the CM5 is presented in �gure 3.1. The control board includes the

physical layer of the half duplex TTL communication protocol together with a power management

module to work with a 9.6V NiMh battery pack. There are 5 buttons and 7 LEDs available on the

board.

ATMEGA 128 is equipped with several peripherals, such as timers, UARTs, a multiplexed input

ADC and an interrupt controller. The chip contains 2 UARTs, one of which is connected through a

bu�er to the half duplex TTL communication bus and the other is used for the cable connection to

a PC. This interface is used as well to program the device and to access the camera for calibration.

Recording and calibrating static motions are also done using this connection. The interface has also

been used for debugging in the development phase.

The available LEDs were used to indicate the status of the system during the game and also for

debugging purposes during the development. Start and stop signals were given to the robots of 2007

manually using the buttons. According to the rules of the RoboCup humanoid league, wireless LAN

is the only allowed type of communication. Therefore the newer version was additionally equipped

with a serial to WLAN converter. It converted the serial data transmitted from the robot into UDP

packets and vice versa.

Among the other peripherals, one of the timers was used for synchronizing the vision module

and processing the data received from it in the 2007 version. For the latter version, a scheduler was

implemented to provide multi-threading. Following this change, vision owned an individual thread.

20

Chapter 3. Electronic Design

Figure 3.1: Simpli�ed Schematics of the CM5[43]

21

Chapter 3. Electronic Design

3.2.2 On-Board Computer in 2009 Robot

Due to several reasons, the team decided to utilize a more powerful processor for 2009. The most

important reason was inadequate details from the image processing module for self localization. In

addition, the amount of RAM available in the ATMega128 was only 4KB which was obviously too

small for some available techniques in robotics such as particle �ltering. The throughput limit was

also reached in some cases with this older chip.

There were plenty of alternatives available when selecting a processing unit. Some of these were

PDAs, x86 embedded PCs, and ARM boards. In our point of view, a proper processor unit should be

light-weight and small. It should consume low power, be easy to connect to peripherals and extension

boards, specially, camera and serial devices. As the most important factor, the CPU should run an

operating system which allows low level programming of real time features.

Gumstix is the name of an embedded computing product family. Gumstix products are ARM

based microcontroller boards of very small dimensions, i.e. 2cm x 8cm. Available products range from

100 to 600MHz and have di�erent features. For every CPU module there are also several available

extension boards such as network extension, LCD connection, etc. The whole construction including

the gumstix and its extension board sink about 200-300mA under 5v and therefore does not produce

much heat. It is very advantageous as there is no need for any kind of cooling, or usually heavy heat

sinks. The whole signal description of the expansion ports, together with the schematic and PCB data

of all extension boards, are provided by the producer. It is therefore easy to design new extension

boards.

The decided product for the 2009 robot was the �Verdex Pro XL6P�. It was the fastest CPU board

available at the time. For networking, the extension board �Netpro-vx� was selected together with the

WLAN card mounted on it. Two extension boards were designed and built for the CPU module for

connection to the cameras and motor bus which will be explained in the next two sections.

3.2.3 Camera Board

Computer vision was assigned to a stand-alone module in 2007 and 2008 versions. For 2009 the

module could not meet the requirements. Therefore it was decided to assign this task to the central

CPU by providing an e�ective connection between one or two cameras and the CPU. PXA270, the

CPU on the gumstix verdex, is equipped with a peripheral called �Quick Capture Interface�. This

interface facilitates direct connection of one CMOS camera to the CPU using DMA to avoid any CPU

load. Having the idea to use stereo vision, we had to design an extension board which was capable

of multiplexing two CMOS cameras as if it would be one from the perspective of the CPU. Data bus

22

Chapter 3. Electronic Design

Figure 3.2: Camera Extension Board for Gumstix

multiplexing and other necessary timing was done in a CPLD block. An I2C multiplexer connects the

control signals of the both cameras to the CPU. Figure 3.2 shows the �nal design. Bennet Fischer[44]

describes the development of the camera extension board in his diploma thesis.

3.2.4 Communication Bus

Complete documentation of the communication protocol used for the motor bus is available in

[40]. A summary of the most important features are also presented in this section. The physical layer

of the network consists of a half-duplex, TTL level asynchronous serial connection. Each module has

a circuit similar to the one presented in �gure 3.3. It is therefore important that as long as one of the

modules on the bus is transmitting data, all others have to listen. Listen mode is the default mode for

all modules. It is not obligatory but recommended to have a master/slave structure. Most of the time

the master is the central processor. Each module is identi�ed with a unique number ranging from 0

to 253. 254 is reserved for broadcast and 255 is used as packet header indicator. Figure 3.4 shows a

typical packet sent to a servo motor and the response packet from the motor.

All servo products of ROBOTIS use the same communication protocol, however the physical layer

is a little bit di�erent. AX-12 has a 3 wire connector, 2 of which are supply lines. Data transmission

is done using only one line. Other models use a di�erential RS485 interface. In the 2008 platform it

was necessary to connect both servo models to the bus. I designed a simple converter for this purpose.

It is presented in �gure 3.5. The converter holds the inverted line in idle mode around 2.5v using a

resistor voltage divider. So 4 wired devices connected to the bus can compare the voltage of their non

23

Chapter 3. Electronic Design

Figure 3.3: Full-Duplex to Half-Duplex Converter Built in the Modules

Figure 3.4: Overview of Dynamixel Communication Protocol

inverted input with the inverted one. In this case the result is the content of the non-inverted data

line. A transmission from the 4 wired devices will of course work as 3 wired devices can easily ignore

the inverted data line.

3.2.5 Power Management

Since the �rst version of the robots, Lithium Polymer batteries were selected as the energy source.

The advantages of lower weight and greatly increased life times su�ciently justi�es the price. However,

Lithium polymer-speci�c chargers are required to avoid �re and explosion. Explosions can occur if

the battery is short-circuited or over-charged.

Another di�culty with Li-Poly technology is ensuring that the pack is never discharged below its

critical level. Otherwise it can no longer be recovered. This should also be guaranteed when the robot

has been left on. It is therefore not possible to use a power management unit, which is still supplied

from the battery pack in standby mode. For this purpose I designed a power management unit. It

Figure 3.5: TTL to RS485 converter

24

Chapter 3. Electronic Design

consists of a self holding relay and a voltage comparator as presented in �gure 3.6. In addition, a

switching mode DC-DC converter was integrated in the circuit after 2008 to provide a 5 volt supply

for the processor board.

3.2.6 Sensors

The robots were designed in a way that a minimum number of sensors were needed. To increase

the reliability and to keep the system simple, the same communication bus of the servomotors is also

used for the sensors. The following sensors were developed and used in the robots:

Vision Module In the 2007 and 2008 versions of the robots, the task of low level computer vision

was assigned to an external module to reduce the load of the main processor. The hardware of

the vision module contained a CMOS camera chip and an ATMEL ATMega8 processor. A color

based object recognition algorithm was developed for the module. The details of the software will be

described in chapter 10.

In implementation mode, the camera module uses the same communication protocol as the servo

motors. This makes it compatible with the bus system of the robot. For 2008 robots, a wide angle

lens was mounted to the camera. Figure 3.7 shows di�erent versions of the vision module.

General Purpose IO Module Other ordinary sensors can be classi�ed into general input and

outputs. These include analog, as well as digital sensors. For this group of sensors a sensor module

was designed, which allowed connecting them to the communication bus. With this module 8 bits

of selectable digital/analog IOs were available. This module was used in the 2009 version to connect

4 push-buttons per foot to detect ground contact. The same module was connected to a 5 DOF

IMU sensor in the next versions. A Kalman �lter was implemented in the microcontroller to measure

the pitch and roll angles of the camera. Ground contact buttons were replaced with analog pressure

sensors in this version. Figure 3.8 shows the schematics of the designed circuit.

25

Chapter 3. Electronic Design

Figure 3.6: Schematics of the Power Management Circuit

26

Chapter 3. Electronic Design

Figure 3.7: Vision Module, Di�erent Versions

Figure 3.8: Schematic of the General Purpose IO Board

27

Chapter 4

Software Design

The software development for the FUmanoids ranges from low-level software for PID position

control of the servos to high level programming to generate behaviors and make intelligent decisions.

Most of the software development is done in C and C++ but for di�erent target processors. In this

section the software blocks of the robot are described brie�y.

4.1 Low-level Software

4.1.1 Servo Motor Firmware Update and PID Control

ROBOTIS has developed a �rmware for the servo motors. It is capable of controlling the position

of the servomotor and regulating the speed to reach the goal position. The original �rmware also

calculates a set of feedback values, which are accessible using the available serial bus.

There were two main reasons motivating me to develop a new �rmware for the servomotors. First

the built-in controller is a simple P controller which limits the stability margins. For example due to

lack of derivative feedback, overshooting happens for inertial loads. In addition, because of no integral

feedback a residual error cannot be compensated. Figure 4.1 shows how the original controller of the

Dynamixel servos can be adjusted.

The electrical design of the servos has been more or less reverse engineered and is available for

programming purposes in several forums on the Internet. A conventional ISP interface is available

on the PCB, which allows programming of the device. The control board of the AX-12 is shown in

�gure 4.2. The design is simple and easy to understand. The position feedback is obtained from a

SMD potentiometer, connected to the output shaft of the motor. It is then fed to one of the analog

28

Chapter 4. Software Design

Figure 4.1: Feedback Curve of the Dynamixel Controller showing the adjustable parameters.

Figure 4.2: Control Board of AX-12. ISP interface is shown.

inputs of the ATmega8 microcontroller. Two PWM signals from the microcontroller are applied to

the motor through the power stage.

The developed control software consists of two main parts. The interface carries the communica-

tion protocol and register table out and the controller realizes the PID control. The same implemen-

tation of the communication protocol for the motors has also been used in the camera module as well

as in the general purpose IO module.

4.1.2 Operating System

In two versions of the robots, namely the 2007 and 2008 versions, the control software was run on

an ATMega128 microcontroller. As the software complexity increased in 2008, it became necessary to

organize the resources. Especially the complete implementation of the CSBP, which will be described

later in this chapter, was not possible without enabling multi-threading. So a tiny operating system

29

Chapter 4. Software Design

Figure 4.3: Block diagram of the operating system developed for 2008 robot

was designed and developed. Figure 4.3 shows a block diagram of the operating system. As shown

in the �gure, the scheduler is capable of running a static limited number of threads by assigning two

stack areas to each thread and switching between them using a timer interrupt [45]. Each thread goes,

or can be sent, to sleep mode by other threads. There are some tools available for assigning tasks to

the threads or killing them. Communicating tools with the motor bus, vision module and the required

tools for avoiding resource con�icts are included.

As already discussed, the 2009 robotic platform is based on a Linux compatible ARM processor.

Therefore there was no extra need to develop an operation system. Hence, an abstraction layer for

the needed resources was developed in user space instead. [46] describes the work.

4.2 High Level Software

The high level software of the robots is built up from 3 major parts: computer vision, commu-

nication and planning. Figure 4.4 shows an overview of the software architecture. In this section a

summary of the high level software is given. Di�erent parts of the software will be described in detail

in further parts of the thesis.

30

Chapter 4. Software Design

4.2.1 Computer Vision

In 2007 and 2008 versions, object recognition was partly assigned to an external module. The

module reported a list of colored blobs found in each frame. This list should be post-processed to

standard �eld objects using existing logical relations. For example, a pole was distinguished from a

goal by checking whether the color blobs of yellow and blue were vertically overlapping each other

or a goal separated into two parts with a goal keeper in the middle was merged and the goal keeper

was identi�ed. Post-processing was done in the main microcontroller as part of the control program.

Later in the 2009 version, the whole task of image processing was assigned to the main CPU. This

included blob tracking using particle �ltering, region growing, and post processing. Self localization

and obstacle map generation proceeded using direct access to the pixel level. In part IV of the thesis

I describe several developments I made in the robots' computer vision and their results.

4.2.2 Communication

No wireless communication was implemented in the 2007 version. The robot was therefore set

up manually for starting a game. For this goal, a rather simple user interface was developed, which

received the commands from the buttons on the CM5 and showed some status information using

the LEDs and a serial terminal connection. The next version was equipped with a serial to WLAN

converter. In this version the robot could be set into the game mode, in which it broadcasted its

status periodically out and could receive status packets from other robots. Game start and stop

signals together with other con�guration commands could be sent from an external computer in the

form of server packets. Status packets contained several �elds carrying information about the state

of the robot such as its position and ball position, as well as the decision state, i.e. what is the active

role, behavior and motion. Each robot gathered status packets from other robots and updated a kind

of world model, accessed in several layers of the planning program. On the server side, the same was

done but the information was just visualized for debugging. The same concept is followed in the 2009

version with some features improved.

4.2.3 Planning, Behavior and Motion Control

RoboCup experience shows that in the early years of each league the focus lies on the hardware

and control issues such as performance and reliability. This relation reduces rapidly with time as

solutions and technologies improve in this area thanks to the well working idea exchange in the

RoboCup community. Further the hardware and control systems of the participating teams become

31

Chapter 4. Software Design

more or less similar and the focus of the development shifts to the more abstract software side, where

the cognitive behavior control plays the most important role. Planning and behavior control forms

the major part of the software of the robot. This is also the most dynamic part of the control software

in terms of development.

In this section I describe the planning system I designed for the FUmanoids. It is a multi-layer

architecture called CSBP1. As shown in �gure 4.4, each layer is designed to increase the abstraction

of the sensors as well as the actuation commands for the higher layer. There are di�erent signal

paths connecting the layers together. Several control functions called Scenarios run concurrently in

all layers. Each function is assigned to a certain task and starts as the task is about to be performed,

and ends as the agent has either performed it successfully or failed to perform it. It was shown that

this approach is capable of increasing the clarity of the control source code and reducing errors.

The developed behavior control consists of 4 layers called, from bottom to top, �Motion�, �Behav-

ior� , �Role� and �Strategy�. As it can be understood from their names, behavior control is organized

in layers from low level to abstract.

Motion This layer contains functionalities that produce the movements of the robot. Some examples

are walking, stand up and kick. Some of the motions are static, these are pre-programmed

movements which run independently from the outside world feedback. On the other hand,

reactive motions can change dynamically to match the environment. Walking is a highly dynamic

motion, which is discussed in detail in part III of the thesis.

Behavior Di�erent skills of a soccer player are realized in this layer by activating and adjusting

parameters of existing motions. Example behaviors are �Go to Ball�, �Dribble ball� and �Block

Opponent�. Although all layers have access to the sensory data, called �world model�, the

majority of references to this data occur in behavior layer.

Role In the upper layer, �Roles� make high level decisions by activating proper behaviors to form

a speci�c soccer player. There are di�erent roles available such as: �Attacker�, �Defender� and

�Goal keeper�.

Strategy The top-most layer is responsible for decisions related to the coordination of the whole team.

These are developed in packages named �Strategies�. A strategy decides which arrangement of

the roles is needed for the current game situation and how the robots should change their roles

in order to avoid con�icts. As in real soccer, there are di�erent possible arrangements. Game

strategy is set manually before the game start.

1Concurrent Scenario Based Planning

32

Chapter 4. Software Design

Figure 4.4: Architecture of Robot Control Software Including Concurrent Scenario Based Planning

33

Chapter 4. Software Design

4.2.4 Implementation of CSBP

My idea behind CSBP is to increase the readability of the control source code and decrease the

fault rate by making the control code straight forward. This is done by organizing the control tasks

into units called scenarios. By allowing the active scenario to run uninterrupted as long as the task

it is assigned to is being performed, an almost direct relation between the task and the control source

code can be established.

A scenario is de�ned as a function which is assigned to perform a behavior control task at a given

abstraction level which starts with the task, continues with its progress and �nishes as soon as the

task has either successfully �nished or failed. The de�nition seems to be trivial, however this is not

the only way and not usually the way a function is assigned to control a behavior. The di�erence

between scenarios and other behavior control methods becomes more clear as the number of parallel

tasks or the number of abstraction levels increases.

According to CSBP, the programs should run simultaneously in all layers of the planning system.

To manage the execution of �Scenarios� in di�erent layers, there is one engine for each planning

layer. This engine provides tools for assigning scenarios to the layer in addition to an inter-layer

communication system. For example the behavior engine has a method called �switchBehavior()� this

method is called by role layer in order to activate a new behavior scenario. Communication between

layers is done using a status-feedback mechanism.

The planning system is based on a multi-layer architecture presented in �gure 4.4. In this archi-

tecture each layer tries to increase the abstraction level of the perception as well as the actuation. I

explain this abstraction process with some examples. In the �eld of actuation, the joint trajectories

are abstracted to the desired motion of the robot in the motion layer. For example the higher layer

only activates the Walking motion with a set of parameters. The required control and stabilization

process is performed internally in the Motion layer. The actuation is further abstracted in the Be-

havior layer to a skill such as GoToBall with a set of parameters so that the higher layer has nothing

more to do with walking and its parameters. Issues such as how to approach the ball and how to

interact with the obstacles are handled in the behavior layer. The Role layer abstracts di�erent skills

to roles. There, an Attacker is formed out of several skills such as GoToBall, Drible and Kick. The

role layer handles issues such as a fall down. A further abstraction layer is needed to organize the

individual players into a team. This is called the Strategy layer in CSBP.

As shown in �gure 4.4, the perceptual information is fed to each layer in two ways. The �rst set

of sensory measurements are provided directly from the sensors. For instance, the relative position of

the obstacles and the ball to the robot is directly used in the behavior layer. The second source of

34

Chapter 4. Software Design

perceptual information is the feed-back abstraction from the lower layers. For example whether the

robot owns the ball is an abstraction of the ball and robot positions, which is calculated in behavior

layer and fed to the role layer. A general feedback provided by each layer to the higher layer is the

status of the active scenario. It indicates the progress level of the scenario as well as the the possible

fail reason.

Each layer of CSBP is managed using an engine which also provides an interface to both top

and bottom levels. Using multi-threading, the active scenario of each level is assigned to a thread to

facilitate uninterrupted execution of it.

35

Part III

Control and Stabilization of Dynamic

Walking

36

In this part, the techniques used to generate and stabilize a bipedal locomotion are described.

There are plenty of approaches towards realization of dynamic walking, many of which require high

precision actuation and sensorics [8]. There are also some, which try to rely on less precise hardware

constructions and focus on development of simple techniques for correction of the errors produced

instead[12, 13, 24]. The latter group considers the approach to be more human-like as human walking

is also not based on the precision of actuation but rather on a trial and error based correction. The

stabilization method discussed in this chapter is more or less inspired from a well discussed approach,

called Passive Dynamic Walking [47, 1, 16]. Although the described method is very far from being

passive after all improvements applied to it, it is still based on a passive dynamic walker model.

In this chapter, a simulated robotic platform is initially presented, on which the walking algorithm

is developed and further improved. Stability analysis is performed in the lateral plane as well as

in the saggital plane. In both parts the system is modeled two-dimensionally and the e�ect of the

third dimension is neglected. Final simulation in three dimensions, and experimental tests have

later veri�ed the correctness of this assumption under the test conditions. Finally, simulated and

experimental results are presented and discussed.

The rest of this part deals with analysis and improvement of the behavior of the robot in lateral

and frontal planes. Using a simple model of the bipedal robot, the methods are analyzed, discussed

and improved. Theoretically achieved results are then veri�ed using the simulator and �nally �ne

tuned and tested on the real robotic platform.

