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CHAPTER 3 
Recall: The Social Environment as the Window to the World 

3.1 Judgments of Risk Frequencies: Tests of Possible Cognitive 
Mechanisms 
How the public perceives health risks has been a long-standing concern in the medical 

community. In light of the potential risk of old and ever new emerging epidemics (such as 
SARS or bird flu) it is more important than ever to shed light on the psychological 
mechanisms underlying the public’s perception of health risks. This is the goal of this chapter. 
Specifically, the focus is on one dimension of risk perception, namely, people’s assessment of 
risk frequencies. Previous research in psychology has offered two rather contradictory views 
of how, and how accurately, people estimate the frequencies of events. These views were 
pitted against each other to assess their relative merits. After formulating two cognitive 
mechanisms implied by each view and deriving specific predictions from each mechanism, I 
tested the predictions at the level of aggregate frequency judgments and estimates (Studies 4 
and 6) and at the level of individual frequency judgments (Study 5). 

Judging Risk Frequencies: Heuristic Inference or Direct Encoding? 

 Calibrating oneself to all the risks in one’s environment is a task of Herculean 
proportions. For instance, there are currently more than 1,400 documented microorganisms 
that can infect humans, and this is just the tip of the iceberg: Only an estimated 1% of the 
bacteria and 4% of the viruses on the planet have been identified thus far (Glasser, 2004, p. 
36). Infections, in turn, represent only one class of health risks. Among the many others are 
the risks posed by artifacts such as guns, cars, and electric outlets; by natural hazards such as 
tornadoes, floods, and lightning; and by human carcinogens such as asbestos, solar radiation, 
and tobacco smoking. 
 How do real people—that is, people constrained by limited time, limited memory, and 
limited computational capacities—judge the frequency of risks in their environment, and how 
well do they do it? Research in psychology on how people estimate the frequency of events 
has given rise to two very different views on these questions. One view suggests that event 
frequencies are tracked directly and that the automaticity of the tracking process allows for 
impressively accurate frequency estimates. At least implicitly rejecting the premise that 
frequency estimates are based on directly retrievable frequency records, the other view holds 
that people infer the distal criterion (i.e., event frequency) by exploiting a proximal cue, 
namely, availability. Although often appropriate, reliance on this cue to judge frequency can 
lead to systematic biases in risk perception. Next, I describe both of these accounts of 
frequency judgments in detail, beginning with the notion of availability. 
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Availability Heuristic 
 Tversky and Kahneman (1974), who first proposed the availability heuristic, 
characterized it thus: 
 

There are situations in which people assess the frequency of a class or the probability 
of an event by the ease with which instances or occurrences can be brought to mind. 
For example, one may assess the risk of heart attack among middle-aged people by 
recalling such occurrences among one’s acquaintances. (Tversky & Kahneman, 1974, 
p. 1127) 
 
Availability was the key explanatory concept in a seminal study by Lichtenstein, 

Slovic, Fischhoff, Layman, and Combs (1978) on judgments of risk frequency. They asked 
participants to judge the mortality rate (in the United States) associated with a wide range of 
risks, including motor vehicle accidents, poisoning by vitamins, and lung cancer. Frequency 
judgments were elicited from each participant in two ways: Presented with a pair of risks, 
participants were first asked to say of which risk a randomly selected person would be more 
likely to die and to estimate how many times more likely a person would be to die of this risk 
as opposed to the other risk. Other participants were required to estimate the mortality rate 
attributable to each individual cause of death in an average year. 
 In reviewing their own and related studies, Slovic, Fischhoff, and Lichtenstein (1982) 
emphasized that “because frequently occurring events are generally easier to imagine and 
recall than are rare events, availability is often an appropriate cue” (p. 465) to event 
frequency. Availability is not a foolproof cue, however, because it is also affected by factors 
that are unrelated or even negatively related to event frequency, such as “disproportionate 
exposure, memorability, or imaginability” (Lichtenstein et al., 1978, p. 551). For instance, a 
moviegoer who has just watched Jaws (Zanuck, Brown, & Spielberg, 1975) would likely have 
little trouble imagining the occurrence of a shark attack and might therefore overestimate its 
probability, which is objectively low.36  
As a result of such potential dissociations between frequency of occurrence and availability in 
memory, risk frequency judgments can be systematically distorted. Specifically, Lichtenstein 
et al. (1978) identified two major biases that they attributed to the availability heuristic. 
 The primary bias is the “overestimation of low frequencies and underestimation of . . . 
high frequencies” (Lichtenstein et al., 1978, p. 574) in people’s estimates of mortality rates. 
Figure 1 illustrates this effect by plotting participants’ average frequency estimates against the 
actual frequencies from public health statistics. Whereas the average estimated frequencies of 
relatively rare events (such as botulism and tornadoes) are larger than the actual frequencies, 
the average estimated frequencies of common events (such as stroke and diabetes) are smaller 
than the actual frequencies. The secondary bias refers to the observation that “different pairs 
                                                
36 According to the Florida Museum of Natural History’s shark research Web site 
(http://www.flmnh.ufl.edu/fish/Sharks/sharks.htm), four fatalities occurred in 2003 worldwide. 
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[of causes of death] with the same [probability] ratio had quite different judged ratios” 
(Lichtenstein et al., 1978, p. 558). For instance, deaths due to motor vehicle accidents are only 
1.5 times more frequent than deaths caused by diabetes; Lichtenstein et al.’s (1978) college 
students, however, estimated the former to be an average of about 350 times more frequent 
than the latter. 

How can the availability heuristic explain the primary and secondary biases? 
According to Lichtenstein et al. (1978), the primary bias arises when two conditions hold: (a) 
People base their estimates on recalled instances, and (b) the number of recalled instances is 
largely independent of the actual frequency of the event—an assumption for which 
Lichtenstein et al. marshaled support by referring to B. H. Cohen (1966). Consequently, it is 
possible that people recall as many cases of death from measles as of death from diabetes 
among their acquaintances despite the fact that the latter event is much more frequent than the 
former. Lichtenstein et al. explained the secondary bias by proposing that the ease with which 
instances of an event can be brought to mind or recalled is affected by the event’s vividness. 
Whereas some risks represent “undramatic, quiet killers,” others represent “sensational 
events” (Lichtenstein et al., 1978, p. 575), and the latter can by more easily brought to mind. 

Lichtenstein et al.’s (1978) explanation of risk frequency judgments in terms of the 
availability heuristic has been more or less taken for granted since it was proposed (e.g., 
Folkes, 1988; MacLeod & Campbell, 1992; Stapel, Reicher, & Spears, 1994; Sunstein, 2002). 
Yet neither Lichtenstein et al. nor later researchers tested specific predictions derived from the 
heuristic. Instead, the heuristic was typically invoked as a post hoc explanation for the 
findings. In addition, the actual mechanism of availability was left ambiguous in Tversky and 
Kahneman’s (1973) original paper. As has frequently been pointed out (e.g., Betsch & Pohl, 
2002; Brown, 1995; Fiedler, 1983; Schwarz & Wänke, 2002), Tversky and Kahneman’s 
formulation of availability is consistent with two different mechanisms—one that is based on 
the amount of actually recalled instances and one that is based on the (anticipated or 
experienced) ease of recall. I propose the following definitions of these mechanisms. 

Availability-by-recall mechanism. In the context of risk frequency judgments, I define 
availability by recall as the number of deaths due to specific risks that one recalls having 
occurred in one’s social circle, by which I mean one’s family, friends, and acquaintances. 
Using availability by recall, one judges whether more people die of heart attacks or breast 
cancer, for example, by retrieving from memory specific cases of death from heart attack and 
breast cancer, respectively, within one’s social circle. The number of recalled instances serves 
as a cue to the criterion (i.e., the mortality rate associated with each risk in the population).37 

                                                
37 Benjamin and Dougan (1997) have argued that in the context of health and safety risks, consideration of risk 
events in one’s social environment represents an adaptive strategy when assessing risks. Furthermore, they 
showed that such a sensitivity to occurrences among one’s age cohort is reflected in Lichtenstein et al.’s (1978) 
original data. 
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Figure 3.1.1. The primary bias, illustrated by the relationship between estimated and actual 
number of deaths per year for 41 causes of death in Lichtenstein, Slovic, Fischhoff, Layman, 
and Combs (1978). Each point is the mean estimate (geometric mean) of 39 students. The 
observation that, for rare causes of deaths, the mean estimated number is higher and that, for 
frequent causes, this number is lower has been called the primary bias. The curved line is the 
best fitting quadratic regression line. 
  

Fluency mechanism. This mechanism is inspired by the assumption that in judging 
availability, “it is not necessary to perform the actual operations of retrieval” (Tversky & 
Kahneman, 1973, p. 208); it suffices to anticipate the ease with which relevant instances could 
be brought to mind. For instance, one judges whether more people die of heart attacks or 
breast cancer by assessing the ease with which such instances could be brought to mind 
without actually retrieving them. This subjective judgment of ease of retrieval serves as a cue 
on whose basis the frequency of each risk can be inferred. Although ease of retrieval has been 
effectively manipulated in recent studies (e.g., Schwarz & Vaughn, 2002), it has rarely been 
measured (but see Sedlmeier, Hertwig, & Gigerenzer, 1998). 
 One way to define ease of retrieval is by relating it to the notion of fluency of 
processing of an object once it has been encountered (see, e.g., Jacoby & Brooks, 1984; Toth 
& Daniels, 2002; Whittlesea, 1993). In fact, Jacoby, Kelley, Brown, and Jasechko (1989) 
explicitly articulated the link between availability and fluency: 
 

Reading a word once allows it to be read more fluently later. . . . An item seems 
familiar if it can be easily brought to mind or fluently processed. This account of 
familiarity in terms of fluency is analogous to Tversky and Kahneman’s account of 
probability estimations based on an availability heuristic. (Jacoby et al., 1989, p. 328) 
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In numerous studies, processing fluency—mediated by prior experience with a 
stimulus—has been shown to function as a cue in a range of judgments. For example, more 
fluent processing due to previous exposure can increase the perceived fame of nonfamous 
names (the false fame effect; Jacoby et al., 1989) and the perceived truth of repeated 
assertions (the reiteration effect; Begg, Anas, & Farinacci, 1992; Hertwig, Gigerenzer, & 
Hoffrage, 1997). 
 In my second interpretation of availability (henceforth referred to as the fluency 

mechanism), I assume that previous experience with a stimulus, such as a word denoting a 
risk, increases the fluency with which the stimulus is later processed and that fluency of 
processing is associated with the ease with which occurrences of the respective risk can be 
retrieved. I therefore define ease of retrieval in terms of the frequency with which words such 
as heart attack, homicide, and botulism have been encountered. Of course, this raises the 
question of how to determine the frequency of encounters with words. In my view, one 
elegant proxy is environmental statistics—that is, using tallies of the frequencies with which 
such words appear in print media as a proxy for the frequency of encounters with words. 
 
Direct Encoding 
 Viewed in light of an influential research program launched by Hasher and Zacks 
(1979, 1984), calibrating oneself to risk frequencies in one’s environment may not be the 
Herculean task that it initially appears to be. On the basis of their studies demonstrating 
people’s “pervasive sensitivity” to event frequencies, these authors proposed that frequency 
information enters memory via an encoding mechanism that automatically processes 
“fundamental attributes of experience” such as spatial location, temporal order, and frequency 
of occurrence (Zacks & Hasher, 2002, pp. 22, 25). In this framework, automatic encoding 
means that the encoding of, for instance, frequency information makes minimal demands on 
attentional resources and does not require intention. 
 Hasher and Zacks’s (1984) automatic encoding thesis has been extensively tested (for 
reviews, see Barsalou, 1992, and Zacks & Hasher, 2002). In response to these tests, Zacks and 
Hasher (2002) proposed the following modification of the automaticity claim, which gives 
attention a key role: “The encoding of frequency information is an inevitable consequence of 
attending to events, and in that sense, is obligatory” (p. 34). Regardless of its processes, 
however, information encoding appears to result in highly accurate frequency estimates. As 
Jonides and Jones (1992) put it, “Ask about the relative numbers of many kinds of events, and 
you are likely to get answers that reflect the actual relative frequencies of the events with 
great fidelity” (p. 368; see also Zacks & Hasher, 2002, p. 27). Using their conclusion as a 
starting point, I now present two mechanisms of how people could make risk judgments on 
the basis of directly encoded frequency information. 
 Regressed-frequency mechanism. In the context of risk frequency judgments, the 
regressed-frequency mechanism assumes (a) that people monitor the occurrence of individual 
health risks (e.g., based on personal experiences, the reading of obituaries, media reports, 
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physicians’ warnings, and public awareness campaigns) and (b) that in light of unreliability of 
processing, the estimated mortality rates are regressed toward the mean such that small 
frequencies are overestimated and large frequencies are underestimated (Fiedler & 
Armbruster, 1994). In contrast to Lichtenstein et al.’s (1978) view, which assumes that people 
have biased knowledge of risk frequencies because of “disproportionate exposure, 
memorability, or imaginability of various events” (p. 551), the regressed-frequency 
mechanism assumes that people’s frequency knowledge is roughly accurate except for the 
estimates’ tendency to regress toward the mean. It should be noted that not only is this 
tendency akin to the primary bias observed by Lichtenstein et al. but also it is ubiquitous in 
studies of other types of frequency judgments (e.g., Begg, Maxwell, Mitterer, & Harris, 1986; 
Greene, 1984; Hintzman, 1969, 1988; Sedlmeier et al., 1998; Shanks, 1995; Williams & 
Durso, 1986; Zacks & Hasher, 2002). 
 Risk-category mechanism. When one learns that a neighbor has passed away, one may 
not learn the exact cause of his or her death. For instance, one may be told that the neighbor 
died of cancer but never find out the precise type of cancer from which he or she suffered. 
The event is thus inexactly represented. On the basis of the premise that such inexact 
representations are the rule rather than the exception, the risk-category mechanism postulates 
that the frequency of specific events is judged by reference to the central value of the category 
to which they belong. For example, a person who does not know the mortality rates associated 
with lightning and ovarian cancer may nevertheless have the (accurate) sense that the average 
mortality rate for the category natural hazards is markedly lower than the average mortality 
rate for the category diseases. Therefore, the person judges death from ovarian cancer to be 
more likely than death from lightning. 
 Several authors have espoused the thesis that information about the superordinate 
categories of an object is used to judge individual objects (e.g., Brown, 2002b; Fiske & 
Pavelchak, 1986). For instance, in Huttenlocher, Hedges, and Vevea’s (2000) category 
adjustment model, estimates of the value of a stimulus on a dimension are a blend of both 
fine-grained information about the stimulus and knowledge derived from the category (e.g., 
the shape of the distribution or the central tendency of values) to which the stimulus belongs. 
The higher the uncertainty regarding the fine-grained information, that is, the less exact the 
stimulus representation, the more weight the category information is given when deriving an 
estimate. In the extreme case of complete lack of stimulus-specific information, the estimate 
for the stimulus coincides with the central tendency of the category. 
 It is interesting to note that Huttenlocher et al.’s (2000) model predicts overestimation 
of small stimulus values and underestimation of large stimulus values—the very phenomenon 
Lichtenstein et al. (1978) referred to as primary bias. However, in the category adjustment 
model, this phenomenon is seen as the side effect of a normative judgment strategy that aims 
to minimize error in light of uncertain knowledge.  
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Predictions 

 In what follows, I derive specific predictions for each of the four mechanisms (i.e., 
availability by recall, fluency, regressed frequency, and risk category). The predictions 
assume a context in which people are given two risks and asked to decide which one is more 
frequent. To explore how robust the mechanisms’ performance would be across different 
health risk environments, I tested their predictions using different sets of risks and different 
target criteria (i.e., mortality rate and disease incidence). The first set encompassed the causes 
of death that Lichtenstein et al. (1978) examined. Table 3.1.1 lists them and their respective 
mortality rates in Germany. I refer to this set as the assorted set because it compiles risks 
across various categories. Two other sets included all types of cancer and all notifiable 
infectious diseases in Germany, respectively. I refer to these sets as the cancer set and the 
infection set. Table 3.1.1 lists the events in both sets and the respective incidence rates in 
Germany. For the latter two sets, participants’ target criterion was the diseases’ annual 
incidence rates. It is worth mentioning that the cancer set and the infection set rested on 
existing classifications, that is, the decision of which events to include was not mine; in 
contrast, in the assorted set, I adopted the composition chosen by Lichtenstein et al. (1978, p. 
554).38 

In addition, the cancer set and the infection set, unlike the assorted set, did not include 
entries with different degrees of abstraction (e.g., all disease) that may have invited different 
inductive or deductive strategies. 
 
Availability by Recall 

This mechanism assumes that the choice between two risks is a function of the actual 
recall of deaths (or instances of diseases) among one’s social circle. To be able to specify the 
predictions for specific risks, a pilot study was conducted to obtain numerical values. Forty 
participants were presented with the events in the assorted set. For each cause of death, they 
were asked to recall occurrences of deaths in their social circle (i.e., family, friends, and 
acquaintances) and to write down the number of instances they could retrieve. Similarly, two 
groups of 60 participants each were presented with the infection set and the cancer set and 
asked to recall occurrences of instances of such diseases in their social circle. This recall task 
rendered it possible to specify predictions of the availability-by-recall mechanism for 
individual pair comparisons. The recall data also provided a test for Lichtenstein et al.’s 
(1978) assumption that actual recall is largely independent of the frequency of the event (see 
above). Contrary to this assumption, the number of recalled cases for each risk in the assorted 
set was strongly correlated with the actual frequencies (Spearman rank correlation = .77). In 
the cancer set and the infection set, the correlations amounted to .61 and .43, respectively. 
 

