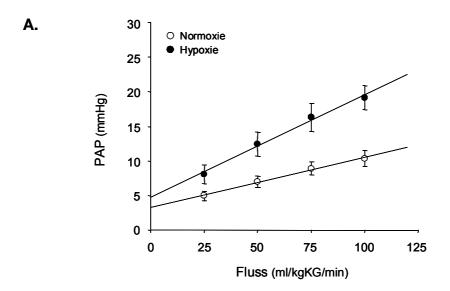
3. ERGEBNISSE

3.1. Analyse der pulmonalvaskulären Druck-Fluss-Beziehung während Normoxie

Während Ventilation der isolierten Lungen mit einem nomoxischen Gasgemisch (Normoxie) resultierte die Perfusion mit ansteigendem Perfusionsfluss (25, 50, 75 und 100 ml/kgKG/min) in ansteigenden Perfusionsdrucken (PAP) in allen untersuchten Mäuselungen (Tabelle 2). Dabei nimmt mit jeder Steigerung des Perfusatflusses der PAP signifikant zu (jeweils p < 0,05; Abbildung 9). Die jeweiligen Parameter P_{ZF} und R_{LIN} der linearen Regressionsanalyse und α und R_0 der non-linearen Regressionsanalyse unter Normoxie sind in Tabelle 2 dargestellt.

3.2. Auswirkung der HPV auf die pulmonal-vaskuläre Druck-Fluss-Beziehung


Ventilation der isoliert perfundierten Lungen mit einem hypoxischen Gasgemisch (FiO₂ 0,01) führte zu einem Anstieg des Perfusionsdruckes (PAP), welcher nach ca. 1,5

<u>Tabelle 2:</u> Perfusionsdruck (PAP) während Variation des Perfusionsflusses während <u>Normoxie</u>. Daten von 7 Einzelversuchen sowie deren Mittelwert (MW) und Standardabweichung (SD).

	PAP (mmHg)				Lineare Regression		Non-lineare Regression	
	25 ml/kg/min	50 ml/kg/min	75 ml/kg/min	100 ml/kg/min	P _{ZF}	R _{LIN}	α %/mmHg	R ₀
1	5,6	7,9	9,8	11,1	4,0	73,6	4,7	0,28
2	4,7	6,6	8,1	9,5	3,2	63,7	4,0	0,18
3	5,7	8,0	10,1	12,1	3,7	84,8	2,9	0,22
4	4,4	6,6	8,1	9,6	2,9	67,7	3,0	0,15
5	4,1	6,1	7,9	9,1	2,6	67,2	2,1	0,11
6	4,5	6,2	8,7	9,9	2,7	74,9	1,7	0,12
7	5,6	7,6	9,7	11,2	3,9	74,8	4,1	0,25
MW	5,0	7,0	8,9	10,4	3,3	72,4	3,2	0,19
SD	0,7	0,8	0,9	1,1	0,6	7,0	1,1	0,07

Minuten einsetzte und nach 6 Minuten sein Maximum erreichte (siehe Abbildung 7). Die erneute Messung des PAP während der vier verschiedenen Perfusionsflüsse (Einzelwerte dargestellt in Tabelle 3) ergab, dass dieser im Mittel 63±18 % bei 25 ml/kgKG/min, 78±17 % bei 50 ml/kgKG/min, 84±21 % bei 75 ml/kgKG/min und 85±16 % bei 100 ml/kgKG/min signifikant höher lagen als während normoxischer Ventilation (jeweils p < 0,05; vergleiche Abbildung 9).

Die Lineare bzw. non-lineare Regressionsanalyse zeigte, dass es während hypoxisch pulmonaler Vasokonstriktion (HPV) zu einem mittleren Anstieg von P_{ZF} um 43±29 %,

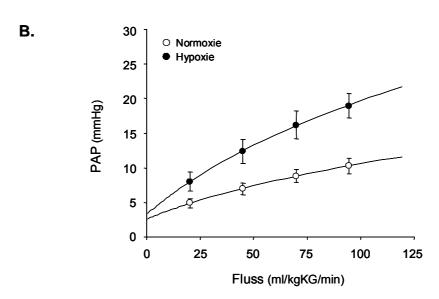


Abbildung 9: Mittlere Perfusionsdrucke (PAP) ± SD während Perfusion mit 25, 50, 75 und 100 ml/kgKG/min Perfusatfluss (Q) während normoxischer (O) und hypoxischer (●) Ventilation. Hieraus ermittelte Rehressionskurven nach linearer (A.) und non-linearer (B.) Regressionsanalyse.