37

Chapter 5

Modeling and Simulation of the

Robotic Platform

In order to develop and test control rules for bipedal walking, it is necessary to simulate the

platform to save time and hardware costs. However a whole bipedal robot as needed for the RoboCup

humanoid league is too complicated to be fully simulated. Available physics engines have a limited

capacity and precision. Some features are realized in low cost physics engines using large simpli�cations

and wide estimations. Especially, signi�cant inaccuracies exist in modeling joints and impacts.

For development of a control rule, it is usually enough to reduce the walking model to a few

joints and masses. Hybrid simulation of a whole robot is another approach to reduce the degree of

complexity. It is done by simulating a simpli�ed model, derived from the whole robot by constraining

it. For example, the foot to ground contact can be assumed as �xed, or some actuated joints are taken

as rigid.

This section introduces the simulation tool used for the experiments and continues with modeling

the components of the biped platform.

5.1 Mathematical Modeling

An important step towards analyzing biped walking is to model the biped. There are several

suggested models with di�erent complexities. Most of the di�erences are in the weight distribution

and the way the leg length reduces to make ground clearance. Whether the model is analyzed 2D or

3D is also an important point. Figure 5.1 shows a widely used model called simplest walker [14].

38

Chapter 5. Modeling and Simulation of the Robotic Platform

Figure 5.1: The simplest walker model.

The model is made of a point mass and two massless legs. There is no knee in the model. Two

di�erent approaches are followed for simulating the knee e�ect. In the �rst approach the leg length

is considered as variable. In the second one the collision of the swing foot with the ground is ignored

during the swing phase.The model can be analyzed in two dimensions as well as in three. In two

dimensional analysis, the same model can be used in the frontal plane as well as in the lateral plane.

Simplest walker model is easy to use as the robot can be easily modeled as an inverted pendulum

in single-support phase. Elimination of the knee helps simplifying the analysis without great loss of

generality. However, point mass distribution and massless legs are somehow less realistic and can

make signi�cant di�erences between the simulated results and the ones of the real system.

5.2 Numerical Simulation in Physics Engine

The core component of biped simulation is a physics engine. The function of this part is to

calculate the dynamics, as well as to detect collisions between rigid bodies in the simulated world.

Generally there are two classes of physics engines: real-time and high precision. High precision engines

are capable of calculating very precise physics at the expense of more processing power and possibly

loss of real-time response. On the other end, real-time engines simplify the calculations and reduce

the accuracy to achieve an endurable real-time capability. Real-time physics engines are mostly used

in computer games to improve realism [48]. There are three major paradigms for physical simulation

of solids:

� Penalty methods: Interactions are commonly modeled as mass-spring systems. The method is

popular for deformable objects.

� Constraint based methods: Constraint equations are solved that estimate physical laws.

39

Chapter 5. Modeling and Simulation of the Robotic Platform

Figure 5.2: Electrical Model of a DC Motor

� Impulse based methods: Impulses are applied to object interactions.

� Hybrid methods: A combination of the above methods.

ODE1[49] is one of the most common physics engines for simulating robotic environments[50]. It is

available under BSD license and the LGPL. The two main components of the software are rigid body

dynamics simulation engine and collision detection engine. Many 3D rigid bodies with arbitrary mass

distribution as well as several joint types are de�nable in the engine. ODE is used in this research

together with other simulation techniques to verify the stability of the proposed control rules.

5.2.1 Simulation of the Actuators

The only type of actuators used in FUmanoid robots are DC servomotors. A DC motor is an

almost linear system. A simpli�ed electrical model of the motor is presented in �gure 5.2.

An applied voltage to motor terminals causes a current �ow in the rotor. This produces a torque

which leads to rotation of the motor shaft. A back EMF relative to the angular velocity of the motor

is therefore induced in rotor windings. The higher the speed of the motor, the less the current �ows

in the rotor circuit. In steady state, the motor reaches a limit speed in which the sum of input and

output torques becomes zero. The following equations describe the behavior of the motor.

iRot =
Vt − EMF

RRot
(5.1)

EMF = kω.ωRot (5.2)

τRot = ki.iRot (5.3)

1Open Dynamics Engine

40

Chapter 5. Modeling and Simulation of the Robotic Platform

Figure 5.3: Block Diagram of the Control System of the Servos

τRot = J
dωRot

dt
(5.4)

Figure 5.3 shows the block diagram for the servo motor. The internal feed-back loop for position

control of the output angle of the shaft is presented in a separate block. It is an ordinary P controller

with adjustable dead zone and sti�ness.

Note that in equation 5.4 the inertia of the motor, gears and the load were summarized in

parameter J . The �rst two parameters can however be neglected as long as the load inertia is big

enough.

5.2.2 Simulation of the Sensors

As discussed in the description of the platform, the robot gains measurement data from 3 sources

besides the camera. It is necessary to provide similar information from the simulated environment.

The most important sensory data used to control the walking is the bearing angles of the servomotors.

As servo motors usually apply a proportional feedback to control the position, a small deviation usually

exists between the reference position and the current one. This measurable deviation is proportional

to the output torque and is a side product of the angle measurement of the servos. In ODE, the

current angle of the joints is directly readable. In some cases, for example the ball joint, the needed

values can be calculated using simple vector operations.

Tactile sensors, or switches used in the bottom of the feet to sense a ground contact are important

to distinguish between the stance leg and the swing leg. The collision detection engine of ODE helps

in this case by triggering an event upon a collision and providing a list of colliding objects.

41

Chapter 5. Modeling and Simulation of the Robotic Platform

IMU is also used in some control rules to calculate the tilt angles of the body. All needed values

can simply be calculated having the position and velocities of all objects. Furthermore it is also

possible to generate feed-backs impossible to gain in a real environment such as the absolute position

and angles of the bodies. This can simplify the problem and accelerate the development by allowing

intermediate control solutions.

5.2.3 Simulation of the Mechanical Model

The aim of the numerical simulation is to verify and improve the control paradigm used for bipedal

walking. The simulated platform is therefore an intermediate step between the extremely simpli�ed

mathematical model and the very complex real humanoid robot. Making the simulated model too

complex would not only worsen the performance of the simulation, but could not also help to bring

it closer to reality. Indeed lots of simulation errors would accumulate and impact the behavior of the

system. It is therefore necessary to select the detail depth of the simulation carefully.

The simulator I developed for this purpose is based on the simplest walker of �gure 5.1. Some

features are added to increase the realism of the platform which are as follows.

� Mass distributions belonging to thighs and shanks are applied to make the model more realistic.

� A sliding mechanism replacing the knee model allows gaining foot clearance as well as lifting the

center of mass.

� Foot planes with adjustable torques can be used to energize and stabilize the system.

5.3 Visualization of the Simulated Results

Visualization of the simulated platforms is very important as it accelerates the development of the

simulator, helps �nding and removing bugs and simpli�es the interpretation of the results generated

from the simulator. A widely used library for this purpose is OpenGL2. OpenGL is a standard

speci�cation de�ning a cross-language, cross-platform API for writing applications that produce 2D

and 3D computer graphics [51]. The other reason for using OpenGL is that it is fully compatible with

ODE, saving a considerable amount of development time.

Figure 5.4 shows a screen-shot of the output generated by OpenGL. In this example the visualized

model is similar to the simplest walker of �gure 5.1. The robot is simulated as a combination of rigid

bodies and joints.

2Open Graphics Library

42

Chapter 5. Modeling and Simulation of the Robotic Platform

Figure 5.4: Visualization of the Simulated Platform using OpenGL

43

Chapter 6

Parameter Space Conversion and

Inverse Kinematics

In synthesis of bipedal walking gaits, there is a huge parameter space to struggle with. It is often

hard to �nd an appropriate combination of parameters to cause a certain e�ect. For example if the

robot leans backward, it is not clear which joint angles, at which times and to which extent should

be changed. In addition there are several possible ways to produce the same e�ect without clear

view to the side e�ects caused by them. Some values must be changed respectively to guarantee the

consistency. For example to increase the foot distance to the ground, at least 3 joint values should be

changed, else the robot becomes completely destabilized.

To address the complexity problem of the kinematics of the biped, I followed two di�erent ap-

proaches. In the �rst approach I apply a simple linear parameter space conversion called Pseudo

Inverse Kinematics1 to the joint position space. This helps achieving two important goals. The di-

mensions of the parameter space can be signi�cantly reduced by de�ning a parameter space, in which

several parameters remain constant and do not contribute in a normal walking motion. The parameter

set can be chosen so that the values describe intuitive, simple relations of the geometrical properties

of the robot such as leg length, step length, lateral lean and so on.

The second approach followed in this chapter is the use of common methods for calculation of

inverse kinematics. In this approach the desired state of the robot is described with the coordinates

of a set of speci�c points on its body, based on which the joint angles are calculated. Here, the work is

concentrated on optimizing the calculations without much loss in the generality of the solution. The

1PIK

44

Chapter 6. Parameter Space Conversion and Inverse Kinematics

Figure 6.1: Kinematic Model of the Biped

chapter also describes the implementation of both approaches in FUmanoid robots.

6.1 Pseudo Inverse Kinematics

In �gure 6.1 a model of the kinematics of the robot is presented. Concerning the symmetry of

the system, it is enough to calculate the conversion only for one step. Let's call the legs �Stance leg�

and �Swing leg�. A step is de�ned as the movement of the robot starting from the state with both feet

on the ground and ending in the mirrored state by moving the swing leg from back to front including

the lifting needed to achieve foot clearance. To serve the consistency, the conversion is de�ned so that

the �nal state of the robot is the same as the initial state under exchange of stance and swing legs.

In pseudo inverse kinematics a linear conversion is de�ned around a neutral working point which

is in the case of bipedal walking a vertically standing robot. The conversion can be de�ned as follows:

S = CP + S0 (6.1)

S contains the calculated joint positions, S0 is the initial position explained above, C is the conversion

matrix, and P contains the desired parameter set in the new space. The conversion matrix does not

necessarily have to be quadratic and invertible but it can be very advantageous to calculate the

parameter vector for an arbitrary pose of the robot possibly read back from the servos.

45

Chapter 6. Parameter Space Conversion and Inverse Kinematics

To avoid complications let's ignore the upper trunk and de�ne the joint position matrix, S as

follows:

S =

RightHipY aw

LeftHipY aw

RightHipRoll

LeftHipRoll

RightHipP itch

LeftHipP itch

RightKnee

LeftKnee

RightAnkleP itch

LeftAnkleP itch

RightAnkleRoll

LeftAnkleRoll

(6.2)

Assume the set of parameters to be as follows:

P =

SwingLegLength

StanceLegLength

FrontalCOMShift

LateralCOMShift

FrontalStepLength

LateralStepLength

BodyRotation

TorsoAngle

(6.3)

A key feature needed for bipedal walking is shortening the swing leg to achieve foot clearance

from the ground. In the present model, as also in the human model it is done by bending the knee

joint. Parameter �SwingLegLength� is de�ned for this purpose. It has a similar e�ect to the parameter

l in �gure 5.1. To maintain consistency, this parameter should a�ect three joint values shown darker

in �gure 6.2d. Assuming the right leg to be the stance leg, a partial presentation of the conversion

46

Chapter 6. Parameter Space Conversion and Inverse Kinematics

matrix applying this parameter is as follows:

S =

0

0 .

0 .

0 .

0 .

1 .

0 .

2 .

0 .

−1

0

0

P + S0 (6.4)

Coe�cients are selected so that changing the stance leg length a�ects neither the angle between the

feet and the ground, nor the horizontal position of the feet. The parameter does only have an impact on

the e�ective length of the leg. Note that the sign of each coe�cient depends on how the corresponding

joint actuator is located and connected to the chain. Signs can be determined experimentally using a

few trials.

The parameter �StanceLegLength� is de�ned in a similar way. This parameter can be used to

pump energy into the system as described later in section 7.4.1.

The parameter pair �FrontalCOMShift� and �LateralCOMShift� are used to move the upper

trunk in either of the planes. This is done parallel to the swing leg motion. Each parameter a�ects

two joints of the stance leg and two of the swing leg in order to guarantee the parallelism of the

swing foot to the ground and balance of the upper trunk. The a�ected joints are shown darker in

�gures 6.2b and c. A step is made by lifting the swing foot and moving the center of mass and

the swing foot in the desired direction. There are two parameters for the movement of the swing

foot, each of which have a simultaneous impact on two joints. These parameters are presented in

�gures 6.2d and e. Parameter �FrontalStepLength� is used in conjunction with �FrontalCOMShift� to

produce sideways steps. Parameters �LateralStepLength� and �LateralCOMShift� play a similar role in

backward/forward walking. To apply a rotation to the body the parameter �BodyRotation� is de�ned.

This parameter rotates both legs symmetrically using HipYaw actuators as presented in �gure 6.2f.

The complete transformation is presented in equation 6.5.

47

Chapter 6. Parameter Space Conversion and Inverse Kinematics

a) SwingLegLength b) FrontalCOMShift c) LateralCOMShift

d) FrontalStepLength e) LateralStepLength f) BodyRotation

Figure 6.2: E�ect of the PIK Space Parameters on Joint Angles

48

Chapter 6. Parameter Space Conversion and Inverse Kinematics

S =

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 −1 0 1 0 0 0

0 1 0 1 0 0 0 −1

1 0 0 −1 0 1 0 1

0 2 0 0 0 0 0 0

2 0 0 0 0 0 0 0

0 −1 0 1 0 0 0 0

−1 0 0 −1 0 1 0 0

0 0 −1 0 0 0 0 0

0 0 1 0 1 0 0 0

P + S0 (6.5)

The conversion matrix is not yet quadratic and therefore not directly invertible. As noted above, it

is helpful to �nd an inverse or at least a pseudo inverse conversion which gives the best matching

parameter con�guration for an arbitrary pose of the robot. Theoretically, there are two possible ways

to create an inverse conversion. In the �rst method, the pseudo inverse of the conversion matrix is

calculated and used in the inverse conversion. The second technique tries to add dummy parameters

to the space so that the conversion matrix becomes invertible. As the inverse solution is just partially

needed by the stabilization algorithm, the second method is used as it will be discussed later in this

part.

Pseudo inverse kinematics simpli�es understanding of how gait parameters a�ect the motion.

In �gure 6.3a the recorded curves from the joint angles during a typical walking gait are presented.

Figure 6.3b shows the same motion in PIK space. It can be clearly observed that the robot lifts the

swing foot and simultaneously shifts the center of mass and the swing foot in the lateral plane.

In addition, pseudo inverse kinematics helps dividing the complex multi-input multi-output sys-

tem of the robot into almost independent subsystems with less inputs and outputs. Such a system

can then be controlled using well known classical control techniques. For example it is shown in [52]

that the parameter TorsoAngle has a direct impact on walking speed. It is therefore possible to use

a PID controller to adjust walking speed using this parameter based on the feedback from the speed

of the center of mass.

Pseudo inverse kinematics is straight forward and e�ective. These features make the approach

proper for implementation on low power CPUs. There are many commercially available platforms

with 8 bit microcontrollers as the main processing unit. The 2008 FUmanoid robot was also a similar

49

Chapter 6. Parameter Space Conversion and Inverse Kinematics

(a) Joint Angles of a Typical Walking Gait

(b) Motion Data in PIK Space.

Figure 6.3: Comparison Between Joint Space and PIK Space.

50

Chapter 6. Parameter Space Conversion and Inverse Kinematics

Figure 6.4: A Simpler Mechanical Design to Use With Inverse Kinematics

platform. On the other hand, the idea is only suitable for platforms with relatively simple kinematics.

For example to be able to de�ne the parameter SwingLegLength, it is required that three successive

pitch joints with parallel axes are mounted in the legs as in 6.1. Moreover the assumed superposition

holds true only in a relatively small part of the parameter space. This limits some important features

such as step length. It is therefore important to implement a general inverse kinematics solution

which is valid for a wider range of parameters. As the inverse kinematics is a rather complex problem,

di�erent solutions and optimizations are discussed in the next sections.

6.2 Inverse Kinematics

Several unavoidable shortcomings make PIK inappropriate for implementation on robots with

complex kinematics. Having more CPU power available, it would be possible to simplify the mechanics,

shift the complexity to the software part and use inverse kinematics. Figure 6.4 shows the kinematic

model of such a robot. The design and assembly time of the robot and also the production cost is

reduced to a great extent, however the prerequisites of the pseudo inverse kinematics can no longer

be met. It is therefore essential to use the general form of inverse kinematics for parameter space

conversion.

In this section I �rst de�ne the parameter space. I solve the forward kinematics as the next step

and discuss some solutions to the inverse problem based on the forward one. I present two di�erent

51

Chapter 6. Parameter Space Conversion and Inverse Kinematics

numerical methods to solve the inverse kinematics and �nally I describe the implementation of an

analytical solution which is optimized enough to be implemented in the robot.

6.2.1 Parameter Space De�nition for Inverse Kinematics

Using inverse kinematics, the parameter space of the robot is simply the position and orientation

of a speci�c set of points on the robot in a reference Cartesian coordinate system. A commonly used

convention for selecting frames of reference in robotics is the Denavit-Hartenberg (D-H) convention

described in [53]. De�nitions in this section are based on this convention.

In D-H convention end e�ectors are coordinate systems �xed on certain parts of the robot. Each

end e�ector includes the position vector of the origin, O, and three orthogonal normal vectors, X,Y,Z,

representing three axes of a coordinate system �xed on the part. All coordinates are given relative to

the base coordinate system. Following shows the homogeneous representation of an end e�ector.

Xx Yx Zx Ox

Xy Yy Zy Oy

Xz Yz Zz Oz

0 0 0 1

 (6.6)

The representation is straight forward, however the orientation has been represented with a degree

of redundancy. It should therefore be ensured that the three axis vectors are unique and orthogonal

to each other, forming a right handed coordinate system. A total of 24 not completely independent

parameters describe the state of the end-e�ector in this case.

To place the coordinate system, there are di�erent alternatives. Depending on gait production

and stabilization methods used, a proper placement should be taken. The origin can be placed on

the robot's center of mass so that the bottom of each foot can be de�ned as an end e�ector. This

can simplify the calculations by taking advantage of the symmetry. However this leads to some

discontinuities when stance and swing feet exchange roles.

In order to provide compatibility with pseudo inverse kinematics, the coordinate system can be

placed at the bottom of the stance foot. End e�ectors can then be placed once at the center of mass

and once at the bottom of the swing foot. Both models are presented in �gure 6.5 a and b. End

e�ectors are called COM for center of mass and SWF for swing foot in further calculations.

52

Chapter 6. Parameter Space Conversion and Inverse Kinematics

(a) Symmetric placement of the end-e�ectors (b) Asymmetric placement of the end-e�ectors

Figure 6.5: Examples of Parameter Space De�nition for Inverse Kinematics

6.2.2 Forward Kinematics

The complete procedure for calculation of forward kinematics using D-H convention is described

in [53]. A summary is provided here and the results are presented for the above discussed robot model.

In D-H convention a homogeneous transformation matrix is calculated for every joint in the chain.

The transformation includes geometrical constants of the robot as well as variable parameters such

as actuator angles and lengths. For that, an intermediate coordinate system is placed on each stage.

Positions are determined regarding the placement and orientation of the successive actuators and

therefore may not be necessarily placed on the center of each joint.

A joint transformation is a coordinate conversion from the nth intermediate coordinate system

to the n − 1th. This is done using four sub-conversions, which are as follows:

� Displacement along previous Z to the common normal

Transzn−1(dn) =

1 0 0 0

0 1 0 0

0 0 1 dn

0 0 0 1

 (6.7)

53

Chapter 6. Parameter Space Conversion and Inverse Kinematics

� Rotation about previous Z to match the X axis

Rotzn−1(θn) =

cos θn − sin θn 0 0

sin θn cos θn 0 0

0 0 1 0

0 0 0 1

 (6.8)

� Length of the common normal

Transxn(rn) =

1 0 0 rn

0 1 0 0

0 0 1 0

0 0 0 1

 (6.9)

� Angle about the common normal, from old Z axis to new Z axis

Rotxn(αn) =

1 0 0 0

0 cos αn − sin αn 0

0 sin αn cos αn 0

0 0 0 1

 (6.10)

where the common normal is the shortest distance between the rotation axis (always Z axis) of

the successive joints. The following transformation is resulted by combining the above mentioned

components.

