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1 Introduction – The Need for Valid Measures 
 

The validity and reliability of measures is of highest importance in many areas of 

psychology. Clinical judgments, for example, can have lasting consequences for clients. 

Invalid measurements bear risks like over– or underestimation of treatment effects, they 

may lead to the wrong diagnosis, they may indicate a suboptimal treatment, or, in the worst 

case, they might even not detect a relevant symptom at all. Burns and Haynes (2006) state 

that: “The validity of clinical research findings and clinical judgments depends on the 

validity of measures used in research and clinical activities” (p. 401). This is certainly true 

for all areas of psychology. In educational or developmental psychology, a newly 

developed schooling program may lead to disadvantages for children participating in this 

program against others who do not participate simply because an inadequate diagnostic 

tool is used. Traffic psychologists help to design road maps, crossings, and traffic lights to 

reduce the number of accidents. Therefore, they need valid diagnostic instruments to 

identify the best positions for them. All decisions in psychology should be based on the 

best information available. Information is best when it is objective, reliable, valid, and 

specific to a given problem (see e.g., Burns & Haynes, 2006; Courvoisier, Nussbeck, Eid, 

Geiser, & Cole, in press). 

Psychological scales, measures, or ratings cannot be considered valid per se but 

their validity has to be proven in empirical applications. The general term “validation” 

(construct validation) subsumes many strategies that have been proposed to determine and 

improve the validity and reliability of psychological measures. Measures are unreliable 

when measurement error is large and invalid when systematic influences other than those 

one wants to measure have a strong impact on the measurement scores. We need to 

identify these influences to be sure that our measures truly measure what they are supposed 

to represent (e.g., Messick, 1995). If only those influences we wanted to capture are causes 

of the observed score1 we may say that a score is valid:  

 

Validity is an integrated evaluative judgment of the degree to which empirical evidence 

and theoretical rationales support the adequacy and appropriateness of inferences and 

actions based on test scores or other modes of assessment. […] Broadly speaking, then, 

                                            
1 The term score is used in its broadest sense. Any categorization and observation of consistent behaviors or 
attributes is conceived as a score.  
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validity is an inductive summary of both the existing evidence and the potential 

consequences of score interpretation and use.  (Messick, 1995, p. 13) 

 

Validity and validation are, thus, at the core of scientific and applied psychology. 

There is an ongoing debate about the concept of validity. Some researchers say that it is a 

single property of scores and that these scores are valid or not in measuring an existing 

construct (see e.g., Borsboom, Mellenbergh, & Van Heerden, 2003, 2004). The link 

function relating the observed scores to the underlying construct is at the centre of this 

conceptualization of validity. Others explicitly refer to different types of validity that can 

be present to a certain degree (see e.g., Campbell & Fiske, 1959; Messick, 1995; Shadish, 

Cook, & Campbell, 2002). In this conceptualization, the nomological net is at the heart of 

validity. Scores are considered valid if they fit into a nomological net (show convergent 

and discriminant validity). I will refer to the latter concept of validity in this thesis. Three 

“types” of validity of a specific measure can be determined by one or all of the three main 

“types” of validation procedures (see Messick, 1995):  

Content validity is examined by analyzing if the content of the test situation 

matches the area about which conclusions are to be drawn. Testing the knowledge of the 

Latin alphabet asking participants to type and name the different letters, for example, is 

highly content valid, because the area (the Latin alphabet) is well represented.  

Criterion related validity is given when the score is highly associated with one or 

more external variables (criteria) that are considered to be related to the psychological 

construct. The criteria can be measured in the same situation (concurrent validity) or in 

future situations (predictive validity). An intelligence test may be highly criterion valid if it 

highly correlates with school achievement (for a conceptualization of intelligence close to 

academic skills).  

Construct validity as in parts examined by the Multitrait–Multimethod Matrix 

(Campbell & Fiske, 1959) is concerned with the attributes (qualities) of a score. It is 

analyzed, which qualities are measured by a given score—that is, which concepts account 

for the performance on the test score. Some aspects of a given score can be determined by 

studying the association of the test score with other scores that are akin to the first score 

(convergent validity) and with scores that are supposed to measure completely different 

psychological constructs (discriminant validity). All items representing the same facet of 

an intelligence test as well as the results of different intelligence tests should be highly 

positively associated (convergent validity) because they are supposed to measure the same 
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trait. For instance, there should be no or only a small association of scales measuring 

extraversion or neuroticism (high discriminant validity) because these traits are considered 

to be independent from each other. 

The analysis of convergent and discriminant validity as done by the Multitrait–

Multimethod (MTMM) matrix (Campbell & Fiske, 1959) has become one of the most 

important approaches for test-validation. Modern approaches of this analysis strategy offer 

the possibility to determine the reliability of multiple items representing one construct, the 

convergence of different methods measuring the same construct, the discriminant validity 

of different measures of different constructs measured by the same method, the influences 

due to method-specific effects, and to separate measurement error from true-scores. 

So far, MTMM models have only been developed for the analysis of models with 

metric response variables or for variables with ordered response categories. To my 

knowledge, no MTMM model for response variables with non-ordered categories has been 

proposed so far. Almost all MTMM models that have been defined imply bivariate 

relationships between variables. That is, correlations or factor structures linking one 

manifest variable to its underlying latent variables. The latent variables in the structural 

part of the model are also associated via bivariate relationships.  

In principle, these MTMM models assume linear relation-ships between latent 

variables. If two variables are positively correlated to each other, there must observational 

units that have small values on these two variables and other units that have high values on 

these two variables. The relationship can be considered “constant” (linear). Yet, 

relationships between variables do not have to be “constant” across all categories. Imagine 

the case with two distinct categorical variables consisting of three categories each. 

Principally none of the category combinations (elements of the joint distribution) is largely 

overrepresented compared to the expectancies given independence except for the joint 

categorization of X = 2 with Y = 2 (see Table 1.1.1). Therefore, the two variables are 

associated but the association originates in the overrepresentation of one particular cell 

combination (is not “constant” across all combinations). The latter piece of information is 

generally represented in models for categorical data because these models consist of 

parameters reflecting over- and underrepresentations of proportions (frequencies) of 

specific categories or category combinations. However, this piece of information is not 

directly available in the MTMM models proposed so far. It would be worthwhile to gather 

this information to examine, for example, if high convergent validity is due to an 

association between variables originating in systematic over- and underrepresentation of a 
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large number of category combinations or in an over- and / or underrepresentation of only 

one or a few category combinations. Imagine physicians who rate radiographs. They may 

not show over- or underrepresented ratings with respect to the different pathologies but 

only with respect to normal (non-pathological) radiographs. Models analyzing the 

association of the two physicians’ ratings would indicate associated ratings although there 

is no overrepresentation (compared to independence) with respect to the pathological 

radiographs but only with respect to the normal cases. Models analyzing the category-

specific over- or underrepresentation would allow for a more fine graded analysis 

indicating upon which cases the physicians agree and for which cases of pathologies they 

do not agree implying that they should improve their rating skills.  

 

 

Table 1.1.1 

Artificial frequency table of two categorical variables 

   Y   

  1 2 3  

 1 15 15 15 45 

X 2 15 60 15 90 

 3 15 15 15 45 

  45 90 45 180 

Note. X and Y represent two distinct observed variables.  

 

The aim of this dissertation is to define MTMM models for categorical outcomes. 

These models may help to understand more about the associations between different 

constructs because they principally allow for an examination which categories of different 

constructs are under- or overrepresented and for an integration of higher order interactions. 

These interactions depict the association of three or more constructs. The association of 

two constructs may change depending on the other construct. Highly extraverted 

individuals, for example, may more frequently be congruently judged as friendly and 

helpful by peer raters (high convergent validity) than highly introverted individuals upon 

whom the same raters do not agree or disagree more frequently than could be expected by 

chance (low convergent validity). Convergent and discriminant validity may therefore 

change as a function of the categories that are examined.  
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Models will be defined that allow for this kind of analyses. I will consider the 

special case of raters as methods (see Kenny, 1995); however, the results may be 

generalized to other methods in a straightforward way. In particular, the development of 

different Multitrait-Multirater (MTMR) models for non-ordered categorical data will be 

done in several steps. In Section 2.1, the concepts of convergent and discriminant validity 

will be defined and explained. The analysis of convergent and discriminant validity will be 

outlined with respect to the latent MTMM matrix (2.2).Since I will focus on raters as a 

special case of methods in the context of MTMM research (see e.g., Kenny, 1995) existing 

indices and models for the analysis of rater agreement will be revised in Section 2.3. This 

will lead to the research questions presented in Section 3. 

In Section 4.1, the log-linear model with latent variables will be introduced. I will 

show how the model is defined and how to interpret the model parameters in a 

theoretically meaningful way. The model will be illustrated by an empirical application. In 

Section 4.2, the model will be extended to more than two latent variables providing the 

base for the definition of latent rater agreement models.  

In Section 5, the latent rater agreement models will be defined on the latent level. 

These models allow analyzing the convergence of different raters with respect to different 

typologies. In Section 5.1, the latent rater agreement models for structurally different 

(heterogeneous) raters will be defined. The meaning of the model parameters will be 

explained in detail. Empirical applications serve to illustrate the models. 

In Section 5.2, the previously defined latent rater agreement models will be defined 

for interchangeable (homogeneous) raters. The distinction of structurally different and 

interchangeable raters has severe consequences for the model definition with respect to the 

measurement models and the interaction terms. These differences will be outlined. 

Empirical applications illustrate the models.  

In Section 6, the logic of rater agreement models will be combined with the 

strength of MTMM models allowing for the analysis of convergent and discriminant 

validity. I will explicitly refer to the criteria formulated by Campbell and Fiske (1959) to 

illustrate the strength of the newly developed models. The models allow for analyzing 

category-specific agreement rates (convergent validity), the discriminant validity between 

particular latent categories as well as a detailed analysis of (category-specific) rater 

specific effects. These effects reflect some of the determinants and moderators for rater 

accuracy models introduced by Funder (1995). In Section 6.1, these models will be defined 
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for the case of structurally different raters. The case of interchangeable raters will be 

treated in Section 6.2. Empirical applications serve to illustrate the models.  

Finally, the models will be discussed with respect to their theoretical implications 

for assessing the convergent and discriminant validity. Furthermore, it will be discussed 

how they can reflect complex effects of different latent categories across traits and across 

raters on each other, which may reveal important information about sources of agreement 

and disagreement. Future research directions as possible extensions to more than two or 

three traits, for example, will be discussed, too. Moreover, the newly developed models 

will be related to the rater accuracy model (Funder, 1995).  
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2 Multitrait-Multimethod Models and Rater Agreement 
Models 

 

2.1 Convergent and Discriminant Validity 

 

In their groundbreaking work “Convergent and discriminant validation by the multitrait-

multimethod matrix” Campbell and Fiske (1959) proposed the multitrait-multimethod 

(MTMM) matrix as a methodological tool for test validation. More than 2000 citations 

during the first 33 years since published (Sternberg, 1992) and more than 4.500 citations 

until 20082 demonstrate the strong impact of Campbell and Fiske’s work. The initial 

analysis of the MTMM matrix with respect to the convergent and discriminant validity can 

be summarized in four points: 

1. Convergent validity is given if different and independent measurement procedures 

or measures of the same construct converge. In general, measures are said to 

converge if they show sufficiently high correlations with each other. A valid score 

is a score which is reliably measured and whose systematic influences mainly 

correspond to the construct one wants to measure.  

2. Discriminant validity is given if observed scores aiming at measuring distinct 

constructs do not converge. The scores of scales or other measurement procedures 

of one construct should show low correlations with scores measuring another 

construct.  

3. Trait-Method-Units (TMU) are at the core of measurement. Each and every score 

in the behavioral sciences depends on influences due to the construct (trait) and 

properties of the measurement method (method). Method has become a term with a 

widespread meaning: A method may represent scales, raters, items, parcels of a 

test, measurement situations (e.g., field vs. laboratory), or occasions of 

measurement. Biesanz and West (2004), for example, give an overview of the 

meaning of the term “method” in modern psychometric models. Burns and Haynes 

(2006) identify different sources of variance of clinical measures that may all be 

modeled as methods in the sense of Campbell and Fiske. In this contribution, I will 

only consider raters as a specific method. Raters are one of the most common types 

of methods applied in psychology (see Kenny, 1995). 

                                            
2 information retrieved from isi web of knowledge (http://apps.isiknowledge.com) on March 26, 2008. 
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4. More than one trait and more than one method (rater) are needed to separate 

influences due to trait and method effects. More than one method is needed to 

identify the influence of the trait (construct). High correlations of different 

measures representing the same trait originating in different methods indicate the 

influence of the trait. More than one trait is needed to identify the influences due to 

the different methods. Correlations of measures belonging to the same method but 

different traits indicate method-specific influences.  

 

Relying on these four considerations Campbell and Fiske (1959) introduced the 

Multitrait-Multimethod (MTMM) matrix (see Table 2.1.1). This matrix consists of the 

correlations between all trait scores measured with different methods. Additionally, the 

reliability can be depicted on the main diagonal. In this matrix, Campbell and Fiske 

identified four different key components for determining the convergent and discriminant 

validity. The four components can be found in two different blocks of the MTMM matrix.  

Monomethod blocks are the cells combining scores of different traits measured by 

one single method (the method remains the same: Mj = Mj'). In these monomethod blocks, 

the reliability estimates (monotrait-monomethod correlations; depicted with R2) and the 

heterotrait-monomethod correlations ( )( )
2 1 1 1,e.g., T M T Mr  can be found (grey shaded triangles). 

Heterotrait-monomethod correlations represent the association of two distinct traits 

measured by one method. In general, these correlations should be rather low. However, 

these correlations represent influences due to the theoretically expected association of the 

two constructs but also influences due to the specific method. In the case of different raters 

as methods, these correlations are influenced by the association of the two traits, say 

openness and extraversion, and also by the rater-specific view of this association (e.g., the 

presence of a halo-effect may lead to an overestimation of the correlation of openness and 

extraversion).  

In the heteromethod blocks, two types of correlations can be found. These 

correlations indicate the convergent validity and heterotrait-heteromethod correlations. 

Convergent validity (monotrait-heteromethod correlations) can be found on the validity 

diagonals between the triangles. These correlations 

( ) ( ) ( )( )
1 2 1 1 2 2 2 1 3 2 3 1, , ,; ; , for exampleT M T M T M T M T M T Mr r r  depict the convergence of trait measures 

measured by different methods (1 and 2 in the example).  
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Table 2.1.1 

Multitrait-Multimethod matrix for three traits (T1, T2, and T3) measured by three methods (M1, M2, and M3) 

  M1 
 M2  M3 

  T1 T2 T3  T1 T2 T3  T1 T2 T3 

M1 

T1 
R2           

T2 ( )2 1 1 1,T M T Mr  R2          

T3 ( )3 1 1 1,T M T Mr  ( )3 1 2 1,T M T Mr  R2         

             

M2 

T1 ( )1 2 1 1,T M T Mr  ( )1 2 2 1,T M T Mr  ( )1 2 3 1,T M T Mr    R2       

T2 ( )1 2 2 1,T M T Mr  ( )2 2 2 1,T M T Mr  ( )2 2 3 1,T M T Mr   
( )2 2 1 2,T M T Mr  R2      

T3 ( )3 2 1 1,T M T Mr  ( )3 2 2 1,T M T Mr  ( )3 2 3 1,T M T Mr   
( )3 2 1 2,T M T Mr  ( )3 2 2 2,T M T Mr  R2     

             

M3 

T1 ( )1 3 1 1,T M T Mr  ( )1 3 2 1,T M T Mr  ( )1 3 3 1,T M T Mr   
( )1 3 1 2,T M T Mr  ( )1 3 2 2,T M T Mr  ( )1 3 3 2,T M T Mr    R2   

T2 ( )2 3 1 1,T M T Mr  ( )2 3 2 1,T M T Mr  ( )2 3 3 1,T M T Mr   
( )2 3 1 2,T M T Mr  ( )2 3 2 2,T M T Mr  ( )2 3 3 2,T M T Mr   

( )2 3 1 3,T M T Mr  R2  

T3 ( )3 3 1 1,T M T Mr  ( )3 3 2 1,T M T Mr  ( )3 3 3 1,T M T Mr   
( )3 3 1 2,T M T Mr  ( )3 3 2 2,T M T Mr  ( )3 3 3 2,T M T Mr   

( )3 3 1 3,T M T Mr  ( )3 3 2 3,T M T Mr  R2 

Note. R2: Reliability; ( )' ',i j i jT M T M
r : correlation of the variables representing the measures of trait i measured by method j with the measure of trait 

i' measured by method j' .  Heterotrait-monomethod triangles are grey-shaded; Heterotrait-heteromethod triangles are depicted with dashed 

lines. Convergent validities can be found in the cells on the main diagonals within the subtables (not belonging to any triangle).   
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Campbell and Fiske (1959) developed four criteria for evaluating the convergent 

and discriminant validity of measures within their MTMM framework:  

1. The correlations on the validity diagonal ( )( )
2 2 2 1,e.g., T M T Mr  depict the convergent 

validity of particular traits measured by different methods. These correlations 

should be significant and considerably high. 

2. The correlations on the validity diagonal (monotrait-heteromethod correlations) 

should be higher than the correlations of the other variables of the same row or 

column in the particular heterotrait-heteromethod block. The measures of one trait 

by two different methods should be more strongly correlated (converge to a greater 

extent) than two different traits measured by the same two methods. Under these 

conditions, there is discriminant validity. 

3. The monotrait-heteromethod correlations should be higher than the heterotrait-

monomethod correlations ( ) ( )( )
2 3 2 1 2 3 1 3, ,e.g., T M T M T M T Mr r> . This comparison also 

concerns the discriminant validity.  

4. The correlations of variables should show the same patterns in all of the heterotrait 

triangles of both the monomethod and heteromethod blocks. This desideratum also 

concerns the discriminant validity. The associations of the different traits should be 

the same for all methods and all method combinations. Discriminant validity shall 

not depend on the set of methods used to measure the traits. 

 

The guidelines presented by Campbell and Fiske (1959) still influence our modern 

understanding of validation. Marsh and Grayson (1995) give a good summary of the 

intention, impact, limitations, and consequences of the proposed guidelines: 

 

Campbell and Fiske (1959) were aware of most the limitations in their 

approach, specifically stating their guidelines should be viewed as “common 

sense desideratum” (p. 83). Their intent was to provide a systematic, formative 

evaluation of MTMM data at the level of the individual trait-method unit, 

qualified by the recognized limitations of their approach, not to provide a 

summative evaluation or global summaries of convergent validity, discriminant 

validity, and method effects. More generally, Campbell and Fiske had a 

heuristic intention to encourage researchers to consider the concepts of 
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convergent validity, discriminant validity, and method effects; in this intention 

they were remarkably successful. (Marsh & Grayson, 1995, p. 180)  

 

Modern statistical approaches as the Confirmatory Factor Analysis (CFA) in 

combination with structural equation modeling (SEM; especially Jöreskog, 1969, 1973) 

allow analyzing MTMM data with very sophisticated models (see e.g., Eid, 2000; Eid, 

Lischetzke, Nussbeck, & Trierweiler, 2003; Eid, Lischetzke, & Nussbeck, 2006; Kenny, 

1976, 1979; Kenny & Kashy, 1992; Marsh & Grayson, 1995; Saris & van Meurs, 1991; 

Widaman, 1985). All of these models allow for a separation of measurement error from 

latent scores, thus enabling researchers to analyze the latent MTMM matrix which is 

corrected for differences in the reliabilities of the measures. Therefore, more accurate 

estimations of the convergent and discriminant validity free from distortion by 

measurement error can be obtained. 

 

 
 

2.2 The Latent Multitrait-Multimethod Matrix 

 

Out of the great variety of different CFA-MTMM models, the Correlated Trait (CT) Model 

with rater-specific trait-variables (Tjk) comes closest to the original matrix proposed by 

Campbell and Fiske (1959). This model is depicted in Figure 2.1. In this model, a latent 

trait variable (Tjk) is introduced for all observed variables (Yijk) measuring the same trait (j) 

rated by the same rater (k). In Figure 2.1, there are two observed variables (i) for every 

combination of traits and raters. That is, the score on item Y212
 indicates the rating on the 

2nd indicator (i = 2) of the 1st trait (j = 1) for the 2nd (k = 2) rater. In order to have latent 

rater-specific trait-variables each rater has to provide at least two ratings. In this model the 

number of latent traits corresponds to the product of traits and raters (methods) (e.g., 3 x 2 

= 6 latent traits). The model allows for a separation of trait-rater-specific effects from 

measurement error. The correlations of the rater-specific latent traits can be analyzed in the 

standard framework provided by Campbell and Fiske (1959). It is the analysis of a latent 

MTMM matrix.  

The measurement equation of the CT model with method-specific trait variables is: 

 

Tijk ijk ijk jk ijkY T Eα λ= + + .        (2.2.1) 
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where ijkα  is the intercept and Tijkλ  is the loading coefficient of indicator Yijk on Trait Tjk. 

ijkE  represents the measurement error variable.   

 

Y112

Y212

E111

Y121

Y222

Y132

Y232

Y131

Y231

Y221

Y122

Y111

Y211

T11

T21

T31

λT211

1

Trait 1

Trait 3

Trait 2

Rater 1

Rater 2

Rater 1

Rater 2

Rater 1

Rater 2

T12

T22

T32

 

Figure 2.1. The CT-model for three constructs with method-specific trait variables. Tjk: 

trait variable; Yijk: observed variable; i: indicator; j: trait; k: rater; Eijk: error variable (only 

depicted for the first indicator). Only the first two loading parameters are depicted 

( )T111 T1121;λ λ= . 

 

 

The six latent variables (presented in ovals in Figure 2.1) may be analyzed in the 

same way as the manifest variables presented in Table 2.1.1 Therefore, the convergent and 

discriminant validity can be determined on the latent level according to the criteria 

proposed by Campbell and Fiske (1959). A direct adoption of the statistical structure of the 

CT model to the analysis of categorical data is possible (see Hagenaars, 1990, 1993). 

However, no model for the analysis of latent rater agreement as well as the analysis of 

convergent and discriminant validity for categorical data has been formulated yet. 
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Therefore, the existing models of rater agreement will first be revised in order to adopt 

their structure on the latent level.  

 
 

2.3 Manifest Rater Agreement Models 

 

The analysis of rater agreement3 has a long tradition in psychology as in the social sciences 

in general. Indices and models of rater agreement have mainly been proposed for the 

analysis of multivariate cross-classifications of non-ordered categorical (nominal) data. 

Non-ordered categorical variables are variables whose values only serve to identify 

categories without any quantitative meaning. Clinical disorders, for example, are often 

measured on a nominal scale. The assignment of “1” to “paranoid schizophrenia disorder” 

and “2” to “major depressive disorder” is equally admissible as the reverse. The 

assignment of numbers to the categories has no impact on the further analysis of the data, 

because nominal variables are not ordered in a specific manner. Nominal variables can be 

obtained by a wide array of different "ratings" such as self-ratings, peer ratings, medical, 

and psychological diagnoses (for an overview see e.g., Bakeman & Gnisci, 2006; Neyer, 

2006). The assignment to categories requires that each and every observation is classified 

into one and only one category. The categories must be exhaustive and mutually exclusive. 

Although categories have to be mutually exclusive, this does not imply that all 

raters provide the same score for the same object. This may be due to an inaccurate 

definition of the categories, differences in the amount and / or quality of information 

between raters, or to biased ratings by one or more raters. To analyze the convergence of 

different methods (the agreement between raters), nominal variables are usually presented 

in cross-classifications (cross tables), in which the rows and columns represent the 

different categories of the manifest variables measured by the different methods. The 

agreement between two or more raters can be determined relying on different indices of 

rater agreement. The analysis of rater agreement is not restricted to the case of nominal 

data but all indices and models presented in this dissertation may also serve to quantify the 

agreement (convergent validity) for scores of higher measurement levels (ordinal or 

interval level data). 

 

 

                                            
3 Large parts of this chapter have been published by Nussbeck (2006).  
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2.3.1 Rater Agreement Indices 

 

The proportion agreement index (percentage agreement index) may be seen as an intuitive 

and useful first measure of agreement. It is simply the proportion of identical assignments 

of two raters. It is computed by: 

 

( )

( )
1

1 1

I

ii
i

o I J

ij
i j

n
p

n

=

= =

=
∑

∑∑
,        (2.3.1) 

 

where ijn  denotes the number of cases in cell ij  of the table representing the cross-

classification of the two ratings (i: rating of the 1st rater; j: rating of the 2nd rater), iin  

denotes the entries on the main diagonal (representing agreement, where i = j ). Its range is 

from 0 to 1 with 1 indicating perfect agreement. Sometimes the proportion agreement 

index is referred to as percent agreement (Hartmann, 1977), interval-by-interval agreement 

(Hawkins & Dotson, 1975), exact agreement (Repp, Deitz, Boles, Deitz, & Repp, 1976), 

overall reliability (Hopkins & Hermann, 1977), total agreement (House, House, & 

Campbell, 1981), or point-by-point reliability (Kelly, 1977).  

Unfortunately, as Suen and Ary (1989) have shown, the proportion agreement 

index is inflated by chance agreement and suffers from its dependency on the marginal 

distributions. Agreement on chance can simply be determined by multiplying the marginal 

proportions: 

 

i j
ij

n n
e

N
+ +=          (2.3.2) 

 

with ije  depicting the expected proportion of cell ij given independent ratings and N is the 

sample size. “+” in the subscripts indicates the cells which have been collapsed. That is, 

the cells which have been added to yield a marginal frequency. Determining the expected 

cell frequencies using Eq. 2.3.2 for Table 2.3.1(b) shows that the observed cell frequencies 

exactly correspond to the expected frequencies under assumption of independence. There 
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is no agreement beyond chance agreement for the two raters. However, the proportion 

agreement index is rather high 
0 445

.89
55 445Op

+ = = + 
 implying considerable agreement.  

 

Table 2.3.1 

Two cross-classifications of two ratings (artificial data) 

(a) Data Set 1 

  Rater B 

 

Marginal 

distribution of A 

 

  1 2 ni+ 

Rater A 
1 40 15 55 

2 20 425 445 

Marginal distribution of B n+j 60 440 500 

 

(b) Data Set 2 

  Rater B 

 

Marginal 

distribution of A 

 

  1 2 ni+ 

Rater A 
1 0 55 55 

2 0 445 445 

Marginal distribution of B n+j 0 500 500 

Note. ni+  represents the number of times rater A chooses categories 1 or 2, respectively. The 

corresponding frequencies for rater B are denoted by n+j . These marginals are obtained by adding 

the cell counts of the corresponding row (or column, respectively). 

 

 

Additionally, the proportion agreement index is not sensitive with respect to critical 

cases (hyperactive children, for example). This can best be illustrated by the data in Table 

2.3.1(b). Assume, for example, that 55 pupils actually should be rated 1 (e.g. hyperactive, 

as does A correctly4) and 445 should be rated 2 (not hyperactive). As can be seen in Table 

2.3.1(b), both raters agree 445 times diagnosing pupils as “2” while in the other 55 times, 

                                            
4 Assume that the “true” score for the pupils is known. 



Multitrait-Multimethod Models and Rater Agreement Models 20

Rater A correctly judges “1” while B assesses the same pupils as “2”. The proportion 

agreement index yields a value of Op  = .89, which is quite similar to the value obtained 

from the data presented in Table 2.3.1(a) ( ).93op = . However, both raters do not agree in 

even one critical case, whereas in the upper part of Table 2.3.1 both raters agree in 40 

critical cases. The high agreement in Table 2.3.1(b) stems from the low prevalence of 

hyperactivity which is correctly reflected by the marginal distribution of Rater A. Because 

A correctly identifies hyperactive pupils, the proportion agreement index may lead to the 

improper conclusion that B does so as well. But this high level of agreement is completely 

due to the agreement between the two raters for cases belonging to category 2. Hence, the 

proportion agreement index severely suffers from its insensitivity to critical cases and its 

dependency on the distribution of the criterion (i.e., its prevalence). As the actual 

prevalence of behavior occurrence approaches unity or zero, the possibility increases that 

the proportion agreement index is inflated (Costello, 1973; Hartmann, 1977; Hopkins & 

Herman, 1977; Johnson & Bolstad, 1973; Mitchel, 1979). The closer the prevalence is to 

.50, the less likely the proportion agreement index is inflated (Suen & Ary, 1989). Unless 

one knows the marginals it is impossible to provide reasonable thresholds for the 

proportion agreement index.  

The occurrence and nonoccurrence agreement indices can be used when the 

prevalence of a critical observation is very low or very high. The occurrence index (pocc) 

should be used when the prevalence rate falls below .20. It is computed by:   

 

occurrence agreements

occurrence agreements + disagreementsoccp = .    (2.3.3) 

 

When the prevalence rate is higher than .80, the nonoccurrence agreement index (pnon) 

should be used (Kelly, 1977). The nonoccurrence agreement index is calculated by 

replacing the occurrence agreements by nonoccurrence agreements in Equation 2.3.3. The 

occurrence (or nonoccurrence, respectively) agreements reflect the number of times both 

raters agree on the occurrence (nonoccurrence) of the critical category and the 

disagreements reflect the times both raters disagree in general (on occurrence and 

nonoccurrence). Unfortunately, the occurrence (nonoccurrence) agreement index corrects 

for most of the agreement on chance, but not for the total agreement on chance since it still 

depends on the marginals (Suen & Ary, 1989). Another limitation is that no prior 
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knowledge about the prevalence rates exists that would allow for a theoretically founded 

application of these indices.  

The 2χ - (chi-square) value as a measure of association can also be used to analyze 

rater agreement. Comparing the observed cell frequencies against their expected 

frequencies under the assumption of independence allows determining if some cells are 

more (less) often represented than expected by chance: 

 

( )2

2

1 1

I J
ij ij

i j ij

n e

e
χ

= =

−
=∑∑ ,       (2.3.4) 

 

with i j
ij

n n
e

N
+ += . in +  and jn+  represent the marginals of row i and column j, respectively. 

High values indicate high associations of the ratings. The statistical significance of this 

measure of association can be determined by comparing the empirical value (Eq. 2.3.4) to 

the theoretically expected value given the degrees of freedom. The degrees of freedom of 

the corresponding 2χ -distribution can be determined by ( )2
1df I= −  for quadratic 

contingency tables. The higher the χ
2-value, the less the observed cell frequencies match 

the expected cell frequencies. One major drawback of the χ2-statistic is its dependency on 

the sample size. Contingency tables with identical cell-proportions yield higher χ2-values 

for those with larger samples.  

The χ2-value is not restricted to a special range of values. Its values are larger than 

zero but have no upper limit. To make its values more comparable, the corrected 

Contingency Coefficient Ccorr and Cramer’s V can be computed (see for example 

Liebetrau, 1983). Both coefficients transform the empirical χ2-value to obtain values 

ranging from zero to one. In these transformations the empirical χ2-value is compared to a 

maximal χ2-value (Cmax). The transformed coefficients (Ccorr or V) can be interpreted as a 

measure of association: 

 

Contingency-Coefficient C: 

 

2

2
C

N

χ
χ

=
+

,        (2.3.5) 
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Corrected Contingency Coefficient Ccorr: 

 

max
corr

C
C

C
= ,   with max

1R
C

R

−=  and  R = min (I, J).  (2.3.6) 

 

Cramer's V: 

 

2

( 1)
V

n R

χ=
−

,   with R = min (I, J).    (2.3.7) 

 

Unfortunately Ccorr cannot reach 1 in nonquadratic contingency tables (where I ≠ J), 

whereas V does. Both coefficients are hard to interpret because there is no standard for 

judging their magnitudes (Reynolds, 1977a, 1977b). Bishop, Fienberg, and Holland (1975) 

conclude that these coefficients should only be used for comparing several tables and may 

not be interpreted per se. 

Coefficient kappa (κ; Cohen, 1960) is a flexible index that is, applicable to 

dichotomous or polytomous variables involving two or more observers. κ  is computed by: 

 

 
1
o e

e

P P

P
κ −=

−
,        (2.3.8) 

 

where Po represents the observed proportion of identical ratings 
1

I

o ii
i

P p
=

 = 
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∑ and Pe the 

expected proportion of agreement by arbitrary ratings 
1

I

e i i
i

P p p+ +
=

 = 
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∑ , ijp  denotes the 

proportion of observations within each cell ij
ij

n
p

N

 
= 

 
, whereas I denotes the number of 

categories.  

κ  ranges from –1.00 to +1.00, whereby a positive κ  indicates that the observers 

agree more frequently than expected by chance, zero indicates that both raters agree on the 

same level as expected by chance and a negative value indicates that both raters agree less 

often than expected by chance. A negative κ  provides a strong hint that raters do not use 

all categories in the appropriate way. As a rule of thumb, a κ  of .60 can be regarded as the 
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minimal acceptable level of agreement (Gelfland & Hartmann, 1975) whereas a κ  of .80 is 

an indication of high agreement (Landis & Koch, 1977).  
 

2.3.2 Advantages and Limitations of Rater Agreement Indices 

 

In general, associations between variables or methods can be detected by the χ
2-value as a 

measure of association. This value can also be compared to its theoretical distribution 

yielding the χ2-test. This test is principally conducted on the basis of the null hypothesis 

that all variables are independent from each other. The χ2-value provides information on 

whether the data differ significantly from the expected cell frequencies. Information about 

the strength of association can be obtained by the corrected Contingency Coefficient and 

Cramer’s V. 

The special case of rater agreement can be analyzed by several methods. As pointed 

out, many of them are afflicted by specific problems. The most promising approach seems 

to be the κ -coefficient, a method that is a chance-corrected version of proportion 

agreement. Suen, Ary, and Ary (1986) demonstrated the mathematical relationship 

between κ  and proportion agreement and also provided conversion procedures from one 

index to the other.  

Many authors suggest κ to be the most preferable agreement index because it 

corrects for chance agreement, is related to percentage (proportion) agreement, and is 

comparable between studies (see Suen & Ary, 1989) while others criticize it as not 

comparable between studies (Cicchetti & Feinstein, 1990; Feinstein & Cicchetti, 1990; 

Thompson & Walter, 1988a, 1988b; Uebersax, 1987). Indeed, κ can be used to test 

whether ratings agree to a greater extent than expected by chance. Yet, there is still 

concern about using κ  as a measure of agreement because it is only chance-corrected for 

the assumption of independent ratings, an assumption which is implicitly made but 

legitimated by no means (it is assumed that chance agreement is based on the 

independence model). Uebersax (1987) demonstrated how differences in the accuracy with 

which positive and negative cases can be detected (i.e., differences in the mathematical 

characteristics of the particular decision-making process) affect the value of κ . Therefore, 

it is not useful to compare κ  across studies. Moreover, this problem increases when there 

are different base rates. In general, if the sample consists of cases which belong to an 

easily identifiable category, a higher κ  is obtained, although the diagnostic accuracy 

remained the same compared to a sample consisting of less easily identifiable cases. 
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Diagnosability curves representing the degree to which diagnosticians are able to 

accurately judge subjects with respect to the subjects’ true status may actually differ so 

much that κ -values obtained for the same symptom (criterion) with similar base rates 

cannot be compared across studies. Unless there is an explicit model of rater decision 

making, it remains unclear how chance affects decisions of actual raters and how one 

might correct for it (Uebersax, 1987).  

Increasing the number of categories is no problem for the different rater agreement 

indices. However, when the number of methods (observers) increases, the application of 

the general agreement indices becomes more complicated. In this case, κ should be 

determined for each rater pair, and the median value should be taken as the overall value 

(Conger, 1980; Fleiss, 1971). For example, Fleiss (1971) developed modifications of κ  to 

determine rater agreement when objects are rated by the same number of raters to compute 

agreement with regard to a particular object, and to estimate agreement within a particular 

category.  

A high level of agreement between raters does not guarantee an individually correct 

diagnosis; yet, disagreement between raters often indicates a lack of diagnostic accuracy 

(Uebersax & Grove, 1990). The association between variables and the extent to which 

methods or raters agree depend on two major criteria. First, it is important that both raters 

can well distinguish between any pair of categories. Distinguishability between two 

categories increases if the ratio of concordant ratings to discordant ratings of different 

observers increases. The second criterion is the lack of bias (Agresti, 1992). According to 

Agresti’s definition, the amount of bias depends on the comparison of the marginal 

distributions: If raters use the response categories with the same frequency, their marginal 

distributions are homogeneous, indicating that none of the raters prefers a particular 

category compared to the other raters. However, homogeneous marginal distributions do 

not imply that all raters judge the subjects correctly compared to the subjects’ true status, 

but they show that they use the response categories in a similar way. If all raters 

distinguish between categories in the same way and their marginal distributions are similar, 

subjects will be more congruently assigned to the categories of a variable, thus providing 

hints that observers define the categories in a similar way.  
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2.3.3 Rater Agreement Models 

 

All general agreement indices described so far fail to provide more detailed information 

about various types and sources of agreement and disagreement. However, this kind of 

information can be obtained by modeling associations between variables using log-linear 

models. For special cases of association, effect sizes (as the 2χ -value or Cramer's V) can 

be estimated representing the degree of association between variables. Conditional 

probabilities of receiving a particular response by an observer given the responses of other 

observers can be computed. Finally residuals can be determined that compare the 

frequencies with which certain types of agreement and disagreement occur compared to 

what would be expected with some predicted pattern (Agresti, 1990, 1992).  

All log-linear models for the common distributions of two variables are restricted 

models of the saturated log-linear model: 

 

A B AB
ij i j ije ητ τ τ= ,        (2.3.9) 

 

where the expected cell frequency (eij; with i = 1,…I and j = 1,…, J denoting the 

categories) is computed by the product of the overall effect ( )η , two one-variable effects 

( ),A B
i jτ τ , and the two-variable effect ( )AB

ijτ . In the saturated (population) model, the 

model parameters can be determined by simply comparing frequencies and mean 

frequencies of different cells of the joint distribution of different variables. The estimation 

of the parameters for other models has to be done using Maximum-Likelihood (ML) 

procedures. Table 2.3.2 depicts the joint distribution of two variables (their cross-

classification). The extension to more than two variables is straightforward. 

The overall effect ( )η  represents the geometric mean of all cell frequencies and is, 

thus a mere reflection of the sample size (Hagenaars, 1993). It can be determined by:  
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The one-variable effects ( ),  and A B
i jτ τ  reflect deviations of the geometric mean of 

all cells belonging to the ith (respectively, jth) category of a variable. They can be 

estimated by: 
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Table 2.3.2 

Cross-classification of two variables 

  
Variable B 

 
 

  1 …j… J in +  

Variable A 

1 n11 … n1J 1n +  

…i… … … … … in + … 

I nI1 … nIJ In +  

 jn+  1n+  … jn+ … Jn+  N 

Note. …i… and …j… indicate specific categories of the finite number of categories for I 

and J.   

 

 

In the saturated model, all cell frequencies are exactly reproduced. Therefore, the 

one-variable effects reflect the odds comparing a particular marginal to the overall effect.  

The one-variable effect gives first insight into rater-bias (or method bias MB; with 

respect to the other rating5). Ratings are biased with respect to each other to the degree 

their marginal distributions differ from each other (Agresti, 1992): 

                                            
5 I will refer to these rater-specific effects as method bias to be in line with the existing literature (i.e., 
Agresti, 1992).  



Multitrait-Multimethod Models and Rater Agreement Models 27

 

( )/

A
i

A B B
i

MB
π
π

= ,        (2.3.12) 

 

with i indicating the identical category of raters A and B. MB in Equation 2.3.12 is the 

rater-effect of Rater A for category i compared to Rater B (A / B). A value greater than 1 

indicates a higher proportion (a value smaller than 1 a smaller proportion) of this category 

for rater A than for rater B. This kind of rater effect can be determined in all following 

models (relying on the expected frequencies or proportions). For the saturated model, the 

rater-bias can directly be computed relying on the ratio of the log-linear parameters 

( )/

A
i

A B B
i

MB
τ
τ

= . It is the degree to which A or B overestimates (underestimates) the 

prevalence of a particular category with respect to the other rater. It is especially 

meaningful to calculate this index if one of the raters provides “better” ratings than the 

other. That is, if one rater can be seen as a gold standard (like a reference method, a well 

established method) it is meaningful to compare the other rater against this gold-standard 

rater.  

Finally, the two-variable effect ( )AB
ijτ  depicts the deviation of a particular cell from 

its expected value given the overall and one-variable effects. It corresponds to the odds of 

the actual observed cell frequency with respect to the expectation given the overall effect 

and the two odds depicting the deviation of the corresponding row ( )A
iτ  and column ( )B

jτ  

from the overall geometric mean:  

 

 ijAB
ij A B

i j

e
τ

ητ τ
= .        (2.3.13) 

 

The saturated model exactly reproduces the observed cell frequencies; it does not 

impose any restriction on the expected frequencies and therefore does not contain testable 

consequences.  

A useful first analysis of agreement can be done by testing the independence model. 

The independence model assumes that there is no association between both raters6. Thus, 

                                            
6 The log–linear models for rater agreement are generally introduced for the case of two raters but can be 
extended to more than two raters.  



Multitrait-Multimethod Models and Rater Agreement Models 28

the two-variable effect-parameters ( )AB
ijτ  are set to 1. The model equation for the 

independence model appears as: 

 

A B
ij i je ητ τ= .         (2.3.14) 

 

In this model, only the one-variable effects are implemented which means that the 

marginal distributions of both variables are reproduced. If these one-variable effects are 

equal to each other ( ),  for A B
i j i jτ τ= = , both variables’ marginal distributions are 

homogeneous. Homogeneous marginal distributions imply that both raters choose each 

category with the same frequency; accordingly, no rater prefers any category to a greater 

extent than the other, which means that no rating is biased (with respect to the other rater; 

Agresti, 1992). This type of model only rarely fits empirical data because, in general, 

different measures of a construct are related to a certain degree representing the convergent 

validity. 

Useful information provided by the independence model stems from the analysis of 

its adjusted cell residuals. Adjusted cell residuals compare observed with expected cell 

frequencies (see Agresti, 1992): 
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.      (2.3.15) 

 

A useful extension of the independence model is the quasi-independence model. In 

this model, a new parameter is introduced. This parameter is only implemented for cells on 

the main diagonal which represent agreement between methods: 

 ( )IA B AB
ij i j ije ητ τ τ= , with 

1,  if 
 

0,  if 

i j
I

i j

=
=  ≠

.     (2.3.16) 

 

In contrast to the independence model, the quasi-independence model I allows for 

higher cell frequencies in cells on the main diagonal, but no overrepresentation in any 

other cell. For cells indicating disagreement, the independence model holds. As a result of 
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the newly introduced parameters ( )IAB
ijτ , the estimated cell frequencies on the main 

diagonal indicating agreement exactly match the empirical cell frequencies. The 

parameters ( )IAB
ijτ  can be used to compare the probability of receiving a particular 

response by one method given the rating of the other method (see Agresti, 1992). The 

probability to find an observation in a particular cell on the main diagonal is ( )IAB
ijτ  times 

larger than expected by chance (represented by an independence model). Sometimes the 

parameter ( )IAB
ijτ  is also presented as ( )IAB

iiτ  indicating that A and B both choose the same 

category i. Bias (with respect to the other rater) can be examined as in the independence 

model.  

If all parameters ( )IAB
ijτ  are equal to each other, all expected cell frequencies on the 

main diagonal differ from chance agreement to the same degree. Hence, a simpler model 

holds which assumes ( )IAB
ijτ  to be constant: 

 

 ( )IA B AB
ij i je ητ τ τ= , with 

1,  if 
 

0,  if 

i j
I

i j

=
=  ≠

.     (2.3.17) 

 

In this quasi-independence II model, the sum of the expected cell frequencies on 

the main diagonal is exactly equal to the sum of the observed frequencies whereas single 

expected cell frequencies on the main diagonal may differ slightly. The difference between 

both models is that in the latter, the degree of agreement between both methods is the same 

for all categories under consideration, whereas in the first, agreement between methods 

may differ from category to category.  

Table 2.3.4 presents the cells of a cross-classification of two observed variables' 

proportions �
AB ij
ij

e

N
π
 

= 
 

 for the quasi-independence I model. The cells present the 

proportions and the underlying log-linear model parameters. All proportions for cells 

besides the main diagonal only depend on one-variable effects implying independence. 

The cells on the main diagonal additionally depend on two-variable effects.  

The fitted cell proportions in estimations of this model are the cells on the main 

diagonal. That is, their expected proportions equal the observed proportions. All other 
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expected proportions may deviate from the observed proportions. Schuster and Smith 

(2006) showed how the quasi-independence model can be represented as a mixture 

distribution model separating ambiguous from obvious cases. Their approach is to split a 

population for which the quasi-independence model holds into two sub-populations. For 

the first sub-population (the ambiguous cases) the independence model holds (see Table 

2.3.5)—that is, all raters independently rate individuals of the population—for the second 

sub-population (obvious cases) a one variable model holds (see Table 2.3.6)—that is, all 

ratings depend perfectly from each other all raters rate every individual perfectly 

congruently. In the latter subpopulation, all individuals are cross-classified on the main 

diagonal and hence, one variable is sufficient to describe the relationship. Recall, that 

raters may agree upon ambiguous cases but only due to chance agreement. For the 

subpopulation of obvious cases the one-variable models implies that there is perfect 

agreement.  

Schuster and Smith (2006) related the quasi-independence II parameter for cells on 

the main diagonal to κ . However, the meaning of the log-linear parameters has not been 

described yet. Tables 2.3.5 and 2.3.6 show how the different log-linear effects influence 

the cell proportions. Box 2.3.1 gives an overview on their statistical meaning. The log-

linear parameters of the quasi-independence models cannot be easily linked to proportions, 

odds, or odds ratios. Drawing a parallel to Hagenaars (1993): In order to understand the 

implications of the model, the model should be estimated and its expected proportions 

should be interpreted rather than its parameters should be inspected.  

The same rationale as presented for the quasi-independence I model presented in 

Tables 2.3.5 to 2.3.6 and Box 2.3.1 also accounts for the quasi-independence II model. The 

only difference is that the two-variable log-linear parameters are restricted to be constant. 

In both models, the rater-bias coefficient (MB) may be used to determine the influences of 

rater-specific effects.  
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Table 2.3.4 

Parameters in the quasi-independence I model 

   Variable B   

  b = 1 b = 2 b = 3  

V
ar

ia
bl

e 
A

 

a = 1 ( ) ( )
1 1 11

11 3 3

11
1 1

A B AB
AB

A B AB
i j

i j

τ τ τπ
τ τ τ

= =

=
+∑ ∑

 

( )
1 2

12 3 3

1 1

A B
AB

A B
i j

i j

τ τπ
τ τ

= =

=
∑ ∑

 

( )
1 3

13 3 3

1 1

A B
AB

A B
i j

i j

τ τπ
τ τ

= =

=
∑ ∑

 
1
ABπ +

 

a = 2 ( )
2 1

21 3 3

1 1

A B
AB

A B
i j

i j

τ τπ
τ τ

= =

=
∑ ∑

 

( ) ( )
2 2 22

22 3 3

22
1 1

A B AB
AB

A B AB
i j

i j

τ τ τπ
τ τ τ

= =

=
+∑ ∑

 

( )
2 3

23 3 3

1 1

A B
AB

A B
i j

i j

τ τπ
τ τ

= =

=
∑ ∑

 
2
ABπ +

 

a = 3 ( )
3 1

31 3 3

1 1

A B
AB

A B
i j

i j

τ τπ
τ τ

= =

=
∑ ∑

 

( )
3 2

32 3 3

1 1

A B
AB

A B
i j

i j

τ τπ
τ τ

= =

=
∑ ∑

 

( ) ( )
3 3 33

33 3 3

33
1 1

A B AB
AB

A B AB
i j

i j

τ τ τπ
τ τ τ

= =

=
+∑ ∑

 
3
ABπ +

 

 1
ABπ +  2

ABπ +  3
ABπ +   
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Table 2.3.5 

Independence sub-table in the quasi-independence I model (ambiguous cases in Schuster & Smith, 2006) 

 b = 1 b = 2 b = 3  

a = 1 ( )
1 1

11 3 3

1 1

A B

A B
a b

a b

τ τπ
τ τ

= =

=
∑ ∑

�  

( )
1 2

12 3 3

1 1

A B

A B
a b

a b

τ τπ
τ τ

= =

=
∑ ∑

�  

( )
1 3

13 3 3

1 1

A B

A B
a b

a b

τ τπ
τ τ

= =

=
∑ ∑

�  

( ) ( )
11

1 3 3

11
1 1

AB

A B AB
a b

a b

τπ
τ τ τ

+

= =

−
+∑ ∑

 

a = 2 ( )
2 1

21 3 3

1 1

A B

A B
a b

a b

τ τπ
τ τ

= =

=
∑ ∑

�  

( )
2 2

22 3 3

1 1

A B

A B
a b

a b

τ τπ
τ τ

= =

=
∑ ∑

�  

( )
2 3

23 3 3

1 1

A B

A B
a b

a b

τ τπ
τ τ

= =

=
∑ ∑

�  

( ) ( )
22

2 3 3

22
1 1

AB

A B AB
a b

a b

τπ
τ τ τ

+

= =

−
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a = 3 ( )
3 1

31 3 3

1 1

A B

A B
a b

a b

τ τπ
τ τ

= =

=
∑ ∑

�  

( )
3 2

32 3 3

1 1

A B

A B
a b

a b

τ τπ
τ τ

= =

=
∑ ∑

�  

( )
3 3

33 3 3

1 1

A B

A B
a b
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τ τπ
τ τ

= =

=
∑ ∑

�  

( ) ( )
33

1 3 3

33
1 1

AB

A B AB
a b

a b

τπ
τ τ τ

+

= =

−
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 ( ) ( )
11

1 3 3

11
1 1

AB

A B AB
a b

a b

τπ
τ τ τ

+

= =

−
+∑ ∑

 
( ) ( )

22
2 3 3

22
1 1

AB

A B AB
a b

a b

τπ
τ τ τ

+

= =

−
+∑ ∑

 

( ) ( )
33

3 3 3

33
1 1

AB

A B AB
a b

a b

τπ
τ τ τ

+

= =

−
+∑ ∑

 
 

Note. The probabilities presented in this table do not correspond directly to the probabilities in the text since the complete latent table is split 

into two parts. For reasons of readability the superscripts AB are not depicted for the proportions ( )π . 
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Table 2.3.6 
Agreement (Reliability) sub-table in the quasi-independence I model (obvious cases in 
Schuster & Smith, 2006) 

 b = 1 b = 2 b = 3  

a = 1 
* 11
11 3

1

AB

AB
ii

i

τπ
τ

=

=
∑

 
  *

11π  

a = 2  
* 22
22 3

1

AB

AB
ii

i

τπ
τ

=

=
∑

 
 *

22π  

a = 3   
* 33
33 3

1

AB

AB
ii

i

τπ
τ

=

=
∑

 *
33π  

 *
11π  *

22π  *
33π   

Note. The probabilities presented in this table do not correspond directly to the 
probabilities in the text since the complete latent table is split into two parts. For reasons of 
readability the superscripts AB are not depicted for the proportions ( )π . 

 

 

Box 2.3.1 

For the independence model it is known (see e.g., Hagenaars, 1993): 

 

3

3

1

A
A i
i

A
a

a=

πτ =
π∏

, and 
3

3

1

B
jB

j

B
b

b=

π
τ =

π∏
,       (2.3.18) 

with a indicating the categories of A in the independence table and b indicating the 

categories of B in the independence table. 

Therefore: 

3 3

1 1

3

3

1

AB
AB ii
i

A B AB
a b ii

A a b
i

A
a

a

+

= =

=

τπ −
τ τ + τ

τ =
π

∑ ∑

∏
,  and 

3 3

1 1

3

3

1

AB
jjAB

j
A B AB
a b jj

B a b
j

B
b

b

+

= =

=

τ
π −

τ τ + τ
τ =

π

∑ ∑

∏
   (2.3.19) 

 

showing that the one-variable parameters do not exclusively  relate to the marginal 

proportions. Combining Tables 2.3.5 and 2.3.6 yields: *
ii ii iiπ π π+ =� , for the total table. 
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Replacing: 

3 3 3

* 1 1 1
3 3 3

1 1 1

3 3 3 3

3 3
1 1 1 1

3 3 3
1 1

1 1 1

3 3

1 1

A B AB AB A B
i i aa ii a b

a a b
ii ii ii

A B AB
a b aa

a b a

A B AB A B AB
ii a b aa i i aa

a b a a AB A B
ii a b

A B AB a b
a b aa

a b a

A B
ii a b

a b

τ τ τ τ τ τ
π π π

τ τ τ

π τ τ τ τ τ τ
τ τ τ

τ τ τ

π τ τ

= = =

= = =

= = = =

= =

= = =

= =

+
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 − 
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

⇔
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∑ ∑ ∑ ∑
∑ ∑

∑ ∑ ∑

∑ ∑

�

23 3

1 1

A B
i i

AB
ii

A B
a b

a b

τ τ
τ

τ τ
= =

 − 
  =
 
 
 
∑ ∑

,    (2.3.20) 

identifies the statistical meaning of the two-variable effect. This parameter cannot easily be 

related to a category proportion.  

 

 

Log-linear models of agreement can also satisfy the property of quasi-symmetry 

(Darroch & McCloud, 1986). Because there is no objectively precise definition of how to 

classify an observation into the different categories for most cases in the social sciences, 

the discrepancies between classifications by different methods are attributable to 

measurement error and to different perceptions or interpretations of what a category 

definition means. “The correct category for an object exists partially in the eye of the 

beholder” (Darroch & McCloud, 1986, p. 376). On the other hand, there are signals sent 

out by each object which partially conform to each of the categories to a certain degree. 

These signals are assumed to differ between objects. Thus, the classification of an object 

into a particular category depends on the signals sent out by the object and the rater-

specific category definition. If raters perceive these signals but may confuse their meaning 

(differ in their category definitions) a symmetric pattern of disagreement should occur: 

 

,  with  for all  and A B AB AB AB
ij i j ij ij jie i j= ητ τ τ τ = τ .    (2.3.21) 

 

Hence, this model does not only address agreement between raters and indicates 

rater bias with respect to the marginal distributions, but additionally provides some 
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information about rater-specific effects (rater bias; Agresti, 1992). This model is called the 

quasi-symmetry model because the expected cell frequency to receive a particular response 

by the first rater (say category i) and a particular response by the second rater (say category 

j) differs by the same ratio ( )ijτ  from the expected cell frequency given only the one-

variable effects as the contrary combination [j i]7. In other words, associations between 

both raters are “mirrored” around the main diagonal.  