                                                
38 Previous follow-ups of the Lichtenstein et al. (1978) studies have mostly focused on the assorted set (e.g., 
Benjamin, Dougan, & Buschena, 2001; Carnegie Mellon University Graduate Research Methods Class, 1983). 
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Table 3.1.1. The entries in the assorted set, the cancer set, and the infection set, the entries’ 
average annual mortality rates (assorted set) and incidence rates (cancer and infection sets), 
respectively (averaged rates for the years 1996–2000), and the median estimated frequencies 
(Study 6).  

  Annual rate Median 
estimate 

  Annual rate Median 
estimate 

Assorted set   Cancer set   
 Fireworks 0 30  Penis cancer 551 1,000 
 Flood 0 30  Bone cancer 939 5,200 
 Whooping cough 0 10  Cancer of the connective tissuea 1,216 2,500 
 Smallpox 0 9  Thyroid cancer 2,987 5,000 
 Smallpox vaccination 0 5  Larynx cancer 3,084 5,500 
 Tornado 0 0  Testicular cancera 3,439 6,000 
 Poisoning by vitamins 0 50  Esophageal cancera 3,821 4,000 
 Measles 2 15  Hepatic cancera 4,835 5,000 
 Polio 3 40  Cancer of the gall bladder 5,489 3,000 
 Lightning 7 10  Skin cancer 6,563 25,000 
 Firearm accident 19 100  Cancer of the nervous systema 6,931 11,500 
 Venomous bite or sting 20 80  Ovarian cancera 7,819 6,000 
 Syphilis 24 11  Cancer of the mouth and throat 10,273 3,900 
 Nonvenomous animal 26 30  Pancreatic cancer 10,315 5,000 
 Pregnancy, childbirth, and abortion 45 150  Renal cancer 13,036 3,000 
 Motor vehicle-train collision 48 100  Bladder cancera 15,368 2,500 
 Botulism 74 100  Cervical cancer 16,478 13,450 
 Electrocution 93 200  Stomach cancer 18,252 9,000 
 Excess cold 159 39  Rectal cancer 20,981 4,000 
 Appendicitis 242 100  Leukemia and lymphomaa 23,937 15,000 
 Infectious hepatitis 321 250  Prostate cancer 29,681 12,000 
 Poisoning by solid or liquid 493 500  Colon cancer 33,373 8,000 
 Fire and flames 526 200  Lung cancera 36,964 36,000 
 Drowning 538 51  Breast cancera 46,248 35,000 
 Tuberculosis 551 100     
 Homicide 800 1,000 Infection set   
 Emphysema 2,790 398  Poliomyelitis 0.25 300 
 Asthma 4,086 250  Diphtheria 1 1,000 
 Leukemia 6,844 1,500  Egyptian ophthalmia/trachoma  1.75 691 
 Accidental falls 7,985 1,000  Tularemia/rabbit fever 2 200 

17.5  Motor vehicle (car, truck, or bus) accidents 8,028 13,500  Cholera 
Leprosya 

3 
5 0.75 

 Suicide 11,670 1,603  Tetanus 9 1,000 
 Breast cancer 18,249 4,000  Hemorrhagic fevera 10 150 
 All accidents 20,784 80,000  Botulism/food poisoninga, b 15 37,500 
 Diabetes 21,820 400  Trichinosis 22 326.5 
 Lung cancer 37,728 8,000  Brucellosis/undulant fever 23 146.5 
 Stroke 47,276 10,000  Leptospirosis/Well’s diseasea 39 370 
 Cancer of the digestive system 69,744 8,000  Gas gangrene 98 400 
 All cancer 211,467 107,693  Ornithosis/parrot fever 119 225 
 Heart disease 410,869 50,000  Typhoid and paratyphoida 152 200 
 All disease 783,645 350,000  Q fever 179 200 
     Malaria 936 400 
     Syphilisa 1,514 1,500 

     Bacterial dysentery/Shigellosis 1,627 1,000 
     Gonorrhoeaa 2,926 6,000 
     Meningitis and encephalitis 4,019 5,000 
     Tuberculosisa 12,619 1,500 
     Viral hepatitisa 14,889 10,000 
     Gastroenteritis (infective enteritis)a 203,864 37,000 

a Included in Study 4. 
b Not included in analysis (see footnote 43).  
Note: The mortality rates for the assorted set were taken from tables made available by the Federal Statistical 
Office of Germany for the years 1996 to 2000 (e.g., Statistisches Bundesamt, 2002). The incidence rates for the 
cancer and infection sets were taken from tables made available by the Robert Koch Institute for the years 1997 
to 2000 (Arbeitsgemeinschaft Bevölkerungsbezogener Krebsregister in Deutschland, 1999). The infection set 
encompassed 24 infections (“dangerous infectious diseases”; see e.g., Robert Koch Institute, 2001) that by law 
are notifiable in Germany (“Bundesseuchengesetz”—a law that has recently been revised and now encompasses, 
for instance, HIV). Note that “rabies” was dropped from the infection set because there was no single incident 
during the specified time period. 
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Availability by recall assumes that the choice between two risks is a function of the 
number of cases (deaths or cases of disease) recalled from participants’ social circles (as 
defined above), and its prediction can be stated as follows: 
 
Choice proportionRisk a = �Recalled instancesRisk a/(�Recalled instancesRisk a + �Recalled 
instancesRisk b), 
 
where Choice proportionRisk a is the proportion of participants who select Risk a to be more 
likely than Risk b, and �Recalled instancesRisk a and �Recalled instancesRisk b are the sum of 
instances (recalled by all participants) of Risk a and Risk b, respectively. Here and throughout 
this chapter, Risk a denotes the event that is, in reality, the more frequent one in a pair 
comparison. It was not simply assumed that if, on average, more instances of Risk a than Risk 
b were recalled, then 100% of participants would choose Risk a. Rather than using such a 
deterministic rule, I employed a probabilistic choice rule to derive choice proportions. That is, 
it was assumed that the probability that a would be chosen was proportional to a’s relative 
support (i.e., the ratio of the recalled instances for Risk a over the sum of the recalled 
instances for Risks a and b). 
 
Fluency 

The fluency mechanism assumes that the choice between two risks is a function of the 
fluency with which the names of the risks are processed when they are encountered. As a 
proxy for ease of retrieval and fluency, I determined how often the terms denoting causes of 
death and diseases were mentioned in German print media. Using COSMAS I, an extensive 
data archive of German daily and weekly newspaper articles, I counted the frequency of 
occurrence with which, for instance, the words died from breast cancer were mentioned.39 
They occurred 3,302 times. I did the same for all causes of death in the assorted set and for all 
events in the cancer and infection sets. For the latter sets, I used only the names of the 
diseases (excluding died from). I found that the rank correlations between the number of 
mentions of a risk and its actual frequency were .74, .44, and .23 in the assorted, the cancer, 
and the infection sets, respectively. 
 The fluency mechanism assumes that the choice between two risks is a function of 
their number of mentions. Its prediction can thus be stated as follows: 

 
Choice proportionRisk a = �OccurrencesRisk a/(�OccurrencesRisk a + �OccurrencesRisk b), 
 
where �OccurrencesRisk a and �OccurrencesRisk b are the number of mentions of Risk a and 
Risk b, respectively 
                                                
39 COSMAS (Corpus Search, Management, and Analysis System) is the largest online archive of German 
literature (e.g., encyclopedias, books, and newspaper articles; http://corpora.ids-mannheim.de/~cosmas/). The 
analysis was based on a total of 1,211,000,000 words. 
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Regressed Frequency 
According to this mechanism, people keep track of the frequency of occurrences of 

individual health risks. Thus, their frequency judgments conform to the actual frequencies of 
events except that the estimates tend to regress toward the mean frequency within the set of 
risks (i.e., low frequencies are overestimated, and high frequencies are underestimated). The 
amount of regression was assumed to be 10%. To arrive at this estimate, I analyzed the risk 
frequency judgments observed by Christensen-Szalanski, Beck, Christensen-Szalanski, and 
Koepsell (1983). They asked experts (physicians) and nonexperts (students) to estimate 
mortality rates of various diseases. The results from the latter group were used to estimate the 
amount of regression because the focus here was on lay judgments. The median amount of 
regression observed in students’ estimates was 10.2%.40 
 On the basis of this amount of regression, the prediction of the regressed-frequency 
mechanism can be stated as follows: 
 
Choice proportionRisk a = Regressed frequencyRisk a/(Regressed frequencyRisk a + Regressed 
frequencyRisk b), 
 
where the regressed frequencies are the actual mortality rates or incidence rates of Risk a and 
Risk b, respectively, regressed by the factor 0.1.41 
 
Risk Category 

The risk-category mechanism assumes that the frequency estimate for an individual 
risk is inferred from the average frequency in the category to which the risk belongs. 
Lichtenstein et al.’s (1978) original list included at least three such categories of risks, 
namely, diseases, accidents, and natural hazards.42 In Germany, the average mortality rates in 
these three categories were 4,835, 860, and 25, respectively. That is, many more people died 
on average from diseases than from accidents, and more people died from accidents than from 
natural hazards. In addition, the assorted set included not only individual risks (e.g., breast 

                                                
40 To determine the amount of regression, I followed the procedure used by Sedlmeier et al. (1998). First, both 
the actual frequencies of the diseases and the geometric mean judgments were transformed to percentages (of the 
42 diseases in Christensen-Szalanski et al., 1983, I excluded 7 as no definite actual frequencies were reported). 
That is, the absolute values were expressed in relation to the sum of all frequencies (sum of actual frequencies 
for all diseases = 100%; sum of mean judgments for all diseases = 100%). As a result of this transformation, both 
actual and judged frequencies had an identical mean (100% divided by 35 diseases = 2.86%). Next, the distances 
of both the transformed actual frequencies and the transformed mean judgments from this mean were calculated, 
yielding the distance measures AD and JD for the actual frequencies and the mean judgments, respectively. 
Finally, the amount of regression of the judgments for each disease was determined by 100 − (JD/AD) × 100. 
This value is zero if the deviation from the mean of the judged frequency equals the actual frequency (JD/AD = 
1). It is positive if the deviation is smaller, that is, if there is a regression effect (JD/AD < 1), and it is negative if 
the deviation is larger (JD/AD > 1). Across all events, the median amount of regression was determined. 
41 The value of, say, breast cancer was calculated as follows: Regressed actual frequencybreast cancer = actual 
mortality rate in the assorted set – 0.1 × (actual mortality of breast cancer − average mortality rate in the assorted 
set). 
42 Note that each category subsumes multiple subcategories: The category of accidents, for instance, includes 24 
subcategories, according to ICD-10 (World Health Organization, 1992), using the two-digit codes. 
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cancer or firearm accidents) but also summation categories such as all disease, all cancer, all 
accidents, suicide, and homicide. For these summation categories, it was assumed that the 
frequency judgments were a function of the total sum in the respective categories. 
Specifically, for the total of eight categories (diseases, accidents, natural hazards, and all 
summation categories), all values were regressed toward the mean to make this mechanism 
comparable to the regressed-frequency mechanism. 
 According to the risk-category mechanism, the choice between two risks is based on 
the average frequency in Category A (to which a belongs) and Category B (to which b 
belongs). The prediction can therefore be stated as follows: 
 
Choice proportionRisk a = Regressed average frequencyCategory A/(Regressed average 
frequencyCategory A + Regressed average frequencyCategory B), 
 
where Regressed average frequencyCategory A and Regressed average frequencyCategory B are the 
regressed actual average frequencies (i.e., mortality rate or disease incidence) in Risk 
Category A and Risk Category B, respectively. Note that the risk-category mechanism 
predicts that participants are not able to reliably distinguish events from the same category of 
risks. Consequently, it predicts chance performance in the cancer set and the infection set 
because they involve within-category comparisons only (e.g., lung cancer vs. breast cancer or 
syphilis vs. gonorrhea). 
 Before I turn to Study 4, one comment is in order. One might argue that the 
availability-by-recall and the fluency mechanisms are at a disadvantage by not relying on 
regressed values, as do the regressed-frequency and the risk-category mechanisms. Indeed, 
because both the mapping of the subjective value on the response scale (availability by recall) 
and the process of retrieval of a term (fluency) are not likely to be devoid of random error, 
regression to the mean can be expected (Dougherty, 2001; Erev, Wallsten, & Budescu, 1994). 
Therefore, I decided to treat the availability-by-recall and fluency mechanisms analogously to 
the other mechanisms. The following analyses are based on the regressed values of the 
recalled data and the number of mentions. Theses values yielded, in general, the most 
favorable results for the availability-by-recall mechanism and the fluency mechanism across 
all studies. 
 

Study 4: Which Mechanism Accounts Best for Judgments of Risk Frequencies? 

 Study 4 pursued two goals. First, I hoped to replicate the results reported by 
Lichtenstein et al. (1978). On the basis of this replication, I would then examine which of the 
candidate processes, if any, could predict people’s risk frequency judgments in the present 
study and, by extension, in theirs. Second, I aimed to test whether the same mechanism could 
also account for inferences in other sets of health risks involving another criterion (i.e., 
disease incidences in the cancer and infection sets). 
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Method 
 Participants and design. One hundred ten students participated in the study, which 
was conducted at the Max Planck Institute for Human Development, Berlin, Germany. One 
group of participants (n = 45) was presented with pairs of causes of death and asked to choose 
the cause that took more lives (per year). Two other groups of participants (n = 30 and n = 35) 
were presented with pairs of types of cancer and pairs of infectious diseases, respectively, and 
asked to choose the disease with the higher incidence rate. All people were paid for 
participating (a flat fee of �10 [$12.56 U.S.]); half of the participants also received 
performance-contingent payment according to the following scheme: Two to four participants 
took part in each session. Within these small groups, the person who achieved the highest 
percentage of correct inferences received an extra payment of �3 ($3.77 U.S.), the person with 
the lowest number of correct inferences received no extra payment, and for medium 
performances, people received �1 ([$1.36 U.S.] in groups of four) or �2 ([$2.51 U.S.] in 
groups of three). The provision of financial incentives did not affect the results. 
 Materials. Table 3.1.1 lists the risks included in the assorted set, the cancer set, and the 
infection set. For all three sets, I determined the annual averaged mortality rates (for the 
assorted set) and the incidence rates (for the two disease sets) across a 5-year period (from 
1996 to 2000), using statistics prepared by the Federal Statistical Office of Germany 
(Statistisches Bundesamt, 2002) and the Robert Koch Institute (Arbeitsgemeinschaft 
Bevölkerungsbezogener Krebsregister in Deutschland, 1999; Robert Koch Institute, 2001). In 
the assorted set, mortality rates in Germany were strongly correlated with those reported by 
Lichtenstein et al. (1978; Pearson correlation = 0.99). From the assorted set, Lichtenstein et 
al. constructed 106 pairs (see their Table 2: Lichtenstein et al., 1978, pp. 556–557). I 
examined the same pairs. From the cancer set, 10 types of cancer were drawn randomly and a 
set of all possible pairs (45) was constructed. I did the same for the infection set. Both the 
order in which the pairs appeared and the elements within each pair were determined at 
random. To make sure that participants understood unfamiliar or ambiguous terms, a glossary 
was included for some events. If possible, medical jargon was replaced (in the infection and 
cancer sets) with more commonly used terms. I consulted a physician to assure the 
equivalence of medical and colloquial terms.43 
 Procedure. After an introductory text explaining the relevance of accurate risk 
judgments for everyday behavior, people read the following instructions: 

You are asked to judge the annual frequency of occurrence of different [causes of 
death/ types of cancer/infections] in Germany. . . . Each item consists of two different 
[causes of death/types of cancer/infections]. The question you are to answer is: For 

                                                
43 In one instance, however, the choices of words went astray. The term food poisoning (Lebensmittelvergiftung) 
was used to refer to botulism. Although botulism is indeed a form of food poisoning, it is only a special form of 
it. Not surprisingly, participants estimated food-poisoning incidence to be about 1,300 times more frequent than 
it actually was. I decided to exclude this item from all analyses, thus reducing the number of pairs in the 
infection set to 36. 
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which of two events is the [number of deaths/number of new incidents] per year 
larger? 

 
Participants were presented with the pairs of risks displayed on a computer screen. 

After they concluded the choice task, half of the participants continued to work on an 
estimation task (see Study 6, involving a different set of risks). Half of the participants started 
with the estimation task first. (The order of the tasks turned out to have no effect.) Because, in 
the assorted set, the mortality rates of seven causes of death were zero (see Table 3.1.1), for 
this set participants were not forced to make a choice when they thought a pair to be exactly 
equally frequent (for three pair comparisons of the assorted set, the actual mortality rates were 
equal). However, it was stressed that they should use the response option equally frequent 
only after careful consideration. It was used in only 2.5% of all choices. 
 
Results 
 Before I turn to the test of the mechanisms, I describe the obtained choices in more 
detail. Table 3.1.2 shows the percentage correct in all three sets. On average, participants 
scored 71.2% correct in the assorted set, thus approximating the 73.7% correct reported by 
Lichtenstein et al. (1978). Whereas, in the cancer set, mean accuracy was slightly lower 
(68.2%), it was markedly higher in the infection set (80.6%). Also consistent with 
Lichtenstein et al. is the observation that participants’ scores in each set varied widely, 
although the variability is more pronounced in the cancer and infection sets than in the 
assorted set. 
 