Tn−1
n =

cos θn − sin θn cos αn sin θn sin αn rn cos θn

sin θn cos θn cos αn − cos θn sinαn rn sin θn

0 sinαn cos αn dn

0 0 0 1

 (6.11)

For each joint transformation, four parameters should be determined. These are d, θ, r and α. In

the case of bipedal robots constructed entirely out of revolving actuators all parameters besides θ are

geometrical constants and θ is the joint angle. Applying D-H procedure, joint parameters of the robot

are listed in table 6.1 for both right and left legs as the stance leg. Values listed for θ are initial o�sets

determining the natural angle of the joints. These should be further matched to the angle values

measured from the actuators using shifting and scaling. In addition, two dummy joints are inserted

at the beginning and the end of the chain to match the design of the feet. These joints are assumed

to be �xed, i.e. θ = 0.

54

Chapter 6. Parameter Space Conversion and Inverse Kinematics

Stance: Left Stance: Right
r θ d α r θ d α
35 -90 0 90 35 -90 0 90
0 90 0 -90 0 90 0 -90
43 0 96 90 43 0 96 90
-10 -90 0 90 10 -90 0 90
-111 90 0 -90 -111 90 0 -90
0 90 0 -90 0 90 0 -90
-65 0 0 180 COM 65 0 0 180
65 180 0 90 -65 180 0 90
0 -90 0 -90 0 -90 0 -90
111 -90 0 -90 111 -90 0 -90
10 -90 96 -90 -10 -90 96 -90
-43 0 0 90 -43 0 0 90
0 90 0 90 0 90 0 90
35 0 0 90 SWF 35 0 0 90

Table 6.1: D-H Parameters of the 2010 Robot

To calculate the pose of an end-e�ector, the pose of its origin in its coordinate system, which is

of course an identity matrix, is transformed sequentially back through the chain to the base frame.

This is shown in equations 6.12 and 6.13.

COM = T 0
1 T 1

2 T 2
3 T 3

4 T 4
5 T 5

6 T 6
7 (6.12)

SWF = T 0
1 T 1

2 T 2
3 T 3

4 T 4
5 T 5

6 T 6
7 T 7

8 T 8
9 T 9

10T
10
11 T 11

12 T 12
13 T 13

14 (6.13)

It is also possible to calculate the pose of a stage based on the pose of a former one.

SWF = COMT 7
8 T 8

9 T 9
10T

10
11 T 11

12 T 12
13 T 13

14 (6.14)

Forward kinematics is the base of many numeric solutions of inverse kinematics. It is also used to

back-transform the position feedback derived from the joints into the parameter space for stabilization

and control of the robot.

6.3 Numerical Solution of Inverse Kinematics Based on For-

ward Kinematics

So far, forward kinematics provides a function computing the end-e�ectors in Cartesian space

given the joint angles. The goal of inverse kinematics is to calculate the inverse of this function.

Namely, given the desired pose of the end-e�ectors, it computes the required joint angles. As the

55

Chapter 6. Parameter Space Conversion and Inverse Kinematics

forward kinematics is a highly nonlinear function with a multi-input and output function, it is theo-

retically impossible to calculate its inverse analytically and in general form.

To struggle with this issue, there are many proposed solutions. These either try to solve the

problem for special cases using analytical approaches or try numerical approaches towards a solution.

A majority of the numerical solutions use the forward kinematics and its derivatives to solve an

optimization problem. In the next sections, implementations of some of these methods on the bipedal

mechanism are discussed.

6.3.1 Gradient Descent Method

To reduce the complexity of the output side of the forward kinematics, the gradient descent

method suggests the use of an evaluation function. It maps the output vector into a single value,

concerning the given goal pose. The evaluation function should be selected carefully because it plays

an important role in the solution. The function should reach an absolute extremum where the end-

e�ectors reach their goals. It should be as free as possible from local extrema.

The evaluation function used in the implementation of the gradient descent method is simply the

Euclidean distance between each end e�ector and its desired value. However I noticed that some kind

of weighting was necessary to equalize the e�ect of position and orientation components as the vectors

representing the orientation of the end-e�ectors are normalized. A scale factor of 50 is applied to the

orientation error.

The gradient Descent method is an iterative procedure, which guarantees the convergence to a

local extremum. The method can only be used when the initial state is close enough to the goal

state in order to guarantee the convergence to the proper result. Figure 6.6 shows the method. In

each iteration, the gradient vector is calculated at the given position. It shows the direction with the

steepest descent on the given point. The position is then advanced with regard to the gradient vector.

It is very important how the step length is calculated, as it is a key to both precision and performance

of the algorithm.

The method works �ne for the �rst end-e�ector, but when including the second end-e�ector the

performance of the method decreases signi�cantly. An e�ective solution is to solve the �rst half of

the inverse kinematics as it is independent from the second half. The rest can then be solved by

assignment of the calculated joint values in the �rst half.

To calculate the gradient vector in each step, forward kinematics should be called as many times

as the number of input degrees of freedom. This is in this case 12, which is computationally very

expensive. Using the above described separation, the calculation of the forward kinematics can be

56

Chapter 6. Parameter Space Conversion and Inverse Kinematics

Figure 6.6: Gradient Descent Method

halved.

6.3.2 Stochastic Iterative Method

As discussed in the last section, it is too expensive to calculate the gradient of the evaluation

function. Therefore another approach is presented in this section. The procedure is described in

algorithm 1. In this method a shaped random step vector is generated in the joint-space. It is then

veri�ed whether the step improves the evaluation. A damped accumulator is used to smooth and

accelerate the convergence to the solution.

The number of references to the forward kinematics is reduced to one per iteration in this method.

A majority of the trials are rejected at the beginning but thanks to the damped accumulator, rejection

rate is reduced signi�cantly with growing number of iterations. On the other hand, much bigger steps

can be made compared to the gradient descent method. This causes an overall improvement in the

performance of the method.

The same technique described in the last section to separate the left and right side of the chain

can also be used here to improve the performance.

6.3.3 Jacobian Pseudo Inverse Method

Using a vector representation of the joint angles and the end e�ectors, forward kinematics can be

formulated as follows:

57

Chapter 6. Parameter Space Conversion and Inverse Kinematics

Algorithm 1 Stochastic Iterative Algorithm

init last evaluation

init joints

init accumulator

while optimal evaluation not reached

begin

step = small random vector

if eval(joints+accumulator+step) better than last evaluation then

begin

accumulator += step

joints += accumulator + step

end

else

begin

accumulator *= damping factor

end

update last evaluation

end

E = FK(θ) (6.15)

where E = [e1, e2, ..., en] is a vector containing all components of all end e�ectors and θ = [θ1, θ2, .., θm]

is the vector of all joint angles. FK is the forward kinematics function de�ned in equations 6.12 and

6.13. Derivation of equation 6.15 results:

Ė = J(θ)θ̇ (6.16)

where the Jacobian matrix J is de�ned as follows:

J =
(

∂ei

∂θj

)
i,j

(6.17)

Based on the Jacobian, forward kinematics can be linearly approximated around a given working

point.

∇E ≈ J(θ0)∇θ (6.18)

As the inverse of the function is proposed, the linear system of equations 6.18 should be solved. In

general form, the Jacobian is not square and therefore not invertible. Its pseudo inverse can be used

instead. This results in:

∇θ ≈ J†(θ0)∇E (6.19)

58

Chapter 6. Parameter Space Conversion and Inverse Kinematics

The Jacobian matrix can be calculated easily with as many references to the forward kinematics as

the number of joints. Let's assume all joints to be revolving, which is the case in humanoid robots

used in this thesis. By partially di�erentiating both sides of equation 6.13 upon θj:

∂SWF
∂θj

= T 0
1 T 1

2 ...
∂T j−1

j

∂θj
...T 13

14 (6.20)

this is possible because all other transformations are independent from θj . Moreover the transfor-

mation can also be separated to 4 parts, only one of which is a function of θj . It can be shown

that
∂Rot(θj)

∂θj
= Rot(θj +

π

2
) (6.21)

It is therefore possible to calculate the partial derivative of the end-e�ector by just calculating the

forward kinematics and adding π
2 radian to the proposed component. This result can be generalized

on a vector of several end-e�ectors, which allows calculating one row of the Jacobian using a single

reference to the forward kinematics.

In comparison to gradient descent method, an optimal solution can be reached in this method

in a noticeable lower number of iterations. It is generally possible to use much bigger step sizes in

this method. Actually compressing the whole state space to a scalar evaluation value increases the

complexity of the optimization problem and makes the selection of a proper evaluation function very

hard with higher number of joints. The Jacobian pseudo inverse method is known to become unstable

near the singularities. In [54] and [55] several improvements have been suggested to the method.

6.3.4 Jacobian Transpose Method

It is shown in [56] and [57] that the solution to the inverse kinematics can also be reached when

the inverse of the Jacobian matrix is substituted with its transpose, i.e.:

∇θ = αJT (θ0)∇E (6.22)

where α is a su�ciently small positive scalar. This is known as Jacobian transpose method.

The above described method was implemented on the robot. Under normal walking gaits it

could always converge to the solution by setting the minimum allowed distance to 0.1 and using the

distance measure described in section 6.3.1. An average of 62% CPU usage is reported on a Gumstix

Overo platform (ARM OMAP3530 @ 800MHz). All computations are implemented in �xed point

arithmetics, as the platform provides no FPU. The performance reached is not satisfying, as other

processes such as computer vision and behavior control run on the same platform and need a signi�cant

amount of processing power.

59

Chapter 6. Parameter Space Conversion and Inverse Kinematics

Figure 6.7: Pieper's Solution on the Stance Leg

6.4 Closed Form Solution of IK Based on Pieper's Method

As discussed in the last few sub-sections, numeric solutions of the inverse kinematics are compu-

tationally too expensive to be used on the on-board processor of the robot. An analytical solution,

despite of how complex it is, can be much faster than any iterative method. Inverse kinematics of a

high DOF chain can rapidly become so complex that there may exist no closed form solutions for it.

Fortunately there are some design tips which help reducing the complexity.

Pieper has given a su�cient condition for providing a closed form solution to a 6 DOF system

in his PhD thesis [58]. Pieper's solution is applicable when 3 consecutive actuators have a common

intersection of their axes or the axes are parallel to each other and in a few other con�gurations.

Both versions of the humanoid robot studied in this thesis contain 3 revolutionary stages with a

common axis intersection point in the chain. A useful property of such a construction is that the group

of actuators only a�ect the orientation of an end-e�ector placed on the intersection point. Assuming

such a system with six degrees of freedom, there remains just a system of three equations and three

unknowns which is of course much easier to solve than a system with six degrees of freedom.

Figure 6.7 shows the stance leg of the robot, which is in this case the left leg. Equation 6.12

describes the pose of the end-e�ector placed in the center of mass in terms of the �rst six joint values.

To be able to use Pieper's solution, the end-e�ector should be placed on the intersection point of

the last three joints. This does not hold for the end-e�ector COM. Regarding the leg model, the

end-e�ector has a displacement of one half of the hip lateral distance from the desired position. This is

due to the latter two components of the transformation T 6
7 , i.e. Transx7(r7) and Rotx7(α7). Applying

the inverse of T 6
7 to both sides of the equation results:

60

Chapter 6. Parameter Space Conversion and Inverse Kinematics

COM(T 6
7)−1 = T 0

1 T 1
2 T 2

3 T 3
4 T 4

5 T 5
6 (6.23)

To eliminate the position component of the end e�ector, both sides are simply multiplied with P =[
0 0 0 1

]T

resulting:

COM(T 6
7)−1P = T 0

1 T 1
2 T 2

3 T 3
4 T 4

5 T 5
6 P (6.24)

It can be shown that both products (T 6
7)−1P and T 5

6 P are constant vectors as follows:

(T 6
7)−1P =

0

0

−65

1

 = Q (6.25)

T 5
6 P =

0

0

0

1

 = P (6.26)

In addition T 0
1 is a constant matrix as described in 6.2.2. Applying these results in equation 6.27 it is

reduced to: (
T 0

1

)−1
COMQ = T 1

2 T 2
3 T 3

4 T 4
5 P (6.27)

The left side of the equation is known. On the right side, the result is independent from θ4 because

the production T 4
5 P omits the corresponding terms. Using the program Maxima, the right side is

calculated and simpli�ed as follows:

(
T 0

1

)−1
COMQ =

c1(−111c2s3 − 10s2 + 96c2) − (111c3 + 43)s1

s1(−111c2s3 − 10s2 + 96c2) + c1(111c3 + 43)

111s2s3 − 96s2 − 10c2

1

 = L (6.28)

where cn = cos(θn) and sn = sin(θn). The �rst three elements represent a vector from the �rst joint

to the intersection of the last three joints axes. Due to the geometric model of �gure 6.7 the length

of this vector should only be a function of the knee joint. This is also veri�ed using the following

61

Chapter 6. Parameter Space Conversion and Inverse Kinematics

substitutions:

s1 =
2u

1 + u2
c1 =

1 − u2

1 + u2

s2 =
2v

1 + v2
c2 =

1 − v2

1 + v2

s3 =
2w

1 + w2
c3 =

1 − w2

1 + w2

LT L =
13941w2 − 42624w + 33033

w2 + 1
(6.29)

Equation 6.29 gives two candidates for the knee joint, just one of which is acceptable. It is then

possible to calculate the second joint from the third component of L in equation 6.28. Finally the

third joint value can be derived by substituting the results in either of the �rst two components of L.

The next step is to calculate the rest of the joints. Equation 6.23 can be rewritten in the following

form, so that all known terms are moved to the left side and the unknowns remain on the right side.

(
T 3

4

)−1 (
T 2

3

)−1 (
T 1

2

)−1 (
T 0

1

)−1
COM = T 4

5 T 5
6 T 6

7 (6.30)

The right side is expanded as follows:

T 4
5 T 5

6 T 6
7 =

s4s6 + c4c5c6 c4c5s6 − c6s4 c4s5 = a 65c4s5

c5c6s4 − c4s6 c5s4s6 + c4c6 s4s5 = b 65s4s5

−c6s5 = d −s6s5 = e c5 = c 65c5 − 111

0 0 0 1

 (6.31)

It is now possible to calculate the joint angles 4, 5 and 6.

θ5 = arctan2(
√

a2 + b2, c) (6.32)

θ4 =

arctan2(c, a) s5 > 0

arctan2(−c,−a) else

(6.33)

θ6 =

arctan2(e, d) s5 < 0

arctan2(−e,−d) else

(6.34)

62

Chapter 7

Analysis and Stabilization of Dynamic

Walker in Lateral Plane

7.1 Introduction

In this chapter I address the problem of stabilization of the bipedal robot in the lateral plane. My

work followed an energy based approach, where the changes in the energy of the robot are considered.

Some other researchers have also worked on energy based control of the bipedal walking. Asano et.

al. [59] propose an e�ective gait-generation method, which imitates the energy behavior of a passive

walker on a ramp. Franken et. al. [60] focus on the ankle joint and its e�ect on the energy level of

the robot. A similar approach is also reported in [15] using a telescopic leg biped.

The chapter begins with an energy analysis of the biped model. Here the energy conversions

of the model in single and double support phases are investigated. Di�erent parameters are then

suggested to a�ect the energy level of the robot. In the reminder of the chapter I propose controllers

to stabilize the walking in the lateral plane based on the gained results. Control methods are then

applied on the simulated platform and the results are presented.

7.2 Dynamic Walking vs. Static Walking

Dynamic walking is known as a kind of walking procedure with consideration of the impact of

momentums and accelerations applied to the body elements. In other words one can de�ne static

walking as a procedure which achieves stable locomotion by neglecting the impact of dynamic compo-

63

Chapter 7. Analysis and Stabilization of Dynamic Walker in Lateral Plane

nents and uses only the static stability conditions. It is almost obvious that this assumption holds, as

long as the biped makes considerably small movements. In addition, the joint drive mechanism must

be strong enough to eliminate all momentums and hold the body as rigid as possible. Most of the

designs based on static walking are urged to use over-powered actuators, which reduce the e�ciency

of the walking to a high extent. This approach was utilized by early researchers in the �eld of bipedal

walking. My work in development of a control rule is focused on dynamic walking in this thesis.

7.3 Open Loop Dynamic Walking

One of the earliest approaches by bipedal walking researchers was to imitate human walking

patterns and to try to �nd out to which extent these open loop motions were stable, respectively trying

to increase the stability with trial and error. Actually, it is shown that there are many open loop

gaits which can guarantee the stability of the biped even under a noticeable amount of perturbations

[61, 62]. This is also the case for a majority of the participating robots in RoboCup humanoid league

at the time this thesis is being written. Open loop dynamic walking can also be observed as the basis

for development of closed loop walking methods. This approach tries �rst to create a stable open

loop dynamic walking motion, then to control one ore more parameters of the system to improve the

stability.

There are several known procedures to generate an open loop dynamic walking gait. The simplest

method is to generate a static walking procedure by either key frame recording or direct calculation of

the joint values, then to increase the play-back speed and respectively to try to improve the stability

by manipulating the joint values. Another method is to record the trajectory of human walking and

transfer the motion to a similarly constructed bipedal model.

Trial and error methods usually face serious di�culties during optimization of the gait by direct

manipulation of the joints. There are seldom direct relations between the physical behavior of the

system and the trajectories applied to the joint values. Often, several joints should be tuned at

the same time with an eye kept on the consistency of the change. This is because of the complex

kinematics of the robot. It is therefore suggested that generation and manipulation of the gait is done

in more straight forward parameter spaces such as those discussed in section 6.

64

Chapter 7. Analysis and Stabilization of Dynamic Walker in Lateral Plane

(a) swing phase (b) before heel strike (c) after heel strike

Figure 7.1: Energy analysis of the simplest walker.

7.4 Energy Analysis of the Biped

Energy analysis is a well known technique used to investigate bipedal walking [63, 59, 64]. The

approach has several advantages to the other methods. It is simple to calculate and can describe many

phenomena, which are rather hard to describe using conventional methods. In energy based methods,

the whole energy of the system and its components, kinetic and potential energies, are focused. The

key point in this concept is that the whole energy of the system is assumed to remain constant as long

as there is no energy transfer with the outside world.

In energy analysis of dynamic walking it is assumed that the overall energy of the robot remains

constant during a swing phase. This holds true for the simplest walking model described in 5.1 as the

movement of mass-less legs requires no power and therefore applies no change to the energy of the

system. Figure 7.1 shows the simplest walker in di�erent phases. Energy of the system consists of

two components: kinetic and potential energies. Because the whole mass of the system is assumed to

be concentrated in one point, the components of the energy are simply calculated as follows.

Ep = mgh (7.1)

Ek =
1
2
mv2 (7.2)

Possible energy exchanges occur either in a heel strike or in a deliberate change of the height of the

center of mass. In the former event, the robot loses kinetic energy due to a sudden change in the

velocity of the center of mass. The latter event can increase, as well as decrease, the overall energy of

the system.

In the �rst step, it is assumed that heel strike is the only way the robot exchanges energy with

the world. This means the length of the stance leg ls is considered as constant. Also the model is

65

Chapter 7. Analysis and Stabilization of Dynamic Walker in Lateral Plane

assumed to walk on an even surface. Equation 7.3 presents the overall energy of the model in terms

of kinetic and potential energies during the swing phase, assuming v0 to be the velocity of the robot

as the walker reaches the vertical position.