Therefore, information about rater-specific effects can be obtained inspecting the 

MB-coefficient. If this coefficient differs from 1, the observers have different classification 

probabilities for the objects which means that they do not use the categories in the same 

manner. Additionally, inspecting the two-variable effects yields information to which 

degree particular category combinations are more or less frequent. That is, if the two raters 

confound categories in the same way. Assume that rater A correctly rates all individuals 

(knowing the true category of the individuals), the two-variable effects then indicate to 

which degree B agrees with A or if B systematically confounds categories ( );AB
ij i jτ ≠ . 

Yet, it could also be the case that B correctly rates all individuals and A systematically 

confounds categories ( );AB
ij i jτ ≠ —restricting ( )AB AB

ij jiτ τ= 8 thus yields identical systematic 

interactions and, thus, raters are interchangeable with respect to their confounding of 

categories.  

If the one-variable effects do not differ between raters the more restrictive 

assumptions of the symmetry model hold. Formally, the symmetry model appears to be 

quite similar to the quasi-symmetry model: 

 

,  with  for all  and ,  and  for A B AB AB AB A B
ij i j ij ij ji i je i j i j= ητ τ τ τ = τ τ = τ = . (2.3.22) 

 

In contrast to the quasi-symmetry model, the one-variable effects are set equal to 

each other. Thus, the marginal distributions of both variables have to be identical meaning 

that both raters agree on the prevalence of the categories (all MB = 1). In this model, the 

expected cell frequency of contrary combinations of categories is the same. Thus, the raters 

can be conceived interchangeable (Agresti, 1992).  

                                            
7 [a…. z] will be used throughout this thesis to indicate observed or expected patterns of categorical 
variables. That is, [j i] indicates that the rater A chooses category "j" and rater B chooses category "i".  
8 Interchanging the indices i and j signifies that the numbers of the categories are also interchanged from the 
left hand side of the equation to the right hand side of the equation.  
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2.3.4 Advantages and Limitations of Manifest Rater Agreement Models 

 

The rater agreement models differ with respect to their implications for the kind of 

agreement (category-specific or general) and the interchangeability of raters. Compared to 

the quasi-independence models the quasi-symmetry as well as the symmetry model yield 

the benefit that observer differences and category distinguishability can be examined in 

detail (Darroch & McCloud, 1986) because both agreement and disagreement have to be 

modeled. If the quasi-symmetry model holds we can presume that raters produce the same 

amount of under- or overrepresentation for given combinations of categories and are thus 

interchangeable to their confounding of categories. Moreover, if the symmetry model 

holds, both raters are completely interchangeable (Agresti, 1992). A better fitting 

symmetry model compared to the quasi-symmetry model indicates a stronger association 

between ratings and interchangeability of raters. Interchangeable raters are also referred to 

as homogenous raters (see e.g., Schuster, 2002; Schuster & Smith, 2002, 2006; Zwick, 

1988). These models allow for a test if the assumption to have interchangeable raters as a 

result of the research design is met.  

As has been shown, there are different ways to measure agreement and 

disagreement by general agreement indices. In general, associations can be detected by the 

2χ -test and, as a special case of association, rater agreement may be detected by 

coefficient kappa ( )κ . Model-based analysis of associations yields additional and more 

precise information than that provided by general association methods. Log-linear models 

allow testing of the goodness-of-fit (not only against independence as the 2χ -test). They 

provide model-implied fitted cell probabilities and enable researchers to make predictions 

of classifications under certain conditions such as receiving a particular response by an 

observer given the responses of other observers, receiving a response knowing the correct 

status of an observation, or assessing the latent status of an observation given ratings by 

several observers (Agresti, 1990, 1992; Bishop et al., 1975; Goodman, 1978; Haberman, 

1978, 1979; Hagenaars, 1990). Thus, first analyses of rater agreement—as a special variant 

of convergence between multiple methods—can be conducted by overall agreement 

indices. These indices reveal if the raters tend to choose identical response categories. 

However, these indices only consider absolute agreement between raters (identical 
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categories). More detailed information about the joint distribution of ratings is only 

available by use of log-linear models.  

Log-linear models allow for a more fine graded analysis of rater agreement and 

disagreement. In this framework, categories can differ with respect to their agreement and 

disagreement rates. These rates may differ from one category to the other (see Table 1.1.1). 

Each score of one variable may have high co-occurrence with any other score of another 

variable allowing for a deeper understanding of the relations between variables. Log-linear 

models, for example, may reveal that the middle category of one variable co-occurs more 

frequently than expected based on the assumption of independence with the middle 

category of another variable. All other categories may not co-occur more or less frequently 

than expected by chance (their log-linear parameters do not differ significantly from 1).  

All indices and models presented so far suffer from one major limitation. They do 

not allow for the analysis of more than one construct measured by one indicator per rater. 

Therefore, all information retrieved is specific to the combination of the trait (construct), 

the raters, and the indicator. Assuming that rater agreement depends on the items 

administered (some items are hard to judge, e.g., having self-doubts), the construct (some 

may be more easily detected, e.g., sociability; Funder , 1995), and the raters (peers may be 

better raters than acquaintances), it is necessary to extent the existing models to more 

indicators, more traits, and more raters.  

Extending rater agreement models to models with multiple indicators per construct 

would allow for identifying underlying latent categories (so called classes, types, or 

statuses) which cause the different response patterns (observed scores on the multiple 

indicators). Many statuses of individuals can not be directly observed (e.g., psychiatric 

syndromes and disorders) but have to be deduced relying on multiple observations (which 

themselves may be classifications of overt behavior). If, for example, a researcher is 

interested in the adequacy of psychiatric diagnoses of different raters relying on the DSM-

IV TR (American Psychiatric Association, 2004) it may be worthwhile not only to 

examine the final classification but to inspect the ratings of the single check-list categories. 

This inspection can reveal if a) all raters agree with respect to the check-list categories, b) 

if they come to the same conclusions about the status of the patient, c) if all categories are 

weighted to the same degree across raters to produce the final diagnoses, and d) if the 

categories of the observed variables reliably describe the latent variables. Latent (as 

manifest) rater agreement models could allow for a detailed analysis on which categories 

different raters agree, which categories indicating disagreement are only rarely chosen, and 
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which categories indicating disagreement are chosen to a greater extent than expected for 

independent ratings. Integrating additional constructs (multiple traits) would allow for an 

analysis if there is higher or lower agreement for particular constructs and how the 

different categories of the different latent variables co-occur (free from measurement error) 

yielding information about discriminant validity.  
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3 Research Question 
 

Determining the reliability and validity of different ratings is very important in many areas 

of psychology as pointed out in Section 1. Large MTMM studies yield information about 

convergent and discriminant validity of different scales. These analyses are mostly done 

for metric observed variables (for an overview see Eid, Lischetzke, & Nussbeck, 2006) or 

in some cases also for variables with ordered categorical response categories (see e.g., 

Nussbeck, Eid, & Lischetzke, 2006). The aim of this dissertation is to adopt the logic of 

MTMM models to the case of categorical data in general.  

As pointed out in the previous sections, rater agreement models can be used to 

analyze agreement (convergent validity) and disagreement for observed manifest variables. 

However, we lack models that allow for determining the reliability of the manifest ratings 

and that allow for an inspection of agreement and disagreement free of influences due to 

measurement error. These models shall be developed in a first step. The parameters and / 

or (conditional) probabilities of the models will be linked to each other providing 

additional information about category-specific agreement rates, rater bias, and 

distinguishability of the latent categories. An empirical application will illustrate the 

meaning of the model parameters. 

In a second step, a Multitrait-Multirater (MTMR) model for categorical data will be 

defined. This model will be based upon the latent rater agreement models of the first step 

enlarging their perspective to the analysis of discriminant validity. Additionally, the 

influence of particular latent statuses on agreement and / or disagreement may be analyzed. 

An empirical application will serve to illustrate the model.  

The development of the latent rater agreement models and the MTMR models for 

categorical data is organized as follows: 

• In a first step (4.1), the log-linear model with one latent variable will be introduced. 

This model serves to define the measurement structure of the latent variable. The 

measurement structure remains the same across all models and will therefore be 

presented in detail. 

• In a second step (4.2), the model will be extended to a two latent variable model (see 

e.g., Hagenaars, 1990, 1993; Langeheine, 1988). This model is well introduced and 

serves as a basis for the introduction of latent rater agreement models. The meaning of 

the different model parameters will be explained. 
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• In a third step (5), the latent rater agreement models will be defined. Based on the first 

and second step, the different manifest rater agreement models will be adopted to the 

latent level. The different implications of these models will be explained in detail. 

These models allow for identifying very interesting pieces of information with respect 

to the agreement and disagreement of raters  

I will show how these models reveal i) if raters agree with each other, ii) if 

raters agree in a general way (irrespectively of the category under consideration) or if 

rater agreement is category specific, iii) if disagreement is less frequently expected 

than predicted by chance and if so, if this is the case in a general way or if there are 

some categories raters may better distinguish than others, iv) if some disagreement 

combinations are more often expected than predicted by chance implying a kind of 

confusion or lack of category-specific convergent validity, and v) if raters are biased 

with respect to the other rater. 

The latent rater agreement models will be defined for the case of structurally 

different and interchangeable raters. Most emphasis is paid to the interpretation of the 

model parameters and their theoretically meaningful deduction. Empirical applications 

serve to illustrate these models. 

• In a fourth step (6), the latent rater agreement models will be extended to Multitrait-

Multirater (MTMR) models. Integrating an additional rater agreement model into the 

saturated and symmetry latent rater agreement models described in the third step 

enlarges the agreement and disagreement analysis allowing for the analysis of 

discriminant validity.  

These models allow for determining if raters can use different pieces of 

information in a more specific (indicative) way for a given trait knowing the status of 

the other trait. Extraverted individuals may be rated more congruently on their 

emotions than others for example.  

Additionally, these models allow for the detailed analysis of overall agreement 

rates. That is, they allow for determining if raters agree on one construct with a higher 

probability if they also agree on the other construct. This effect reflects if there are 

good targets who can be congruently rated on both constructs. In the same vain, these 

models allow determining if specific disagreement combinations are more often 

expected yielding some information about which categories may be easily confounded 

by different raters.  
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• Finally (7), the models will be discussed with respect to their implications on 

agreement and disagreement, convergent and discriminant validity, rater-specific 

effects, and their relation to the theoretical framework of the rater accuracy model 

(RAM; Funder, 1995). 
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4 Latent Variable Models for Categorical Data 
 

In this section, the framework of log-linear models with latent variables will be introduced 

(e.g., Goodman, 1974a, 1974b; Habermann, 1979; Hagenaars, 1990, 1993; McCutcheon, 

1987; Vermunt, 1997b). In section 4.1, the most basic model for one construct measured 

by several items administered to one rater will be introduced. An empirical application 

serves to illustrate the meaning of the model parameters. In section 4.2, an additional latent 

variable will be introduced (see e.g., Hagenaars, 1990, 1993). The model will be defined 

and the meaning of the log-linear model parameters will be explained. An empirical 

application serves to illustrate the meaning of the model parameters.  

 

 

4.1 Latent Variable Models for Categorical Data 

 

Latent variable models for non-ordered categorical data have been developed during the 

last four decades. The two main approaches are the latent class (LCA) models and log-

linear models with latent variables. LCA models have mainly been developed by 

Lazarsfeld (Lazarsfeld, 1950a, 1950b; Lazarsfeld & Henry, 1968) whereas log-linear 

models with latent variables have been mainly introduced by Goodman (1974a, 1974b), 

Habermann (1979), McCutcheon (1987), and Hagenaars (1990, 1993). Hagenaars 

incorporated more than one latent variable into the log-linear model with latent variables in 

his “modified LISREL approach”. Hagenaars (1990, 1993) based his approach on the 

theory of modified path models (Goodman, 1973). He showed how log-linear models with 

latent variables can be used to analyze directional relations between latent and manifest 

categorical variables (Hagenaars, 1990, 1993). 

The two modeling strategies (LCA modeling and log-linear models with latent 

variables) can be seen as the categorical counterpart of metric or ordinal structural equation 

modeling (SEM). These models are based on extensions of the basic log-linear model 

(Goodman, 1974a, 1974b; Haberman, 1979; McCutcheon, 1987) and the LCA model 

(Lazarsfeld, 1950a, 1950b; Lazarsfeld & Henry, 1968) to log-linear models with latent 

variables. In fact, LCA models can be seen as a special variant of log-linear models with 

latent variables. The parameters of both models can be transformed into one another. 

Maximum Likelihood (ML) estimation procedures exist for both models (Clogg, 1981; 
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Goodman, 1974a, 1974b; Haberman, 1976, 1977, 1979; Hagenaars, 1993; Langeheine & 

Rost, 1988; McCutcheon, 1987). However, the log-linear parameterization allows for a 

more flexible modeling, because the (conditional) response probabilities of the LCA model 

are decomposed into effects due to underlying one-variable effects and possible 

interactions between variables. To analyze MTMM models it is, thus, advantageous to use 

the broader frame of log-linear modeling. Defining log-linear models with latent variables 

as latent rater agreement models also allows for an inspection of (conditional) response 

probabilities and proportions. In some cases (boundary values, see Section 4.1.2), only the 

(conditional) response probabilities can be interpreted. Additionally, the special parameter 

restrictions (e.g., quasi-independence restrictions) of latent rater agreement models can 

better be handled in the log-linear modeling framework. Therefore, I will define the rater 

agreement models in the log-linear modeling framework. 

 

 

4.1.1 Formal Definition of the Log-Linear Model with Latent Variables  

 

Table 4.1.1 depicts parts of a frequency table of a joint distribution of four three-

categorical items measuring neuroticism (see Section 4.1.3, for more details). The total 

joint distribution consists of 81 different frequency patterns (34 cells in the joint 

distribution). The log-linear model with latent variables aims at representing these 81 

response patterns in a parsimonious way (with a smaller number of parameters than 

possible frequency patterns). Therefore, the population is supposed to consist of several 

(homogeneous) sub-groups (classes of the latent variable) each showing the same relations 

to the items (the same log-linear parameters). Since the log-linear parameters can be 

transformed into conditional response probabilities, the expected frequency / proportion of 

every response pattern can be determined.  

In contrast to the log-linear models presented in the introduction, the models 

presented here contain observed (manifest) as well as unobservable (latent) variables. The 

latent variables are supposed to influence the expected score on the manifest variables. In 

the basic model, which will be presented in this section, all manifest and latent variables 

are considered nominal variables, whereas extensions of this approach may also contain 

ordinal or metrical variables (e.g., Heinen, 1993; McCutcheon, 1987). The latent variables 
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of LCA are, generally, called latent class variable, typological variable or latent trait 

variable. All these terms will be used for latent variables representing particular constructs.  

 

 

Table 4.1.1 

Four observed response patterns for self-report data measuring neuroticism (extracted 

from the complete table in Appendix A) 

A 

vulnerable 

B 

Sensitive 

C 

Moody 

D 

self-doubtful 
Frequency 

Relative 
frequency 

… … … … … … 

1 1 1 1    8 .02 

1 2 2 1    1 .00 

3 3 2 2   15 .03 

3 3 3 3 111 .23 

… … … … … … 

Note. 1: non-neurotic response category; 2: middle response category; 3: neurotic response 
category. 

 

 

In all modeling approaches, items measuring the same construct are statistically 

linked to a variable representing exactly this psychological construct (Bock, 1972; 

Langeheine & Rost, 1988; Lazarsfeld & Henry, 1968; McCutcheon, 1987; Steyer & Eid, 

2001). The items depicted in Table 4.1.1 are supposed to measure different categories of 

neuroticism and should, thus, be linked to a latent variable representing different types of 

neurotic personalities (e.g., neurotic individuals, non-neurotic individuals, and individuals 

being in the "middle" of the two extremes). The categorical trait is supposed to cause an 

individual’s responses to the manifest indicators. Depending on her or his value on this 

categorical trait (her or his latent class membership), there will be differences in the 

expected frequencies of the different response patterns. These differences depend uniquely 

on the latent status of the individuals (see Figure 4.1) 
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A vulnerable

B sensitive

C moody

D self-doubtful

NEUS

 

Figure 4.1. Basic log-linear model with one latent variable (NEUS) for neuroticism.  

 

 

Definition 4.1.1 The log-linear model with one latent variable (see e.g., Hagenaars, 1990) 

 

 .
X

x xe = ηΤ τa a           (4.1.1) 

 

with .xea  as expected frequency of the manifest response pattern a (e.g. [1 2 1 2]) given 

class membership x. η  is the overall geometric mean of the complete table (manifest and 

latent variables). 

Τa  represents the one-variable effects of the manifest variables and the two-variable 

effects linking the latent variable X to its indicators: 

 

 .
.

1

i i

i i

i

I
M M X
m m x

M =

Τ = τ τ∏a ,        (4.1.2) 

 

with i

i

M
mτ  representing the one-variable effect for a category m  of the ith item (out of the 

set of I items). X represents the latent variable and x the category of the latent variable. 

.
.
i

i

M X
m xτ  represents the two-variable log-linear effect of the latent category x on category m of 

item i. X
xτ  represents the latent one-variable effect (its latent distribution). Throughout this 

dissertation latent variables (categories) and their formal representations will be separated 

by a dot (“.”) from all other variables to discriminate them from the manifest variables 

(categories). 
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The log-linear model with one latent variable is defined in such a way that the manifest 

variables are independent from each other if the latent variable is controlled for. This is the 

condition of local stochastic independence. All associations between manifest variables are 

due to the their associations with the latent variable.  

For the example presented in Figure 4.1, the log-linear model with latent variable 

is: 

 

 . . . .
. . . . .

A B C D NEUS A NEUS B NEUS C NEUS D NEUS
abcd ns a b c d ns a ns b ns c ns d nse ητ τ τ τ τ τ τ τ τ= ,   (4.1.3) 

 

where A through D represent the manifest indicators of neuroticism, a through d the 

manifest categories of the corresponding indicators, NEUS is the latent variable 

representing neuroticism and ns are its categories. In the model described in equation 

4.1.3: . . . . .
. . . . .

1

i i

i i

i

I
M M NEUS A A NEUS B B NEUS C C NEUS D D NEUS
m m ns a a ns b b ns c c ns d d ns

M =

Τ = τ τ = τ τ τ τ τ τ τ τ∏a  with e.g., 

1 1

1 1

. .
. .

M M NEUS A A NEUS
m m ns a a nsτ τ = τ τ .  

 

 

4.1.1.1 The statistical meaning of the different effects in the log-linear model with 

one latent variable  

 

The log-linear parameters of Definition 4.1.1 with unknown frequencies of the latent table 

(the cross-classification of observed and unobserved proportions) can be calculated as in 

the case of completely observed tables. Habermann (1979, p. 543) pointed out that “the 

same maximum likelihood equations apply as in the ordinary case, in which all frequencies 

are directly observed, except that the unexpected counts are replaced by their estimated 

conditional expected values given the observed marginal totals”. Thus, the estimated 

parameters have exactly the same meaning as in the ordinary model: 

 

• η  is the geometric mean of the unobserved complete frequency table (see e.g., 

Hagenaars, 1990). It is generally not of interest in models with latent variables. 
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• The latent one-variable parameter ( )X
xτ  describes the univariate distribution of the 

latent variable. These parameters are identical to the odds comparing the 

probability (the proportion: X
xπ ) of a particular category (x) with the geometric 

mean of all cells belonging to this variable (X): 

 

  

1

X
X x
x X

X
X

w
w=

πτ =
π∏

.       (4.1.4) 

 

with x and w indicating the categories of the latent variable X9. 

 

• The measurement model .
.

1

i i

i i

i

I
M M X
m m x

M =

Τ = τ τ∏a  depicts the relation of the manifest 

indicators to their underlying latent variable (the conditional response probability / 

conditional expected frequency). The model parameters of the measurement 

equation are based on the (unobserved) proportions (see Hagenaars, 1990): 

 

  

.
.

1

.
.

1 1

i

i

i

i

i

j

j

X
M X

X
m x

M x
m X I

M X
IX n w

x n

=

= =

π
τ =

π

∏

∏∏
,       (4.1.5) 

 

with j indicating the number of categories for item n. x and w indicating the 

categories of the latent variable X, and I indicating the number of categories for 

item nj.  

 
 

                                            
9 X denotes the name of the latent variable as well as the number of categories. It only refers to the number of 
categories in connection with sum- or product signs (  or )Σ Π . The same is true for all other latent variables 

in this dissertation.  
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4.1.1.2 Conditional response probabilities in the log-linear model with latent 

variables 

 

The log-linear models with latent variable can also be represented in two other 

parameterizations. All parameterizations can be transformed into each other. Equations 

4.1.6 and 4.1.7 can be used to transform the log-linear parameters in proportions and 

conditional response probabilities (see e.g., Formann, 1992; Haberman, 1979; Heinen, 

1996):  

 

 

1

X
X x
x X

X
w

w=

τπ =
τ∑

.         (4.1.6) 

 

with w indexing the different categories of X.  

The conditional response probability to receive a particular response mi on item Mi 

given that an individual belongs to latent category x can be determined: 

 

 
.

..
.

.
.

1

i i

i ii

i

i i

i i

i

M M X
m m xM X

m x I
M M X
n n x

n

τ τ
π

τ τ
=

=
∑

,        (4.1.7) 

 

with ni indexing the categories of Mi.  

 

 

4.1.1.3 Effect-parameters of the log-linear model with latent variables 

 

The second alternative parameterization is the effect-parameter parameterization. 

Effect-parameters can be used to examine the strength of the indicators' link to the latent 

variable in a way closely related to the inspection of the conditional response probabilities. 

One may conclude that an indicator is a good indicator of a latent category if it shows one 

large (or very low) effect-parameter. Effect-parameters represent odds and odds ratios. 

Computing the ( ).
1/ 2 .
ABCD X

bcd xΩ , for example : 
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. . . . .
. .1 1. . . . 1 1.

1/ 2 . 1/ 2.. . . . .
2 2. . . . 2 2.

,
A B C D X A X B X C X D X A A X

ABCD X A Xb c d x x b x c x d x x
bcd x xA B C D X A X B X C X D X A A X

b c d x x b x c x d x x

ητ τ τ τ τ τ τ τ τ τ τΩ = = = Ω
ητ τ τ τ τ τ τ τ τ τ τ  

    (4.1.8) 

    
 

determines if it is more probable ( ).
1/ 2 . 1ABCD X

bcd xΩ >  or less probable ( ).
1/ 2 . 1ABCD X

bcd xΩ <  to receive a 

response in the 1st category of manifest item A given latent status x compared to the 2nd 

category given the same latent status x. The latent score is fixed because one is interested 

in the ratio within exactly this category of the latent variable. Parameters which do not 

contain the superscript of the manifest variable of interest (e.g., A - “vulnerable”) can be 

cancelled because their categories are held constant. The complex multi-way (3x3x3x3x3) 

contingency table can thus be represented in several subtables which only consist of the 

latent variable and one manifest variable. It is possible to collapse across all other manifest 

variables because all manifest variables are independent from each other given the latent 

variable (see Bishop, 1971; Appendix B). The ratio .
1/ 2 .
ABCD X

bcd xΩ , with the simplified notation 

of .
1/ 2.
A X

xΩ , consists of two components, representing the main effect of the manifest variable 

and the interaction term: 

 

.
. .1.1

1/ 2. 1/2 1/ 2..
2 2.

A xA
A X A A Xx

x xA A X
x

ττΩ = × = γ γ
τ τ

,       (4.1.9) 

 

with 1
1/ 2

2

A
A

A

τγ =
τ

 representing the general effect to be rather in the first than in the 2nd class 

and 
.

. 1.
1/ 2. .

2.

A X
A X x

x A X
x

τγ =
τ

 represents the change in the general effect ( )1/ 2
Aγ  as a function of the 

latent category. One may also calculate the odds to choose the 1st rather than the 2nd or ( )∨  

3rd category ( )2 3∨ :  

 

 
( ) ( )

.
. .1 1.

1/ 2 3 . 1/ 2 3 .3
.
.

2

A A X
ABCD X A Xx

bcd x x
A A X
a a x

a

∨ ∨

=

τ τΩ = = Ω
τ τ∑

.       (4.1.10) 
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4.1.1.4 Implications of the log-linear model with one latent variable 

 

The standard log-linear model with one latent variable (LCA model) serves as the smallest 

sub-model of the latent rater agreement models and the Multitrait-Multirater models. It is 

the measurement model for the latent trait variables. The model and its three 

parameterizations serve to identify the reliability of the indicators and the meaning of the 

latent variable. Hagenaars (1993) pointed to a parallel between models for continuous 

variables and the models presented here. The direction and the strength of the link between 

the latent variable and its indicators mainly serve to determine the meaning of the latent 

variable in models with unordered categorical latent. Analyzing the meaning of the latent 

variable is nothing else than examining its validity and / or the validity of the measures 

(e.g., Messick, 1989). The validity of a measure has its upper bound in the reliability. 

There are three ways to inspect the reliability of an indicator: 

1. High two-variable log-linear parameters indicate if a manifest category is linked to a 

latent category. However, these parameters cannot be interpreted on their own but 

have to be compared across the latent categories. This comparison is more easily done 

relying on the effect-parameters (see below). 

2. The reliability can also be determined by the inspection of the conditional response 

probabilities. If all conditional response probabilities of different indicators point to 

one specific manifest category as a function of the latent variable, there is an indication 

of reliability. That is, all manifest categories of all indicators supposed to measure a 

neurotic personality type, for example, have positive effects between the latent and 

manifest categories representing this type (matching categories).  

Dillon and Mulani (1984) as well as Langeheine (1988) present how the 

conditional response probabilities can be used to determine the classification errors of 

different raters rating one target on one manifest variable10. The classification errors 

are the weighted (by class sizes) sum of classification errors (see Langeheine, 1988). 

The inverse of the classification errors quantifies the reliability of an indicator. 

However, their approach does not apply to all cases of latent rater agreement 

models. It requires that all items represent the same content and that the categories of 

these items correspond to one and only one category. This can only be adapted to the 

analysis of multiple indicators if all categories of the indicators represent the same 

                                            
10 The different raters are treated as indicators are treated in the approaches of Dillon and Mulani (1984) or 
Langeheine (1988).  
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contents. This does not necessarily have to be the case for multiple indicators of one 

construct. Consider the items “vulnerable” and “moody” as indicators of neuroticism. 

It may turn out that individuals being moderately neurotic are highly “vulnerable” but 

may be more or less “moody” without preferring a special response category for this 

item. In the sense of Dillon and Mulani, item “vulnerable” is highly reliable whereas 

item “moody” shows low reliability. However, item “moody” may be needed to 

differentiate between moderately and highly neurotic individuals. Moderately as well 

as highly neurotic individuals are highly “vulnerable” but only highly neurotic 

individuals are also highly “moody”.  

3. Determining the effect-parameter for every manifest category reveals, if there is one 

special manifest category which can be seen as a marker for the latent category. Very 

high effect-parameters indicate that it is much more probable to choose this category 

than one of the other categories.  

If all two-variable effect-parameters point to the same direction for every latent 

category, respectively, one may additionally examine their absolute values. If the 

manifest one-variable effect-parameters as well as the two-variable effect-parameters 

show identical values for two indicators, these indicators can be considered 

homogeneous. Like in models for homogeneous raters (Schuster, 2002; Zwick, 1988) 

homogeneity is not only reflected in equivalent two-variable effects, but also in 

equivalent manifest one-variable effects. In this case, the model predicts the same 

manifest distribution for the indicators. This allows for a test if all indicators share the 

same categories representing the latent traits. 

If the categories differ with respect to their effect parameters their categories 

represent different latent statuses. In the case of ordered latent categories, for example, 

one category (e.g., sometimes) may be the typical response tendency for a high latent 

status on a particular construct (say depression) if the item describes a rare behavior 

(e.g., “do you wish to be dead?”) but also a typical response category of an easy item 

for a low status on the same construct (e.g., “do you feel helpless?”).  

4. The mean assignment probabilities could also be used to determine the reliability of 

the latent categorization based on the items. This coefficient indicates the mean 

probability to be assigned to the class an individual most probably belongs to. That is, 

if an individual has the relatively highest probability to belong to class x, she or he will 
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be assigned to this class. The mean assignment probability is the mean of all 

assignment probabilities of all individuals who are assigned to this class11.  

 

 

4.1.2 Estimation Process and Boundary Values 

 

The estimation of log-linear models with latent variables cannot be done using analytic 

strategies. Instead Maximum Likelihood (ML) estimation procedures have to be used. The 

most common procedures use either the Expectation-Maximization (EM) algorithm, 

particular variants of the Newton/Raphson procedure, or a combination of these 

approaches (Galindo-Garre & Vermunt, 2004, 2005, 2006; Goodman, 1974a, 1974b; 

Haberman, 1979, 1988; Hagenaars, 1990). Iterative proportional fitting (IPF) procedures 

can be used to find the expected frequencies e of hierarchical log-linear models without 

latent variables (Fienberg, 1980; Hagenaars, 1990). In IPF the initial estimates E  are 

iteratively adapted, so that they finally fit the observed marginal frequencies f. The 

algorithm, thus, aims to reproduce the observed marginal distributions. Models with latent 

variables are estimated in a similar way. However, as the latent variables cannot be 

observed, the EM algorithm has to be used in order to reproduce the observed frequency 

table. 

One problem with this estimation method is, that in some cases parameter estimates 

may occur that are on the edges of the parameter space (boundary solutions). These 

boundaries correspond to probabilities of 0π =  or 1π =  and to 0τ =  or to undefined τ -

parameters as values of log-linear parameters. Boundary values may be due to the 

following reasons: 

1. Empirical non-identification. Large probability tables with relatively small samples 

(Winship & Mare, 1989). This situation is also called sparse table problem. This 

problem may principally be solved increasing the sample size. 

2. Intrinsic non-identification. This case to produce boundary solutions can occur in 

cases where many solutions exist for the set of model equations. Repeated analyses of 

the same model will yield different results (see e.g., Formann, 1992; Galindo-Garre & 

Vermunt, 2004, 2005, 2006; Goodman, 1974b; McCutcheon, 1987; Winship & Mare, 

1989).  

                                            
11 These coefficients are not provided by software package LEM (Vermunt, 1997a) which will be used for 
the empirical analyses. 
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3. Structural zeros and true parameters. In some applications it is meaningful to find 

conditional response probabilities of 1 or 0 (Galindo-Garre & Vermunt, 2004, 2005, 

2006). There should be no male taking the birth control pill and thus the response 

probability for males on this item will be a structural zero (a cell that cannot be 

observed). However, it is the true parameter because males do not take this pill. 

 

In all these cases, log-linear parameters cannot be interpreted because they are not 

identified. Additionally, if the model design comprises more parameters than observed 

response patterns minus 1, the model is underidentified, which implies that there is an 

infinite number of “best” solutions of the estimation process (see e.g., Formann, 1992; 

Galindo-Garre & Vermunt, 2004, 2005, 2006; Goodman, 1974b; McCutcheon, 1987; 

Winship & Mare, 1989). 

Boundary values lead to numerical problems in the computation of the parameters' 

variance-covariance matrix and to meaningless confidence intervals and significance tests 

(see Galindo-Garre & Vermunt, 2004, 2005, 2006). If there are boundary values, the 

inverse of the information matrix cannot be determined and thus no standard errors can be 

calculated. The standard errors of the non-boundary parameters can be calculated taking 

the generalized inverse of the information matrix. These standard errors are only valid, if 

the boundary parameters are considered true (a priori) model parameters (see Galindo-

Garre & Vermunt, 2004, 2005, 2006). Model probabilities still can be interpreted if 

boundary values have been found, yet, log-linear and effect-parameters are not 

interpretable (dividing by zero is not defined). 

There have been different attempts to solve the different problems of boundary 

solutions. De Menezes (1999) proposed to use the parametric bootstrap to overcome the 

problems of meaningless standard errors. Her results show that the bootstrap procedure 

yields accurate estimates for the conditional response probabilities; yet, she could not solve 

the problem that boundary solutions may occur during the bootstrap procedure yielding 

invalid bootstrap results for the effect-parameters. Maris (1999) used prior information on 

the model parameters and thus a Bayesian estimation method called posterior mode or 

maximum a posteriori estimation. Unfortunately, this method is not available in the 

software package LEM (Vermunt, 1997a), which will be used in the empirical 

applications. It is available in Latent GOLD (Vermunt & Magidson, 2000, 2005), however, 

Latent Gold does not allow for more than one latent class variable. Therefore, these newly 

developed estimation methods will not be discussed further.  
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Although the interpretative problems with respect to effect-parameters have been 

well known for a long time now, there is no common sense how to deal with them in 

empirical applications. The majority of research groups seem to argue that the model 

probabilities still can be interpreted. There is agreement that the effect-parameters should 

not be interpreted. Yet, there are different points of views concerning the consequences for 

the degrees of freedom (df). Some authors add the number of parameters on the boundary 

to the number of the degrees of freedom (e.g., McCutcheon, 1987). Others state, that they 

see no good reason to do so (Magidson & Vermunt, 2001). In the remainder, I will 

consider all parameters (including parameters on the edge of their parameter space) as 

model parameters and account for them in reporting the degrees of freedom (as is done in 

LEM; Vermunt, 1997a).  

 

 

4.1.3 Application of the Log-Linear Model with One Latent Variable  

 

In order to illustrate the models to be developed in this dissertation all models will be 

applied to empirical data. I will use the same data-set with changing constellations of 

raters. Therefore, the complete data set is described now. For every application, I will 

explicitly list the raters and variables that will be analyzed.  

 

4.1.3.1 Data description  

 
The data used in this dissertation originate from a large study conducted by Eid, 

Lischetzke, Nussbeck, and Geiser (2004) at the University of Trier (Germany) in 2001 and 

2002. Out of the about 15000 students a random sample of 3000 students was sent a mail 

inviting them to come to the laboratory bringing two peers along. The student who 

received the mail and who came to the laboratory was asked to fill in a self-report 

questionnaire (target person: S) and the two peers were asked to fill in the same 

questionnaire but in the peer-report version (peer A and peer B). As originally intended, 

data from 500 students could be finally collected extending the study to the University of 

Applied Sciences (FH) at Trier. The study yields a data set of 500 triples (1500 individuals 

in total).  
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All three members of the triple were asked to fill in the questionnaires. The 

participants were separated to prevent them from sharing information. Filling in the 

complete questionnaire took about 30-45 minutes and every participant received a 

compensation of 20 German Marks (DM). Each participant was allowed to participate only 

once (irrespective if as target person or as peer A or B). Although all participants were 

informed about this restriction and signed a receipt confirmation for the compensation 

(including their address) 17 triples could be identified with individuals who participated 

twice. That triple was eliminated where the person participated for the second time. 

Another triple was eliminated containing a participant who was only 13 years old. For the 

analyses presented in this dissertation only complete data sets will be used. Therefore, four 

more triples had to be excluded because their data sets yielded missing data. The final data 

set thus contains data from 478 triples; that is, 1434 participants.  

 

 

4.1.3.2 Sample description 

 

About two third of all participants are female students (63.7% of the target persons, 62.9% 

of peers A, 62.9% of peers B). Thus, women are slightly overrepresented in the sample 

with respect to the proportion of enrolled female students at Trier Universities (about 55% 

of the students are female; for a more detailed discussion see Nussbeck, 2002). The sample 

consists mainly of students studying one of the following five subjects: Psychology, 

Economics, Law, Architecture, and Geography / Geology (see Table 4.1.2)  
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Table 4.1.2 

Sample description with respect to the most frequently studied subjects  

Subject 

Proportion of all 
enrolled students 

at Trier 
Universitiesa 

Proportion of 
female students in 

this programa 

Proportion of 
students enrolled in 
this program in the 

sample 

Proportion of female 
students enrolled in this 
program in the sample 

Psychology 9,9% 69,5% 17,1% 76,1% 

Economics 14,7% 42,2% 15,6% 58,9% 

Law 17,3% 54,9% 15,0% 69,1% 

Architecture (FH)b   7,6% 56,4% 

Geography/Geology 12,6% 54,0% 7,1% 66,7% 

Note. a Data stem from fall 1999/2000; b Unfortunately, no statistics were available for the University of 

Applied Sciences. The percentages do not sum up to 100% because not all subjects are listed. 

 

 

The mean age of all participants (target persons and peers) is 23.4 years. The 

youngest participants were 17 years old for target persons and peers A, the youngest peer B 

was 18 years old, the oldest participants were 49 years old for target persons and peers A, 

and 52 years old for peers B. About 66% of all participants are between 19 and 27 years 

old (corresponding to the expectations about a student sample; see Table 4.1.3). The 

sample (in all three groups) was highly qualified since more than 98% of all participants 

had at least "Fachhochsschulreife" (high school degree which permits attending German 

Universities of Applied Sciences: FH). More than 94% of the total sample was enrolled at 

the University or at the University of Applied Sciences. 
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Table 4.1.3 

Sample description with respect to age 

 Target Person Peer A Peer B 

Mean 23,4 years 23,4 years 23,4 years 

1. Percentile 0-25% 17-21 years 17-21 years 17-21 years 

2. Percentile 25-50% 21-23 years 21-23 years 21-23 years 

3. Percentile 50-75% 23-25 years 23-25 years 23-25 years 

4. Percentile 75-100% 25-49 years 25-49 years 25-52 years 

Youngest 17 years 17 years 18 years 

Oldest 49 years 49 years 52 years 

 

 

Table 4.1.4 

Time the target person S knows peers A and B 

Percentile Time S knows A  Time S knows B 

1. Percentile 0-25% up to 5 month up to 5 month 

2. Percentile 25-50% 5-20 month 5-18 month 

3. Percentile 50-75% 20-42 month 18-38 month 

4. Percentile 75-100% 42-311 month 38-294 month 

 

 

The target person and peers A and B know each other fairly well. On a 10-point 

scale (10 indicating best knowledge / highest familiarity: “We have absolutely no secrets”) 

the target persons have a mean value of 6.51 for the familiarity with A and 6.44 for the 

familiarity with B. Peers A indicate a mean value of 6.64 and B of 6.59 for the familiarity 

with the target person. The intraclass correlations (ICC) for these variables are ICC = .82 

(target person and A) and ICC = .78 (target person and B). Target persons and peers, thus, 

rate their familiarity on a relatively high level and very similar to each other. The time each 

dyad knows each other is depicted in Table 4.1.4. On average, the target person and the 

peers have known each other for three years (ICC = .96 for the target person and peer A 

and ICC = .99 for the target person and peer B). Target persons and peers thus agree 

(almost) perfectly about the time they know each other. 75% of the participants have 

known each other for at least half a year, 50% for at least more than one and a half years 
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(see Table 4.1.4). With respect to familiarity time the dyads know each other, they do 

virtually not differ from each other and, therefore, the two peer raters should be able to 

judge the target’s traits being considered interchangeable. 

 

 

4.1.3.3 Variables 

 

In this dissertation, two sub-scales of a German Big-Five scale (Ostendorf, 1990) 

measuring neuroticism and conscientiousness are used to illustrate all newly developed 

models. Neuroticism and conscientiousness were selected because prior research result 

showed that facets of conscientiousness (being dependable) enhanced rater agreement and 

facets of neuroticism (being moody) deteriorated rater agreement (see Colvin, 1993b). The 

scales in the self-report version can be found in Appendix A. The response format in its 

current form is an ordered response format ranging from "not at all" to "very much so" 

across five categories (see Appendix A). Therefore, the data could principally be analyzed 

using dimensional models for ordinal response formats [i.e., models of Item Response 

Theory (IRT); Andrich, 1978; Jansen & Roskam, 1986; Roskam, 1995; Roskam & Jansen, 

1989; Samejima, 1969]. 

Since the aim is to develop MTMR models for categorical and non-ordered 

categorical response variables the range of the scale was reduced to three categories in 

order to reduce the complexity of the model. Analyzing log-linear models with variables 

consisting of 5 categories will result in 5I possible manifest response patterns, where I 

indicates the number of items. In order to have models that do not suffer from empirical 

non-identification by default (due to the large number of possible patterns) the extreme 

categories were collapsed: The first and second categories (the lowest categories) have 

been collapsed, the middle category has been kept, the fourth and fifth categories (highest 

categories) have been collapsed. Still, the three remaining categories are ordered. The 

frequency distributions of the 8 items for the self-report (target person) can be found in 

Table 4.1.5. The frequency distributions of the two peer reports A and B are quite similar 

and can be found in Appendix A.  
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Table 4.1.5 

Frequency distribution of the analyzed Big-Five Items (self-report) 

  Categories  

German item English item little (1) middle (2) highly (3) total 

neuroticism 

verletzbar vulnerable 43 75 360 478 

empfindlich sensitive 63 77 338 478 

launenhaft moody 179 130 169 478 

selbstzweiflerisch self-doubtful 121 88 269 478 

conscientiousness 

arbeitsam industrious 93 165 220 478 

fleißig diligent 116 159 203 478 

pflichtbewußt dutiful 29 93 356 478 

strebsam ambitious 122 150 206 478 

Note. Categories 1 and 2 as well as 3 and 4 of the original scale have been collapsed. 

 

 

The two peer raters have been randomly assigned to be peer A or B, they can be 

conceived interchangeable. This assumption seems to be tenable because the two peers do 

not differ with respect to the distribution of their variables presented in Tables 4.1.3 and 

4.1.4 (see Schuster, 2002; Schuster & Smith, 2002, 2006; Zwick, 1988). The two peer 

reports differ structurally from the self-report.  

 
 

4.1.3.4 Application of the log-linear model with one latent variable 

 

To illustrate the log-linear model with one latent variable I will present the results of this 

model in detail. In this section the four self-report items ("vulnerable, sensitive, moody, 

and self-doubtful") will be analyzed. All models in this dissertation are estimated using the 

software package LEM (Vermunt, 1997a). The corresponding input files can be found in 

Appendix F. 
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A vulnerable

B sensitive

C moody

D self-doubtful

NEUS

 

Figure 4.1 (repeated). Basic log-linear model with one latent variable (NEUS) for 

neuroticism.  

 

The 2χ -criterion and the information criteria AIC (Akaike, 1974, 1987; Bozdogan, 

1987) and BIC (Schwartz, 1978) will be used to evaluate the goodness-of-fit of the 

different models. Additionally, I will run bootstrap analyses with N = 200 bootstrap 

samples to check for the overall goodness-of-fit (relying on the simulated Pearson-2χ -

values) because the models are very likely to produce empirical 2χ - values that do not 

approximate the theoretical distribution (sparse table problems, see Habermann, 1988; 

Hagenaars, 1990; Winship & Mare, 1999).  

Figure 4.1 depicts the log-linear model with one latent variable for the empirical 

application. The latent variable NEUS for neuroticism in the self-report underlies the 

manifest response behavior. Latent variables are presented with ovals, manifest variables 

with boxes, arrows indicate dependencies between variables. In this approach, no error 

components are depicted, because the dependent variables do not correspond to the 

responses themselves but expected frequencies of each category for every indicator. The 

response depends uniquely on the latent variable NEUS. This is the assumption of local 

stochastic independence.  
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Table 4.1.6 

Goodness-of-fit coefficients of the log-linear model with 1, 2, and 3 latent categories  

NS 
2χ  ( )2p χ  L2 p(L2) df AIC1 BIC1 pboot nbounds 

1  562.25 .00 356.09 .00 72 212.09 –88.12 –– –– 

2 79.62 .08 86.45 .03 63 –39.55 –302.23 .09 1 

32 59.61 .28 65.27 .14 54 –42.73 –267.89 .38 7 

Note. NS: number of latent categories; 2χ : Pearson 2χ -value; L2: Likelihood–Ratio 2χ -value; 1AIC and 

BIC are based on the L–squared 2χ –value; 2 The estimation of the three–class solution yielded one fitted 

zero marginal in LEM; pboot: bootstrapped probability of 2χ ; nbounds: number of boundary values.  

 

 

Table 4.1.6 shows the goodness-of-fit indices for the three different models. The 

one-class solution does not fit to the data. The two-class solution fits to the data according 

to the 2χ -value, does not fit with respect to the L2 value, and fits with respect to the 

bootstrapped 2χ -value. The three class solution generally fits to the data according to 

these three criteria. According to the AIC, the three-class solution should be preferred. 

According to the BIC the two-class solution should be preferred.  

The three-class solution will be presented because the latent rater agreement models 

that will be defined in Section 5 require at least three latent categories to differentiate from 

one another. I will exemplarily report all three parameterizations to illustrate their 

meanings. In the remainder, I will mostly rely on the conditional response probabilities to 

illustrate the relation between the manifest and the latent variables since the conditional 

probabilities can be interpreted even in the case of boundary solutions. However, in some 

cases I will also refer to the other parameterizations. 
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Table 4.1.7  

Multiplicative log-linear parameters of the log-linear model with three latent categories 

representing neuroticism (self-report) 

Overall effect 

ɵη  1.15 10–28    

One variable effect of the categorical trait  

 ns = 1 ns = 2 ns = 3  

NEUS

nsτɵ  1.59 1011 3.45 1027 1.61 10–37  

One–variable effects of the manifest variables  

 r = 1 r = 2 r = 3 Variable names 
A

aτɵ  2.50 10–41 4.40 1019 9.08 1020 
“vulnerable” 

ˆ B
bτ  1.22 108 1.36 105 2.96 10–11 

“sensitive” 

ˆC
cτ  0.73 0.37 3.68 “moody” 

ˆ D
dτ  0.47 0.91 2.36 “self–doubtful” 

Two–variable effects of the latent variable and its indicators  

 ns = 1 ns = 2 ns = 3  

.
1.ˆ A NEUS

nsτ  3.52 1040 2.86 10–20 9.92 10–22*  
“vulnerable” 

.
2.ˆ A NEUS

nsτ  9.83 1039 1.58 10–20 6.44 10–21*  
.

3.ˆ A NEUS
nsτ  

2.89 10–81 2.21 1039 1.56 1041 
 

.
1ˆ
B NEUS
nsτ  6.64 108 5.95 1011 5.09 10–24* “sensitive” 
.

2.ˆB NEUS
nsτ  1.50 10–9 4.83 10–6 2.76 1011*  

.
3.ˆB NEUS

nsτ  
0* 3.48 10–7 7.11 1011  

.
1.ˆC NEUS

nsτ  3.63 2.21 0.12 “moody” 

.
2.ˆC NEUS

nsτ  1.59 3.30 0.19*  

.
3.ˆC NEUS

nsτ  
0.17 0.13 42.12  

.
1.ˆ D NEUS

nsτ  3.37 1.11 0.27 “self–doubtful” 

.
2.ˆ D NEUS

nsτ  1.83 0.59 0.93  

.
3.ˆ D NEUS

nsτ  0.16 1.52 4.04  

Note. * boundary values. 1 fitted margin is zero. ns: latent category; r: manifest category.  

 

 

Log-linear parameters. The estimates of the population parameters (marked with a hat) 

depicted in Table 4.1.7 should only heuristically be interpreted because they are afflicted 

by boundary values. The first row presents overall geometric mean ɵ( )η . This parameter is 
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a mere reflection of the sample size (Hagenaars, 1990). The log-linear parameters for the 

latent variable (latent one-variable effect: ˆ NEUS
nsτ ) show that the middle category is strongly 

preferred by the raters followed by the 1st category, the 3rd latent category is not preferred 

according to this parameters. The log-linear parameters of the manifest distribution 

(manifest one-variable parameters, e.g.: ˆ A
aτ ) depict the unconditional manifest distribution. 

It can be seen that the 2nd and 3rd category are strongly preferred for the item “vulnerable” 

(A). The first two categories of item “sensitive” (B) are more frequently expected than 

based on the geometric mean. The manifest log-linear parameters for items “moody” (C) 

and “self-doubtful” (D) show that the 3rd category is overrepresented for these items.  

The two-variable log-linear parameters ( ).
1.ˆe.g., A NEUS

nsτ  show that the link between 

the 1st latent class (ns = 1) and the 1st manifest response category is always strongest 

because the two-variable log-linear parameter is highest for this connection. However, for 

three items (A, C and D) also the 2nd manifest response category is strongly related to the 

1st latent category. Principally, the parameter estimates decline with an increase in the 

index of the manifest category. The two-variable parameters linking the 2nd latent category 

to the manifest response categories reveal that this category is strongly linked to the 3rd 

manifest response category of item A, to the 1st manifest response category of item B, to 

the 2nd manifest response category of item C, and also linked to the 1st and 3rd manifest 

response category of item D. The two-variable parameters linking the 3rd latent category to 

the items are always highest for the 3rd manifest response category. The boundary values 

strongly influence the parameter estimates as shown by the very high values.  

 

Effect parameters. The effect-parameters (see Table 4.1.8) give a more comprehensive 

view on the relation between the latent and the manifest variables because the manifest 

one-variable effects are considered in addition to the two-variable effects. The values are 

only depicted for items C and D because these parameters suffer from the boundary values 

to a smaller degree than the parameters for items A and B.  
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Table 4.1.8 

Effect-parameters (category against the two others) for the two indicators “moody” and 

“self-doubtful” in the log-linear model with three latent categories representing 

neuroticism 

One variable effect of the manifest variables 

 r = 1 r = 2 r = 3 Variable names 

ˆC
cγ  0.53 0.14 13.54 “moody” 

ˆ D
dγ  0.22 0.83 5.57 “self-doubtful” 

Two-variable effects of the latent variable and its indicators 

 ns = 1 ns = 2 ns = 3  

.
1.

ˆC NEUS
nsγ  13.18 4.88 0.01 

“moody” .
2.

ˆC NEUS
nsγ  2.53 10.89 0.04 

.
3.

ˆC NEUS
nsγ  0.03 0.02 1774.09* 

.
1.

ˆ D NEUS
nsγ  11.36 1.23 0.07 

“self-doubtful” .
2.

ˆ D NEUS
nsγ  3.35 0.35 0.86 

.
3.

ˆ D NEUS
nsγ  0.03 2.31 16.32 

Note. * boundary value. r: manifest response category; ns: latent category. For sake of 

simplicity, the effect parameters are simplified to  .
.ˆC NEUS

c nsγ , for example, leaving out the 

indices for the two other categories.  

 

 

Table 4.1.8 shows the effect-parameters to choose one particular category against 

the two other categories. As already described for the log-linear parameters, it is much 

more probable to choose the 1st manifest category ( ( )
.

1/ 2 3 .1
ˆ 13.18C NEUS

∨γ =  and ( )
.

1/ 2 3 .1
ˆ 11.36D NEUS

∨γ = ) if 

the target belongs to the 1st latent class. The effect-parameters for the 2nd latent class 

indicate that individuals belonging to this class have the highest tendency to choose the 2nd 

manifest response category for item C and the 3rd category for item D. However, the 1st 

manifest response category is also more often chosen than predicted by the one-variable 

effect-parameters ( ) ( )( ). .
1/ 2 3 .2 1/ 2 3 .2
ˆ ˆ1 and 1C NEUS D NEUSγ γ∨ ∨> > . Individuals belonging to the 3rd latent class 

most probably endorse the 3rd manifest category ( ( )
.

3/ 1 2 .3
ˆ 1774.09C NEUS

∨γ =  and ( )
.

3/ 1 2 .3
ˆ 16.32D NEUS

∨γ = ).  
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Conditional response probabilities. The analysis of the conditional response probabilities 

in Table 4.1.9 shows that the three latent categories can be interpreted as three latent 

personality types. A non-neurotic type ("non-neurotic" class: 1), a class (2) preferring 

neurotic response tendencies with respect to items A and B (“vulnerable” and “sensitive”) 

and showing no strong response tendencies for items C and D (“moody” and “self-

doubtful”) - I will call this class "sensitive but stable class" to have a short description -, 

and a “neurotic” type (“neurotic” class: 3) choosing the third category with very high 

probabilities for all items. 

 

Table 4.1.9 

Conditional response probabilities in the log-linear model with three latent categories 

representing neuroticism  

  latent categories1 

variable 
manifest 

categories 
1 ( )1ˆ .24NEUSπ =  2 ( )2ˆ .56NEUSπ =   3 ( )3ˆ .20NEUSπ =   

A (vulnerable) 

1 .29 .04 .00* 

2 .41 .10 .00* 

3 .30 .86 .99 

B (sensitive) 

1 .50 .02 .00* 

2 .50 .07 .00* 

3 .00* .91 .99 

C (moody) 

1 .68 .38 .00 

2 .21 .40 .00* 

3 .12 .23 .99 

D (self-doubtful) 

1 .49 .24 .01 

2 .31 .15 .13 

3 .20 .61 .87 

Note. * boundary values. 1 The values in parentheses represent the latent class sizes. One fitted margin is 

zero.  

 

 

The first class consists of 24% of all participants. The probability of choosing the 

3rd response category are rather low (p = .30, .00, .12 and .20, respectively) and the 

probabilities to choose the second response category are not very pronounced (p = .41, .50, 

.21, and .31, respectively). Slightly more pronounced are the conditional response 
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probabilities to choose the 1st manifest category for individuals belonging to the 1st class (p 

= .29, .50, .68, .49). Keeping in mind, that the categories of the variables are ordered from 

low neurotic to high neurotic response categories, the first class shows low neurotic 

response tendencies.  

Individuals of the second class tend to choose the first response category much less 

often (probabilities of .04, .02, .38 , and .24), they also do not choose the second response 

category very often (probabilities of .10, .07, .40 , and .15), but rather tend to choose the 

third response category (probabilities of .86, .91, .23 , and .61); the typical response pattern 

for this class is to approve items A and B (choose the 3rd category) to choose any category 

for item C slightly preferring the categories 1 and 2 

( ). . .
1.2 2.2 3.2ˆ ˆ ˆ.38; .40; .23C NEUS C NEUS C NEUSπ π π= = =  and to most probably choose the highest 

response category for item D (self-doubtful) but to also choose another response category 

in 40% of the times. This type could best be described as a “sensitive but (emotionally) 

stable” [vulnerable and sensitive but not very moody or self-doubtful] personality type.  

Members of the third latent class choose the third response category almost with 

certainty for the first three items (“vulnerable”, “sensitive”, and “moody”, all p = .99) and 

strongly prefer the third category of item D (“doubtful” p = .87). This class shows clear 

neurotic response tendencies. The differences in terms of the typical response behaviour 

between the second and the third class of individuals mainly consist in the expected 

responses for “moody” and “self-doubtful”. Individuals belonging to the 3rd class will 

mainly choose the third response category (86% of the time), whereas individuals 

belonging to the 2nd class will also provide responses in the 1st or 2nd response category for 

at least one item in 85% of the time. The empirical application shows that the 

interpretation of the conditional response probabilities is much clearer (with respect to 

possible differences between the effects of latent categories on the manifest indicators) 

than the interpretation of the effect-parameters.  