Table 3.1.2. Choice accuracy and item difficulty (i.e., median ratio of more frequent to less 
frequent risk) in the assorted set, the cancer set, and the infection set. 
 Study 4  Study 5 

 Assorted  Cancer  Infection  Cancer  Infection 
Percentage correct (n=45)  (n=35)  (n=30)  (n=40)  (n=40) 
M 
Mdn 

71.2 
72.6 

 68.2 
68.9 

 80.6 
79.8 

 62.8 
63.8 

 62.1 
63.6 

Range 58.5–78.3  48.9–82.2  55.6–91.7  51.5–72.1  48.2–74.3 

SD 4.67  8.60  8.12  5.05  5.68 

Item difficulty (Mdn ratio) 10.9  3.5  72.4  3.2  37.4 
 

 Why did mean accuracy vary so markedly across sets? I suggest that some of the 
variation in the scores is due to differences in item difficulty. Ceteris paribus, the smaller the 
distance between Risks a and b, the more difficult it is, one can assume, to distinguish 
between them. One can capture the difficulty of an item in terms of the ratio between the 
more frequent and the less frequent cases. Figure 3.1.2 shows that participants’ percentage 
correct scores were a function of this ratio: The majority of participants decided correctly 
once the ratio was about 10:1 or larger. Table 3.1.2 also shows that the median ratio tracked 
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the average scores: The set with the best performance, the infection set, was the set with the 
highest median ratio and vice versa. Across all three sets, the majority of participants made 
the correct choice in 83% (152 out of 184) of all pair comparisons. 
 

 

Figure 3.1.2. Choice proportion and item difficulty: percentage of participants who correctly 
identified the more frequent of two risks as a function of the ratio of more frequent to less 
frequent risk in the assorted set (empty circles), the cancer set (filled circles), and the infection 
set (triangles). Twenty-eight of the 106 pair comparisons were excluded from the assorted set 
because the actual mortality rate of at least one event was zero. 
 

Which mechanism predicted choices best? To answer this question, I used two 
goodness-of-fit criteria. The first criterion was the distance between actual and predicted 
choice proportions, measured by root-mean-square deviations (RMSDs). Smaller RMSDs 
indicate better predictions. Figure 3.1.3 shows the RMSD for each mechanism.44 Across all 
three sets, two clear winners emerged. The RMSDs are smallest for the regressed-frequency 
mechanism and the availability-by-recall mechanism. Except in the cancer set, in which the 
fluency mechanism performed well, both mechanisms competed markedly better than the 
fluency mechanism and the risk-category mechanism. The failure of the risk-category 
mechanism becomes particularly obvious in the cancer and infection sets, which include 
within-category comparisons only. For such comparisons, the risk-category mechanism 
predicted that people cannot reliably distinguish between risks. As the level of accuracy 
reached in both sets testifies (see Table 3.1.2), this prediction is wrong. 
 
                                                
44 Across all four mechanisms, 3 pairs were excluded from the assorted set because their mortality rates turned 
out to be exactly equally frequent. In addition, for the fluency mechanism, 17 pairs were excluded for which no 
predictions could be derived (because the terms, e.g., motor vehicle–train collision, did not map onto the way 
respective events are described in newspaper articles). 
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Table 3.1.3. Spearman rank correlation coefficients between actual and predicted choice 
proportions.  
 Study 4  Study 5 

Mechanism Assorted set  Cancer set  Infection set  Cancer set  Infection set 
Regressed frequency .67  .66  .49  .34  .61 
Availability by recall .67  .64  .40  .77  .67 
Fluency (media) .43  .80  -.25  .79  .29 
Fluency (speed)       .28  -.11 
Risk category .21  -  -  -  - 

Note. For the risk-category mechanism no correlation could be calculated for the cancer and 
infection sets. Except for the negative, all correlations are statistically significant (p < .05; two 
tailed). 
 

 

Figure 3.1.3. Which mechanism predicted choices best? Root-mean-square deviations 
(RMSDs) between predictions derived from the four mechanisms and actual choice 
proportions in the assorted set, the cancer set, and the infection set of Study 4 and the cancer 
set and the infection set of Study 5. The dotted lines represent the RMSD level under the 
assumption of random choice between both risks (per comparison). Note that the risk-
category mechanism equals chance performance in the cancer and infection sets. 
 

The RMSD measure does not take into account the pattern predicted by the individual 
mechanisms. For instance, two mechanisms may have the same RMSD, but one mechanism 
monotonically follows the data whereas the other zigzags around the data. To quantify the 
extent to which predictions monotonically followed the data, I computed Spearman rank 
correlations between predicted and actual choice proportions. As Table 3.1.3 shows, the 
correlation analysis is consistent with the RMSD analysis: In general, the regressed-frequency 
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and the availability-by-recall mechanisms competed best and followed the actual data better 
than the other two mechanisms, except in the cancer set, in which the fluency mechanism 
performed best. 

In sum, I examined which mechanism explained choice data best across various sets of 
risk. Two criteria of goodness-of-fit—RMSD and Spearman rank correlations between 
predicted and actual choice proportions—favored the regressed-frequency and the 
availability-by-recall mechanisms. Although the fluency mechanism fared well in the cancer 
set, it did not fit the data in the other two sets. Finally, the risk-category mechanism achieved 
the worst fit across three sets. 

Study 5: A Second Test Involving Individual Responses and Another Definition 
of Fluency 

 The poor performance of the fluency mechanism in Study 1 was surprising. In line 
with the common wisdom that media coverage shapes people’s risk perception (see also 
Combs & Slovic, 1979), I counted the frequency of occurrences of words in print media and 
used such environmental frequencies to define fluency. Of course, this definition of fluency as 
environmental statistics is only one possible measure of retrieval fluency. Moreover, it could 
be objected that this measure does not take into account interindividual differences in 
exposure to occurrences of the terms in the print media. Both of these reasons perhaps caused 
the inferior performance of the fluency mechanism. 
 Study 5 was designed to examine the robustness of results of Study 4 by examining an 
alternative definition of fluency. Specifically, I defined fluency in terms of the speed with 
which an individual person would recognize the name of, say, a type of cancer or an infection 
(see also Schooler & Hertwig, 2005). For illustration, readers may notice that when they read 
the terms breast cancer and hepatic cancer, they are likely to immediately recognize breast 
cancer but take a moment to recognize hepatic cancer, if they recognize it at all. The new 
definition of the fluency mechanism took advantage of this difference in recognition time. It 
assumed that people could capitalize on such differences in recognition times and that the 
recognition times would be indicative of the ease with which additional retrieval processes—
for instance, bringing instances or occurrences of the event in question to mind—could occur. 
In the interest of psychological plausibility, however, I assumed limits on people’s ability to 
discriminate between recognition times. Rather than assuming that a person could 
discriminate between minute differences in any two times, I assumed that if the recognition 
times of the two risks were less than a just-noticeable difference apart, then the system must 
guess. Guided by Fraisse’s (1984) conclusion on the basis of an extensive literature review 
that durations of less than 100 ms are perceived as instantaneous, the just-noticeable 
difference was set to 100 ms (see also Schooler & Hertwig, 2005). It is not claimed, however, 
that this value captured people’s actual thresholds exactly. 
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 A desirable side effect of this definition of fluency was that the mechanism could now 
also be tested against individual responses. Specifically, the fluency mechanism assumes that 
if a person recognizes the name of one of two diseases more quickly, then he or she can infer 
that this disease has a higher incidence rate. To exploit this potential for tests of individual 
responses, I also derived individual-specific predictions for the other mechanisms: In the case 
of the availability-by-recall mechanism, I assumed that if a person recalls more instances of 
one of two diseases among one’s social circle, then he or she can infer that this disease also 
has a higher population incidence rate. For the regressed-frequency mechanism, I assumed 
that a person retrieves the regressed value of the actual frequencies of both diseases and rests 
his or her inference on this information. Naturally, in tests of individual responses, the 
regressed-frequency mechanism is handicapped as it predicts the same choice across all 
participants for any given pair of diseases. 
 Study 5 also rendered it possible to examine how robust the good performance of the 
regressed-frequency and the availability-by-recall mechanisms would be when tested against 
new samples of items from the same risk environments. In Study 5, I used all 24 elements per 
set (see Table 3.1.1) and generated all 276 possible pairs per set. In the case of the infection 
set, this procedure markedly increased the item difficulty (as suggested by the median ratio of 
more frequent to less frequent risk; see Table 3.1.2). Would the results obtained in Study 4 
hold up when mechanisms were tested against these encompassing sets of comparisons? 
 
Method 
 Participants and design. Eighty students participated in the study, which was 
conducted at the Max Planck Institute for Human Development. Two groups of participants 
(each n = 40) were presented with pairs of types of cancer and pairs of infectious diseases, 
respectively. Using the instructions employed in Study 4 (see previous Method section), 
participants were asked to choose the disease with the higher incidence rate. Half of the 
participants in the cancer group and the infectious disease group were paid a flat fee of �12 
($15.07 U.S.). The other half received a flat fee of �9 ($11.30 U.S.) and, in addition, 
performance-contingent payments. They earned 4¢ (5¢ U.S.) for each correct answer and lost 
4¢ for each wrong answer. As in Study 1, the provision of performance-contingent payment 
did not have an effect. 
 Materials. Both the order in which the 276 pairs of types of either cancer or infections 
appeared and the elements within each pair were determined at random. The assorted set was 
not included because preliminary tests revealed that some rather long terms (e.g., motor 

vehicle—train collision, poisoning by solid or fluid, and pregnancy, childbirth, and abortion) 
and some rather short terms (e.g., flood, lightning) produced extremely uneven response 
times, thus making a stringent test of the new fluency mechanism difficult. As it had fared 
badly in Study 1, I did not examine the risk-category mechanism. 
 Procedure. Prior to their choices, participants were presented with the 24 types of 
either cancer or infectious diseases (see Table 3.1.1) on a computer screen. The names of the 



Chapter 3.1: Recall: Judgments of Risk Frequencies 

 

93 

diseases were presented in random order and one at a time. Participants were asked to decide 
whether they had heard of this type of cancer or infectious disease before and to express their 
positive or negative answer by pressing one of two keys. They were instructed to keep the 
index fingers of the right and the left hands positioned on the yes and no keys, respectively, 
for the entire duration of this task and were encouraged to respond as quickly and accurately 
as possible. The time that elapsed between the presentation of the name and their keystroke 
was measured. Note that the recognition judgments were collected prior to the choices in 
order to avoid that the reverse order conflates the recognition judgments. Of course, asking 
for recognition judgments at the outset may have primed people to rely on recognition or lack 
thereof in the choice task. This possibility, however, was deemed less problematic because it 
would work in favor of the fluency mechanism, and Study 5’s goal was to give the fluency 
mechanism a second chance. Finally, as in Study 4, after having completed the choice task, 
participants indicated for each of the types of cancers or infectious diseases the number of 
instances they could recall from their social network. 
 
Results 
 Before I turn to the test of the mechanisms, I first describe the obtained choices in 
more detail. On average, participants scored 62.8% and 62.1% correct in the cancer and 
infection sets, respectively (see Table 3.1.2 for more detailed information). The level of 
accuracy in the infection set was lower than that achieved in Study 4 (62.1% vs. 80.6%). Item 
difficulty, measured in terms of the ratio between the more frequent and the less frequent risk 
elements, provides a partial explanation for the decline in accuracy: On average, pair 
comparisons in the infection set were markedly more difficult in Study 5 than in Study 4 (37.4 
vs. 72.4; see Table 3.1.2). 
 Which mechanism predicted individual choices best? Figure 3.1.4 plots, for each 
mechanism, how often it rendered possible a prediction per person. Across the total of 552 
items (276 items from each set), the availability-by-recall mechanism discriminated on 
average in only 132 cases (24%); discriminated here means that the mechanism arrived at an 
unambiguous prediction (i.e., predicted either Risk a or Risk b to be the disease with the 
higher incidence rate). The low discrimination rate was due to the fact that many participants 
could not recall any occurrence of the diseases in question within their social circle. Rather 
than having the mechanism guess, I excluded the respective comparisons from the test set. 
The fluency and the regressed-frequency mechanisms, in contrast, discriminated on average in 
426 (77.1%) and in 552 (100%) cases, respectively. In the case of the fluency mechanism, I 
included all cases in which one risk was recognized and the other was not, as well as those 
cases in which both risks were recognized and their respective recognition times differed by at 
least 100 ms. 
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Figure 3.1.4. How often did the mechanisms make a prediction? Discrimination rates (for 
each of the 40 participants) for the availability-by-recall, regressed-frequency, and fluency 
mechanisms for the infection set (a) and the cancer set (b). 
 
 

 
Figure 3.1.5. How often did the mechanisms make the correct prediction? Proportions of 
correctly predicted actual choices (within the set of comparisons in which a mechanism 
discriminated) for the infection set (a) and the cancer set (b). 

 
Next, I turn to how often the predicted choice matched the actual choice. Figure 5 

plots the percentage of correctly predicted actual choices (within the set of comparisons in 
which a mechanism discriminated). In the infection set (Figure 3.1.5a), the availability-by-
recall and the regressed-frequency mechanisms competed best—62.7% and 62.1% correct 
predictions, respectively—and predicted the actual choices markedly better than the fluency 
mechanism (56.6%). In the cancer set (Figure 3.1.5b), in contrast, the availability-by-recall 
mechanism (78% correct predictions) clearly outperformed the other two mechanisms, 
whereas the fluency mechanism (69.8%) performed about five percentage points better than 
the regressed-frequency mechanism (62.8%). 
 As pointed out, the mechanisms’ discrimination rates (see Figure 3.1.4) differed 
extremely. To level the playing field, I next turned to a different kind of analysis. Specifically, 
I compared the three mechanisms using critical items. Critical items are pairs in which two 
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mechanisms discriminate but make a different prediction. For each individual participant, I 
determined the mechanism that correctly predicted the majority of such critical cases in each 
of the two contests with the respective competitors. In the cancer set, the availability-by-recall 
mechanism thus explained 22 participants (out of 31; 9 participants remained unclassified). 
The fluency and regressed-frequency mechanisms lagged far behind, with 7 and 2 explained 
participants, respectively. In the infection set, in contrast, the regressed-frequency mechanism 
explained 17 participants (out of 26; 14 remained unclassified), whereas the availability-by-
recall and the fluency mechanisms explained 5 and 4 participants, respectively. 
 Which mechanism performed best on an aggregate level? Still another way to address 
the mechanisms’ widely different discrimination rates would be to analyze the data on the 
aggregate level, as in Study 4 (see the Predictions section, above).45 Such an analysis would 
have the additional benefit of allowing for a comparison of the results across studies. I used 
the same goodness-of-fit criteria as in Study 4. As Figure 3.1.3 shows, the RMSDs in the 
cancer set were smallest for the availability-by-recall and the fluency mechanisms. In the 
infection set, in contrast, the regressed-frequency mechanism performed best, closely 
followed by the availability-by-recall mechanism. The fluency mechanism (both definitions) 
clearly fell behind. The second goodness-of-fit criterion—Spearman rank correlations 
between predicted and actual choice proportions—corroborated this picture (see Table 3.1.3). 
Thus, by and large, the analysis on the aggregate level mirrored the results obtained for 
individual responses. 
 
Summary of Studies 4 and 5 
 Two studies were conducted with a total of about 30,000 choices. In Study 4, the 
notion of fluency was defined in terms of number of mentions of a risk in print media. Both 
criteria of goodness of fit favored the availability-by-recall and the regressed-frequency 
mechanisms (see Table 3.1.3 and Figure 3.1.3). In Study 5, fluency was defined in terms of 
the time it took to decide whether one recognized the name of a health risk. In addition, Study 
2 tested the mechanisms’ predictions against individual responses and against aggregate data. 
Across the four criteria of goodness of fit—percentage of correct predictions, analysis of 
critical items, RMSD, and Spearman rank correlation—I found that the availability-by-recall 
mechanism and the regressed-frequencies mechanism performed equally well in the infection 
set. In the cancer set, in contrast, availability by recall outperformed the regressed-frequency 
mechanism and the fluency mechanism (speed) when tested against individual data (see 
Figure 3.1.5b) and was close to the fluency mechanism (media) when tested on the aggregated 
level (see Table 3.1.3 and Figure 3.1.3). 
 On the basis of Studies 4 and 5, I conclude that regardless of whether fluency is 
defined in terms of word frequency or recognition speed, its predictive power is limited. 

                                                
45 Both definitions of fluency were used. For the definition in terms of recognition speed, I used the median 
recognition time (RT), and the predictions were determined by Choice proportionRisk a = RTRisk b/(RTRisk a + 
RTRisk b) (cf. Sedlmeier et al., 1998). 
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Across the two studies, different goodness-of-fit criteria, and different test sets, there was a 
total of 14 contests between the candidate mechanisms. Of these, the fluency mechanism won 
only 3 of the 14 tests. The availability-by-recall mechanism and the regressed-frequency 
mechanism each won 5 tests and were tied on 1.46 This simple counting exercise of tests is 
admittedly coarse, but the resulting picture is the same for two independent studies: Of the 
examined mechanisms, the two most promising mechanisms are the availability-by-recall and 
the regressed-frequency mechanisms. 
 

Study 6: Can the Candidate Mechanisms Also Model Absolute Estimates of 
Risk Frequencies? 