E = Ep + Ek = mgls +
1
2
mv2

0 (7.3)

At the end of the step, and before the heel strike occurs, the height of the center of mass is reduced

to mgls sinβhs. This conversion of potential energy into kinetic energy appears as an increment of

the speed to the new value vhs−. Assuming the steps to be all the same length or in other words

βhs = cte., this speed is the same in value as that of the beginning of the step. In the following

equation the energy is described before heel strike happens.

E = mgls sinβhs +
1
2
mv2

hs− (7.4)

An important boundary condition for the model to be able to undergo a full step is that the minimum

velocity v0 remains positive. This holds:

v2
hs > 2gls(1 − sin βhs) (7.5)

As long as ls remains unchanged, a heel strike a�ects only the kinetic energy of the model. As

discussed above, the e�ect is actually a loss of energy caused by the sudden change of the velocity

vector, as the stance point of the robot �ips from one feet to the other. Figure 7.2 shows the velocity

vector of the COM before and after the heel strike as well as the path of the robot. The velocity

vector before the heel strike, vhs−, has a tangential component along the new path which remains

unchanged. By contrast, the centrifugal component, which lies along the leg, will be eliminated due

to the inelastic impact. The new energy is then calculated as follows:

vhs+ = vhs− cos α (7.6)

Ek+ = Ek− cos2 α (7.7)

Ehs+ = mgls sinβhs +
1
2
mv2

hs− cos2 α (7.8)

where the lateral opening angle of the legs α is described as:

α = π − 2βhs (7.9)

An interesting result derived from heel strike analysis is that the opening angle is a suitable parameter

to stabilize bipedal walking by controlling the amount of energy of the robot. This approach is

66

Chapter 7. Analysis and Stabilization of Dynamic Walker in Lateral Plane

Figure 7.2: Biped Model in a Heel strike

Figure 7.3: The Simplest Walker in Swing Phase

described in section 7.5. However it is quite obvious that the biped cannot walk continuously, unless

the heel strike energy loss is compensated in some way. In the next few sections several methods are

discussed to energize the biped.

7.4.1 Energizing the Walker Using Knees

As noted in the previous section, it is possible to in�uence the energy of the robot by varying

the length of the stance leg. With this method, it is possible to both increase as well as decrease the

energy of the model. It is just a matter of timing how it a�ects the energy of the model. In a kneed

biped, the knee mechanism is used to reduce the length of the leg. Knees are usually used to provide

foot clearance in human walking motion. In human walking, the knee of the stance leg remains always

unbent. This holds no more as walking turns into running. In running, the knee of the stance foot

bends not only to absorb the shock of the heel strike but also to re-energize the runner for the next

step by raising the height of its COM.

Figure 7.3 shows the simplest walker in a swing phase. The length of the stance foot ls is assumed

to be variable. This addresses the classic control problem of variable length pendulum. To extract

67

Chapter 7. Analysis and Stabilization of Dynamic Walker in Lateral Plane

the equation of the motion, the Lagrangian of the system should be calculated as follows:

L = Ek − Ep (7.10)

Ek =
1
2
m(l2θ̇2 + l̇2) (7.11)

Ep = mgl sin θ (7.12)

using the Euler-Lagrange equation
d

dt
(
∂L

∂θ̇
) − ∂L

∂θ
= 0 (7.13)

m
[
l2θ̈ + 2ll̇θ̇ + gl cos(θ)

]
= 0 (7.14)

lθ̈ + 2l̇θ̇ + g sin θ = 0 (7.15)

To study how leg length a�ects the motion, let's rephrase the equation of motion.

lθ̈ = −
[
g sin θ + l̇θ̇

]
(7.16)

If the change in the length is considerably small and the change in the length happens when the robot

is near its vertical position, the term l̇θ̇ can be neglected. So it is possible to assume that the change of

the length has an ignorable e�ect on the kinetic energy level of the robot. Therefore the only change

in the energy of the robot would be that of the potential energy.

The manner in which the stance leg changes are applied has a direct e�ect on how the robot is

energized. It is also important to notice that di�erent lengths of the stance and �ying legs lead to

di�erent heel strike angles. It is however possible to select a scenario in which it is both possible to

increase as well as decrease the energy of the system. In section 7.5.4 a controller is proposed to adjust

the energy level of the robot by applying changes to stance leg length.

7.4.2 Energizing the Walker Using Ankle Joint Actuation

In the simplest walker, feet have point contact to the ground, whereas in human model feet form a

supporting surface which can either be used to stabilize or to energize the walker. In many humanoid

platforms, the foot plane is installed symmetrically so that it can be used to accelerate the robot in

both directions, i.e. forward and backward. In this section the impact of the foot plane on the energy

of the robot is explained.

In �gure 7.4 the biped model is equipped with a driven foot plane. Assuming the drive to be a

constant torque and the leg length remains constant, the energy given to or taken from the system in

68

Chapter 7. Analysis and Stabilization of Dynamic Walker in Lateral Plane

Figure 7.4: Biped model with foot plane

a step period is calculated as follows:

∆E = ∆Ek =

βhs∫
−βhs

τdθ = 2τβhs (7.17)

Provided the step is symmetric:

βhs =
π − α

2
(7.18)

Of course, the torque applied to the ankle joint is limited to some extents, one of the limiting factors is

that the foot plane should remain on the ground. With higher torques the foot plane can �ip around

its edge and lift the whole model. Regarding �gure 7.4, there are two torque components acting on

the foot plane. These are the torque generated by the reaction force from the ground plane, τs, and

the drive torque of the foot plane, τ . The foot plane does not �ip over the back edge as long as the

driving torque is less than the reaction torque. This results in:

τs = Fsdb cos θ = (mg cos θ − mlsθ̇
2)db cos θ (7.19)

A lower boundary can be similarly calculated in terms of df when the biped is decelerating using a

negative torque to avoid �ipping over the front edge of the foot plane. As seen in equation 7.19, the

maximum applicable torque decreases as the model deviates from the vertical position. Experimental

results have shown that in some cases the amount of energy given to the robot does not su�ce for big

steps.

It is now interesting to �nd out what happens if the torque exceeds the given limits and the model

stands on the tip of the toes. This is basically similar to what occurs in human walking nearly at the

69

Chapter 7. Analysis and Stabilization of Dynamic Walker in Lateral Plane

Figure 7.5: Plane foot biped model going on tip of the toe.

end of each step. Going on the tip of the toes is di�cult to analyze in its general form, however it can

be roughly separated into two di�erent actions shown in �gure 7.5. First, the stand point of the biped

is transferred from within the foot plane to its front, which leads to sudden change of the direction

of the velocity vector. As discussed in 7.4 this is a potential energy loss, but under the assumption of

df ≪ ls, the loss of the energy can be neglected. Second, the e�ective length of the stance leg is now

changed to l̂s. The e�ective leg length can be extended to ls + df by incrementing the angle of the

ankle joint θ. The new stance angle is called θ̂. This value can also be estimated with θ under the

given assumption. The model can now be reduced to the simplest walker model with variable stance

leg length, as already discussed in section 7.4.1.

7.4.3 Passive Dynamic Walking

Passive dynamic walking is a bipedal walking method discussed in [1, 16, 47]. In this method the

robot is fully unactuated. The dynamic motion is caused by the natural properties of the system. The

required energy for walking is gained form the loss of overall potential energy, while the biped model

walks down a shallow heel. Several aspects of this model including the stability are well studied in

[12, 13, 2, 17, 65, 66]. Therefore the focus of this section is only on energy conversions in the model.

Figure 7.6 shows a passive dynamic walking model walking down a ramp with slope γ. ∆h is the

height di�erence of the center of mass of the model at the end of the step and can be calculated in

terms of γ and α as well as ls.

∆h = 2ls cos
α

2
sin γ (7.20)

70

Chapter 7. Analysis and Stabilization of Dynamic Walker in Lateral Plane

Therefore, the kinetic energy gain of the model during the step is:

∆Ek = −∆Ep = mg∆h = 2mgls cos
α

2
sin γ (7.21)

Assuming E0 to be the kinetic energy of the model at the beginning of the step, the kinetic energy

after heel strike can be calculated using equation 7.7 as follows:

Ek+ = (E0 + 2mgls cos
α

2
sin γ) cos2 α (7.22)

For the model to reach the steady state it is required that:

Ek+ = E0 (7.23)

which implies

E0 =
2mgls cos α

2 sin γ cos2 α

sin2 α
(7.24)

To guarantee a complete step, minimum kinetic energy should not reach zero. At the beginning of the

step, the model converts its kinetic energy into potential energy until it reaches the vertical position.

The converted amount of energy can be calculated in terms of ∆h′ as follows:

∆h′ = ls(1 − cos(
α

2
− γ)) (7.25)

E0 > mgls(1 − cos(
α

2
− γ)) (7.26)

By substituting E0 from equation 7.24 into equation 7.26, a general relation between step angle and

ramp slope results:

2 cos
α

2
sin γ cos2 α > (1 − cos(

α

2
− γ)) sin2 α (7.27)

7.5 Closed Loop Lateral Stabilization of the Bipedal Walking

Di�erent techniques are described in the last section to a�ect the energy of a walking biped.

Overall energy of the system is a key parameter determining its stability. In this section I describe

di�erent control paradigms I developed based on energy feedback to provide lateral stability for the

biped model.

I used the system presented in �gure 7.7 to stabilize the process of walking. In order to control

the energy of the system, it is necessary to measure its current energy level in some way. Referring to

the biped model, kinetic and potential energies can be calculated in terms of stance angle and stance

71

Chapter 7. Analysis and Stabilization of Dynamic Walker in Lateral Plane

Figure 7.6: Passive Dynamic walking on a ramp

Figure 7.7: Block Diagram of Closed Loop Walk Controller

72

Chapter 7. Analysis and Stabilization of Dynamic Walker in Lateral Plane

leg length as described in equations 7.11 and 7.12. Stance leg length is more or less insensitive to

environmental e�ects and can be assumed to remain the same as it is set by the control software,

whereas the stance angle is strongly variable. This parameter should therefore be measured using

available sensors such as joint potentiometers or IMU modules. Partial solutions of forward kinematics

are used to back-calculate the parameters from joint angle measurements. As there is usually an

unavoidable delay in the measurements due to the data communication, a linear predictor can be used

to compensate the delay.

In the core of the system, Walk Pattern Generator computes the trajectory in parameter space as

described in section 7.3. The result is then manipulated by two other modules. Walk Energizer applies

one of the techniques described in sub-sections 7.4.1 to 7.4.3 to power the model and an additional

Controller unit manipulates the walk pattern based on its control paradigm and the feedback it

receives from the robot.

7.5.1 Stabilization Using Foot-Ground Contact Measurement

An often observed reason for destabilization of open loop dynamic walking is that the movement

of the robot loses its synchronization to the dynamics of the body. The e�ect can be observed in

the lateral plane when starting a new step while the last step is not fully �nished yet, i.e. the robot

is not yet completely supported by the swing leg. Loss of synchronization is a common reason for

destabilization of the robot in frontal plane. An example of this e�ect is provided in �gure 7.8 using

the simulator. Figure 7.8a shows the position of the center of mass together with the positions of the

feet. For reference, the average of the feet position is also shown in the diagram. The position of the

center of mass �rst follows the reference more or less, but is however left behind after a few steps and

�nally the robot is destabilized. Figure 7.8b presents the visualization of the same process.

A solution to these problem can be to synchronize the timing of the open loop motion with the

body movement using a kind of feedback. As the simplest approach, the ground contact of the swing

foot can be used as the synchronization source. The beginning of a new step is delayed in this method

until a heel strike occurs. In the opposite case, i.e. when the center of mass reaches the goal position

earlier, the step is ended and a new step begins. Applying this procedure increases the stability of

the system noticeably and reduces its sensitivity to perturbations.

It is observed that the system compensates a backward lag more successfully than a forward

lean. It can therefore be useful to make a rapid swing movement and wait for both the step period

to be elapsed and the desired stance angle to be reached. Simulated results show a considerable

improvement.

73

Chapter 7. Analysis and Stabilization of Dynamic Walker in Lateral Plane

(a) Position of the center of mass, comparing the to positions of the feet along the walking direction. The COM is
slower than the feet, causing the robot to fall down backwards.

(b) Visualization of the results shows how the robot loses its synchronization.

Figure 7.8: Open Loop Dynamic Walking Often Loses the Synchronization

74

Chapter 7. Analysis and Stabilization of Dynamic Walker in Lateral Plane

(a) COM position follows the reference value for a longer period, small perturbations are compensated.

(b) Visualization of the result shows a signi�cant improvement of the stability.

Figure 7.9: Stability Improvement using Foot to Ground Contact Measurement

75

Chapter 7. Analysis and Stabilization of Dynamic Walker in Lateral Plane

Figure 7.10: Ankle Joint Torque Control

7.5.2 Stabilization Using Ankle Joint Torque

As discussed in section 7.4.2, it is possible to a�ect the energy of the biped by actuating the

foot plane. A simple P controller is applied to the open loop system of �gure 7.9 upon stance angle

feedback. The following is the relation of the controller,

τs = kp(θref − θs) (7.28)

where θref is the reference angle rising linearly from −θhs to θhs. θs is the measured stance angle and

kp is the proportional control coe�cient. The calculated torque τs is applied to the stance foot.

Figure 7.10 shows the simulated result of applying the controller. The system remains stable

and can continue walking without falling down. The applied ankle joint torque is also visible in the

diagram. It is positive most of the time and tries to recover the energy loss of the system due to heel

strike.

Ankle joint method is a pretty straight forward approach, as there is a direct linear relation

between the applied torque and the energy the biped gains. However, there are serious restrictions

using this method. As also mentioned in section 7.4.2, there is a maximum limit for the applied torque

which a�ects the stability margin of the controlled system. The method can therefore be combined

with other stabilization methods for a better performance.

76

Chapter 7. Analysis and Stabilization of Dynamic Walker in Lateral Plane

Figure 7.11: Block Diagram of the Energy-Feedback Step Length Controller.

7.5.3 Step Length Control

Step length control is based on the observed energy loss of the system due to the heel strike. It

is summarized in equation 7.7. The stabilization method works in combination with an energizing

method because it can only reduce the energy of the system.

Two approaches have been followed for stabilization of the bipedal walking using step length

control. In the �rst, the average energy level of the robot is estimated using the available feedback.

The step length is then adjusted to absorb the calculated amount of energy and stabilize the energy

level of the system. A block diagram of the controller is shown in �gure 7.11.

The second control method treats the system more or less similar to the classic control problem

of an inverted pendulum on a cart. Actually, the problem of bipedal walking approaches the problem

of the inverted pendulum on a cart when the step length approaches zero. In the latter problem,

the goal is to keep the cart under the pendulum and respectively control the position/velocity of

the combination to avoid it run away. The same goal is aimed in bipedal walking. Considering the

analogy, the proposed solution is to keep the swing leg always symmetric to the stance leg or simply:

α = π − 2θs (7.29)

Providing this condition, the system is marginally stabilized, however it is still required to have a

mechanism to regulate the energy level of the system to avoid a divergence. As the method should

anyhow be implemented in combination with an energizer, it is possible either to include energy

regulation in the powering unit, or to apply it directly to the step length.

The controller shows a signi�cant ability to recover from external perturbations as well as a wide

dynamic range. Figure 7.12 shows the response of the simulated system to an external disturbance in

form of a burst force. The biped remains stable, however it changes the walking speed and direction

in response to the stimulation. A very similar behavior can be observed, when humans attempt to

77

Chapter 7. Analysis and Stabilization of Dynamic Walker in Lateral Plane

Figure 7.12: Step Length Control in Presence of an External Perturbation

compensate an external acceleration or force, i.e. standing in a bus as it spontaneously accelerates or

decelerates.

Two important de�ciencies can be observed when the proposed controller is used with a constant

step time. First, it does not guarantee that the biped undergoes a full step, and second, it is possible

to have asymmetric steps, i.e. a long step followed by a short one. Figures 7.13a and 7.13b show these

shortcomings. Using the synchronization method described in section 7.5.1 minimizes both e�ects.

7.5.4 Stance Leg Length Control

Stance leg length is a suitable variable for actuation of the system. It has been shown in section

7.4.1 that it is possible to have full control over the energy of the robot by applying a proper trajectory

to the length of the stance leg.

In the proposed control method, an error value is calculated using the feedback from stance angle.

It should then be added to the default length of the stance leg. According to section 7.4.1 the e�ect

of the leg length is a matter of timing. A simple approach is to apply the changes in a short period

as the biped is staying almost vertically on its stance leg. For this purpose a sigmoid function is used

which is de�ned as follows:

sig(t) =
1

1 + e−t
(7.30)

The resulting control rule is shown in equation 7.31.

ls = l0 + Ke(θs − θref)(1 − sig(Kθθs)) (7.31)

Figure 7.14a shows the motion curves. Variations in the length of the right leg during the stance phase

are generated by the controller. The controller stabilizes the system, steps are equally distanced and

78

Chapter 7. Analysis and Stabilization of Dynamic Walker in Lateral Plane

(a) The biped fails to undergo a full step in the given time. The order of the feet remains unchanged.

(b) Steps become asymmetric, i.e. a long step after a short step.

Figure 7.13: Two De�ciencies Observed in Step Length Controller with Constant Step Time

79

Chapter 7. Analysis and Stabilization of Dynamic Walker in Lateral Plane

(a) Motion Curves: Right leg length is presented as one of the actuation variables. Regulation is possible in the
indicated part of the step period for each leg.

(b) Visualization of the Motion: Note the variations in the height of the center
of mass.

Figure 7.14: Simulation Results Using Stance Leg Length Control.

the system is mostly resistant to the disturbances. The motion is visualized in �gure 7.14b. It can be

observed how the controller varies the height of the center of mass to stabilize the system.

80

Chapter 8

Analysis and Stabilization of Dynamic

Walker Model in Frontal Plane

As reported in many of the published results, foot clearance is one of the key features in successful

walking [12]. In some simulated 2D passive dynamic walking approaches, any premature ground

contact known as foot scu�ng is easily ignored [14, 67]. Some others have tried to make special test

grounds which allow the swing foot to continue �ying even if it goes below the ground surface [47, 64].

Adding knees or using telescopic feet can be useful to a great extent [12, 16], but synchronization of

the foot clearance mechanism with the walking gait needs special solutions. In addition, in 3D form,

side stability of the robot becomes a critical problem as the foot clearance increases. Some presented

solutions to this problem are discussed in [2, 68].

In servoed walking one of the common solutions is to transfer the COM projection, or more

generally the ZMP1, to the stance foot support area before lifting the swing foot [69]. However, the

calculation of these parameters and proper reaction times needs exact and reliable feedback data and

control from the servos which cannot be expected from commercially available, low-cost products.

One of the foot clearance achievement methods is to excite the foot lifting mechanism in sequence

with a harmonic function which results in the side vibration of the body. This method has been

commonly used in RoboCup humanoid league, however a theoretical analysis of its behavior is still

missing. In this section a mathematical model of the biped in frontal plane is suggested. The model

is then energy-analyzed in �Swing� and �Heel Strike� phases. The steady state working point of the

model is then calculated by applying steady state conditions. It is then shown that the steady state

1Zero Moment Point

81

Chapter 8. Analysis and Stabilization of Dynamic Walker Model in Frontal Plane

(a) initial condition (b) before heel strike (c) after heel strike

Figure 8.1: Biped Model in Frontal Plane

working point is independent from foot clearance. Finally, the stability of the model is studied in the

transient state and two methods are proposed to increase frontal stability of the physical platform[70].