 

Reliability. The log-linear parameters and the effect-parameters can only heuristically be 

analyzed because their parameters are afflicted by boundary estimates. However, the log-

linear and effect parameters indicate that there is an ordered structure for the latent 

variable. The conditional response probabilities indicate if one latent category is strongly 

related to a specific response tendency for a manifest variable. This is generally the case 

for the 3rd latent category, but this is not the case for the other latent categories, except for 

items A and B for the 2nd latent category. Since identical named categories of the manifest 
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variables do not correspond to identical latent categories the approach of Dillon and 

Mulani (1984) to inspect reliability relying on the conditional response probabilities may 

not be used. Yet, the mean assignment probabilities (determined by a run of this model in 

Mplus, Muthén & Muthén, 2007)12 for the three-class solution are all above .78 (.79; .89; 

.90) indicating a reliable classification of individuals into the three classes. 

 

 
 
4.2 Extension to More than One Latent Variable – Correlated Traits 

 

As described in Section 1, the analyses of the convergent and discriminant validity can be 

done using the (CFA-) Correlated-Trait (CT) model. In this model, two or more traits are 

measured by multiple indicators administered to multiple raters. There is one latent 

variable for each Trait-Method-Unit (TMU). A TMU consists of all manifest ratings of one 

rater for one specific trait.  

 

A vulnerable

B sensitive

C moody

D self-doubtful

NEUS

E industrious

F diligent

G dutiful

H ambitious

CONS

 

Figure 4.2. The loglinear-model with two latent variables for neuroticism and 

conscientiousness. NEUS: Neuroticism; CONS: Conscientiousness (self-report data) 

 

 

                                            
12 Mplus does not allow for estimations of more complex models. Therefore, I will only rely on the empirical 
results provided by LEM in the remainder.  
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In the framework of log-linear models with latent variables, additional latent 

variables can be easily incorporated (see e.g., Hagenaars, 1993). Figure 4.2 depicts a log-

linear model with two latent variables. In this model, the two latent variables are measured 

by four manifest variables each. The double-headed arrow indicates that the two latent 

variables may be associated.  

 

Definition 4.2.1  

The log-linear model with two latent variables. 

 

 .
. . .

X Y X Y
x y x y x ye = ηΤ Τ τ τ τab a b         (4.2.1) 

 

is a log-linear model with two latent variables. . .ns cseab  is the expected frequency of a 

specific cell in the latent joint cross-classification of the manifest response patterns ab  

(consisting of the two trait-specific patterns a  and b ) with the two latent variables X and 

Y. η  is the overall geometric mean of the complete table (manifest and latent variables). 

 and Τ Τa b  represent the measurement models of the latent variables: 

.
.

1

i i

i i

i

I
M M X
m m x

m =

Τ = τ τ∏a : represents the product of the log-linear parameters linking the latent 

variable X to its indicators and the manifest one-variable effects,  

.
.

1

k k

k i

k

K
O O Y
o o y

o =

Τ = τ τ∏b : represents the product of the log-linear parameters linking the latent 

variable Y to its indicators and the manifest one-variable effects. 

X
xτ  and Y

yτ  represent the latent one-variable effects. .
.

X Y
x yτ  represents the latent two-variable 

effects. 

 

 
 

4.2.1.1 The statistical meaning of the different effects in the CT model 

 

The log-linear parameters of Equation 4.2.1 with unknown frequencies of the latent table 

can be calculated as in the case of completely observed tables. Calculating the log-linear 

parameters of the sub-models for each trait can be done using the collapsed latent 

frequency table for each TMU. Since there is no interaction between the items being 
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indicators of one trait and the items being indicators of the other trait, the collapsibility 

theorem holds (Bishop, 1971; see Appendix B). Moreover, the meaning of the manifest 

one-variable effects and the two-variable effects remain the same as in Definition 4.1.1. 

This is also true for all following model definitions. Therefore, I will start the explication 

of this and all following definitions at the level of latent variables.  

 

• The latent one-variable parameters ( );  X Y
x yτ τ  describe the univariate distributions of 

the latent variables. These parameters are identical to the odds comparing the 

geometric mean of all probabilities belonging to a particular latent category to the 

overall geometric mean. E.g.:  

 

  

.
.

1

.
.

1 1

Y
X Y

Y x y
yX

x X Y
X Y

X Y v y
v y

=

⋅

= =

π
τ =

π

∏

∏∏
,       (4.2.2) 

 

or in proportions: 

 

  
.

1

.
1 1

Y

Y x y
yX

x X Y

X Y v y
v y

e

e

=

⋅

= =

τ =
∏

∏∏
,        (4.2.3) 

 

with .x ye   representing the expected latent cell frequency and .
.

X Y
x yπ  representing the 

latent cell proportion. The index v serves to count the categories of X when x  

already describes a particular category. If one knew the expected frequencies, the 

calculation in collapsed frequency tables would be straightforward.  
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• The latent two-variable effect ( ).
.

X Y
x yτ  indicates the deviations of cell proportions 

from the prediction based on the marginal proportions in the latent bivariate sub-

table:  

 

  ( )
.

..
.

X Y
x yX Y

x y X Y
x y

π
τ =

π π
,        (4.2.4) 

 

 

4.2.1.2 Implications of the CT model 

 

The CT model for categorical data has already been introduced by other authors (see e.g., 

Hagenaars, 1990, 1993). Since it will serve as a submodel in the Multitrait-Multirater 

models it will be shortly discussed. 

The meaning of the parameters within a TMU remains perfectly the same as before. 

They may be used to determine the reliability and the meaning of the latent variables. 

Additionally, the association between the two latent constructs corresponds to a 

heterotrait-monomethod correlation sensu Campbell and Fiske (1959). In general, this 

correlation (association) should be rather low to indicate discriminant validity. However, 

there may also be category-specific co-occurrences that are higher than expected for the 

independence model. A special type of neuroticism may be related to a particular type of 

conscientiousness, for example. Statistically this can be seen in significant two-variable 

effects representing specific combinations of latent categories that are more likely to occur 

than predicted by the underlying latent one-variable effects.  

If all two-variable parameters are equal to 1, all categories of the two constructs are 

perfectly distinct from each other, representing perfect discriminant validity between the 

two latent variables. In this case, the independence model will hold.  
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4.2.1.3 Definition of the independence CT model  

 

The assumption of independent constructs (perfect discriminant validity) can be tested in 

log-linear models with latent variables. The independence CT model fits well, if the 

constructs are perfectly discriminant.  

 

Definition 4.2.2 

The independence Correlated Traits model 

 

 . .
X Y

x y x ye = ηΤ Τ τ τab a b          (4.2.5) 

 

with . .x yeab  as expected frequency of the manifest response pattern ab . η  is the overall 

geometric mean of the complete table (manifest and latent variables).  and Τ Τa b  represent 

the measurement models of the latent variables: 

.
.

1

i i

i i

i

I
M M X
m m x

m =

Τ = τ τ∏a : represents the log-linear parameters linking the latent variable X to its 

indicators and the manifest one-variable effects, 

.
.

1

k k

k i

k

K
O O Y
o o y

o =

Τ = τ τ∏b : represents the log-linear parameters linking the latent variable Y to its 

indicators and the manifest one-variable effects. 

X
xτ  and Y

yτ  represent the latent one-variable effects. 

 

The statistical meaning of the parameters remains perfectly the same as for the saturated 

model.  

 

 

4.2.1.4 Applications of the CT and the independence CT model  

 

The (categorical) CT model with two latent variables and multiple indicators will be 

illustrated by the empirical example of neuroticism and conscientiousness measured by 

four items per trait. Figure 4.2 depicts the CT-model. The first four indicators 
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(“vulnerable”, “sensitive”, “moody”, and “self-doubtful”) measure neuroticism; the last 

four indicators (“industrious”, “diligent”, “dutiful”, and “ambitious”) measure 

conscientiousness.  

Table 4.2.1 presents the goodness-of-fit coefficient for the CT and the 

independence CT model with 3 categories per latent variable.  

 

Table 4.2.1 

Goodness-of-fit coefficients of the CT and independence CT model with two three-

categorical latent variables  

 
2χ  ( )2p χ  L2 p(L2) df AIC1 BIC1 

pboot nbounds 

CT 8009.02 .00 1141.76 1.00 6504 –11866.24 –38985.39 .08 4 

ind. 

CT 
7938.05 .00 1138.94 .00 6508 –11877.06 –39012.89 .11 7 

Note. CT: CT model; ind. CT: independence CT model; 2χ : Pearson 2χ -value; L2: Likelihood-Ratio 2χ -

value  1AIC and BIC are based on the L-squared 2χ -value; pboot: bootstrapped probability of 2χ ; nbounds: 

number of boundary values.  

 

 

The two models fit the data according to the bootstrapped 2χ -value. According to 

the two information criteria the independence model fits better. However, it suffers from a 

larger number of boundary values than the CT model. For illustrative reasons the saturated 

CT model will be reported. 
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Results of the CT model. The one-variable effects of the manifest variables, the two-

variable effects (links) of the manifest and latent variables, as well as the conditional 

response probabilities can be found in Tables 4.2.2 through 4.2.5.  

 

Table 4.2.2 

Log-linear parameters of the measurement model of the CT model; neuroticism 

  one variable 

effect 
two-variable effect 

variable 
manifest 

categories 
 ns = 1 ns = 2 ns = 3 

A (vulnerable) 

1 0.39 2.56 1.05 0.37 

2 0.98 1.22 1.22 0.67 

3 2.61 0.32 0.78 4.00 

B (sensitive) 

1 1.23 10–10 1.47 1010 7.12 109 9.51 10–21 

2 7.68 104 1.72 10–5 3.10 10–5* 1.88 109 

3 1.05 105 3.95 10–6 4.53 10–6 5.59 1010 

C (moody) 

1 33.81 0.08 554.38 0.02 

2 20.10 0.03 749.38* 0.04 

3 0.00 420.77 2.41 10–6 987.53 

D (doubtful) 

1 0.16 16.10 0.01 4.16 

2 1.95 0.29 12.52* 0.28 

3 3.23 0.21 5.35 0.87 

Note. * boundary values. ns: categories of the latent variable for neuroticism.  

 

 

Table 4.2.2 presents the log-linear parameters for the measurement model of 

neuroticism. The log-linear parameters are less aberrant than for the model presented in 

section 4.1.1—still, they suffer from boundary solutions.  

The conditional response probabilities differ from those found for the model 

presented in Section 4.1.3 (examining neuroticism only). The conditional response 

probabilities for the 1st latent category change to a small degree only (compare Tables 

4.1.9 and 4.2.3). The conditional response probabilities for the 2nd latent category for 

neuroticism also differ with respect to the results found in Section 4.1.3. Individuals 

belonging to this class tend to choose the 3rd manifest category for item A. They tend to 
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choose the 2nd (moderately neurotic category) for items B and D. And they clearly do not 

choose the 3rd manifest response category for item C. Therefore, I still will call this class 

sensitive but (emotionally) stable13 or middle class. 

 

Table 4.2.3 

Conditional response probabilities of the manifest response categories for the construct 

neuroticism in the CT model  

  latent status 

variable 
manifest 

categories 
ns = 1 ns = 2 ns = 3 

A (vulnerable) 

1 .33 .11 .01 

2 .39 .33 .06 

3 .28 .56 .93 

B (sensitive) 

1 .51 .23 .00* 

2 .37 .64 .02 

3 .12 .13 .98 

C (moody) 

1 .68 .55 .25 

2 .16 .45* .28 

3 .16 .00 .47 

D (doubtful) 

1 .67 .00* .16 

2 .15 .59* .13 

3 .18 .41 .70 

Note. * boundary values. ns: categories of the latent variable for neuroticism. 

 

 

Individuals belonging to the 3rd latent class choose the 3rd manifest response 

category almost with certainty for items A and B. The conditional response probability to 

choose the 3rd manifest response category for item D is less pronounced than in Table 4.1.9 

but still very high (.70). Members of the 3rd class indicate that they are moody in about half 

of the time and tend to choose the 1st or 2nd manifest response category approximately 

equally often.  

The latent proportions differ between the two models. In the previously described 

model, about one quarter of all individuals was classified as not neurotic. Approximately 

                                            
13 The name is only given for illustrative reasons.  
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the same amount of individuals is classified as not neurotic in the current application 

( )1ˆ .21NEUSπ = . Yet, the class proportions for the 2nd and 3rd class differ vastly between the 

models. Only 11% of the individuals are classified as sensitive but stable (middle category) 

– compared to 56% in Section 4.1.3. And 69% of all individuals are classified as neurotic – 

compared to 20% in the model of Section 4.1.3. Considering the conditional response 

probabilities again shows that the typical response patterns for the two applications differ 

in such a way that many individuals who have been classified into the 2nd category in the 

1st application now belong to the third latent category. The conditional response 

probabilities to choose the 3rd manifest response category for items C and D became lower; 

but, still, it is highest compared to the other categories. 

 

Table 4.2.4 

Log-linear parameters of the measurement model of the CT model; conscientiousness 

  one variable 

effect 
two-variable effect 

variable 
manifest 

categories 
 cs = 1 cs = 2 cs = 3 

E (industrious) 

1 0.40 9.76 0.30 0.34 

2 1.55 0.62 3.83 0.42 

3 1.62 0.16 0.87 6.99 

F (diligent) 

1 1.79 10–34 4.01 1034 2.72 1033 9.16 10–69* 

2 8.84 1016 1.04 10–17 4.96 10–17* 1.93 1033 

3 6.33 1016 2.39 10–18 7.41 10–18 5.65 1034 

G (dutiful) 

1 0.22 2.95 0.57 0.59 

2 1.05 1.00 1.64 0.61 

3 4.32 0.34 1.07 2.76 

H (ambitious) 

1 0.86 3.85 0.76 0.34 

2 1.19 1.04 1.68 0.57 

3 0.97 0.25 0.78 5.15 

Note. * boundary values. cs: categories of the latent variable for conscientiousness. 

 

 

Table 4.2.4 presents the log-linear parameters for the measurement model of 

conscientiousness. Inspecting the log-linear effects (but those for item F) reveals that the 
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two-variable effects in one row (for one manifest category) are always strongest for those 

categories with identical labels of the manifest and latent category. The conditional 

response probabilities are highest for categories sharing the same label indicating that the 

1st latent class consists of not conscientious individuals, the 2nd latent class consists of 

moderately conscientious individuals, and the 3rd latent class consists of highly 

conscientious individuals.  

The only item that does not perfectly match this pattern is dutiful. This finding 

could be explained by the fact that the German item “pflichtbewusst” (“dutiful”) is the 

only item measuring conscientiousness which is both internally and externally oriented. 

This characteristic may stem from an internal desire to be responsible. However, it may 

also occur because a person is responding to strong external pressures to perform 

prescribed behaviors. All other adjectives describe aspects of conscientiousness that are 

more strongly due to attitudes (internally oriented). Therefore, it may be much easier to be 

dutiful or to perceive oneself as dutiful yielding principally high answers on this item, but 

it still fits into the latent typology. This interpretation is supported by the fact that the log-

linear two-variable parameters are always highest for the categories sharing the same label 

(see above) and by the increase in the conditional response probabilities for higher 

manifest response categories combined with higher latent categories (see Table 4.2.5). 
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Table 4.2.5 

Conditional response probabilities of the manifest response categories for the construct 

conscientiousness in the CT model 

  latent status 

variable 
manifest 

categories 
cs = 1 cs = 2 cs = 3 

E (industrious) 

1 .76 .02 .01 

2 .19 .80 .05 

3 .05 .19 .94 

F (diligent) 

1 .87 .09 .00* 

2 .11 .82 .05 

3 .02 .09 .95 

G (dutiful) 

1 .20 .02 .01 

2 .33 .27 .05 

3 .46 .71 .94 

H (ambitious) 

1 .69 .19 .05 

2 .26 .59 .11 

3 .05 .22 .84 

Note. * boundary values. cs: categories of the latent variable for conscientiousness. 

 

 

Table 4.2.6 presents the latent joint distributions of the categorical traits 

neuroticism and conscientiousness. The marginals for neuroticism differ vastly from the 

previously reported model as described above. 24% of the sample are classified as not 

conscientious, 36% as moderately conscientious, and 41% as highly conscientious.  
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Table 4.2.6 

Cross classification of the estimated proportions of the two latent variables (neuroticism 

and conscientiousness) in the latent saturated CT model 

  NEUS (Neuroticism)  

  1 2 3  

CONS 
(Conscientiousness) 

1 .05 (.05) .02 (.03) .17 (.17) .24 
2 .07 (.08) .05 (.04) .24 (.25) .36 
3 .09 (.09) .04 (.05) .28 (.28) .41 

  .21 .11 .69  
Note. Values in parentheses present the product of the two latent marginals.  

 

 

Examining the joint distribution of the latent saturated CT model reveals some 

interesting results. The integration of the latent two-variable effect does not lead to great 

differences in the latent joint distribution compared to the expectations given only the 

latent marginals. A comparison of the estimated proportions (cell entries in Table 4.2.6) 

with the expected proportions given the latent one-variable effects only (in parentheses) 

reveals that the latent association is not very strong. This finding is supported by the 

estimated two-variable effects. The parameter values range from 0.80 for the latent cell 

combination [2 1] (brackets indicate latent cell combinations) to 1.23 for the cell 

combination [2 2]. The more parsimonious and better fitting independence model seems to 

be the model of choice for this data situation.  
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5 Latent Rater Agreement Models  
 

The models presented in Section 4 serve as the basis for the adoption of manifest rater 

agreement models. The log-linear model with one latent variable represents a Trait-

Method-Unit (TMU) in all models that will be defined. The Correlated Traits model for 

categorical data statistically corresponds to a latent rater agreement model if the different 

trait-variables are replaced by two variables representing the same trait rated by two 

distinct raters. 

In this section, latent rater agreement models will be defined for structurally 

different and interchangeable raters. Structurally different raters are raters who differ from 

each other by the research design. Consider self- and peer ratings as a typical example. The 

self-raters can be randomly drawn out of the population of all available self-raters. The 

peers can then be drawn out of the set of possible peer raters. Self- and peer raters stem 

from different populations and are, therefore, structurally different. 

The opposite accounts for interchangeable raters. Drawing two peers out of the set 

of possible peer raters corresponds to random sampling out of one population. Random 

samples of one population must have the same parameters. Therefore, the models for 

interchangeable raters are restricted versions of the models for structurally different raters.  

 

 

5.1 Latent Rater Agreement Models for Structurally Different Raters 

 

The definition of latent rater agreement models is based on the previously described log-

linear models with latent variables. However, the two distinct construct of the Correlated 

Traits (CT) model are replaced by two variables representing one construct rated by a self- 

and a peer rater. The structure of the model remains perfectly the same (see Figure 5.1). 

The latent rater agreement models allow for a test if the latent categories represent 

the same latent constructs. If this is the case, the two ratings must principally be 

classifiable into the same number of categories with identical labels.  
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Self-Report

Peer Report A

NEUS

A (vulnerable)

B (sensitive)

C (moody)

D (self-doubtful)

NEUA

I (vulnerable)

J (sensitive)

K (moody)

L (self-doubtful)

Self-Report

Peer Report A

NEUS

A (vulnerable)

B (sensitive)

C (moody)

D (self-doubtful)

NEUA

I (vulnerable)

J (sensitive)

K (moody)

L (self-doubtful)

NEUS

A (vulnerable)

B (sensitive)

C (moody)

D (self-doubtful)

NEUS

A (vulnerable)

B (sensitive)

C (moody)

D (self-doubtful)

NEUA

I (vulnerable)

J (sensitive)

K (moody)

L (self-doubtful)

NEUA

I (vulnerable)

J (sensitive)

K (moody)

L (self-doubtful)  

Figure 5.1. Log-linear model with two latent variables representing the latent construct 

Neuroticism (NEU) for the self-report S and the peer report A. Each latent variable is 

measured by four manifest indicators.  

 

 

Figure 5.1 presents a categorical monotrait-multimethod model for the analysis of 

latent rater agreement of two raters. For sake of comprehensibility the trait variables and 

the items are labeled. The latent construct neuroticism is represented by two latent 

variables (class variables: NEUS for the self-report vs. NEUA for the peer rating A). The 

two latent variables are measured by the same set of items (“vulnerable”, “sensitive”, 

“moody”, and “self-doubtful”) rated by a self-rater and one peer. However, administering 

the same items is not a necessary condition for the definition and application of the 

models.  

Out of the total of four existing manifest rater agreement models (see Section 2.3) 

three models can be chosen to analyze rater agreement at the latent level for structurally 

different raters. The quasi-independence I model (5.1.1), the quasi-independence II model 

(5.1.2), and the quasi-symmetry model (5.1.3) can be defined for structurally different 

raters. The symmetry model implies interchangeability of the raters and will be presented 

in Section 5.2. The independence model and the saturated model have been defined in 

Section 4.1. The definitions apply directly to the case of two methods measuring the same 

trait. All models will be defined for the case of two raters.  

In all models that will be presented, there are two coefficients that may be 

determined revealing information about bias and distinguishability. Since the latent one-

variable effects do not always directly reflect the univariate latent distributions of the latent 

variables, the coefficients are defined relying on the latent probabilities. Differences in the 
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prevalence rates (differences in the latent distributions) represent method (rater) bias (see 

Agresti, 1992). The method bias type I coefficient quantifies this effect. 

 

Definition 5.1.1  

Method bias type I 

 ( ).1
X
x

X Y Y
y

MB
π
π

= , for x y=        (5.1.1) 

 

is the method bias type I coefficient.  

 

 

This definition of method bias is similar to the conception of method bias in 

standard log-linear models for rater agreement (see Agresti, 1992). Note, that this bias is 

not defined as a bias indicating differences / deviations from the true status or the true 

distribution of the latent variable but as a bias with respect to the other rater. Values larger 

than 1 indicate that the rater whose latent variable is in the numerator uses this category 

more frequently than the other rater. Values below 1 indicate the opposite. High (or low) 

values on MB1 indicate that the two raters do not perfectly agree on the prevalence rates 

and therefore also indicates a cause of a lack of convergent validity.  

In all models, a second type of bias can be examined. The ratio to which 

proportions of specific cell-combinations besides the main diagonal deviate from the 

expected proportions given the one-variable effects is defined as distinguishability index. 

This index is a direct consequence of the concept of distinguishable categories formulated 

in Section 2.3.1. To my knowledge it has not been defined yet. 

 

Definition 5.1.2 

Distinguishability index (Dist) 

 

 ( )

.
.

.

X Y
x y

x y X Y
x y

Dist
π

=
π π

, for x y≠ .       (5.1.2) 

 

 

The distinguishability index indicates to which ratio particular cells of the joint 

distribution representing discordant ratings are over- or underrepresented. Values larger 
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than 1 indicate that the proportions of the cell combinations x.y is higher than expected 

given the latent marginals, values smaller than 1 indicate that these proportions are smaller 

than expected given the latent marginals. If the values are larger than 1, the two raters 

confound the categories x and y. That is, if category x is chosen the probability to observe 

category y increases; the two raters do not appropriately distinguish between these two 

categories. If the index is smaller than 1 the two raters produce smaller latent proportions 

for these cells than expected given the marginals and, therefore, they distinguish between 

these categories—the closer this value is to 0, the better the raters distinguish between the 

two particular categories. A further analysis inspecting the moderators of agreement (see 

Funder, 1995) could reveal why raters confound or distinguish well between different 

categories.  

If raters distinguish perfectly between all categories they also agree perfectly 

implying that a one-variable model will hold. The one-variable model can be defined as 

specified in Equation 4.1.1 (where all items depend uniquely on one common latent 

variable).  

 

 
 

5.1.1 Definition of the Quasi-Independence I Model for Structurally Different 

Raters 

 

Definition 5.1.3 

The latent quasi-independence I model for two structurally different raters and one 

construct 

 

Let X and Y represent the same latent construct measured by two distinct raters with 

identical categories (x and y). 

 

( ).
. . .

IX Y X Y
x y x y x ye = ηΤ Τ τ τ τab a b , with 

1 if 

0 else

I x y

I

= =
 =

     (5.1.3) 

 

. .ns cseab  is the expected frequency of a specific cell in the latent joint cross-classification of 

the manifest response patterns ab  (consisting of the two trait-specific patterns a  and b ) 

with the two latent variables X and Y. η  is the overall geometric mean of the complete 
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table (manifest and latent variables).  and Τ Τa b  represent the measurement models of the 

latent variables: 

.
.

1

i i

i i

i

I
M M X
m m x

m =

Τ = τ τ∏a : represents the product of the log-linear parameters linking the latent 

variable X to its indicators and the manifest one-variable effects, 

.
.

1

k k

k i

k

K
O O Y
o o y

o =

Τ = τ τ∏b : represents the product of the log-linear parameters linking the latent 

variable Y to its indicators and the manifest one-variable effects. 

X
xτ  and Y

yτ  represent the latent one-variable effects. .
.

X Y
x yτ  represents the latent two-variable 

effects. 

 

 
 

5.1.1.1 The statistical meaning of the different effects in the latent quasi-

independence I model for structurally different raters 

 

The log-linear parameters of Definition 5.1.3 have the following meanings: 

• η  is the geometric mean of the unobserved complete frequency table, which 

is a mere reflection of the sample size (Hagenaars, 1990; 1993). 

 

• The submodels Τa  and Τb : have been described in section 4.1 (e.g., 

Goodman, 1974a, 1974b; Haberman, 1979; Hagenaars, 1990, 1993; McCutcheon, 

1987). 

 

• The latent one-variable parameters ( );X Y
x yτ τ  cannot be interpreted as in the 

models described before. As for the manifest quasi-independence models the table 

of expected proportions can be decomposed into one table showing perfect 

agreement (a one-variable model holds) and one part following complete 

independence. For the model with manifest variables only, Schuster and Smith 

(2006) showed that the cell proportions in the part with perfect agreement (that is, a 

part of the cells on the main diagonal) only depend on the additional log-linear 

parameters ( ).
.

X Y
x yτ  and that the one-variable effects account for the remaining part. 

Adapted Equation 4 from Schuster and Smith (2006) is: 
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( ).
.

.
.

IX Y X Y
x y x y

X Y
x y N

η τ τ τ
π

 
  = ,       (5.1.4) 

 

with N indicating the sample size. For cases when x y≠ , this simplifies to: 

 

( )0.
.

.
.

1

X Y X Y
x y x y

X Y
x y

X Y
x y

X Y
x y

N

N

N

η τ τ τ
π

η τ τ

ητ τ

 
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 × =

=

.       (5.1.5) 

 

The log-linear effects can be determined using the following equations: 
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1
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and  
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with v and w indicating the categories of X and Y, respectively. Repeating the same 

index x.x instead of specifying x.y means that y = x. As can be seen the log-linear 

parameters can be determined knowing the latent proportions. Additionally, the 

parameters always can be determined relying on the decomposition of the latent 

joint distribution as proposed by Schuster and Smith (2006) for manifest variables. 

They conceive the joint manifest distribution as a mixture of ambiguous and 

obvious cases. Ambiguous cases are target persons upon whom the two raters do 

not agree or only due to chance agreement. This rationale can directly be adopted at 

the latent level. For ambiguous targets the independence model holds:  

 

1

X
X x
x X

X
X

v
v=

π°τ° =
π°∏

,        (5.1.9) 

 

with ° marking that only the ambiguous cases are concerned. In order to obtain the 

marginals of the latent table following independence, the amount of 

overrepresentation on the main diagonal has to be subtracted. This is done in 

Equations 5.1.6 and 5.1.7. Equation 5.1.8 may then be used to determine the latent 

two-variable effect. However, these parameters are not directly related to the 

proportions; therefore one typically relies on the expected proportions reporting the 

quasi-independence models.  

 

 

5.1.1.2 Implications of the quasi-independence I model 

 

The latent one-variable effects do not directly reflect the univariate latent distributions of 

the latent variables. Their interpretation is rather difficult with respect to the complete 

table, but much easier with respect to the decomposed table (separating ambiguous from 

obvious cases). The method bias type I can be determined revealing differences between 

the latent prevalence rates (latent distributions).  

Concordant ratings (agreement) which go beyond the agreement on chance are 

indicated by the two-variable effects ( )1.
.

X Y
x yτ  for cells with identical indices ( )x y= . 

Agreement for raters is a special case of convergence in general. Thus, these parameters 
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depict the category-specific convergence beyond chance convergence. An overall latent 

agreement rate can be calculated using κ . A category-specific agreement rate can be 

calculated by the ratio of the expected cell proportion to the product of the latent 

marginals. Large differences in the category-specific agreement rates indicate that raters 

agree more or less strongly depending on the categories of the latent variables. Large 

differences indicate that the convergent validity (agreement) depends on the categories and 

is not constant across categories.  

By fitting the latent quasi-independence I model the assumption of independent 

disagreement is tested. Therefore, it is not meaningful to calculate the distinguishability 

index in quasi-independence models.  

 

 
 

5.1.2 Definition of the Quasi-Independence II Model for Structurally 

Different Raters 

 

Definition 5.1.4 

The latent quasi-independence II model 

 

Let X and Y represent the same latent construct measured by two distinct raters with 

identical categories (x and y). 

 

( ).
. . .

IX Y X Y
x y x y x ye = ηΤ Τ τ τ τab a b , with 

1 if 

0 else

I x y

I

= =
 =

, and . .
.

X Y X Y
x yτ = τ .    (5.1.10) 

 

. .ns cseab  is the expected frequency of a specific cell in the latent joint cross-classification of 

the manifest response patterns ab  (consisting of the two trait-specific patterns a  and b ) 

with the two latent variables X and Y. η  is the overall geometric mean of the complete 

table (manifest and latent variables).  and Τ Τa b  represent the measurement models of the 

latent variables: 

.
.

1

i i

i i

i

I
M M X
m m x

m =

Τ = τ τ∏a : represents the product of the log-linear parameters linking the latent 

variable X to its indicators and the manifest one-variable effects, 
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.
.

1
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k i

k

K
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Τ = τ τ∏b : represents the product of the log-linear parameters linking the latent 

variable Y to its indicators and the manifest one-variable effects. 

X
xτ  and Y

yτ  represent the latent one-variable effects. .
.

X Y
x yτ  represents the latent two-variable 

effects. It is restricted to be constant across all cells on the main diagonal ( ). .
.

X Y X Y
x yτ = τ . 

. 

 

The statistical meaning of the parameters is absolutely identical to the meaning of the 

parameters of the quasi-independence I model.  

 

 

5.1.2.1 Implications of the quasi-independence II model 

 

Concordant ratings which go beyond the agreement on chance are mirrored by the two-

variable effects ( )1.X Y τ  
 for cells with identical indices ( )x y= . These effects show 

constant agreement between raters. Agreement is a property of the raters and not of the 

interaction between raters and categories. The two-variable effects in manifest models can 

be transformed into κ  (see Schuster & Smith, 2006). The two-variable parameters depict 

the convergence beyond chance convergence. An overall latent agreement rate can be 

calculated using κ . A category-specific agreement rate can be calculated by the ratio of 

the expected cell proportion to the prediction given the marginals only.  

By fitting the latent quasi-independence II model the assumption of constant 

independent disagreement is tested. Therefore, it is not meaningful to calculate the 

distinguishability index in quasi-independence models.  
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5.1.3 Definition of the Quasi-Symmetry Model for Structurally Different 

Raters 

 

Definition 5.1.5 

The latent quasi-symmetry model 

 

Let X and Y represent the same latent construct measured by two distinct raters with 

identical categories (x and y). 

 

.
. . .

X Y X Y
x y x y x ye = ηΤ Τ τ τ τab a b , with . .

. .
X Y X Y
x y y xτ τ=      (5.1.11) 

 

. .ns cseab  is the expected frequency of a specific cell in the latent joint cross-classification of 

the manifest response patterns ab  (consisting of the two trait-specific patterns a  and b ) 

with the two latent variables X and Y. η  is the overall geometric mean of the complete 

table (manifest and latent variables).  and Τ Τa b  represent the measurement models of the 

latent variables: 

.
.
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i i

i i

i

I
M M X
m m x
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Τ = τ τ∏a : represents the log-linear parameters linking the latent variable X to its 

indicators and the manifest one-variable effects, 

.
.

1

k k

k i

k

K
O O Y
o o y

o =

Τ = τ τ∏b : represents the log-linear parameters linking the latent variable Y to its 

indicators and the manifest one-variable effects. 

X
xτ  and Y

yτ  represent the latent one-variable effects. .
.

X Y
x yτ  represents the latent two-variable 

effects. 
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5.1.3.1 The statistical meaning of the different effects in the latent quasi-symmetry 

model for structurally different raters 

 

The meaning of the log-linear parameters of Definition 5.1.11 directly corresponds to the 

log-linear parameters of the saturated model, however, some restrictions are imposed: 

 

• η  is the geometric mean of the unobserved complete frequency table. 

 

• The submodels Τa  and Τb : have been described in section 4.1 (e.g., 

Goodman, 1974a, 1974b; Haberman, 1979; Hagenaars, 1990, 1993; McCutcheon, 

1987). 

 

• The latent one-variable parameters  and X Y
x yτ τ : describe the univariate 

distributions of the latent variables. These parameters are identical to the odds 

comparing the geometric mean of a particular category (x or y) against the 

geometric mean of all cells. E.g.: 

 

  

.
.

1

.
.

1 1

Y
X Y

Y x y
yX

x X Y
X Y

X Y v y
v y

=

⋅

= =

π
τ =

π

∏

∏∏
,       (5.1.12) 

 

with x indicating the particular latent category of X and v indexing the first to the 

last category of X in the denominator. 

 

• The latent two-variable effect ( ).
.

X Y
x yτ  indicates the deviations of joint cell 

proportions from the prediction based on the marginal proportions in the latent 

bivariate sub-table. E.g.:  

 

  ( ) ( )
. .

. .. .
. .

X Y X Y
x y y xX Y X Y

x y y x X Y X Y
x y y x

π π
τ = τ =

π π π π
,     
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           (5.1.13) 

  simplifying to ( )
.

..
.

X Y
x yX Y

x y X Y
x y

π
τ =

π π
 for x y= .  

 

 

5.1.3.2 Implications of the quasi-symmetry model  

 

The latent one-variable effects reflect the univariate latent distributions of the latent 

variables. Differences between the latent distributions originate in different (perceived) 

prevalence rates; therefore, differences in the latent distributions represent method bias 

(see Agresti, 1992).  

The distinguishability index can be used to analyze the ratio to which the expected 

proportions of a disagreement cell deviate from the product of the marginal expected 

proportions. It is the (geometric) mean of the over- or underrepresentation of specific 

disagreement cells. In the quasi-symmetry model, the over- or underrepresentation by 

definition follows a specific pattern of interchangeability: the two-variable effects are 

restricted to be equal for any pair of categories that consists of the same categories 

( ) ( ). .
. .

X Y X Y
x y y x

 τ = τ  . However, this does not necessarily afflict the distinguishability index 

except for the case of identical latent marginals: 

 

( ) ( ) ( ) ( )

. .
. . . .

. .. .

X Y X Y
x y y x X Y X Y

x y y xx y y xX Y X Y
x y y x

Dist Dist
π π

= = = τ = τ =
π π π π

,   (5.1.14) 

 

only if X Y
x xπ = π  and X Y

y yπ = π .  

 

This implies that the quasi-symmetry model may be used to test if the underlying 

pattern of disagreement follows a symmetric structure but it does not test if the ratio of 

over- or underrepresentation as examined by the distinguishability index is the same. This 

can be done applying the symmetry model (which will be presented for the case of 

interchangeable raters).  

Concordant ratings which go beyond the agreement on chance are reflected by the 

two-variable effects on the main diagonal ( ).
.

X Y
x yτ  for x y= . These effects show agreement 
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between raters. Agreement between raters is a special case of convergence in general. 

Thus, these parameters depict the category-specific convergence beyond chance 

convergence. An overall latent agreement rate can be calculated using κ . A category-

specific agreement rate can be calculated by the ratio of the probability of a cell 

combination representing agreement to the product of the marginals. 

 

 

5.1.4 Applications of the Latent Rater Agreement Models for Structurally 

Different Raters 

 

The latent rater agreement models for structurally different raters and multiple 

indicators will be illustrated by the empirical example of neuroticism measured by the self-

report and the first peer report (peer A). The data have been described in Section 4.1.3.  

 

Table 5.1.1 

Goodness-of-fit coefficients of the rater agreement models with three-categorical variables  

for structurally different raters  

 
2χ  ( )2p χ  L2 p(L2) df AIC1 BIC1 

pboot nbounds 

sat 7935.28 .00 1464.35 1.00 6504 –11543.65 –38662.80 .23 8 

ind 7768.37 .00 1496.54 1.00 6508 –11519.46 –38655.29 .18 10 

QI-I 7897.34 .00 1466.62 1.00 6505 –11543.38 –38666.70 .15 8 

QI-II 8061.78 .00 1469.85 1.00 6507 –11544.15 –38675.81 .15 5 

QS 7897.26 .00 1466.62 1.00 6503 –11539.38 –38654.36 .16 10 

ONE 7880.61 .00 1518.76 1.00 6510 -11501.24 -38645.40 .22 2 

Note. sat: saturated model; ind: independence model; QI-I; quasi-independence I model; QI-II: quasi-

independence II model; QS: quasi-symmetry model; ONE: one-variable model; 2χ : Pearson 2χ -value; L2: 

Likelihood-Ratio 2χ -value; 1AIC and BIC are based on the L-squared 2χ -value; pboot: bootstrapped 

probability of 2χ ; nbounds: number of boundary values.  
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Figure 5.1 depicts the saturated model. The first four indicators (“vulnerable”, 

“sensitive”, “moody”, and “self-doubtful”) measure neuroticism (NEUS) in the self-report 

form; and the (identically worded) last four indicators measure neuroticism (NEUA) in the 

peer-report form (for peer A).  

The empirical 2χ -values (presented in Table 5.1.1) do not approximate their 

theoretical distributions (very different probabilities associated to these values for the 

Pearson and likelihood-based coefficients). Therefore, one should rely on the bootstrap 

analysis to identify models that fit to the data. According to the bootstrap analyses all 

models fit to the data. Inspecting the information criteria (AIC and BIC) reveals that the 

quasi-independence II latent rater agreement model fits best. 

 

 

The saturated latent rater agreement model. The saturated rater agreement model has not 

explicitly been defined in this section. However, its definition is absolutely identical to the 

CT model presented in Section 4.1. It fits to the data with respect to the bootstrapped 2χ -

value. 8 log-linear parameters suffer from boundary values. The one- and two-variable 

effects related to the manifest variables can be found in Appendix C.  

Table 5.1.2 presents the conditional response probabilities for neuroticism in the 

self-report. These do virtually not differ from the values presented in Table 4.1.9. 

Therefore, their values will not be interpreted here.  
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Table 5.1.2 

Conditional response probabilities of the manifest response categories for the construct 

neuroticism (NEUS) in the saturated latent rater agreement model for structurally different 

raters (self-report) 

  latent status 

variable 
manifest 

categories 
ns = 1 ns = 2 ns = 3 

A (vulnerable) 

1 .31 .03 .00 

2 .43 .11 .00 

3 .26 .86 1.00 

B (sensitive) 

1 .51 .03 .00* 

2 .46 .10 .00* 

3 .03 .87 1.00* 

C (moody) 

1 .68 .38 .06 

2 .20 .40 .07 

3 .12 .22 .88 

D (doubtful) 

1 .51 .25 .01 

2 .31 .16 .12 

3 .18 .59 .87 

Note. * boundary values. ns: categories of NEUS.  

 

 

Table 5.1.3 provides the conditional response probabilities for peer A. The peers 

may also be divided into three latent classes showing different typical response patterns. 

Individuals of the first class (20%) clearly favor the first response category across all 

items. The conditional response probabilities for the 1st manifest category are much higher 

than for the self-report.  

Individuals belonging to the 2nd latent class (51%) show typical response patterns 

that are spread across all possible response categories. The highest conditional response 

probability for this class is ( ).
1.2 .57C NEUAπ =  to choose the 1st category of rating the target to 

be moody, and the lowest conditional response probability for this class is ( ).
1.2 .08A NEUAπ =  

to choose the 1st category of vulnerable with respect to the target. 7 out of 12 conditional 
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response probabilities are in the range between( ).
2.2 .32D NEUAπ =  and ( ).

3.2 .49A NEUAπ =  

illustrating that this class of individuals uses all manifest response categories. 

 

Table 5.1.3 

Conditional response probabilities of the manifest response categories for the construct 

neuroticism (NEUA) in the saturated latent rater agreement model for structurally 

different raters (peer report A) 

  latent status 

variable 
manifest 

categories 
na = 1 na = 2 na = 3 

I (vulnerable) 

1 .62 .08  .00* 

2 .38 .44  .00* 

3  .00* .49 1.00* 

J (sensitive) 

1 .74 .18  .00* 

2 .26 .47 .09 

3  .00* .35 .91 

K (moody) 

1 .76 .57 .34 

2 .15 .31 .25 

3 .09 .11 .41 

L (doubtful) 

1 .76 .48 .21 

2 .14 .32 .26 

3 .10 .20 .53 

Note. * boundary values; na: categories of  NEUA. 

 

 

Individuals belonging to the 3rd latent class (29%) interestingly show a typical 

response pattern which is similar to the typical response pattern of the 2nd latent class of 

the self-raters. That is, these individuals clearly rate the target to be vulnerable and 

sensitive but they have no very pronounced view about the target’s moodiness and self-

doubts. However, the conditional response probabilities to choose the 3rd manifest response 

categories are highest for this latent class.  

The two raters differ with respect to their measurement models. However, the 

interpretations of their conditional response probabilities are close to each other. Both 

types of raters can be classified in ordered categories. Their measurement models differ 



Latent Rater Agreement Models 95

with respect to the difficulty of the items but not in the patterns. The assumption of 

measurement equivalence could be tested restricting the log-linear parameters linking the 

latent to the manifest variables.  

 

Table 5.1.4 

Cross classification of the two latent variables (NEUS and NEUA) in the saturated latent 

rater agreement model for structurally different raters 

  NEUA   

  1 2 3  

NEUS  

1 .09 (.05) [1.96] .12 (.12) [1.21] .02 (.07) [0.42] .23 [0.73] 

2 .07 (.11) [0.68] .32 (.27) [1.36] .14 (.15) [1.08] .53 [1.73] 

3 .04 (.05) [0.75] .07 (.12) [0.61] .13 (.07) [2.18] .24 [0.80] 

  .20 [0.71] .51 [1.58] .29 [0.90]  

Note. NEUS: neuroticism self-rating; NEUA: neuroticism peer rating (A); the product of 

the marginals is presented in parentheses; log-linear parameters are presented in brackets. 

 

 

Table 5.1.4 presents the cross-classification of the latent categories of the self- and 

peer ratings with respect to neuroticism. The marginals present the proportions of 

individuals in the sample belonging to the three classes of self- or peer-rated neuroticism. 

The latent distributions do virtually not differ from each other. This can be seen by 

inspecting the latent marginals and / or the corresponding log-linear parameters (in 

brackets) and this proofs true calculating method bias type I:  

 

 

( 1. 1)

( 2. 2)

( 3. 3)

.23
1 1.15

.20
.53

1 1.06
.50
.24

1 0.83
.29

ns na

ns na

ns na

MB

MB

MB

= =

= =

= =

= =

= =

= =

,       (5.1.15) 

 

The two latent distributions do not differ strongly from each other as is indicated by 

MB1 coefficients close to 1. The hypothesis that the two raters (self and peer A) produce 

identical latent proportions could be tested in a model with restricted latent one-variable 

parameters (see also Section 5.2 for interchangeable raters).  

Inspecting the latent joint distribution reveals that cells on the main diagonal are 

much more frequently expected than cells besides the main diagonal (a total of 54% entries 
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are on the main diagonal; all three two-variable parameters are larger than 1). Moreover, 

comparing the expected cell frequencies with the frequencies one would expect given 

independent ratings (values in parentheses; assuming all other effects to be equal in this 

model) reveals that only cells on the main diagonal are more often observed than predicted 

by their corresponding margins. .25κ =  indicates low agreement between the two raters. 

The ratios of expected cell proportion and cell proportion based on the marginals are 1.8 

for cell [1 1], 1.19 for cell [2 2], and 1.86 for cell [3 3]. That is, agreement is much higher 

for the 1st and 3rd class of neuroticism than for the middle category.  

 

Table 5.1.5 

Distinguishability indices for the saturated latent rater agreement model for structurally 

different raters 

  NEUA  

  1 2 3 

NEUS  

1  1.00 0.29 

2 0.64  0.93 

3 0.80 0.58  

Note. NEUS: neuroticism self-rating; NEUA: neuroticism peer rating (A). 

 

 

The distinguishability indices (see Table 5.1.5) show an interesting pattern. Self-

raters and peers distinguish well between the extreme category combinations. That is, the 

combinations [1 3] and [3 1]. They also distinguish well between the middle category for 

the self-rating and the lowest category for the peer rating [2 1] as well as between the 

highest category for the self-rating and the middle category for the peer rating [3 2]. They 

do not distinguish (but also do not confound) the category combinations [1 2] and [2 3]. If 

the self-rating is considered as a gold-standard one may conclude that the peer rarely 

underestimates the latent score (respecting the ordered structure of the latent classes). The 

peer rarely extremely overestimate the latent score (choosing category 3 when the self-

rating is lowest), but overestimates the latent score for the lowest and middle category.  

Given the interesting similarity between the 2nd class of the self-raters and the 3rd 

class of the peer-raters one might think that a labeling problem occurred and that these two 

classes consist of sensitive but stable individuals. This is not the case. The latent joint 

distribution clearly shows that there is no overrepresentation compared to chance effects 

for the latent cells [2 3] and [3 2], which would indicate a shift in the labels, but there is an 
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overrepresentation for the latent cells [2 2] and [3 3] representing similar classifications. 

One may speculate that peers are able to detect if a friend is vulnerable and sensitive but 

that they do not perceive the moodiness and the self-doubts of their friends as their friends 

do not frankly present them in their behavior. Intuitively, this is very reasonable because 

individuals being in a bad mood or being in a phase of severe self-doubts may not search 

for their friends’ company and, therefore, their friends cannot comment on these items with 

certainty. This finding also fits well to the aspect of availability in the realistic accuracy 

model (see Funder, 1995). 

 

The independence model. This model fits to the data with respect to the bootstrapped 2χ -

value but it fits second worst to the data according to the AIC and BIC indices. 10 log-

linear parameters suffer from boundary values. The parameters of the measurement models 

do not change compared to those of the saturated model. Therefore, their interpretation is 

perfectly the same. 

Table 5.1.6 presents the latent joint distribution for the independence model. The 

latent marginals for the self-report do virtually not differ from the saturated model. The 

marginals for the peer report differ slightly from those previously reported. The 2nd 

category is less frequently expected than in the saturated model and the 3rd category is 

more frequently expected.  

 

Table 5.1.6 

Cross classification of the two latent variables (NEUS and NEUA) in the independence 

model for structurally different raters 

  NEUA  

  1 2 3  

NEUS  

1 .06 .10 .08 .24 [0.80] 

2 .13 .24 .19 .56 [1.88] 

3 .05 .09 .07 .21 [0.66] 

  .24 [0.72] .43 [1.33] .34 [1.04]  

Note. NEUS: neuroticism self-rating; NEUA: neuroticism peer rating (A); log-linear 

parameters are presented in brackets. 

 

 

The two raters differ more strongly from each other than in the saturated model. 

There is no method bias type I for the 1st category (the two categories are expected with 
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equal proportions), however, the expected proportions for the 2nd and 3rd category differ to 

a greater extend. Self-raters belong more often to the 2nd latent class whereas peer ratings 

tend to belong to the 3rd latent class more often:  

 

( 1. 1)

( 2. 2)

( 3. 3)

.24
1 1.00

.24
.56

1 1.30
.43
.21

1 0.62
.34

ns na

ns na

ns na

MB

MB

MB

= =

= =

= =

= =

= =

= =

,       (5.1.16) 

 

A calculation of the distinguishability index is not meaningful since the latent table 

follows the assumption of independence.  

 

The quasi-independence I latent rater agreement model. The quasi-independence I latent 

rater agreement model fits to the data according to the bootstrap results. Additionally, it 

fits 2nd best to the data according to the information criteria. Again, 8 log-linear parameters 

suffer from boundary values. The conditional response probabilities are almost identical to 

the conditional response probabilities reported before.  

Table 5.1.7 presents the latent joint distribution of the latent categories of the self- 

and peer ratings. Compared to the latent proportions found for the self-report in Table 4.1.9 

the 2nd latent category is underrepresented and the 3rd latent category is overrepresented. 

However, these differences are not very large. This may be due to the fact that the 

conditional response probability to choose the 3rd category for moody is somewhat lower 

in this application than in the application for the self-ratings only (see Table 4.1.9). 

Therefore, more self-raters provide response patterns which fit into this category. The log-

linear parameters (presented in brackets) cannot be directly related to the latent 

proportions. Therefore, it is much more convenient to analyze the latent proportions. 

Virtually the two latent marginal distributions do not differ from each other. Inspecting the 

method bias type I reveals a very similar picture:  
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( 1. 1)

( 2. 2)

( 3. 3)

.23
1 1.15

.20
.50

1 1.02
.49
.28

1 0.88
.32

ns na

ns na

ns na

MB

MB

MB

= =

= =

= =

= =

= =

= =

.       (5.1.17) 

 

Table 5.1.7 

Cross classification of the two latent variables (NEUS and NEUA) in the quasi-

independence I latent rater agreement model for structurally different raters 

  NEUA   

  1 2 3  

NEUS  

1 .09 (.05) [3.42] .10 (.11) .04 (.07) .23 [0.69] 

2 .09 (.10) .29 (.25) [0.87] .12 (.16) .50 [2.24] 

3 .02 (.06) .10 (.03) .16 (.09) [4.62] .28 [0.65] 

  .20 [0.57] .49 [2.25] .32 [0.78]  

Note. NEUS: neuroticism self-rating; NEUA: neuroticism peer rating (A); the product of 

the marginals is presented in parentheses; log-linear parameters are presented in brackets. 

 

 

Inspecting the latent joint distribution reveals that cells on the main diagonal are 

much more frequently expected than cells besides the main diagonal (a total of 54% entries 

are on the main diagonal). Moreover, comparing the expected cell frequencies with the 

frequencies one would expect given independent ratings (values in parentheses; assuming 

all other effects to be equal in this model) reveals that all cells on the main diagonal are 

more often observed than predicted by their corresponding margins. However, .18κ =  

indicates very low agreement between the two raters. The ratios of expected cell 

proportion and cell proportion based on the marginals are 1.8 for cell [1 1], 1.16 for cell [2 

2], and 1.78 for cell [3 3]. That is, agreement is much higher for the 1st and 3rd class of 

neuroticism as could be found for the saturated model. It is not meaningful to compute the 

distinguishability index for this model because the cell proportions of the disagreement 

cells follow an independence pattern.  

 

The quasi-independence II latent rater agreement model. The quasi-independence II latent 

rater agreement model fits to the data according to the bootstrapped 2χ -value and it fits 

best to the data according to the information criteria. Five log-linear parameters suffer 
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from boundary values. The conditional response probabilities are almost identical to the 

conditional response probabilities reported before.  

The quasi-independence II model shows considerably differing latent marginal 

distributions for the latent categories of the self-report compared to those of the saturated 

model (see Table 5.1.4). Compared to the saturated model, class 2 is about 12% smaller 

and class 3 is about 12% larger. A similar - yet less strong - decline and increase can be 

found for the latent classes of the peers (minus 5% in the 2nd class and plus 5% in the 3rd 

class). This is due to the fact, that the overall agreement (the sum of all proportions on the 

main diagonal) is fitted in this model and not the cell-specific agreement (see e.g., 

Nussbeck, 2006).  

The latent joint distribution shows considerable overrepresentation on the main 

diagonal and considerably lower expected cell proportions besides the main diagonal 

compared to the product of the latent marginals. Note, that the log-linear parameter 

indicating the overrepresentation on the main diagonal is constant.  

 

Table 5.1.8 

Cross Classification of the two latent variables (NEUS and NEUA) in the quasi-

independence II latent rater agreement model for structurally different raters 

  NEUA   

  1 2 3  

NEUS  

1 .11 (.06) [2.53] .08 (.12) .06 (.09) .25 [0.81] 

2 .06 (.09) .27 (.19) [2.53] .08 (.14) .41 [1.12] 

3 .06 (.08) .11 (.17) .19 (.12) [2.53] .36 [1.11] 

  .23 [0.74] .46 [1.37] .34 [0.98]  

Note. NEUS: neuroticism self-rating; NEUA: neuroticism peer rating (A); the product of 

the marginals is presented in parentheses; log-linear parameters are presented in brackets. 

 

 

The method bias type I coefficients for the two raters are minimal indicating that 

the quasi-independence II model predicts almost perfectly the same latent marginals: 

 

( 1. 1)

( 2. 2)

( 3. 3)

.25
1 1.09

.23
.41

1 0.89
.46
.36

1 1.06
.34

ns na

ns na

ns na

MB

MB

MB

= =

= =

= =

= =

= =

= =

.       (5.1.18) 
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Since the disagreement follows an independence pattern it is not meaningful to 

compute the distinguishability indices. .32κ =  indicates low agreement between the two 

raters. The ratios of expected cell proportion and cell proportion based on the marginals are 

1.83 for cell [1 1], 1.42 for cell [2 2], and 1.58 for cell [3 3]. That is, agreement is much 

higher for the 1st and 3rd class of neuroticism. Although the rate of agreement depicted by 

the latent two-variable log-linear parameter is constant, the expected proportions on the 

main diagonal do not have to be overrepresented to the same ratio given the latent 

marginals. This is due to the fact that the log-linear parameters of the quasi-independence 

models do not directly relate to frequencies or proportions. 

 

The quasi-symmetry latent rater agreement model. The quasi-symmetry latent rater 

agreement model fits to the data according to the bootstrapped 2χ -value, however, if fits 

worse than the other models according to the AIC and BIC index. This model suffers from 

a problem due to too many parameters (which can also be seen for the saturated model). 

This is in line with the increase in boundary values which indicate the problems during the 

estimation process. Ten log-linear parameters suffer from boundary values. As for the 

other models, the one- and two-variable effects related to the manifest variables as well as 

the conditional response probabilities can be found in Appendix C. The conditional 

response probabilities are almost identical to the conditional response probabilities 

reported before. 

Inspecting the latent joint distribution reveals that the latent proportions are close to 

what has been found for the other models. There is a considerable overrepresentation on 

the main diagonal indicating agreement between the raters. Additionally, the cells besides 

the main diagonal follow quasi-symmetry. That is,, their two variable effects are the same 

for cells representing a particular combination of categories and its inversed (e.g., [1 2] and 

[2 1]).  