 Most people know that, in comparison with most other modes of transportation, it is 
safer to fly. Yet, to really feel safe, sometimes one would like to know how few people’s lives 
have actually been claimed by plane crashes. Often, such a question comes to mind after one 
has just buckled oneself into an airplane seat. In this and many other situations, all one can do 
is to estimate this number. Can the candidate mechanisms account for such absolute estimates 
of risk frequencies? Applying the four mechanisms to quantitative estimates, however, is not 
trivial because only two of them lend themselves to predicting absolute quantities: The 
regressed-frequency mechanism predicts that the estimated number of lives that are taken by, 
for instance, breast cancer corresponds to the regressed actual mortality rate of breast cancer. 
The risk-category mechanism predicts that the estimated mortality rate for breast cancer 
equals the (regressed) average frequency within the category of all diseases. Despite 
Lichtenstein et al.’s (1978) proposal of the availability heuristic as a possible mechanism for 
absolute estimates of mortality rates, it does not lend itself directly to predictions of 
quantitative estimates. One cannot simply take the recalled number of deaths from, say, breast 
cancer (experienced in one’s social circle) as an estimate of the population mortality rate. 
Instead, one would need to, for instance, estimate how large one’s social circle is in relation to 
the total population and then adjust one’s frequency estimates accordingly. 
 Even without such an intermediate step of extrapolation, however, the availability-by-
recall mechanism can be used to predict what Brown and Siegler (1993) referred to as 
mapping knowledge. Mapping knowledge refers to how well people’s estimates map onto the 
ranking of objects according to their actual frequencies. Such a mapping is one property of 
accurate quantitative estimation. In what follows, I describe how I tested which of the 
candidate mechanisms could account for mapping properties of frequency estimates. 
 
 
 
 

                                                
46 That is, they both had the same Spearman rank correlation in the assorted set in Study 4 (see Table 3.1.3). 
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Method 
 One-hundred sixty-four students participated in the study, which was conducted at the 
Max Planck Institute for Human Development (these were the same participants who partook 
in Study 4). Three groups of participants were presented with the assorted set (n = 45), the 
cancer set (n = 59), and the infection set (n = 60), respectively. Each participant was paid a 
flat fee of �10 ($12.56 U.S.), and half of the participants also received performance-
contingent payment (according to the scheme described in Study 4; instructions explained the 
concept of mean absolute deviation between predicted and actual frequency and told 
participants to attempt to minimize this deviation measure). As previously, the provision of 
financial incentives did not affect the results. Participants were presented with a randomly 
ordered list of the risks and asked to estimate the annual mortality rate (assorted set) or the 
incidence rate (cancer set and infection set). To give participants a sense of the frequency 
metric, they were told that the total number of deaths in a typical year in Germany is around 
850,000 (assorted set). Those who judged types of cancer and infections learned that the 
annual incidence rate in Germany is about 325,000 and 245,000, respectively. As in Study 4, 
botulism (in the infection set) was excluded from the final analysis. 
 
Results 
 Before I turn to the candidate mechanisms, let me describe the estimates and their 
accuracy in more detail. The median estimates for three risk sets are reported in Table 3.1.1 
(median estimates as they are not unduly influenced by outliers). Figure 3.1.6 shows the 
median estimates plotted against the actual frequencies in the assorted set. As did in 
Lichtenstein et al. (1978), the obtained pattern seems like overestimation of rare risks and 
underestimation of common risks (but see Hertwig, Pachur, & Kurzenhäuser, 2005, for a 
discussion of to what extent this pattern is due to unsystematic error variance). 

In evaluating the accuracy of quantitative estimates, Brown and Siegler (1993) 
proposed to distinguish between two components. Mapping knowledge refers to how well the 
estimates capture the actual ranking of objects. Metric knowledge, in contrast, focuses on how 
well the estimates capture the statistical properties of the frequency distribution of a domain 
(such as the mean, median, and variance). Knowing such properties helps people to make 
estimates in the right ballpark. To measure metric knowledge, Brown and Siegler used the 
order of magnitude error (OME) measure. OME quantifies the discrepancy between true and 
estimated values and converts the estimation error to a proportion of an order of magnitude 
(Brown, Cui, & Gordon, 2002; Brown & Siegler, 1993; see also Nickerson, 1981). The 
absolute OME was computed according to the following formula: |log10(estimated value/true 
value)|. 
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Figure 3.1.6. Estimates of risk frequencies: relationship between estimated and actual number 
of deaths per year for 41 causes of death in the assorted set. Each point represents the median 
estimate of 45 participants. The curved line is the best fitting quadratic regression line: Log 
median = 1.291 + 0.118 × log actual frequency + 0.098 × log actual frequency2. Vertical bars 
depict the 25th and 75th percentiles of individual estimates for firearm accidents, diabetes, and 
all cancer. 
 

 Table 3.1.4 reports the mean absolute OME (with standard errors). How appropriate 
were people’s estimates according to this measure? When evaluating the estimates, it is 
instructive to compare the results that were obtained here with those obtained by Brown et al. 
(2002). In people’s estimates of the population size of 112 nations with 4 million or more 
people, they found a mean absolute OME of .49. Across all three sets, I found exactly the 
same mean absolute OME (see Table 3.1.4). This suggests that estimates of health risk 
frequencies are as accurate as estimates in other knowledge domains. Moreover, I found that 
accuracy in the infection set was markedly lower in the infection set than in the assorted set 
and cancer set. Why? One likely reason is that the infection set included numerous very rare 
events. In fact, a third of all infections have an annual incidence rate of 10 and smaller. 
Because the incidence rates cannot be negative, people are more likely to err on the high side 
when estimating the frequencies of infection that are small but constrained to be nonnegative 
(see also Benjamin et al., 2001). For an infection with an incidence of, say, 1 (e.g., diphtheria; 
see Table 3.1.1), a deviation of .77 of an order of magnitude would lead to modestly deviating 
estimates of 5.89 and 0.17 on the high and low sides, respectively. 
 To evaluate people’s mapping knowledge, Brown and Siegler (1993) proposed the 
Spearman rank correlation. Table 3.1.4 shows these results (the correlation between the 
median estimate for each risk and its absolute frequency and the median of the individual 
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participants’ correlations). Unlike in the OME measure, the mapping accuracy is comparable 
in the cancer and infection measures, thus suggesting that how accurate people’s estimates are 
depends on the measure one uses to evaluate them (see also Brown & Siegler, 1993). Across 
all sets, I found that the median of the individual participants’ rank-order correlations is of the 
same magnitude that Brown et al. (2002) and Brown and Siegler (1993) reported for other 
domains, namely, around .50, another indication that estimates of health risk frequencies 
appear not to be different in nature than estimates in other knowledge domains. 
 

Table 3.1.4. Order of magnitude error (OME; mean absolute OME, standard error), rank 
correlation between median estimated and actual frequencies (rs), and the median of the 
individual rank correlations (and their range) between estimated and actual frequencies. 
Accuracy measure  Collapsed 

(N = 164) 
 Assorted set 

(n = 45) 
 Cancer set 

(n = 59) 
 Infection set 

(n = 60) 
M absolute OME  .49  .48  .23  .77 
SE  .04  .06  .03  .07 
rs  .86  .93  .55  .63 

         

Mdn individual rs  .50  .81  .39  .42 
Range  -.15–.92  .58–.92  .01–.68  -.15–.75 
 

Which mechanism fit estimates best? The availability-by-recall and the fluency 
mechanisms render possible predictions regarding the mapping component of estimates but 
not predictions regarding the metric component. I therefore examined the mechanisms’ ability 
to predict to what extent the estimated values followed the predicted values monotonically.47 
Contrast analysis was used as the measure for the covariation of predictions and estimates 
(Rosenthal & Rosnow, 1985; Sedlmeier et al., 1998). Table 3.1.5 shows the results of the 
contrast analysis (MScontrast, MSerror, dferror, and F value). 

Table 3.1.5 also shows the effect size r associated with the four mechanisms 
(Rosenthal & Rosnow, 1985).48 The larger the (positive) r, the more the data monotonically 
follow the predictions of the mechanisms. On this measure, the regressed-frequency and the 
availability-by-recall mechanisms fit the data best across all three sets. The effect sizes for 
both hypotheses ranged between .74 and .50, corresponding to (very) large effect sizes (J. 
Cohen, 1988). Although the fluency mechanism fared well in the cancer set (as it did in 
Studies 4 and 5), it fell behind in the assorted set and the infection set. The risk-category 
mechanism competed well in the assorted set; however, it could not be tested in the other two 
                                                
47 Both definitions of the fluency mechanism were tested, one in terms of environmental frequencies and one in 
terms of recognition speed. Because it yielded the better results, I report the results only for the environmental 
frequency definition. To specify the predictions for availability by recall, I computed the sum of the number of 
recalled instances for each risk across participants in the pilot study (see Prediction section).  
48 The mechanisms’ predictions for each individual risk were used to determine the lambda weights, against 
which people’s estimates were contrasted. Weights for contrasts add up to 0. For the calculation of the weights, 
first, the average of the predictions for a given set and mechanism were calculated. Then, the deviation of the 
prediction for a single risk from the respective average was used as the weight for that risk. MScontrast (= SScontrast, 
because dfcontrast is always 1) is calculated as L2/n��2, where the �s are the derived weights, n is the number of 
estimates given for each risk, and L is the sum of all weighted (by �) totals for a given risk. 



Chapter 3.1: Recall: Judgments of Risk Frequencies 

 

100 

sets because it would have predicted that within one category, each element would receive the 
same value (i.e., the weights for contrasts would thus be identical). This prediction would 
clearly be wrong. 
 

Table 3.1.5. Outcome of the contrast analysis.  

Set of risks and mechanism MScontrast MSerror dferror
 F r (effect size) 

Assorted set      
 Regressed frequency 7,138,608,833,270 46,894,211,008 123.299 152.23 .74 
 Availability by recall 6,813,457,518,861 46,894,211,008 123.299 145.29 .74 
 Fluency (media) 1,453,400,797,263 46,894,211,008 123.299 30.99 .45 
 Risk category 6,894,559,098,174 46,894,211,008 123.299 147.02 .74 
       Cancer set      
 Regressed frequency 72,594,923,710 547,497,314 396.85 132.59 .50 
 Availability by recall 78,736,346,647 547,497,314 396.85 143.81 .52 
 Fluency (media) 94,283,416,385 547,497,314 396.85 172.21 .55 
       Infection set      
 Regressed frequency 82,373,753,373 758,308,716 196.57 108.63 .60 
 Availability by recall 84,141,982,299 758,308,716 196.57 110.96 .60 
 Fluency (media) 9,545,564,615 758,308,716 196.57 12.59 .25 
Note. Because within a set of risks each participant gave frequency judgments repeatedly for the different risks 
within a set and thus contributed several scores, the MSerror and dferror were determined by a repeated measures 
ANOVA (instead of a between-groups ANOVA; see Rosenthal & Rosnow, 1985, p. 12). In all three sets 
(assorted, cancer, infection), Mauchley’s test indicated that the assumption of sphericity was violated. Therefore, 
the corrected values produced by the Greenhouse–Geisser estimate were used, which produced the fraction 
numbers for the dferror. The risk-category mechanism was not tested in the cancer and infection set because it 
would have predicted that each element within a set receives the same estimate. 
 

As was the case for judgments of which of two risks is more frequent (Studies 4 and 
5), the availability-by-recall and the regressed-frequency mechanisms outperformed the 
fluency and the risk-category mechanisms in accounting for absolute estimates. 
 
 

General Discussion 

 In what follows, I describe the main results and discuss their implications.  
What We Have Learned 
 I proposed and tested four mechanisms of judgments of relative and absolute risk 
frequencies: two versions of the availability heuristic and two versions of the view that event 
frequencies are directly encoded and that tallies of environmental frequencies can be retrieved 
as desired. Two of the four mechanisms received little support. The risk-category mechanism, 
according to which people’s knowledge is limited to a sense of the average frequency in the 
category, failed most undoubtedly: Out of all four mechanisms, it achieved the worst fit in the 
assorted set. In addition, it severely underestimated the amount of knowledge that people 
command about frequencies of infections and types of cancer. 
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 The second account that received at best mixed evidence is the fluency mechanism. 
Although it competed well with the other mechanisms in the cancer set, it fared badly in the 
assorted and the infection sets (see Table 3.1.5 and Figure 3.1.3). Ease of retrieval—the 
notion that Tversky and Kahneman (1973) proposed as one interpretation of availability—is 
not precisely defined. To turn it into a measurable quantity, I linked ease with the notion of 
fluency. Fluency was measured in two different ways—in terms of environmental statistics 
(i.e., frequency of mentions in print media) and in terms of recognition speed (i.e., how 
quickly people were able to assess whether they had heard of the word in question). The two 
measures are clearly but not perfectly correlated (Spearman rank correlation between mention 

frequency and median recognition speed was r = −.42 and r = −.47 in the cancer and infection 

sets, respectively). Both measures yielded comparatively good results only in the cancer set. 
By and large, the results across all three studies do not support the ease interpretation of the 
availability heuristic. Of course, one cannot exclude the possibility that other definitions of 
ease, such as number of memory traces and resulting memory strength (instantiated in 
MINERVA-DM; Dougherty, Gettys, & Ogden, 1999), would have fared better. The results 
obtained here, however, speak against two quite precise and distinct definitions of ease. 
 Across different sets of risks, different levels of item difficulty, different kinds of 
inferences, and different levels of judgmental accuracy, people’s inferences conformed best to 
the predictions of the availability-by-recall and the regressed-frequency mechanisms. Indeed, 
across all 736 pair comparisons of Studies 4 and 5, the RMSDs for the availability-by-recall 
and regressed-frequency mechanisms were nearly identical, with values (averaged across the 
sets) of 19.8 and 20.5, respectively. The fluency and the risk-category mechanisms, by 
comparison, performed clearly worse, with RMSDs of 26.6 and 29.2, respectively. 
 Similarly, in Study 6, availability by recall and regressed frequency showed the largest 
effect sizes except in the cancer set (in which the fluency mechanism reached, by a small 
margin, the highest effect size). One way of directly comparing the two mechanisms would be 
to quantify their difference by comparing the respective contrast weights (Rosnow & 
Rosenthal, 1996, p. 256; see also Sedlmeier et al., 1998, footnote 48) across all three sets. 
This comparison resulted in a weighted (by df) mean effect size of r = .0001 (see Table 3.1.6). 
The differences are thus negligible. It seems fair to conclude that the availability-by-recall and 
the regressed-frequency mechanisms achieve nearly identical predictive accuracy in modeling 
people’s estimates. 
 However, the fact that their mean accuracy in modeling people’s choices and estimates 
is indistinguishable does not mean that the mechanisms’ predictions are indistinguishable. 
Take, for instance, the correlation between the predictions of the regressed-frequency and the 
availability-by-recall mechanisms: although, in both Study 4 and Study 5, the correlations are 
significant in all sets, they are far from perfect, that is, rs = .71, .87 (Study 5: .62), and .41 
(Study 5: .26) for the assorted set, the infection set, and the cancer set, respectively. Another 
example refers to the prediction of inaccurate choices. In 199 of the 736 pair comparisons 
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(27%) of Studies 4 and 5, the majority of participants selected the less frequent event. Using 
regressed values of the objective frequencies, the regressed-frequency mechanism could not 
predict choice proportions smaller than 50%; thus, it fared relatively badly in predicting those 
199 choices. In contrast, the availability-by-recall mechanism correctly predicted 162 of those 
199 items’ choice proportions lower than 50%. However, it also predicted choice proportions 
lower than 50% in 74 pairs in which the actual choice proportion was above 50%. In other 
words, there are clusters of items favoring the regressed-frequency mechanism, and others 
favoring the availability-by-recall mechanism. In addition, Figure 3.1.5 shows that the 
availability-by-recall mechanism predicted the choices of some participants very well (e.g., 
for 22 participants, it correctly predicted more than 80% of inferences) but failed in 
explaining others. 
 I take these findings to suggest that people have a toolbox of different strategies and, 
in addition, that they can switch back and forth between different kinds of information 
(Betsch, Siebler, Marz, Hormuth, & Dickenberger, 1999; Brown, 2002a; Payne, Bettman, & 
Johnson, 1993). Thus, the same person is not likely to use the same mechanism for each 
single inference. For instance, if a person cannot retrieve any episode within his or her social 
circle, he or she may attempt to rely on a sense of fluency or frequency. The likely fact that a 
person has a repertoire of strategies and can discount a previously used dimension of 
information (Oppenheimer, 2004) may be key to understanding why the fit for any single 
strategy is far from perfect in the analyses. 
 
Table 3.1.6. Predictive power of the contrasts for the availability-by-recall mechanism relative 
to those for the regressed frequency mechanism. 

    Regressed frequency 
 Set MSerror dferror MScontrast r 
 Assorted 46,894,211,008 123.299 14,434,049,726 -.0025 
 Cancer  547,497,314 396.85 218,893,629.8 .001 
 Infection 1,269,020,591 196.589 55,938,612.24 .0002 
      
Weighted M (by df)    .0001 

Note. New contrasts were created out of the differences between the original contrast weights (see Rosnow & 
Rosenthal, 1996). Results are based on the estimation task of Study 6. The F value can be calculated by dividing 
MScontrast by MSerror. The correlation coefficient r as a measure of effect size is calculated by the formula r = [F/(F 
+ dferror)]

1/2 (e.g., Rosenthal & Rosnow, 1991). 
 