8.1 Frontal Plane Analysis of the Bipedal Walking

Figure 8.1a shows the simpli�ed biped model in frontal plane. The model is similar to the simplest

walker described in [14] however it describes the behavior of the biped in frontal plane instead of lateral

plane. The whole mass of the model m is assumed to be placed at the hip joint. Leg opening angle

α stands for the distance between the feet contact points and remains constant. The swing leg is

shortened to lf for the period of T seconds, while the stance leg has the maximum length ls. The role

of the legs will be exchanged as the period is elapsed.

In swing phase the model behaves as an inverted pendulum hinged to the contact point of the

stance foot to the ground. The swing phase starts with an initial angle β0 equal to π−α
2 (see �gure

8.1a). The initial speed is normally positive, so that the stance angle β starts to increase. The center

of mass decelerates and stops after a while if (and it is a necessary condition for stability of the model)

it does not have enough energy to reach the vertical position. The center of mass swings back again

until the period is elapsed. The stance angle at this moment is called βhs. The state of the biped is

presented in �gure 8.1b.

In heel strike phase, the swing foot is re-extended to its original length and the stance foot is

shortened. This usually leads to an impact between the swing foot and the ground surface, which can

be simpli�ed and modeled in two components of gaining and loosing energy. This simpli�cation is

possible since it can be shown that in steady state β0 is very near to π−α
2 . Considering the inelastic

82

Chapter 8. Analysis and Stabilization of Dynamic Walker Model in Frontal Plane

Figure 8.2: Biped Model in Flying Phase

impact between the heel and the ground surface, there is a loss of kinetic energy caused by the sudden

change of the velocity vector of the center of mass. On the other hand the model gains potential

energy due to the lifting of its center of mass. The state after heel strike is shown in �gure 8.1c.

8.1.1 Analysis of the Swing Phase

Figure 8.2 shows the biped in the swing phase. As mentioned, the biped acts as an inverted

pendulum in this phase. The model is similar to the one used for analyzing the lateral motion,

however the frontal stance angle β is the angle between the leg and the ground. Assuming the stance

leg length to remain constant, the equation of motion reduces to:

lsβ̈ = g cos β (8.1)

where:

β0 =
π − α

2
, v0 = v

The goal of analyzing the �ying phase is to determine the value of βhs as a function of the energy

of the robot. The energy of the biped is a proper parameter showing the initial condition of the

robot. As it remains constant during the �ight, it can also be used in the analysis of the heel strike.

The time of the �ight is also constant and equal to the period of the leg length vibrations. To solve

the di�erential equation, the normal numerical integration method over the period T is used. Figure

8.3a shows the simulation of several �ying phases with di�erent initial energies. In �gure 8.3b βhs is

presented as a function of the energy of the model. The following values have been given to the �xed

variables used in the calculations throughout the section:

m = 1Kg, l = 0.2m, T = 0.1s, α =
π

4
rad

83

Chapter 8. Analysis and Stabilization of Dynamic Walker Model in Frontal Plane

(a) Simulation of several �ying phases with increasing
initial energies.

(b) Heel strike angle as a function of the energy of the
model. Angles are presented in degrees to increase the
readability.

Figure 8.3: Analysis of the Flying Phase

8.1.2 Analysis of the Heel Strike Phase

In �gure 8.1b and �gure 8.1c the model is shown just before and after the heel strike. The changes

in energy level of the model in the heel strike phase as discussed above can be considered separately

over the kinetic and potential components of the energy of the biped. Equation 8.2 presents the energy

of the model in terms of kinetic and potential energies in the initial state.

E = mgls cos
α

2
+

1
2
mv2 (8.2)

As the period time T is elapsed the height of the center of mass is reduced to ls sin(βhs). The di�erence

in the potential energy is converted into kinetic energy. The whole energy of the biped can be then

presented as follows:

E = Ehs= = mgls sinβhs + mgls(cos
α

2
− sin βhs) +

1
2
mv2 (8.3)

The �rst term indicates the potential energy and the second and the third one show the kinetic energy

of the system. Upon the occurrence of the heel strike, the potential energy of the COM will be

increased to mgls cos α
2 . On the other hand, due to substitution of the stand point, only the tangent

component of the velocity vector remains unchanged. The centrifugal component will be eliminated

due to the inelastic impact. The new energy can be shown as:

Ehs+ = mgls cos
α

2
+ (mgls(cos

α

2
− sin βhs) +

1
2
mv2

0) cos2 α (8.4)

Equation 8.4 can be simpli�ed and rephrased in terms of E:

Ehs+ = mgls cos
α

2
+ (E − mgls sin βhs) cos2 α (8.5)

84

Chapter 8. Analysis and Stabilization of Dynamic Walker Model in Frontal Plane

Figure 8.4: Steady State Working Point of the System: Steady state condition relating E to βhs

(dashed) intersected with the numerical solution of the �ying phase equation (solid) for two di�erent
values of T

8.2 Steady State Condition and Working Point

In steady state, the energy of the biped should remain unchanged. This can be shown as:

Ehs+ = Ehs= = E (8.6)

By substituting equation 8.6 in equation 8.5, the steady state energy of the biped can be presented

as the following function of the heel strike stance angle.

E(βhs) = mgls cos
α

2
=(mgls sinβhs) cos2 α sin2 α (8.7)

The function is shown in �gure 8.4 together with the numerical solution of equation 8.1. The intersec-

tion point between these two functions determines the steady state working point. As it is observed,

the length of the �ying leg has so far no e�ect on the steady state working point. However, it will

be further shown that this value is subject to a certain maximum. It means that the body vibra-

tion amplitude becomes independent from the foot clearance as the foot clearance exceeds a certain

minimum.

85

Chapter 8. Analysis and Stabilization of Dynamic Walker Model in Frontal Plane

8.3 Transient Analysis

So far it is shown that there exists a working point in which the amplitude of oscillations becomes

independent from foot clearance. In order to prove that the biped can be self-stabilized, it is necessary

to study the transient state. This section provides analysis of the system in transient state.

8.3.1 Delayed and Premature Heel Strike

When the initial velocity of the center of mass exceeds a certain value, the stance angle remains

still higher than π−α
2 at the end of the �ying phase. The result is that the re-extended leg does

not reach the ground level at the time of T . The heel strike is said to be �delayed� in this case. A

delayed heel strike has only the energy loss component and therefore cannot occur in steady state. It

is however a useful event in transient state, as it reduces the energy of the biped and stabilizes the

process. An early heel strike can also happen in which the biped lands on its shortened �ying foot due

to the lack of energy. A premature heel strike is the only event in which the length of the �ying foot

plays a role. Actually, the length of the �ying foot limits the minimum stance foot angle. As observed

in �gure 8.4, the less the stance foot angle becomes the higher amount of energy will be pumped in

the system by the next heel strike. Therefore this parameter can be used to limit the energy of the

biped to avoid instabilities as the biped goes through its transient condition. This method will be

discussed further in the following sections.

8.3.2 Limit Cycle Stability and Transient Analysis of Frontal Plane Vibra-

tions

As observed so far, the biped model seems to have an internal feedback loop which regulates the

energy. If the biped has too much energy it takes longer for it to �y back and therefore the stance

angle of the heel strike becomes larger which means less energy for the next �ight and vice verse.

However this internal feedback loop can also make the system diverge under certain circumstances.

To avoid this, the amount of energy pumped in the system should be limited before the system reaches

its steady state and also when it leaves the steady state under any disturbances. The peak-to-peak

value of the stance angle can be used as a suitable indicator of the energy of the robot. It is then

enough to calculate this value in each period and assign a proportion of it to the foot clearance. The

value can also be low pass �ltered to avoid rush changes of it. Applying this method in simulations

shows a remarkable improvement in the convergence time and stability of the biped.

86

Chapter 8. Analysis and Stabilization of Dynamic Walker Model in Frontal Plane

8.4 Results

8.4.1 Simulated Results

In order to test the convergence of the method and to compare the steady state working point

with the one calculated in the previous analysis, the �ying and the heel strike phases are simulated.

The results are shown in �gure 8.5 using two di�erent leg opening angles. Other parameters remain

unchanged. The model reaches its steady state after a few cycles of vibration and the steady state

working point in both cases matches the values calculated in analysis.

8.4.2 Experimental Results

To be able to measure the stance angle of the robot, the sti�ness of the servo motors belonging

to the frontal plane movement of the feet is reduced to its minimum. This gives the possibility for

the robot to act more similar to the point foot model. The stance foot area remains on the ground

surface during the �ying phase. The peak-to-peak value used in the stabilization method discussed

in the previous section can be therefore extracted directly from the side servos. Figure 8.6 shows the

roll value of the ankle joint of the robot together with its knee joint positions as an indicator of foot

clearance. Recording starts from initial rest condition until the system reaches its steady state. The

independence of the side vibration amplitude from the foot clearance can be observed in the �gure.

Vibration amplitude remains almost constant as foot clearance increases during the �rst �ve seconds.

87

Chapter 8. Analysis and Stabilization of Dynamic Walker Model in Frontal Plane

(a) Calculated working point for α = π
4
.

(b) Left: stance angle (β) and right: heel strike stance angle (βhs) for several simulated steps
with α = π

4
.

(c) Calculated working point for α = π
3
.

(d) Left: stance angle (β) and right: heel strike stance angle (βhs) for several simulated steps
with α = π

3
.

Figure 8.5: Simulated Results: the model converges to the calculated steady state working point.

88

Chapter 8. Analysis and Stabilization of Dynamic Walker Model in Frontal Plane

Figure 8.6: Experimental Results: Roll angle of the ankle joints (solid) indicates the vibration
amplitude of the body. Knee joint position is used as an indicator of foot clearance (dashed).

89

Part IV

Computer Vision and Object

Recognition

90

Based on the rules of the RoboCup humanoid league, robots are only allowed to use passive

sensors, i.e. sensors without any kind of transmitters. Visual sensors get more important as it is

possible to receive a much larger amount of information using visual sensors rather than other types

of sensors. In order to simplify the computer vision, several considerations have been meet. First, all

objects are coded with di�erent colors so that the colors are easily distinguishable from each other

and second, the lighting is held as constant and as homogeneous as possible. There are, however,

many reasons, which make object recognition harder than it seems to be. For example, shadows make

borders of objects hard to recognize. Irrelevant colors appear on the edges of objects due to limited

pixel and color resolution of the cameras. As cameras can only be mounted in the head of the robots

based on the rules, there is a considerable amount of vibration which causes blurring and deformation

of the objects. In addition, with the improvement of computer vision techniques, RoboCup rules are

updated so that the standard lighting and well distinguiashable colored marking is less guaranteed

every year to �nally reach the human soccer environment.

This part of the thesis reviews the developed vision system for RoboCup humanoid team FU-

manoids and describes methods and techniques applied in di�erent parts of the system. The part is

organized as follows: In the �rst chapter, I survey the computer vision in the context of RoboCup hu-

manoid league and discuss two basic approaches towards feature extraction from the captured images.

In the next chapter I describe a vision module, I developed for the humanoid robots. The hardware and

software of the module are described and together with two color based object recognition methods

an on-the-�y algorithm is suggested for clustering the edges. The �nal chapter addresses the problem

of shape based object detection in the �eld of RoboCup. I present two solutions. The �rst solution is

an edge grouping method for extraction of the shape boundaries in the images. The second method

is an entirely shape-based ball detection algorithm based on the histogram of edge orientations.

91

Chapter 9

Computer Vision in RoboCup

Scenario

An important issue in development of computer vision for humanoid robots is the restricted ability

of the robot to carry on-board equipment, such as computers and batteries. This limits the processing

power available on-board the robot. As a noticeable part of the processing power is usually used for

image processing algorithms[71], the focus of optimizations should lie on this part. Embedded vision,

which can also be called modularization of computer vision, becomes currently more interesting in

the �eld of robotics [72, 73], as well as in many other industrial �elds [74, 75, 76]. A stand-alone

hardware unit with a well-de�ned interface for adjustments, as well as for normal use, is encouraged.

In addition, there is a wide range of robotics enthusiasts, for whom it is not possible to integrate vision

in their robotic systems. These users have either not enough knowledge about computer vision, or

they develop their systems based on processors not capable of connecting to a camera. For examples

many hobby robotic projects are based on simple 8 bit microcontrollers. Providing a vision module

is therefore a great advantage for educational robotics.

The task of computer vision in RoboCup humanoid league is divided into three main problems.

These are ball detection, obstacle detection and self localization. For the �rst issue, the vision system

should be capable of detecting a ball and distinguishing between the ball and any other objects with

the similar color range outside the �eld. The known di�culties in this area are far balls which usually

occupy just a few pixels and therefore cannot be detected robustly. Some works propose tracking

methods for ball detection. This becomes impractical for humanoid robots as the position of the ball

in the image becomes hardly predictable due to the rapid movements of the camera.

92

Chapter 9. Computer Vision in RoboCup Scenario

Obstacle detection has become more important as the number of robots has been increased,

leading to more frequent collisions in the last years[77]. As the image captured by the camera of

a humanoid robot is a 2 dimensional perspective projection of the 3D world, it usually becomes

challenging to calculate the correct position of a robot by establishing a logical connection between

its body parts. The problem becomes even more complicated if a robot gets partially occluded by

another. In this case, the two objects are almost impossible to separate using a non stereo vision

system.

The third problem in computer vision for humanoid robots is self localization, i.e. calculation

of the pose (position and orientation) of the robot relative to the �eld. Many solutions exist to this

problem, among which particle �ltering is a widely used technique. Here, the known di�culties are

perspective projection with almost unknown or just roughly known parameters, too few landmarks,

which are also getting fewer due to RoboCup rule updates every year, and occlusion of the landmarks

themselves. Self localization is very important, since it provides the basic knowledge for building a

world model. Having a precise self localization, it is possible to predict the position of the ball or

other objects in the image and optimize the vision system using tracking methods. Moreover, having a

global world model, great improvements in game planning and cooperative behaviors can be achieved.

9.1 Color Based Object Recognition

Figure 4.3 presents a typical color based object recognition system. In the core of the system, a

function is placed which interprets each color to a set of possible objects. To increase the performance,

the function can be pre-stored in form of a lookup-table. It is sometimes useful to perform some

preprocessing to enhance colors or to smoothen the surface of the objects. This should be done before

the interpretation of the colors to the objects, as a majority of the image information is lost in this

step. After interpretation, the pixels of the image contain only the information to which object(s) they

can belong. Clustering or region growing is then used to �nd contiguous regions of the same color. In

order to improve the results, it is necessary to remove quantization noise appearing in some areas of

the objects. This is done using morphological operations. Figure 9.2 presents the intermediate results

of color based object detection.

It is trivial that the quality of the detection is a direct result of how well the color to object

interpretation is performed. The color interpretation should be capable of eliminating the e�ects of

lighting and shadowing. Color interpretation can be assumed in its general form to be a transformation

from the color space into a fuzzy vector of limited dimensions. Each entry in the target vector is the

93

Chapter 9. Computer Vision in RoboCup Scenario

Figure 9.1: Block Diagram of a Typical Color-Based Object Recognition System

Figure 9.2: Intermediate Results of Color Based Object Recognition

94

Chapter 9. Computer Vision in RoboCup Scenario

(a) RoboCup Humanoid Field (b) Color Space Transformation

Figure 9.3: An Image From RoboCup Humanoid �eld and its transformation into color space.

membership of the given color to a certain object. Binary entries are often used to minimize the

resources needed to realize the function. To understand the function of color interpretation, a typical

image from RoboCup humanoid �eld together with its transformation into color space is presented

in �gure 9.3. A color image can be considered as a �ve-dimensional geometry with two position and

three color components. The transformation of the image into color space is equal to the projection of

this geometry into the space with only the 3 color dimensions. As seen in �gure 9.3, colored objects

convert into point distributions in the color space. There are di�erent techniques to de�ne a color

interpretation. Two important approaches are analytical and numerical interpretations.

In analytical methods, the color space is reduced into a one dimensional space, so that the color

masses remain still separable. A simple thresholding can then identify the target object. Color space

reduction can be done in di�erent ways. An example is to project the space among the intensity axis

in a 2D space and take the angle value of the resulting polar coordinates. This is similar to the hue

value in HSV color space. This can separate many colors, however white and black are not separable

this way.

Numerical methods use a look up table, which contains an entry for each possible color. The

look up table can be then �lled either automatically using clustering methods, or manually by clicking

areas in the image or in the color space transformation of the image. Numerical methods have higher

�exibility compared to analytical ones, however they consume a noticeable amount of memory and

can also cause memory bottlenecks in systems with limited memory bandwidth.

The goal of region growing is to detect colored blobs on the image. The question is how the

regions should be characterized after being detected. The simplest way is to de�ne a region by the

smallest rectangle surrounding the region, called a bounding box. A bounding box is however not

95

Chapter 9. Computer Vision in RoboCup Scenario

enough to su�ciently determine what is inside it. More statistics such as number of pixels detected

in the box, centroid of the region and directional distribution of the pixels can improve the de�nition.

9.2 Shape Based Object Recognition

In color based methods, geometrical information of the objects is ignored. This leads to a lack

of robustness in some situations. There are di�erent reasons for a malfunction in color based object

recognition. Variability of the colors due to the changes in the lighting conditions or shadowing is

the most common cause. In the case of using low resolution cameras or low quality optics, artifacts

appear at the edges of objects in form of wrong colors, which can accidentally match with associated

colors to other objects. This is very odd if, for example, a robot detects balls on the borders of the

�eld lines.

It can also happen that the same color associated to an object appears outside the �eld in the

audience. The last problem can be more or less solved by assigning a color set to the �eld and searching

for the existence of both colors in a neighborhood. A precise color calibration takes too much e�ort as

it still needs a high amount of manual interaction. Many of the automatic methods su�er from lack

of reliability.

To decrease the dependency of object recognition methods to colors, it is necessary to use the

geometrical information of the objects. Almost all objects to be recognized in RoboCup have �xed,

de�ned shapes. Moreover, thanks to the use of standard lighting, unpatterned surfaces and well

distanced colors, all objects have sharp visible edges which can be easily extracted without the need

to use complex algorithms. Although it is theoretically possible to detect the objects regardless of

their colors, it would save a rather great amount of time and work to use colors as well. This reduces

the need to a perfect calibration of the colors and saves the e�ort toward that.

A requirement to almost all shape based object detection algorithms is the edge detection. There

are some well known methods for that, among which Canny algorithm is the most famous one [78].

Almost all algorithms derive their results from the gradient of the image. Di�erent heuristics are then

applied to �nalize the binary result assigning an edge/not edge property to each pixel. In RoboCup

scenario, it is however enough to calculate the gradient magnitude and binarize it using thresholding.

Figure 9.4 shows the result of applying this method on a typical image from the HL �eld. It is then

the question of the object to be detected as to which techniques should be applied to the edge points

to detect the object.

In the following chapters I describe two shape based methods I developed for the FUmanoids.

96

Chapter 9. Computer Vision in RoboCup Scenario

Figure 9.4: A typical image from the RoboCup Humanoid Field and its gradient magnitude before
and after thresholding.

The �rst method is an algorithm for detection and clustering of the connected edges in the image. The

second technique detects a ball in the image by examining the local distribution of the edge directions

derived from the gradient image.

97

Chapter 10

Embedded Object Detection

In this section I describe the object recognition module, I developed for the humanoid robots.