Unfortunately, this model cannot be specified in LEM (Vermunt, 1997a) relying on 

contrast coding but has to be specified relying on dummy-coding (for a description of 

dummy coding see e.g., Hagenaars, 1993). Therefore, the log-linear parameters cannot be 

interpreted in the ways described above. The parameters are depicted in Table 5.1.9, the 

latent category combination [3 3] is the reference category ( ).
3.3 1.00NEUS NEUAτ = . Its expected 

proportion can be determined by the product of the corresponding one-variable parameters. 

The one-variable parameters depict the (geometric) mean deviation of the corresponding 
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rows or columns from the reference category. The two-variable effects depict the 

deviations from the corresponding cells from the product of the expected proportion of the 

reference category and the one-variable parameters.  

 

Table 5.1.9 

Cross classification of the two latent variables (NEUS and NEUA) in the quasi-symmetry 

latent rater agreement model for structurally different raters 

  NEUA   

  1 2 3  

NEUS  

1 .09 (.05) [1.04] .10 (.11) [0.97] .04 (.07) [0.26] .23 [0.96] 

2 .09 (.10) [0.97] .29 (.25) [2.70] .12 (.16) [0.82] .50 [0.97] 

3 .02 (.06) [0.26] .10 (.14) [0.82] .16 (.09) [1.00] .28 [1.07] 

  .20 [0.80] .49 [0.98] .32 [1.28]  

Note. NEUS: neuroticism self-rating; NEUA: neuroticism peer rating (A); log-linear 

parameters are presented in brackets. LEM requires dummy-coded latent two-variable 

parameters. 

 

 

There is almost no method bias indicating that the latent marginal distributions do 

not differ from each other very strongly: 

 

( 1. 1)

( 2. 2)

( 3. 3)

.23
1 1.15

.20
.50

1 1.02
.49
.28

1 0.88
.32

ns na

ns na

ns na

MB

MB

MB

= =

= =

= =

= =

= =

= =

,       (5.1.19) 

 

In addition to the method-bias the quasi-symmetry model also allows to examine the 

distinguishability of the latent categories (see Table 4.2.9). E.g.: 

 

.
1.2

(1.2)
1 2

ˆ .10
0.91

ˆ ˆ .49 .23

NEUS NEUA

NEUS NEUA
Dist

π
π π

= = =
×

,      (5.1.20) 
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Table 5.1.10 

Distinguishability indices for the two latent variables (NEUS and NEUA) in the quasi-

symmetry latent rater agreement model for structurally different raters 

  NEUA  

  1 2 3 

NEUS  

1  0.91 0.57 

2 0.90  0.75 

3 0.33 0.71  

Note. NEUS: neuroticism self-rating; NEUA: neuroticism peer rating (A) 

 

 

The distinguishability indices show that self- and peer raters generally do not 

confound the categories of neuroticism (all indices are below 1). However, the 

distinguishability indices between the 1st and 2nd class (in either combination) are not very 

pronounced indicating that their joint expected proportions are almost as large as could be 

expected by chance. The distinguishability indices dealing with the 3rd class however show 

that this class is not confounded with any of the other two classes. This finding can be 

explained relying on the realistic accuracy model (Funder, 1995). Being traited (being 

neurotic) makes it much easier to be congruently (correctly) judged (see also Baumeister & 

Tice, 1988). Recall, that the latent one-variable parameters may differ and, therefore, the 

distinguishability indices also may differ. 

.28κ =  indicates low agreement between the two raters. The ratios of expected cell 

proportions and the expected cell proportions based on the marginals are 1.8 for cell [1 1], 

1.16 for cell [2 2], and 1.78 for cell [3 3]. That is, agreement is much higher for the 1st and 

3rd class of neuroticism. 

 

The latent one-variable model. The latent one-variable model fits to the data according to 

the bootstrapped 2χ -value. However, it fits worst with respect to the information criteria. 

The latent one-variable model will adequately represent the data if distinguishability and 

agreement are perfect (in this case the method bias type I will automatically be 1). Table 

5.1.11 depicts the expected (conditional) proportions.  
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Table 5.1.11 

Conditional response probabilities in the one-variable model for structurally different 

raters 

  Latent status 

  n = 1 n = 2 n = 3 

variable  self peer A self peer A self peer A 

A / I 

(vulnerable) 

1 .30 .27  .00* .27 .03  .00* 

2 .42 .34 .10 .51 .04 .08 

3 .29 .39 .90 .22 .93 .92 

B / J 

(sensitive) 

1 .47 .42 .01 .38 .01 .00 

2 .45 .30 .01 .49 .10 .18 

3 .08 .28 .97 .14 .89 .82 

C / K 

(moody) 

1 .68 .63 .31 .64 .24 .39 

2 .21 .25 .31 .25 .28 .28 

3 .11 .12 .38 .10 .49 .32 

D / L 

(doubtful) 

1 .50 .61 .25 .63 .09 .21 

2 .28 .24 .12 .24 .17 .29 

3 .21 .15 .63 .12 .73 .50 

Note. The column entitled self depicts the conditional response probabilities for the self-

report; the column entitled peer A depicts the conditional response probabilities for the 

peer report.  

 

Besides the worst information criteria, the one-variable model suffers from one 

major shortcoming in this application. The conditional response probabilities of peer A do 

not correspond to a typical response pattern for classes 1 and 2. The conditional response 

probabilities for items C and D are virtually identical and the conditional response 

probabilities for items A and B differ only to a small extent. Therefore, knowing only the 

peer ratings one could not differentiate between dyads (self- and peer raters) belonging to 

the first and second class. Therefore, the one-variable model does not represent the 

agreement structure in this application. This finding relates to the distinguishability indices 

found for the saturated latent rater agreement model. If a one-variable model fit the data 

the distinguishability indices should be very close to zero. This was by far not the case.  
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5.1.5 Comparison of the Latent Rater Agreement Models for Structurally 

Different Raters and Their Implications for the Analysis of Convergent 

and Discriminant Validity 

 

All different latent rater agreement models fit to the empirical data according to the 

bootstrap procedure implemented in LEM. The BIC and AIC indices can be used to 

differentiate between them in terms of their parsimony and to choose the model with the 

best trade-off of absolute fit and parsimony. However, besides statistical analyses one 

should also take theoretical considerations into account to choose among the models. The 

latent saturated and the latent independence models may serve as two benchmarks 

representing the most flexible and most restrictive model at the latent level. All other 

models fall between these two models (except for the one-variable model).  

Figure 5.2 shows the relation between the different models. All models are nested 

with respect to one common saturated model; therefore, one might want to apply a 2χ -

difference test deciding which model fits best. However, for none of the models the 

empirical 2χ -value did follow its theoretical distribution but the values were on the edges 

of the parameter space (p = .00 or p = 1.00), in these cases 2χ -difference test does not 

work (see Dominicus, Skrondal, Gjessing, Pederson, & Palmgren, 2006).  

All models can be used to determine the reliability of different indicators measuring 

one single categorical trait (see 4.1.1) and to analyze the agreement (convergence) between 

the two raters measuring one construct. Agreement can be determined calculating κ  or the 

ratio of expected cell proportions to the expected cell proportions given the marginals. The 

overall agreement rates κ  are very small for all models. The benchmarks for coefficient κ  

of manifest agreement tables may serve as a heuristic for the analysis of the latent joint 

distributions.  
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saturated model

quasi-independence I

quasi-symmetry

quasi-independence II

independence

restricting two-variable effects

restricting off-diagonal effects to be 0

restricting main diagonal effects to be constant

no two-variable effects

 

Figure 5.2. The relationship between the five latent rater agreement models presented in 

Section 5.1. Commentaries next to the arrows indicate the necessary constraints leading 

from one model to the other.  

 

 

Another possibility is to inspect the latent two-variable log-linear parameters in 

models without boundary values. If there are boundary values the latent probability tables 

may be analyzed to get insight into the degree of agreement. Namely, the category-specific 

agreement ratios may be determined. The category-specific agreement ratios compare the 

product of the latent marginals to the model implied proportion for a particular cell. This 

corresponds conceptually to the calculation of 2χ -components in frequency tables (testing 

against independence). These values should be large to indicate high convergent validity. 

In the current applications the category-specific agreement rates roughly fall in the range 

of 1.2 and 1.9. Considering the relatively low expected proportions in the joint 

distributions, these values do not indicate large absolute agreement rates above the 

agreement expected by the product of the latent marginals. This is in line with the general 

finding that self- and peer raters do not agree to a large extent (see Funder, 1995).  
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The log-linear parameters reveal if agreement is constant across categories or if 

agreement is specifically high for some categories representing rather good categories of a 

trait. In the presented applications the quasi-independence II model fits best to the data 

implying that there is stable agreement across the latent categories between raters and that 

there are no specific patterns of disagreement.  

Additionally, the models provide information about bias (as the difference between 

two presumed prevalence rates) and category distinguishability. Method bias can be 

determined calculating the MB1 coefficient. In the current applications, there is virtually 

no bias. To my mind no guidelines have been proposed concerning the amount of 

differences in latent prevalence rates to be considered severe. Zwick (1988) states that 

agreement should not be analyzed if the prevalence rates differ to a great extent. However, 

she does not give guidelines as to which difference one still may analyze rater agreement. 

Category distinguishability may be calculated in the saturated and the quasi-

symmetry model. These models imply, that self- and peer raters do not confound the 1st 

and 3rd latent categories of neuroticism. All other category combinations are expected to a 

lower degree than based on the marginals but the deviation is not very pronounced (the 

quasi-independence II structure is reflected). The distinguishability index shows if the two 

raters have tendencies to confound special categories with respect to the other rater's score. 

Distinguishability indices larger than 1 indicate a lack of convergent validity or a labeling 

problem. If there is agreement and, additionally, some categories besides the main diagonal 

are overrepresented the two raters have different conceptualizations of the construct. 

Special patterns of disagreement (high distinguishability indices) may reveal that two 

categories of a latent construct can be confounded more easily than other categories. This 

may be due to an imperfect description of the categories but also be due to related yet still 

distinct categories (e.g., a gambling personality type may be confounded with a risk 

seeking personality type but probably not with a security oriented personality type). If 

these related categories are part of the latent cross-classification it may occur that there are 

systematic patterns of disagreement. The combination of gambling and risk-seeking may 

occur more frequently than expected by chance, whereas the two categories are rarely (less 

frequently than predicted by chance) confounded with the security oriented personality 

type. In the quasi-symmetry model, these overrepresentations are constant irrespective of 

the ordering of the raters (the effects are identical for the combination of "gambling and 

risk-seeking" as well as "risk-seeking and gambling"). If there are only high 

distinguishability indices but no agreement, it is very probable that a labeling problem 
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occurred and one may check if the latent categories are ordered in the same way for the 

two raters.  

The quasi-independence I model imposes relatively strong constraints on the model 

parameters. The only fitted cell frequencies in models for observed data are those of the 

main diagonal. Transferring this model to the latent level bears the difficulty to clearly 

interpret the log-linear parameters. There is no very clear substantive interpretation. 

However, the latent proportions can be easily interpreted. Comparing the expected cell 

proportions to the expected values given the marginals only gives a lower boundary for the 

reliability estimate of Schuster and Smith (2006). Additionally, this comparison shows the 

amount of agreement between raters. One may also consider κ for analyzing agreement at 

the latent level. Additionally, the ratio of expected proportions to the product of the latent 

marginals reveals the degree to which these categories are overrepresented. If the 

parameters for agreement on the main diagonal differ vastly from each other, agreement is 

category specific. That is, raters agree with each other also as a function of the category. It 

may be that some types (e.g., not neurotic) may be more easily identified than others and 

that, therefore, raters agree more often with respect to this category than with respect to 

other categories.  

Cells besides the main diagonal must be underrepresented with respect to the 

product of their latent marginals. By model definition these cells do not show problems 

related to distinguishability or confounding of categories since the quasi-independence I 

model assumes disagreement to follow the assumption of independence. If rater agreement 

is not category specific but constant across all cells on the main diagonal the quasi-

independence II model will fit to the data (this is the case in the current application). In this 

model, rater agreement is a property of the pair of raters. In both quasi-independence 

models rater bias (as difference in the prevalence rates) can be analyzed. Comparing the 

quasi-independence I and the quasi-independence II models reveals if the moderators good 

judge and good category (trait) interact (see Funder, 1995). They do so in the quasi-

independence I model they do not in the quasi-independence II model.  

The most restricted model is the independence model. In this model, there is no 

relationship between the two raters, that is, the only agreement between two raters is due to 

chance agreement. The raters do not have the slightest view in common with respect to the 

target. In general, this model will not fit to the data but may be analyzed to provide a lower 

boundary for the cross-classification of the latent joint distribution. 
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All models (but the independence model) share that agreement between raters can 

be modeled. Agreement is high if the log-linear two-variable effect(s) on the main diagonal 

are large. In general, the two-variable effects besides the main diagonal are expected to be 

smaller than 1 (their expected proportions should be smaller than the product of their 

marginal proportions). If there are large effects besides the main diagonal this may point to 

two different situations: 

1. The patterns of the conditional response probabilities are similar across raters 

suggesting that the labels of the latent categories have well been chosen. In this case, 

one rater perceives completely different "behavioral cues" to judge the target person 

than the other. An investigation of the decision making process (e.g., Wickens, 2002) 

and determinants as well as moderators of agreement (Funder, 1995) might give more 

insight into these issues.  

2. It turns out that the labels of the latent categories have not well been chosen. This 

may be due to relatively low reliabilities of the indicators which do not permit to 

clearly label the latent categories. The interpretation of the model must be carried out 

very carefully. If the latent categories are reliably measured it may be the case that 

either the latent categories are related in an unexpected way indicating very low 

convergent validity or a simple labeling problem occurred. Reconsidering the 

ordering of the classes might remedy the problem.  

 

 
 

5.2 Latent Rater Agreement Models for Interchangeable Raters 

 

Analyzing the convergence (agreement) of interchangeable raters for multiple items can 

also be done adopting the existing rater-agreement models to the latent level. Since 

interchangeable raters originate in the same distribution, the model parameters must be 

identical across raters. This implies measurement invariance (see below), identical 

prevalence rates, and, additionally, identical log-linear parameters for interchanged 

categories ( ). .
. .

X Y X Y
x y y xτ τ= . The two-variable effect describing the interaction of the latent 

categories not neurotic rated by A with moody but stable rated by B, for example, is 

identical to the inversed interaction not neurotic by B and moody but stable for A (therefore 

x and y are inversed on the right hand side of ( ). .
. .

X Y X Y
x y y xτ τ= .  
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Figure 5.3 presents a categorical monotrait-multimethod model for the analysis of 

latent rater agreement of two raters. For sake of comprehensibility the trait variables and 

the items are labeled. NEUA and NEUB represent the latent construct (NEUA for rater A 

vs. NEUB for rater B); the latent traits (class variables) are measured by the same set of 

items (“vulnerable, sensitive, moody, and self-doubtful”).  

I consider a total of three different manifest rater agreement models which can be 

adopted and defined for the analysis of latent rater agreement: In 5.2.2, the latent quasi-

independence I rater agreement model, in 5.2.3, the latent quasi-independence II rater 

agreement model, and in 5.2.4, the latent symmetry rater agreement model will be defined.  

 

Peer Report A

Peer Report B

NEUA

I (vulnerable)

J (sensitive)

K (moody)

L (self-doubtful)

NEUB

P (vulnerable)

Q (sensitive)

R (moody)

S (self-doubtful)

Peer Report A

Peer Report B

NEUA

I (vulnerable)

J (sensitive)

K (moody)

L (self-doubtful)

NEUB

P (vulnerable)

Q (sensitive)

R (moody)

S (self-doubtful)

NEUA

I (vulnerable)

J (sensitive)

K (moody)

L (self-doubtful)

NEUA

I (vulnerable)

J (sensitive)

K (moody)

L (self-doubtful)

NEUB

P (vulnerable)

Q (sensitive)

R (moody)

S (self-doubtful)

NEUB

P (vulnerable)

Q (sensitive)

R (moody)

S (self-doubtful)  

Figure 5.3. Log-linear model with two latent variables representing the latent construct 

Neuroticism (NEU) for the two peer reports A and B. Each latent variable is measured by 

four manifest indicators.  

 

 
 

5.2.1 Measurement Invariance for Interchangeable Raters 

 

Measurement invariance ensures that the link-function describing the genesis of the latent 

variables as representations of the joint observed ratings is the same for the two methods. 
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Definition 5.2.1  

Measurement invariance for interchangeable raters 

 

Let raters A and B be interchangeable due to theoretical reasons. Their latent variables X 

and Y representing the classification of A's and B's ratings (of the same construct; e.g., 

neuroticism: NEU) must fulfill the following restrictions: 

 

i) identical number of latent categories 

 

 max( ) max( )x y C= = .       (5.2.1) 

 

The maximum number of categories is the same for the two ratings. 

 

ii) identical latent distributions 

 

 X Y
x yτ τ= , for x y=         (5.2.2) 

 

for latent categories representing the identical latent category. 

 

iii) identical link functions 

 

. .
. .

1 1

i i k k

i i k i

i k

I K
M M X O O Y
m m x o o y

m o= =

Τ = τ τ = Τ = τ τ∏ ∏a b  with . .
. .

i i i i

i i i i

M O M X O Y
m o m x o yτ = τ ∧ τ = τ ,   (5.2.3) 

 

for im  and io  representing identical categories of identical items and x y= .  

 

Explanation: 

i) The number of categories must be the same for the two latent variables (X 

and Y) because the two originate in the same population.  

ii)  Therefore their rating also show identical prevalence rates (see also Schuster 

& Smith, 2002, 2006; Zwick, 1988). 
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iii)  Identical link-functions produce identical expected manifest response 

patterns given identical latent statuses for the two raters (see Eid, Langeheine, & 

Diener, 2003 for a related topic in cross-cultural psychology) which must also be 

the case due to the interchangeability (the random sampling out of one set). 

 

Measurement invariance ensures, that the links of manifest indicators to the latent 

variables are the same, and the observed responses follow the same distributions. 

Measurement invariance does not imply that different raters (methods) provide the same 

scores / ratings given a particular target. Identical ratings can only be observed in the case 

of perfect agreement between raters.  

 
 

5.2.2 Definition of the Quasi-Independence I Latent Rater Agreement 

Model for Interchangeable Raters 

 

Definition 5.2.2 

The latent quasi-independence I model for interchangeable raters 

 

Let X and Y represent the same latent construct measured by two interchangeable raters. 

 

( ).
. . .

IX Y X Y
x y x y x ye = ηΤ Τ τ τ τab a b , with 

1 if 

0 else

I x y

I

= =
 =

     (5.2.4) 

 

with Τ = Τa b  following Equation 5.2.3, X Y
x yτ τ=  for x y= , and . .

. .
X Y X Y
x y y xτ τ=  for x y= .  

. .ns cseab  is the expected frequency of a specific cell in the latent joint cross-classification of 

the manifest response patterns ab  (consisting of the two rater-specific patterns a  and b ) 

with the two latent variables X and Y. η  is the overall geometric mean of the complete 

table (manifest and latent variables).  and Τ Τa b  represent the measurement models of the 

latent variables: 

.
.

1

i i

i i

i

I
M M X
m m x

m =

Τ = τ τ∏a : represents the product of the log-linear parameters linking the latent 

variable X to its indicators and the manifest one-variable effects, 
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.
.

1

k k

k i

k

K
O O Y
o o y

o =

Τ = τ τ∏b : represents the product of the log-linear parameters linking the latent 

variable Y to its indicators and the manifest one-variable effects. 

Τ = Τa b  implies that identically worded items have identical model parameters. 

X
xτ  and Y

yτ : represent the latent one-variable parameters. .
.

X Y
x yτ : represent the latent two-

variable parameters. 

 

The statistical meaning of the model parameters and their implications are identical to the 

meaning of the model parameters of the latent quasi-independence I model for structurally 

different raters. 

 

 

5.2.3 Definition of the Quasi-Independence II Latent Rater Agreement 

Model for Interchangeable Raters 

 

Definition 5.2.3 

The latent quasi-independence II model for interchangeable raters 

 

Let X and Y represent the same latent construct measured by two interchangeable raters. 

 

( ).
. . .

IX Y X Y
x y x y x ye = ηΤ Τ τ τ τab a b , with 

1 if 

0 else

I x y

I

= =
 =

,    (5.2.4 repeated) 

 

and . .
.

X Y X Y
x yτ = τ . 

 

with Τ = Τa b  following Equation 5.2.3, X Y
x yτ τ=  for x y= , and . .

. .
X Y X Y
x y y xτ τ=  for x y= .  

. .ns cseab  is the expected frequency of a specific cell in the latent joint cross-classification of 

the manifest response patterns ab  (consisting of the two rater-specific patterns a  and b ) 

with the two latent variables X and Y. η  is the overall geometric mean of the complete 

table (manifest and latent variables).  and Τ Τa b  represent the measurement models of the 

latent variables: 
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.
.

1

i i

i i

i

I
M M X
m m x

m =

Τ = τ τ∏a : represents the product of the log-linear parameters linking the latent 

variable X to its indicators and the manifest one-variable effects, 

.
.

1

k k

k i

k

K
O O Y
o o y

o =

Τ = τ τ∏b : represents the product of the log-linear parameters linking the latent 

variable Y to its indicators and the manifest one-variable effects. 

Τ = Τa b  implies that identically worded items have identical model parameters. 

X
xτ  and Y

yτ : represent the latent one-variable parameters. .
.

X Y
x yτ : represent the latent two-

variable parameters. 

 

The statistical meaning of the model parameters and their implications are identical to the 

meaning of the model parameters of the latent quasi-independence II model for structurally 

different raters. 
 

5.2.4 Definition of the Symmetry (Saturated) Latent Rater Agreement Model 

for Interchangeable Raters 

 

Definition 5.2.4 

The latent symmetry model for interchangeable raters 

 

Let X and Y represent the same latent construct measured by two interchangeable raters. 

 

 

.
. . .

X Y X Y
x y x y x ye = ηΤ Τ τ τ τab a b ,        (5.2.5) 

 

with Τ = Τa b  following Equation 5.2.3, X Y
x yτ τ=  for x y= , and . .

. .
X Y X Y
x y y xτ τ=  for x y= .  

. .ns cseab  is the expected frequency of a specific cell in the latent joint cross-classification of 

the manifest response patterns ab  (consisting of the two rater-specific patterns a  and b ) 

with the two latent variables X and Y. η  is the overall geometric mean of the complete 

table (manifest and latent variables).  and Τ Τa b  represent the measurement models of the 

latent variables: 
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.
.

1

i i

i i

i

I
M M X
m m x

m =

Τ = τ τ∏a : represents the product of the log-linear parameters linking the latent 

variable X to its indicators and the manifest one-variable effects, 

.
.

1

k k

k i

k

K
O O Y
o o y

o =

Τ = τ τ∏b : represents the product of the log-linear parameters linking the latent 

variable Y to its indicators and the manifest one-variable effects. 

Τ = Τa b  implies that identically worded items have identical model parameters. 

X
xτ  and Y

yτ : represent the latent one-variable parameters. 

.
.

X Y
x yτ : represent the latent two-variable parameters. 

 

In the case of interchangeable raters the symmetry and saturated model are 

identical. Since measurement invariance must hold and additionally the latent one-variable 

effects are restricted to be equal across raters the latent marginals must be identical. 

Moreover, since the two raters are interchangeable their disagreement must follow the 

assumption of (quasi-) symmetry. 

 

 

5.2.4.1 Implications of the symmetry model for interchangeable raters 

 

The latent one-variable effects reflect the univariate latent distributions of the latent 

variables. There are no differences between the latent distributions by definition. 

Therefore, none of the ratings is biased with respect to the other rating. However, the 

ratings can be biased with respect to the true prevalence rates of the construct.  

In the symmetry model, the distinguishability index can be estimated as in the 

quasi-symmetry model. The ratio to which proportions of specific cell-combinations 

besides the main diagonal deviate from the expected proportions given the one-variable 

effects is defined as distinguishability index.  
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Definition 5.2.5 

Distinguishability index (Dist) for interchangeable raters 

 

( ) ( ) ( )
. . .

. . .. .
. ..

X Y X Y X Y
x y y x x yX Y X Y

x y y xx y X Y X Y X Y
x y y x x y

Dist
π π π

= τ = τ = =
π π π π π π

, for x y≠ .   (5.2.6) 

 

Lemma for Definition 5.2.5: 

 

. . . .
. . . .

 since 

 since 

 since 

X Y X Y
x x x x

Y X X Y
y y y y

X Y X Y X Y X Y
x y y x x y y x

π = π τ = τ

π = π τ = τ

π = π τ = τ

, (by definition 5.2.4)     (5.2.7) 

 

Replacing: 

( )
( ) ( )

2.. . .
.. . .

2 2

X YX Y X Y X Y
x yx y y x x y

X Y X Y X YX Y
x y y x x yx y

ππ π π
= =

π π π π π ππ π
      (5.2.8) 

 

 

The distinguishability index for interchangeable raters shows to which ratio 

particular cells of the joint distribution representing discordant ratings are over- or 

underrepresented. Due to the interchangeability of raters, this coefficient must yield 

identical results for cells mirrored at the main diagonal. Values larger than one indicate 

that the proportions of the cell combinations x.y and y.x are higher than expected by 

chance, values smaller than one indicate that these proportions are smaller than expected 

by chance. If the values are larger than one, the two raters confound the categories x and y. 

That is, if one of them chooses category x the probability to observe category y for the 

other rater increases. If the index is smaller than one the two raters produce smaller latent 

proportions for these cells than expected on chance and, therefore, one may conclude that 

they distinguish well between these categories. Distinguishability indices larger than 1 

indicate a lack of discriminant validity. The distinguishability index may be related to 

moderators of agreement (accurate) ratings as described for the quasi-symmetry model for 

structurally different raters. Focusing on disagreement, researchers might use this 

information to inspect if possible moderators influence the high or low disagreement rates. 
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Focusing on agreement, the category-specific agreement rates may be used to show for 

which categories high agreement could be obtained.  

Congruent ratings which go beyond the agreement by chance are reflected by the 

two-variable effects on the main diagonal ( ).
.

X Y
x yτ  for x y= . These effects show agreement 

between raters. Agreement for raters is a special case of convergence in general. Since 

these parameters may differ between cells on the main diagonal these parameters depict the 

category-specific convergence beyond chance convergence. Additionally κ  and the 

category-specific agreement ratios can be calculated. 

 

 

5.2.5 Applications of the Latent Rater Agreement Models for 

Interchangeable Raters 

 

The latent rater agreement models for interchangeable raters will be illustrated relying on 

the empirical example of neuroticism measured by the two peer-reports A and B. The data 

have been described in Section 4.1. The two raters use exactly the same items 

(“vulnerable”, “sensitive”, “moody”, and “self-doubtful”) and response categories (low, 

middle, high). Moreover, the peer raters have been randomly assigned to be peer A and 

peer B yielding interchangeable raters. Measurement invariance must thus hold across 

raters.  
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Table 5.2.1 

Goodness-of-fit coefficients of the different latent rater agreement models for interchangeable raters 

         Bootstrap 

Model 2χ  ( )2p χ
 

L2 p(L2) Df AIC1 BIC1 boundaries pbootP 

Saturated (symmetry) model 6492.45 .63 1620.18 1.00 6531 –11441.82 –38632.43 2 .40 

Independence model 6659.81 .14 1650.54 1.00 6534 –11417.46 –38620.56 2 .36 

Quasi-independence I model 6627.78 .20 1631.83 1.00 6532 –11432.17 –38626.95 –– .45 

Quasi-independence II model 6471.99 .70 1623.64 1.00 6533 –11442.36 –38641.30 –– .39 

One-variable model 7677.76 .00 1805.65 1.00 6534 –11262.35 –38465.45 –– .10 

Note: 2χ : Pearson 2χ -value; L2 likelihood-based 2χ -value; 1AIC and BIC are based on L2-values; boundaries: number of boundary values; 

the bootstrap consisted of 200 bootstrap samples, pbootP: bootstrapped Pearson 2χ -value.  
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Table 5.2.1 presents the goodness-of-fit coefficients for the different latent rater 

agreement models for interchangeable raters. The empirical 2χ -values do not follow their 

theoretically expected distributions, therefore, the bootstrapped p-values should be 

examined. According to the bootstrap all models fit to the data. The quasi-independence II 

model fits best to the data according to the AIC and BIC criteria. Moreover, this model 

does not suffer from any boundary value. Since the models for interchangeable raters do 

not differ in their interpretation from the models for interchangeable raters only the quasi-

independence II model will be discussed.  

 

 

Table 5.2.2 

Log-linear parameters of the measurement model of the latent quasi-independence-II 

latent rater agreement model 

  one-variable 

effect 
two-variable effect1 

variable 
manifest 

categories 
 na = nb = 1 na = nb = 2 na = nb =  3 

I / P 

(vulnerable) 

1 0.396 8.958 0.146 0.766 

2 1.311 1.488 3.196 0.210 

3 1.928 0.075 2.146 6.212 

J / Q 

(sensitive) 

1 0.659 4.439 0.923 0.244 

2 1.232 1.272 1.477 0.532 

3 1.231 0.177 0.733 7.700 

K /R 

(moody) 

1 2.073 1.490 1.301 0.516 

2 0.890 0.914 1.167 0.938 

3 0.542 0.735 0.659 2.068 

L / S 

(doubtful) 

1 1.572 2.146 0.981 0.475 

2 0.871 0.833 1.225 0.980 

3 0.731 0.560 0.832 2.147 

Note. 1 na: latent category of NEUA; nb: latent category of NEUB. I through L: Items 

measuring NEUA; P through S: Items measuring NEUB. 
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Table 5.2.2 presents the log-linear parameters of the quasi-independence II model. 

These parameters are identical for peer reports A and B since the two peer reports are 

interchangeable. The pattern of log-linear parameters fits well to the results of the 

previously reported results for models with interchangeable raters. The 1st latent class of 

variable NEUA or NEUB representing the target's latent neuroticism score rated by peer A 

or peer B is characterized by high two-variable log-linear parameters for the 1st manifest 

response category. The log-linear parameters linking the 2nd manifest response category to 

the 1st latent class are also larger than 1 in two cases (for items “vulnerable” and 

“sensible”). Raters belonging to this class thus generally prefer the first manifest response 

category compared to their response tendencies for the other latent classes. In order to 

determine if they absolutely prefer the 1st response category the manifest one-variable 

parameters must also be considered. This is done in calculating the conditional response 

categories presented in Table 5.2.3. 

The 2nd latent class is characterized by large two-variable effects linking the 2nd 

manifest category to the latent class for items vulnerable and sensitive. For item vulnerable 

also very large effects can be found for the 3rd manifest response category. The two-

variable parameters for moody and self-doubtful do not vary much across their manifest 

categories.  

The 3rd latent class shows very large two-variable log-linear parameters for the 3rd 

manifest category. These values are always higher than those of the other two classes. 

Moreover, the two-variable parameters for the 1st and 2nd manifest category are always 

smallest for the 3rd latent category compared to the 1st and 2nd latent category. Table 5.2.3 

presents the conditional response probabilities. Inspecting the conditional response 

probabilities reveals the same results as in the models combining self- and peer report A. 
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Table 5.2.3 

Conditional response probabilities of the manifest response categories in the latent quasi-

independence-II latent rater agreement model 

  latent status 

variable 
manifest 

categories 
na = nb = 1 na = nb = 2 na = nb =  3 

 I / P 

(vulnerable) 

1 .63 .01 .02 

2 .35 .50 .02 

3 .03 .49 .95 

J / Q  

(sensitive) 

1 .62 .18 .02 

2 .33 .55 .06 

3 .05 .27 .92 

K / R 

(moody) 

1 .72 .66 .35 

2 .19 .25 .28 

3 .09 .09 .37 

L / S 

(doubtful) 

1 .75 .48 .24 

2 .16 .33 .27 

3 .09 .19 .50 

Note. na: latent category of NEUA; nb: latent category of NEUB. E through H: Items 

measuring NEUA; I through L: Items measuring NEUB. 

 

 

The latent quasi-independence II model implies that the overrepresentation of the 

agreement cells on the main diagonal is constant. In this application, agreement is 

(constantly) 2.17 times more frequent than expected based on the product of the latent one-

variable parameters.  
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Table 5.2.4 

Latent joint distribution of the quasi-independence II latent rater agreement model 

 nb = 1 nb = 2 nb = 3  

na = 1 .10 (.06) [2.17] .07 (.10) .07 (.09) .24 [2.17] 

na = 2 .07 (.10) .23 (.16) [2.17] .10 (.15) .40 [1.07] 

na = 3 .07 (.09) .10 (.15) .20 (.14) [2.17] .37 [1.00] 

 .24 [0.71] .40 [1.07] .37 [1.00] 1 

Note. na: latent category of NEUA; nb: latent category of NEUB.  Values in parentheses 

represent the expected values given the latent marginals only. Values in brackets represent 

the dummy coded log-linear parameters.  

 

 

Table 5.2.4 presents the latent joint distribution of the quasi-independence II latent 

rater agreement model. As can be seen, the latent joint distribution is mirrored around the 

main diagonal as a particular consequence of equal latent marginal distributions (this is 

also true for the independence and the quasi-independence I models). Although the 

agreement rate is modeled using a constant parameter, this does not imply that ratio of the 

expected proportions of cells on the main diagonal to their expectancies given the 

marginals is constant. In fact these ratios are 1.67 for [1 1], 1.44 for [2 2], and 1.43 for [3 

3]. However, the ratios differ to a smaller extent than for the quasi-independence I model. 

This is an effect of the constant two-variable parameter. .27κ =  indicates poor rater 

agreement.  

LEM does only allow for a specification of dummy coded log-linear parameters. 

Therefore, the parameters cannot be interpreted as in the model definition. They can be 

interpreted as deviations from the reference category for ambiguous cases and as indicators 

of the constant latent class size for obvious cases. 

 

 
 

5.2.6 Implications of the Rater Agreement Models for Interchangeable 

Raters 

 

In this section, latent rater agreement models have been defined for the analysis of one 

construct measured by two interchangeable raters. As for structurally different raters, all 
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models are nested with respect to one model—the latent symmetry model (see Figure 5.4). 

The empirical 2χ -values did not follow their theoretical distributions, therefore, I do not 

compute the 2χ -difference tests (Dominicus et al., 2006).  

The convergent validity of two or more methods (raters) in measuring the same trait 

can also be examined using overall agreement indices as κ  (in models allowing for higher 

rates of agreement). κ  indicated rather poor agreement rates with respect to the 

benchmarks for manifest agreement.  

 

quasi-independence I

symmetry

quasi-independence II

independence

restricting off-diagonal effects to be 0

restricting main diagonal effects to be constant

no two-variable effects

 

Figure 5.4. The relationship between the four latent rater agreement models for 

interchangeable raters (except for the one-variable model) presented in Section 5.2. 

Commentaries next to the arrows indicate the necessary constraints leading from one 

model to the other.  

 

 

In the current applications, the category-specific agreement rates fell into the range 

of 1.4 to 1.7 indicating relatively low agreement on neuroticism given the low products of 

the latent marginals. These values reveal if agreement is constant across categories.  

All models presented in this section fit to the empirical data indicating their 

applicability. However, as could be shown calculating coefficient kappa or by an 
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inspection of the latent proportions agreement is not very pronounced and disagreement 

does not differ from chance disagreement (quasi-independence assumption).  

 

 

5.3 Discussion of the Latent Rater Agreement Models for Structurally 

Different and Interchangeable Raters 

 

In this chapter, manifest rater agreement models have been adapted to the level of latent 

variables. These models allow examining latent typologies, that is, agreement between 

raters can be determined for more than one observed variable per TMU. It is the response 

pattern that determines the membership to a latent class, agreement is no longer bound to 

the more error prone single classification on single items.  

Moreover, the models allow for reducing complex sets of rater agreement data. 

Imagine, a complete data set of two raters using two times four items to rate two clinical 

disorders. Comparing the data at the observed level would result in a comparison of 4 x 4 = 

16 agreement tables. The models presented here allow reducing the information to be 

compared to a finite (and usually small) number of classes. If the model-implied typology 

corresponds to the data and the mean assignment probabilities are rather high (or the 

strength of the relation between latent and manifest variables is high) it is useful, 

parsimonious, and efficient to consider agreement at the latent level. In empirical 

applications, a cross-validation of the results found for the latent rater agreement models 

by estimations of other models is needed to guarantee that the model results are correct.  

In principle, the models allow for a test or for the explorative analysis if raters are 

interchangeable or not (restricting their measurement models). Additionally, one can 

analyze if the raters confound particular categories or if they can well distinguish between 

all categories. This analysis can be carried out comparing different models which imply 

different patterns of agreement and disagreement but also by an inspection of the 

distinguishability index. The distinguishability index is newly introduced. The fact that 

raters confound particular categories may be of interest in training programs for clinical 

psychologists, for example, in order to achieve a fine-graded distinction between clinical 

symptoms (as latent classes), and this may also be of interest in research programs on rater 

accuracy (Funder, 1995).  
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The models also principally allow for an inspection of determinants or moderators 

of agreement and disagreement (see Funder, 1995). Focusing on disagreement, researchers 

might use the distinguishability index to inspect which disagreement cells are 

overrepresented. Incorporating additional variables into the model may help to explain this 

effect (see Section 6 for an additional construct). Focusing on agreement, the category-

specific agreement rates may be used to show for which categories high agreement could 

be obtained yielding some information about the moderator good trait or about which 

category of a trait is a good category.  

In order to additionally analyze the discriminant validity of different latent 

typologies and to shed some light on personality traits that could enhance agreement on 

other traits, the latent rater agreement models for one construct and two methods 

(Monotrait-Multimethod models) have to be extended to the analysis of more than one 

construct. The next section defines and illustrates the resulting Multitrait-Multirater 

models. 
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6 Correlated Traits Multitrait-Multirater Model 
 

In this chapter the previously described saturated and symmetry models for two latent 

variables will be extended to the simultaneous analysis of 2 traits and 2 raters yielding the 

Correlated Traits Multitrait-Multirater (CT MTMR) model. This model allows for 

analyzing structurally different as well as interchangeable raters. The model will first be 

defined for the case of structurally different raters. The model for interchangeable raters 

emerges imposing the measurement invariance and necessary interchangeability 

restrictions (see Section 5.2). The saturated log-linear model with four latent variables will 

be formally defined and its parameters will be related to the criteria of convergent and 

discriminant validity presented by Campbell and Fiske (1959). I will indicate and introduce 

meaningful coefficients which indicate aspects of convergent and discriminant validity as 

well as aspects of method bias that are usually not addressed in MTMM analyses.  

 

 

6.1 Definition of the Correlated Traits Multitrait-Multirater Model for 

Structurally Different Raters 

 

In order to define the CT MTMR model the same prerequisites as described in Section 5.1 

must be met. That is, all items belonging to the different trait-method-units (TMU) must be 

indicators of the constructs. Therefore, the two raters provide categorical ratings that can 

be categorized as described in Section 4.1 (separate log-linear models with one latent 

variable). The Monotrait-Multirater models allow for testing if the latent categories 

represent the same latent constructs and if the raters agree (convergent validity). The CT 

MTMR models allow for an additional analysis of discriminant validity. If the same 

construct is represented across raters this will result in similar latent categories across 

raters (see also Section 5.1) with similar meanings of the typical response patterns, similar 

relationships to other variables, and / or similar effects on other variables. The Correlated 

Traits Multitrait Multirater (CT MTMR) model for structurally different raters is a flexible 

model for the analysis of convergent and discriminant validity. 
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Definition 6.1.1 

The saturated Correlated Traits Multitrait-Multirater (CT MTMR) model  

 

Let XS, XA be two latent variables representing the same construct and let YS, YA be two 

other latent variables representing another construct. The latent variables representing 

different constructs are measured with distinct sets of items. xs, xa, ys, and ya indicate the 

latent categories of the four latent variables. 

 

The saturated CT MTMR-model is defined as: 

 

 

. . . .

. . . . . .
. . . . . .

. . . . . . . . .
. . . . . . . . . . .

XS XA YS YA
xs xa ys ya xs xa ys ya

XS XA XS YS XS YA XA YS XA YA YS YA
xs xa xs ys xs ya xa ys xa ya ys ya

XS XA YS XS XA YA XS YS YA XA YS YA XS XA
xs xa ys xs xa ya xs ys ya xa ys ya xs xa ys ya

e = ηΤ Τ Τ Τ τ τ τ τ

×τ τ τ τ τ τ

×τ τ τ τ τ

abcd a b c d

. .YS YA

,   (6.1.1) 

 

with abcd being a transposed vector of observed responses, , , ,  and Τ Τ Τ Τa b c d  

representing the measurement models of the four latent variables (see also Equation 4.1.2): 

η : is the geometric mean of the unobserved latent table (containing manifest and latent 

variables), 

.
.

1

i i

i i

i

I
M M XS
m m xs

m =

Τ = τ τ∏a : represents the log-linear parameters linking the latent variable XS to its 

indicators and the manifest one-variable effects, .
.

1

j j

j j

j

J
N N XA

n n xa
n =

Τ = τ τ∏b : represents the log-

linear parameters linking the latent variable XA to its indicators and the manifest one-

variable effects, .
.

1

k k

k i

k

K
O O YS
o o ys

o =

Τ = τ τ∏c : represents the log-linear parameters linking the latent 

variable YS to its indicators and the manifest one-variable effects, and .
.

1

l l

l l

l

L
P P YA
p p ya

p =

Τ = τ τ∏d : 

represents the log-linear parameters linking the latent variable YA to its indicators and the 

manifest one-variable effects. 

, , ,  and XS XA YS YA
xs xa ys yaτ τ τ τ : are the latent one-variable effects,  

. . . . . .
. . . . . ., , , , ,  and XS XA XS YS XS YA XA YS XA YA YS YA

xs xa xs ys xs ya xa ys xa ya ys yaτ τ τ τ τ τ : are latent two-variable effects, 

. . . .
. . . ., ,XS XA YS XS XA YA

xs xa ys xs xa yaτ τ :  . . . .
. . . .,  and XS YS YA XA YS YA

xs ys ya xa ys yaτ τ  are latent three-variable effects, . . .
. . .

XS XA YS YA
xs xa ys yaτ : 

represents latent four-variable effects. 
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6.1.1 The Statistical Meaning of the Different Effects in the Saturated CT MTMR 

Model 

 

Figure 6.1 presents the CT MTMR model for two constructs measured by two structurally 

different raters (Definition 6.1.1). To make the presentation more comprehensible the 

latent variables are labeled representing neuroticism (NEU) and conscientiousness (CON) 

measured by a self-report (S) and a peer-report (A). The items correspond to the items of 

the empirical data described in Section 4.1. However, the model may also be estimated 

with more or fewer manifest variables. 

 

Self-Report

Peer Report A

NEUS

A (vulnerable)

B (sensitive)

C (moody)

D (self-doubtful)

NEUA

I (vulnerable)

J (sensitive)

K (moody)

L (self-doubtful)

Self-Report

Peer Report A

CONS

E (industrious)

F (diligent)

H (ambitious)

G (dutiful)

CONA

M (industrious)

N (diligent)

O (dutiful)

P (ambitious)

X

 

 

Figure 6.1 Categorical Multitrait-Multirater model for two traits measured by two raters. 

The X  indicates hierarchical higher order effects (i.e., two-, three-, and four-variable 

effects). 

 

 

The log-linear parameters of Definition 6.1.1 have the following meanings: 

 

• η  is the geometric mean of the unobserved complete frequency table. 

 

• The submodels , , ,  and Τ Τ Τ Τa b c d : have been described in section 4.1 (e.g., 

Goodman, 1974a, 1974b; Haberman, 1979; Hagenaars, 1990, 1993; McCutcheon, 

1987). 
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• The latent one-variable parameters ( ); ; ;XS XA YS YA
xs xa ys yaτ τ τ τ  represent the univariate 

distributions of the latent variables in the latent four-dimensional table. E.g.14: 

 

  
. . .

. . .

1 1 1

. . .
. . .

1 1 1 1

xs xa ys ya

YS YA XA
XS XA YS YA

YS YA XA

ys ya xaXS
xs XS YS YA XA

XS XA YS YA
XS YS YA XA w xa ys ya

w ys ya xa

⋅ ⋅

= = =

⋅ ⋅ ⋅

= = = =

π
τ =

π

∏∏∏

∏∏∏∏
,    (6.1.2) 

 

with xs indicating the particular latent category of XS and w indexing the first to 

the last category of XS in the denominator. 

 

• The latent two-variable effects ( ). . . . . .
. . . . . .; ; ; ; ;XS XA XS YS XS YA XA YS XA YA YS YA

xs xa xs ys xs ya xa ys xa ya ys yaτ τ τ τ τ τ  indicate the 

deviations of particular cell proportions from the prediction based on the lower 

order effects. E.g.:  

 

  
. . .

. . .

1 1.
. *

xs xa ys ya

YA XA
XS XA YS YA

YA XA

ya xaXS YS
xs ys XS YS

ys ys

⋅

= =

π
τ =

η τ τ

∏∏
,     (6.1.3) 

 

with *η  indicating the geometric mean of the latent table (the complete table can 

be collapsed across the manifest variables).  

 

                                            
14 XS, XA, XB, YS, YA, and YB represent latent variables but they also represent the highest category of the 
corresponding latent variable. However, this is only the case in connection with Greek symbols representing 

sums or products ( ) or Σ Π  
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• The latent three-variable effects (. . . . . .
. . . . . .; ; ;XS XA YS XS XA YA XS YS YA

xs xa ys xs xa ya xs ys yaτ τ τ  and . .
. .

XA YS YA
xa ys yaτ ) depict the 

deviations of particular cell proportions from the predictions based on all lower 

order effects in the different latent trivariate subtables. E.g.: 

 

  
. . .

. . .

1. .
. . . . .

. . .*

w xa ys ya

XS
XS XA YS YA

XS

wXA YS YA
xa ys ya XA YS YA XA YS XA YA YS YA

xa ys ya xa ys xa ya ys ya

=

π
τ =

η τ τ τ τ τ τ

∏
,     (6.1.4) 

 

with *η  indicating the geometric mean of the latent table and xs, xa, ys, and ya  

indicating the latent categories of XS, XA, YS, and YA. The one-and two-variable 

effects can be determined as described in Equations 6.1.2 and 6.1.3. 

 

• The latent four-variable effect ( ). . .
. . .

XS XA YS YA
xs xa ys yaτ  depicts the deviation of the expected 

proportion of a particular cell from the predictions based on all lower order effects 

in the complete (quadrivariate) table: 

 

. . .

. . .

. . .
. . . . . . . . .

. . . . . .

. . . . . . .
. . . . . . . .

*

1

xs xa ys ya

XS XA YS YA

XS XA YS YA
xs xa ys ya XS XA YS YA XS XA XS YS XS YA XA YS XA YA YS YA

xs xa ys ya xs xa xs ys xs ya xa ys xa ya ys ya

XS XA YS XS XA YA XS YS YA XA
xs xa ys xs xa ya xs ys ya xa ys ya

π
τ =

η τ τ τ τ τ τ τ τ τ τ

×
τ τ τ τ .

. . .
. . .

. . . . . . . .
. . . . . . . .

YS YA

XS XA YS YA
xs xa ys ya

XS XA YS XS XA YA XS YS YA XA YS YA
xs xa ys xs xa ya xs ys ya xa ys ya

π
=

π π π π

,  (6.1.5) 

 

the lower order effects can be determined as described in Equations 6.1.2, 6.1.3, 

and 6.1.4.  

 



Correlated Traits Multitrait-Multirater Model 131

 

6.1.1.1 The impact of the different log-linear effects on the analysis of convergent 

and discriminant validity  

 

The saturated CT MTMR model is a flexible model for the analysis of convergent and 

discriminant validity of multiple ratings. Therefore, the inspection of convergent and 

discriminant validity does not only consist of the analysis of zero-order bivariate 

relationships but on the analysis of higher order effects. Additionally, the impact of 

different trait constellations on agreement and disagreement could principally be analyzed 

to inspect complex interactions of moderators of agreement. In a restricted version of the 

CT MTMR model with only two-variable effects, the associations between the latent 

categories can be analyzed on the bivariate level. This analysis comes close to an 

examination of the criteria developed by Campbell and Fiske (1959). The different log-

linear parameters at the different levels of the interaction (two-, three-, and four-variable 

effects) may all have an impact on the convergent and discriminant validity. I will start by 

inspecting the impact of the highest order interaction passing to the lower order 

interactions. For sake of simplicity, I will exclude all higher order effects when I discuss 

the lower order effects in order to avoid a misinterpretation due to existing higher order 

effects.  
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Table 6.1.1 

Extracted part of the latent joint distribution in the saturated CT MTMR model for three 

categorical latent variables with four-variable effects 

     YA  

    1 2 3 

xs
 =

1 

xa
 =

1 

Y
S

 
1 A M N 

2 O B P 

3 Q R C 

xa
=

2 

Y
S

 

1 G 1 2 

2 3 H 4 

3 5 6 I 

… … … … … … … 

xs
 =

 2
 

xa
 =

1 

Y
S

 

1 J 7 8 

2 9 K 10 

3 11 12 L 

xa
=

2 

Y
S

 

1 D S T 

2 U E V 

3 W Z F 

… … … … … … … 

Note. Only the cell combinations for XS = 1, 2 XA = 1, 2 are depicted. The scheme applies 

to all other combinations of latent categories as well. 

 

 

Table 6.1.1 depicts an extracted part of the latent joint distribution for latent 

variables with at least three categories. The cells of this table fall into three parts: a) Cells 
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indicating agreement on both constructs (cells A through F; dark grey; i.e. A represents the 

category-combination [1 1 1 1]), b) cells indicating agreement on one construct (cells G 

through L for agreement on YS and YA (G represents the category-combination [1 2 1 1]) 

and cells M through Z15 for agreement on XS and XA (M represents the category-

combination [1 1 1 2]), light grey), and c) cells indicating disagreement on both of the 

constructs (numerated from 1 through 12).  

All expected cell proportions are influenced by the complete set of one-, two-, 

three-, and four-variable effects. Saturated models do not impose restrictions on the log-

linear parameters and, therefore, perfectly reproduce the frequency table. The latent log-

linear parameters directly relate to the expected proportions of the latent table as shown in 

Equations 6.1.2 through 6.1.5 (see also Section 4.1.2). The four-variable log-linear effects 

have the following meaning with respect to the convergent and discriminant validity: 

 

i) Four-variable effects 

Complete agreement. The four-variable log-linear parameters representing agreement on 

both constructs (A through F) indicate the judgeability of the targets (Funder, 1995) with 

respect to the traits under consideration. If these effects are larger than 1 the corresponding 

expected cell proportions are higher than expected based on all lower order effects16: 

 

. . .
. . .. . .

. . . . . . . . . . .
. . . . . . . .

XS XA YS YA
xs xa ys yaXS XA YS YA

xs xa ys ya XS XA YS XS XA YA XS YS YA XA YS YA
xs xa ys xs xa ya xs ys ya xa ys ya

π
τ

π π π π
= ,    (6.1.6) 

 

for  and xs xa ys ya= = . Several constellations are possible: 

 

• All four-variable parameters for complete agreement cells (A through F) are   larger 

than 1 and of equal size ( )
. . . . . .

. . . . . . '
XS XA YS YA XS XA YS YA
xs xa ys ya xs xa ys yaτ τ=  for all 

( ) ( ). . . . . . 'xs xa ys ya xs xa ys ya≠ 17 with  and xs xa ys ya= = . This indicates that the 

convergence of the two raters is stable across the different category combinations. 

The odds to agree given the expected proportions based on lower order effects (see 

                                            
15 I left out X and Y numerating the cells to avoid confusion with the latent categories. 
16 I consider population parameters throughout this section. 
17 ( ). . . 'xs xa ys ya  indicates that at least one combination of  or xs xa ys ya= =  differs with respect to 

( ). . .xs xa ys ya.  
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Eq. 6.1.6) are identical on all category combinations indicating agreement on both 

constructs. This overall agreement rate may be due to two reasons (see Funder, 

1995): There is a group of individuals who are easily judgeable (good targets) or 

the traits are especially visible in some targets (palpability). Since the agreement 

rate is constant the judgeability of the targets or the palpability does not depend on 

the scores on one of the latent constructs (it is constant across all categories).  

 

• All four-variable parameters for complete agreement cells (A through F) are larger 

than 1 but differ from each other. In this case, the raters agree more often than 

expected based on the lower order effects. Judgeability of targets depends partly on 

their status on the latent variables. Individuals who belong to a special easily 

judgeable category of one trait can be more easily accurately (congruently) judged 

on a category of the other traits as well. In this case, judgeability (as palpability) is 

a property of different constellations of the latent categories. 

However, particular categories of the other trait may also serve as indicators 

of judgeability. A good example may be extraverted individuals who spend much 

time with their friends, overtly show their feelings, and comment on their thoughts. 

These individuals should be easily classifiable on other traits as agreeableness and 

neuroticism as well. Therefore, raters may have no difficulties classifying these 

individuals as extraverted and, additionally, on their different statuses of 

neuroticism and conscientiousness, for example. This effect may be weaker or 

stronger depending on the different categories. ( )
. . . . . .

. . . . . . '
XS XA YS YA XS XA YS YA
xs xa ys ya xs xa ys yaτ τ≤  for all 

( ) ( ). . . . . . 'xs xa ys ya xs xa ys ya≠  with  and xs xa ys ya= = . Being extraverted may be 

part of the properties characterizing good targets. 

If there are only few but very large four-variable parameters for complete 

agreement cells low discriminant validity on agreement ratings is found. The latent 

categories of the different construct partly overlap and cannot be considered very 

distinct from each other.  

 

• All four-variable parameters for complete agreement cells (A through F) are larger 

than 1 and differ from each other as a function of categories of one trait. 

( )
. . . . . .

. . . . . . '
XS XA YS YA XS XA YS YA
xs xa ys ya xs xa ys yaτ τ≤  for all ( ) ( ). . . . . . 'xs xa ys ya xs xa ys ya≠  with 
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 and xs xa ys ya= =  or ( )
. . . . . .

. . . . '. .
XS XA YS YA XS XA YS YA
xs xa ys ya xs xa ys yaτ τ≤  for all ( ) ( ). . . . '. .xs xa ys ya xs xa ys ya≠  

with  and xs xa ys ya= = . This effect is a special case of the previously described 

phenomenon. It may occur that for different levels of the target person's 

extraversion the raters have fewer problems to correctly (at least congruently) 

classify these targets on the other construct with the same accuracy for all 

categories of this other construct. In this case, extraversion can be regarded as an 

indicator of visibility / judgeability. Extraverted individuals may show visible cues 

of other traits and can, therefore, be easily judged on these traits as well.  