Retrieving Episodes From One’s Social Circle: An Ecologically Valid Cue 
 Two seemingly quite dissimilar mechanisms conform best to people’s judgments of 
relative and absolute risk frequencies. The availability-by-recall mechanism assumes that 
people draw samples of the events in question and then use the sample frequencies to estimate 
the criterion. In contrast, the regressed-frequency mechanism assumes that people 
automatically encode event frequencies and thus are able to produce accurate (albeit 
regressed) judgments of relative and absolute risk frequencies. That the two mechanisms are 
close competitors in explaining people’s judgments is surprising: Whereas the latter ascribes 
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knowledge of actual (regressed) frequencies to people, the former has typically been invoked 
to explain inaccurate judgments. 
 Indeed, I am not aware of a single experimental or theoretical attempt to demonstrate 
how the availability heuristic enables successful inferences. This need not have been so. In 
their initial framing of the availability heuristic, Tversky and Kahneman (1973) stressed that 
“availability is an ecologically valid clue for the judgment of frequency because, in general, 
frequent events are easier to recall or imagine than infrequent ones” (p. 209). That the 
frequency of recalled instances can be a valid cue for the actual frequencies is exactly what 
was obtained: The Pearson correlations (Spearman rank correlations) between the number of 
recalled cases and their actual frequencies in Study 4 were r = .87 (.77), r = .72 (.61), and r = 
.66 (.43) in the assorted set, the cancer set, and the infection set, respectively; in Study 5, the 
respective correlations were r = .59 (.46) and r = .98 (.36) in the cancer set and infection set, 
respectively. 
 Why is the recalled content a relatively valid predictor for the actual frequencies even 
though availability is often equated with biased frequency judgments? I suggest that one 
reason is the space in memory that the availability-by-recall mechanism can search. By 
requiring participants to recall personally experienced instances of death and illness, the 
search space was defined as that of the social circle of a person, that is, his or her family, 
friends, and acquaintances. In contrast, those who have argued that distortions in estimates of 
risk frequencies are caused by media coverage seemed to assume that the search space in 
memory extends far beyond a person’s social circle and includes a virtual circle, that is, his or 
her encounters with death and diseases that are conveyed through mass media (e.g., 
Lichtenstein et al., 1978). In fact, had people searched in their virtual circle and used this 
information as a proxy for the actual frequencies, their estimates would more likely have been 
distorted. The frequency of mentions in print media is a poorer predictor for actual frequency 
than are the recall data: The Pearson correlations (Spearman rank correlations) between the 
number of mentions and the actual frequencies were r = .43 (.74), r = .59 (.44), and r = .21 
(.23) in the assorted set, the cancer set, and the infection set, respectively (see also Burger, 
1984; Combs & Slovic, 1979; Frost et al., 1997; and Kristiansen, 1983). 
 Clearly, augmenting the search space in memory by one’s virtual circle comes at the 
price of systematic error. Because of fierce competition for patronage, potential news items 
are screened for their ability to captivate an audience; thus, the media focus on and amplify 
certain aspects of reality while scaling down others (Meyer, 1990). As a consequence, event 
frequencies in the virtual world and the real world can systematically diverge. Thus, if one 
samples from the virtual world, one would likely arrive at sample statistics that deviate from 
population statistics. It is, however, not the sampling process that is distorted but the reference 
class from which one samples.49 In contrast, sampling within one’s social circle guards 

                                                
49 This is different from other illustrations of availability in which the sampling process itself is biased. In the 
letter study, Kahneman and Tversky (1973) assumed that the process of sampling exemplars, that is, words with 
the letter r in the first and the third positions, is distorted because it is more difficult to retrieve words with r in 
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against the media’s selection of rare, vivid, dramatic, emotional, and sensational events. 
Fortunately, in a person’s limited social circle, death is sufficiently rare and dramatic that, in 
all likelihood, each instance would be retrieved regardless of whether a family member died 
in a plane crash or from a heart attack. 

Conclusion 

 If indeed humankind is about to enter the age of new plagues, in which factors such as 
overpopulation, poverty, and global climate change pave the way for new health risks, it 
becomes even more important to better understand how the public perceives and judges risks. 
The public’s perception plays a key role in the political discourse about how a society ought 
to respond to emerging risks to public health and well-being—as the global debates on how to 
respond to the risk of terror or new viral illnesses such as SARS amply demonstrate. The 
investigations reported here should be seen as another step toward developing more precise 
models of the cognitive underpinning of inferences about the environmental statistics of risks.  
 

                                                                                                                                                   
the third position. It is interesting to note that Sedlmeier et al. (1998, pp. 756–758) found little evidence for this 
assumption. 
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3.2 Cues or Instances: What is used for Inferences about Event 
Frequencies? 
 
According to Jerome Bruner, “the most characteristic thing about mental life” is that 

we constantly “go beyond the information given …, fill in gaps, … extrapolate” (1972, p. 
218; p. 237). We are able to make such inferences by exploiting redundancy in the 
environment, that is, by using available information that is correlated with the unknown 
property. Often this information has to be retrieved from memory, underlining the intimate, 
but often overlooked, relationship between memory and decision making (Hastie & Park, 
1986; Dougherty, Gronlund, & Gettys, 2002; Weber, Goldstein, & Barlas, 1995). What types 
of memory do we use for inferences about the environment? A popular distinction between 
different forms of knowledge in permanent memory was proposed by Endel Tulving (1972, 
1983; for a recent review, see 2002). He distinguished between semantic memory, referring to 
general, encyclopedic knowledge of the world (e.g., that basketball is a ball sport), and 
episodic memory, memory of autobiographical, personal experiences that can be located at a 
specific time and place (e.g., my playing basketball last Sunday). Although the general 
validity of this distinction has been questioned (e.g., McKoon, Ratcliff, & Dell, 1986), its 
heuristic value seems to be generally accepted. Might it also be useful for distinguishing 
between mechanisms of judgment and decision making?50 

In particular, I am concerned with inferences about the frequency with which events 
occur in the environment. For instance, which disease is more common in a population: breast 
cancer or skin cancer? The judgment and decision making literature proposes two approaches 
to such inferences, which roughly map to the use of semantic and episodic knowledge. On the 
one hand, one could take advantage of knowledge about general features of the target 
objects—semantic knowledge—that are correlated with the unknown feature (e.g., 
Gigerenzer, Hoffrage, & Kleinbölting, 1991; Juslin, Jones, Olsson, & Winman, 2003), in this 
case frequency in the population. Accordingly, one could consider general features of the 
diseases such as their deadliness or their possible causes, which might be correlated with the 
frequency of a disease and use these as cues for an inference. A popular way to represent such 
knowledge of features mathematically is as a column vector, containing in its rows the event’s 
values on the features (e.g., Clark & Gronlund, 1996). I refer to inferences based on such 
general features as cue-based.  

Alternatively, one could access episodes, that is, memory of personal experiences with 
occurrences of the diseases for an inference. As these occurrences represent a sample of the 
population, they reflect characteristics of the population (e.g., “global frequencies”). In other 
                                                
50 It was not assumed, of course, that semantic knowledge is not involved at all when episodic knowledge is used 
(e.g., for identification of sport semantic knowledge is required, which is completely in line with Tulving’s 
original conception; Tulving, 2002). Rather, the question is whether semantic or episodic knowledge is the 
primary knowledge base used for an inference. 
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words, to infer which of the two diseases occurs more frequently in the population the number 
of instances of these diseases one can retrieve are used (Chapter 3.1; Tversky & Kahneman, 
1973, 1974; Benjamin, Dougan, & Buschena, 2001). Note that being learned by personal 
experience, such idiosyncratic “local frequency knowledge” constitutes episodic knowledge. 
Memory of such episodes is often represented mathematically in terms of traces (each 
represented by a vector; e.g., Hintzman, 1988; Dougherty, Gettys, & Ogden, 1999). I refer to 
inferences based on such episodes as instance-based.  

The vector-based memory representation invites a distinction between the cue-based 
and instance-based approaches in terms of the direction in which information is considered for 
an inference. Using Fiedler’s (1996) terminology, the cue-based approach describes an 
intensional search of information within a vector representing the event type, whereas the 
instance-based approach describes an extensional search for information across traces of 
occurrences of the event.  

Which approach—cue-based or instance-based, relying on semantic and episodic 
knowledge, respectively (for similar distinctions, see Robinson & Clore, 2002; Juslin et al., 
2003)—provides a better description of how people make inferences about event frequencies? 
The aim of this chapter is to directly compare these two approaches. In particular, I am 
concerned with inferences about the frequency of events of which people are manifestations: 
people contract diseases, people have names, and people engage in different kinds of hobbies.  

Note that, in contrast to the substantial work on frequency judgments in cognitive 
psychology (e.g., Watkins & LeCompte, 1991; Williams & Durso, 1986), which typically 
assume that the judgments are based on some operation (actual recall, fluency, or 
automaticity) resulting from the encounters with critical events, the judgment task examined 
here is not concerned with frequencies that people have been exposed to completely. As the 
to-be-judged frequencies concern frequencies in the population—and a person will typically 
have been exposed at best to a sample of the population—the frequencies of the events have 
to be inferred based on information only probabilistically related to the criterion.  

The remainder of this chapter is organized as follows. I start by sketching the two 
approaches to inferences about frequency and describe various candidate mechanisms for 
each of the two approaches. In Study 7, I develop and test—both in computer simulations and 
an empirical study—a new heuristic for instance-based inferences about frequency. In Study 
2, I test this heuristic against competitor mechanisms and, more generally, contrast cue-based 
and instance-based mechanisms for frequency judgments. 
 

Two Ways to Infer Distal Frequencies 

How could one proceed to decide which of two events occurs more frequently in the 
population? An extremely simple strategy applies when the name of one event is recognized 
but not the other. According to the recognition principle (Gigerenzer & Goldstein, 1996; 
Goldstein & Gigerenzer, 2002), instantiated in the recognition heuristic, the recognized event 
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is simply inferred to be more frequent. An increasing body of research supports the notion 
that—especially under limited knowledge und limited time—people rely on the recognition 
heuristic to judge quantities in the world (Chapter 2; Goldstein & Gigerenzer, 2002; Reimer & 
Katsikopoulos, 2004; but see Newell & Shanks, 2004; Oppenheimer, 2003).  

However, if the names of both events are recognized more information has to be 
gathered (unless a decision is made by guessing). In the following, I describe two different 
approaches that apply in this situation, involving either the retrieval of probabilistic cues from 
one’s semantic knowledge or the retrieval of instances of the events from one’s social 
environment.  
 
Frequency judgments based on semantic knowledge: Cue-based mechanisms 

According to the standard approach in models of human inference, knowledge about 
general characteristics of objects (or events) is used to infer unknown properties of them. 
Such an approach is at the heart of Brunswik’s idea of vicarious functioning and often 
successful as characteristics of objects tend to be intercorrelated (cf. Brunswik, 1955). 
Applied to inferences about event frequencies, events that are frequent in a population often 
have general characteristics, or features, that rare events do not have. For instance, a 
profession that requires an extremely long training (such as medical doctor) might be less 
likely to be taken up—and thus are rarer—than one that can be performed after only a short 
training (e.g., car mechanic). Such cues, which represent semantic knowledge as they refer to 
general properties of the events, might also be used to make an inference about how often a 
given event occurs in the population.  

The notion that an unknown target variable is inferred by using probabilistic cues is a 
basic assumption in a number of models of human judgment. For instance, in Gigerenzer et 
al.’s (1991) theory of Probabilistic Mental Models, an inference of which of two objects has a 
higher criterion value is made by retrieving features from long term memory that are 
correlated with the judgment objects (e.g., that a city is a state capital). Similarly, Hammond’s 
work on clinical judgment describes human judgment as an integration process of features of 
the patient (Chapter 1; Hammond, 1955; Hammond et al., 1975). 

So far, cue-based mechanisms have received only little attention in the frequency 
judgment literature. For instance, they are not considered in Brown’s (2002a) Multiple 
Strategy Perspective framework on different ways to judge frequency.51 One possible reason 
for this neglect is that rarely a distinction is made between, on the one hand, judgment tasks in 
which the number of directly experienced instances represents also the entity to which the 
judgment refers (e.g., Tversky and Kahneman’s, 1973, famous names study) and judgments 
tasks in which the number of directly experienced instances is only a sample of this entity 
                                                
51 Admittedly, Brown (2002) considers a “nonnumerical nonenumeration strategies” that are based on “a fact or 
impression from memory that expresses frequency relevant information in a nonumerical manner” (p. 47). 
Although this could be extended to include semantic facts that are predictive, and thus indirect indicators, of 
event frequency, Brown only refers to vague quantifiers (such as “a lot” and “many”) that are direct indicators of 
frequency.  
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(e.g., Lichtenstein et al.’s, 1978, risk frequency study). A perfect reconstruction of all 
experienced instances always leads to a correct judgment in the former task, whereas this is 
not (necessarily) the case in the latter one. Due to the potential of retrieving instances cues 
will probably be little used when all relevant instances have been experienced directly, 
whereas the idiosyncrasies of a personal sample of instances might discredit instances as a 
basis for an inference when only a sample of the relevant population has been experienced. 
Cues might then come into play also because they reflect general properties (such as 
population frequency) better than samples, whose constitution varies from person to person. 

To make an inference (e.g., which of two events in more frequent) based on a set of 
cues, the cues can be processed in different ways. I describe three candidate cue-based 
mechanisms. Cues can have positive cue values, indicating a higher criterion value, and 
negative cue values, indicating a lower criterion value. The cues differ in their validity, which 
is defined as the conditional probability of making a correct inference under the condition that 
the cue allows for an unambiguous prediction (i.e., discriminates between the events). The 
validity vi of a cue i is determined by vi = R / (R + W), where R (W) is the number of correct 
(incorrect) inferences the cue makes (cf. Martignon & Hoffrage, 2002; Gigerenzer & 
Goldstein, 1996). The first cue-based mechanisms is the weighted additive mechanism, which 
weights each cue depending on its validity and integrates all weighted cue value for each 
event.  

Weighted additive linear mechanism (WADD). The cue values are multiplied by the 
validity of the corresponding cue and the products summed across all cues for each event. The 
event with the higher sum is inferred to be more frequent in the population. 

A simplified additive mechanism does without differential weighting, apart from the 
direction of the cue, and weights all cues equally (e.g., Dawes, 1979).  

Equal weight linear mechanism (EQW). The equal weight linear mechanism gives all 
cue values a unit value, with +1 if a cue points to a high criterion value and -1 if the cue 
points to low criterion value. For each event the cue values are summed up. The event with 
the higher sum is inferred to be more frequent in the population. 

An even simpler cue-based mechanism consists of considering only a subset of the 
available information.  

Take The Best (TTB). Instead of integrating all available cues, the lexicographic 
inference heuristic Take The Best (Gigerenzer & Goldstein, 1996) searches for cues 
sequentially according to their validities. As soon as a discriminating cue is encountered, TTB 
infers that the event to which this cue points is more frequent in the population. 

Contrary to the previous cue-based mechanisms, Take The Best is noncompensatory 
as once information search is stopped no amount of evidence represented later in the cue 
hierarchy can reverse the decision made after search is stopped. There are various studies 
showing that people use such one-reason decision making strategies, in particular when 
information costs matter (e.g., time pressure, inferences from memory, external information 
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search costs; Bröder, 2000; Bröder & Schiffer, 2003a; Newell & Shanks, 2003, Rieskamp & 
Hoffrage, 1999).52 

 
Frequency judgments based on episodic knowledge: Instance-based mechanisms 

Events that occur frequently in the population are also more likely to be encountered 
in one’s limited social sphere. Therefore, one could take instances one personally knows as 
“keys to assessing the distal environment” (Fiedler, 2000, p. 661), that is, as an indicator of 
the events’ overall frequencies. Such an approach has been instantiated in multiple-trace 
memory models such as Minerva-DM (Dougherty et al., 1999) and BIAS (Fiedler, 1996). 
Tversky and Kahneman (1974) described such a strategy as an example of the availability 
heuristic (see p. 1127), although the availability heuristic is also compatible with other 
mechanisms (e.g., Betsch & Pohl, 2002). To avoid this ambiguity, I specifically refer to the 
reliance on instances retrieved from one’s social network as the recall principle.  

How are instances in one’s social environment processed when used for inferences 
about event frequencies in the population? One possibility is that to make an inference all 
instances in a person’s social network are retrieved. In Chapter 3.1 I called such a mechanism 
availability by recall and found that it was able to predict people’s judgments of risk 
frequencies robustly across different risk domains and task formats.  

Availability by recall (RECALL). According to this mechanism, an inference is based 
on the total number of instances recalled from a person’s social network (across self, family, 
friends, and acquaintances) for the events in question. The event for which a higher number of 
instances was retrieved is inferred to be more frequent in the population.  

But is it plausible to assume that people will always retrieve all instances they know? 
For instance, in Epstein’s (2001) model of norm generation individuals are assumed to sample 
only a very limited number of network members. Similarly, Tversky and Kahneman (1971) 
argued that people often make decisions based on only a small number of observations. As 
Gigerenzer et al.’s (1999) fast and frugal heuristics often consider only a subset of cues for a 
decision, it is possible that people retrieve only a subset of instances. But if only a limited 
number of instances are retrieved from memory, when does one stop sampling from one’s 
social circles?  

I propose a new mechanism, the social circle heuristic, which assumes that the 
structure of a person’s social network is used to guide and stop the sampling process. 
Accordingly, it is assumed that an individual’s social network has a hierarchical structure, 
with the relationships that a person has to the members of her social environment differing in 
genetic relatedness, frequency of contact, emotional closeness, and function of contact (e.g., 
Hill & Dunbar, 2003; Milardo, 1992; Zhou, Sornette, Hill, & Dunbar, 2005). A popular 
notion in social network research has been to represent the hierarchical structure of a social 

                                                
52 Interestingly, both EQW and Take The Best have been found to be able to outperform more complex 
mechanisms such as multiple regression (Czerlinski, Gigerenzer, & Goldstein, 1999; Dawes & Corrigan, 1974; 
Gigerenzer & Goldstein, 1996), as they are less likely to fit noise in the data. 
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network in terms of concentric circles of varying radius (Kahn & Antonucci, 1980; Moreno, 
1936). The social circle heuristic works by sequentially sampling instances of the events in 
question from the different circles, starting with the focal circle (which is oneself). 