The goal of the development was to facilitate computer vision for low power microcontrollers. This

was performed by assigning the pixel level processing, which is a resource consuming task, to a

speci�c processor and generating intermediate results to be further processed by the main MCU of the

robot. Several parameters were considered in the development of the system. These were modularity,

simplicity and compactness of the results and low production costs. The software development got an

enormous importance because the available resources were extremely limited.

Figure 10.1 shows a recent version of the module. The module is capable of detecting up to 16

colored regions at 19 frames per second. Up to 255 color sets can be de�ned in a 12 bit color look

up table. The results can be accessed via full/half-duplex serial communication using di�erent baud

rates. In half duplex mode it is compatible with the TTL communication protocol from ROBOTIS

and can therefore be connected to the same bus as the servomotors.

Figure 10.1: Developed Vision Module

98

Chapter 10. Embedded Object Detection

Figure 10.2: Block diagram of the vision module

Feature Value
Max. Clock frequency 16 MHz

Architecture 8 bit RISC
FLASH 8 KB
RAM 1KB

Peripherals UART, Timer, ADC, ...

Table 10.1: Features of ATMega8

10.1 Hardware Description

Figure 10.2 shows the block diagram of the vision module. The hardware is pretty simple. The

imaging device is a CMOS camera module. It is directly connected to an Atmel ATMega8 which

is responsible for image processing and communication. Table 10.1 gives a brief description of the

features of the MCU. The camera is clocked from the same source as the micro controller and is

therefore synchronized with it. Less handshaking is required using this method, which helps to save

the processing power. The line and frame synchronization signals can be either polled or used to

trigger an interrupt on the MCU. As the MCU does not contain enough resources for processing the

whole color depth of the camera, only the most signi�cant 4 bits of the pixel data are connected to the

microcontroller. Besides of the parallel pixel data and synchronization signals, an I2C path connects

the camera to the microcontroller, which is used to send con�guration data such as camera parameters

and image format to the camera. Technical details of the camera module can be found in [79].

10.2 Software Architecture

In the design of the vision module, the complexity of the system has been shifted as much as

possible to the software side. This is, of course, to reduce the mass production costs. The software of

the system is therefore somewhat complex. In �gure 10.3 a block diagram of the developed software

for the system is presented. The software interacts with two interfaces: The camera interface and the

99

Chapter 10. Embedded Object Detection

serial communication interface. The camera interface provides 3 group of signals:

� Pixel data

Connected to one of the 8-bit ports of the MCU and can be read in one clock cycle. The pixel

data is delivered as a stream with YCrCb 4:2:2 format. This means for two pixels, four bytes

are needed. This is, however, reduced to 2 bytes by ignoring the lower 4 bits of the data.

� Synchronization signals

The camera chip produces 3 synchronization signals, one for each data byte, one per line and one

at the beginning of each frame. The module uses only line and frame synchronization signals.

Pixel synchronization is not necessary as the MCU and the camera chip receive their clock from

a common source. Once the capture program is synchronized with the data stream, it remains

synchronous at least for one line.

� I2C

Camera chip has an internal register table, which includes a large number of image capture as

well as image preprocessing parameters and settings. These include parameters such as exposure

and white balance as well as image resolution and color format. The internal register table is

accessible through an I2C port connected to the Module MCU.

The communication interface facilitates the connection of the module to the robot. It accepts several

commands to invoke available image processing algorithms, access the results of the image processing

and to get and set the camera settings. Additionally, accessing the built-in boot loader is also done

through this interface. The function of the boot loader is to store calibration data such as the color

look up table in the �ash memory of the MCU. It is however limited so that the block used by the

�rmware cannot be accessed.

The heart of the image processor is the read line function. It waits for the beginning of a line,

then reads the pixel data of the line from the camera interface and stores it in the line bu�er. The

image format used by the module is YCrCb 4:2:2. The data stream is therefore �Y Cr Y Cb�. To

have the complete color information of a pixel, it is also necessary to read the neighbor pixel. The 12

bit color code of each pixel can be used to address the color look up table, which occupies half of the

�ash memory of the MCU. The line data is then passed to the image processing algorithm. Di�erent

image processing algorithms are developed for the module, which are described in the next sections.

100

Chapter 10. Embedded Object Detection

Figure 10.3: Block diagram of the software of the vision module

10.2.1 Color Based Region Growing Algorithm

The region growing method described in this section is based on the work described in [80, 81].

A summary of the method is presented here, followed by the improvements applied to the algorithm.

After translation of the pixel colors into associated object codes, successive pixels of the same object

are grouped together in the form of a run and stored in the rle buffer. rle buffer contains two

sub bu�ers, which are toggled every line. The information regarding the previous scan line of the

image is required for region growing. A run contains the following information:

1. position of the run in the line

2. number of pixels

3. associated object

4. pointer to the region

The region growing algorithm scans the runs of the current line, compares them to the ones from

the last line, �nds connected regions and updates runs as well as the entries in the region buffer.

Entries of the region bu�er are structures of the following �elds:

1. father region

101

Chapter 10. Embedded Object Detection

Figure 10.4: On-line region growing algorithm used in the module

2. associated object

3. number of pixels

4. sum of x values

5. sum of y values

6. bounding box

The region growing algorithm applied in the module is presented in �gure 10.4. It is based on

a simple concept, however the implementation has become a bit complicated. Conventional region

growing techniques cannot be applied, because due to the limited memory of the MCU, no random

access to the image data is possible. The algorithm tries to connect overlapping runs of the same

102

Chapter 10. Embedded Object Detection

color together. Di�culties appear when two or more regions built separately get �nally connected by

a run being overlapped by these regions. In this case, the regions should be merged together. This

leads to a highly dynamic use of the memory considering the limited available memory of the MCU.

The memory management problem is solved using three techniques. First, a pointer �eld has been

added to the region structure called father region. Initially the father of each region points to its

own. However, for each access to the region the father region is accessed instead of the child. Upon

recognition of a multiple overlap, the father of the �rst region is set to point to the second one. This

is called a logical merge. The physical merge takes place after the processing of the line is

�nished.

The second technique is the use of a bu�er of pointers, pointing to the unused regions. It can

either be a FIFO or a FILO. Initially, all available regions are included in the bu�er. Upon the

requirement of a new region, it is popped out of the bu�er. Regions modi�ed during the process are

marked. Any unmarked region is isolated from the rest of the image. It can therefore be taken out

of the process and stored in the �nal results. The region becomes free again and can be pushed back

in the bu�er. In addition, all regions are scanned after the line is processed. Regions with a di�erent

father than themselves are merged in their father regions and become free again.

10.2.2 Image Griding Algorithm

The region growing algorithm discussed in the last section is capable of detecting and localizing

convex and concentrated objects such as the ball or the goals. An indispensable amount of information

can be extracted from the �eld lines, which cannot be detected perfectly using this algorithm. This

information is required for robust self-localization. To solve this problem, an online algorithm was

developed, which compressed the acquired image into a considerably smaller grid of found objects. In

this method the detection rate is as high as the previously described method, however the position

accuracy is reduced. In contrast, the geometrical information of the found objects does not get lost.

The image griding algorithm seems to be pretty simple however there are several problems to

struggle with. The �rst problem is the limited available RAM. To have an acceptable grid resolution,

a minimum dimension of 32x24 cells is required. Considering the whole data of each cell to be stored

in a single byte, this needs at least 768 bytes, which is 75% of the available memory of the MCU.

A cell in the grid should at least provide the information about which object(s) have been detected

inside the cell. Not less important is also the number of pixels of the given object as it is possible

to suppress the noise by thresholding this value. Due to the limited memory, there are two possible

approaches. The available byte for each cell can be divided into 2 �elds of each 4 bits. It is then either

103

Chapter 10. Embedded Object Detection

Priority Foreground Background
highest 1 Red Green

2 Blue White
3 Yellow Black
4 Cyan Magenta
5 Magenta Cyan
6 Black Yellow
7 White Blue

lowest 8 Green Red

Table 10.2: Priorities assigned to the objects for griding.

BG Green BG Green BG Green
FG Black ignore Black FG Blue

ignore White FG Orange ignore White

Figure 10.5: Examples of appearing more than two objects in a cell

possible to store one object code and its number of pixels, or two object codes. The second approach

has the advantage of storing a foreground and a background object. This can be used to �lter the

objects outside the �eld, by verifying the background object to be the �eld.

The other challenge in the development of the algorithm is �nding a solution for the case when

several objects appear within a cell. A known solution is to assign priorities to the objects so that

minimum information is lost due to lack of memory. In �gure 10.5 some examples of this case are

presented. The assigned priorities are di�erent for foreground objects and background objects. The

highest priority for the foreground objects is assigned to the ball because it cannot be ignored in any

case. Table 10.2 lists the priorities assigned to the objects.

Figure 10.6 shows the algorithm. A local history containing the found objects and the number of

pixels of each color found in each cell is calculated for 5 consecutive lines. Finally a row of the grid is

updated after denoising and identifying the highest priority foreground and background objects. The

function is repeated until the end of the frame is reached. The image processing function produces

768 bytes of data for each frame. Each cell of the 32 x 24 grid summarizes 25 pixels of the image

in one byte containing the highest priority foreground and background object found in the cell. The

104

Chapter 10. Embedded Object Detection

Figure 10.6: On-line Image Griding Algorithm

results of this algorithm are used for self localization.

10.2.3 On-Line Edge Clustering Algorithm

In contrast to images captured from natural scenes, images from the RoboCup �eld contain

clear edges, most of which are straight. Figure 9.4 shows an example. An algorithm to �nd and

group straight edges can extract a majority of the information needed for object recognition and self

localization. Such an algorithm increases the reliability of object recognition by reducing the need

for well de�ned colors. This section describes an online algorithm developed for the vision module to

detect and cluster straight edges for further use in object recognition.

Edge detection is the �rst step in shape based object recognition. There are several well known

methods to detect edges. Regarding existing hardware limitations and the on-line nature of the

algorithm, methods are applicable which require a local and sequential access to the image data.

There is a restricted possibility of bu�ering the image data. Large kernels should therefore be avoided

105

Chapter 10. Embedded Object Detection

for providing image gradients. Robert's cross operation [18] described in equations 10.1 to 10.4 is

suited for this purpose. The kernel used in the operation is 2x2 and therefore only one line has to be

bu�ered. Moreover, the operation is very simple and can be performed in a few clock cycles. As an

edge is not only the result of a sudden intensity change but also a color change, all 3 channels should

be used for the calculation.

Gx :

 1 0

0 −1

 (10.1)

Gy :

 0 1

−1 0

 (10.2)

|G| =
√

G2
x + G2

y or |G| = |Gx| + |Gy| (10.3)

θ = arctan(Gx/Gy) +
π

4
(10.4)

Applying Robert's cross operation, the magnitude and direction of the gradient vector can be

determined for each pixel. To increase the performance, Manhattan distance is used instead of eu-

clidean distance and a look up table is implemented to accelerate direction calculation. Edge points

are detected by thresholding the magnitude of the gradient vector. The direction component is used

to group the pixels. In the next step, the edge points should be grouped together. As there is no

guarantee for the thresholded edges to be only one pixel thick, it may lead to multiple detection of

the same segment. To avoid this e�ect, edge points are grouped not only along the edge direction,

but also orthogonal to it.

The next step is similar to the one used in the region growing algorithm. Here the edge points

belonging to a line segment should be grouped together. Because the algorithm has only access to

one line of the image data at a time, grouping should be �rst done for the horizontal neighborhood.

A similar run length coding is used for this goal, however the condition same object is replaced with

the similar direction. As the direction value is not as deterministic as the object code and is subject

to deviations and measurement errors, a range check is used instead of a direct value comparison.

The runs can then be compared to the ones from the upper image line to check for a connection. A

connection is detected upon a geometrical neighborhood with a direction match.

Theoretically it is enough to store both end coordinates of a detected line segment. For opti-

mization purposes, three other �elds are also added to the object. These are normalized direction,

predicted position of the next point and the number of pixels joined. The normalized direction is the

average direction of the �rst few runs of the segment. Averaging is needed as the direction of a single

106

Chapter 10. Embedded Object Detection

point does not have enough accuracy to be used for the whole line. On the other hand, averaging

the direction for the whole length of the line causes the wrong detection of a curve as a single line

segment. A direction match is checked in two steps. First by comparing the direction of the run with

the one of the segment and second by checking if the predicted next point of the segment lies close

enough to the borders of the run.

Upon joining a run to the segment, the parameters of the segment should be updated. The

update procedure for the end coordinates of the line segment is a bit di�erent from the one used for

the bounding box in the region growing algorithm. There, the four values (min_x, min_y, max_x

and max_y) could be updated separately. In contrast, the coordinates are updated in the current

algorithm in couples. In other words, only one component of each coordinate couple is updated as

a maximum or minimum which is called the master component. The second component stores the

position in which the maximum or minimum occurs. The direction of the segment determines which

component becomes the master. The master component is the x value for almost horizontal lines, and

the y value for almost verticals ones.

107

Chapter 11

Shape Based Object Detection

As noted at the beginning of this part, shape based methods are often more reliable than color

based ones. This can, however, only be achieved with the cost of more processing power. In this

chapter some shape based algorithms developed for object recognition of the FUmanoid robots are

described. The developed methods can be used separately, or in some cases, in conjunction with the

color based methods to increase the reliability of the results.

In the �rst section I present an optimized method for edge detection and grouping, based on which

the form-color based object detection is implemented. The method summarizes the form information

of the image using the so-called griding. The edge structure is then extracted from the information

available from the last stage. Finally, the color information is additionally used to recognize di�erent

objects.

In the next section I describe an algorithm I proposed to detect the ball only based on its form.

The idea is inspired from Histogram of oriented Gradients1, introduced by Dalal and Triggs in 2005

[82]. The algorithm was originally focused on the problem of pedestrian detection in static images.

Today it is expanded to other objects such as animals and vehicles and also other media like video

streams. The method is of great importance as it is only based on the shape data of the image rather

than other more environment-dependent information like brightness and color. The presented method

extends the idea using integral images and an overlapped binary search.

1HOG

108

Chapter 11. Shape Based Object Detection

Figure 11.1: Gradient Vector Griding

11.1 Object Detection using Gradient Vector Griding 2

This section describes a method developed to derive geometrical data from an image. The method

is performance optimized for RoboCup scenario and is capable of clustering connected edges up to

an adjustable curvature. The method is used in RoboCup 2010 as the low level stage of the object

recognition module. Geometric results are then reinforced by adding color information and �nally

used for object detection. This technique facilitates a more precise self localization by increasing the

number of features.

Figure 11.1 shows the basic implementation of GVG. The procedure begins with calculating one

or two main gradient directions and positions called edge representers3 for each cell in a rough grid on

the image. This is unlike HOG. There, a histogram of orientations is extracted for each cell. Each set

of position and orientation in GVG determines an edge passage through the cell. The next stage �nds

connected edges passing through neighbor cells. In the third pass, complete edge traces are extracted

out of the cell connectivity graph.

11.1.1 Gradient Vector Calculation

Like every shape based object recognition method, the procedure begins with the calculation of

the gradient vector for each pixel in the image. The two components of gradient vector are the result

of di�erentiating the image in horizontal and vertical directions. In the case of Robert's cross operator

2GVG
3
ER

109

Chapter 11. Shape Based Object Detection

described in equations 10.1 to 10.4, these are the result of diagonal di�erentiating. Sobel operators

are less sensitive to noise, but however due to accumulating the algorithm is pretty noise tolerant.

There are two important points to consider while calculating the gradient vector for GVG. First, it

is necessary to calculate the direction in a -180° to 180° range, i.e. using the function arctan 2(y,x)

instead of arctan(y/x), if the vector is presented in polar form. This prerequisite is discussed in detail

in the next section. The second point is that the gradient direction is perpendicular to edge direction.

Both directions are needed in the algorithm. The following convention is used in the algorithm to

convert gradient vector V to edge vector E, which is a simple 90° rotation.

E =

 0 −1

1 0

V (11.1)

If Robert's cross operator is used for di�erentiating, edge direction should be calculated as follows.

E =

 −
√

2
2 −

√
2

2
√

2
2 −

√
2

2

V (11.2)

which is a rotation of 135°.

11.1.2 Position and Direction Accumulation

The next step is to calculate a set of ERs for each cell, this is done by a special form of accumu-

lation described in this section. An ER should refer to an edge passing through the cell. It is possible

to calculate the ER by simply averaging the position and edge vector of the points inside the cell

belonging to the edge. The method works as long as there is only one straight edge inside the cell. As

the complexity of the cell contents increase, simple averaging fails. It is then required to distinguish

between multiple edges using a more general clustering algorithm. This can increase the di�culty of

the problem. Some examples are shown in �gure 11.2.

The problem cannot be solved in its general form without a noticeable increase in the amount

of calculations. However a partial solution should be enough for RoboCup use. Figure 11.3 presents

some examples commonly observed in RoboCup scenario. Samples are overlayed with edge direction

vectors. An often observed case is a �eld line or a side pole included with both side edges in a

cell. The other but less frequent observation is a more or less 90° corner as a result of either an

intersection between two lines or a part of a rectangular object. Thanks to a 360° representation of

the gradient direction, it is possible to separate the edges in a majority of the cases using only the

direction information. Note that the edges of an object such as a �eld line form two complementary

110

Chapter 11. Shape Based Object Detection

(a) Single Edge Case (b) Multiple Edge Case

Figure 11.2: Averaging Fails When Multiple Edges Appear Inside a Cell

Figure 11.3: Common Examples of Multiple Edge Distribution

directions although they are parallel in the image. The angle distance between two angle values is

de�ned in equation 11.3.

|θ1 − θ2| =

|θ1 − θ2 + 360| θ1 − θ2 < −180

|θ1 − θ2 − 360| θ1 − θ2 > 180

|θ1 − θ2| else

(11.3)

The algorithm described in �gure 11.4 is developed based on this idea. As a matter of opti-

mization, it is preferred to have a one-pass algorithm so that it can also be implemented on systems

without whole image bu�ering capability. The algorithm functions as follows. The image is scanned

pixel by pixel. Two ERs are used in this implementation. Each ER contains a position and orientation

111

Chapter 11. Shape Based Object Detection

Figure 11.4: Position and Direction Accumulation Algorithm

accumulator and a pixel counter. An edge pixel is joined to the �rst ER, provided that its gradient

orientation is closer than a certain distance to the average orientation of the ER. If this is not the

case, the orientation is compared to the second ER, and in the case of no match it is ignored. An

empty ER will obviously be �lled with the �rst edge pixel met.

As a further optimization to the algorithm, it is possible to replace the polar representation of

the gradient vector with a Cartesian one. The implementation of angle distance thresholding will then

be replaced with thresholding the inner product of the vectors as presented in equation 11.4.

V1.V2 > |V1| |V2| cos(thr) (11.4)

It saves the dynamic calculation of arctan2 function. According to the CPU documentation 32 bit

multiplication can be performed in one cycle. However normalization of the vectors could cause

performance problems. These can also be optimized away using the z component of the cross product

112

Chapter 11. Shape Based Object Detection

of the vectors as described in equation 11.5.

|(V1 × V2)z| < V1 · V2 tan(thr) (11.5)

Using this technique, vector angle thresholding is done with only four integer multiplications having

a great impact on the performance of the algorithm.

The grid structure can be chosen overlapped, i.e. each cell also covers half of every neighboring

cell. This increases the smoothness of the results but is computationally more expensive.

11.1.3 Connection Graph Extraction

A list of ERs are produced in the previous stage through a single image scan. A connection graph

should be calculated by scanning the grid and comparing ERs of the neighboring cells. The graph is

implemented using an extra �eld in the cell structure pointing to the following neighbor ER called

�outbound� and a Boolean �eld indicating that the ER is added to the trace called �inbound�.