 

• The four-variable parameters for complete agreement cells (A through F) may also 

be smaller than 1. For the corresponding cells agreement on both constructs is less 

frequently expected than predicted on the lower order effects. This result would be 

rather awkward but could be explained in cases when the latent cells indicate 

categories that are (partly) mutually exclusive in the raters view. This generally 

also indicates a lack of discriminant validity because these categories co-occur less 

frequently than expected. For example, in the analysis of the convergent and 

discriminant validity of ratings with respect to clarity of one's own feelings and 

expressivity of feelings (see Lischetzke & Eid, 2003 for a conceptualization of 

these constructs), the cell indicating agreement on "does not show feelings" and "is 

clear about feelings" can logically be underrepresented because somebody who 

does not show feelings cannot be judged to know about her or his feelings. In this 

case, this finding fits into theoretical considerations and is reasonable.   

 

• The four-variable parameters for complete agreement cells (A through F) do not 

differ from 1. In this case the quadrivariate agreement can be explained by lower 

order effects of agreement (see discussion below).  

 

Partial agreement. Four-variable parameters of cells indicating agreement on one construct 

but not on the other for the quadrivariate joint distribution (cells J through Z) represent a 

special kind of rater bias:  

 

. . .
. . .. . .

. . . . . . . . . . .
. . . . . . . .

XS XA YS YA
xs xa ys yaXS XA YS YA

xs xa ys ya XS XA YS XS XA YA XS YS YA XA YS YA
xs xa ys xs xa ya xs ys ya xa ys ya

π
τ

π π π π
= ,    (6.1.7) 
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for either ( ) ( ) and  or  and xs xa ys ya xs xa ys ya= ≠ ≠ = . Different constellations may 

occur:  

 

• The four-variable parameters of cells indicating agreement on one but not on the 

other trait (cells J through Z) are larger than 1. This finding can be interpreted in 

terms of rater bias. Although raters agree on one construct they disagree 

systematically on the other construct. This may be the case for raters who agree on 

a target person's extraversion but who have different views or theories about the 

relation between extraversion and intelligence, for example. One rater may assume 

that moderately extraverted individuals also tend to be more intelligent while the 

other assumes moderately extraverted individuals to be very intelligent. This effect 

is a four-variable effect if they use the same behavioral cues to identify the target's 

level of extraversion and relate this information to their judgment of intelligence. 

This kind of effect may account for all cells indicating partial agreement or only for 

particular cells.  

 

• The four-variable parameters of (particular or all) cells indicating agreement on one 

but not on the other trait (cells J through Z) are smaller than 1. In this case, 

disagreement between the two raters with respect to specific category combinations 

is underrepresented if they agree on the other construct. This may be the case if 

agreement on one construct is very hard to achieve because the trait under 

consideration is not easily judgeable, if two raters agree on judging this difficult 

trait, they will most probably agree on more easy to judge traits as well and 

therefore the expected proportions of the disagreement cells for the latter construct 

are much smaller given agreement on the first trait. For example, it may be much 

more difficult to judge an individual's attitudes towards specific minorities (e.g., 

racist, neutral, positive, no opinion) than judging the same individual's 

extraversion. If raters agree on the presumably not overtly expressed attitude 

against minorities they will most probably also be able to judge the individuals 

score on an openly observable trait as extraversion.  

This effect thus shows (if there is agreement) that there is higher agreement 

on one construct (on all or on one category) if there is agreement on the other one. 
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The opposite does not necessarily have to be true. In this case, one construct (or 

specific cells of this construct) is more difficult to judge than (categories of) the 

other construct.  

 

• All four-variable parameters of cells indicating agreement on one but not on the 

other trait (cells M through Z) do not differ from 1. In this case, agreement on one 

construct is not related to disagreement on the other construct.  

 

Disagreement. The latent four-variable parameters of cells besides the agreement and 

partial agreement cells (1 to 12) represent influences which may be due to bias or to 

general disagreement: 

 

. . .
. . .. . .

. . . . . . . . . . .
. . . . . . . .

XS XA YS YA
xs xa ys yaXS XA YS YA

xs xa ys ya XS XA YS XS XA YA XS YS YA XA YS YA
xs xa ys xs xa ya xs ys ya xa ys ya

π
τ

π π π π
= ,    (6.1.8) 

 

for ( ) and xs xa ys ya≠ ≠ . The following different constellations are possible: 

 

• All four-variable parameters for complete disagreement cells (1 to 12) are larger 

than 1. In this case the two raters disagree more often than predicted based on the 

lower order effects. In general, this indicates a lack of convergent validity. κ  for 

the quadrivariate joint distribution will be negative (κ  may be determined as 

depicted in Section 2 considering only cells representing complete agreement (e.g., 

[1 1 1 1]) and their latent univariate marginals). However, there still might be a few 

positive category-specific agreement ratios for some cells. I do not expect this 

constellation to appear in any application. This constellation may appear in cases 

where raters do not follow their instructions or due to a wrong labeling of 

categories. Even if raters are guessing they should have four-variable parameters 

that do not differ from 1.  

 

• Some (one) four-variable parameters for complete disagreement cells (1 to 12) are 

larger than 1. In this case particular combinations of one rater's latent scores are 

associated to the other rater's scores but for different cell combinations. If raters 

weigh some behavioral cues in different ways given cues on the other trait they 
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may be more often categorized in latent disagreement cells. If, for example, one 

rater classifies an individual due to specific behavioral cues as highly extraverted 

and, additionally, these cues may lead this rater to also classify this individual as 

moderately neurotic this combination of behavioral cues may be associated to the 

moderately extraverted and highly neurotic classes for the other rater.  

 

• Some (all) four-variable parameters for complete disagreement cells (1 to 12) are 

smaller than 1. This may in most cases be due to higher complete and / or partial 

agreement rates because the log-linear parameters are effect coded. Therefore, 

higher agreement also affects the disagreement cells in the saturated model. Yet, 

this may also be due to high disagreement on a particular cell combination and no 

effects on complete or partial agreement cells.  

 

• None of the four-variable parameters for complete disagreement cells (1 to 12) 

differs from 1. In this case, there is neither an over- nor an underrepresentation of 

complete disagreement cells.  

 

At the level of four-variable effects, there are some combinations of the above mentioned 

constellations that merit special attention because these can be related to the concepts of 

convergent and discriminant validity.  

Overall agreement may be high due to bivariate, tri-variate, and quadrivariate 

effects. The four-variable parameters depict the degree to which raters agree with each 

other above the expected agreement given the lower-order log-linear parameters. 

Therefore, the four-variable parameters represent conditional agreement rates. The 

(conditional) overall agreement will be high if the four-variable parameters indicating 

complete agreement are principally high and do not differ from each other, the four-

variable parameters indicating disagreement should be low.  

If there are special combinations of congruent ratings for two constructs with very 

high four-variable parameters these categories (of the joint ratings) are associated (lack of 

discriminant validity). It may be the case that the joint rating of highly extraverted 

individuals is associated to the joint rating of highly intelligent individuals. In this case, 

one category of one construct (that is, congruently judged) may serve as an indicator of 

judgeability for the other construct, the constructs lack of discriminant validity for these 

categories since their co-occurrence is higher than should be for independent (perfectly 
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discriminant) constructs, or the co-occurrence can be theoretically explained and expected. 

This has to be examined with respect to the constructs under consideration and with 

respect to the decision making process. If particular categories of one construct enhance 

the judgeability on other constructs they should do so for several categories of the other 

construct and they should do so for several constructs. Then, it is meaningful to conceive 

this category as an indicator of judgeability. If the category is only associated to one 

category of one or few other constructs it is very questionable if this particular category 

indicates the visibility of behavioral cues (good targets sensu Funder, 1995) or if the 

associated categories represent closely related categories (lack of discriminant validity). 

A specific kind of method bias can be examined independently of all other effects 

examining the log-linear effects of partial agreement. If these are large, this indicates that 

although peers agree on one construct, they disagree on the other in specific ways. A close 

examination of the answer process may yield insight into the reasons for the divergent 

ratings.  

 

ii) Three-variable effects 

In models with higher order effects, lower order effects may be interpreted as average 

effects influencing particular cell combinations. The interpretation of these effects is only 

meaningful if the higher order effects are absent or have the same qualitative impact 

(increase or decline of the expected probabilities) on the cells affected by the lower order 

effect. The same qualitative impact implies that all higher order effects lead to a higher co-

occurrence of the category combinations of the lower order effects and the lower order 

effects may be interpreted as average effects. For sake of simplicity, I consider the case of 

absent higher order effects.  

Assume that all higher order effects are absent. The different three-variable effects 

influence the cells of Table 6.1.2 representing the latent three-variable joint distribution for 

XA, YS, and YA. However, the implications apply to all possible combinations of three 

latent variables. These implications can be easily derived reordering the latent variables to 

follow the patterns presented in Table 6.1.2. That is, first presenting the one variable 

measuring the 1st (distinct) construct and then the cross-classification of the two latent 

variables measuring the same construct.  
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Table 6.1.2 

Extracted part of the latent joint distribution in the saturated CT MTMR model for four 

three-categorical latent variables with three-variable interactions as highest order effects 

    YA  

   1 2 3 

xa
 =

1 

Y
S

 

1 A M N 

2 O B P 

3 Q R C 

xa
=

2 

Y
S

 

1 G 1 2 

2 3 H 4 

3 5 6 I 

Note. Only parts of the subtable for three constructs XA, YS, and YA are depicted. The 

implications account for any other three-variable subtable as well.  

 

 

Log-linear parameters do not impose any directional link. The effects presented 

here correspond to correlations and higher order correlations; therefore, it is principally 

possible to interpret all effects as the influences of any variable on the association of the 

other two variables. In order to examine rater agreement as a special form of convergent 

validity it is useful to inspect the meaning of the latent three-variable effects as the 

influence of one latent construct's score on the joint categorization of the other construct. 

Therefore, these effects can be interpreted in two principal ways. Three-variable effects 

either represent properties of judgeable individuals (A through R) or sources (correlates) of 

disagreement (an additional form of bias; 1 to 6). These influences are especially 

meaningful in models when one rater can be conceived as providing better ratings than the 

other but they may also occur in other cases.  
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Agreement. The three-variable parameters of cells representing agreement on one construct 

depict if agreement depends on the category of the other construct. E.g.:  

 

. . .

. . .

1. .
. . . . .

. . .*

w xa ys ya

XS
XS XA YS YA

XS

wXA YS YA
xa ys ya XA YS YA XA YS XA YA YS YA

xa ys ya xa ys xa ya ys ya

=

π
τ =

η τ τ τ τ τ τ

∏
, with ys ya=    (6.1.9) 

 

indicates to which ratio the geometric mean of all cells belonging to a particular 

combination of XA and identical categories on YS and YA deviates from what can be 

expected based on all lower order effects. The following constellations are possible: 

 

• The three-variable parameters of cells representing agreement on one construct are 

high for specific categories of one variable of the other construct. Then the three-

variable effects indicate for which specific categories of XA agreement on Y is 

obtained to a higher degree than expected based on the lower order effects. The 

categories of XA can be conceived as a kind of judgeability indicator or as marker 

categories for good targets. This interpretation is especially meaningful if rater A 

can be conceived as a better rater of the individual's true status than rater S. If S, for 

example, correctly judges a target person to be extraverted, A and S agree more 

often on their ratings of the target's conscientiousness.   

 

• The three-variable parameters of cells representing agreement on one construct are 

low for specific categories of the other ones. Then the three-variable effects 

indicate for which specific categories of XA agreement on Y is obtained to a smaller 

degree than expected based on the lower order effects. In this case, specific 

categories of one construct indicate bad judgeability. In the same vain as highly 

extraverted individuals may be more easily congruently judged, individuals scoring 

low on extraversion may not be easily judged on some traits. The three-variable 

effects, therefore, also may indicate the opposite of judgeability. 

 

• The three-variable parameters of cells representing agreement on one construct are 

1 for specific categories of the other ones. Then the three-variable effects indicate 
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that the other construct's category does not have any influence on raters' agreement 

on the other construct.  

 

Disagreement. The three-variable parameters of cells representing disagreement on one 

construct depict if this special combination of disagreement is associated to the status on 

the other construct. E.g.:  

 

. . .

. . .

1. .
. . . . .

. . .*

w xa ys ya

XS
XS XA YS YA

XS

wXA YS YA
xa ys ya XA YS YA XA YS XA YA YS YA

xa ys ya xa ys xa ya ys ya

=

π
τ =

η τ τ τ τ τ τ

∏
, with ys ya≠    (6.1.10) 

 

indicates to which ratio the geometric mean of all cells belonging to a particular 

combination of XA and different categories on YS and YA deviates from what can be 

expected based on all lower order effects. The following constellations are possible: 

 

• The three-variable parameters of cells representing disagreement on one construct 

are high for specific categories of one latent variable of the other construct. The 

expected proportions are higher for a specific case of disagreement if a particular 

category is chosen on the other construct. If one of the raters were a better rater and 

provided ratings that came closer to the true status of an individual this would 

indicate that the other rater misinterprets behavioral cues (associated to XS) leading 

to a different rating on the other construct (YA) although (YS) is the better rating. 

Therefore, this constellation represents rater bias. This may be the case if S rates 

the combination of being highly extraverted (xs) and highly neurotic (ys) and the 

other rater A does simply not assume highly extraverted to be highly neurotic and 

therefore only chooses moderately neurotic (ya). That is, this effect depicts special 

cases of higher order rater bias. If the two raters are structurally different but no 

one is outstanding with respect to the other (no gold-standard rater) this parameter 

simply indicates differences with respect to the joint ratings. An interpretation of 

bias is awkward in this case. However, this effect may be interpreted in terms of 

indicators or behavioral cues that may be ambiguously interpreted by different 

raters, they differ in the ways they link the behavioral cues to the traits, and indicate 

on which categories raters disagree enabling researchers to implement new and 

specific research programs investigating these cell combinations or to train raters.  
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• The three-variable parameters of cells representing disagreement on one construct 

are small for specific categories of the other. The expected proportions are smaller 

for a specific case of disagreement if a particular category is chosen on the other 

construct. This effect indicates if particular categories of one construct are less 

often associated (confounded) for a given rating on the other construct. If rater S 

judges the target person to be highly extraverted, this may prevent raters A and S 

from providing ratings of not at all neurotic and highly neurotic. This constellation 

thus indicates to which degree special disagreement combinations do not occur for 

given statuses on another construct. 

 

• The three-variable parameters of cells representing disagreement on one construct 

are 1 for specific categories of the other one. Then the three-variable effects 

indicate that the other construct's category does not have any influence on raters' 

disagreement on the other construct.  

 

At the level of three-variable parameters, there are some combinations of the above 

mentioned constellations that merit special attention because these can be related to the 

concepts of convergent and discriminant validity. One category (say xs) can be seen as an 

indicator of judgeability if this category generally produces higher agreement rates on 

other constructs (at least on the majority of its categories). The three-variable effect of the 

same category (xs) with disagreement cells indicates if the increase in agreement leads to a 

decline in disagreement for particular cells or for all cells. That is, if the better judgeability 

prevents raters from choosing specific category combinations of disagreement or if it 

prevents them from disagreeing in general. The latter would also automatically lead to an 

increase of convergent validity.  

The three-variable effects indicate a higher order method bias if they are large for 

cells indicating disagreement on one construct. In this case (only for the given 

constellation on one rater's ratings), the other rater shows a biased judgment. Bias is 

understood as the difference between two raters in general (see Agresti, 1992). It is not 

understood as the difference between a rating and the true score or the true level on a given 

construct. Method bias type I reflects if the latent prevalence rates differ, the 

distinguishability index shows if raters distinguish between the categories of one trait, and 

the method bias introduced here is a conditional distinguishability index showing if one 
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rater deviates from the rating of the other one on the same construct given a particular 

status on the other construct.  

In some cases, one rater (S) may be a gold standard providing very accurate ratings. 

In this case, it is meaningful to mainly inspect the method bias (conditional 

distinguishability) starting with the category of the gold standard (xs) influencing the 

agreement / disagreement of the ratings on the other construct (Y). The three-variable 

effect of one cell for the non-reference rater (the non-gold-standard method) on the joint 

rating on the other construct of the reference rater should not be interpreted in this way; but 

this effect should be interpreted as the influence of the effect of the gold-standards 

category on the ratings of the non-reference rater. This can be interpreted as a kind of halo 

effect, which depicts the influence of one trait on the judgments of other traits rated by 

non-reference raters. 

 

iii) Two- and one-variable effects. 

If there are no four- and no three-variable effects the two-variable parameters can be 

directly interpreted. Their interpretation comes very close to the criteria introduced by 

Campbell and Fiske (1959).  

Assume that all higher order effects (three- and four-variable effects) are absent. 

The different two-variable effects influence the cells of Table 6.1.3 representing the latent 

two-variable joint distributions for the different bivariate combinations of XS, XA, YS, and 

YA. The upper part [(a), containing the grey-shaded agreement cells] indicates the bivariate 

distribution of YS and YA (or XS and XA, respectively, not depicted). The middle part (b) 

represents the across trait latent bivariate distribution for XS and YS (or XA and YA, not 

depicted). The lower part (c) represents the across traits - across raters latent bivariate 

distribution of XA and YS (or XS and YA, not depicted). 

The latent bivariate sub-tables are completely independent from each other since no 

three- or four-variable effects are assumed to hold. Therefore, these subtables can be 

inspected as “complete tables” without any conditional assumption about scores on other 

variables. 
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Table 6.1.3 

Extracted part of the latent joint distribution in the saturated CT MTMR model with two-

variable effects as highest order effects for different combinations of two categorical latent 

variables  

(a)   YA   

  1 2 3 

Y
S

  

1 A 1 2 

2 4 B 3 

3 5 6 C 

     

(b)   YS  

  1 2 3 

X
S

 

1 1 2 3 

2 4 5 6 

3 7 8 9 

     

(c)   YS  

  1 2 3 

X
A

 

1 10 11 12 

2 13 14 15 

3 16 17 18 

Note. Only one pair of variables has been depicted for every kind of association. 

 

Consider the latent subtable representing monotrait-heteromethod category 

combinations, the case of no higher order effects allows for testing the structure of 

agreement on the level of latent bivariate interactions as described in Section 5.1. 

Therefore, I will only repeat the main implications of the saturated model here. The 

structure of agreement is reflected in part (a) of Table 6.1.3. 

Method bias type I reflects the degree to which the latent marginals differ from 

each other. It can be determined as: 
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( ).1
XS
xs

xs xa XA
xa

MB
π
π

= , for xs xa= .      (6.1.11) 

 

It can be analogously determined for the other trait Y. Values close to 1 indicate no bias, 

values far from one indicate over- or underrepresentation of the corresponding latent 

marginals with respect to the other rater's score (see Agresti, 1992). Values differing from 

1 indicate that raters differ with respect to their expected marginals which in turn can be 

interpreted as different presumed prevalence rates (see Zwick, 1988). This indicates that 

raters judge the constructs differently. In this sense, method bias is also related to a lack of 

convergent validity in the log-linear models with latent variables (biased ratings cannot 

lead to perfect agreement).  

Agreement can be seen in high two-variable effects ( ). .
. . or XS XA YS YA

xs xa ys yaτ τ  for categories 

of the two trait variables sharing the same index ( ) or xs xa ys ya= = . In the special case 

of a hierarchical model with two-variable parameters as effects of highest order the log-

linear two-variable parameters correspond to the category-specific agreement rates. Cells 

representing agreement (A, B, and C) are grey shaded in Table 6.1.3. An overall latent 

agreement rate can be calculated using κ . 

If there is general (category-specific) agreement beyond agreement on chance at 

least some disagreement cells are underrepresented. This can be seen in two-variable 

effects that are smaller than 1 for disagreement cells (1 to 6 in Table 6.1.3 a). The 

distinguishability index shows which cells are less (more) frequently expected than based 

on the product of their latent marginals: 

 

( )

.
.

.

XS XA
xs xa

xs xa XS XA
xs xa

Dist
π=
π π

, for xs xa≠       (6.1.12) 

 

This index can be analogously defined for the categories of Y. If this index is the same for 

all disagreement cells, raters distinguish equally well between the different categories of 

the latent constructs and agree more often than predicted by chance.  

However, this index can also show values larger than 1 indicating that this 

particular category combination is more often expected than based on the latent marginals. 

This indicates that the two raters confound these categories. Or more statistically spoken, 
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the ratings are biased with respect to the other rating. Reconsider the example with the 

security oriented, gambling, and risk seeking personality types. The two-variable effect 

indicates to which ratio the 1st rater chooses the gambling personality type if the 2nd rater 

chooses the risk-seeking personality type. Note that this bias has not to be the same the 

other way round. That is, the ratio of the combination gambling and risk-seeking 

personality type does not have to be the same as risk-seeking and gambling personality 

type.  

The association between two latent variables belonging to the same rater but 

different constructs [part (b) of Table 6.1.3) corresponds to a heterotrait-monomethod 

association sensu Campbell and Fiske (1959): 

 

.
.

XS YS
xs ysτ , or .

.
XA YA
xa yaτ .        (6.1.13) 

 

In general, this effect should be rather weak to indicate discriminant validity. That is, the 

log-linear two-variable parameters should be close to 1 to indicate discriminant validity. 

The association between two variables can be category specific. That is, special categories 

of neuroticism (highly neurotic) may co-occur with particular categories of 

conscientiousness (moderately conscientious) but not with others. This effect may be due 

to several (interacting) influences: a theoretical overlap of the categories (a theoretically 

meaningful category combination; yet, the constructs are not perfectly discriminant), and / 

or method bias. Method bias is a rater specific view of how categories belonging to two 

different constructs are related. These effects do not have to be identical across the 

different raters.  

The associations between variables belonging to different constructs judged by 

different raters [part (c) of Table 6.1.3] correspond to heterotrait-heteromethod 

associations sensu Campbell and Fiske (1959): 

 

.
.

XS YA
xs yaτ , or .

.
XA YS
xa ysτ .        (6.1.14) 

 

These parameters mirror associations between the latent constructs that are shared between 

raters. These effects can be due to a theoretical overlap of the constructs but they cannot be 

due to method bias. Therefore, the ratio of the association between traits belonging to one 

rater (confounded with bias) and the mean association of the corresponding bias free 
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associations indicates the rater specific bias (the rater's view that is, not shared across 

raters): 

 

Definition 6.1.2 

Method bias type II 

 

.
.

( . ) . .
. .

2
XA YA
xa ya

XA YA XS YA XA YS
xs ya xa ys

MB
τ

=
τ τ

, with xs xa=  andys ya= .    (6.1.15) 

 

 

This ratio has not yet been defined as method bias to my mind. The denominator 

gives the expectancy for the bias free association of the latent categories of the two 

constructs taking the geometric mean of the bias-free associations. The association 

between the same categories within one method (confounded with bias) is compared to this 

“average association”. Values larger than 1 indicate an association of the two categories 

for one rater that goes beyond the bias-free association. That is, one rater implicitly or 

explicitly associates the two categories to a greater (smaller) extent than do different raters. 

It reflects rater specific theories or beliefs about the combined prevalences of different 

statuses (e.g. halo-effect). Values smaller than 1 indicate that this association is less 

frequently expected than based on the bias-free association - which may be interpreted as 

an inversed halo-effect. This coefficient is theoretically founded in the postulate of 

Campbell and Fiske (1959) that the pattern of associations should be the same for all traits 

in monomethod as well as in heteromethod blocks.  

The method bias type II depends on three parameters: The heterotrait-monomethod 

two-variable interaction and the two heterotrait-heteromethod two-variable interactions 

representing the same latent categories. Since the denominator is the geometric mean of 

the two heterotrait-heteromethod parameters this index should not be calculated if the 

heterotrait-monomethod parameter falls into the interval between the two heterotrait-

heteromethod parameters. In this case, the rater-specific view is in the “middle” of the 

rater-unspecific views; it can therefore not be higher or lower as the error free interaction 

(if this is conceived as the “average” interaction) and is therefore not biased. Taking the 

geometric mean of the two heterotrait-heteromethod parameters will most probably lead to 
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a value differing from the numerator implying over- or underrepresentation as the form of 

bias which is not true inspecting the two-variable effects.  

If one of the raters is a gold standard, the method bias type II reduces to the ratio of 

the heterotrait-monomethod parameter for the non-reference rater to the heterotrait-

monomethod parameter of the reference rater (gold standard): 

 

Definition 6.1.3 

Method bias type II with gold standard 

 

 
.
.

( . ) .
.

2
XA YA
xa ya

XA YA XS YS
xs ys

MB
τ

=
τ

, with xs xa=  andys ya= .    (6.1.16) 

 

if S represents a gold standard. 

 

 

The interpretation of all parameters but the highest-order parameters as presented here 

can only be done if all higher order effects are absent. However, dealing with empirical 

data researchers are interested in the agreement rates of their raters. The latent log-linear 

parameters of lower order effects correspond to “average” effects. Therefore, these effects 

should only be interpreted (as a directional effect not interpreting the parameter value) if 

the higher order interactions do not change the direction of the main (lower order) effect 

for different categories (all parameters of the considered cells must be larger or smaller 

than 1). The same rationale accounts for the saturated log-linear model.  

A heuristic inspection of latent bivariate subtables can be done to get some insight 

into convergent and discriminant validity sensu Campbell and Fiske (1959). However, if 

higher order effects are present, the tables are not collapsible. Therefore, I do not 

recommend inspecting the log-linear parameters of bivariate subtables in cases where 

higher order effects are present. κ , however may be calculated to get an estimation of 

general agreement between raters.  
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6.2 The Correlated Traits Multitrait-Multirater Model for 

Interchangeable Raters 

 

The saturated model for the analysis of 2 traits by 2 interchangeable raters is a special case 

of the saturated model for structurally different raters described above. The detailed 

definition is not repeated but the model equation and the necessary constraints for 

interchangeable raters are presented. In principle the same logic as in Section 5.2 (latent 

rater agreement models for interchangeable raters) accounts for the larger 3 x 3 x 3 x 3 

model.  

 

6.2.1 Formal Representation of the Saturated CT MTMR Model for 

Interchangeable Raters 

 

Like in the latent rater agreement models for interchangeable raters measurement 

invariance has to be assumed. Extending the model to four measurement models 

(measuring two traits) leads to the following constraints on model parameters defined in 

Equation 6.1.118:  

 

. . . .

. . . . . .
. . . . . .

. . . . . . . . .
. . . . . . . . . . .

XA XB YA YB
xa xb ya yb xa xb ya yb

XA XB XA YA XA YB XB YA XB YB YA YB
xa xb xa ya xa yb xb ya xb yb ya yb

XA XB YA XA XB YB XA YA YB XB YA YB XA XB
xa xb ya xa xb yb xa ya yb xb ya yb xa xb ya yb

e = ηΤ Τ Τ Τ τ τ τ τ

×τ τ τ τ τ τ

×τ τ τ τ τ

abcd a b c d

. .YA YB

,   (6.2.1) 

 

with: 

 

max( ) max( )xa xb C= =  and max( ) max( )ya yb D= = ,   (6.2.2) 

 

leading to an equal number of categories for the different latent variables representing the 

same trait, respectively. And: 

 

                                            
18 The variable represented in the model change names from S (representing self–report in empirical 
applications) and A to A and  B (representing peer reports  A and B) to prevent from confounding the models. 
This change does by no means affect the definition or the meaning of the parameters.  
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XA XB
xa xbτ τ= , for xa xb=  and YA YB

ya ybτ τ= , for ya yb= ,    (6.2.3) 

 

the latent distributions are identical for latent variables of different raters measuring the 

same trait. And: 

 

..
. .

1 1

j ji i

i i j j

i j

I J
N N XBM M XA

m m xa n n xb
m n= =

Τ = τ τ = Τ = τ τ∏ ∏a b   with  . .
. .

i i i i

i i i i

M N M XA N XB
m n m xa n xbτ = τ ∧ τ = τ ,  (6.2.4) 

 

and 

 

. .
. .

1 1

k k l l

k i l l

k l

K L
O O YA P P YB
o o ya p p yb

o p= =

Τ = τ τ = Τ = τ τ∏ ∏c d   with  . .
. .

i i i i

i i i i

O P O YA P YB
o p o ya p ybτ = τ ∧ τ = τ ,   (6.2.5) 

 

indicating identical measurement models. An explanation of these restrictions is given in 

Section 5.2. 

In addition to the restrictions of measurement invariance the interchangeability of 

the raters has to be respected. The latent more-variable log-linear parameters of the 

saturated model for interchangeable raters have to be constrained (yielding a symmetry 

model): 

 

i. . .
. .

XA XB XA XB
xa xb xb xaτ τ= ,        (6.2.6) 

 

The log-linear two-variable effects of cells within trait units are identical for 

inversed ordering of the categories.  

 

ii.  . .
. .

XA YA XB YB
xa ya xb ybτ τ= ,        (6.2.7) 

 

for xa xb ya yb= ∧ = . The rater-specific two-variable effects across constructs 

(heterotrait-monomethod parameters) are the same across raters. The two raters 

have the same view about which latent categories are related. 

 

iii.  . .
. .

XA YB XB YA
xa yb xb yaτ τ= ,         (6.2.8) 
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for xa xb ya yb= ∧ = . The across traits two-variable effects are the same for the 

inversed order of raters (the heterotrait-heteromethod parameters are identical 

irrespective of the raters). That is,, if the neurotic category of peer A co-occurs 

more frequently with the conscientious category of B this must also be the case 

(to the same degree) for the opposite combination (neurotic for B and 

conscientious for A).  

 

. . . .
. . . .

XA XB YA XA XB YB
xa xb ya xb xa ybτ τ= , for ya yb= ,       (6.2.9) 

 

and 

 

. . . .
. . . .

XA YA YB XB YA YB
xa ya yb xb yb yaτ τ= , for xa xb= .      (6.2.10) 

 

The impact of one categorical trait variable on the interaction of two categorical 

trait variables representing the same construct is the same for the two raters. That 

is, if the combination of XA = 2 and XB = 3 is more often observed for YA = 1 this 

must also be the case for XA = 3 and XB = 2 given YB = 1.  

 

iv. . . . . . .
. . . . . .

XA XB YA YB XA XB YA YB
xa xb ya yb xb xa yb yaτ τ= ,       (6.2.11) 

 

That is, interchangeability implies that any given overrepresentation of one 

specific combination of latent ratings must be the same for the inversed order of 

the raters. The combination of [2 1 3 1] depends on the same log-linear effect as 

the combination [1 2 1 3].  

 

 
 

6.2.1.1 The impact of the different log-linear effects on the analysis of convergent 

and discriminant validity  

 

The same considerations about the meaning of lower order effects if higher order 

interactions are present for the case of structurally different raters account for the case of 
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interchangeable raters. Therefore, the inspection of convergent and discriminant validity is 

based on the analysis of higher order effects. Convergent and discriminant validity can be 

analyzed inspecting the complete cross classification of all latent variables.  

In Table 6.2.1 36 cells of the latent joint quadrivariate cross-classification (with 81 

cells) are depicted. These cells represent agreement, partial agreement, and disagreement 

cells. The cell entries symbolize the expected cell proportions. I denoted all expected 

probabilities indicating agreement or partial agreement with capital Latin letters. Identical 

Latin letters represent identical expected response probabilities. Expected proportions of 

disagreement cells are denoted using Arabic numbers. Identical numbers identify identical 

expected cell proportions. As can be easily seen the entries in Table 6.2.1 follow a 

symmetric scheme. This symmetry is produced by the interchangeability of raters 

producing identical log-linear parameters. Cells representing agreement with respect to 

neuroticism and conscientiousness are determined by “unique” combinations of log-linear 

effects (grey shaded and surrounded cells). The expected proportion A, for example: 

 

A: 

1.1.1.1 1 1 1 1

. . . . . .
1.1 1.1 1.1 1.1 1.1 1.1

. . . . . . . .
1.1.1 1.1.1 1.1.1 1.1.1

. . .
1.1.1.1

* XA XB YA YB

XA XB XA YA XA YB XB YA XB YB YA YB

XA XB YA XA XB YB XA YA YB XB YA YB

XA XB YA YB

e++++ = η τ τ τ τ

×τ τ τ τ τ τ

×τ τ τ τ

×τ

,     (6.2.12) 

 

depends on products of effects that do not reappear once in the complete table. The 

symbols “+” replace the manifest categories. The same is true for expected proportions B, 

C, D, E, and F.  
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Table 6.2.1 

Extracted part of the latent joint distribution in the saturated (symmetry) CT MTMR model 

for interchangeable raters  

     YB  

    1 2 3 

X
A
=

1 

X
B
=

1 

Y
A

 
1 A J K 

2 J B L 

3 K L C 

X
B
=

2 

Y
A

 

1 G 1 2 

2 4 H 3 

3 5 6 I 

… … … … … … … 

X
A
=

2 

X
B
=

1 

Y
A

 

1 G 4 5 

2 1 H 6 

3 2 3 I 

X
B
=

2 

Y
A

 

1 D M N 

2 M E O 

3 N O F 

… … … … … … … 

Note. Only the cell combinations for XA = 1, XA = 2, XB =1 and XB = 2 are depicted. The 

scheme applies to all other combinations of latent categories as well (see restrictions i to iv 

in Section 6.2.1). 

 

The expected proportions of cells representing agreement for only one construct 

(grey shaded for Y) reappear once in the frequency table for inversed categories of the 
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construct upon which the two raters do not agree. These are the frequencies G, H, and I for 

partial agreement on Y, as well as J, K, and L and M, N, and O for partial agreement on X. 

E.g.:  

 

G: 

1.2.1.1 1 2 1 1

. . . . . .
1.2 1.1 1.1 2.1 2.1 1.1

. . . . . . . .
1.2.1 1.2.1 1.1.1 2.1.1

. . .
1.2.1.1

2 1 1 1

. .
2.1 2.1

*

*

XA XB YA YB

XA XB XA YA XA YB XB YA XB YB YA YB

XA XB YA XA XB YB XA YA YB XB YA YB

XA XB YA YB

XA XB YA YB

XA XB XA Y

e++++ = η τ τ τ τ

×τ τ τ τ τ τ

×τ τ τ τ

×τ

= η τ τ τ τ

×τ τ . . . .
2.1 1.1 1.1 1.1

. . . . . . . .
2.1.1 2.1.1 2.1.1 1.1.1

. . .
2.1.1.1

2.1.1.1

A XA YB XB YA XB YB YA YB

XA XB YA XA XB YB XA YA YB XB YA YB

XA XB YA YB

e++++

τ τ τ τ

×τ τ τ τ

×τ
=

,     (6.2.13) 

 

since Equations 6.2.6 through 6.2.11 must hold. All other frequencies also appear two 

times in the complete table, because they are identical with respect to a complete category 

inversion. That is, if the latent categories for the two peers are simultaneously 

interchanged, the model yields the same expected frequency.  

The saturated CT MTMR model allows for determining different sources of 

influences on the associations between latent variables. These coefficients have been 

defined for the CT MTMR model for structurally different raters. Their meanings with 

respect to the model for interchangeable raters will be sketched and differences with 

respect to the model for structurally different raters will be pointed out: 

 

i) Four-variable effects 

Complete agreement. The four-variable log-linear parameters of cells indicating agreement 

on both constructs (A through F) mainly indicate the judgeability of the targets. If these 

effects are larger than 1 and significant, the corresponding expected cell proportions are 

higher than expected based on all lower order effects: 

 

. . .
. . .. . .

. . . . . . . . . . .
. . . . . . . .

XA XB YA YB
xa xb ya ybXA XB YA YB

xa xb ya yb XA XB YA XA XB YB XA YA YB XB YA YB
xa xb ya xa xb yb xa ya yb xb ya yb

π
τ

π π π π
= ,    (6.2.14) 

 

for  and xa xb ya yb= = . Several constellations are possible: 
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• All four-variable parameters of complete disagreement cells (A through F) are 

larger than 1 and of equal size ( )
. . . . . .

. . . . . . '
XA XB YA YB XA XB YA YB
xa xb ya yb xa xb ya ybτ τ=  for all 

( ) ( ). . . . . . 'xa xb ya yb xa xb ya yb≠  with  and xa xb ya yb= = . This indicates that the 

interchangeable raters agree constantly across all categories of the different traits. 

The odds to agree given the expected proportions based on lower order effects (see 

Eq. 6.1.6) are identical on all category combinations indicating agreement on both 

constructs.  

 

• All four-variable parameters of complete agreement cells (A through F) are larger 

than 1 but differ from each other. In this case, the raters agree more often than 

expected based on the lower order effects. There is a group of judgeable individuals 

but their judgeability depends partly on their status on the latent variables. 

Individuals who belong to an especially easily judgeable category of one trait can 

be more easily accurately (congruently) judged on a category of the other traits as 

well. This effect may be weaker or stronger depending on the different categories. 

( )
. . . . . .

. . . . . . '
XA XB YA YB XA XB YA YB
xa xb ya yb xa xb ya ybτ τ≤  for all ( ) ( ). . . . . . 'xa xb ya yb xa xb ya yb≠  with 

 and xa xb ya yb= = . In this case, judgeability (as palpability) is a property of 

different constellations of the latent categories. 

If there are only few but very large four-variable parameters of complete 

agreement cells low discriminant validity on agreement ratings is found. The latent 

categories of the different constructs partly overlap and cannot be considered very 

distinct from each other.  

 

• All four-variable parameters of complete agreement cells (A through F) are larger 

than 1 and differ from each other as a function of categories of one trait. 

( )
. . . . . .

. . . . . . '
XA XB YA YB XA XB YA YB
xa xb ya yb xa xb ya ybτ τ≤  for all ( ) ( ). . . . . . 'xa xb ya yb xa xb ya yb≠  with 

 and xa xb ya yb= =  or ( )
. . . . . .

. . . . '. .
XA XB YA YB XA XB YA YB
xa xb ya yb xa xb ya ybτ τ≤  for all 

( ) ( ). . . . '. .xa xb ya yb xa xb ya yb≠  with  and xa xb ya yb= = . This effect is a special 

case of the previously described phenomenon. It may occur that for different levels 

of the target person's extraversion the raters have fewer problems to correctly (at 
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least congruently) classify these targets on the other construct (conscientiousness) 

with the same accuracy for all categories.  

 

• The four-variable parameters of complete agreement cells (A through F) may also 

be smaller than 1. For the corresponding cells agreement on both constructs is less 

frequently expected than predicted on the lower order effects. This result would be 

rather awkward but could be explained in cases when the latent cells indicate 

categories that are (partly) mutually exclusive in the raters' view. Reconsider the 

example of ratings with respect to clarity of one's own feelings and expressivity of 

feelings, the cell indicating agreement on “does not show feelings” and “is clear 

about feelings” can logically be underrepresented because in this case the clarity 

about feelings is not open for observation.  

 

• The four-variable parameters of complete agreement cells (A through F) do not 

differ from 1. In this case the quadrivariate agreement can be explained by lower 

order effects of agreement (see discussion of these effects below).  

 

Partial agreement. Four-variable parameters of cells indicating agreement on one construct 

but not on the other for the quadrivariate joint distribution (cells G through O) represent a 

special kind of rater bias:  

 

. . .
. . .. . .

. . . . . . . . . . .
. . . . . . . . .

. . .
. . .

XA XB YA YB
xa xb ya ybXA XB YA YB

xa xb ya yb XA XB YA XA XB YB XA YA YB XB YA YB
xa xb ya xa xb yb xa ya yb xb ya yb

XA XB YA YB
xb xa yb ya

π
τ

π π π π

τ

=

=

,    (6.2.15) 

 

for either ( ) ( ) and  or  and xa xb ya yb xa xb ya yb= ≠ ≠ = . Again, different constellations 

may occur:  

 

• The four-variable parameters of cells indicating agreement on one but not on the 

other trait (cells M through O) are larger than 1. This finding can be interpreted in 

terms of rater bias. Although raters agree on one construct they disagree 

systematically on the other construct. Moreover, the particular combination of 

disagreement cells is equally frequently expected for interchangeable raters.  
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This effect indicates the association of agreement on one construct with 

disagreement on the other. Individuals who do not show their feelings (the 

interchangeable raters agree on the status of “expressivity of feelings”) may, for 

example, send out ambiguous signals belonging to the construct clarity of feelings 

which might indicate a very clear or a neutral category. The two interchangeable 

raters therefore confound these categories with respect to the other rater. This kind 

of effect may account for all cells indicating partial agreement or only for particular 

cells.  

 

• The four-variable parameters for (particular or all) cells indicating agreement on 

one but not on the other trait (cells M through O) are smaller than 1. In this case, 

disagreement between the two raters with respect to specific category combinations 

is underrepresented if they agree on the other construct. This may be the case if 

agreement on one construct is very hard to achieve because the trait under 

consideration is not easily judgeable, if two raters agree on judging this difficult 

trait, they will most probably agree on more easy to judge traits as well and 

therefore the expected proportions of the disagreement cells for the latter construct 

are much smaller given agreement on the first trait.  

This effect thus shows (if there is agreement) that there is higher agreement 

on one construct (on all or on one category) if there is agreement on the other one. 

The opposite does not necessarily have to be true. In this case, one construct (or 

specific cells of this construct) is more difficult to judge than the cells of the other 

construct.  

 

• All four-variable parameters for cells indicating agreement on one but not on the 

other trait (cells M through O) do not differ from 1. In this case, agreement on one 

construct is not related to disagreement on the other construct.  

 

Disagreement. The latent four-variable parameters of cells besides the agreement and 

partial agreement cells represent influences which may be due to bias or to general 

disagreement: 
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. . .
. . .. . .

. . . . . . . . . . .
. . . . . . . .

. . .
. . .

XA XB YA YB
xa xb ya ybXA XB YA YB

xa xb ya yb XA XB YA XA XB YB XA YA YB XB YA YB
xa xb ya xa xb yb xa ya yb xb ya yb

XA XB YA YB
xb xa yb ya

π
τ

π π π π

τ

=

=

,    (6.2.16) 

 

for ( ) and xa xb ya yb≠ ≠ . The following different constellations are possible: 

 

• All four-variable parameters of complete disagreement cells (1 to 6) are larger than 

1. In this case, the two raters disagree more often than predicted based on the lower 

order effects. In general, this indicates a lack of convergent validity. κ  will be 

negative. However, there still might be a few positive category-specific agreement 

ratios for some cells. I do not expect this constellation to appear in any application. 

This constellation may appear in cases where raters do not follow their instructions 

or due to a wrong labeling of categories. Even if raters are guessing they should 

have four-variable parameters for disagreement cells that do not differ from 1. 

 

• Some (one) four-variable parameters of complete disagreement cells (1 to 6) are 

larger than 1. In this case particular combinations of one rater's latent scores are 

associated to the other rater's scores but for different cell combinations. If raters 

weigh some behavioral cues differently given cues on the other trait they may be 

more often categorized in latent disagreement cells. If, for example, one rater 

classifies an individual due to specific behavioral cues as highly extraverted and, 

additionally, these cues may lead this rater to also classify this individual as 

moderately neurotic this combination of behavioral cues may be associated to the 

moderately extraverted and highly neurotic classes for the other rater. The same 

effect has to hold for inversed categories across raters (the opposite combination).  

 

• Some (all) four-variable parameters of complete disagreement cells (1 to 6) are 

smaller than 1. This may be due to higher complete and / or partial agreement rates. 

Higher agreement lowers the expected proportions of the disagreement cells in the 

saturated model. Yet, this may also be due to high disagreement on a particular cell 

combination and no effects on complete or partial agreement cells.  
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• None of the four-variable parameters of complete disagreement cells (1 to 6) differs 

from 1. In this case, there is neither an over- nor an underrepresentation of 

complete disagreement cells  

 

At the level of four-variable effects, there are some combinations that can be related to the 

concepts of convergent and discriminant validity. In principle, these relations do not differ 

from those for structurally different raters except for the interchangeability of the raters. 

Overall agreement may be high due to bivariate, tri-variate, and quadrivariate 

effects. The four-variable parameters depict the degree to which raters agree with each 

other above the expected agreement given the lower-order log-linear parameters. 

Therefore, the four-variable parameters represent conditional agreement rates. The 

(conditional) overall agreement will be high if the four-variable parameters indicating 

complete agreement are principally high and do not differ from each other, the four-

variable parameters indicating disagreement should be low.  

If there are special combinations of congruent ratings for two constructs with very 

high four-variable parameters these categories (of the joint ratings) co-occur more often 

than expected based on the lower order effects (lack of discriminant validity). It may be the 

case that the joint rating of highly extraverted individuals co-occurs with the joint rating of 

highly intelligent individuals. In this case, one category of one construct may serve as an 

indicator of judgeability for the other construct, the constructs lack of discriminant validity 

for these categories, or this effect can be theoretically explained and expected. This has to 

be examined with respect to the constructs under consideration. If particular categories of 

one construct enhance the judgeability on other constructs they should do so for several 

categories of the other construct and they should do so for several constructs. Then, it is 

meaningful to conceive this category as an indicator of judgeability. If the category is only 

associated to one category of one or few other constructs it is very questionable if this 

particular category indicates if individuals are judgeable (good targets sensu Funder, 1995) 

or if the categories represent closely related categories (lack of discriminant validity).  

A specific kind of method bias can be examined independently of all other effects 

examining the log-linear effects of partial agreement. If these are large, this indicates that 

although peers agree on one construct, they confound categories of the other construct in 

specific (and inversely related) ways. A close examination of the answer process and the 

category definition may yield insight into the reasons for this kind of method bias (which 

corresponds to a kind of “category confusion”).  
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Method bias is strong when the latent four-variable effects influencing cells 

indicating disagreement are large and the four-variable effects influencing (complete and 

partial) agreement are small. The joint ratings are associated but not with respect to 

agreement.  

 

ii) Three-variable effects 

In general, lower order effects may be interpreted as average effects influencing particular 

cell combinations. The interpretation of these effects is only straightforward if the higher 

order effects are absent or all higher order effects influencing the cells of that particular 

lower order effect increase (or decline) the expected cell proportions.  

Assume that all higher order effects are absent. Table 6.2.2 represents parts of the 

latent three-variable joint distributions for combinations of XA or XB with YA and YB. 

However, the implications account for every possible combination of three variables and 

can be easily derived reordering the latent variables to follow the patterns presented in 

Table 6.2.2. The symmetric structure is the same as in Table 6.2.1. Latin letters again 

indicate agreement on one construct (on Y in Table 6.2.2) and Arabic numbers indicate 

disagreement (on Y in Table 6.2.2).  

In order to examine rater agreement as a special form of convergent validity it is 

useful to inspect the meaning of the latent three-variable effects as the influence of one 

latent construct's score on the joint categorization of the other construct. Therefore, these 

effects can be interpreted in two principal ways. Three-variable effects either represent 

properties of judgeable individuals (A through F) or sources of disagreement (1 to 12).  

These effects have to be identical across the interchangeable raters. This does imply 

that the rate of expected classification on one trait for a given constellation on the other 

trait increases or declines to the same degree for interchangeable raters, however, it does 

not say that the raters congruently choose the same category (this is depicted in the four-

variable effects) but that congruent ratings on the 1st trait variable are only related to 

chance if there is agreement on the 2nd trait variable.  
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Table 6.2.2 

Extracted part of the latent joint distribution in the saturated CT MTMR model with three-

variable effects as highest order effects for four three-categorical latent variables  

    YB  

   1 2 3 

X
B
=

1 

Y
A

 

1 A 1 2 

2 4 B 3 

3 5 6 C 

X
B
=

2 

Y
A

 

1 D 7 8 

2 10 E 9 

3 11 12 F 

… … … … … … 

X
A
=

1 

Y
A

 

1 A 4 5 

2 1 B 6 

3 2 3 C 

X
A
=

2 

Y
A

 

1 D 10 11 

2 7 E 12 

3 8 9 F 

… … … … … … 

Note. Only parts of the subtables for the constructs XA, XB, YA, and YB are depicted. The 

implications account for any other three-variable subtable as well.  

 

 

Agreement. The three-variable parameters of cells representing agreement on one construct 

depict if agreement depends on the status of the other construct. E.g.:  
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. . .

. . .

1. .
. . . . .

. . .*

xa xb ys yb

XB
XA XB YA YB

XB

xbXA YA YB
xa ya yb XA YA YB XA YA XA YB YA YB

xa ya yb xa ya xa yb ya yb

=

π
τ =

η τ τ τ τ τ τ

∏
, with ya yb=    (6.2.17) 

 

indicates to which ratio the geometric mean of all cells belonging to a particular 

combination of XA and identical categories on YA and YB deviates from what can be 

expected based on all lower order effects. The following constellations are possible: 

 

• The three-variable parameters of cells representing agreement on one construct are 

high for specific categories of the other one. Then the three-variable effects indicate 

for which specific categories of XA agreement on Y is obtained to a higher degree 

than expected based on the lower order effects. The categories of XA can be 

conceived as a kind of judgeability indicator. If one of the raters identifies the 

target individual to belong to a category indicating judgeability, the raters will more 

often agree with each other.  

 

• The three-variable parameters of cells representing agreement on one construct are 

low for specific categories of the other one. Then the three-variable effects indicate 

for which specific categories of XA agreement on Y is obtained to a smaller degree 

than expected based on the lower order effects. In this case, specific categories of 

one construct indicate bad judgeability.  

 

• The three-variable parameters of cells representing agreement on one construct are 

1 for specific categories of the other one. Then the three-variable effects indicate 

that the other construct's category does not have any influence on raters' agreement 

on the other construct.  
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Disagreement. The three-variable parameters of cells representing disagreement on one 

construct depict if this cell combination is associated to the status on the other construct 

(cells 1 to 12 in Table 6.2.2). E.g.:  

 

. . .

. . .

1. .
. . . . .

. . .*

xa xb ya yb

XB
XA XB YA YB

XB

xbXA YA YB
xa ya yb XA YA YB XA YA XA YB YA YB

xa ya yb xa ya xa yb ya yb

=

π
τ =

η τ τ τ τ τ τ

∏
, with ya yb≠    (6.2.18) 

 

indicates to which ratio the geometric mean of all cells belonging a particular combination 

of XA and different categories on YA and YB deviates from what can be expected based on 

all lower order effects. The following constellations are possible: 

 

• The three-variable parameters of cells representing disagreement on one construct 

are high for specific categories of the other. This effect is more easily interpreted as 

the association of a specific combination of one rater's joint classification with the 

classification of the other rater on one construct. This effect indicates that, for 

example, if A judges the target person to be highly neurotic and moderately 

conscientious B will judge the same target to be moderately neurotic. The same 

association must hold for the inversed combination (B judges highly neurotic and 

moderately conscientious while A judges moderately neurotic). This effect thus 

reveals easily confounded category constellations. 

 

• The three-variable parameters of cells representing disagreement on one construct 

are small for specific categories of the other. The expected proportions are smaller 

for a specific case of disagreement if a particular category is chosen on the other 

construct. This effect indicates if particular categories of one construct co-occur 

less often than predicted based on the lower order effects for a given rating on the 

other construct. If rater A judges the target person to be highly extraverted, this may 

prevent raters A and B from providing ratings of not at all neurotic and highly 

neurotic. This constellation thus indicates to which degree special disagreement 

combinations do not occur for given statuses on another construct. That is, if some 

latent categories of one trait moderate the disagreement on the other trait (i.e., 
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prevent from misinterpreting behavioral cues or make behavioral cues of the other 

trait more salient).  

 

• The three-variable parameters of cells representing disagreement on one construct 

are 1 for specific categories of the other one. Then the three-variable effects 

indicate that the other construct's category does not have any influence on raters' 

disagreement on the other construct.  

 

iii) Two- and one-variable effects. 

If there are no four- and no three-variable effects the two-variable effects can be directly 

interpreted. Their interpretation comes very close to the criteria introduced by Campbell 

and Fiske (1959).  

For sake of simplicity, assume that all higher order effects (three- and four-variable 

effects) are absent. The different two-variable effects influence the cells of Table 6.2.3 

representing the latent two-variable joint distributions for the different combinations of XA, 

XB, YA, and YB. The upper part [(a), containing the grey-shaded agreement cells] indicates 

the bivariate distribution of YA and YB (or XA and XB, respectively, not depicted). The 

middle part (b) represents the across trait latent bivariate distribution for XA and YA (or XB 

and YB, not depicted). The lower part (c) represents the across traits-across raters latent 

bivariate distribution of XA and YB (or XB and YA, not depicted). 

The latent bivariate sub-tables are completely independent from each other since no 

three- or four-variable effects are assumed to hold. Therefore, these subtables can be 

inspected as “complete tables” without any conditional assumption about scores on other 

variables. 
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Table 6.2.3 

Extracted part of the latent joint distribution in the saturated CT MTMR model with two-

variable effects as highest order effects for different combinations of two categorical latent 

variables  

(a)   YB   

  1 2 3 

Y
A

  

1 A 1 2 

2 1 B 3 

3 2 3 C 

     

(b)   YA  

  1 2 3 

X
A

 

1 4 5 6 

2 5 7 8 

3 6 8 9 

     

(c)   YB  

  1 2 3 

X
A

 

1 10 11 12 

2 11 13 14 

3 12 14 15 

Note. Only one pair of variables has been depicted for every kind of association. 

 

I will first consider the latent subtable representing monotrait-heteromethod 

category combinations. The case of no higher order effects allows for testing the structure 

of agreement on the level of latent bivariate interactions as described in Section 5.2. 

Therefore I will only repeat the main implications of the saturated model here. The 

structure of agreement is reflected in part (a) of Table 6.2.3. 
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Method bias type I would reflect the degree to which the latent marginals differ 

from each other. Since these are restricted to be identical across interchangeable raters this 

bias does not occur in models with interchangeable raters  

Agreement can be seen in high two-variable effects ( ). .
. . or XA XB YA YB

xa xb ya ybτ τ  for categories 

of the two trait variables sharing the same index ( ) or xa xb ya yb= = . In the special case 

of a model with two-variable effects as effects of highest order the log-linear two-variable 

parameters correspond to the category-specific agreement rates. Cells representing 

agreement (A, B, and C) are grey shaded in Table 6.2.3. An overall latent agreement rate 

can be calculated using κ . 

If there is general (category-specific) agreement beyond agreement on chance at 

least some disagreement cells are underrepresented. This can be seen in two-variable 

effects that are smaller than 1 for disagreement cells (1 to 3 in Table 6.2.3). The two-

variable effects show which cells are less frequently expected than based on the product of 

their latent marginals: 

 

.
..
.