According to the social circle heuristic each circle is considered sequentially, starting 
with the focal circle. As soon as from a given circle more instances can be retrieved for one 
event compared to the other event, search is stopped and the event for which more instances 
could be retrieved is inferred to be more frequent in the population. The heuristic is shown in 
the form of a flow diagram in Figure 3.2.1.  
 

 
 
Figure 3.2.1. Flow diagram of the social circle heuristic (here as the SCH-Group version) and 
the relationship of the sampling process to the recognition principle and inferences based on 
other cues (such as Take The Best; Gigerenzer & Goldstein, 1996). 

 

Since the heuristic makes a decision as soon as a circle allows for an inference, the 
search process will often be terminated early, and an inference will be derived from samples 
of small sizes. Similar as TTB, the heuristic is noncompensatory, since if an inference is 
made, the information of later circles cannot overturn the decision anymore. The notion of a 
sampling process of instances guided by social circles proposed by the heuristic emerges from 
a memory perspective: it could be argued that the circles, demarcating groups of different 
emotional closeness, length of acquaintance or frequency of contact, are a proxy for how 
fluently instances in these groups can be retrieved. For instance, information about people one 
feels very close to or who are contacted frequently should also be retrieved more fluently than 
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information about people contacted rarely, as the memory traces are stronger (e.g., Anderson 
& Schooler, 1991).53 How could the circles be defined? Two versions are considered.  

Social circle heuristic-Group (SCH-Group). In the first version, the circles are defined 
by the functional group, of which three are distinguished here: family, friends and 
acquaintances (cf. Dunbar, 1996). The innermost circle (Circle 1) thus represents the person 
herself, the next circle (Circle 2) represents the person’s immediate family, that is, relatives. 
The third circle represents the person’s friends and the outer circle (Circle 4), finally, 
represents the person’s acquaintances, that is, members in the person’s social network which 
the person knows only superficially.  

Another way to differentiate members of one’s social network is in terms of how often 
one typically has contact with them (Hill & Dunbar, 2003). Therefore, I consider a second 
version of the social circle heuristic in which the circles are defined by frequency of contact.  

Social circle heuristic-Contact (SCH-Contact). Circle 1 (self) is the same as in SCH-
Group, but the subsequent circles are defined by frequency of contact rather than social group. 
Three further groups are differentiated. The first includes those members contacted at least 
once a week (Circle 2), the second group those contacted once a month (Circle 3), and the last 
one those contacted once in 6 months or less (Circle 4). As in SCH-Group, instances are 
assumed to be retrieved sequentially from the circles and an inference is made as soon as the 
number of instances retrieved from one circle discriminates between the events. 

 

General Overview of Studies 

In a first step, I examined the instance-based approach. First, I explored whether 
inferences that are made on the basis of a subsample of all instances in people’s social 
networks can produce accurate inferences? Second, is the instance-based approach able to 
predict people’s inferences about frequencies correctly, and which of the three mechanisms is 
most suitable? Study 7 includes a computer simulation and an empirical study and focuses on 
the comparison between the social circle heuristic, with circles defined by groups (SCH-
Group), and availability by recall.  

In Study 8, the instance-based approach is tested against the cue-based approach for 
predicting participants’ inferences. In addition, it is explored whether people’s inference 
processes are adaptive, that is, whether people select those mechanisms that reach the highest 
accuracy for a particular environment, as can be argued, for instance, from the “adaptive 
decision making” view (Payne, Bettman, & Johnson, 1988; 1993) or by the ecological 
rationality view (Gigerenzer, Todd, & the ABC Research Group, 1999). 
 

                                                
53 Importantly, compared to cue-based mechanisms, it is not the validity of information that determines the order 
in which evidence is considered. 
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Study 7 

To test the accuracy of the social circle heuristic relative to the less frugal availability 
by recall, I conducted a computer simulation where the task was to infer which of two events, 
A or B, occurs more frequently in the entire population. For this task, the heuristic could 
search for instances of the events in its spatial vicinity. I created a population consisting of 

2,500 agents, represented in a 50 × 50 grid, in which each cell represented one agent (see 

Figure 3.2.2a, which shows the environment simplified to a population with 100 agents in a 

10 × 10 grid). In the environment, instances of 10 events were distributed randomly across the 

2,500 agents (see Figure 3.2.2b). The 10 events mimicked the frequency distribution of 
occurrences of infectious diseases in Germany, which were also used as the environment in 
the empirical study (see below). As can be seen from Figure 3.2.2b, the distribution of the 
proportions of the diseases is highly skewed and falls into a J-shaped distribution, a pattern 
found in many real world domains (Hertwig, Hoffrage, & Martignon, 1999). The proportions 
of the 10 most frequent infectious diseases (from a set of 24) were chosen because their 
proportional distribution could be represented in a population of 2,500 agents. The most 
frequent event was set at a frequency of 2,000; the 9 other events were distributed according 
to this anchor and the proportions reported by the Robert Koch Institute.  

 

 
Figure 3.2.2. (a) Representation of the population in the computer simulation (here simplified 
as a 10 × 10 population). (b) Frequency distribution of the 10 events in the computer 
simulation. 

 
The social networks were conceptualized according to the distance between the agents, 

defined by a city-block metric. For instance, in Figure 3.2.2a—which shows the social 
network of agent #45 in a population of 100—agent #44 has a distance of 1 from agent #45, 
agent #34 has a distance of 2 from agent #45, agent #33 has a distance of 3 from agent #45 
etc. It is assumed that each agent’s social network consists of 40 other agents that differ with 
regard to their distances to the agent. Thus, an agent could maximally sample information 
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about 41 agents (including himself). This social network was divided into four different social 
circles: Circle 1, that only included the agent itself, Circle 2, including all neighboring agents 
with a distance of 1 (four agents), Circle 3, including all neighboring agents with a distance of 
2 (eight agents), and Circle 4, including all neighboring agents with a distance of 3 or 4 (28 
agents).  

To make an inference, the social circle heuristic started with Circle 1 and looked 
whether event A or B was present. If one was and the other not, no further circles were looked 
up, and it was inferred that the retrieved event was more frequent in the population, otherwise 
the next circle was considered, and so on. In case no circle discriminated one of the events 
was picked randomly. In contrast, availability by recall retrieved all relevant instances in the 
social network. The event for which more instances could be retrieved was inferred to be 
more frequent in the population. In case an equal number of instances was retrieved for both 
events, or if no instances could be retrieved at all, one of the events was picked randomly. 

The simulation was repeated 100 times, such that for each run of the simulation the 
instances of the 10 events (totalling around 2,400 instances, that is, not all agents were 
instances of one of the 10 event categories) were randomly distributed, and each time 100 
agents were picked randomly as starting points to determine the accuracy for both inference 
mechanisms. At each run, the 10 events were combined in a complete pair comparison 
(yielding 45 pairs) and the task was to infer which event is more frequent in the entire 
population. 

How well did the social circle heuristic perform compared to availability by recall? 
Surprisingly, both mechanisms showed an identical proportion of correct inferences with a 
median of 77.8% (social circle heuristic: M = 76.3%, SD = 7.1, availability by recall: M = 

77.5%, SD = 7.1). Showing a similar level of accuracy, the social circle heuristic sampled, on 
average, only 4.7 instances, which is only around half the amount of information that 
availability by recall used, which sampled on average 7.9 instances.  

In sum, the computer simulation shows that the social circle heuristic can compete 
with availability by recall, although it uses only a subset of all information. But do people use 
such a simple strategy for making inferences about event frequencies? To find out, I examined 
how real people solve the task of judging the frequency of diseases.  
 

Method 
Participants. Forty students (27 female and 13 male, mean age 24.2, range 18-31) 

from various subject fields participated at this study. It was conducted at the Max Planck 
Institute for Human Development in Berlin. Half of the participants received their payment, in 
part, depending on their accuracy in the choice task (see below): they obtained an initial fee of 
�9 (= $11.76 U.S.) and an extra 4¢ (= 5¢ U.S.) for every correct decision; 4¢ were subtracted 
for every incorrect decision. The other half of participants were paid a flat fee of �10 (= 
$13.07 U.S.). 
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Materials. The 24 infectious diseases (the proportions of the 10 most frequent of these 
were also used in the computer simulation) for which official records are kept by the Robert 
Koch Institute (e.g., Robert Koch Institute, 2001; see Chapter 3.1) were combined in a 
complete paired comparison, yielding 276 pairs. In the choice task participants were asked to 
pick the infectious disease that has a higher annual incidence rate in Germany. After this test, 
participants indicated in a recall task for each disease and each of their social circles (self, 
family, friends, and acquaintances) how many, if any, people had been affected by the 
disease. They also indicated whether they recognized the name of the disease (recognition 
task). From this information, I calculated how often the participants had an opportunity to 
choose in accordance with the social circle heuristic and determined which prediction the 
social circle heuristic made in each of these cases (only comparisons where the names of both 
names were recognized and the reported number of instances in the social network 
discriminated between the two diseases were included). The total number of instances for 
each disease was used to determine the predictions of availability by recall. 

Procedure. The choice task always preceded the recall task whereas the order of the 
choice and the recognition tasks was counterbalanced. For the choice task, participants were 
seated in front of a computer and received written and verbal instructions for the tasks. 
Participants saw the 276 pairs of infectious diseases sequentially on a computer screen 
(presented in 12 blocks) and were instructed to indicate (by pressing one of two response 
buttons) for which of the two diseases they thought there is a higher number of new cases per 
year in Germany. The order in which the diseases appeared within a pair was random, as was 
the order in which pairs was presented, with each participant receiving an individual random 
order. The recognition and the recall tasks were administered as paper and pencil 
questionnaires. Each session took around 60 minutes. 
 

Results 
Neither order of choice and recognition tasks nor incentives had an effect on the 

relevant dependent variables. On average, participants made 60.9% (SD = 5.6) correct 
choices. Overall, only a relatively small number of instances of the diseases were reported by 
the participants, with an average of 4.2 (SD = 4.7) instances per participant. Due to this low 
number of instances, the social circle heuristic made a predictions (i.e., discriminated between 
the diseases) for only 11.1% of all inferences and was applicable at least once for only 33 
participants. Across these 33 participants, the social circle heuristic correctly predicted a 
median proportion of 79.5% of the inferences (M = 77.0%, SD = 15.9). In comparison, the 
availability by recall heuristic, which always took account of all instances that the participants 
reported, predicted a median proportion of 81.8% of inferences correctly (M = 77.6%, SD = 
16.6), was applicable for 10.5% of all inferences and made a prediction for 33 participants. 
Thus, both mechanisms were equally appropriate to predict participants’ inferences.  

To examine the accuracy of the two mechanisms when applied to the occurrences of 
the diseases recalled by the participants, I correlated in a first step the total number of 
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instances that the participants reported in the recall task with the actual number of cases. The 
correlations were rather high (r = .77, p = .001; rs = .38, p = .07), indicating that this 
information was useful for the inference task. In a second step, the predictions of both 
mechanisms for each participant were compared with the correct choices (i.e., according to 
the actual incidence rates, averaged values from a 5-year period were used to eliminate year-
to-year fluctuations; see Chapter 3.1). The accuracy was defined, separately for each 
participant, as the number of correct inferences made by the social circle heuristic divided by 
the number of comparisons where it was applicable. If the social circle heuristic had been 
strictly applied, it would have reached a median accuracy of 83% (M = 78.0%). In 
comparison, if availability by recall had been strictly applied, it would have reached a median 
accuracy of 83% (M = 79.0%). Thus, in line with the computer simulation, both mechanisms 
had reached a similar accuracy. Moreover, availability by recall retrieved an average of 1.8 
(SD = 1.1) instances per choice, whereas the social circle heuristic retrieved only 1.15 (SD = 
0.24) instances.54 
 

Discussion 
In Study 7, I investigated, both in a computer simulation and in an empirical study, a 

simple inference mechanism that exploits a person’s social network as an easily accessible 
sample space for judging event frequencies in paired comparisons. The results show that the 
social circle heuristic allows one to judge accurately the environmental frequencies of 
randomly distributed events. At the same time, this mechanism predicted people’s choices 
rather well compared to a mechanism that relied on the information of individuals’ total social 
network. Thus, the accuracy achieved by the social circle heuristic provides another example 
for the argument that small samples can be an efficient basis for judgments in the real world 
(cf. Fiedler & Kareev, 2004; Kareev, 2000; but see Anderson, Doherty, Berg, & Friedrich, 
2005; Juslin & Olsson, 2005).  

However, the task used in Study 7 had the disadvantage that participants could retrieve 
only a very small number of instances. As consequence, both the social circle heuristic and 
availability by recall were applicable for only a small proportion of inferences, and for an 
even smaller proportion of inferences they made distinct predictions, undermining a rigorous 
test of the two mechanisms against each other. Therefore the results of Study 7 are 
inconclusive with regard to the question of whether people actually retrieve only a subsample 
of the instances from their social network, as hypothesized by the social circle heuristic.  

                                                
54 Note that, in contrast to the computer simulations, the comparisons in which the number of recalled instances 
did not discriminate were not included to determine frugality. But given that both mechanisms had to guess a 
very similar number of times (both in the simulation and the experiment) this difference in determining frugality 
should not distort the results.  
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Overview of Study 8 

The major goal of Study 8 was to examine how well the instance-based approach fares 
compared to the cue-based approach with regard to how well they predict people’s frequency 
judgments. The mechanism competition included the three cue-based mechanisms WADD, 
EQW and TTB, and the three instance-based mechanisms RECALL, SCH-Group and SCH-
Contact described above. For a more rigorous test of the social circle heuristic, a domain was 
required in which it was reasonable to expect that people would be able to retrieve more 
instances than for the infectious diseases in Study 7. Sports were chosen for this purpose, and 
participants had to judge the number of club members that different sports have in Germany. 
For this domain it was also reasonable to assume that the people could retrieve cues that are 
positively correlated with the frequency of the event, allowing a test of the two approaches 
against each other. To be able to test the cue-based mechanisms, I conducted a prestudy 
asking participants for cues they would use to infer the number of club members for different 
sports.  
 

Table 3.2.1. The 25 most popular sports in Germany (in terms of the number of club 
members: averaged across the years 1997-2001; e.g., Statistisches Bundesamt, 2002) and the 
number of club members the participants recalled from their social circles.  

Sport 

Number of club 
members (active and 

passive) 

Number of instances 
recalled by 
participants 

Soccer 6,234,883 180 
Gymnastics  4,800,199 12 
Tennis 2,085,327 58 
Shooting 1,584,931 10 
Athletics 851,075 29 
Handball 833,345 70 
Equestrian 735,229 48 
Table tennis 710,267 12 
Skiing 677,556 18 
Match fishing 650,921 22 
Aquatics 633,652 90 
Volleyball 530,399 34 
Golf 320,630 41 
Judo 268,475 49 
Bowling 266,538 25 
Dance sport 255,190 57 
Badminton 230,058 27 
Basketball 202,938 93 
Sailing 190,577 42 
Ice sports 173,625 21 
Cycling 153,141 27 
Canoe  111,545 8 
Karate 106,582 26 
Chess 94,172 5 
Rowing 78,746 21 
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Prestudy 

Participants. Thirty students from various subject fields (19 females and 11 males, 
mean age 24 years, 20-37 years) participated. Participation in the prestudy, which was part of 
an unrelated experiment, was compensated by a payment of �3 (= $3.69 U.S.).  

Materials and procedure. Participants were presented with a alphabetically ordered 
list of the 25 most popular sports in Germany (Table 3.2.1) and asked to imagine that they had 
to pick out of two sports the one with the higher number of club members. They were asked to 
write down on a piece of paper those features of sports that would come to their minds and 
which ones might help to infer which of two sports of the list has a higher number of club 
members. The task was illustrated by the example of having to infer which of two German 
cities has more inhabitants. As state capitals are often larger than cities that are not state 
capitals, the information of whether a city is a state capital would be informative. The 
participants could mention as many features as they wished. Completing the task took around 
15 minutes. 
 
Results 

The most frequently mentioned features of sports are reported in Table 3.2.2. These 
eight features of the sports were used as cues to test the three cue-based mechanisms. Note 
that whereas for some of the cues a value can be assigned relatively unequivocally to the 
sports (e.g., whether a sport is a team sport or an individual sport), other cues are more subject 
to subjective assessment (e.g., “seasonal”, “special equipment“). To take such interindividual 
differences in the assessment into account, in the main study, participants assessed the sports 
on these cues. 
 

Table 3.2.2. The cues mentioned by the participants in the prestudy for the task of inferring 
which of two sports has more club members.  

Cue name Description 
National star Whether there are famous German athletes for the sport 
School Whether the sport is often performed in sports classes in school  

Seasonal Whether performing the sport is seasonal dependent  

Ball sport Whether the sport is played with a ball or not 
Special equipment  Whether special equipment is required to perform the sport 
Olympic sport Whether the sport is an Olympic discipline 
Outdoors sport Whether the sport is mainly played outdoors or indoors 
Team sport  Whether the sport is a team sport or an individual sport 
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Main Study 

Method 
Participants. Forty students (23 female and 17 male, mean age 24.8, range 20-33) 

from various subject fields were recruited for the study, which was conducted at the Max 
Planck Institute for Human Development in Berlin. None of the participants took part in 
Study 7 or in the pre-study of Study 8. All participants received a part of their payment 
contingent on their accuracy in the choice task (see below). In addition to an initial fee of �9 
(= $11.06 U.S.), they earned 4¢ (=5¢ U.S.) for every correct decision, and 4¢ were subtracted 
for every incorrect decision. 