The algorithm is shown in �gure 11.5. Upon two conditions, two neighbor ERs are marked as

connected. The �rst condition veri�es that both ERs are in the same direction. This condition is

however not enough as it also holds true for separate parallel edges. Therefore, the second condition

veri�es that the vector connecting the ERs is also in the same direction as the self edges. By adjusting

the thresholds, the maximum accepted curvature of the edge trace can be determined. Both conditions

can be optimized using the technique described in the last section. Note that for the second condition

the edge direction should be used. Figure 11.6 demonstrates di�erent examples of the neighboring

ERs. A connection is only accepted in example 11.6d.

The internal loop of the algorithm breaks as soon as a connection is found. This guarantees that

every node in the connection graph has an out-degree of maximum one. It is also encouraged to reduce

the in-degree of the nodes to a maximum of one. This is implemented by refusing a connection if the

destination node has already been connected by checking its inbound property.

It is theoretically not guaranteed that the connection graph becomes free from loops, however if

a loop exists it should be the result of an uninterrupted semi-circular edge in the image, which does

not usually appear in RoboCup images.

11.1.4 Edge Trace Extraction

The �nal stage of the algorithm produces an array of edge traces. Each component of the array

is a connected ER chain. The algorithm is demonstrated in �gure 11.7. It searches the graph for

113

Chapter 11. Shape Based Object Detection

Figure 11.5: Connection Graph Extraction Algorithm

114

Chapter 11. Shape Based Object Detection

(a) Cond1 does not hold. (b) Cond1 does not hold.
Cond2 does not hold. Cond2 holds.

(c) Cond1 holds. (d) Cond1 holds.
Cond2 does not hold. Cond2 holds.

Figure 11.6: Examples of Connected and Unconnected Neighbors

115

Chapter 11. Shape Based Object Detection

Figure 11.7: Edge Extraction Algorithm

source nodes, which are simply ERs with inbound not set. Upon a match, the trace is followed using

outbound pointers and the matching ERs are pushed in the trace.

11.1.5 Implementation and Experimental Results

The algorithm is implemented as the low level part of the vision software. It is tested on two

available computer platforms using di�erent optimizations. To minimize the amount of computations,

one ER is calculated per cell. The grid contains 40 x 30 non-overlapping cells, each of which cover

256 pixels of the captured image.

To achieve the required frame rate and still have enough CPU power free for other processes

running, the following optimizations are applied to the algorithm.

� Quarter resolution scan: Color digital cameras usually provide images with a so called �Bayer

pattern� . A VGA image contains therefore 640 x 480 single channel values. This is 1/3 of the

information recorded in common RGB pattern. The remaining values are interpolated in such

116

Chapter 11. Shape Based Object Detection

Gumstix Overo Gumstix Verdex
Frame rate CPU usage Frame rate CPU usage
(FPS) (%) (FPS) (%)

No optimization 12 100 10 100
Quarter res. scan 18 100 14 100
+Over horizon skip 20 100 17 (max) 80
+Out of circle skip 26 (max) 80 17 (max) 75
+Random line skip 26 (max) 65 17 (max) 60

Table 11.1: GVG Implementation Results

representations. Hence it is possible to skip every other pixel and very other image line without

a distinct loss of information.

� Over horizon skip: The only objects which partly appear over the horizon are the landmarks

and other robots. To detect and calculate the position of these objects, it is always enough to

�nd the lowest point belonging to them. Therefore there is no need to detect objects over the

horizon. As the camera is equipped with a wide angle lens, horizon is projected as a curve in

the captured image. This can however be estimated with a horizontal line touching the actual

projection in the top-most point. There are di�erent methods to calculate the horizon in the

image. Two solutions currently used in FUmanoids are IMU sensors and �eld range detection.

Upon detection of the horizon, scanning the image can vertically begin from this line.

� Out of circle skip: Fish eye optics used in FUmanoid robots projects the image inside a circle.

The rest of the imaging surface is covered with black pixels. This e�ect can be observed in �gure

11.8. It is possible to skip these pixels by calculating the horizontal extents for each image line.

� Random line skip: Apart from the �sh-eye optics deformation, the camera provides a perspective

view of the �eld. Therefore much more information is available from near objects, observed in

the lower area of the image, than the far ones appearing in the upper area. Due to this fact it is

possible to ignore more and more lines as the scan gets closer to the bottom of the image. It is

done by comparing a uniformly distributed random number with a dynamic threshold calculated

form scan line Y coordinate. Following formula is used to skip a line:

r < Y/640 (11.6)

Where r is a random real number between 0 and 1 and Y is the vertical component of the scan

line coordinate.

117

Chapter 11. Shape Based Object Detection

(a) Visualization of the ERs.

(b) Extracted edges overlaid on the test image.

(c) Typical results of the test case.

Figure 11.8: GVG Implementation Results

118

Chapter 11. Shape Based Object Detection

Gumstix Overo Gumstix Verdex
Frame rate CPU usage Frame rate CPU usage
(FPS) (%) (FPS) (%)

Canny 2.7 100 1.5 100

Table 11.2: Canny Implementation Results

Implementation results are summarized in table 11.1 on two available processor platforms. The

�rst platform is Gumstix Verdex Pro which is equipped with a 600 MHz PXA270 and the second is a

Gumstix Overo with a 720 MHz OMAP3 3530 processor. Each row of the table shows the optimization

added to the last state. The last row shows the highest optimization level achieved by applying all

described techniques. A standard test procedure is used for this performance measurement. The robot

is placed upright on one of the penalty points, directed to the goal placed on the other side of the �eld

as shown in �gure 11.8c. Two parameters are measured, which together show the performance of the

algorithm. These are processed frame rate and CPU usage. Since the camera delivers a limited number

of frames per second and the CPU is also capable of performing a limited amount of processing, there

are two possible scenarios.

1. A frame can be entirely processed before the next frame gets ready. In this case the processor

goes idle and the CPU shows less than 100 percent of usage. Frame rate remains constant in

this mode and CPU usage is used as the indicator of the performance.

2. A new frame gets ready as long as the last frame is still being processed. This leads to a frame

bu�er over�ow, which is in turn handled with dropping frames. The CPU is never released in

this case and the usage indicator shows always 100 percent. Frame rate is then used as the

performance indicator.

Using the Canny algorithm from the Open CV implementation as the control case, the described test

procedure shows the results listed in table 11.2. Compared to the GVG, the Canny edge extraction is

slower by a factor of 10. Note that Canny algorithm only results in a bitmap of the edges and doesn't

perform any edge grouping, so this has to be done additionally. It can therefore be concluded that the

GVG algorithm signi�cantly outperforms the standard Canny procedure in the RoboCup scenario.

Figure 11.8a shows the visualization of the ERs for a typical image captured by the robot. Despite

the rough grid, a relatively high level of detail is detected. In �gure 11.8b the result of the edge trace

extraction is demonstrated for �eld lines.

119

Chapter 11. Shape Based Object Detection

Figure 11.9: Structure of the Ball Detection Method

11.2 Shape Based Ball Detection Using Edge Orientation His-

togram

In this section I introduce a method to detect the ball based on its shape. The method can also

be used for other round objects with detectable edges. The method is motivated by two previous

works: intensity integral images introduced by Viola et al. [83] and HOG introduced by Dalal and

Triggs[82]. The same concept of integral images has been used, however integration is applied to

a vector representation of the gradient orientation histogram of each pixel. As an extension to the

original idea, an overlapped binary search is used to locate ball candidates in the image.

11.2.1 Structure of the Method

The method is structured as presented in �gure 11.9. It includes �ve stages starting with the

calculation of the gradient vector, which is common in shape based object detection methods. Using

non-maxima-suppression, the edges are thinned and so normalized. A so-called �histogram integral

image� is then constructed based on the orientation of the gradient vector in each pixel. This repre-

sentation of the original image helps to accelerate the search algorithm. An overlapped binary search

recursively scans the pyramid down and �nds the best-�tting box around the object using edge orien-

tation statistics from the histogram integral image. Final results are once more �ltered using further

statistical criteria.

120

Chapter 11. Shape Based Object Detection

a) Original Image b) Thresholded Edges c) Non-maxima-suppressed

Figure 11.10: Edge Points Selected for Ball Detection Algorithm

11.2.2 Gradient Vector Calculation and Thresholding

Gradient vector can be calculated as described in section 11.1.1. It is encouraged to smoothen the

image before calculating the gradients to remove the noise. Results are then non-maxima-suppressed

along the gradient direction, similar to the method used in canny edge detector [78]. This reduces the

edge thickness and provides normalized results for the procedure introduced in section 11.2.6. Too

weak edge points are then omitted using a simple thresholding. Figure 11.10 shows the intermediate

results.

11.2.3 Histogram of Edge Orientations

Histogram of edge orientations is an important measure used in shape-based object detection

algorithms as described in the beginning of this chapter. In the present method, the histogram is

calculated by counting the number of edge pixels representing each direction range. Direction of the

gradient vector is extracted in a 360° range, which is quantized into 18 groups of each 20 degrees. The

detection algorithm relies indirectly on the fact that an ideal round object has a uniform distribution of

edge orientations. This feature gets however rapidly lost as the window size grows and other contents

are added to the image.

Additional contents of the image always add positive values to the histogram. A direct result

gained from this is that large regions of the image can be entirely rejected if the orientation histogram

contains zeros in more than a given number of directions. Theoretically, an edge orientation histogram

belonging to a window containing the round object must be zero free. This can however not always

be ful�lled in real test conditions due to shadow, partial occlusion or some other e�ects. Therefore

a certain number of zeros are allowed in the histogram, which can be adjusted in accordance to the

image condition.

To visualize what kind of information an edge orientation histogram provides and how strong this

121

Chapter 11. Shape Based Object Detection

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11.11: Histogram of Edge Orientations: Examples

122

Chapter 11. Shape Based Object Detection

measure is, several example histograms of the images captured from the robots are presented in �gure

11.11. In �gure 11.11a, b and c, the histogram of a just-ball window is presented. The histogram

shows a more or less uniform distribution of the directions. In �gure 11.11c, d and e, the window size

is grown and some other content has been added. The histogram has lost the uniformness, however all

components have remained non-zero. In �gure 11.11g and i, the ball is partially visible which has lead

to a signi�cant number of zero components and �nally the resulting histogram of a ball-free window

is shown in �gure 11.11h. As it can be seen, a round object placed on the border of a window cannot

be detected. A solution to this problem is discussed in section 11.2.5.

11.2.4 Integral Histogram Image

The idea of intensity integral images is introduced in [83]. The same idea is extended to the

histogram of edge orientations in this work.

Assume an image with 18 channels, i.e. each pixel value is an 18 dimensional vector. The vector

describes the histogram of edge orientations according to a rectangle, stretched from the origin of

the source image to the given coordinates. This is described in equation 11.7 and presented in �gure

11.12.

I(x, y) =
∑

x′ < x

y′ < y

H(x′, y′) (11.7)

H is a vector �lled with zeros except for the component corresponding to the direction of the gradient

vector at (x′, y′), which is �lled with 1 if the pixel is identi�ed as an edge pixel.

According to [83], an integral image can be computed in a single scan by using the following

recurrence relation:

S(x, y) = S(x − 1, y) + H(x, y) (11.8)

I(x, y) = I(x, y − 1) + S(x, y) (11.9)

where S is a temporary vector holding a histogram of the current line of the image. It is enough to

store S as a single accumulator because there is no reference to its history.

Integral representation reduces the computation of the histogram for any given window to two

additions and one subtraction as follows:

Hist(x, y, x′, y′) = I(x, y) + I(x′, y′) − (I(x′, y) + I(x, y′)) (11.10)

This accelerates the operation to a great extent.

123

Chapter 11. Shape Based Object Detection

(a) Calculation of Histogram Integral Image

(b) Computation of the Histogram Based on the Integral Representation

Figure 11.12: Computation of Integral Histogram

124

Chapter 11. Shape Based Object Detection

Algorithm 2 Overlapped Binary Search

Boolean search_ball(window, level)

begin

if window is already scanned then

return true

window <- scanned

calculate_histogram(window)

if histogram has at least one zero component then

return false

if (level>5) then

return false

b <- false

for all sub windows

b <- b or search_ball(sub window, level+1);

if not b then

push_ball_candidate(window)

end

11.2.5 Overlapped Binary Search

So far, a measure is de�ned to determine areas in the image not covering an entire ball. However,

It does not mean that an area contains a ball if it is not rejected using this measure. Furthermore, it

does not guarantee that if the ball exists in the area, it is the only object surrounded by the area. In

this section a recursive function is suggested to �nd the best ball candidates using an edge orientation

histogram measure.

The function is presented in algorithm 2. It examines the given window using above described

measure. The function �rst veri�es if the window could contain a ball by scanning the histogram. If

the window is not rejected it is divided into several overlapping sub-windows, which are recursively

processed by the function. Base cases of the recursion are windows, which either have more than a

certain number of zero components in their histogram or are smaller than the ball is expected to be.

This is demonstrated in �gure 11.13a.

A problem could occur when the ball lies on the border of neighboring sub-windows if sub-windows

were non-overlapping. But thanks to the overlapped searching, the object can be entirely covered by

at least one sub-window. As demonstrated in �gure 11.13b, sub-windows are a quarter of the parent

window in area and are distributed using a grid, both horizontally and vertically, one fourth of the

parent window edge length. A window is thus divided into 9 sub-windows.

125

Chapter 11. Shape Based Object Detection

(a) Recursive Binary Search (b) Overlapping Sub-windows

Figure 11.13: Overlapped Binary Search

It can be observed that overlapped searching can reference a window more than once, due to the

overlapping in the algorithm. The solution suggests a look up table with an element for each possible

window, down to the desired depth storing the search result for that window. A repeated reference

can be detected at the beginning of the function and replied with the pre-stored search result.

11.2.6 Outlier Elimination

According to the algorithm, a ball candidate is reached if all sub-windows of an accepted parent

window are rejected to contain an entire ball. The results are still subject to false positives. It

is therefore required to further �lter the output of the algorithm using a geometrical criterion. Two

measures are suggested, both of which can be obtained from the histogram so that no further reference

to the image is needed.

The �rst measure computes standard deviation and average of the histogram. The following

condition veri�es how uniform the distribution is.

σ < αµ (11.11)

where σ is the standard deviation and µ is the average of the histogram. α is a constant, which

determines the accepted uniformness of the distribution. The higher α becomes, the more candidates

are accepted as balls.

The second measure veri�es whether the number of edge points the window contains matches the

circumference of the window. Assuming d to be the edge length of the window and n the number of

126

Chapter 11. Shape Based Object Detection

edge pixels found in the window, the following is the condition to �nd balls.

π

2
d(1 − β) < n < 4d(1 + β) (11.12)

As window size is halved in each level, the window can be up to double the ball size. This sets the

lower bound of the pixel count. The upper bound is set to the circumference of the window. β is an

adjustable tolerance added to the condition. As a prerequisite to this condition the edge thickness

should be reduced to one pixel using non-maxmima suppression.

11.2.7 Results

The algorithm has been tested o�-line using images recorded from RoboCup humanoid �eld. Some

example results are presented in �gure 11.14. Results are overlayed with windows that the algorithm

has accessed, which shows how the method approaches the image. As a performance metric, the

number of references to the recursive function is counted. Comparing this to the number of pixels of

the image (in this case 512x512) this shows a promising optimization of the search method. However

the initial image scan to calculate the histogram integral image should also be considered.

127

Chapter 11. Shape Based Object Detection

(a) Calls: 435 (b) Calls: 820

(c) Calls: 602 (d) Calls:439

(e) Calls: 1338 (f) Calls:658

Figure 11.14: Results of Ball Detection using Histogram of Edge Orientations.

128

Part V

Summary, Conclusion and Future

Work

129

In this thesis, I described the development of the �FUmanoids�. The FUmanoids are a team of

intelligent soccer playing humanoid robots, founded in 2006 and participated up to the publication of

this thesis yearly in RoboCup world competitions. During the presence of the FUmanoids in RoboCup,

the team has won several valuable prices including the 3rd place and two times the second place of

the world RoboCup competitions.

I explained the robotics platform, including the mechanical and electrical design of the di�erent

versions of the robot in part II. The structure of the software used in the 2007-2009 versions of the

robot is also explained in this part. Here I presented several ideas and solutions I implemented to

solve the problems and improve the state of the system.

In part III I focused on the stabilization of the bipedal walking, which was my main contribution

in the software development of the robots. I explain a simulation platform I developed, based on which

I studied the control of the robot. Using this platform and by further development of the methods on

the real robots, I achieved a combination of control strategies which guaranteed the fast and robust

bipedal walking of the robots. To develop the control mechanism, I used an energy-based concept.

The approach I followed in the development was inspired from passive dynamic walking. I have then

extended the idea to be used on active and compliant joints in the robots.

Part IV described my contribution in the development of computer vision solutions for the hu-

manoid robots. I presented a computer vision module capable of providing color-based object detection

results to low power microcontrollers. Di�erent image processing algorithms I developed for this mod-

ule were explained in this part. I further introduced two shape-based algorithms for detection of the

�eld lines and the ball. My shape based edge grouping method was successfully implemented in the

FUmanoid robots in years 2010 and 2011.

11.3 Future Work

The development of the FUmanoids continues further. I suggest the following improvements for

the future:

11.3.1 Mechanics

Parallel leg kinematics is recently introduced in humanoid league. The technique suggests the

coupling of the successive parallel joints to guarantee that the feet planes stay always parallel to each

other. Using parallel leg kinematics can reduce the software expense and make walking more stable.

Further improvement of the hands for making them capable of manipulating objects can be useful

130

for the goal keeper. Currently the goal keeper is only capable of touching the ball with its feet or with

its body but the interaction with the ball is rather uncontrolled. There are many situations, in which

the ball stays near to the goal keeper for a long while. It is therefore useful if the goal keeper can take

the ball and through it far away using its hands. This is also allowed in the rules.

Another idea for the future is to make changes in feet of the robots in order to allow high kicks.

High kicks has been used for a long while in other RoboCup leagues, such as middle size. This can

make the goal keeper unable to calculate the correct path of the ball. The idea can also be useful to

score a goal when the goal keeper lies in front of the goal.

Adding force/torque sensors in the feet plates is the next improvement I suggest for the future.

This can provide a more reliable feedback for control and stabilization of the robot.

11.3.2 Electronics

I suggest adding an intermediate processor between the main computer and the motor/sensor bus.

This module should form an abstraction layer and can undertake basic motions. This can also improve

the reliability of the robot by taking necessary actions if the robot temporarily loses its processing

capability. A reboot phase of the main CPU can be such a case.

The next suggestion is the use of stereo cameras to increase the distance measurement accuracy

and correct the lag of the IMU sensors. The head of the 2009 Robot was designed to allow a stereo

vision, however there were some di�culties, such as insu�cient resolution of the cameras, especially

after using a wide angle lens. For an e�ective stereo vision the resolution should be at least a few

mega pixels.

11.3.3 Control Software

For the bipedal walking I suggest the integration of the IMU and foot pressure in the control meth-

ods. This can smoothen the behavior of the joints and reduce the loss of energy. The implementation

of the walking algorithm on an intermediate processor can also improve the performance.

Currently only a limited feedback linearization is done for walking motion. Back-calculation of

the end-e�ector coordinates using the joint angles can provide a better feedback for the control of the

walking. The same method can also be used for the static motions, which can improve their reliability.

131

11.3.4 Behavior Control

I suggest the implementation of CSBP on a data-�ow platform. This can increase the parallelity

and also make the implementation faster and more clear.

For future there is a need for development of more reactive behaviors. These require more reliable

and real-time sensory data and can therefore be implemented in lower levels of the software.