XA XB
XA XBxa xb
xa xbXA XB

xa xb

π = τ
π π

, for xa xb≠        (6.2.19) 

 

This index can be analogously defined for the categories of Y. If this index is smaller than 

one and the same for all disagreement cells, raters distinguish equally well between the 

different categories of the latent constructs and agree more often than predicted by chance.  

However, this index can also show values larger than 1 indicating that particular 

category combinations are more often expected than based on the latent marginals. This 

indicates that the two raters confound these categories. The ratings are biased with respect 

to the other rating. Reconsider the example with the security oriented, gambling, and risk 

seeking personality types. The two-variable effect indicates to which ratio the 1st rater 

chooses the gambling personality type if the 2nd rater chooses the risk-seeking personality 

type. Note that this bias has to be the same the other way round for interchangeable raters. 

That is, the ratio of the combination gambling and risk-seeking personality type is the same 

as risk-seeking and gambling personality type.  

The association between two latent variables belonging to the same rater but 

different constructs [part (b) of Table 6.2.3] corresponds to a heterotrait-monomethod 

association sensu Campbell and Fiske (1959): 
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.
..

.

XA YA
xa yaXA YA

xa ya XA YA
xa ya

π
τ =

π π
, or 

.
..

.

XB YB
xb ybXB YB

xb yb XB YB
xb yb

π
τ =

π π
.      (6.2.20) 

 

In general, these effects should be rather weak to indicate discriminant validity. That is, the 

log-linear two-variable parameters should be close to 1 to indicate discriminant validity. 

This effect may be due to several (interacting) influences: a theoretical overlap of the 

categories (theoretically meaningful overrepresentation of the joint category; yet, the 

constructs are not perfectly discriminant), and / or method bias. Method bias is a rater 

specific view of associations between categories belonging to two different constructs. 

These associations must be identical across the different raters.  

The associations between variables belonging to different constructs judged by 

different raters [part (c) of Table 6.1.3] correspond to heterotrait-heteromethod 

associations sensu Campbell and Fiske (1959): 

 

.
..

.

XA YB
xa ybXA YB

xa yb XA YB
xa yb

π
τ =

π π
, or 

.
..

.

XB YA
xb yaXB YA

xb ya XB YA
xb ya

π
τ =

π π
.      (6.2.21) 

 

These parameters mirror interactions between the latent categories across raters. These 

effects can be due to a theoretical overlap of the constructs but they cannot be due to 

method bias. Therefore, method bias type II can be estimated in the models for 

interchangeable raters: the ratio of the association between traits belonging to one rater 

(confounded with bias) and the mean association of the corresponding bias free 

associations indicates the rater specific bias (the rater's view that is, not shared across 

raters): 

 

. . . .
. . . .

( . ) ( . ). .. . . .
. .. . . .

2 2
XA YA XA YA XA YA XB YB
xa ya xa ya xa ya xa ya

XA YA XB YBXB YA XA YBXA YB XB YA XA YB XB YA
xa ya xa yaxa ya xa ya xa ya xa ya

MB MB
τ τ τ τ

= = = = =
τ ττ τ τ τ

.  (6.2.22) 

 

This ratio of the joint classification across traits belonging to one rater (confounded with 

bias) and the mean joint classification of the corresponding bias free associations indicates 

the rater specific bias (the rater's view that is, not shared across raters). This bias is the 
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same for the two interchangeable raters. This bias can always be determined because the 

heterotrait-heteromethod associations do not differ for interchangeable raters.  

 

The interpretation of all parameters but the highest-order parameters in their pure forms 

as presented here can only be done if all higher order effects are absent. However, dealing 

with empirical data researchers are interested in the agreement rates of their raters. The 

latent log-linear parameters of lower order effects correspond to “average” effects. 

Therefore, these effects should only be interpreted (as a directional effect not interpreting 

the parameter value) if the higher order interactions do not change the direction of the main 

(lower order) effect for different categories. A heuristic inspection of latent bivariate 

subtables can be done to get some insight into convergent and discriminant validity sensu 

Campbell and Fiske (1959). However, if higher order effects are present, the tables are not 

collapsible. Therefore, I do not recommend inspecting the log-linear parameters of 

bivariate subtables in cases where higher order effects are present. κ , however may be 

calculated to get an estimation of general agreement between raters.  

 

 

6.3 Empirical Applications of the CT MTMR Model for Structurally 

Different and Interchangeable Raters 

 

In this section, the CT MTMR models for structurally different and for interchangeable 

raters will be applied to the empirical data described in Section 4.1.3. First, the models for 

structurally different raters analyzing the combination of self-report and peer report A data 

will be reported and illustrated, then the model for interchangeable raters analyzing the two 

peer reports A and B will be applied  

The computationally very complex CT MTMR models are prone to several 

problems during the estimation process: sparse table problems leading to meaningless p-

values of the 2χ -parameters, boundary solutions due to intrinsic or empirical model non-

identification, and zero fitted marginals or cell frequencies (which also lead to boundary 

values and undefined log-linear parameters). Therefore, researchers should absolutely 

check the results obtained from one program against different start-values and cross-

validate their results using different statistical packages. However, to date, there is no other 

program than LEM allowing (at least in parts) for these complex analyses. Therefore, all 
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model parameters and interpretations of these should only be considered as illustrative. 

The model results will be discussed with respect to their expected proportions because 

almost all log-linear parameters suffer from boundary values.  

 

 

6.3.1 Empirical Applications of the CT MTMR Model for Structurally Different 

Raters 

 

The CT MTMR model for structurally different raters will be applied to the self-report and 

peer report A data measuring neuroticism and conscientiousness. The most complex model 

allowing for all two-, three-, and four-variable effects will be presented first. In two steps 

the four- and three-variable effects will be removed.  

 

Table 6.3.1 

Goodness-of-fit coefficients of the CT MTMR models for structurally different raters 

        

Highest 

Effects 
2χ  ( )2p χ

 L2 p(L2) df AIC1 BIC1 

4  79125224.54 .00 6418.70 1.00 43046544 -86086669 -265574001 

3  69473766.35 .00 6425.23 1.00 43046560 -86086694 65574093 

2 79696342.45 .00 6479.59 1.00 43046592 -86086704 -265574236 

Note. Highest Effects: 4, 3, and 2 indicate the four-, three-, and two-variable effects as 

highest order effects in the models. 2χ : Pearson 2χ -value; L2 likelihood-based 2χ -value; 
1AIC and BIC are based on L2-values; the bootstrap is not available for these models due 

to memory size restrictions in the DOS routine of LEM.  

 

 

Table 6.3.1 presents the goodness-of-fit criteria for the different models. However, 

during the estimation process the following problems occurred: LEM is known to have 

difficulties estimating the standard errors for models with more than 150 parameters19. 

Therefore, no information on boundary values can be determined for the model with four-

variable effects (176 parameters) and for the model with three-variable effects (160 

                                            
19 http://spitswww.uvt.nl/web/fsw/mto/lem/lembugs.txt  
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parameters) as highest-order effects. Moreover, the bootstrap routine in LEM did not work 

for any model (for structurally different or interchangeable raters) due to memory 

restrictions of the DOS routine.  

The model with two-variable interactions as highest-order interactions consists of  

128 parameters. For this model 7 parameters near the boundaries of the parameter space 

were found. Inspecting the outputs for the models with higher-order interactions (four- and 

three- variable interactions) reveals that all log-linear parameters representing effects of 

latent variables are extremely large or very close to 0. However, the measurement models 

can be soundly estimated and do not differ with respect to the applications in Sections 4 

and 5. Therefore, I will exemplify the impact of the higher-order interactions relying on the 

latent expected probabilities for these models.  

 

 

6.3.1.1 Results of the CT MTMR model with four-variable interactions for 

structurally different raters 

 

Table 6.3.2 depicts the quadrivariate latent joint distribution of the cross classification of 

the latent variable representing neuroticism and conscientiousness rated by a self-rater and 

peer rater A. The model equation for the population is:  

 

. . . .

. . . . . .
. . . . . .

. . . .
. . . . .

ns na cs ca

NEUS NEUA CONS CONA
ns na cs ca

NEUS NEUA NEUS CONS NEUS CONA NEUA CONS NEUA CONACONS CONA
ns na ns cs ns ca na cs na ca cs ca

NEUS NEUA CONS NEUS NEUA CONA
ns na cs ns na ca ns cs

e = ηΤ Τ Τ Τ

×τ τ τ τ

×τ τ τ τ τ τ

×τ τ τ

abcd a b c d

. . . .
. . .

. . .
. . .

NEUS CONS CONA NEUA CONS CONA
ca na cs ca

NEUS NEUA CONS CONA
ns na cs ca

τ

×τ

,  (6.3.1) 

 

with ns and na representing the latent categories of the latent trait variables NEUS and  

NEUA for self-rated (S) and peer rated  neuroticism and cs and ca representing the latent 

categories of the latent trait variables CONS and  CONA for self-rated (S) and peer rated 

(A) conscientiousness. 
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Table 6.3.2 
Cross-classification of the latent categories for neuroticism and conscientiousness in the 
CT MTMR Model with four-variable effects for structurally different raters  

   CONA 

   1 2 3 

  CONS=1 .01 (.00) .01 (.00) .01 (.00) 

 NEUA=1 CONS=2 .02 (.00) .03 (.00) .00 (.00) 

  CONS=3 .00 (.00) .01 (.00) .02 (.00) 

  CONS=1 .00 (.00) .00 (.00) .01 (.00) 

NEUS=1 NEUA=2 CONS=2 .00 (.00) .00 (.00) .01 (.00) 

  CONS=3 .00 (.00) .00 (.00) .04 (.00) 

  CONS=1 .00 (.00) .01 (.00) .00 (.00) 

 NEUA=3 CONS=2 .00 (.00) .01 (.00) .01 (.00) 

  CONS=3 .00 (.00) .00 (.00) .03 (.00) 

  CONS=1 .02 (.00) .02 (.00) .00 (.00) 

 NEUA=1 CONS=2 .00 (.00) .00 (.00) .00 (.00) 

  CONS=3 .00 (.00) .00 (.00) .01 (.00) 

  CONS=1 .01 (.00) .00 (.00) .02 (.00) 

NEUS=2 NEUA=2 CONS=2 .01 (.00) .03 (.00) .03 (.01) 

  CONS=3 .00 (.00) .02 (.00) .07 (.01) 

  CONS=1 .01 (.00) .00 (.00) .00 (.00) 

 NEUA=3 CONS=2 .01 (.00) .02 (.00) .05 (.01) 

  CONS=3 .00 (.00) .02 (.00) .05 (.01) 

  CONS=1 .01 (.00) .01 (.00) .00 (.00) 

 NEUA=1 CONS=2 .01 (.00) .00 (.00) .01 (.00) 

  CONS=3 .00 (.00) .01 (.00) .01 (.00) 

  CONS=1 .00 (.00) .01 (.00) .01 (.00) 

NEUS=3 NEUA=2 CONS=2 .00 (.00) .02 (.00) .01 (.00) 

  CONS=3 .00 (.00) .00 (.00) .04 (.00) 

  CONS=1 .01 (.00) .04 (.00) .01 (.01) 

 NEUA=3 CONS=2 .02 (.00) .02 (.00) .02 (.01) 

  CONS=3 .00 (.00) .01 (.00) .06 (.01) 

Note. Entries in bold type depict expected proportions that deviate from the predictions 
based on the marginals by more than one decimal. Entries in parentheses represent the 
product of the latent marginals. 

 

 

The log-linear parameters cannot be soundly estimated in LEM and thus these 

parameters cannot be interpreted in terms of over- or underrepresentations for particular 
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latent cells of the joint distribution. Calculating the odds and odds ratios in order to inspect 

if latent quadrivariate or trivariate cells are over- or underrepresented does not solve the 

problem because divisions by 0 occur (this is a necessary consequence of boundary 

solutions). However, the latent joint distribution can be heuristically examined revealing 

expected proportions that are more frequently expected than given the product of their 

latent marginals. Expected proportions that differ to an extent of 2% or more from the 

product of their marginals (depicted in parentheses) are printed in bold type. This 

inspection of the expected cell proportions can only be heuristic compared to an inspection 

of (not available) properly estimated log-linear parameters and their standard errors. The 

log-linear parameters could be used to identify effects and their impact on the latent joint 

distribution and to test them statistically.  

In total 22 bold typed entries can be found in Table 6.3.2. That is, in 22 out of 81 

cells comparably high expected proportions can be found. In a first step, cells indicating 

overall agreement ( ). . .
. . .ˆ , with  and NEUS NEUA CONS CONA

ns na cs ca ns na cs caπ = =  will be considered. These 

9 cells are principally expected more often than could be predicted by the product of their 

latent marginals. About 26% of the latent ratings can be found on the overall agreement 

diagonal. 6 out of the 9 cells are printed in bold type. That is, there is considerable 

agreement on both constructs at the same time. This agreement more often occurs for cell 

combinations with high conscientious ( )3cs ca= =  individuals being either sensitive but 

stable ( )2ns na= = or highly neurotic ( )3ns na= = . 18% out of the 26% of agreement 

can be found in these cells (that is, 69% of the overall agreement cells fall into these 

combinations).  

Raters may also agree with respect to one construct but disagree with respect to the 

other one (partial agreement). Raters agree 27% of the time on their ratings for 

conscientiousness when they disagree with respect to neuroticism. This leads to an overall 

agreement on conscientiousness of 53% (for the complete table). 7 cells indicating partial 

agreement on conscientiousness differ to an extent of 2% or more from the product of their 

latent marginals. The main proportion of the agreements on conscientiousness can be 

found for moderately or highly conscientious individuals. Peers seem to have difficulties 

judging a not conscientious individual congruently with the self-rater on this trait. With 

respect to the self-raters as reference raters the peer rating is biased for not conscientious 

individuals. 
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For the latent construct of neuroticism raters agree 50% of the time in total. About 

half of the time, they agree with respect to neuroticism they also agree with respect to 

conscientiousness (26%, see above). Agreement on neuroticism is higher for individuals 

being sensitive but stable or highly neurotic. 79% (19% of 24%) of the partial agreement 

fall into these cells. 6 cells indicating partial agreement on neuroticism differ to an extent 

of 2% or more from the product of their latent marginals. Agreement on neuroticism can 

be found to a greater extent for higher scores on this variable (being neurotic or sensitive 

but stable). This finding is in line with other findings that traited individuals can be more 

congruently rated (see Baumeister & Tice, 1988; Funder, 1995 for an overview).  

Disagreement cells do not differ to a large extent from what is predicted by the 

product of their latent marginals. The only combinations that are more frequently expected 

are cells for the combinations of being sensitive but stable in the self-report ( )2ns=  and 

highly neurotic in the peer report ( )3na =  with being moderately conscientious rated by 

the self- or peer rater ( )3 3cs ca= ∨ =  and / or moderately conscientious by the self- or 

peer rater ( )2 2cs ca= ∨ = .  

Peer raters who agree with the targets that the targets are highly neurotic do not 

agree with them if targets indicate not to be conscientious but judge them to be moderately 

conscientious. The same is true for agreement on being sensitive but stable. In this case, 

self-ratings indicating not to be conscientious are associated to a high peer-perceived level 

of conscientiousness( ). . .
2.2.1.3ˆ .02NEUS NEUA CONS CONAπ = . Conscientiousness and neuroticism seem 

to be related for moderate or high scores on neuroticism at least in the peer view.  

It is important to note, that these analyses are carried out by inspecting the table of 

expected frequencies consisting of 81 cells. Much better information could be gained by an 

inspection of log-linear parameters which identify the underlying effects of the different 

expected proportions. The high overall agreement rate implies that there is an association 

between agreement on one construct and agreement on the other construct, but without a 

statistical test it remains unclear if the corresponding overrepresentation is due to a four-

variable effect, emerges from lower order effects, or even is a random association. The 

same is true for the associations concerning the disagreement cells. A comparison of the 

quadrivariate latent joint distribution to the one implied by the model with 2nd order 

interactions as interactions of highest order may (heuristically) give more insight into the 

question if 3rd order interaction are present. 



Correlated Traits Multitrait-Multirater Model 175

 
 

6.3.1.2 Results of the CT MTMR model with three-variable interactions as highest 

order interactions for structurally different raters 

 

Table 6.3.3 depicts the quadrivariate latent joint distribution of the latent trait variables for 

neuroticism and conscientiousness rated by a self-rater and peer rater A. The model 

equation for the population is:  

 

. . . .

. . . . . .
. . . . . .

. . . .
. . . . .

na nb ca cb

NEUS NEUA CONS CONA
ns na cs ca

NEUS NEUA NEUS CONS NEUS CONA NEUA CONS NEUA CONACONS CONA
ns na ns cs ns ca na cs na ca cs ca

NEUS NEUA CONS NEUS NEUA CONA
ns na cs ns na ca ns cs

e = ηΤ Τ Τ Τ

×τ τ τ τ

×τ τ τ τ τ τ

×τ τ τ

abcd a b c d

. . . .
. . .

NEUS CONS CONA NEUA CONS CONA
ca na cs caτ

,  (6.3.2) 

 

with ns and na representing the latent categories of the latent trait variables NEUS and  

NEUA for self-rated (S) and peer rated neuroticism and cs and ca representing the latent 

categories of the latent trait variables CONS and  CONA for self-rated (S) and peer rated 

(A) conscientiousness. Expected proportions that differ to an extent of 2% or more from 

the product of their marginals (depicted in parentheses) are printed in bold type. 

In total 20 bold typed entries can be found in Table 6.3.3. That is, in 20 out of 81 

cells comparably high expected proportions can be found. The 9 cells indicating overall 

agreement ( ). . .
. . .ˆ , with  and NEUS NEUA CONS CONA

ns na cs ca ns na cs caπ = =  are principally expected more 

often than could be predicted by the product of their latent marginals. About 28% of the 

latent ratings can be found on the overall agreement diagonal. 6 out of the 9 cells are 

printed in bold type. That is, there is considerable agreement on both constructs at the same 

time. This agreement more often occurs for cell combinations with high conscientious 

( )3cs ca= =  individuals being either sensitive but stable ( )2ns na= = or highly neurotic 

( )3ns na= = . 25% out of the 28% of agreement can be found in these cells (that is, 89% 

of the overall agreement cells fall into these combinations).  
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Table 6.3.3  

Cross-classification of the latent categories for neuroticism and conscientiousness in the 

CT MTMR Model with three-variable effects as highest order interactions for structurally 

different raters  

   CONA 

   1 2 3 

  CONS=1 .01 (.00) .02 (.00) .00 (.00) 

 NEUA=1 CONS=2 .03 (.00) .03 (.00) .00 (.00) 

  CONS=3 .00 (.00) .01 (.00) .02 (.00) 

  CONS=1 .00 (.00) .00 (.00) .01 (.00) 

NEUS=1 NEUA=2 CONS=2 .00 (.00) .00 (.00) .01 (.00) 

  CONS=3 .00 (.00) .00 (.00) .04 (.00) 

  CONS=1 .00 (.00) .01 (.00) .00 (.00) 

 NEUA=3 CONS=2 .00 (.00) .01 (.00) .01 (.00) 

  CONS=3 .00 (.00) .00 (.00) .03 (.00) 

  CONS=1 .02 (.00) .02 (.00) .00 (.00) 

 NEUA=1 CONS=2 .00 (.00) .00 (.00) .00 (.00) 

  CONS=3 .00 (.00) .00 (.00) .01 (.00) 

  CONS=1 .01 (.00) .00 (.00) .02 (.00) 

NEUS=2 NEUA=2 CONS=2 .01 (.00) .04 (.00) .02 (.01) 

  CONS=3 .01 (.00) .02 (.00) .07 (.01) 

  CONS=1 .01 (.00) .00 (.00) .00 (.01) 

 NEUA=3 CONS=2 .01 (.00) .01 (.00) .05 (.01) 

  CONS=3 .00 (.00) .01 (.00) .05 (.01) 

  CONS=1 .01 (.00) .02 (.00) .00 (.00) 

 NEUA=1 CONS=2 .01 (.00) .00 (.00) .01 (.00) 

  CONS=3 .01 (.00) .01 (.00) .01 (.00) 

  CONS=1 .00 (.00) .00 (.00) .01 (.00) 

NEUS=3 NEUA=2 CONS=2 .00 (.00) .02 (.00) .01 (.00) 

  CONS=3 .00 (.00) .00 (.00) .04 (.00) 

  CONS=1 .01 (.00) .04 (.01) .01 (.01) 

 NEUA=3 CONS=2 .02 (.00) .03 (.01) .02 (.01) 

  CONS=3 .00 (.00) .01 (.01) .06 (.01) 

Note. Entries in bold type depict expected proportions that deviate from the predictions 
based on the marginals by more than one decimal. Entries in parentheses represent the 
product of the latent marginals. 
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Raters may also agree with respect to one construct but disagree with respect to the 

other one (partial agreement). Raters agree 26% of the time on their ratings for 

conscientiousness when they disagree with respect to neuroticism. This leads to an overall 

agreement on conscientiousness of 54% (for the complete table). 6 cells indicating partial 

agreement on conscientiousness differ to an extent of 2% or more from the product of their 

latent marginals. The main proportion of agreement on conscientiousness can be found for 

moderately or highly conscientious individuals. Peers seem to have difficulties judging a 

not conscientious individual congruently with the self-rater on this trait. With respect to the 

self-raters as reference raters the peer rating is biased for not conscientious individuals. 

For the latent construct of neuroticism raters agree 52% of the time in total. About 

half of the time, they agree with respect to neuroticism they also agree with respect to 

conscientiousness (28% see above). Agreement on neuroticism is higher for individuals 

being sensitive but stable or highly neurotic. 75% (18% of 24%) of the partial agreement 

fall into these cells. 5 cells indicating partial agreement on neuroticism differ to an extent 

of 2% or more from the product of their latent marginals.  

Disagreement cells do not differ to a large extent from what is predicted by the 

product of their latent marginals. The only combination that is more frequently expected 

are cells for the combinations of being not conscientious in the self-report (cs = 1) and 

moderately conscientious in peer report A (ca = 2) for targets that have been judged not 

neurotic by A for all statuses of self-reported neuroticism. Additionally, there principally is 

agreement between self- and peer raters concerning low conscientiousness. Therefore, one 

may conclude that peers deviate from the self-reported score on conscientiousness for low 

self-rated conscientious individuals if peers perceive the target person as not neurotic.  

Peer raters who agree with the targets that the targets are highly neurotic do not 

agree with them if targets indicate not to be conscientious but judge them to be moderately 

conscientious ( ). . .
3.3.1.2ˆ =.04NEUS NEUA CONS CONAπ . The same is true for agreement on being sensitive 

but stable, in this case, self-ratings indicating not to be conscientious are associated to a 

high peer perceived level of conscientiousness ( ). . .
2.2.1.3ˆ =.02NEUS NEUA CONS CONAπ . 

Conscientiousness and neuroticism seem to be related for moderate or high scores on 

neuroticism at least in the peer view.  

It is important to emphasize that these interpretations have been carried out relying 

on expected proportions and not on the comparison of log-linear effects with 
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corresponding standard errors. Therefore, all interpretations can only be considered 

illustrative. 

 

 

6.3.1.3 Results of the CT MTMR model with two-variable effects as highest order 

interactions for structurally different raters 

 

Table 6.3.4 depicts the quadrivariate latent joint distribution of the cross classification of 

the latent variables representing neuroticism and conscientiousness rated by a self-rater and 

peer rater A. The model equation for the population is:  

 

. . . .

. . . . . .
. . . . . .

na nb ca cb

NEUS NEUA CONS CONA
ns na cs ca

NEUS NEUA NEUS CONS NEUS CONA NEUA CONS NEUA CONACONS CONA
ns na ns cs ns ca na cs na ca cs ca

e = ηΤ Τ Τ Τ

×τ τ τ τ

×τ τ τ τ τ τ

abcd a b c d

,  (6.3.3) 

 

with ns and na representing the latent categories of the latent trait variables NEUS and  

NEUA for self-rated (S) and peer rated (A) neuroticism and cs and ca representing the 

latent categories of the latent trait variables CONS and  CONA for self-rated (S) and peer 

rated (A) conscientiousness. 

In contrast to the two previously described models, the log-linear parameters of the 

model with only two-variable interactions can be interpreted. However, in order to make 

the interpretation of the model comparable to the other models (and to the model for 

interchangeable raters, see below) the expected proportions are presented, the log-linear 

parameters are presented in Appendix E. The interpretation of these parameters 

corresponds to the conclusion drawn from the expected proportions (and is, therefore, 

redundant). Since the boundary values afflicting the log-linear parameters cannot be 

considered a priori model parameters the z-values provided by LEM cannot be interpreted 

(see Galindo-Garre & Vermunt, 2004, 2005, 2006).  
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Table 6.3.4  

Cross-classification of the latent categories for neuroticism and conscientiousness in the 

CT MTMR Model with two-variable effects as highest order  interactions for structurally 

different raters  

   CONA 

   1 2 3 

  CONS=1 .02 (.00) .02 (.00) .00 (.00) 

 NEUA=1 CONS=2 .01 (.00) .02 (.00) .01 (.00) 

  CONS=3 .00 (.00) .01 (.00) .02 (.00) 

  CONS=1 .00 (.00) .01 (.00) .01 (.00) 

NEUS=1 NEUA=2 CONS=2 .00 (.00) .01 (.00) .02 (.00) 

  CONS=3 .00 (.00) .00 (.00) .04 (.00) 

  CONS=1 .00 (.00) .00 (.00) .00 (.00) 

 NEUA=3 CONS=2 .00 (.00) .01 (.00) .01 (.00) 

  CONS=3 .00 (.00) .00 (.00) .01 (.00) 

  CONS=1 .01 (.00) .01 (.00) .00 (.00) 

 NEUA=1 CONS=2 .01 (.00) .01 (.00) .00 (.00) 

  CONS=3 .00 (.00) .01 (.00) .01 (.00) 

  CONS=1 .01 (.00) .01 (.00) .01 (.00) 

NEUS=2 NEUA=2 CONS=2 .01 (.00) .02 (.00) .04 (.01) 

  CONS=3 .00 (.00) .01 (.00) .09 (.01) 

  CONS=1 .01 (.00) .01 (.00) .01 (.00) 

 NEUA=3 CONS=2 .01 (.00) .02 (.00) .02 (.00) 

  CONS=3 .00 (.00) .01 (.00) .05 (.01) 

  CONS=1 .01 (.00) .02 (.00) .00 (.00) 

 NEUA=1 CONS=2 .01 (.00) .01 (.00) .00 (.00) 

  CONS=3 .00 (.00) .01 (.00) .01 (.00) 

  CONS=1 .00 (.00) .01 (.00) .01 (.00) 

NEUS=3 NEUA=2 CONS=2 .00 (.00) .01 (.00) .02 (.00) 

  CONS=3 .00 (.00) .01 (.00) .04 (.00) 

  CONS=1 .01 (.00) .02 (.00) .01 (.00) 

 NEUA=3 CONS=2 .01 (.00) .03 (.00) .02 (.00) 

  CONS=3 .00 (.00) .01 (.00) .05 (.00) 

Note. Entries in bold type depict expected proportions that deviate from the predictions 

based on the marginals by more than one decimal. Entries in parentheses represent the 

product of the latent marginals. 
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Table 6.3.4 depicts the expected proportions of the quadrivariate latent joint 

distribution. As before, expected cell proportions that differ for at least 2% from the 

product of the latent marginals are depicted in bold type. In total the entries of 19 cells are 

bold typed. 7 out of these 19 represent overall agreement. 8 cells represent partial 

agreement and 4 represent total disagreement. The reduction in the number of expected 

proportions that deviate from the product of their marginals can be explained by the more 

restrictive form of this model. The interplay between the latent variables is much more 

restricted than in the models presented before.  

Overall agreement cells comprise about 27% of the sample, the highest entries can 

be found for the agreement combinations of highly conscientious with either sensitive but 

stable or neurotic personality types (14% of all entries fall into these two joint categories). 

The agreement rates are principally higher for individuals who are at least moderately 

conscientious and at least sensitive but stable.  

Partial agreement for conscientiousness (26%) can mostly be found for highly 

conscientious individuals (16% of the joint judgments). For neuroticism a similar pattern 

can be found 15% out of the 20% of the partial agreement can be found for sensitive but 

stable or neurotic individuals. Overall, the heuristic analyses inspecting the expected 

proportions do not differ between the three models (with different levels of interactions). 

A more thorough insight into the interplay of the four latent variables can be gained 

inspecting the bivariate latent distributions. In non-saturated hierarchical models, the joint 

distributions of the variables corresponding to the highest order interactions are exactly 

reproduced.  

Table 6.3.5 presents the latent rater agreement sub-model for neuroticism. In order 

to compare the two model implied latent marginal distributions with each other, the 

method bias type I can be determined: 

 

( 1. 1)

( 2. 2)

( 3. 3)

.25
1 1.00

.25
1 1.03

1 0.98

ns na

ns na

ns na

MB

MB

MB

= =

= =

= =

= =

=

=

.        (6.3.4) 

 

This index shows that the two raters yield ratings with almost perfectly the same 

prevalence rates. This is a prerequisite for high agreement (see Zwick, 1988).  
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Table 6.3.5 

Cross-classification of expected proportions for the latent variables representing 

neuroticism  

  NEUA   

 1 2 3  

ns = 1 .12 (.06) .09 (.10) .04 (.09) .25 

ns = 2 .06 (.11) .22 (.17) .14 (.14) .42 

ns = 3 .07 (.08) .10 (.14) .16 (11) .33 

 .25 .41 .34  

Note. Values in parentheses represent the product of the latent marginals.  

 

 

Inspecting the cells on the main diagonal shows considerable agreement. The 

category-specific agreement rates are in the range of 1.27 to 1.92 (see Table 6.3.6) with the 

highest value for the latent cell combination of not being neurotic. This finding could not 

be expected with respect to the quadrivariate latent distribution. However, due to the very 

small expected proportions in this cell, even small absolute agreement rates will produce 

large effects. These effects are comparable to the monotrait-heteromethod effects sensu 

Campbell and Fiske (1959). .24κ =  indicates a relatively low agreement between the 

raters.  

 

Table 6.3.6 

Distinguishability index and category-specific agreement rates for neuroticism  

  NEUA  

 1 2 3 

ns = 1 1.92 0.88 0.47 

ns = 2 0.57 1.27 0.99 

ns = 3 0.86 0.75 1.40 
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The inspection of the disagreement cells besides the main diagonal also shows an 

interesting pattern. Table 6.3.5 depicts their expected proportions and the expected values 

given the latent marginals. All but one cell [2 1] show lower expected proportions than 

would be expected based on the latent marginals. The distinguishability indices in Table 

6.3.6 reflect this finding in a standardized way: 

 

 ( )

.
.

.

X Y
x y

x y X Y
x y

Dist
π

=
π π

, for x y≠ .      (5.1.3, repeated) 

 

It can be seen that the cell combinations [2 1] and [1 3] are only about half as often 

expected as predicted by the marginals. Self-rated not neurotic individuals are rarely 

judged to be neurotic by the peer rater ( )( )1.3 0.47Dist = . In the same vain, sensitive but 

stable self-rated individuals are less often rated not neurotic ( )( )2.1 0.57Dist = . Peers 

obviously perceive if individuals are sensitive (self-rated). They also do not overestimate 

the self-rated neuroticism score producing no overestimation for the combination of 

sensitive but stable for the self-report and neurotic for the peer report ( )( )2.3 0.99Dist = , 

however, peers also do not distinguish between these categories. All other 

distinguishability indices show that self- and peer raters show lower disagreement, yet, 

they do not differ vastly from the product of the latent marginals (absolutely and 

relatively). Self-raters and peers discriminate fairly well between the different categories of 

neuroticism. 
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Table 6.3.7 

Cross-classification of expected proportions for the latent variables representing 

conscientiousness  

  CONA   

 1 2 3  

cs = 1 .08 (.04) .10 (.07) .06 (.12) .24 

cs = 2 .07 (.06) .14 (.11) .15 (.18) .35 

cs = 3 .02 (.07) .07 (.13) .32 (.21) .41 

 .17 .31 .52  

Note. Values in parentheses represent the product of the latent marginals. 

 

 

Table 6.3.7 depicts the latent bivariate distribution of the latent variables 

representing conscientiousness. Calculating the method bias type I coefficient: 

 

( 1. 1)

( 2. 2)

( 3. 3)

1 1.41

1 1.13

1 0.79

cs ca

cs ca

cs ca

MB
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,        (6.3.5) 

 

reveals that self- and peer raters deviate considerably in their latent marginals. Peers rate 

the targets in more than half of the times as highly conscientious (1.27 times more often 

than the self-raters). Self-raters choose the lower categories more often. This finding may 

be due to the fact that the targets are almost exclusively students. In order to successfully 

complete one’s studies a specific level of conscientiousness is required, peers may attribute 

the fact that targets complete their work as students to their personality whereas the self-

raters may compare themselves to others and do not perceive themselves as conscientious. 

Moreover, they know about their own possible difficulties in completing the work (e.g., 

procrastination) and therefore rate themselves lower on conscientiousness. In terms of the 

rater accuracy model (Funder, 1995), one might conclude that better (more diverse) 

information is needed for the peer raters to achieve higher agreement rates.  

The entries on the main diagonal also show agreement of the two raters with 

respect to conscientiousness (high convergent validity). The category-specific agreement 
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rates (depicted on the main diagonal of Table 6.3.8) indicate that the overrepresentation is 

in the range of 1.25 to 2.03. Again the overrepresentation for the lowest category is 

highest. .28κ =  indicates relatively low overall agreement.  

Disagreement is higher for the cell combinations of moderately conscientious and 

not conscientious in both ways. That is, self- and peer raters confound these categories to 

some extent. However, for the disagreement cells with highly conscientious ratings there is 

no confusion at all. Being highly conscientious on either rating prevents from being 

classified as moderately or not conscientious. Traited individuals (in the sense of having a 

high score on a trait) can thus be rated without confusion (Baumeister & Tice, 1988). For 

conscientiousness, self- and peer raters discriminate well for traited individuals and poorly 

for moderately and low traited individuals. 

The pattern of disagreement differs from what has been found for neuroticism. If 

targets are not traited this leads to some confusion for conscientiousness, if they are traited 

this leads to less confusion and higher agreement for conscientiousness. Agreement is 

principally higher for neuroticism but there is no confusion for individuals being not 

neurotic. This illustrates that moderators of agreement (Funder, 1995) may have 

differential impacts with respect to the trait under consideration.  

 

Table 6.3.8 

Distinguishability index and category-specific agreement rates for conscientiousness  

  CONA  

 1 2 3 

cs = 1 2.03 1.37 0.44 

cs = 2 1.12 1.25 0.81 

cs = 3 0.30 0.56 1.49 
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Table 6.3.9 

Cross-classification of expected proportions for the latent variables originating in the self-

report  

  CONS   

 1 2 3  

ns = 1 .08 (.07) .09 (.09) .09 (.11) .26 

ns = 2 .08 (.11) .16 (.15) .18 (.17) .42 

ns = 3 .10 (.08) .10 (.12) .13 (.14) .33 

 .25 .35 .41  

Note. Values in parentheses represent the product of the latent marginals. 

 

 

Table 6.3.9 depicts the latent joint classification of the trait variables originating in 

the self-report. Obviously, there is little deviation from the expected proportions and the 

product of the latent marginals. This indicates that the self-raters distinguish well between 

the two latent traits. For self-raters, these traits are not associated (see also Section 4.1.4). 

This indicates almost perfect discriminant validity sensu Campbell and Fiske (1959).  

 

 

Table 6.3.10 

Cross-classification of expected proportions for the latent variables originating in the peer 

report  

  CONA   

 1 2 3  

na = 1 .08 (.04) .10 (.08) .07 (.13) .25 

na = 2 .03 (.07) .10 (.13) .28 (.21) .41 

na = 3 .05 (.06) .12 (.11) .18 (.18) .34 

 .17 .31 .52  

Note. Values in parentheses represent the product of the latent marginals. 
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Table 6.3.10 presents the cross-classification of the latent trait variables originating 

in the peer report. Peers perceive the two constructs as related rating other individuals. To 

their mind the combination of not being neurotic and highly conscientious appears less 

often than predicted based on the marginals. Peers rather tend to choose the 1st categories 

on both variables. Additionally, they perceive sensitive but stable individuals as highly 

conscientious and less frequently as not conscientious or moderately conscientious. 

Therefore, one may conclude that there is a lack of discriminant validity with respect to 

these two traits for peer ratings. However, this lack only concerns particular categories and 

does not generalize across all possible constellations because the other combinations do 

not deviate to a great extent from the product of their marginals. It would be interesting to 

examine if this peer-specific view is linked to a naïve theory on which categories can be 

related or if this is due to a misinterpretation or detection of behavioral cues leading peers 

to show associated ratings of neuroticism and conscientiousness. These are question 

related to the rater accuracy model (Funder, 1995). 

 

Table 6.3.11 

Cross-classification of expected proportions for neuroticism originating in the self-report 

and conscientiousness originating in the peer report  

  CONA   

 1 2 3  

ns = 1 .05 (.04) .07 (.08) .12 (.13) .25 

ns = 2 .07 (.07) .12 (.13) .24 (.21) .42 

ns = 3 .05 (.06) .12 (.11) .16 (.17) .33 

 .17 .31 .52  

Note. Values in parentheses represent the product of the latent marginals. 

 

 

Table 6.3.11 depicts the latent cross-classification of the self-rated neuroticism-

scores and the peer rated conscientiousness-scores. There is virtually no deviation from the 

product of the latent marginals. Self- and peer ratings of the different traits are completely 

distinct from each other. This indicates high discriminant validity across raters. If one 
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considers the self-rating as a better approximation of the truth peers do not erroneously 

interpret neurotic behaviors as conscientious.  

 

Table 6.3.12 

Cross-classification of expected proportions for neuroticism originating in the peer and 

conscientiousness originating in the self-report 

  CONS   

 1 2 3  

na = 1 .09 (.06) .09 (.09) .07 (.10) .25 

na = 2 .08 (.10) .14 (.14) .20 (.17) .41 

na = 3 .07 (.09) .13 (.12) .19 (.14) .34 

 .24 .35 .41  

Note. Values in parentheses represent the product of the latent marginals. 

 

 

Table 6.3.12 presents the latent cross-classification of the peer rated neuroticism-

scores and the self-rated conscientiousness-scores. The two latent trait variables (NEUA 

and CONS) are associated to a stronger degree than the previously presented trait variables. 

If self-raters perceive themselves as highly conscientious peers do no longer tend to judge 

them not neurotic but choose the middle and high category of neuroticism. That is, high 

conscientiousness is slightly confounded with neuroticism in the peer view if one considers 

the self-rater as better raters than the peers. 

 

Table 6.3.13 

Method bias type II for the self-report  

  CONS  

 1 2 3 

ns = 1 –– 1.07 –– 

ns = 2 1.21 1.26 0.85 

ns = 3 1.62 0.84 0.75 

Note. –– indicates that MB2 is meaningless in this cell.  
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Considering that no rater is outstanding with respect to the other rater allows 

determining the method bias type II as in Definition 6.1.2: 

 

.
.

. . .
. .

ˆ
2

ˆ ˆ

NEUS CONS
ns cs

ns cs NEUS CONA NEUA CONS
ns ca na cs

MB
π

π π
= .      (6.3.6) 

 

Tables 6.3.13 and 6.3.14 present the method bias type II parameters. Empty cells indicate 

indices that are meaningless since the monomethod association is in the range of the two 

heteromethod associations. The method bias type II for equally good raters is presented in 

order to have the more general presentation. If one rater is considered to be a better rater 

than the other one the method bias type II coefficient of Definition 6.1.3 can be calculated. 

Table 6.3.13 reveals that self-raters tend to rate themselves as highly neurotic but not 

conscientious, sensitive but stable (middle category) but not conscientious, and sensitive 

but stable and moderately conscientious more often than on average.  

The self-raters conceive themselves less frequently as highly neurotic combined 

with highly conscientious or moderately conscientious than predicted by the average 

ratings. The same is true for sensitive but stable individuals who perceive themselves not 

as often as highly conscientious as predicted by the joint ratings.  

 

Table 6.3.14 

Method bias type II for the peer report  

  CONA  

 1 2 3 

na = 1 – 1.26 0.70 

na = 2 0.48 0.75 1.29 

na = 3 0.80 0.94 –– 

Note. –– indicates that MB2 is meaningless in this cell.  

 

 

A completely different picture is given by Table 6.3.14 for the bias of peer ratings. 

The combinations of not neurotic and not conscientious as well as highly neurotic and 
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highly conscientious are not biased with respect to the joint ratings. A positive bias 

(overrepresentation) can be found for the combinations of not neurotic and moderately 

conscientious and sensitive but stable (middle category) and highly neurotic. All other cells 

are less frequently expected than predicted by the joint ratings. Peers do not associate low 

conscientiousness to the latent statuses being sensitive but stable or neurotic as expected by 

the average association. The same is true for the combination of not neurotic and highly 

conscientious.  

Self-raters and peers thus differ with respect to the cells that are over- or 

underrepresented in the cross-classification of their latent variables. Peers perceive the 

targets principally as more conscientious (see method bias type I) than do self-raters. 

Additionally, they show larger expected frequencies for two particular cell-combinations 

of the latent traits. That is, sensitive but stable individuals (middle category) are rated more 

often as highly conscientious compared to the self-ratings and not neurotic individuals are 

rated more often as moderately conscientious. These combinations are not overrepresented 

in the self-report. Therefore, these coefficients reflect a view that is specific to the peer 

raters. In the same vain, the peers show underrepresentations of the cells for not 

conscientious ratings and sensitive but stable (middle category) and neurotic individuals. 

Again, this underrepresentation is specific to the view of peers because self-raters show 

overrepresented ratings for these categories. The two raters also differ with respect of their 

views concerning the association of targets being moderately conscientious and sensitive 

but stable. While self-raters choose this category combination more often than could be 

expected relying on the bias-free associations (between raters) peers tend to underestimate 

this association.  

 

 

6.3.1.4 Summary of the findings for the CT MTMR models for structurally different 

raters  

 

The applications of the CT MTMR model showed (as expected) that the estimation of 

complex models with several latent variables is a tedious task and computational very 

demanding. The models with higher-order interactions yield many boundary values and 

aberrant parameter estimates. A possible remedy for this problem could emerge from 

newly developed estimation algorithms shortly mentioned in Section 4.1.2. However, to 



Correlated Traits Multitrait-Multirater Model 190

date these procedures cannot be used in conjunction with the complex models I developed 

for structurally different raters. Therefore, the models with four- and three-variable 

interactions as highest order effects can only heuristically be analyzed.  

Yet, the model with two-variable interactions as highest order effects yields 

(relatively) sound parameter estimates which allow for analyzing the latent bivariate 

relationships. An inspection of the log-linear parameters is redundant (see Appendix E) 

concerning the associations of the variables and does not provide information about the 

significance of model parameters because boundary solutions were encountered preventing 

from inspecting the significance of the effects (Galindo-Garre & Vermunt, 2004, 2005, 

2006).  

The analysis of the model with two-variable interactions as highest order effects 

showed some interesting results with respect to the convergent and discriminant validity, 

method bias, and accuracy of the different raters. There is a considerable overall agreement 

rate showing that in about 1 out of 4 cases self- and peer raters agree with respect to both 

constructs. Inspecting the expected proportions may lead to the conclusion that agreement 

is highest for cell combinations of highly conscientious and sensitive but stable and 

neurotic individuals. The partial agreement rates also show that self- and peer raters agree 

more often for individuals classified in one of the above mentioned categories. These 

findings are in line with the findings for the CT MTMR models with four- and three-

variable interactions.  

Since the CT MTMR model with two-variable interactions is a hierarchical model 

it “reproduces” the latent bivariate joint distributions allowing for a direct interpretation of 

the expected bivariate proportions and the latent one-variable marginals. The method bias 

type I reveals if the latent marginal distributions differ from each other. This is not the case 

for neuroticism but for conscientiousness. Peers overestimate the conscientiousness with 

respect to the self-ratings.  

The category-specific agreement rates can be calculated to identify the 

overrepresentation in the cells on the (agreement) main diagonals. There is agreement for 

all cells on the two bivariate main diagonals (for neuroticism and conscientiousness). In 

the model with two-variable interactions as highest order interactions, these effects are the 

same in all subtables given the categories of the other variables (no four- and three-

variable interactions). The category-specific agreement rates show that there is a much 

higher agreement for the combinations of the lowest categories for both traits. However, 

this does not imply that these rates are absolutely very high but high with respect to what 
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can be expected knowing the marginals. If there were a possibility to estimate the saturated 

model with correct standard errors one might inspect the corresponding log-linear effects 

to judge the ratio of agreement more exactly (note that these effects will differ from 

subtable to subtable if the higher order effects are present).  

The distinguishability index reveals in a similar manner as the category-specific 

agreement rates if disagreement cells are over- or underrepresented. This index can be used 

to detect sources of disagreement. For conscientiousness this index revealed, for example, 

that self- and peer raters confound the first two categories (lack of distinguishability). All 

other categories can be relatively well distinguished from each other for the two traits 

(except for the combination of sensitive but stable in the self-report and neurotic in the 

peer report, which has an expected proportion as predicted by chance). This finding (if 

replicated and soundly estimated) might serve as a starting point to investigate the decision 

making process concerning these categories in more depth.  

The cross-classification of trait-variables belonging to the same method 

(heterotrait-monomethod associations) showed that there are virtually no associations for 

the self-report. However, the peer ratings were associated to some degree revealing that 

their view about personality types (combinations of latent categories) differs from the self-

raters' view. Comparing these associations (for both raters) to the average association of 

the across raters (heterotrait-heteromethod) association yields the method bias type II. This 

index shows that self- and peer raters differ with respect to the categories of the two traits 

they choose. If the self-rating is considered to be a better approximation of the “true-

scores” on the two trait variables a comparison of the peer reported classifications to the 

self-rated classification could be used as method bias type II index.  

The two tables representing the heterotrait-heteromethod associations (Table 6.3.11 

and 6.3.12) indicate the rater bias free associations between the two traits. These 

associations are rather weak indicating high discriminant validity. The only cell 

combination that is constantly slightly overrepresented is the combination of sensitive but 

stable (middle category) and highly neurotic.  

In sum, I conclude that the CT MTMR model could be used to detect category-

specific sources of convergence, category-specific lack of discriminant validity as well as 

distinguishability, allows for a comparison of within raters associations across traits to 

estimate the rater-specific biases, and (theoretically) to examine if higher agreement rates 

are due to two-, three-, and / or four-variable effects, that is, if there are moderators of 

agreement (convergent validity). These pieces of information go far beyond the pieces of 
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information researchers can retrieve of the models presented in Section 2 and of the latent 

rater agreement models. However, since there is no sound estimation procedure yet, the 

interpretation of all model parameters must remain heuristic. 

 

 

6.3.2 Applications of the CT MTMR Models for Interchangeable Raters 
 

The applications of the CT MTMR models for interchangeable raters suffer from some 

specific problems in the estimation algorithm implemented in LEM. LEM is known to bug 

for large models with more than 150 parameters and to sometimes produce incorrect 

results when equality restrictions are implemented in the model definition20. These two 

points account for the saturated models with four-variable interactions as highest order 

effects. Dropping the four-variable interaction does not remedy the problem although in 

this case the number of parameters is reduced from 164 to 130. Neither the log-linear 

parameters nor the expected cell proportions could be estimated according to the model 

definition. This makes clear that new estimation methods and more advanced programs are 

needed to soundly estimate the models.  

 

 
 

 

6.3.2.1 Results of the CT MTMR model with two-variable effects as highest order 

effects for interchangeable raters 

 

The goodness-of-fit indices for the model with two-variable interactions as highest order 

interactions show divergent results for the different 2χ -values. The Pearson 2χ -value 

indicates bad fit to the data ( )2=133083603.94 ; 43046642; .00df pχ = = , the likelihood-

ratio based 2χ -value indicates perfect fit to the data 

( )2=133083603.94 ; 43046642; 1.00L df p= = . Unfortunately, the bootstrap DOS-routine 

does not work due to memory restrictions. The AIC and BIC indices 

( )86086640; 265574380AIC BIC= − = −  may serve for model comparison but are 

meaningless in themselves to assess the goodness-of-fit. The 78 log-linear parameters 
                                            
20 http://spitswww.uvt.nl/web/fsw/mto/lem/lembugs.txt 
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suffer from 12 boundary solutions. Moreover, the model estimation did not work relying 

on the effect coding scheme but had to be carried out using dummy coding (see Appendix 

E). Therefore, the log-linear parameters cannot be interpreted as in the model definition. 

Among others Hagenaars (1990) explains how to interpret dummy-coded log-linear 

parameters. However, the expected proportions can be interpreted as before.  

Tables 6.3.15 and 6.3.16 depict the conditional response probabilities for 

neuroticism and conscientiousness implied by the CT MTMR model with two-variable 

effects as highest order interactions for interchangeable raters. The model equation for the 

population is:  

 

. . . .

. . . . . .
. . . . . .

. . . .
. . . . .

na nb ca cb

NEUA NEUB CONA CONB
na nb ca cb

NEUA NEUB NEUA CONA NEUA CONB NEUB CONA NEUB CONBCONA CONB
na nb na ca na cb nb ca nb cb ca cb

NEUA NEUB CONA NEUA NEUB CONB
na nb ca na nb cb na ca

e = ηΤ Τ Τ Τ

×τ τ τ τ

×τ τ τ τ τ τ

×τ τ τ

abcd a b c d

. . . .
. . .

. . .
. . .

NEUA CONA CONB NEUB CONA CONB
cb nb ca cb

NEUA NEUB CONA CONB
na nb ca cb

τ

×τ

,  (6.3.7) 

 

with na and nb representing the different categories of the latent trait variables NEUA and 

NEUB (neuroticism rated by peer A or peer B) as well as ca and cb representing the 

different categories of the latent trait variables CONA and CONB (conscientiousness rated 

by peer A or peer B). , , ,  and Τ Τ Τ Τa b c d  represent the measurement models of the four 

different TMUs. 
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Table 6.3.15 

Conditional response probabilities for neuroticism in the CT MTMR model with two-

variable effects as highest order interactions for interchangeable raters  

  latent variable 

Variable 
manifest 

categories 
na = nb = 1 na = nb = 2 na = nb = 3 

I / Q (vulnerable) 

1 .51 .01 .03 

2 .42 .45 .03 

3 .07 .54 .94 

J / R (sensitive) 

1 .63 .09 .04 

2 .33 .57 .06 

3 .04 .34 .90 

K / S (moody) 

1 .71 .68 .33 

2 .20 .24 .29 

3 .09 .08 .38 

L / T (doubtful) 

1 .72 .48 .22 

2 .19 .33 .27 

3 .10 .19 .51 

 

 
The conditional response probabilities are restricted to be identical across raters 

within traits according to the implications for interchangeable raters. Empirically, they do 

not deviate from the conditional response probabilities found for the previously presented 

models with interchangeable peer raters (see Section 6.2) and for the conditional response 

probabilities found for peer ratings (A) in models with structurally different raters. 

Therefore, I do not repeat the detailed analyses here. The same implications hold with 

respect to the latent variables. That is, the three categories of neuroticism are not neurotic 

targets, sensitive but stable targets (middle category), and neurotic targets. The three 

categories for conscientiousness range from low to moderately and highly conscientious.  
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Table 6.3.16 

Conditional response probabilities for conscientiousness in the CT MTMR model with two-

variable effects as highest order interactions for interchangeable raters 

  latent variable 

Variable 
manifest 

categories 
ca = cb =1 ca = cb =2 ca = cb =3 

M / U (industrious) 

1 .84 .07 .00 

2 .15 .72 .04 

3 .01 .21 .96 

N / V (diligent) 

1 .93 .08 .00 

2 .05 .79 .04 

3 .02 .12 .96 

O / W (dutiful) 

1 .49 .09 .01 

2 .34 .41 .07 

3 .18 .51 .92 

P/ X (ambitious) 

1 .51 .01 .03 

2 .42 .45 .03 

3 .07 .54 .94 

 
 

Table 6.3.17 depicts the quadrivariate latent joint distribution. As before, cell 

entries that deviate for at least 2% from the product of their latent marginals are printed in 

bold type. All of the bold entries are either cells representing total agreement or partial 

agreement.  
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Table 6.3.17  

Cross-classification of the latent categories for neuroticism and conscientiousness in the 

CT MTMR Model with two-variable effects as highest order interactions for 

interchangeable raters  

   CONB 

   1 2 3 

  CONA=1 .03 (.00) .02 (.00) .01 (.00) 

 NEUB=1 CONA=2 .02 (.00) .01 (.00) .01 (.00) 

  CONA=3 .01 (.00) .01 (.00) .03 (.00) 

  CONA=1 .00 (.00) .01 (.00) .01 (.00) 

NEUA=1 NEUB=2 CONA=2 .00 (.00) .01 (.00) .01 (.00) 

  CONA=3 .00 (.00) .01 (.00) .04 (.00) 

  CONA=1 .01 (.00) .00 (.00) .00 (.00) 

 NEUB=3 CONA=2 .01 (.00) .01 (.00) .01 (.00) 

  CONA=3 .00 (.00) .00 (.00) .02 (.00) 

  CONA=1 .00 (.00) .00 (.00) .00 (.00) 

 NEUB=1 CONA=2 .01 (.00) .01 (.00) .01 (.00) 

  CONA=3 .01 (.00) .01 (.00) .04 (.00) 

  CONA=1 .00 (.00) .00 (.00) .00 (.00) 

NEUA=2 NEUB=2 CONA=2 .00 (.00) .02 (.00) .02 (.00) 
  CONA=3 .00 (.00) .02 (.00) .10 (.01) 

  CONA=1 .00 (.00) .00 (.00) .00 (.00) 

 NEUB=3 CONA=2 .01 (.00) .01 (.00) .01 (.00) 

  CONA=3 .00 (.00) .01 (.00) .04 (.00) 

  CONA=1 .01 (.00) .01 (.00) .00 (.00) 

 NEUB=1 CONA=2 .00 (.00) .01 (.00) .00 (.00) 

  CONA=3 .00 (.00) .01 (.00) .02 (.00) 

  CONA=1 .00 (.00) .01 (.00) .00 (.00) 

NEUA=3 NEUB=2 CONA=2 .00 (.00) .01 (.00) .01 (.00) 

  CONA=3 .00 (.00) .01 (.00) .04 (.00) 

  CONA=1 .00 (.00) .01 (.00) .00 (.00) 

 NEUB=3 CONA=2 .01 (.00) .04 (.01) .03 (.01) 
  CONA=3 .00 (.00) .03 (.01) .08 (.01) 

Note. Entries in bold type depict expected proportions that deviate from the predictions 

based on the marginals by more than one decimal. Entries in parentheses represent the 

product of the latent marginals. 
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The two peer raters agree with respect to the two constructs (overall agreement) in 

31% of the times. The total rate of agreement is slightly higher than for the self- and peer 

report. The overall agreement is mainly due to agreement on high scores of 

conscientiousness in combination with sensitive but stable or neurotic individuals (18% out 

of the 31% fall into these categories). Partial agreement on conscientiousness (28% in 

total) mainly occurs for highly conscientious individuals (20%). A slightly different picture 

can be found for neuroticism, the two peers agree with respect to the 1st category of 

neuroticism if at least one of the two chooses the 1st category of conscientiousness and the 

other maximally the 2nd category; or if they agree that the target individual is highly 

conscientious. Partial agreement with respect to sensitive but stable targets is only 

estimated to appear in 4% of all times and only for the category combination of moderately 

and highly conscientious ratings. Partial agreement is higher for neurotic individuals 8% of 

the times; it is mostly expected for the same cell combinations as mentioned above. In 

total, the interchangeable peers agree in 59% with respect to conscientiousness and in 51% 

of the times for neuroticism. It seems to be harder to agree on neuroticism than on 

conscientiousness. The analysis of the structurally different raters yielded comparable 

findings.  