Materials. The 25 most popular sports in Germany served as the events about which 
participants had to make frequency judgments. Specifically, the sports had to be compared 
with regard to the number of club members registered for them. The statistics about the 
number of club members were obtained from the official statistics (e.g., Statistisches 
Bundesamt, 2002) and averaged across five consecutive years (1997-2001) to reduce year-to-
year fluctuations (see Table 3.2.1). 

Altogether the participants completed four tasks: a choice task, and—to be able to 
determine the predictions of the six candidate mechanisms—a recognition task, a recall task 
and a cue assessment task. In the two-alternative forced-choice task (choice task hereafter), 
participants were presented with pairs constructed from the 25 sports, altogether 300 pairs. 
The task was to indicate in each pair for which of the two sports there is a higher number of 
club members in Germany. In the , participants indicated for each sport whether they had 
heard of it before. The recognition task was followed by the recall task, in which, in a first 
step, participants reported for each sport and for each of the four circles defined by SCH-
Group (self, family, friends and acquaintances) persons who were club members. In a second 
step, they indicated (on a five-point scale with the categories “Several times a week”, “Once 
in a week”, “Approximately once a month”, “Around once in six months” and “Less than 
once in six months”) for each recalled person how often they typically have contact with the 
person. “Having contact” was defined as talking to the person for at least five minutes, or 
writing to or receiving a message from the person of around 100 words in length. 

In the cue assessment task, consisting of four subtasks, the first task was to assess the 
sports on the eight cues identified in the prestudy. That is, for each of the eight cues, 
participants assigned to each sport a (binary) cue value (e.g., whether soccer is a team sport or 
an individual sport; whether badminton is an Olympic sport or not etc). Moreover, 
participants assessed the predictive direction of the cues, that is, which value of the cues (e.g., 
team sport or individual sport) indicated a higher number of club members. Based on these 
assessments the cue values were coded such that a positive value indicated a higher number of 
club members. Third, participants rank ordered the cues according to their validity. Finally, 
the cues were presented sequentially in the indicated rank order and participants estimated the 
validity of each cue. The validity was assessed using a frequency format. Specifically, 
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participants were instructed to imagine 100 pairs of sports in which one sport had a positive 
cue value and the other sport a negative cue value. The task was then to indicate in how many 
out of the 100 pairs the sport with the positive cue value would actually have a higher number 
of sports members. It was pointed out that “50” meant that the cue was not predictive of the 
number of club members (i.e., not better than chance). 

Procedure. The choice, recognition and cue assessment tasks were presented on a 
computer, the recall task as a paper and pencil questionnaire. In the choice task the 300 pairs 
of sports were presented sequentially in blocks of 25 pairs. One sport was presented on the 
left side of the screen, the other on the right side on the screen. The order in which the sports 
appeared within a pair was random, as was the order in which pairs were presented (with each 
participant receiving an individual random order). The task was to choose the sport with the 
higher number club members in Germany by pressing one of two designated keys on the 
keyboard. Participants were instructed to keep the index fingers of the right and the left hands 
positioned on the response keys for the entire duration of a block. The response time in the 
choice task was recorded. In the recognition task the sports were presented sequentially and 
the participants indicated whether they had heard of the sport before. The choice task, 
recognition task, recall task, and cue assessment task were always administered in this order.  
 
Results 

I start by reporting participants’ accuracy in the choice task. The six mechanisms are 
then evaluated in two respects. First, I examine how well the information underlying the two 
approaches (i.e., the number of recalled instances and the cues) reflected the criterion variable 
in the choice task, that is, the number of club members. This is followed by the analysis of 
how often the six mechanisms, when they were applicable, made a correct inference (i.e., 
pointed to the sport with the higher number of club members). I refer to this aspect as the 
accuracy of the mechanisms. Second, I examine how often the six mechanisms, when they 
were applicable, predicted participants’ choices correctly. I refer to this aspect as the fit of the 
mechanisms. 

Participants’ accuracy in the choice task. Participants picked the correct sport in 
62.9% (SD = 6.3; range 48.7%-77%) of the cases, earning them, on average, �3.10 (= $3.81 
U.S.) (SD = 1.52) in addition to their initial fee.  

Recognition. Shooting (“Schützen”) was not recognized by 13 of the 40 participants 
and match fishing (“Sportfischen”) was not recognized by one participant. For comparability, 
only those comparisons were included in the test of the six mechanisms in which both sports 
were recognized.55 

                                                
55 That is, the 2.8% (averaged across participants) of the comparisons where the recognition heuristic was 
applicable were modelled separately. Across the 14 participants where the recognition heuristic was applicable at 
least once, on average 59.2% (SD = 33.4) of the choices in which it was applicable were in line with it. Although 
this is a rather low adherence rate, note that the recognition validity α was only .14. In light of this low value of 
α, it appears that recognition was nevertheless an influential cue in the inferences. 
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Actual and estimated cue validity. Table 3.2.3 reports the results of the cue assessment 
task. Concerning the predictive direction of the task, there was a strong consensus among the 
participants. Only for the cue “outdoors sport”, the consensus was less strong, with 24 
participants judging outdoor sports to be more popular. To calculate the cue validities (i.e., 
how well the eight cues allowed to predict the sports with a higher number of club members) 
two methods were used. First, the validities were determined by using the modal cue value of 
each sport and the modal direction of each cue. I calculated how often the sport with a 
positive cue value, when it was paired with a sport that had a negative cue value, had in fact 
more club members (according to the statistics). Moreover, I calculated for each cue its 
discrimination rate (DR), which expresses the proportion of times (of the 300 comparisons) 
the sports had different values on a given cue. The results are shown in Figure 3.2.4 and Table 
3.2.3. The cues “national star” and “school” were the most valid ones and the “team sport” 
cue was least valid. As a second method, since participants differed with regard to both the 
cue values they assigned to the sports and the cues’ directions, I determined the cues’ 
validities separately for each participant. Based on these subjective validities, the “ball sport” 
cue achieved the highest average validity, followed by the cues “school”, “national star”, and 
“seasonal”. The “team sport” cue had the lowest average validity.  

 

 
Figure 3.2.4. Actual and estimated validities of the cues identified in the prestudy. The actual 
validities are depicted both as based on the modal cue values and directions (dark grey bar) 
and based on participants’ individual subjective cue values and direction (medium grey bar). 
Bars show standard errors.  
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Did participants’ estimated cue validities match these actual subjective validities? 
Shown in Figure 3.2.4 and Table 3.2.3, there was a substantial discrepancy between the 
estimated and the actual cue order. Although the “outdoors sport” cue, was correctly 
estimated to be of low validity (with a median rank of 6 it was assigned the lowest rank and 
had an actual validity of .55), the “team sport” cue was estimated to be the most valid cue but 
had the lowest actual validity. Overall, there was no correlation between the cue validities 
calculated based on the participants’ subjective assessments and the estimated validities by 
the participants, and this was true both on the aggregate level (r = -.17, p = .68; rs = -.31, p = 
.46) and on the individual level (average across participants: r = -.03; rs = .07). When 
averaged across participants, the mean estimated validity of the cues did not vary much (range 
63-69.9), indicating that there was no marked systematic trend in the estimates. 

 

Table 3.2.3. Direction, validity, and discrimination rate of the cues. The direction refers to the 
direction that the majority of participants indicated to be more valid. The numbers in the 
brackets express how many of the 40 participants agreed with the modal direction 
assessment. The validities based on subjective assessment were calculated using the cue 
values and the cue direction indicated by the individual participants, as were the 
discrimination rates. DR discrimination rate. 

 National 
star School Seasonal Ball sport 

Special 
equipment  Olympic  Outdoors  

Team 
sport 

Directiona + (37) + (34) - (39) + (38) - (37) + (32) + (24) + (34) 
Validitya  .76 .74 .72 .69 .63 .63 .55 .53 
DR .52 .45 .42 .45 .50 .33 .51 .33 
Validityb .65 .66 .64 .67 .57 .57 .51 .49 

SD .12 .18 .10 .10 .09 .13 .09 .11 
DR .48 .45 .40 .41 .49 .43 .50 .40 

SD .04 .05 .10 .07 .04 .08 .03 .08 
Estimated 
validity (Mdn) 65 64.5 65 65 65 65 60 72 

Rank (Mdn) 5 5 4 5 4.5 4 6 3.5 
a Based on modal subjective assessment. 
b Based on subjective assessment of the individual participants. 

 

How well did recalled instances reflect the number of club members in Germany? 
Eight participants indicated that they were members in a sports club (aquatics 3, basketball 2, 
judo 2, soccer, match fishing, athletics, dancing, each 1; three participants reported being a 
club member for two sports). The numbers of club members recalled by the participants from 
their social networks for each sport are reported in Table 3.2.1. Although the number of 
recalled instances reflected the actual distribution of club members rather well (r = .53, p = 
.003; one-tailed), it did worse in capturing the differences in ranks among the sports 

(Spearman rs = .26, p = .10; Goodman-Kruskal γ = .18, p = .11, both one-tailed56). Therefore, 

                                                
56 Using the probabilistic interpretation of Goodman-Kruskal’s γ, the likelihood that a sport with a higher number 
of recalled instances has also more club members in the population is Pγ = 0.5 + = 0.5 × .18 = .59 (Nelson, 1984; 
Gonzalez & Nelson, 1996).  
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one can see from this ecological analysis that though better than chance, the number of 
recalled instances was not highly predictive of the number of club members.  

How accurate were the six mechanisms to infer the higher event with the higher 

frequency? I examined for each mechanism how often, when they made an unambiguous 
prediction, they correctly predicted the sport with the higher number of club members. For 
deriving the predictions of the cue-based mechanisms the subjective cue assessments (in 
terms of cue values and predictive directions) were used. The results are shown in Table 3.2.4. 
The two compensatory cue-based mechanisms EQW and WADD achieved the highest 
accuracy. When they were applicable, they made a correct inference in 64% and 62% of the 
cases, respectively. All three instance-based mechanisms achieved a worse accuracy than the 
cue-based mechanisms. The best cue-based mechanism EQW was substantially better than the 
best instance-based mechanism availability by recall, which achieved an accuracy of 57.6% (p 
= .001, according to a sign-test). As in Study 7, availability by recall and SCH–Group 
(57.1%) achieved very similar levels of accuracy, though the latter was considerably more 
frugal: whereas availability by recall retrieved, averaged across choices and participants, 3.4 
instances per choice (SD = 1.8), SCH-Group retrieved only 1.7 instances (SD = 0.6). 

Note from Table 3.2.4 that the mechanisms differed considerably with regard to their 
applicabilities (i.e., how often they made an unambiguous prediction). While the cue-based 
mechanisms made a prediction for almost all comparisons, the instance-based mechanisms 
made a prediction for only about half of the comparisons, so that the accuracies of the models 
are hard to compare. Figure 3.2.5 shows the mechanisms’ accuracies when focussing only on 
the subset of comparisons for which all mechanisms made a prediction (mean applicability = 
39%, SD = 18). When comparing the mechanisms’ accuracies only for this subset of pair 
comparisons, the same pattern as reported above emerged.57 
 

Table 3.2.4. Fit (i.e., proportion of correctly predicted choices by the mechanisms when they 
made a prediction), accuracy (i.e., the proportion of correct inferences), and applicability 
(i.e., proportion of comparisons an unambiguous prediction was made) of the six 
mechanisms.  

 

Mechanism 

% of correctly 
predicted 
choices  

(M) SD 
Applicability 

(M) SD 
Accuracy 

(M) SD 
Cue-based mechanisms      
 WADD 66.6 8.5 .94 .04 .62 .05 
 EQW 69.0 9.2 .81 .06 .64 .06 
 TTB 62.7 9.1 .95 .04 .59 .07 
Instance-based mechanisms      
 RECALL 71.1 10.1 .53 .20 .58 .14 
 SCH-Group 70.0 10.1 .56 .22 .57 .13 
 SCH-Contact 69.2 9.6 .57 .22 .57 .13 
                                                
57 The accuracies on this restricted set were 0.66, 0.66, 0.63, 0.60, 0.59, and 0.58 for WADD, EQW, TTB, 
RECALL, SCH-Group, and SCH-Contact, respectively.  
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Figure 3.2.5. Accuracies of the six mechanisms on the subset of comparisons where all of 
them were applicable. Bars show standard errors.  

 

Which mechanism predicted participants’ choices best? I now turn to the central 
question of how well the candidate mechanisms accounted for participants’ choices. Could the 
more accurate cue-based approach also predict participants’ choices better, as one would 
predict when arguing that people’s decision processes are adaptive? As described above, for a 
substantial proportion of inferences the mechanisms did not make an unambiguous prediction. 
Rather than always having the mechanisms guess in these cases, I analyzed the fit of the 
mechanisms in two steps. First, I examined the mechanisms’ fit irrespective of how often they 
made an unambiguous prediction. That is, I excluded the cases in which the mechanisms did 
not make an unambiguous prediction. In a second step (see section Combination of cue-based 
and instance-based approaches) I included all cases and examined compound mechanisms that 
either guessed or switched to the alternative knowledge base when the mechanisms did not 
make an unambiguous prediction. 

The average (across participants) proportions of correctly predicted choices (excluding 
cases where the mechanisms were not applicable) are reported in Table 3.2.4. Two instance-
based mechanisms reached the highest fit: availability by recall and SCH-Group correctly 
predicted 71.1% and 70% of the choices, respectively. Of the cue-based mechanisms, EQW 
reached the highest fit (69%).58 However, as reported above, the mechanisms differed in the 
proportion of choices were they made an unambiguous predictions (see Table 3.2.4). The 
higher applicability of the cue-based mechanisms could put them at a disadvantage if the 

                                                
58 Importantly, the fits of the mechanisms were higher than the participants’ accuracies (i.e., their percentage of 
accurate choices) when the mechanisms were applicable, showing that the mechanisms considered accounted for 
(some of the) the errors participants made. Specifically, participants’ average percentage of correct choices were 
63.6%, 64.5%, 63.6%, 64.9%, 65.0%, and 64.9% for the subset of choices of TTB, EQW, WADD, RECALL, 
SCH-Group, and SCH-Contact, respectively. 
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comparisons for which they made a prediction beyond the ones for which the instance-based 
mechanisms made a prediction were harder to predict. To level the playing field, I compared 
the mechanisms on the subset of comparisons where all mechanisms made an unambiguous 
prediction. The results are shown in Figure 3.2.6. Although the differences among the 
mechanisms indeed decreased—suggesting that the mechanisms often made the same 
predictions—the general picture still held. Availability by recall and SCH-Group predicted 
the choices best (72.3% and 71.9% correct predictions, respectively). From the cue-based 
mechanisms, EQW and WADD (which were indistinguishable as they almost always made 
the same prediction), showed the best fit (both 70.2%), but none of the cue-based mechanisms 
reached the fit of the instance-based mechanisms (SCH-Contact predicted 70.7% of the 
choices correctly). TTB achieved the lowest fit and predicted only 65.8% of the choices 
correctly. The difference between availability by recall and EQW (and WADD) amounted to 
a small to medium effect size of w = .1759 (Cohen, 1988), though it did not reach conventional 
levels of significance (sign test p = .19). 
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Figure 3.2.6. Fit of the six mechanisms in predicting participants’ choices, considering only 
the cases where the mechanisms were applicable. Bars show standard errors. 

 

From the analysis on the aggregate level, one can thus conclude that the instance-
based mechanism availability by recall was best in predicting participants’ choices, but beat 
its competitors by only a small margin. To corroborate these results, trace possible individual 
differences in strategy use, and tackle the problem that the mechanisms often made the same 
predictions, the participants were additionally classified individually to the different 

                                                
59 There were 23 positive and 14 negative differences, and 3 ties. Eliminating one tie and splitting the other 2 
across the two mechanisms (cf. Bortz, Lienert, & Boehnke, 2000) yielded a proportion for availability by recall 

of .62, which yielded an effect size—relative to chance = 0.5—of 17.
5.0

)62.05.0( 2

=−=w . 
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mechanisms. For each participant the six mechanisms were compared in pair-wise contests (6 

× 5 / 2 = 15 contests). These contests were based only on those comparisons that allowed to 

distinguish between a given pair of mechanisms, that is, those comparisons for which both 
mechanisms were applicable and for they made different predictions (see Chapter 3.1). A 
participant was assigned to the mechanism that “won” the highest number of contests 
(maximum of 5). After this classification, each mechanism received one point for every 
participant assigned to it. If a participant could not unequivocally be assigned to one 
mechanism (e.g., because two mechanisms both won the same number of comparisons), the 
point was equally distributed across the tied mechanisms (i.e., 0.5 if two mechanisms were 
tied, 0.33 if three mechanisms were tied etc). Figure 3.2.7 shows the summed points for each 
mechanism. Convergent with the aggregate-level analysis, availability by recall and SCH-
Group emerged as the winners and received the highest number of points (12.5 and 10.5, 

respectively, a non-significant difference: χ2 = .17, p = .84 [exact significance]). From the 

cue-based mechanisms, EQW was best (5.33) and received a slightly higher number of points 
than WADD.60 Although this individual classification should be seen as just a crude 
approximation, it generally converges with the results on the aggregate level. 

 

0

2

4

6

8

10

12

14

16

WADD EQW TTB RECALL SCH-Group SCH-ContactN
u

m
b

er
 o

f P
ar

tic
ip

an
ts

 A
ss

ig
n

ed
 to

 M
ec

h
an

is
m

 
Figure 3.2.7. Classification of the 40 participants to the six mechanisms (see text for details).  
 