11.3.5 Computer Vision

I suggest further work on shape based methods. It is possible to reduce the dependency of the

object recognition methods of the colors. Tracking methods both in the image and in the state space

can be used in future to follow the objects and reduce the amount of calculations. Implementation of

stereo-vision is another area which can be improved in conjunction with high resolution cameras.

Another idea is the optical calculation of the camera orientation based on the observation of the

�eld lines. Theoretically it is possible to calculate the complete orientation matrix of the camera

having recognized a pair of perpendicular lines. This can avoid problems such as errors in IMU

measurements and delays between camera and the IMU measurements.

132

References

[1] T. McGeer, �Powered �ight, child's play, silly wheels and walking machines,� in Proc. Conf. IEEE

Int Robotics and Automation, 1989, pp. 1592�1597.

[2] M. Wisse and A. L. Schwab, �Skateboards, bicycles, and three-dimensional biped walking

machines: Velocity-dependent stability by means of lean-to-yaw coupling,� The International

Journal of Robotics Research, vol. 24, no. 6, pp. 417�429, 2005. [Online]. Available:

http://ijr.sagepub.com/content/24/6/417.abstract

[3] A. K. Mackworth, �On seeing robots,� Vancouver, BC, Canada, Canada, Tech. Rep., 1993.

[4] �Robocup humanoid rules.� [Online]. Available: http://www.tzi.de/humanoid/bin/view/

Website/Downloads

[5] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, �The development of honda humanoid robot,�

in Proc. IEEE Int Robotics and Automation Conf, vol. 2, 1998, pp. 1321�1326.

[6] J.-I. Yamaguchi, A. Takanishi, and I. Kato, �Development of a biped walking robot compensating

for three-axis moment by trunk motion,� in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and

Systems '93 IROS '93, vol. 1, 1993, pp. 561�566.

[7] Y. Ogura, H. Aikawa, K. Shimomura, A. Morishima, H. ok Lim, and A. Takanishi, �Development

of a new humanoid robot wabian-2,� in Proc. IEEE Int. Conf. Robotics and Automation ICRA

2006, 2006, pp. 76�81.

[8] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura, �The intelli-

gent asimo: system overview and integration,� in Proc. IEEE/RSJ Int Intelligent Robots and

Systems Conf, vol. 3, 2002, pp. 2478�2483.

[9] K. Nishiwaki, T. Sugihara, S. Kagami, F. Kanehiro, M. Inaba, and H. Inoue, �Design and de-

velopment of research platform for perception-action integration in humanoid robot: H6,� in

Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS 2000), vol. 3, 2000, pp.

133

REFERENCES

1559�1564.

[10] K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka, and S. Kajita, �Cybernetic human

hrp-4c,� in Proc. 9th IEEE-RAS Int. Conf. Humanoid Robots Humanoids 2009, 2009, pp.

7�14.

[11] M. Gienger, K. Lo�er, and F. Pfei�er, �Towards the design of a biped jogging robot,� in Proc.

ICRA Robotics and Automation IEEE Int. Conf, vol. 4, 2001, pp. 4140�4145.

[12] S. H. Collins, M. Wisse, and A. Ruina, �A three-dimensional passive-dynamic walking robot

with two legs and knees,� The International Journal of Robotics Research, vol. 20, no. 7, pp.

607�615, Jul. 2001. [Online]. Available: http://ijr.sagepub.com/content/20/7/607.abstract

[13] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, �E�cient bipedal robots based on

passive-dynamic walkers,� Science, vol. 307, no. 5712, pp. 1082�1085, 2005. [Online].

Available: http://www.sciencemag.org/cgi/content/abstract/307/5712/1082

[14] M. Garcia, A. Chatterjee, A. Ruina, and M. Coleman, �The simplest walking model: Stability,

complexity, and scaling,� Journal of Biomechanical Engineering, vol. 120, no. 2, pp. 281�288,

1998. [Online]. Available: http://link.aip.org/link/?JBY/120/281/1

[15] J. K. Holm and M. W. Spong, �Kinetic energy shaping for gait regulation of underactuated

bipeds,� in Proc. IEEE Int. Conf. Control Applications CCA 2008, 2008, pp. 1232�1238.

[16] T. McGeer, �Passive walking with knees,� in Proc. Conf. IEEE Int Robotics and Automation,

1990, pp. 1640�1645.

[17] M. Wisse, A. L. Schwab, R. Q. van der Linde, and F. C. T. van der Helm, �How to keep from

falling forward: elementary swing leg action for passive dynamic walkers,� IEEE Transactions

on Robotics, vol. 21, no. 3, pp. 393�401, 2005.

[18] R. Knight, U. Nehmzow, and C. C. Sq, �Walking robots, a survey and a re-

search proposal,� CiteSeerX - Scienti�c Literature Digital Library and Search Engine

[http://citeseerx.ist.psu.edu/oai2] (United States), Tech. Rep., 2002. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.1983

[19] F. Daerden and D. Lefeber, �Pneumatic arti�cial muscles: Actuators for robotics and automa-

tion,� Europian journal of mechanical and enviromental engineering, vol. 47, pp. 11�22, 2002.

[20] B. Verrelst, R. V. Ham, B. Vanderborght, F. Daerden, D. Lefeber, and J. Vermeulen, �The

pneumatic biped "lucy" actuated with pleated pneumatic arti�cial muscles,� Autonomous

134

REFERENCES

Robots, vol. 18, pp. 201�213, 2005, 10.1007/s10514-005-0726-x. [Online]. Available:

http://dx.doi.org/10.1007/s10514-005-0726-x

[21] B. Verrelst, �A dynamic walking biped actuated by pleated pneumatic arti�cial muscles: Basic

concepts and control issues,� Ph.D. dissertation, Vrije Universiteit Brussel, Brussels, Belgium.,

2005.

[22] K. Hosoda, T. Takuma, and A. Nakamoto, �Design and control of 2d biped that can walk and

run with pneumatic arti�cial muscles,� in Proc. 6th IEEE-RAS Int Humanoid Robots Conf,

2006, pp. 284�289.

[23] M. Sugisaka, �An approach for soft humanoid robot with arti�cial muscles,� in Proc. IEEE Int.

Symp. Industrial Electronics ISIE 2009, 2009.

[24] S. O. Anderson, M. Wisse, C. G. Atkeson, J. K. Hodgins, G. J. Zeglin, and B. Moyer, �Powered

bipeds based on passive dynamic principles,� in Proc. 5th IEEE-RAS Int Humanoid Robots

Conf, 2005, pp. 110�116.

[25] S. O. Anderson, C. G. Atkeson, and J. K. Hodgins, �Coordinating feet in bipedal balance,� in

Proc. 6th IEEE-RAS Int Humanoid Robots Conf, 2006, pp. 624�628.

[26] S.-H. Hyon and G. Cheng, �Passivity-based full-body force control for humanoids and application

to dynamic balancing and locomotion,� in Proc. IEEE/RSJ Int Intelligent Robots and Systems

Conf, 2006, pp. 4915�4922.

[27] M. Shahinpoor and K. J. Kim, �Ionic polymer-metal composites: Iv. industrial and medical

applications,� Smart Materials and Structures, vol. 14, pp. 197�214, 2005.

[28] K. Oguro, Y. Kawami, and H. Takenaka, �Bending of an ion-conducting polymer �lm-electrode

composite by an electric stimulus at low voltage,� Trans. J. ofMicromachine SOC, 5, pp.

27�30, 1992.

[29] S. Guo, Y. Ge, L. Li, and S. Liu, �Underwater swimming micro robot using ipmc actuator,� in

Proc. IEEE Int Mechatronics and Automation Conf, 2006, pp. 249�254.

[30] M. Yamakita, N. Kamamichi, T. Kozuki, K. Asaka, and Z.-W. Luo, �Control of biped walk-

ing robot with ipmc linear actuator,� in Proc. Conf. IEEE/ASME Int Advanced Intelligent

Mechatronics, 2005, pp. 48�53.

[31] K. Otsuka, Shape memory materials, C. Wayman, Ed. Cambridge: Cambridge University Press,

1998.

135

REFERENCES

[32] W. J. Buehler and F. E. Wang, �A summary of recent research on the nitinol

alloys and their potential application in ocean engineering,� Ocean Engineering,

vol. 1, no. 1, pp. 105 � 108, IN7�IN10, 109�120, 1968. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/002980186890019X

[33] K. J. DeLaurentis, C. Mavroidis, and C. Pfei�er, �Development of a shape memory alloy actuated

robotic hand,� Neural Networks, Tech. Rep., 2000.

[34] K.-Y. Tu, T.-T. Lee, C.-H. Wang, and C.-A. Chang, �Design of fuzzy walking pattern (fwp) for

a shape memory alloy (sma) biped robot,� in Proc. IEEE Int Systems, Man, and Cybernetics

Conf, vol. 4, 1998, pp. 3266�3271.

[35] M. Nishida, K. Tanaka, and H. O. Wang, �Development and control of a micro biped walking

robot using shape memory alloys,� in Proc. IEEE Int. Conf. Robotics and Automation ICRA

2006, 2006, pp. 1604�1609.

[36] E. T. Esfahani and M. H. Elahinia, �Stable walking pattern for an sma-actuated biped,�

IEEE/ASME Transactions on Mechatronics, vol. 12, no. 5, pp. 534�541, 2007.

[37] R. Kratz, M. Stelzer, M. Friedmann, and O. von Stryk, �Control approach for a novel high

power-to-weight ratio sma muscle scalable in force and length,� in IEEE/ASME Intl. Conf.

on Advanced Intelligent Mechatronics (AIM), Zürich, CH, September 4-7 2007.

[38] R. Kratz, M. Stelzer, and O. von Stryk, �Macroscopic sma wire bundle actuator/sensor sys-

tem: design, measurement, control approach,� in Proc. 4th IFAC-Symposium on Mechatronic

Systems, Heidelberg, September 12-14 2006.

[39] H. M. F. Khorrami, P. Krishnamurthy, Modeling and Adaptive Nonlinear Control of Electric

Motors. Springer-Verlag, New York, 2003.

[40] Robotis, Dynamixel, High-performance networked actuators for robots fully integrated with

feedback function and programmability. [Online]. Available: http://www.robotis.com/xe/

dynamixel_en

[41] G. T. Fallis, �Walking toy, improvement in walking toys,� USA Patent 376 588, 1888.

[42] M. Kukulski, �Entwurf und bau einer humanoiden bewegungsplattform für fuÿball spielende

roboter,� Master's thesis, Freie Universität Berlin, 2010.

[43] �Cm5 schematics.� [Online]. Available: http://robosavvy.com/site/index.php?Itemid=&id=

robotis_bioloid&option=com_openwiki

136

REFERENCES

[44] B. Fischer, H. Mobalegh, and R. Rojas, �Low cost synchronized stereo aquisition system for single

port camera controllers,� in Proc. 2010 IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2010.

[45] M. Oertel, �Aufbau und implementierung einer multithreading technologie in einer 8 bit risc-

architektur umgebung.� Master's thesis, Freie Universität Berlin, Institut für Informatik, 2008.

[46] D. Seifert, �Portierung der fumanoids-software,� Study Research Project,

2009. [Online]. Available: https://www.fumanoids.de/wp-content/uploads/2009/07/

studienarbeit-portierung-fumanoids.pdf

[47] T. McGeer, �Passive dynamic walking,� International Journal of Robotics Research, vol. 9(2), pp.

62�82, 1990.

[48] A. Seugling and M. Rölin, �Evaluation of physics engines and implementation of a physics module

in a 3d-authoring tool,� Master's thesis, UmeA University Department of Computing Science,

2006.

[49] R. Smith, �Open dynamics engine.� [Online]. Available: http://www.ode.org/

[50] E. Drumwright, J. Hsu, N. Koenig, and D. Shell, �Extending open dynamics engine for robotics

simulation,� in Simulation, Modeling, and Programming for Autonomous Robots, ser. Lecture

Notes in Computer Science, N. Ando, S. Balakirsky, T. Hemker, M. Reggiani, and O. von

Stryk, Eds. Springer Berlin / Heidelberg, 2010, vol. 6472, pp. 38�50. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-17319-6_7

[51] M. Woo, J. Neider, T. Davis, and D. Shreiner, OpenGL Programming Guide: The O�cial Guide

to Learning OpenGL, Version 1.2, 3rd ed. Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc., 1999.

[52] M. Haruna, M. Ogino, K. Hosoda, and M. Asada, �Yet another humanoid walking - passive

dynamic walking with torso under simple control,� in Intelligent Robots and Systems, 2001.

Proceedings. 2001 IEEE/RSJ International Conference on, vol. 1, 2001, pp. 259 �264 vol.1.

[53] J. Denavit and R. S. Hartenberg, �A kinematic notation for lower-pair mechanisms based on

matrices.� Trans. of the ASME. Journal of Applied Mechanics, vol. 22, pp. 215�221, 1955.

[Online]. Available: http://ci.nii.ac.jp/naid/10008019314/en/

[54] Y. Nakamura and H. Hanafusa, �Inverse kinematic solutions with singularity robustness for

robot manipulator control,� Journal of Dynamic Systems, Measurement, and Control, vol.

108, no. 3, pp. 163�171, 1986. [Online]. Available: http://link.aip.org/link/?JDS/108/163/1

137

REFERENCES

[55] C. W. Wampler, �Manipulator inverse kinematic solutions based on vector formulations and

damped least-squares methods,� vol. 16, no. 1, pp. 93�101, 1986.

[56] A. Balestrino, G. D. Maria, and L. Sciavicco, �Robust control of robotic manipulators,� in Pro-

ceedings of the 9th IFAC World Congress, vol. 5, 1984, pp. 2435�2440.

[57] W. A. Wolovich and H. Elliott, �A computational technique for inverse kinematics,� in Proc. 23rd

IEEE Conf. Decision and Control, vol. 23, 1984, pp. 1359�1363.

[58] D. L. Pieper, �The kinematics of manipulators under computer control,� Ph.D. dissertation,

STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE, 1968.

[59] F. Asano, M. Yamakita, N. Kamamichi, and Z.-W. Luo, �A novel gait generation for biped walking

robots based on mechanical energy constraint,� vol. 20, no. 3, pp. 565�573, 2004.

[60] M. Franken, G. van Oort, and S. Stramigioli, �Analysis and simulation of fully ankle actuated

planar bipedal robots,� in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems IROS

2008, 2008, pp. 634�639.

[61] K. D. Mombaur, H. G. Bock, J. P. Schloder, and R. W. Longman, �Human-like actuated walking

that is asymptotically stable without feedback,� in Proc. ICRA Robotics and Automation

IEEE Int. Conf, vol. 4, 2001, pp. 4128�4133.

[62] S. Aoi and K. Tsuchiya, �Self-stability of a simple walking model driven by a rhythmic signal,�

Nonlinear Dynamics, vol. 48, pp. 1�16, 2007, 10.1007/s11071-006-9030-3. [Online]. Available:

http://dx.doi.org/10.1007/s11071-006-9030-3

[63] F. M. Silva and J. A. T. Machado, �Towards e�cient biped robots,� in Proc. Conf. IEEE/RSJ

Int Intelligent Robots and Systems, vol. 1, 1998, pp. 394�399.

[64] F. Asano, M. Yamakita, and K. Furuta, �Virtual passive dynamic walking and energy-based

control laws,� in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS 2000),

vol. 2, 2000, pp. 1149�1154.

[65] M. Wisse, C. G. Atkeson, and D. K. Kloimwieder, �Swing leg retraction helps biped walking

stability,� in Proc. 5th IEEE-RAS Int Humanoid Robots Conf, 2005, pp. 295�300.

[66] M. Wisse, D. G. E. Hobbelen, and A. L. Schwab, �Adding an upper body to passive dynamic

walking robots by means of a bisecting hip mechanism,� IEEE Transactions on Robotics,

vol. 23, no. 1, pp. 112�123, 2007.

[67] A. Goswami, B. Thuilot, and B. Espiau, �Compass-like biped robot part i: Stability and bifurca-

tion of passive gaits,� INRIA, RR-2996, Tech. Rep., October 1996.

138

REFERENCES

[68] R. Tedrake, T. W. Zhang, M. fai Fong, and H. S. Seung, �Actuating a simple 3d passive dynamic

walker,� in Proc. IEEE Int. Conf. Robotics and Automation ICRA '04, vol. 5, 2004, pp.

4656�4661.

[69] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, �Biped

walking pattern generation by using preview control of zero-moment point,� in Proc. IEEE

Int. Conf. Robotics and Automation ICRA '03, vol. 2, 2003, pp. 1620�1626.

[70] H. R. Moballegh, M. Mohajer, and R. Rojas, Increasing Foot Clearance in Biped Walking:

Independence of Body Vibration Amplitude from Foot Clearance. Berlin, Heidelberg:

Springer-Verlag, 2009, pp. 157�165. [Online]. Available: http://dl.acm.org/citation.cfm?id=

1575210.1575226

[71] W.-H. Chang, C.-H. Hsia, Y.-C. Tai, S.-H. Chang, F. Ye, and J.-S. Chiang, �An e�cient object

recognition system for humanoid robot vision,� in Proc. Joint Conf.s Pervasive Computing

(JCPC), 2009, pp. 209�214.

[72] D. Herrero-Perez and H. Martinez-Barbera, �Robust and e�cient embedded vision for aibo in

robocup,� in Proc. IEEE Latin American Robotic Symp. LARS '08, 2008, pp. 8�13.

[73] M. Bader, M. Albero, R. Sablatnig, J. E. Simo, G. Benet, G. Novak, and F. Blanes, �Embedded

real-time ball detection unit for the yabiro biped robot,� in Proc. Int Intelligent Solutions in

Embedded Systems Workshop, 2006, pp. 1�9.

[74] Y. Liping and S. Kai, �Design and realization of image processing system based on embedded

platform,� in Proc. Int Information Technology and Applications (IFITA) Forum, vol. 2, 2010,

pp. 446�449.

[75] G. Yang and K. Shen, �Arm9 embedded system of the image acquisition and processing,� in Proc.

Int Anti-Counterfeiting Security and Identi�cation in Communication (ASID) Conf, 2010, pp.

138�141.

[76] Y.-L. Chen and C.-Y. Chiang, �Embedded vision-based nighttime driver assistance system,� in

Proc. Int Computer Communication Control and Automation (3CA) Symp, vol. 2, 2010, pp.

199�203.

[77] M. Asada and M. Mayer, �Robocup humanoid challenge,� International Journal of Humanoid

Robots, vol. 5, pp. 335�351, 2008.

[78] J. Canny, �A computational approach to edge detection,� no. 6, pp. 679�698, 1986.

139

REFERENCES

[79] CMOS Image Sensor with Image Signal Processing HV7131RP, MagnaChip Semiconductor Ltd.,

2005.

[80] A. Rowe, C. Rosenberg, and I. Nourbakhsh, �A low cost embedded color vision system,� in Proc.

IEEE/RSJ Int Intelligent Robots and Systems Conf, vol. 1, 2002, pp. 208�213.

[81] J. Bruce, T. Balch, and M. Veloso, �Fast and inexpensive color image segmentation for interactive

robots,� in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS 2000), vol. 3,

2000, pp. 2061�2066.

[82] N. Dalal and B. Triggs, �Histograms of oriented gradients for human detection,� in Proc. IEEE

Computer Society Conf. Computer Vision and Pattern Recognition CVPR 2005, vol. 1, 2005,

pp. 886�893.

[83] P. Viola and M. Jones, �Rapid object detection using a boosted cascade of simple features,� in

Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition CVPR 2001,

vol. 1, 2001.

140