Additionally, the two constructs seem to be related since the cell entries are always 

highest for combinations of 2nd or 3rd categories of one construct with 2nd or 3rd categories 

of the other construct. The relatively high cell entries for the latent cell combinations [1 1 1 

1], [1 1 1 2], and [1 1 2 1] also fit into this result.  

As for the model for structurally different raters the complete quadrivariate table 

can be decomposed into its bivariate sub-tables in order to explain all associations. Tables 

6.3.18 to 6.3.24 present the latent bivariate distributions as well as the category-specific 

agreement rates, distinguishability indices, and the method bias type II coefficients.  

Inspecting the expected proportions for neuroticism depicted in Table 6.3.18 

reveals that all cells on the main diagonal are more frequently expected than given their 

latent one-variable marginals. The category-specific agreement rates in Table 6.3.19 

quantify the overrepresentations on the main diagonal. The combinations [1 1] and [3 3] 

are about 1.6 times more frequently expected than predicted based on the marginals and 

the combination [2 2] is around 1.4 times more frequently expected. .27κ =  indicates 

relatively low agreement between the interchangeable raters for neuroticism.  
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Table 6.3.18 

Cross-classification of expected proportions for the latent variables representing 

neuroticism  

  NEUB   

 1 2 3  

na = 1 .13 (.08) .10 (.10) .07 (.10) .29 

na = 2 .10 (.10) .17 (.12) .08 (.13) .35 

na = 3 .07 (.10) .08 (.13) .21 (.13) .36 

 .29 .35 .36  

Note. Values in parentheses represent the product of the latent marginals. 

 

 

The disagreement cells besides the main diagonal reflect an interesting pattern of 

association. There is no reduction in disagreement compared to agreement on chance for 

the cell combinations [1 2] and [2 1]. That is, the peers do not distinguish well between the 

categories not neurotic and sensitive but stable. All other disagreement cells are less 

frequently expected than predicted by chance indicating that peers are able to distinguish 

between these categories (see Table 6.3.19). The distinguishability index shows 

considerably low values for the categories [2 3] and [1 3]. That is, peers can very well 

distinguish if a target is neurotic or not, the other peer does agree and not confound being 

neurotic with another category. 

 

Table 6.3.19 

Distinguishability index and category-specific agreement rates for neuroticism  

  NEUB  

 1 2 3 

na = 1 1.60 1.00 0.70 

na = 2 1.00 1.42 0.62 

na = 3 0.70 0.62 1.62 
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Table 6.3.20 presents the latent bivariate distribution for the two trait variables 

measuring conscientiousness. There is considerable agreement reflected in high 

proportions on the main diagonal. Peers A and B agree 3 times more frequently than 

predicted by the product of the marginals with respect to the first category of 

conscientiousness (category specific agreement rates on the main diagonal). They agree 

about 1.4 times more often than predicted by the marginals with respect to the 2nd and 3rd 

category of conscientiousness. Absolutely, the most entries can be found in the agreement 

cell for high conscientious target persons. 40% of all ratings fall into this category. 

Nevertheless, .32κ =  indicates relatively low overall agreement.  

 

 

Table 6.3.20 

Cross-classification of expected proportions for the latent variables representing 

conscientiousness  

  CONB   

 1 2 3  

ca = 1 .06 (.02) .07 (.05) .03 (.08) .15 

ca = 2 .07 (.05) .14 (.10) .11 (.17) .31 

ca = 3 .03 (.08) .11 (.17) .40 (.29) .54 

 .15 .31 .54  

Note. Values in parentheses represent the product of the latent marginals. 

 

 

Table 6.3.21 

Distinguishability index and category-specific agreement rates for conscientiousness  

  CONB  

 1 2 3 

ca = 1 3.00 1.40 0.38 

ca = 2 1.40 1.40 0.65 

ca = 3 0.38 0.65 1.38 
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Table 6.3.21 depicts the distinguishability and category-specific agreement rates for 

conscientiousness. Peers confound the two lower categories of conscientiousness but can 

well distinguish between the highest and the other two categories of conscientiousness. 

Being traited seems to be a good moderator for agreement ratings of conscientiousness (see 

Funder, 1995).  

Table 6.3.22 presents the latent joint distribution of the trait variables belonging to 

one rater (recall that the parameters are identical for the two raters). This cross-

classification corresponds to the heterotrait-monomethod association sensu Campbell and 

Fiske (1959) for interchangeable raters. The absolutely highest deviations from the 

expected cell proportions from the product of the marginals can be found for the cell 

combinations [1 1], [1 3], and [2 3]. If one peer judges a target to be not neurotic the 

judgment will also more probably be not conscientiousness than predicted by chance and 

in the same vain more probably not highly conscientious. Sensitive but stable rated 

individuals will more probably also be rated to be conscientious than not conscientious. All 

other categories do not show strong deviations from the products of the latent marginals. 

These over- and underrepresentation in the joint distribution (combinations of categories) 

may be due to true associations between the latent constructs but may also be due to rater 

specific effects.  

 

Table 6.3.22 

Cross-classification of expected proportions for the latent variables originating in one 

peer rater  

  CONA   

 1 2 3  

na = 1 .08 (.04) .09 (.09) .11 (.16) .29 

na = 2 .02 (.05) .10 (.11) .23 (.19) .35 

na = 3 .05 (.05) .12 (.11) .19 (.19) .36 

 .15 .31 .54  

Note. The model yields exactly the same results for the peer report B. Values in 

parentheses represent the product of the latent marginals. 
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Table 6.3.23 presents the latent bivariate distribution of neuroticism rated by one 

peer and conscientiousness rated by the other peer. This cross-classification corresponds to 

the heterotrait-heteromethod association sensu Campbell and Fiske (1959). The joint 

ratings of the different peers are not influenced by rater specific effects and, therefore, 

represent bias-free rates of over- or underrepresentation. This table shows that not 

conscientious individuals are also rated not to be neurotic. This may be due to a real 

association of the two categories but also due to ambiguous signals sent out by the target 

which may be interpreted as indicating not to be conscientious by one rater and not to be 

neurotic by the other. Additionally, the latent cell combinations of highly neurotic and 

moderately conscientious as well as sensitive but stable and highly conscientious are more 

frequently expected than predicted based on the product of the marginals.  

 

 

Table 6.3.23 

Cross-classification of expected proportions for the latent variables of different constructs 

originating in different peer reports  

  CONB   

 1 2 3  

na = 1 .08 (.04) .08 (.09) .13 (.16) .29 

na = 2 .04 (.05) .09 (.11) .22 (.19) .35 

na = 3 .03 (.05) .14 (.11) .18 (.19) .36 

 .15 .31 .54  

Note. The model yields exactly the same results for the opposite combination (NEUB and 

CONA). Values in parentheses represent the product of the latent marginals. 
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Table 6.3.24 

Method bias type II for peer reports  

  CONA  

 1 2 3 

na = 1 1.00 1.00 0.85 

na = 2 0.50 1.11 1.05 

na = 3 1.67 0.86 1.06 

Note. The model yields exactly the same results for peer rater B.  

 

 

Table 6.3.24 presents the method bias type II coefficients comparing the association 

within methods to the association across methods. The table reveals that monomethod 

associations differ from the heteromethod associations most strongly for the combinations 

of low conscientious targets which are not perceived as sensitive but stable (middle 

category) by one rater but much more often as neurotic. Single raters overestimate the 

association of highly neurotic and not conscientious as they also underestimate the 

association of not conscientious and sensitive but stable. All other associations do virtually 

not differ from the associations found between raters. One may speculate that targets who 

are rated as at least moderately conscientious are rated by their peers with a smaller bias. 

Conscientiousness may be seen as a visibility indicator for neuroticism.  

 

 

6.3.2.2 Summary of the findings for the CT MTMR models for interchangeable 

raters  

 

Although the CT-MTMR models for interchangeable raters are much more restricted than 

the models for structurally different raters and therefore should be more parsimonious, the 

applications for the CT MTMR model for interchangeable raters yielded the same 

computational difficulties that could also be found for the models with structurally 

different raters and, additionally, suffered from estimation problems concerning the 

equality restrictions in LEM (Vermunt, 1997a). The models with higher order interactions 

yield aberrant parameter estimates and can not be interpreted since they do not imply the 



Correlated Traits Multitrait-Multirater Model 203

correct structure for the expected proportions (the estimation yielded theoretically 

impossible results).  

Yet, the model with two-variable effects as highest order interactions yields 

(relatively) sound parameter estimates which allow for analyzing the latent bivariate 

relationships. An inspection of the log-linear parameters is not meaningful with respect to 

this model because the only way to estimate the model in LEM is by means of dummy 

coded effects. Therefore, the parameters do not directly relate to the expected proportions 

and, moreover, cannot be interpreted in the ways described.  

The analysis of the model with two-variable effects as highest order effects can be 

carried out with respect to the convergent and discriminant validity, method bias, and 

accuracy of the interchangeable raters. There is a considerable overall agreement rate 

showing that in about 1 out of 2 cases peer raters agree with respect to at least one of the 

two constructs. Inspecting the expected proportions may lead to the conclusion that 

agreement is highest for cell combinations of highly conscientious and sensitive but stable 

(middle category) as well as neurotic individuals. The partial agreement rates also show 

that peer raters agree more often for individuals classified in one of the above mentioned 

categories.  

Since the CT MTMR model with two-variable interactions as highest order 

interactions is a hierarchical model it reproduces the latent bivariate joint distributions 

allowing for a direct interpretation of the expected bivariate proportions and the latent one-

variable marginals. The category-specific agreement rates can be calculated to identify the 

overrepresentation in the cells on the (agreement) main diagonals. There is agreement for 

all cells on the two bivariate main diagonals (for neuroticism and conscientiousness). The 

category-specific agreement rates show that there is a much higher agreement for the 

combinations of the 1st categories for both traits. However, this does not imply that these 

rates are absolutely very high but relatively with respect to what can be expected knowing 

the marginals. κ  is not very pronounced indicating low agreement rates. If there were a 

possibility to estimate the saturated model with correct standard errors one might inspect 

the corresponding log-linear effects to judge the ratio of agreement more exactly.  

The distinguishability index reveals if disagreement cells are over- or 

underrepresented with respect to the product of the latent marginals. This index can be 

used to detect sources of disagreement. For conscientiousness this index revealed for 

example that peer raters confound the first two categories (lack of distinguishability). All 

other categories can be relatively well distinguished from each other for the two traits.  
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The cross-classification of trait variables belonging to the same method (heterotrait-

monomethod associations) revealed that there are specific over- and underrepresentations 

of particular joint categories of neuroticism and conscientiousness. Being rated as not 

conscientious is related to being rated as not neurotic. Highly conscientious individuals are 

more probably rated to be sensitive but stable (middle category). This is true for one rater 

but also true for different raters. The method bias type II reveals differences with respect to 

the monorater bivariate joint distributions (categories) and the heterorater bivariate joint 

distributions for different traits. This index shows that considerable differences can only be 

found for individuals who are rated not to be conscientious.  

In sum, I conclude that the CT MTMR model could be used to detect category-

specific sources of convergence, category-specific lack of discriminant validity as well as 

distinguishability, it allows for a comparison of within raters associations across traits to 

estimate the rater-specific biases, and (theoretically) to examine if higher agreement rates 

are due to two-, three-, and / or four-variable effects. That is, if higher or lower degrees of 

convergent validity can be found depending on moderators of agreement (see Funder, 

1995).  

 

 

6.4 Discussion of the CT MTMR Models 

 

In empirical applications, the CT MTMR models defined in this dissertation could 

provide a useful tool for the analysis of convergent and discriminant validity, rater bias, 

and determinants as well as moderators of agreement. However, to date these models 

cannot be soundly estimated prohibiting a proper interpretation of their log-linear 

parameters (estimation problems in LEM, Vermunt, 1997a). The practical applicability of 

the CT MTMR models depends on the availability of new software packages that 

overcome the current estimation problems.  

Due to these estimation problems the expected proportions are reported and, more 

importantly, the empirical findings should not be substantively interpreted, instead the 

empirical applications serve to illustrate the newly developed models and the possibilities 

to interpret different model parameters. All different model parameters and their meaning 

for the analysis of the convergent and discriminant validity are explained in detail. 

Moreover, one can determine if one or more variables can be conceived to characterize a 
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moderator of agreement (Funder, 1995). For instance, dependable individuals (as a concept 

related to conscientiousness) seem to be more congruently rated by peers (see Colvin, 

1993b). 

I define the method bias type I and II coefficient revealing information about 

different prevalence rates and different presumed associations of the rater. The 

distinguishability index provides information as to which categories can be neatly 

differentiated and which categories can be easily confounded. Additionally, the meaning of 

all different log-linear parameters with respect to the categories (agreement, partial 

agreement, simple agreement, and disagreement) they affect is exemplified and linked to 

the analysis of convergent and discriminant validity. These parameters provide pieces of 

information that cannot be retrieved from standard rater agreement models or latent rater 

agreement models. 
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7 Summary and Discussion 
 

 

The aim of this dissertation was to develop i) latent rater agreement and ii) latent 

Multitrait-Multirater (MTMR) models for multiple categorical response variables in order 

to provide psychometric models for the analysis of convergent and discriminant validity 

corrected for influences due to measurement error. Additionally, indices have been defined 

that allow for the analysis of category-specific agreement rates, rater bias, and the 

distinguishability of the latent categories. Furthermore, the influence of particular latent 

statuses on agreement and / or disagreement may be analyzed. The focus was on the model 

development and the interpretation of the model parameters in terms of the analysis of 

convergent and discriminant validity, rater bias, and rater agreement (accuracy). Due to the 

computational difficulties and the logic of log-linear modeling with latent variables all 

definitions and applications are restricted to the case of maximally two traits judged by two 

raters.  

This restriction is justified for several reasons. To date, the computational 

difficulties encountered during the estimation process prohibit the application of the 

models to more complex data sets. The definition of models for two raters comes closest to 

the inspection of the bivariate relationships in CFA MTMM models—the extension to the 

case of more than two raters and / or more than two traits is, in principle, straightforward 

for the CT MTMR models but adds higher order interactions to the model definition for 

each newly introduced latent variable. Therefore, it is impossible to give a global model 

definition; it is only possible to give model definitions relying on the number of traits and 

raters. The focus is on showing the strength of the newly developed models for two raters 

revealing pieces of information that are not available in standard rater agreement models. 

All models have been defined with respect to structurally different and interchangeable 

raters.  

In a first step, I will summarize and discuss the newly introduced models with 

respect to the new pieces of information that can (theoretically) be gained. I will refer to 

the results of the empirical applications being aware that these may only be interpreted for 

illustrative reasons due to the estimation difficulties. In a second step, the models will be 

embedded in the larger context of research on rater accuracy (Funder, 1995) combined 
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with the perspective of Multitrait-Multimethod measurement. Finally, the limitations of the 

newly developed models will be discussed and future research directions will be derived.  

 

 

7.1 Summary of the Model Parameters and Model Results 

 

7.1.1 Latent Rater Agreement Models  
 

The first research goal was to develop latent rater agreement models which, in principle, 

are equivalent to Monotrait-Multirater models. Defining these models allows for an 

examination of agreement and disagreement of two raters on one particular construct. 

Raters can agree in a general way yielding constant agreement rates across all categories of 

the latent trait but raters may also agree in a more specific way showing high agreement 

rates for some latent categories and smaller agreement rates for other latent categories. 

Assumptions about constant agreement can be tested using the quasi-independence II 

models for structurally different and interchangeable raters but may also be tested 

restricting the log-linear two-variable effects for cells on the main diagonal to be constant 

in all other models (saturated, quasi-, and symmetry models).  

Disagreement may also be modeled in the newly proposed models. Raters may well 

distinguish between particular latent categories from each other but have difficulties to 

distinguish between others. In these cases, disagreement rates for the first categories will 

be low and they will be higher for the “difficult” categories. High disagreement rates may 

point to categories that may be easily confounded by raters but that are theoretically 

distinct from each other or it may point to a lack of convergent validity within one trait. 

Examining a rating scale the models may be used to check if several categories may be 

empirically distinguished from each other. High expected proportions (or log-linear 

parameters around 1 or higher) for disagreement cells may show that the category 

definition should be optimized.  

Disagreement is strongly related to rater bias. Rater bias may be analyzed yielding 

very detailed information about the categories that are more or less prone to the rater-

specific effects. The first type of bias concerns different prevalence rates in the univariate 

latent distributions of the raters [method (rater) bias type I; see Agresti, 1992].  
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Additionally, the validity of the different items can be examined by an inspection of 

the effect-parameters or the conditional response probabilities. Strong effect-parameters 

indicate “marker” items (categories) for latent categories and may be statistically tested 

relying on the z-values of the underlying log-linear two-variable effects of the 

measurement model. However, these effects turned out to be very prone to boundary 

solutions and cannot soundly be interpreted in the presented applications. The conditional 

response probabilities however can be interpreted. Very clear implied typical response 

patterns indicate more reliable prototypical classifications and more easy to distinguish 

categories. The mean assignment probabilities (not available in LEM) indicate the 

reliability of the classifications. 

The dimensionality of the response categories may also be examined using latent 

rater agreement models or log-linear models with one latent variable. Log-linear models 

with latent variables may be administered to ordered categorical ratings. If the categories 

follow the presumed ordered structure the model estimation will principally yield ordered 

latent categories with response categories reflecting a general increase or decline in their 

conditional response probabilities for increasing or declining response options (see e.g., 

Dillon & Mulani, 1984; Heinen, 1996, Langeheine, 1988).  

The meaning of all model parameters will be summarized with respect to the 

saturated model because this model is most general containing all effects described below. 

All other rater agreement models are restricted versions of this model. See Figures 5.2 and 

5.4 on how to obtain the more restricted rater agreement models. The meaning of the 

different variables and their effects or associations will be highlighted following a 

prototypical sequence of model inspection in empirical applications. As a prerequisite the 

model must show an adequate goodness-of-fit to the data in order to provide soundly 

interpretable model parameters. 

 

Meaning of the latent variables and validity of their indicators. The meaning of the 

latent variables in log-linear models with latent variables can principally not be known 

beforehand but has to be determined inspecting the empirical results (except for the case of 

a priori restricted model parameters). The direction and the strength of the link between the 

latent variable and its indicators determine its meaning in models with unordered 

categorical latent variables (see e.g., Hagenaars, 1993). This examination is nothing else 

but the analysis of validity of the latent variable or its measures (Messick, 1989). In 

general, different statuses on the latent variable must produce different expected scores on 
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its manifest indicators. The two latent variables in latent rater agreement models must at 

least approximately represent identical categories in order to allow for an examination of 

rater agreement. This is a crucial point for the analysis of rater agreement (and also for CT 

MTMR models). In the best case, the conditional response probabilities do not differ 

across raters. If the conditional response probabilities are not identical theoretical 

considerations about and interpretation of the conditional response probabilities may still 

guarantee that the two judges rate the same construct (see Section 4 for more details). 

One may examine the reliability and / or validity in models with categorical latent 

variables. The conditional response probabilities indicate the degree to which a given 

category of an indicator can be conceived as a good representation of the latent category. 

In the same vain, effect-parameters or odds can be used to examine the convergent validity 

of indicators in a way closely related to the inspection of the conditional response 

probabilities. One may conclude that an indicator is a valid (good or marker) indicator of a 

latent category if it shows strong effect-parameters (see Section 4). However, there are no 

benchmarks as to which size of a conditional response probability or effect-parameters 

may be considered showing a strong measurement relationship. The interpretation of these 

parameters depends on the research domain and prior results.  

There is not one parameter representing the relation between the manifest variable 

and the latent variable in models with categorical latent variables but there are as many 

parameters as there are combinations of latent and manifest categories. That is, there are 

nine log-linear two-variable effects indicating the interplay between a three-categorical 

latent and a three-categorical manifest variable. This allows for a detailed analysis of 

validity with respect to the categories. 

Consider neuroticism in the self-report. There are three latent categories which can 

be clearly distinguished with respect to their conditional response probabilities. The 

categories can be interpreted as three types of neuroticism (not neurotic, sensitive but 

stable, and neurotic) in a theoretically meaningful way inspecting the nine conditional 

response probabilities. The conditional response probabilities change quite 

heterogeneously across the different items and latent categories. Different items may be 

used to distinguish between the different latent categories. The neurotic personality type 

can be easily separated from the sensitive but stable and the neurotic personality type 

inspecting the typical response behavior for items “vulnerable” and “sensitive” (large 

differences in the conditional response probabilities). That is, these two items validly 

separate the first latent category from the other two latent categories. Yet, these two items 
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cannot be used to separate the sensitive but stable from the neurotic personality type. The 

typical responses for these two latent classes are responses using the neurotic category. 

These items thus do not validly separate the middle and the highest latent classes from 

each other. In the same vain, items “moody” and “self-doubtful” can be regarded as valid 

indicators to separate not neurotic as well as sensitive but stable individuals from neurotic 

individuals because the conditional response probabilities differ to a great extent. These 

two items do not very well discriminate between the latent categories “not neurotic” 

(lowest category) and “sensitive but stable” (middle category).  

On the one hand, this examination of validity is complex in the models with 

categorical data; on the other hand, this examination allows for a better understanding of 

the latent categories and the associations between the manifest response variables. The 

conditional response probabilities imply that sensitivity and vulnerability are easier to feel 

or perceive than moodiness and self-doubtfulness. However, this assumption should be 

examined in detail additionally relying on models of Item-Response-Theory (IRT) as the 

graded-response model (Samejima, 1969), for example. I also must emphasize that I 

collapsed two times two response categories to avoid computational difficulties. This 

certainly also afflicts the interpretation of the model results with respect to the difficulties 

of the items and the ordered structure of the latent and manifest categories.  

 

Latent one-variable distributions. Inspecting the latent one-variable distributions 

reveals if the two raters perceive the same prevalence rates for the construct under 

consideration. In general, their prevalence rates should not differ to a large extent from 

each other to still reflect the same construct (Zwick, 1988). If the prevalence rates differ 

considerably the raters judge different phenomena. However, there are no guidelines as to 

which differences in the prevalence rates can be considered meaningful. This problem is 

not examined in this contribution. The difference of the latent distributions is quantified by 

the rater bias type I coefficient. This coefficient compares the expected proportions of 

identical categories of different ratings. One may test if the latent marginals are 

homogenous (identical) comparing models with and without equality restrictions on the 

latent univariate distributions. However, this is not in the focus and thus was not done. The 

focus is on the possible interpretations of the latent one-variable parameters and the pieces 

of information they provide on agreement and disagreement as well as rater bias. For the 

rater agreement models as well as for the CT MTMR models, all rater bias I coefficients 
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fell into the range of ( 1. 1)1 0.83ns naMB = = =  to ( 3. 3)1 1.15ns naMB = = = for neuroticism and 

( 1. 1)1 0.79cs caMB = = =  to ( 3. 3)1 1.41cs caMB = = =  for conscientiousness (comparing the self-report 

with the peer report). The relatively high rater bias I coefficient for the 3rd category of 

conscientiousness has been interpreted in Section 6.3. To my mind, it is plausible to 

assume a peer bias towards higher conscientiousness ratings due to the composition of the 

sample and some aspects of conscientiousness that may not be openly displayed (e.g., 

fighting against a tendency of procrastination).  

The rater bias type I reveals if a category for one rater is strongly overrepresented 

with respect to the identical category for the other rater and, additionally, if the necessary 

underrepresentation of the other categories is found for one or for several categories. The 

rater bias type I coefficients may reveal that one rater shows more ratings in the highest 

category than the other rater but that both show equally frequent ratings in the lowest 

category. Therefore, one may conclude for ordered categories that the first rater has a 

lower “threshold” to pass from the middle to the highest rating categories.  

 

Latent two-variable distribution. The latent two-variable distribution reveals to 

which extent the two raters agree or disagree. κ  may serve as an indicator of overall 

agreement. High agreement indicates convergent validity on the level of trait variables. 

Additionally, category-specific agreement rates may be calculated indicating for which 

categories agreement can be found. Without further analyses on the decision making 

process, one may conceive these categories as good categories upon which raters easily 

agree. In general, some categories of a categorical trait are much easier to agree upon than 

others (see e.g., the concept of visibility, Funder, 1995). The latent rater agreement models 

allow for determining good categories inspecting the category-specific agreement rates and 

the two-variable log-linear parameters for agreement cells. High and significant parameters 

indicate good categories. Validity determined as agreement concerns absolute agreement. 

Any slightest form of disagreement (i.e., one rater choosing the risk-seeking category and 

the other rater the gambling category) is related to a decrease in convergent validity 

(although disagreement with respect to gambling and risk-seeking might be less striking 

than disagreement between gambling and security oriented). This problem may be 

circumvented by accepting disagreement for closely related categories as still refelcing 

vonvergent ratings or by collapsing these categories. 
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In applications showing agreement, disagreement cells will be less frequently 

observed than predicted by the product of their latent marginal distributions. However, it is 

important to know which categories can be neatly distinguished from each other and which 

may still be confounded. I propose the category distinguishability index to examine the 

ratio to which the expected proportion of the disagreement cell deviates from the product 

of the marginals. Very small values (close to 0) indicate that raters can very well 

distinguish between the corresponding categories. Values close to 1 indicate that the 

association of the latent categories corresponds to the association one would expect for 

independent categories. In this case, raters do not confound the categories (this would be 

indicated by a distinguishability index larger than 1) but they also do not distinguish well 

between these categories. Therefore, values close to 1 or above 1 indicate the need to 

clarify the category definitions of the items or to train raters. Additionally, the 

distinguishability index gives some hints on effects of possible moderators of accuracy 

(agreement). If for a specific category of one trait there are very low distinguishability 

indices and there is very high category-specific agreement, the specific category is a good 

category.  

 

Special rater agreement models. Specific patterns of agreement and disagreement 

can be modeled adopting the rater agreement models for observed variables to log-linear 

models with latent variables. The latent saturated model does not impose any restrictions 

on the associations between latent categories. 

If the patterns of disagreement (the distinguishability indices) can be approximately 

mirrored on the main diagonal the quasi-symmetry model may be a good representation of 

the data. This model implies that the two raters distinguish the different categories in a 

similar way. If additionally their latent marginals are homogenous they distinguish 

categories in perfectly the same way (symmetry). For example, the two raters confound the 

categories of being neurotic and moderately conscientiousness to the same ratio as the 

inversed combination being moderately conscientiousness and neurotic (keeping the 

ordering of the raters the same). 

If raters distinguish equally well between all categories besides the main diagonal 

one of the quasi-independence models may fit to the data. In these models, the 

disagreement rates are constantly reduced since there are no associations besides the main 

diagonal. All associations in this model are due to chance (independence assumption) 

except for higher agreement rates on the main diagonal. Agreement can be overrepresented 
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changing from category to category yielding quasi-independence I (reflecting more or less 

good categories) or be constant across categories yielding quasi-independence II 

(reflecting good judges and / or good traits). All rater agreement models can be derived 

from the saturated model implying meaningful restrictions (see Figures 5.2 or 5.4).  

 

Structurally different vs. interchangeable raters. All models can be defined for 

structurally different and interchangeable raters. The summary of the meaning of the latent 

variables and the model parameters presented above is valid for the more general case of 

structurally different raters. The models for interchangeable raters differ with one major 

aspect from the models for structurally different raters. If raters are interchangeable they 

originate in the same population leading to the restriction of measurement invariance. 

Additionally, their latent distributions must be identical implying that they perceive the 

same prevalence rates and that they confound categories in identical ways. Therefore, only 

three rater agreement models exist for the case of interchangeable methods: The symmetry 

as well as the quasi-independence I and II models. The inspection of rater bias type I is 

meaningless in these models by definition; all other indices can be interpreted as presented 

above.  

 

 

7.1.2 Multitrait-Multirater (MTMR) Models  
 

The second major research goal was to extend the latent rater agreement models to allow 

for the analysis of more than one trait. Most emphasis was paid to the interpretation of the 

different log-linear parameters in the saturated CT MTMR model allowing for a detailed 

analysis of agreement and disagreement (reflecting convergent and discriminant validity as 

well as method bias). In this model, moderators of agreement and disagreement can be 

identified relating the MTMR model to the realistic accuracy model (RAM, Funder, 1995). 

Having estimated a CT MTMR model for categorical data the following steps should be 

taken to investigate the results: 

First of all, only models showing an adequate fit to the data should be examined. In 

fitting models the meaning of the latent variables and validity of their indicators have to be 

analyzed. The inspection of the effect-parameters or the conditional response probabilities 

has to be executed as described above. The distributions of the latent marginals can be 



Summary and Discussion 214

inspected to identify if the prevalence rates are the same for identical constructs across 

raters. Method (rater) bias type I can be determined as described above. The analysis of 

agreement (convergent validity), disagreement, bias of ratings, discriminant validity and 

moderators of agreement and disagreement is rather complex in CT MTMR models.  

 

Agreement. As a great advantage the saturated CT MTMR model simultaneously 

allows for an inspection of agreement and moderators of agreement. Agreement between 

raters may differ across categories of the latent traits under consideration. Additionally, the 

CT MTMR model allows for determining if agreement differs with respect to ratings on 

the second construct. The model reveals if there is higher agreement on neuroticism for 

highly (congruently rated) conscientious individuals, for example. I will shortly repeat the 

theoretical impact of the log-linear effects of different levels on agreement and convergent 

validity (see Section 6 for more detailed explanations). The empirical application revealed 

that the models with higher order effects could not be soundly estimated.  

Conditional complete agreement is depicted by the four-variable log-linear effects 

for cells indicating simultaneous agreement on the two constructs. The log-linear 

parameters indicate the odds for complete agreement to the expected agreement due to all 

lower order effects. They, therefore, reflect above chance complete agreement where 

chance complete agreement is the expected agreement given all lower order effects. 

Complete agreement on the two constructs could also be produced by the one- and two-

variable effects but not by the three-variable effects. Conditional complete agreement may 

be constant for all cells or category specific (see Section 6 for a thorough discussion). 

Constant complete agreement is related to a property of targets as being good targets. If 

raters agree on one target's first trait (conscientiousness), they also agree on this target's 

second trait (neuroticism). Category-specific complete agreement is related to palpability 

(Funder, 1995). Palpability reflects the fact that some traits of some targets may well be 

identified whereas the same traits cannot be accurately judged for other targets. In the CT 

MTMR model, palpability is more fine-graded as it may also occur that some targets may 

only be better judged for given combinations of categories. The heuristic inspection of the 

latent quadrivariate distribution revealed that highly neurotic individuals are more easily 

congruently judged being highly conscientious. Inspecting the four-variable log-linear 

effect for this cell combination [3 3 3 3] would reveal if this complete agreement was due 

to lower order effects or due to the palpability effect.  
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Partial agreement depends on log-linear effects on different levels. Four-variable 

effects depict if specific constellations of disagreement on one construct co-occur more 

frequently with agreement on the second construct. These effects indicate differential 

views of the raters about the association of the two constructs. Agreement on high 

conscientiousness may be associated to different ratings on neuroticism (e.g., neurotic by 

the self-report and sensitive but stable by peer report A). If one of the raters is outstanding 

and may provide a better approximation of the true status, the interpretation of the three-

variable effects as influencing the partial agreement becomes meaningful. If, for example, 

the self-raters judge themselves as not conscientious it may be the case that self- and peer 

raters more easily agree on the not neurotic category. This may be due to the fact that 

being not conscientious is a moderator of agreement (visibility indicator) for low 

neuroticism.  

“Simple agreement”. Agreement may also be analyzed at the level of bivariate 

relationships. If one is interested in agreement rates without any further information about 

the genesis of agreement the log-linear parameters (or cells of the bivariate distribution) 

representing agreement can be examined as described above. However, these parameters 

represent main effects which may change with respect to different constellations on the 

other variables.  

 

Disagreement. The CT MTMR model is suited for the analysis of the genesis of 

disagreement. In principle, disagreement should be expected to a lower extent than 

predicted by the product of the latent marginals. Yet, the distinguishability index (the ratio 

of the expected proportion to the product of the latent marginals) will differ across 

category combinations indicating that raters can very well or less well distinguish between 

pairs of categories. This distinguishability can be stable across all category constellations 

on the other trait but also differ with respect to the other trait.  

The four-, three-, and two-variable effects reveal if specific patterns of 

disagreement are more or less often expected than other patterns. Partial agreement as 

described above is a special case of disagreement since the two raters agree on the other 

construct. If there is high partial agreement an analysis of the decision making process for 

the construct upon which the two raters disagree may be worthwhile to reveal if the same 

behavioral cues are perceived and if they are interpreted in the same way.  

Disagreement which is due to four-variable effects shows to which degree the two 

raters weigh information differentially. There is, for example, some confusion about 
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targets who are rated sensitive but stable in the self-rating and neurotic by peer A with 

respect to the ratings of moderate and high conscientiousness (see Table 6.3.2). Peers have 

a high probability to rate targets higher on conscientiousness if targets perceive themselves 

as moderately conscientious.  

Three-variable effects depict if there are specific categories of one construct that 

are associated to high rates of disagreement. Reconsider the example of a target person 

who does not show her or his feelings. This individual will hardly be congruently judged 

by peer raters concerning the momentary emotional status. The three-variable parameters 

may thus indicate categories being moderators of disagreement.   

Disagreement mirrored by the two-variable log-linear effects shows the principle 

disagreement “averaging” across all higher order moderator effects. Inspecting the two-

variable effects reveals which categories cannot be well distinguished by the two raters. If 

there is no higher order effect, the analysis of the decision making process concerning 

categories that are too easily confounded may help to improve rater agreement and reduce 

disagreement. However, if higher-order effects are present it is these effects that indicate 

under which conditions peers agree and disagree. Knowing these specific constellations 

allows for a more precise and stringent analysis of the decision making process. 

 

Rater bias. Rater bias can be analyzed relying on different indices. The method 

(rater) bias type I coefficient reveals if there are differences in the latent marginal 

distributions for the same construct. This bias should not be very pronounced allowing for 

an investigation of rater agreement. If raters differ extremely in the prevalence rates of 

their ratings the examination of rater agreement becomes meaningless (Zwick, 1988).  

Raters may also show biased ratings with respect to the categories of different 

constructs they associate. The rater bias type II index compares the associations between 

different categories across constructs of one rater to the expected association across raters. 

This index reveals if raters have a specific view as to which categories of the latent traits 

are more or less associated than expected for different raters. The definition of this 

coefficient as the ratio of a multitrait-monomethod to the multitrait-heteromethod 

associations is related to the logic of direct product models (see e.g., Browne, 1984, Oort, 

1999; Wothke & Browne, 1990). 

However, if higher order effects are present, the rater bias type I and II coefficients 

can only be interpreted as average effects which may be moderated as are two-variable 

effects in models with higher order interactions. The CT MTMR model principally allows 
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for determining specific category constellations which may lead to especially biased 

ratings or to a reduction in bias. However, in the current applications these constellations 

could not be identified relying on the log-linear parameters since the model estimation 

yielded almost no higher order effect without boundary solution. Yet, inspecting the 

expected proportions of Table 6.3.2 in a heuristic way may lead to the hypothesis that peer 

A associates moderate conscientiousness to being neurotic and high conscientiousness to 

being sensitive but stable for targets who rate themselves being sensitive but stable and 

moderately or highly conscientious. It would be very interesting to analyze if these effects 

are due to three-variable interactions or four-variable interactions in soundly estimated 

models. If these effects are not due to four-variable interactions but to three-variable 

interactions the self-ratings on one construct influence the joint ratings of the peer raters. 

This influence is then independent from the self-rated score on the other construct. 

However, there may also be an effect of this other self-rated trait on the joint peer ratings. 

This could be interpreted as two different and independent effects representing the peer-

specific view as a function of the different statuses in the self-report. If these effects are 

additionally due to a four-variable interaction a “joint halo-effect” may be present 

implying that one constellation in the self-ratings produces a particular joint bias in the 

peer ratings. Detailed inspections of the answer process may help to enhance rater 

agreement and reduce rater bias. 

 

Discriminant validity. The discriminant validity can be analyzed relying on 

different associations. The simplest case in the model with two-variable effects as highest 

order interactions has been illustrated in detail. The inspection of the latent bivariate 

associations is closely related to the inspection of heterotrait-heteromethod and heterotrait-

monomethod associations as described by Campbell and Fiske (1959). The application for 

structurally different raters revealed that the cross-classification of neuroticism in the self-

report with peer-reported conscientiousness showed almost perfect discriminant validity. 

This was also true for most of the cells in the heterotrait-monomethod cross-classification 

except for the combination of being not neurotic and not conscientious in the peer rating. 

This category combination is expected almost two times more often than expected by the 

latent marginals. The opposite is true for the combination of not neurotic and conscientious 

which is expected only half as often as predicted by the product of the marginals. If 

information on the log-linear parameters and their standard errors was available for the 
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models with higher order effects the model parameters could indicate if discriminant 

validity remains stable across different constellations on the other trait or if it changes.  

 

Determinants and moderators of agreement and disagreement. In principle the CT 

MTMR models allow for the examination of moderators of agreement and disagreement 

via their latent three- and four-variable log-linear effects. These moderators have already 

been discussed with respect to agreement and disagreement (see above). I will shortly 

repeat the possible moderators that can principally be detected in the CT MTMR models. 

Good categories may be identified as categories with very high agreement rates across 

raters. Good targets are targets upon whom raters agree on all constructs (i.e., especially 

consistent individuals, see Funder, 1995), this may also be the case for special 

combinations of good categories and good targets—this combination has been introduced 

as palpability for the interaction of traits and targets by Funder and extended to the 

interaction of categories and targets in this dissertation. Good judges agree with each other 

independently of the category combinations. The CT MTMR model is restricted in its 

information about all possible determinants and moderators of agreement and 

disagreement because information is only available for two traits times two rater. It is not 

possible to separate some of the different moderators from each other to identify the 

different influences (see below). Additional information gained by more traits and raters 

must be used to get more insight into the moderating effects.  

 

Structurally different vs. interchangeable raters. The CT MTMR models can be 

used to analyze structurally different and interchangeable raters. Interchangeable raters 

require special restrictions on the model parameters representing their interchangeability. 

These restrictions have been introduced in detail. All variables, effects, and parameters can 

be interpreted as for the case of structurally different raters.  
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7.2 The “Joint Framework” of the CT MTMR Model and the Realistic 

Accuracy Model  

 

Validity and reliability are of highest importance in many areas in psychology. It is 

important that psychologists detect and correctly use the behavioral cues that indicate 

specific patterns of behaviors or latent typological variables (such as clinical disorders). 

The detection of the relevant cues and the processing of information executed by a 

psychologist, for example, can be described by models of signal detection theory (SDT; 

see Wickens, 2002). These models link the perceivable cues (visual, auditory, haptic, and 

olfactory) to a then activated category and to the mental registration. Analyzing these 

processes may be very helpful to explain how judges make up their minds depending on 

the cues they can perceive or the cues they even did not perceive concerning several items 

as “being moody”, “self-doubtful”, “sensitive” or “vulnerable”.  

Funder (1995) introduced the realistic accuracy model (RAM) as a logic chain of 

determinants of accurate judgment. The knowledge about the properties of good judges, 

good indicators, good targets, and good traits as factors enhancing rater agreement may 

help to improve the quality of ratings or may help to explain why some ratings are 

inaccurate. Funder (1995) developed the RAM focusing on factors and their interactions 

that may enhance “rating accuracy”. He argues from a postpositivist perspective saying 

that “truth indeed exists but there is no sure pathway to it (p. 656)” relying on 

philosophical positions such as critical realism and pancritical rationalism (for more details 

see Funder, 1995). His approach is closely related to the approach of Brunswick (1956, 

cited after Funder, 1995). In Funder's point of view, accuracy (approximating truth) is 

enhanced when raters agree. Without engaging in a discussion about the existence of truth 

and the possibility to perceive or know it, his arguments seem to be true in the context of 

rater agreement, too, as his considerations and implications directly apply to the models of 

rater agreement. Thus they may help to get a deeper understanding of agreement and 

disagreement of multiple raters.  

Agreement as a joint product of the target and the judge depends on four principal 

sources of agreement: i) the relevance of behavioral cues to a personality trait, ii) the 

extent to which these cues are available to observation, iii) the extent to which these cues 

are detected, and iv) the way in which these cues are used (Funder, 1995, p. 658). These 
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four determinants are connected using a logical chain leading from the trait (construct) to 

the final ratings. i) A trait generally produces a behavioral effect which is conceived 

relevant for this trait; however, ii) this behavioral effect must be available to the judge to 

become meaningful with respect to the rating. Changes in cortical activity may generally 

not easily be observed whereas facial expressions such as flushing or smiling are. 

Additionally, iii) the judge must be attentive and able to detect these behavioral cues. The 

detection may be hampered by many factors such as inattentive judges, distracting 

situations, or situational factors which render a behavioral cue difficult to be seen—targets 

may look into another direction due to experimental instructions and therefore their 

flushing is difficult to be seen. Finally, iv) the judge must correctly link the behavioral cue 

to the trait it represents. A judge may believe a behavior to be diagnostic of a particular 

trait while it is diagnostic of another trait or of nothing at all.  

In RAM four theoretically possible moderators of accuracy are introduced: i) good 

judge, ii) good target, iii) good trait, and iv) good information: 

i) Good and bad judges can be differentiated by their abilities to detect and use 

readily available behavioral cues. Funder (1995) introduces three components rendering a 

judge a good judge. a) Experience and / or knowledge about personality traits and how 

they are revealed in behavior. b) General abilities such as intelligence or more narrow 

abilities as cognitive and attributional complexity may improve the possibility that detected 

cues are used in a valid manner. This corresponds to the analysis of information processing 

and can best be done using techniques of signal detection theory (see e.g., Wickens, 2002). 

c) Finally, motivational aspects may lead to more accurate judgments if the motivation to 

provide valid ratings is high (Flink & Park, 1991) but may also lead to a distortion of 

ratings. A person who has a strong need to be always in the right may not be a good judge 

judging a target's actions which are opposed to the rater's own beliefs (see Funder, 1995).  

ii) Good targets can be judged correctly having relatively few information about 

their behavior (see e.g., Colvin 1993a, 1993b). Good targets are characterized by showing 

a high cue availability and relevance. Funder (1995) lists a number of hypotheses which 

might explain why some individuals are much easier to judge than others. Individuals with 

high activity levels should show more behaviors and, therefore, be more easily judged 

correctly. The same is true for talkative people. High self-monitoring individuals are more 

difficult to judge according to RAM because these individuals change their behaviors as a 

function of their surroundings. This is related to  the question if individuals are traited (i.e., 

having a trait) or not. Baumeister and Tice (1988) introduced the concept of "metatraits" 
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describing the phenomenon that some individuals act consistently over situations and, thus, 

have specific traits while others do not. Colvin (1993a, 1993b) found that some individuals 

are both more consistent in their behaviors and more likely to be agreed about as a result of 

their consistent behavior.  

Conversely, "bad targets" are either individuals who are inconsistent in their 

behaviors (e.g., high self-monitoring) or individuals who conceal certain aspects of their 

behavior. Criminals for example may not overtly show criminal acts leading to agreement 

about their “non-criminality”, however these ratings are by far not accurate.  

iii) Good traits are characterized by easily available and highly relevant behavioral 

cues. These are traits which are associated to easily observable behaviors such as positive 

social interaction for sociability and which are frequently displayed (e.g., a person who 

often seeks social interactions). In short, some traits are more visible than others. Visibility 

is closely associated with interjudge agreement (see e.g., Funder & Dobroth, 1987). 

However, to my mind visibility is not the same as availability and relevance. Some 

behaviors may be frequently available but relevant for different traits. Talkative 

individuals may be nervous, sociable, dominant, and / or all of the three. Therefore the 

behavioral cue "talkative" is easily available but ambiguous with respect to several traits. 

Visibility in my understanding is the interplay of availability and relevance of several 

combined behavioral cues being highly indicative for a particular trait. Visibility may also 

be enhanced by other properties of the individual making it easier to differentiate between 

different traits.  

iv) Good information is the signals sent out by the target which might principally 

lead to accurate judgment. This moderator only concerns the availability of relevant 

information and not if raters perceive this information or the way they process the 

information. 

These four moderators may each have an isolated effect on the accuracy of ratings 

but they may also interact. Traditional rater agreement models deal with one trait and 

multiple raters allowing for an examination of agreement and disagreement. Moderators at 

the level of targets and / or raters may be integrated in order to explain why there is 

agreement on some targets and why some raters agree while others do not. The interaction 

between these two moderators is called relationship (Funder, 1995). In RAM, expertise 

denotes the interaction between raters and traits. Expertise is high if a particular rater has 

enough knowledge about a given trait and its behavioral cues. Sensitivity characterizes the 

fact that some judges may be better in perceiving particular relevant information than 
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others; however, this effect changes as a function of the kind of information and the rater. 

Diagnosticity names the fact that some traits can only be judged based on particular 

information and that the accuracy depends on the level of generalization of the trait (see 

Funder, 1995). Divulgence denotes the fact that some information about a target may help 

a rater to judge this target accurately while the same information concerning another target 

may not at all help to improve the rating quality. Individuals of different ethnic groups may 

show the same behavior but this information may not indicate the same concepts (shaking 

ones head is associated to saying no in western cultures but means yes in large parts of 

India).  

All these interactions could be analyzed in rater agreement models if additional 

information was incorporated into the model. Yet, there is one interaction that—at least in 

parts—can be examined relating rater agreement models to each other as is done in the 

Multitrait-Multirater models: Palpability denotes the interaction of traits and targets. That 

is, certain traits might be easy to judge in some targets but not in others. Integrating 

additional information into rater agreement models such as multiple traits allows for a 

deeper understanding of which personality types may be congruently or more accurately 

rated. To my mind the interaction of targets and traits (palpability) is related to the 

visibility of a trait. That is, a highly extraverted individual may be much easier judgable on 

certain traits because she or he provides much more behavioral cues and is much more 

open-hearted. Therefore, being extraverted may also be conceived as an indicator of 

visibility for some traits.  

Funder (1995) explicitly claims to enlarge RAM by integrating a multiple cues and 

multiple traits perspective. Without explicitly mentioning, Funder implies that Multitrait-

Multirater models can be seen as a special case of multitrait RAMs. His approach provides 

some interesting theoretical considerations abut the different effects of the Multitrait-

Multirater models for categorical data.  

It is thus logic to combine the strength of the different approaches with each other 

yielding a “joint framework” for the analysis of rater agreement and disagreement. For 

example the “Children's Depression Rating Scale - Revised” (Poznanski & Mokros, 2004) 

is used to rate a child's status on a more or less abstract construct as depression based on a 

semi-structured interview. The categorization of a child as suffering from a depression 

depends on the classification as being sad, having morbid thoughts, failing at school and 

other classifications. This approach is psychometrically mirrored by the log-linear model 

with one latent variable.  
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In this example, it is of utmost importance that the ratings of the clinical 

psychologist are accurate for each child she or he has to rate. Therefore, new clinicians 

(trainees) should be trained to provide accurate ratings. The latent rater agreement models 

could be used to examine if the ratings of the trainee come close to what an expert rates 

(considering the expert as gold standard in the models for structurally different methods) or 

to compare the ratings of different trainees in order to inspect which category definitions 

should be made much clearer (using models for interchangeable raters).  

Furthermore, it is very important to consider additional clinical symptoms to 

inspect if the trainees correctly detect comorbidity or if they have special beliefs or 

theories about which symptoms are related or not (rater bias). To this end the CT MTMR 

model could be used. It is also highly important to know more about the moderators of 

agreement (accuracy). Which forms of depression can be considered palpable? Are there 

some easily detectable forms of depression? Is agreement higher for particular children? 

What are these children's' personality traits or clinical disorders that render these children 

more judgeable? Do trainees distinguish equally well between all categories? Which 

categories do they confound more often than others? All these pieces of information could 

be detected by sound applications of the CT MTMR model extended to more than two 

traits and more than two methods. However, these are the typical questions of the rater 

accuracy model presented by Funder (1995). In order to differentiate between good judges 

and good targets, for example, more than two raters are needed. If there is a group of easily 

judgeable targets all raters will agree with respect to their latent statuses. If agreement is 

due to the good judges not all of the three or more judges will agree with respect to the 

targets. Additionally, more than two traits are needed to identify if there are good traits, 

this is the case if some traits (extraversion and sociability, for example) can be easily 

judged (visible or good traits) by all raters whereas others (e.g., neuroticism) are harder to 

judge. The same is possible for specific categories of particular traits and their 

combinations. Detailed analyses of the log-linear model parameters would enable 

researchers to identify these moderators of agreement (accuracy). 

Although the CT MTMR model allows for a deeper understanding about 

determinants and moderators of agreement it is by no means a process oriented model. 

That is, to study the underlying process of decision making the implications of the realistic 

accuracy model (Funder, 1995) should be related to models of signal detection theory 

(SDT; e.g., Wickens, 2002). These approaches could be used to clarify which kind of 
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information is good information and what availability means in the perspective of a 

cognitive psychologist.  

Crucial questions in this field are: What behavioral cues have to be emitted to 

render a behavior judgeable? What kind of information leads to a valid judgment on item 

contents such as “vulnerable”? Is it best to perceive verbal, behavioral, and auditory cues 

simultaneously or in sequence? SDT may help to analyze these research questions at the 

beginning of the rater accuracy model (relevance and availability as well as perception of 

cues). The CT MTMR model (but also models of SDT) may rather be used at the end of 

the logic chain when several raters may be compared with respect to how they used the 

perceived information. Therefore, I consider the CT MTMR model as a model that may 

broaden the perspective of the rater accuracy model but also as a model that is—directly 

implied by the logic of the realistic accuracy model—to be at the end of the logical chain 

analyzing the ratings.  

 

 

7.3 Limitations of the Models and Future Research Directions 

 

The major limitation of the presented models is their computational complexity. To date no 

software package allows for a sound estimation of the log-linear parameters of the most 

complex MTMR models. Future research directions concern the development of better 

estimation procedures for the log-linear models with latent variables (Latent Class 

Models). If these are available the applicability of the CT MTMR model might be 

examined in simulation studies relying on empirical and / or simulated data sets. However, 

there may only be guidelines concerning sample size requirements because the 

identification of a model is always in parts an empirical issue (see Section 4.1.2). In the 

current application, no information could be gained if the complex MTMR models could 

not be estimated due to intrinsic non-identification or to non-identification due to a sparse 

data problem. Software packages that could be used to analyze the MTMR models should 

integrate several components: i) better estimation procedures as Bayesian estimation 

methods using prior information (Maris, 1999; Vermunt & Magidson, 2002, 2005), ii) an 

automatic identification check as implemented in PANMARK, for example (van de Pol, 

Langeheine, & de Jong, 1996), and iii) the possibility to run bootstrap analysis.  
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The MTMR model is not soundly applicable to the data set presented in Section 4. 

If researchers are confronted with similar problems as encountered in the empirical 

applications at least different latent rater agreement and Correlated Traits models can be 

estimated crossing all traits and methods. These models reveal information that may 

answer some of the research questions listed above. However, conditional effects (as three- 

or four-variable effects in the MTMR models) cannot be analyzed. 

Future research should be conducted on analyzing large data sets which may be 

found in organizational psychology where many clients rate many employees. Consider a 

call-center where clients are oftentimes asked to rate some properties of the agent. A fixed 

number of clients could be randomly drawn for each agent and their agreement and 

disagreement as well as the convergent and discriminant validity of the evaluation scale 

could be analyzed. The more complex situation with differing numbers of clients for the 

agents could be solved adopting the multilevel-latent class approach introduced by 

Vermunt (2003, 2005, 2008). 

Young physicians could be trained relying on the latent rater agreement models or 

on the MTMR models if they were asked to rate patients during the ward rounds. Their 

ratings could be compared with ratings of other young physicians on the same patients or 

with the ratings of the physician in charge. This information could be used to develop 

specific programs to train the accuracy of the young physicians. 

Data sets containing missingness on observed data which are likely to occur in 

many applications will additionally increase the complexity of the estimation process. 

Vermunt (1996) proposed an approach to analyze models with unobserved (latent), partly 

observed, and observed data. In this approach, response indicators have to be used 

indicating the missingness. This results in additional model complexity and has not yet 

been defined for the models presented here.  

If the CT MTMR model should proof to be applicable to empirical data situations 

the newly defined indices (method bias type II and distinguishability index) should be 

investigated in more detail. It should be examined if there is any meaningful benchmark or 

threshold as to which ratio is of substantial interest for given research domains. In settings 

with many raters, careful considerations as to which raters may provide bias free 

associations are necessary and will afflict the definition of this index.  

The quasi-independence models offer interesting possibilities to model 

disagreement and agreement. If the CT MTMR model may be soundly estimated it may 

also become meaningful to investigate the structure of agreement restricting the monotrait-
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heteromethod associations in a larger model. In the same vain, the structures of rater 

agreement might be adapted to three- and four-variable effects yielding non-hierarchical 

higher-order rater agreement models. In these models, all effects may be removed from the 

saturated model that do not relate to a simple, partial, or conditional overall agreement. 

This model would imply random associations for complete disagreement cells and might 

give important insights into rater bias. The clear psychometric definition and the 

interpretation of the log-linear parameters will be tedious because these kinds of models 

are no longer hierarchical. However, it might be adequate for rather distinct raters who 

might be expected to agree more often on some of the constructs but not to show related 

joint ratings for other constructs. Imagine colleagues and supervisors as raters of a target 

working in the service sector where workers are asked to be especially friendly and 

helpful. In this case, a 3rd order quasi-independence model could be fit allowing only for 

higher overall agreement rates. The target person will most probably be rather friendly and 

helpful to all clients and especially friendly and helpful if the supervisor is present 

(concealing some of her or his traits), but she or he may also be much less friendly and 

helpful with some of her or his colleagues. Therefore, the ratings of the supervisor and the 

colleagues will most probably differ from each other.  