To summarize, both on an aggregate and on an individual level of analysis the 
instance-based mechanisms consistently achieved a better fit than the cue-based mechanisms. 
Of the instance-based mechanisms availability by recall and SCH-Group were best able to 
predict participants’ choices, whereas SCH-Contact always achieves the lowest fit. Of the 

                                                
60 EQW outperformed WADD only indirectly, however. Both mechanisms were indistinguishable in a direct 
comparison and the higher number of points EQW was only due to its having a better fit than WADD when 
compared to other mechanisms.  
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cue-based mechanisms, EQW and WADD achieved the best fit, but were hardly 
distinguishable, as they very often made the same prediction.61 Finally, TTB clearly fell 
behind and did not seem to be able to capture participants’ choices. Altogether, the results 
suggest that the instances people can retrieve from episodic knowledge are used as a primary 
knowledge base for inferences about event frequencies in the population, whereas predictive 
information from semantic knowledge is used less. 

Examining the inference process: response times. The analysis so far has examined the 
candidate mechanisms on the outcome level, that is, with regard to whether the predicted 
choices coincided with the actual choices of the participants. But some of the mechanisms 
make different predictions also on the process level, and response times can be used to test 
these predictions. In particular, the social circle heuristic assumes that instances are retrieved 
sequentially by circle. As a consequence, the response time of choices following the social 
circle heuristic should differ as a function of the number of circles from which instances were 
retrieved. Because SCH-Contact clearly failed to account for the choices, I focus on the circle 
definition of SCH-Group exclusively. If the assignment to the six different mechanisms also 
captures differences in terms of the processes, then the response times of the participants 
assigned to SCH-Group should differ as a function of the circle that is predicted to determine 
the choice, whereas for participants assigned to the instance-based mechanisms there should 
be no such difference. It is unclear whether there should be a difference for availability by 
recall. Participants assigned to availability by recall do not seem to generally follow the 
stopping rule hypothesized by the social circle heuristic (i.e., stop retrieving instances as soon 
as the number of instances allows to discriminate between the events). The search rule (i.e., 
retrieval by circle), however, might still be valid for them as well. Thus, the participants 
assigned to availability by recall may not generally, but occasionally, stop retrieving instances 
prematurely (recall that no participant followed availability by recall in a deterministic 
fashion), and then the response times of choices made by these participants could still differ 
among the circles. 

For the following analyses, the response times in the choice task were natural log-
transformed and z-standardized for each participant (to reduce inter-individual differences). 
Also, the choices, rather than the participants were chosen as unit of analysis. Only 
comparisons were included that involved two recognized sports and those for which the 
number of instances differed. 

I analyzed the response times as a function of the circles which SCH-Group predicted 
to determine the choices, separately for participants assigned to SCH-Group, RECALL, and 
the cue-based mechanisms (which were collapsed to enhance power). The number of 
instances summed for both events, the difference between the number of instances (both 
natural log-transformed to reduce the skewed distribution), and the difference between the 
number of positive cue values were included as covariates. In line with the prediction derived 
                                                
61 In fact, in the direct contest, the two mechanisms made a different prediction only once with two participants. 
One was in favor of EQW, one in favour of WADD. 
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from the individual classification, there was a main effect for circle for the participants 
assigned to SCH-Group (F[3, 1113] = 6.16, p = .001), but no main effect for circle for the 
participants assigned to the cue-based mechanisms (F[3, 2241] = .81, p = .49). Also, as can be 
seen from Figure 8, the response times followed roughly the monotonic trend predicted by the 
social circle heuristic. Suggesting that the circles also had an effect with the participants 
assigned to availability by recall, there was a main effect for circles for these participants as 
well (F[3, 1162] = 3.86, p = .009). 
 

 
Figure 3.2.8. Response times as a function of the circles predicted to determine the choice, 
separately for participants assigned to SCH-Group, availability by recall, and the cue-based 
mechanisms. The bars indicate standard errors.  
 

Combination of cue-based and instance-based approaches. All previous analyses 
excluded the cases in which the mechanisms did not make an unambiguous prediction. This 
was particularly often the case for the instance-based mechanisms, and it might be interesting 
to know how participants proceeded in this situation. Was a decision then made by guessing? 
Alternatively, instead of making a random choice, people might switch to the alternative 
knowledge base to make an inference. To examine this assumption, I focus on the 
mechanisms of each approach that was best in predicting the inferences, which are EQW and 
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availability by recall. First, I consider the fit of the mechanisms assuming that cases in which 
they do not make an unambiguous prediction are solved by picking one of the two sports 
randomly. Second, I determined the fit of two compound mechanisms. First, RECALL-EQW 

predicts that an inference is made following availability by recall, and in case the mechanism 
does not allow for an unambiguous prediction, an inference is made based on EQW. In case 
an unambiguous prediction is still not possible, a random choice is made. Second, EQW-
RECALL predicts that an inference is made following EQW, and in case EQW does not allow 
for an unambiguous prediction, an inference is made based on availability by recall. As above, 
in case an unambiguous prediction is still not possible, a random choice is made.62 

Which mechanism matched participants’ choices best, now looking at all choices? A 
strategy classification method proposed by Bröder and Schiffer (2003b) was used to assign 
participants to the four mechanisms (see Appendix B for a more detailed description of the 
classification method).63 The result of the classification is reported in Table A in Appendix B 
(rather than the likelihoods, the fit measure G2 is reported, with lower values indicating a 
better fit). Twenty of the 40 participants were classified as using RECALL-EQW, 9 
participants were assigned to EQW (guess), 5 to EQW-RECALL and 5 to RECALL (guess).64  

Since the largest number of participants were assigned to RECALL-EQW it can be 
inferred that most participants first accessed episodic knowledge and based an inference on 
the number of recalled instances in their social networks. Cues, however, were also accessed 
and an inference based on them when the number of instances did not discriminate between 
the sports (and a sport was picked randomly when even cues did not discriminate). 
 Finally, note that one direct process implication of the strong support that RECALL-
EQW obtained is that the response time of cases where the sports could be discriminated only 
after consideration of the cues should be longer than cases where the sports could be 
discriminated based on the number of retrievable instances. These differences in response 
time were indeed found. Choices were made significantly faster when the number of instances 
allowed to discriminate between the sports than when the sports could only be discriminated 
after consideration of the cues (using the difference of sum of positive evidence as covariate; 
estimated marginal Ms = -0.07 vs. 0.06; F(1, 10710) = 44.8, p = .001).  
 
 

                                                
62 Concerning the accuracy of the different mechanisms, availability by recall and EQW (with random choice in 
unambiguous cases) made 54% and 60.8% correct inferences, respectively, and RECALL-EQW and EQW-
RECALL made 58% and 60.9% correct inferences, respectively. EQW-RECALL and EQW (followed by 
guessing when no unambiguous prediction could be made) were the mechanisms leading to the highest accuracy. 
63 This method was not possible for the analysis above, which tested the mechanisms only when they 
discriminated, as with this method, all mechanisms have to be tested on the same set of comparisons. 
64 Bröder & Schiffer, 2003b, proposed to classify participants as “guessing” if the random error �k of the best-
fitting mechanism exceeds a certain high value, for instance, �k = .40. One participant—# 38 with �k = .51 [see 
Table A] exceeded this threshold and was classified to a pure guessing strategy. 
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General Discussion 

The main goal of this chapter was to test two approaches—the cue-based approach and 
the instance-based approach—for predicting people inferences about event frequencies. Each 
approach was represented by three different mechanisms. The mechanisms differed, apart 
from the type of information used, in the amount of information considered and the way 
information was searched for. In Study 7, I first focused on the instance-based approach, and 
formulated a new instance-based mechanism—the social circle heuristic—that is based on a 
sequential, but often incomplete retrieval of instances in a person’s social network. First, by 
means of a computer simulation I demonstrated the competitive accuracy of the social circle 
heuristic compared to availability by recall, which retrieves all available instances. Second, 
the social circle heuristics did equally well as the availability by recall mechanism in 
predicting participants’ inferences in the conducted experiment. In Study 8, the cue-based 
approach and the instance-based approach underwent a rigorous comparison test, to examine 
which predicted participants’ inferences about event frequencies best.  

The results of this direct comparison showed both on an aggregate and on an 
individual level that the instance-based approach was most successful to predict participants’ 
inferences. Specifically, availability by recall, an instance-based mechanism that makes an 
inference based on all instances a person can recall from her social network, achieved the best 
fit. Statistically not reliably different from this mechanism, a version of the social circle 
heuristic in which the circles are defined by the social group to which a social network 
member belongs achieved the second best fit. The individual analysis suggests this 
mechanism predicted the choices of a substantial proportion of participants best. That is, there 
is evidence that some people make an inference based on only a subset of all instances. 
Moreover, a process analysis based on response times suggests that social circles guide the 
retrieval of instances, even if the search process is not generally stopped as soon as the 
number of instances in a circle allows to distinguish between the events.  

None of the cue-based mechanisms was able to compete with the two best instance-
based mechanisms. Of the three cue-based mechanisms, the equal weight linear mechanism 
showed the best fit (although it was practically indistinguishable from a weighted linear 
model), whereas the simpler Take The Best heuristic failed clearly to predict participants’ 
choices. The notion that in the information search process people start be considering 
instances in their social networks was further corroborated in a test in which the cue-based 
and instance-based approaches were combined. This analysis suggested though not primary, 
cues come into play when the number of retrievable instances does not allow for an 
unambiguous inference. The process-oriented analysis corroborated these results. Importantly, 
however, although the cue-based mechanisms did not predict participants’ choices well, they 
were the more accurate approach to make inferences about the number of sport club members, 
that is, they were better at predicting the sport with the higher number of club members. In the 
following, I discuss the implications of the findings. 
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The Primacy of Instances as the Basis for Frequency Judgments 

Why was the instance-based approach more successful in predicting participants’ 
inferences about event frequencies? Its better fit is puzzling in light of the higher accuracy of 
the cue-based mechanisms.65 Assuming that people were sensitive to the differences in 
accuracy, an effort-accuracy perspective (e.g., Beach & Mitchell, 1978; Payne et al., 1993) 
would suggest that the cognitive costs associated with the cue-based mechanisms must have 
outweighed the higher accuracy they afforded. Although it remains unclear whether 
participants knew that the cue-based mechanisms were more accurate, let me I offer some 
speculations as to possible factors producing such higher costs.  

First, due to its more abstract nature, the semantic knowledge that cues represent 
might be less readily activated than instances of the critical events. Also, the computations 
underlying cue-based inferences involve multiple steps (evaluation of cues in terms of the 
predictive direction, assessment of cue validity, integration of cue values and validity etc). 
Instances of an event, by contrast, are probably directly activated by the name of the event, 
come in a common currency, and could thus be easier to combine for an inference. Finally, 
instances are typically learned sequentially. As a consequence, the frequency information 
coded by them is represented as natural frequencies (Gigerenzer & Hoffrage, 1995), which 
can foster probabilistic reasoning (Hoffrage et al., 2000). Together, these factors could lead to 
lower cognitive costs and thus a primacy of instances as the basis for judging how often 
events occur in a population.  
 
Ecological Rationality and the Adaptive Use of Cues 

A central thesis in Brunswikian approaches to judgment and decision making is that 
people are well adapted to the validities of proximal information to predict a distal criterion 
(Brunswik, 1943). For instance, it is central in Hammond’s Social Judgment Theory 
(Hammond et al., 1975), PMM theory (Gigerenzer et al., 1991) and the fast and frugal 
heuristics approach (Gigerenzer et al., 1999). Two of the results that were obtained, however, 
challenge the assumption that people are fine tuned to the predictive value of information in 
their environment. The first is the discrepancy between accuracy and use of the cue-based 
approach discussed above, which, however, could be accounted for by higher cognitive costs 
associated with the cue-based approach. The second result troublesome for the notion of 
adaptive decision making is that participants’ judged cue orders (in terms of validity) were 
unrelated the actual cue orders. As the cues did not refer to obscure features of the sports it is 
not very plausible that the discrepancy between estimated and actual cue order was due to 

                                                
65 Which is surprising given that participants’ estimates of the cue validities were relatively inaccurate; a more 
veridical perception of the cue validities might have led to a higher accuracy of the cue-based approach. But note 
also that participants’ insensitivity to the actual cue validities did not harm to the equal weight or the weighted 
additive mechanism, as in the former only the direction of the cue validities are taken into account and for the 
latter only large differences in cue validity lead to different predictions. Take The Best, however, is highly 
sensitive to inaccurate cue validities, which might explain why it achieved the lowest accuracy of the three cue-
based mechanisms. 
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participants’ lack of expertise. Moreover, note that as the assessments were given after the 
choice task, participants had some opportunity to consider the validity of the cues. Although 
there were no systematic trends in the estimates, the fact that the “team sport” cue was 
estimated to have the highest validity might suggest that estimates were based on some kind 
of plausibility analysis.  

Overall, the results obtained indicate that at least some intentional learning (with 
feedback) might be required to learn the correct cue order. Overall, the apparent difficulties 
resonate with findings are in line with work in the multiple cue probability learning (MCPL) 
literature that has shown that people have trouble learning cue validities correctly even when 
provided with ample opportunity to do so (e.g., Connolly & Gilani, 1982; Connolly & Serre, 
1984; Goldberg, 1968). Note, moreover, that the observed inaccuracies make it difficult for 
mechanisms (such as TTB) that hinge on the processing of cues in an approximately accurate 
cue order to achieve accurate inferences.  
 
The Recall Principle: Old Wine in a New Bottle? 

 As pointed out in the introduction, the notion that when making frequency judgments, 
people try to retrieve instances—the recall principle—is one of the mechanisms described as 
the availability heuristic (Tversky & Kahneman, 1973). One should emphasize, however, that 
the recall principle is not equivalent to the availability heuristic. First, as mentioned above, 
whereas the availability heuristic as originally proposed is consistent with two distinct 
processes—namely ease of recall and actual recall (see Betsch & Pohl, 2002)—the recall 
principle refers exclusively to recall. Second, by specifically focussing on recall, the recall 
principle operates on a knowledge base that is less prone to bias than ease of retrieval. 
Distortions produced by relying on frequencies in the sample of people one knows to estimate 
frequencies in the population are primarily produced by sampling error and therefore stems 
rather from the external environment than from a biased cognitive process (Fiedler, 1996, 
2000). The recall principle is much less susceptible to distortions due to memory-related 
factors and distortions caused through selective news coverage, from which the availability 
heuristic has been claimed to suffer. For instance, the availability heuristic would extend 
search to the virtual circle, which includes instances reported by the mass media (cf. Chapter 
3.1). 
 
Relation of the Recall Principle to Minerva-Decision Making 

An important development concerning the possible memory processes underlying 
frequency judgments was Dougherty et al.’s (1999) simulation of “availability effects” 
(among others) in Minerva-Decision Making (MDM), a multiple-trace memory model. It is 
therefore important to explicate the relation between the instance-based approach and MDM.  

First, it should be noted that both the instance-based and cue-based approaches, and 
MDM describe decision making as a function of memory. One basic difference, however, is 
that whereas MDM assumes that inferences are based on some general process (i.e., echo 
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intensity) arising from activation of memory traces, both the instance-based and cue-based 
approaches describe judgments based on higher level cognitive algorithms (cf. Dougherty et 
al., 1999). Conversely, only MDM specifies possible memory retrieval processes. An 
interesting dimension of comparison is the issue of information loss, a central issue in MDM 
(Dougherty, 2001). In MDM (as in Fiedler’s, 1996, BIAS model) information loss is due to 
the fallibility and imprecision of memory, leading to the probabilistic, rather than 
deterministic, relationship between mind and environment. Information loss is considered in 
the cue-based and instance-based approaches, too, but here information loss and the ensuing 
uncertainties stem from a probabilistic relationship that is already in the environment, namely 
between the proximal information (cues or instances) and the criterion. Even without 
information loss in the cognitive system there would be uncertainty left.  

In spite of these differences, if traces are taken to represent instances of the events 
(rather than repeated occurrences with the same person; e.g., Fiedler, 1996), it is possible to 
instantiate the instance-based approach in MDM. The traces contain the knowledge one has 
about the individuals in one’s social network. Availability by recall could be simulated by 
weighing all traces (or instances) equally, for instance, by only considering the component of 
the trace vector that represents the type of event (e.g., the type of sport). Moreover, events that 
are not exactly of the same type would have to be ignored completely (e.g., by a very steep 
function linking similarity to activation, leading, for instance, to the ignorance of the 
similarity between basketball and handball). The social circle heuristic could be simulated in 
MDM by coding the location of a trace (i.e., in which social circle) such that the weight of an 
instance decreases in a noncompensatory way from central to the peripheral circles. In spite of 
these similarities, MDM does not assume sequential search of instances and therefore cannot 
explain differences in the response time. 

Conclusion 

For many frequency judgments outside the laboratory we have no experience of all 
occurrences to which the judgment refers, forcing us to make an inference based on uncertain 
information. In applying various mechanisms that might apply in this situation I have brought 
together concepts developed in the tradition of the availability heuristic and concepts 
developed by the Brunswikian tradition, which are typically studied in isolation from each 
other. The paradox was observed that although people can come up with information that 
would help them to correctly predict an important aspect of the environment, namely event 
frequencies, this information seems to be considered only secondarily. Moreover, I 
highlighted the interplay between instance-based and cue-based inference mechanisms for 
frequency judgments, thus demonstrating the usefulness of considering both approaches in 
combination. With this integration, I hope to have contributed to a further understanding of 
the processes underlying people’s use of the small sample of instances when judging the 
frequency of occurrence of events.  