 

The latent rater agreement and the CT MTMR models presented in this dissertation may 

reveal important information about the convergent and discriminant validity of ratings in 

empirical applications. To date, only the less complicated models can be soundly 

estimated. If there are more advanced and more efficient estimation procedures the CT 

MTMR model may become applicable and its strength and gain in information concerning 

ratings can be used to enhance the quality of psychological ratings and to understand more 

about the determinants and moderators of agreement and disagreement. 
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Appendix A: Data Description 

 

The German Version of the Big-Five scale (Ostendorf, 1990)  
Im folgenden finden Sie eine Reihe von Eigenschaftsbegriffen.  
Kreuzen Sie bitte die Antwort an, die am ehesten auf Sie als Person zutrifft. 
 

Ich bin 
 

Ich bin 
 

 überhaupt  sehr 
 nicht 

 überhaupt sehr 
 nicht 

  1 2 3 4 5   1 2 3 4 5 

kontaktfreudig 

 

 � � � � � pflichtbewußt 

 

 � � � � � 

warmherzig 

 

 � � � � � launenhaft 

 

 � � � � � 

arbeitsam 

 

 � � � � � lebhaft 

 

 � � � � � 

verletzbar 

 

 � � � � � kenntnisreich  

 

 � � � � � 

klug 

 

 � � � � � gutmütig 

 

 � � � � � 

gesellig 

 

 � � � � � temperamentvoll 

 

 � � � � � 

fleißig 

 

 � � � � � hilfsbereit 

 

 � � � � � 

rücksichtsvoll 

 

 � � � � � geistreich 

 

 � � � � � 

intelligent 

 

 � � � � � selbstzweiflerisch 

 

 � � � � � 

empfindlich  � � � � � strebsam  � � � � � 
 überhaupt  sehr 

 nicht 

 
überhaupt sehr 
 nicht 

 
The peer report form exactly corresponds to the self-report form except for the pronomina 
used to describe the acting person. Change from German "ich" to "er / sie" and flexation of 
the verb, from 1st person singular to 3rd person singular.  



 

A.1 Frequency Distributions of the Big-Five Items 

 

Table A.1.1 

Frequency distribution of the Big-Five Items (Ostendorf, 1990) of the self-report data 

  categories  

German item English item little middle highly total 

arbeitssam industrious 93 165 220 478 

verletzbar vulnerable 43 75 360 478 

fleißig diligent 116 159 203 478 

empfindlich sensitive 63 77 338 478 

pflichtbewußt dutiful 29 93 356 478 

launenhaft moody 179 130 169 478 

selbstzweiflerisch self-doubtful 121 88 269 478 

strebsam ambitious 122 150 206 478 

Notes. Categories 1 and 2 as well as 3 and 4 of the original scale have been collapsed. 

 



 

Table A.1.2 

Frequency distribution of the Big-Five Items (Ostendorf, 1990) of peer report A 

   categories   

German item English item little middle highly total 

kontaktfreudig sociable 34 69 375 478 

arbeitssam industrious 78 127 273 478 

verletzbar vulnerable 76 141 261 478 

gesellig companionable 22 67 389 478 

fleißig diligent 78 134 266 478 

empfindlich sensitive 113 150 215 478 

pflichtbewußt dutiful 52 107 319 478 

launenhaft moody 258 126 94 478 

lebhaft vivacious 43 123 312 478 

temperamentvoll spirited 107 152 219 478 

selbstzweiflerisch self-doubtful 217 126 135 478 

strebsam ambitious 110 140 228 478 

Notes. Categories 1 and 2 as well as 3 and 4 of the original scale have been collapsed. 



 

Table A.1.3 

Frequency distribution of the Big-Five Items (Ostendorf, 1990) of peer report B 

   categories   

German item English item little middle highly total 

kontaktfreudig sociable 37 64 377 478 

arbeitssam industrious 68 127 283 478 

verletzbar vulnerable 79 137 262 478 

gesellig companionable 19 67 392 478 

fleißig diligent 82 131 265 478 

empfindlich sensitive 105 154 219 478 

pflichtbewußt dutiful 50 97 331 478 

launenhaft moody 282 108 88 478 

lebhaft vivacious 47 106 325 478 

temperamentvoll spirited 109 126 243 478 

selbstzweiflerisch self-doubtful 218 131 129 478 

strebsam ambitious 101 141 236 478 

Notes. Categories 1 and 2 as well as 3 and 4 of the original scale have been collapsed. 



 

A.2 Response Patterns of the Self-Report Data for Neuroticism 

 
Table A.2.1 
Response patterns of the observed self-report data and their frequencies for the basic one-
variable Latent-Class model 

A 
vulnerable 

B 
sensitive 

C 
moody 

D 
self-doubtful 

frequency 
relative 

frequency 
1 1 1 1 8 .02 
1 1 1 2 3 .01 
1 1 1 3 2 .00 
1 1 2 1 3 .01 
1 1 2 2 0  
1 1 2 3 2 .00 
1 1 3 1 1 .00 
1 1 3 2 0  
1 1 3 3 1 .00 
1 2 1 1 5 .01 
1 2 1 2 2 .00 
1 2 1 3 2 .00 
1 2 2 1 1 .00 
1 2 2 2 2 .00 
1 2 2 3 0  
1 2 3 1 1 .00 
1 2 3 2 1 .00 
1 2 3 3 0  
1 3 1 1 1 .00 
1 3 1 2 0  
1 3 1 3 4 .01 
1 3 2 1 1 .00 
1 3 2 2 1 .00 
1 3 2 3 0  
1 3 3 1 1 .00 
1 3 3 2 0  
1 3 3 3 1 .00 
2 1 1 1 7 .01 
2 1 1 2 4 .01 
2 1 1 3 1 .00 
2 1 2 1 2 .00 
2 1 2 2 0  
2 1 2 3 1 .00 
2 1 3 1 3 .01 
2 1 3 2 0  
2 1 3 3 2 .00 
2 2 1 1 10 .02 
2 2 1 2 5 .01 
2 2 1 3 5 .01 
2 2 2 1 1 .00 

Table continues…     



 

 
Table continued     

2 2 2 2 6 .01 
2 2 2 3 1 .00 
2 2 3 1 1 .00 
2 2 3 2 1 .00 
2 2 3 3 0  
2 3 1 1 2 .00 
2 3 1 2 0  
2 3 1 3 4 .01 
2 3 2 1 2 .00 
2 3 2 2 3 .01 
2 3 2 3 7 .01 
2 3 3 1 3 .01 
2 3 3 2 0  
2 3 3 3 4 .01 
3 1 1 1 8 .02 
3 1 1 2 5 .01 
3 1 1 3 3 .01 
3 1 2 1 1 .00 
3 1 2 2 1 .00 
3 1 2 3 3 .01 
3 1 3 1 2 .00 
3 1 3 2 0  
3 1 3 3 0  
3 2 1 1 4 .01 
3 2 1 2 6 .01 
3 2 1 3 8 .02 
3 2 2 1 1 .00 
3 2 2 2 4 .01 
3 2 2 3 5 .01 
3 2 3 1 1 .00 
3 2 3 2 1 .00 
3 2 3 3 3 .01 
3 3 1 1 21 .04 
3 3 1 2 9 .02 
3 3 1 3 50 .10 
3 3 2 1 18 .04 
3 3 2 2 15 .03 
3 3 2 3 49 .10 
3 3 3 1 12 .03 
3 3 3 2 19 .04 
3 3 3 3 111 .23 
   total 478 1 

Notes. 1: non-neurotic response category; 2: neutral response category; 3: neurotic 
response category. Empty cells in the column representing the relative frequency indicate 
response patterns that have not been observed. 



 

Appendix B: Collapsibility Theorem 
 

Bishop (1971, p. 545) defined the “conditions… under which collapsing multidimensional 

contingency tables, by adding over variables, will affect the apparent interaction between 

the remaining variables”. Collapsing by adding over variables is also known as collapsing 

frequencies or categories of a variable or as collapsing arrays. A variable is considered 

collapsible if no interactions between variables, which remain in the reduced matrix, are 

changed compared to the effects in the full data matrix (see also .Bishop, Fienberg & 

Holland, 1975). 

Theorem: 

In a rectangular more-dimensional table a variable is collapsible with respect to the 

interaction between the other variables in a hierarchical model if and only if it is at least 

conditionally independent of all but one of the other variables given the last variable.  

Proof: 

See Bishop (1971) or Bishop. Fienberg, and Holland (1975).  

Example: 

Without loss of generality the simplest case of three variables is considered. The full 

additionally parameterized model reads as follows: 

 

 ln( ) A B C AB AC BC ABC
ijk i j k ij ik jk ijke = η + λ + λ + λ + λ + λ + λ + λ . (B.0.1) 

 

Without loss of generality, a model with one possible interaction absent is assumed. The 

interaction BC
jkλ  is chosen to be absent (which automatically leads to the absence of ABC

ijkλ ): 

 

ln( ) A B C AB AC
ijk i j k ij ike = η + λ + λ + λ + λ + λ .  (B.0.2) 

 

The logarithms of the marginal sums may be written as: 

 

 ln( ) A B AB
ij i j ije + = η+ λ + λ + λ  

ln( ) A C AC
i k i k ike+ = η + λ + λ + λ   (B.0.3) 

ln( ) A B C AB AC
ijk i j k ij ike = η + λ + λ + λ + λ + λ  

 

The table is collapsible for the interaction of AC and AB. 



 

Appendix C: Log-Linear Parameters of the Latent Rat er 
Agreement Models for Structurally Different Raters  
 
C.1 Saturated Latent Rater Agreement Model 

 

Table C.1.1 

Parameters of the measurement model of neuroticism of the saturated latent rater 

agreement model for structurally different raters (self report) 

 
 

one variable 

effect 
two variables effect 

variable 
manifest 

categories 
 ns = 1 ns = 2 ns = 3 

A (vulnerable) 

1 0.57 1.66 0.40 1.52 

2 0.17 7.92 4.49 0.03 

3 10.50 0.08 0.56 23.38 

B (sensitive) 

1 8.51 10-54 3.17 1053 2.30 1052 1.38 10-106* 

2 6.37 1021 3.80 10-22 1.22 10-22 2.15 1043* 

3 1.84 1031 8.32 10-33 3.56 10-31 3.38 1062* 

C (moody) 

1 1.07 2.53 1.10 0.36 

2 0.75 1.03 1.63 0.59 

3 1.25 0.38 0.56 4.70 

D (doubtful) 

1 0.47 3.54 1.85 0.15 

2 0.92 1.09 0.61 1.51 

3 2.31 0.26 0.89 4.35 

Notes. * boundary values; ns: category of NEUS. 



 

Table C.1.2 

Parameters of the measurement model of neuroticism of the saturated latent rater 

agreement model for structurally different raters (peer report A) 

 
 

one variable 

effect 
two variables effect1 

variable 
manifest 

categories 
 na = 1 na = 2 na = 3 

I (vulnerable) 

1 0.17 2.48 103 1.75 2.29 10-4* 

2 0.43 603.47 1053 3.99 4.15 10-4* 

3 13.57 6.69 10-7* 0.14 1.04 107* 

J (sensitive) 

1 3.68 10-5 4.37 1010 1.57 104 1.45 10-15 

2 1.04 105 5.32 1.46 10-5 1.28 104 

3 0.26 4.31 10-12* 4.33 5.36 1010 

K (moody) 

1 1.97 1.77 1.07 0.53 

2 0.85 0.83 1.35 0.90 

3 0.59 0.69 0.69 2.11 

L (doubtful) 

1 1.53 2.24 1.00 0.44 

2 0.81 0.78 1.24 1.04 

3 0.81 0.57 0.80 2.17 

Notes. * boundary values; na: category of NEUA. 

 



 

C.2 Independence Latent Rater Agreement Model 

 

Table C.2.1 

Parameters of the measurement model of neuroticism of the independence latent rater 

agreement model for structurally different raters (self report) 

 
 

one variable 

effect 
two variables effect 

variable 
manifest 

categories 
 ns = 1 ns = 2 ns = 3 

A (vulnerable) 

1 2.74 10-37 3.22 1036 8.97 1035 3.47 10-73* 

2 4.20 1017 3.00 10-18 1.66 10-18 2.01 1035 

3 8.69 1018 1.03 10-19 6.73 10-19 1.43 1037 

B (sensitive) 

1 1.07 106 5.76 106 1.74 10-7 0.00** 

2 5.76 103 1.06 109 1.14 10-4 8.24 10-6 

3 1.66 10-8* 1.60 10-18 4.92 108 1.27 109 

C (moody) 

1 0.73 3.65 1.60 0.17 

2 0.36 2.25 3.36 0.13 

3 3.78 0.12 0.19 44.03 

D (doubtful) 

1 0.47 3.37 1.83 0.16 

2 0.91 1.11 0.59 1.52 

3 2.36 0.27 0.93 4.04 

Notes. * boundary values; **: zero fitted margin; ns: category of NEUS.. 



 

Table C.2.2 

Parameters of the measurement model of neuroticism of the latent rater agreement model 

for structurally different raters (peer report A) 

 
 

one variable 

effect 
two variables effect 

variable 
manifest 

categories 
 na = 1 na = 2 na = 3 

I (vulnerable) 

1 2.11 16.71 0.00* 57.14 

2 0.10 202.26 198.50* 2.49 10-5* 

3 4.58 2.96 10-4 4.80* 702.64* 

J (sensitive) 

1 1.14 10-5 3.30 105 5.34 104 5.68 10-11 

2 324.27 0.01 0.00 3.70 104 

3 269.13 5.51 10-4 0.00 4.75 105 

K (moody) 

1 1.95 1.53 1.24 0.53 

2 0.90 0.82 1.40 0.88 

3 0.57 0.80 0.58 2.18 

L (doubtful) 

1 1.55 2.09 0.89 0.54 

2 0.82 0.82 1.25 0.98 

3 0.79 0.59 0.90 1.90 

Notes. * boundary values; na: category of NEUA. 



 

Table C.2.3 

Conditional probabilities of the manifest response categories for the construct neuroticism 

(NEUS) in the quasi-independence I latent rater agreement model for structurally different 

raters (self-report) 

  latent status 

variable 
manifest 

categories 
ns = 1 ns = 2 ns = 3 

A (vulnerable) 

1 .31 .04 .01 

2 .42 .12 .00 

3 .27 .84 .99 

B (sensitive) 

1 .51 .03 .00* 

2 .47 .11 .00 

3 .01 .86 1.00 

C (moody) 

1 .69 .38 .11 

2 .20 .33 .13 

3 .12 .23 .76 

D (doubtful) 

1 .50 .28 .00 

2 .31 .15 .13 

3 .18 .57 .87 

Notes. * boundary values; ns: categories of  NEUS. 

 

 



 

Table C.2.4 

Conditional probabilities of the manifest response categories for the construct neuroticism 

(NEUA) in the quasi-independence I latent rater agreement model for structurally different 

raters (peer report A) 

  latent status 

variable 
manifest 

categories 
na = 1 na = 2 na = 3 

I (vulnerable) 

1 .58 .09 .00* 

2 .39 .44 .00* 

3 .03 .47 1.00* 

J (sensitive) 

1 .78 .16 .00* 

2 .22 .50 .08 

3 .00* .34 .92 

K (moody) 

1 .76 .57 .34 

2 .15 .32 .25 

3 .09 .11 .40 

L (doubtful) 

1 .75 .48 .22 

2 .15 .31 .26 

3 .11 .21 .52 

Notes. * boundary values; na: categories of NEUA. 

 



 

C.3 Quasi-Independence I Latent Rater Agreement Model 

 

 

Table C.3.1 

Parameters of the measurement model of neuroticism of the quasi-independence I latent 

rater agreement model for structurally different raters (self report) 

 
 

one variable 

effect 
two variables effect 

variable 
manifest 

categories 
 ns = 1 ns = 2 ns = 3 

A (vulnerable) 

1 0.45 2.10 0.53 0.90 

2 0.32 4.00 2.41 0.10 

3 6.88 0.12 0.79 10.68 

B (sensitive) 

1 5.74 10-40 * 6.06 1039 * 3.64 1038 * 4.54 10-79 * 

2 5.67 1018 * 5.62 10-19 * 1.37 10-19 * 1.30 1037 * 

3 3.07 1020 * 2.93 10-22 * 2.01 10-20 * 1.69 1041 * 

C (moody) 

1 1.17 2.33 1.00 0.43 

2 0.82 0.97 1.47 0.71 

3 1.05 0.44 0.68 3.30 

D (doubtful) 

1 0.04 42.17 24.94 9.51 10-4 

2 3.26 0.31 0.16 19.67 

3 7.91 0.08 0.25 53.47 

Notes. * boundary values; ns: category of NEUS. 



 

Table C.3.2 

Parameters of the measurement model of neuroticism of the quasi-independence I latent 

rater agreement model for structurally different raters (peer report A) 

 
 

one variable 

effect 
two variables effect1 

variable 
manifest 

categories 
 na = 1 na = 2 na = 3 

I (vulnerable) 

1 0.07 44.07 4.45* 6.33 10-10 

2 0.11 19.30 14.85* 574.75 

3 119.83 0.00 0.64* 2.75 106 

J (sensitive) 

1 8.00 10-4 2.32 106 681.21 6.33 10-10 

2 711.33 0.75 0.00 574.75 

3 1.76 5.72 10-7 0.64 2.75 106 

K (moody) 

1 1.97 1.74 1.08 0.53 

2 0.85 0.81 1.37 0.90 

3 0.60 0.71 0.68 2.07 

L (doubtful) 

1 1.53 2.15 1.00 0.47 

2 0.82 0.80 1.22 1.02 

3 0.80 0.58 0.82 2.10 

Notes. * boundary values; na: category of NEUA. 



 

Table C.3.3 

Conditional probabilities of the manifest response categories for the construct neuroticism 

(NEUS) in the quasi-independence I latent rater agreement model for structurally different 

raters (self-report) 

  latent status 

variable 
manifest 

categories 
ns = 1 ns = 2 ns = 3 

A (vulnerable) 

1 .31 .04 .01 

2 .42 .12 .00 

3 .27 .84 .99 

B (sensitive) 

1 .51 .03 .00* 

2 .47 .11 .00 

3 .01 .86 1.00 

C (moody) 

1 .69 .38 .11 

2 .20 .33 .13 

3 .12 .23 .76 

D (doubtful) 

1 .50 .28 .00 

2 .31 .15 .13 

3 .18 .57 .87 

Notes. * boundary values; ns: categories of  NEUS. 

 

 



 

Table C.3.4 

Conditional probabilities of the manifest response categories for the construct neuroticism 

(NEUA) in the quasi-independence I latent rater agreement model for structurally different 

raters (peer report A) 

  latent status 

variable 
manifest 

categories 
na = 1 na = 2 na = 3 

I (vulnerable) 

1 .58 .09 .00* 

2 .39 .44 .00* 

3 .03 .47 1.00* 

J (sensitive) 

1 .78 .16 .00* 

2 .22 .50 .08 

3 .00* .34 .92 

K (moody) 

1 .76 .57 .34 

2 .15 .32 .25 

3 .09 .11 .40 

L (doubtful) 

1 .75 .48 .22 

2 .15 .31 .26 

3 .11 .21 .52 

Notes. * boundary values; na: categories of NEUA. 

 



 

C.4 Quasi-Independence II Latent Rater Agreement Model 

 

Table C.4.1 

Parameters of the measurement model of neuroticism of the quasi-independence II latent 

rater agreement model for structurally different raters (self report) 

 
 

one variable 

effect 
two variables effect 

variable 
manifest 

categories 
 ns = 1 ns = 2 ns = 3 

A (vulnerable) 

1 0.36 2.68 0.41 0.90 

2 0.66 1.96 1.53 0.33 

3 4.29 0.19 1.58 3.32 

B (sensitive) 

1 5.20 10-55 4.03 1054 3.99 1053 6.23 10-109* 

2 9.35 1025 1.99 1026 9.54 10-27 5.27 1051 

3 2.06 1028 1.25 10-29 2.63 10-28 3.04 1056 

C (moody) 

1 1.27 2.06 0.98 0.50 

2 0.84 0.92 1.64 0.66 

3 0.93 0.53 0.62 3.05 

D (doubtful) 

1 0.75 2.20 1.29 0.35 

2 0.75 1.32 0.75 1.01 

3 1.79 0.34 1.04 2.81 

Notes. * boundary values; ns: category of NEUS.



 

Table C.4.2 

Parameters of the measurement model of neuroticism of the quasi-independence II latent 

rater agreement model for structurally different raters (peer report A) 

 
 

one variable 

effect 
two variables effect 

variable 
manifest 

categories 
 na = 1 na = 2 na = 3 

I (vulnerable) 

1 2.84 0.91 0.09 12.70 

2 0.04 47.59 56.14 3.74 10-4 

3 9.92 0.02 0.21 210.36 

J (sensitive) 

1 3.00 10-4 1.53 105 1.80 103 3.63 10-9*  

2 201.06 0.08 0.01 1.46 103 

3 16.58 7.83 10-5 0.07 1.89 105 

K (moody) 

1 1.97 1.65 1.13 0.53 

2 0.87 0.80 1.43 0.87 

3 0.58 0.75 0.62 2.15 

L (doubtful) 

1 1.54 2.07 0.95 0.51 

2 0.82 0.80 1.24 0.99 

3 0.80 0.60 0.84 1.98 

Notes. * boundary values; na: category of NEUA. 

 



 

Table C.4.3 

Conditional probabilities of the manifest response categories for the construct neuroticism 

NEUS) in the quasi-independence II latent rater agreement model for structurally different 

raters (self-report) 

  latent status 

variable 
manifest 

categories 
ns = 1 ns = 2 ns = 3 

A (vulnerable) 

1 .31 .02 .02 

2 .42 .13 .01 

3 .27 .86 .96 

B (sensitive) 

1 .50 .03 .00* 

2 .41 .14 .00* 

3 .06 .83 1.00* 

C (moody) 

1 .67 .39 .16 

2 .20 .43 .14 

3 .13 .18 .70 

D (doubtful) 

1 .51 .29 .04 

2 .30 .17 .13 

3 .19 .55 .83 

Notes. * boundary values; ns: categories of NEUS. 

 

 



 

Table C.4.4 

Conditional probabilities of the manifest response categories for the construct neuroticism 

(NEUA) in the quasi-independence II latent rater agreement model for structurally 

different raters (peer report A) 

  latent status 

variable 
manifest 

categories 
na = 1 na = 2 na = 3 

I (vulnerable) 

1 .57 .06 .02 

2 .37 .47 .00* 

3 .05 .47 .98 

J (sensitive) 

1 .73 .16 .00* 

2 .27 .50 .09 

3 .00 .34 .91 

K (moody) 

1 .74 .58 .34 

2 .16 .32 .25 

3 .10 .09 .41 

L (doubtful) 

1 .74 .46 .25 

2 .15 .32 .26 

3 .11 .21 .50 

Notes. * boundary values; na: categories of NEUA. 

 



 

C.5 Quasi-Symmetry Latent Rater Agreement Model 

 

Table C.5.1 

Parameters of the measurement model of neuroticism of the quasi-symmetry latent rater 

agreement model for structurally different raters (self report) 

 
 

one variable 

effect 
two variables effect 

variable 
manifest 

categories 
 ns = 1 ns = 2 ns = 3 

A (vulnerable) 

1 0.45 2.09 0.56 0.91 

2 0.32 4.04 2.43* 0.10 

3 6.91 0.12 0.78 10.78 

B (sensitive) 

1 4.42 10-40 7.87 1039 4.72 1038 2.69 10-79* 

2 6.67 1018 4.78 10-19 1.16 10-19 1.80 1037 

3 3.39 1020 2.66 10-22 1.82 10-20 2.06 1041 

C (moody) 

1 1.17 2.33 1.00 0.43 

2 0.82 0.97 1.47 0.71 

3 1.05 0.44 0.69 3.30 

D (doubtful) 

1 0.03 53.01 31.36 6.02 10-4 

2 3.66 0.28 0.15 27.73 

3 8.87 0.07 0.22 67.22 

Notes. * boundary values; ns: category of NEUS. 



 

Table C.5.2 

Parameters of the measurement model of neuroticism of the quasi-symmetry latent rater 

agreement model for structurally different raters (peer report A) 

 
 

one variable 

effect 
two variables effect 

variable 
manifest 

categories 
 na = 1 na = 2 na = 3 

I (vulnerable) 

1 0.07 43.41 4.38 0.01* 

2 0.13 17.15 13.20 0.04 

3 104.94 0.00 0.02 4.31 104 

J (sensitive) 

1 0.00 1.53 106 521.43 1.25 10-9*  

2 577.28 0.80 0.00 439.96 

3 1.66 8.20 10-7 0.67 1.81 106 

K (moody) 

1 1.97 1.74 1.08 0.53 

2 0.85 0.81 1.37 0.90 

3 0.60 0.71 0.68 2.07 

L (doubtful) 

1 1.53 2.15 1.00 0.47 

2 0.82 0.80 1.22 1.02 

3 0.80 0.58 0.82 2.10 

Notes. * boundary values; na: category of NEUA. 



 

Table C.5.3 

Conditional probabilities of the manifest response categories for the construct neuroticism 

in the quasi-symmetry latent rater agreement model for structurally different raters (self-

report) 

  latent status 

variable 
manifest 

categories 
ns = 1 ns = 2 ns = 3 

A (vulnerable) 

1 .31 .04 .01 

2 .42 .12 .00 

3 .27 .84 .99 

B (sensitive) 

1 .51 .03 .00* 

2 .47 .11 .00 

3 .01 .86 1.00 

C (moody) 

1 .69 .38 .11 

2 .20 .39 .13 

3 .12 .23 .76 

D (doubtful) 

1 .50 .28 .00 

2 .31 .15 .13 

3 .18 .57 .87 

Notes. * boundary values; ns: categories of NEUS. 

 



 

Table C.5.4 

Conditional probabilities of the manifest response categories for the construct neuroticism 

(NEUA) in the quasi-symmetry latent rater agreement model for structurally different 

raters (peer report A) 

  latent status 

variable 
manifest 

categories 
na = 1 na = 2 na = 3 

I (vulnerable) 

1 .58 .09 .00* 

2 .39 .44 .00 

3 .03 .47 1.00 

J (sensitive) 

1 .77 .16 .00* 

2 .22 .50 .08 

3 .00 .34 .92 

K (moody) 

1 .76 .57 .34 

2 .15 .31 .25 

3 .09 .11 .40 

L (doubtful) 

1 .75 .48 .22 

2 .15 .31 .26 

3 .11 .21 .52 

Notes. * boundary values; na: categories of NEUA. 

 

 



 

Appendix E: Loglinear Parameters of the CT MTMR Mod el 
with Two-Variable Effects as Highest Order Interact ions  
 

The interpretation of the log-linear parameters should be carried out very cautiously 

because LEM encounters difficulties estimating large log-linear models with latent 

variables.  

 

E.1: Loglinear Parameters of the Model for Structurally Different Raters 

 

Table E.1.1 

Cross-classification of the log-linear two-variable effects for the construct neuroticism 

  NEUA   

 1 2 3  

ns = 1 2.08 0.89 0.54 0.73 

ns = 2 0.59 1.43 1.18 1.28 

ns = 3 0.81 0.79 1.58 1.08 

 0.95 1.06 0.99  

Notes. s indicates parameters with z-values larger than 2.00. b indicates boundary values. 

 

 

Table E.1.2 

Cross-classification of the log-linear two-variable effects for the construct 

conscientiousness  

  CONA   

 1 2 3  

cs = 1 1.87 1.14 0.47 0.89 

cs = 2 1.10 1.09 0.83 1.26 

cs = 3 0.49 0.81 2.55 0.89 

 0.54 1.24 1.49  

Notes. s indicates parameters with z-values larger than 2.00. b indicates boundary values. 

 
 



 

Table E.1.3  

Cross-classification of the log-linear two-variable effects for the self-report  

  CONS  

 1 2 3 

ns = 1 0.96 1.04 0.99 

ns = 2 0.84 1.12 1.06 

ns = 3 1.23 0.85 0.95 

Notes. s indicates parameter values with z-values larger than 2.00. 

 

Table E.1.4 

Cross-classification of the log-linear two-variable effects for the peer report  

  CONA  

 1 2 3 

na = 1 1.83s 1.11 0.49s 

na = 2 0.62 0.89 1.83 

na = 3 0.89 1.01 1.11 

Notes. s indicates parameters with z-values larger than 2.00. b indicates boundary values. 

 

 

Table E.1.5 

Cross-classification of the log-linear two-variable effects for neuroticism in the self-report 

and conscientiousness in the peer report  

  CONA  

 1 2 3 

ns = 1 0.92 0.93 1.16 

ns = 2 1.17 0.94 0.91 

ns = 3 0.93 1.14 0.95 

 



 

Table E.1.6 

Cross-classification of the log-linear two-variable effects for neuroticism in the peer report  

and conscientiousness in the self-report  

  CONS  

 1 2 3 

na = 1 1.18 0.90 0.94 

na = 2 1.01 0.99 1.00 

na = 3 0.84 1.12 1.06 

 

 

E.2: Loglinear Parameters of the Model for Interchangeable Raters 

 
Table E.2.1 
Cross-classification of the log-linear two-variable for neuroticism 
  NEUB   

 1 2 3  

na = 1 7.24s 5.81s 1.22b 0.13s 

na = 2 5.81s 7.96s 1.21b 0.12s 

na = 3 1.22b 1.21b 1 1 

 0.13s 0.12s 1  

Notes. s indicates parameters with z-values larger than 2.00. b indicates boundary values. 
 

 

Table E.2.2 
Cross-classification of the log-linear two-variable effects for conscientiousness 
  CONB   

 1 2 3  

ca = 1 3.20s 3.03s 0.39b 0.40s 

ca = 2 3.03s 4.03s 0.89b 0.57s 

ca = 3 0.39b 0.89b 1 1 

 0.40s 0.57s 1  

Notes. s indicates parameters with z-values larger than 2.00. b indicates boundary values. 
 
 



 

Table E.2.3 
Cross-classification of the log-linear two-variable effects across traits 
  CONA   

 1 2 3 

na = 1  2.61 s 1.75 2.40 b 

na = 2  0.74 1.81 4.40 b 

na = 3  0.53 b 0.51 b 1 

Notes. Due to the equality restrictions the same parameter values are found for the 
associations of NEUB and CONB.  
 
 
Table E.2.4 
Cross-classification of the log-linear two-variable effects across raters 
  CONB  

 1 2 3 

na = 1 0.94 0.53 s 0.67 

na = 2 0.71 0.69 0.77 b 

na = 3 0.62 b 0.77 b 1 

Notes. Due to the equality restrictions the same parameter values are found for the 
associations of NEUB and CONA.  
 



 

Appendix F: Input Files  
 

F.1: Input Files for Rater Agreement Models 

 

Saturated Model 
man 2 
dim 3 3 
lab A B  
mod {AB} 
 
Independence Model 
man 2 
dim 3 3 
lab A B  
mod {A,B} 
 
Quasi-independence I Model 
man 2 
dim 3 3 
lab A B  
mod {spe (AB, 5a)} 
 
Quasi-Independence II Model 
man 2 
dim 3 3 
lab A B  
mod {A,B fac(AB,1)} 
des [1 0 0  
     0 1 0  
     0 0 1] 
 

Quasi-symmetry Model 
man 2 
dim 3 3 
lab A B  
mod {A,B, fac(AB,3)} 
des [1 2 0 
     2 3 0 
     0 0 0] 
 
Symmetry Model 
man 2 
dim 3 3 
lab A B  
mod {spe (AB, 3a)} 
 



 

F.2: Input File for the Log-Linear Models with One Latent Variable and the model 

with two latent variables 

 
Log-linear Model with One Latent Variable 
 
lat 1 
man 4 
dim 3 3 3 3 3  
lab X A B C D  
mod  {X,X.A,X.B,X.C,X.D} 
 
Log-linear Model with Two Latent Variables 
 
      lat 2 
      man 8 
      dim 3 3 3 3 3 3 3 3 3 3 
      lab NE CO E A F B G C D H   
      mod  NE.CO {NE,CO} 
 
 A|NE {A.NE} 
 B|NE {B.NE} 
 C|NE {C.NE} 
 D|NE {D.NE} 
 E|CO {E.CO} 
 F|CO {F.CO} 
 G|CO {G.CO} 
 H|CO {H.CO} 
 
F.3: Input Files for the Latent Rater Agreement Models  

 
Saturated Model for Structurally Different Raters 
 
      lat 2 
      man 8 
      dim 3 3 3 3 3 3 3 3 3 3   
      lab  SN AN A B C D I J K L  
      mod  SN.AN 
 
 A|SN {A.SN} 
 B|SN {B.SN} 
 C|SN {C.SN} 
 D|SN {D.SN} 
 I|AN {I.AN} 
 J|AN {J.AN} 
 K|AN {K.AN} 
 L|AN {L.AN} 
 
 sta A|SN [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 sta I|AN [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 
 
Quasi-symmetry Model for Structurally Different Raters 
  
      lat 2 
      man 8 
      dim 3 3 3 3 3 3 3 3 3 3   
      lab  SN AN A B C D I J K L  
      mod  SN.AN {SN,AN, fac(SN.AN,5)} 



 

 
 A|SN {A.SN} 
 B|SN {B.SN} 
 C|SN {C.SN} 
 D|SN {D.SN} 
 I|AN {I.AN} 
 J|AN {J.AN} 
 K|AN {K.AN} 
 L|AN {L.AN} 
 
 sta A|SN [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 sta I|AN [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 
des [  1 2 3 
  2 4 5 
  3 5 0] 
 
 
Quasi-independence I Model for Structurally Different Raters 
 
      lat 2 
      man 8 
      dim 3 3 3 3 3 3 3 3 3 3   
      lab  SN AN A B C D I J K L  
      mod  SN.AN {SN,AN, spe(SN.AN,5a)} 
 
 A|SN {A.SN} 
 B|SN {B.SN} 
 C|SN {C.SN} 
 D|SN {D.SN} 
 I|AN {I.AN} 
 J|AN {J.AN} 
 K|AN {K.AN} 
 L|AN {L.AN} 
   
 sta A|SN [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 sta I|AN [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 
 
Quasi-independence II Model for Structurally Different Raters 
 
      lat 2 
      man 8 
      dim 3 3 3 3 3 3 3 3 3 3   
      lab  SN AN A B C D I J K L  
      mod  SN.AN {SN,AN, fac(SN.AN,1)} 
 
 A|SN {A.SN} 
 B|SN {B.SN} 
 C|SN {C.SN} 
 D|SN {D.SN} 
 I|AN {I.AN} 
 J|AN {J.AN} 
 K|AN {K.AN} 
 L|AN {L.AN} 
   
 sta A|SN [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 sta I|AN [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 
des  [ 1 0 0 
  0 1 0 
  0 0 1] 



 

 
 
Independence Model for Structurally Different Raters 
 
      lat 2 
      man 8 
      dim 3 3 3 3 3 3 3 3 3 3   
      lab  SN AN A B C D I J K L  
      mod  SN,AN 
 
 A|SN {A.SN} 
 B|SN {B.SN} 
 C|SN {C.SN} 
 D|SN {D.SN} 
 I|AN {I.AN} 
 J|AN {J.AN} 
 K|AN {K.AN} 
 L|AN {L.AN} 
 
 sta A|SN [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 sta I|AN [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 
 
Symmetry Model for Interchangeable Raters 
 
        lat 2 
        man 8 
        dim 3 3 3 3 3 3 3 3 3 3   
        lab X Y E F G H I J K L 
        mod  XY {fac(X,Y,2),fac(XY,8)} 
 
     E|X {EX} 
     F|X {FX} 
     G|X {GX} 
     H|X {HX} 
     I|Y eq1 E|X 
     J|Y eq1 F|X 
     K|Y eq1 G|X 
     L|Y eq1 H|X 
 
des [  1 2 0 * to model the marginal of X 
  1 2 0 * to model the marginal of y   
  1 2 3 
  4 5 6 
   7 8 0]  
    
sta E|X [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 
 
Quasi-independence I Model for Interchangeable Raters 
 
        lat 2 
        man 8 
        dim 3 3 3 3 3 3 3 3 3 3   
        lab X Y E F G H I J K L 
        mod  XY {fac(X,Y,2),fac(XY,3)} 
 
     E|X {EX} 
     F|X {FX} 
     G|X {GX} 
     H|X {HX} 



 

     I|Y eq1 E|X 
     J|Y eq1 F|X 
     K|Y eq1 G|X 
     L|Y eq1 H|X 
 
des [  1 2 0 * to model the marginal of X 
  1 2 0 * to model the marginal of y   
  1 0 0 
  0 2 0 
   0 0 3]  
    
sta E|X [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 
 
Quasi-independence II Model for Interchangeable Raters 
 
        lat 2 
        man 8 
        dim 3 3 3 3 3 3 3 3 3 3   
        lab X Y E F G H I J K L 
        mod  XY {fac(X,Y,2),fac(XY,1)} 
 
     E|X {EX} 
     F|X {FX} 
     G|X {GX} 
     H|X {HX} 
     I|Y eq1 E|X 
     J|Y eq1 F|X 
     K|Y eq1 G|X 
     L|Y eq1 H|X 
 
des [  1 2 0 * to model the marginal of X 
  1 2 0 * to model the marginal of y   
  1 0 0 
  0 1 0 
   0 0 1]  
    
sta E|X [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 
 
Independence Model for Interchangeable Raters 
 
        lat 2 
        man 8 
        dim 3 3 3 3 3 3 3 3 3 3   
        lab X Y E F G H I J K L 
        mod  XY {fac(X,Y,2)} 
 
     E|X {EX} 
     F|X {FX} 
     G|X {GX} 
     H|X {HX} 
     I|Y eq1 E|X 
     J|Y eq1 F|X 
     K|Y eq1 G|X 
     L|Y eq1 H|X 
 
des [  1 2 0 * to model the marginal of X 
  1 2 0] * to model the marginal of y   
 
sta E|X [.90 .05 .05 .05 .90 .05 .05 .05 .90] 



 

F.4: Input Files for the CT MTMR Models for Structurally Different and 

Interchangeable Raters 

 
Saturated CT MTMR Model for Structurally Different Raters 
 
      lat 4 
      man 16 
      dim 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  
      lab  SN SC AN AC E A F B G C D H M I N J O K L P 
      mod  SN.SC.AN.AC  
 
 A|SN {SN.A} 
 B|SN {SN.B} 
 C|SN {SN.C} 
 D|SN {SN.D} 
 E|SC {E.SC} 
 F|SC {F.SC} 
 G|SC {G.SC} 
 H|SC {H.SC} 
 I|AN {I.AN} 
 J|AN {J.AN} 
 K|AN {K.AN} 
 L|AN {L.AN} 
 M|AC {M.AC} 
 N|AC {N.AC} 
 O|AC {O.AC} 
 P|AC {P.AC} 
 
 sta A|SN [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 sta E|SC [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 sta I|AN [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 sta M|AC [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 
 
CT MTMR Model with Three-Variable Effects as Highest Order Interactions for 
Structurally Different Raters 
      
      lat 4 
      man 16 
      dim 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  
      lab  SN SC AN AC E A F B G C D H M I N J O K L P 
      mod  SN.SC.AN.AC {SN.SC.AN,SN.SC.AC,SN.AN.AC,SC.AN.AC} 
 
 A|SN {SN.A} 
 B|SN {SN.B} 
 C|SN {SN.C} 
 D|SN {SN.D} 
 E|SC {SC.E} 
 F|SC {SC.F} 
 G|SC {SC.G} 
 H|SC {SC.H} 
 I|AN {I.AN} 
 J|AN {J.AN} 
 K|AN {K.AN} 
 L|AN {L.AN} 
 M|AC {M.AC} 
 N|AC {N.AC} 
 O|AC {O.AC} 
 P|AC {P.AC} 
 



 

 sta A|SN [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 sta E|SC [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 sta I|AN [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 sta M|AC [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 
 
CT MTMR Model with Two-Variable Effects as Highest Order Interactions for 
Structurally Different Raters 
 
      lat 4 
      man 16 
      dim 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  
      lab  SN SC AN AC E A F B G C D H M I N J O K L P 
      mod  SN.SC.AN.AC {SN.SC,SN.AN,SN.AC,SC.AN,SC.AC,AN.AC} 
 
 
 A|SN {SN.A} 
 B|SN {SN.B} 
 C|SN {SN.C} 
 D|SN {SN.D} 
 E|SC {SC.E} 
 F|SC {SC.F} 
 G|SC {SC.G} 
 H|SC {SC.H} 
 I|AN {AN.I} 
 J|AN {AN.J} 
 K|AN {AN.K} 
 L|AN {AN.L} 
 M|AC {AC.M} 
 N|AC {AC.N} 
 O|AC {AC.O} 
 P|AC {AC.P} 
 
 sta A|SN [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 sta E|SC [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 sta I|AN [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 sta M|AC [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 
 



 

CT MTMR Model with Two-Variable Effects as Highest Order Interactions for 
Interchangeable Raters 
      
      lat 4 
      man 16 
      dim 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  
      lab  AN AC BN BC E F G H I J K L M N O P Q R S T 
      mod  AN.AC.BN.BC {fac(AN,BN,2), fac(AN.BN,5), fac(AC,BC,2), 
fac(AC.BC,5), fac(AN.AC,BN.BC,8), fac(AN.BC,AC.BN,8), 
fac(AN.AC.BN,AN.BN.BC,0), fac(AC.BN.BC,AN.AC.BC,0), 
fac(AN.AC.BN.BC,0)} 
 
 F|AN {AN.F} 
   H|AN {AN.H} 
   J|AN {AN.J} 
   K|AN {AN.K} 
   E|AC {E.AC}  
   G|AC {G.AC}  
   I|AC {I.AC}  
   L|AC {L.AC}  
   N|BN eq1 F|AN 
   P|BN eq1 H|AN 
   R|BN eq1 J|AN  
   S|BN eq1 K|AN  
   M|BC eq1 E|AC 
   O|BC eq1 G|AC 
   Q|BC eq1 I|AC 
   T|BC eq1 L|AC 
   
 sta F|AN [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 sta E|AC [.90 .05 .05 .05 .90 .05 .05 .05 .90] 
 
des [ 1 2 0 *AN,BN 
 1 2 0 
 1 2 3 *AN.BN 
 2 4 5 
 3 5 0 
 1 2 0 *AC,BC 
 1 2 0 
 1 2 3 *AC.BC 
 2 4 5 
 3 5 0 
 1 2 3 *AN.AC = BN.BC 
 4 5 6 
 7 8 0 
 1 2 3 *BN.BC = AN.AC 
 4 5 6 
 7 8 0  
 1 2 3 *AN.BC = AC.BN 
 4 5 6 
 7 8 0  
 1 4 7 *AC.BN = AN.BC 
 2 5 8 
 3 6 0 
 
    0  0  0  0  0  0  0  0  0 *AN.AC.BN = AN.BN.BC 
    0  0  0  0  0  0  0  0  0 
    0  0  0  0  0  0  0  0  0 
    0  0  0  0  0  0  0  0  0 *AN.BN.BC = AN.AC.BN 
    0  0  0  0  0  0  0  0  0 
    0  0  0  0  0  0  0  0  0 
    0  0  0  0  0  0  0  0  0 * AN.AC.BC = AC.BN.BC 



 

    0  0  0  0  0  0  0  0  0 
    0  0  0  0  0  0  0  0  0   
    0  0  0  0  0  0  0  0  0 *AC.BN.BC= AN.AC.BC 
    0  0  0  0  0  0  0  0  0 
    0  0  0  0  0  0  0  0  0 
    0  0  0  0  0  0  0  0  0  *AN.AC.BN.BC   
    0  0  0  0  0  0  0  0  0 
    0  0  0  0  0  0  0  0  0 
    0  0  0  0  0  0  0  0  0 
    0  0  0  0  0  0  0  0  0 
    0  0  0  0  0  0  0  0  0 
    0  0  0  0  0  0  0  0  0 
    0  0  0  0  0  0  0  0  0 
    0  0  0  0  0  0  0  0  0] 



 

Appendix G in German Language (Anhang in deutscher 
Sprache) 
 

G.1: Zusammenfassung in deutscher Sprache 

 

In der vorliegenden Arbeit werden Modelle zur Erfassung der Beurteilerübereinstimmung 

für latente kategoriale Variablen (latent rater agreement models) und Multitrait-Multirater 

Modelle definiert, um die konvergente und diskriminante Validität von kategorialen Daten 

messfehlerbereinigt analysieren zu können.  

In der Einleitung werden zunächst die Konzepte der konvergenten und 

diskriminanten Validität vorgestellt, Ihre Analyse mittels der Multitrait-Multimethod 

(MTMM) Matrix (Campbell & Fiske, 1959) ist eine der am weitesten verbreiteten 

Techniken der Konstruktvalidierung in der Psychologie (siehe etwa Eid, Lischetzke, & 

Nussbeck, 2006).  

Moderne Weiterentwicklungen des ursprünglichen Ansatzes zu CFA-MTMM 

Modellen erlauben es, die Reliabilität sowie die konvergente und die diskriminante 

Validität bereinigt um Messfehlereinflüsse zu bestimmen. Darüberhinaus können 

methodenspezifische Effekte bestimmt und mit anderen Variablen in Beziehung gesetzt 

werden. Allerdings wurden und werden die meisten Modelle zur Analyse von MTMM 

Datensätzen für Modelle mit metrischen latenten Variablen entwickelt.  

MTMM Modelle für kategoriale Variablen, die die gesamte in einem Datensatz 

vorliegende Information nutzen, erweisen sich als eine theoretisch sinnvolle Erweiterung 

zu den bisher vorliegenden Modellen. Sie ermöglichen es, die konvergente und 

diskriminate Validität auf der Ebene der einzelnen latenten Kategorien zu untersuchen. 

Das heißt, man kann feststellen, ob bestimmte Kategorien von Konstrukten (z. B. sehr 

neurotisch zu sein) gut erkannt und somit von verschiedenen Ratern kongruent 

eingeschätzt werden können und ob andere Kategorien (z. B. nicht neurotisch) nicht genau 

so gut kongruent eingeschätzt werden können. Die dadurch hervorgerufenen Unterschiede 

in den latenten Verteilungen werden explizit und kategorienspezifisch in log-linearen 

Modellen analysiert.  

Derzeit liegen jedoch keine Modellformulierungen für MTMM Modelle mit 

kategorialen latenten Variablen vor. In dieser Arbeit wird diese Lücke geschlossen, es 



 

werden latente Beurteilerübereinstimmungsmodelle und MTMM Modelle für kategoriale 

latente Variablen für den Spezialfall von Ratern als Methoden (Kenny, 1995) entwickelt.  

Zunächst werden die bereits definierten Beurteilerübereinstimmungsmodelle für 

manifeste Variablen vorgestellt und ihre Bedeutung für die Analyse von Übereinstimmung 

und mangelnder Übereinstimmung hervorgehoben (Section 2) 

Die Erweiterung der log-linearen Modelle zu log-linearen Modellen mit latenten 

Variablen (z. B. Hagenaars, 1990, 1993) ermöglicht es, die Übereinstimmung von zwei 

Ratern bei der Einschätzung eines Konstruktes auf latenter (messfehlerfreier) Ebene zu 

analysieren (Section 4). Zu diesem Zweck werden die verschiedenen manifesten 

Beurteilerübereinstimmungsmodelle im log-linearen Modell mit latenten Variablen 

adaptiert (Section 5). Die Bedeutung der Modellparameter wird im Detail erläutert und der 

Zusammenhang zur Analyse der konvergenten und diskriminanten Validität hergestellt. 

Insbesondere werden folgende Koeffizienten definiert: kategorienspezifische 

Übereinstimmung (category-specific agreement rates), Rater Bias (sensu Agresti, 1992) 

und die Unterscheidbarkeit (distinguishability) von Kategorien.  

In den unterschiedlichen latenten Beurteilerübereinstimmungsmodellen können die 

Rater entweder konstant höher übereinstimmen, in diesem Fall passt ein Quasi-

Unabhängigkeitsmodell II (oder ein Modell mit restringierten Effekten für Zellen auf der 

Hauptdiagonalen), oder in ihrer Übereinstimmung variieren, was zu einem Quasi-

Unabhängigkeitsmodell I, einem Quasi-Symmetry oder einem saturierten Modell führt. 

Diese Modelle bilden das zugrundeliegende Muster von Übereinstimmung und mangelnder 

Übereinstimmung ab, jedoch sind ihre log-linearen Parameter nicht in allen Fällen einfach 

zu interpretieren. Aus diesem Grund bietet es sich an, das Verhältnis der 

modellimplizierten Übereinstimmung zum Produkt der erwarteten Randsummen zu 

berechnen (category-specific agreement rate). Dieser Wert gibt an, um welchen Faktor die 

Übereinstimmung überrepräsentiert ist.  

Der method-bias type I Koeffizient gibt an, ob sich verschiedene Rater in den 

modellimplizierten Randverteilungen unterscheiden. Je stärker der Koeffizient von 1 

abweicht, desto stärker ist die Divergenz zwischen den Ratern in der Prävalenzrate für die 

betreffende Kategorie. D. h. dieser Index gibt an, ob die latenten Klassen, in die die 

Ratings gruppiert werden, gleich groß sind für die beiden Rater. Mittels dieser Werte lässt 

sich feststellen, ob Rater eine unterschiedliche “Grundwahrnehmung” von 

Merkmalsausprägungen haben. Sollten diese Unterschiede zu groß sein, so kann nicht 



 

davon ausgegangen werden, dass die Rater das gleiche Merkmal beurteilen und von einer 

Untersuchung der Beurteilerübereinstimmung sollte abgesehen werden.  

Die Validität eines Items zur Messung der latenten Kategorien kann anhand der 

Zweivariableneffekte zwischen Items und latenter Kategorie bestimmt werden. Zu diesem 

Zweck können auch die bedingten Antwortwahrscheinlichkeiten oder die Effekt-Parameter 

herangezogen werden. Liegen für bestimmte Kategorien einer latenten Variablen starke 

Effekte zu einer bestimmten manifesten Kategorie vor, so kann die manifeste Kategorie als 

“marker” für die latente Kategorie angesehen werden. Die Validität (bzw. ihre obere 

Schranke die Reliabilität) für alle Items gemeinsam kann (prinzipiell) mit den mittleren 

Zuordnungswahrscheinlichkeiten bestimmt werden.  

Werden die Rater-Agreement Modelle auf Ratings mit geordneten Kategorien 

angewandt, so kann eine Überprüfung der theoretisch angenommenen Ordnung der 

Kategorien vorgenommen werden.  

In Section 6, werden zwei saturierte Modelle als allgemeinste Beurteiler-

übereinstimmungsmodelle miteinander kombiniert. Die Definition dieses Multitrait-

Multirater (MTMR) Modells eröffnet weitere Analysemöglichkeiten für die konvergente 

und diskriminante Validität, Beurteilerübereinstimmung, Moderatoren von 

Übereinstimmung und raterspezifischen Effekten. In diesen komplexen Modellen mit  

Zwei-, Drei- und Viervariableneffekten ist eine detaillierte Analyse von Bedingungen und 

Konstellationen möglich, die zu erhöhter Übereinstimmung und / oder verringerten 

Abweichungen im Urteil führen. Die Bedeutung der einzelnen log-linearen Effekte auf die 

Übereinstimmung auf zwei Konstrukten, nur einem Konstrukt oder abweichende Urteile 

wird im Detail erläutert.  

Raterspezifische Effekte können im MTMR Modell mit mehreren Koeffizienten 

analysiert werden. Der method-bias type I Koeffizient zeigt an, ob sich die Rater in ihren 

angenommenen Prävalenzraten unterscheiden. Der method-bias type II Koeffizient zeigt 

an, ob die Rater die verschiedenen Kategorienkombinationen über Traits hinweg 

unterschiedlich stark bevorzugen, d. h. ob es eine raterspezifische Sicht in Bezug auf den 

Zusammenhang von Merkmalen gibt. Das MTMR Modell erlaubt es, diese Effekte auch 

als bedingte Effekte für bestimmte Kategorienkonstellationen höherer Ordnung zu 

analysieren.  

Die diskriminante Validität kann auf der Ebene von Zweivariableninteraktionen 

untersucht werden oder in Abhängigkeit von Kategorienkonstellationen höherer Ordnung. 



 

Prinzipiell ist sie hoch, je geringer die Effekte für Zellen abseits der Hauptdiagonalen 

ausgeprägt sind.  

Alle latenten Rater Agreement Modelle und alle MTMR Modelle werden anhand 

empirischer Anwendungen illustriert. Dabei werden die in Sections 5 und 6 für strukturell 

unterschiedliche und austauschbare Rater definierten Modelle jeweils an einem Datensatz 

mit zwei Ratern (Selbst- und Fremdeinschätzung oder zwei Fremdeinschätzungen) 

angewendet. Dabei zeigt sich, dass die komplexen MTMR Modelle mit 

Mehrvariableninteraktionen mit den vorliegenden Softwareprogrammen nicht geschätzt 

werden können.  

In Section 7 werden die latenten Rater Agreement Modelle und die MTMR 

Modelle in Hinblick ihre Analysemöglichkeiten der konvergenten und diskriminanten 

Validität, der Übereinstimmung, der Unterschiede in den Ratings und der Methodeneffekte 

diskutiert. Darüberhinaus wird das MTMR Modell in den Kontext des Realistic Accuracy 

Modells (Funder, 1995) gerückt, welches einen theoretischen Rahmen bietet, mögliche 

Interaktionen in der latenten Tabelle mit Moderatoreffekten von akkuraten Urteilen 

(accuracy) zu erklären.  

Abschließend werden die Schätzproblematik aufgegriffen und Anforderungen an zu 

entwickelnde Softwareprogramme und Algorithmen formuliert. Sollten diese vorliegen, 

könnte die Anwendbarkeit des MTMR Modells an großen Datensätzen überprüft werden.  



 

G.2: Lebenslauf 

 

Aus datenschutzrechtlichen Gründen wurde der Lebenslauf nicht abgedruckt.  

  

 



 

G.3: Erklärung 

 

 

Hiermit versichere ich, dass ich die vorgelegte Arbeit selbständig verfasst habe. Andere als 

die angegebenen Hilfsmittel habe ich nicht verwendet. Die Arbeit ist in keinem früheren 

Promotionsverfahren angenommen oder abgelehnt worden. 
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