<u>Tabelle 3:</u> Perfusionsdruck (PAP) während Variation des Perfusionsflusses während <u>Hypoxie</u>. Daten von 7 Einzelversuchen sowie deren Mittelwert (MW) und Standradabweichung (SD).

	PAP (mmHg)				Lineare Regression		Non-lineare Regression	
	25 ml/kg/min	50 ml/kg/min	75 ml/kg/min	100 ml/kg/min	P _{ZF}	R _{LIN}	α %/mmHg	R ₀
1	8,8	13,1	16,6	19,8	5,4	146,0	2,0	0,50
2	9,4	13,7	18,6	20,3	6,1	150,4	2,1	0,66
3	9,3	14,3	18,6	20,3	6,3	148,8	2,3	0,51
4	7,0	11,5	14,3	18,0	3,8	142,8	0,2	0,45
5	5,8	9,5	13,2	15,6	2,7	133,0	0,7	0,38
6	7,4	11,4	15,7	19,5	3,3	162,8	0,6	0,23
7	8,8	13,6	17,1	20,2	5,5	150,3	1,9	0,41
MW	8,1	12,4	16,3	19,1	4,7	147,7	1,4	0,45
SD	1,4	1,7	2,1	1,7	1,5	9,0	0,9	0,13

von R_{LIN} um 105±19 % kommt. Damit wird die lineare Regressionsgerade durch die HPV sowohl nach oben verschoben als auch steiler.

Analysiert man die Druck-Fluss-Beziehung mittels non-linearer Regression so zeigt sich, dass der Ruhewiderstand der Gefäße R_0 um 156±86 % zunimmt und es gleichzeitig zu einer Abnahme der Gefäßdehnbarkeit kommt, ausgedrückt als Hypoxieinduzierte Abnahme des Distensibilitätsfaktor α um 57±22 % ab (vergleiche Tabellen 2 und 3). Diese Veränderungen waren jeweils im Vergleich Normoxie versus Hypoxie signifikant.

Zu beachten ist, dass in Abbildung 9B der Schnittpunkt der non-linearen Regressionskurven mit der Druck-Achse genau bei 2 mmHg liegt, was durch die Fixierung des Ausflussdrucks (LAP) auf diesen Wert zu Stande kommt.

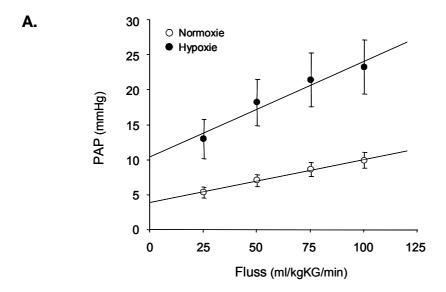
3.3. Einfluss von L-NAME auf die pulmonalvaskuläre Druck-Fluss-Beziehung

Um zu untersuchen, welchen Einfluss die endogene NO-Bildung auf die pulmonalvaskuläre Druck-Fluss-Beziehung hat, wurden in einem zweiten Studienabschluss dem Perfusat 1 mM des non-selektiven NOS-Inhibitors L-NAME zugesetzt und dann die Druck-Fluss-Kurven unter normoxoschen und hypoxischen Bedingungen studiert.

Unter Normoxie unterschied sich der PAP – unabhängig davon, bei welchem Perfusionsfluss gemessen wurde – nicht während Perfusion mit L-NAME von dem während Perfusion ohne L-NAME (vergleiche Tabellen 2 und 4). L-NAME hatte also keinen Einfluss auf den pulmonalvaskulären Widerstand, also den basalen Gefäßtonus, betrachtet man lediglich den gemessenen PAP unter gleichem Perfusionsfluss. Dies spiegelte sich auch in den Parametern der linearen Regressionsanalyse, P_{ZF} und R_{LIN}, auf die L-NAME keinen Einfluss hatte.

Im Gegensatz dazu zeigte die Analyse mittels non-linearer Regression, dass die Blockade der endogenen NO-Synthese durch L-NAME zu einer signifikanten Erhöhung

<u>Tabelle 4:</u> Perfusionsdruck (PAP) während Variation des Perfusionsflusses während <u>Normoxie</u> während Perfusion mit 1 mM <u>L-NAME</u>. Daten von 7 Einzelversuchen sowie deren Mittelwert (MW) und Standradabweichung (SD).

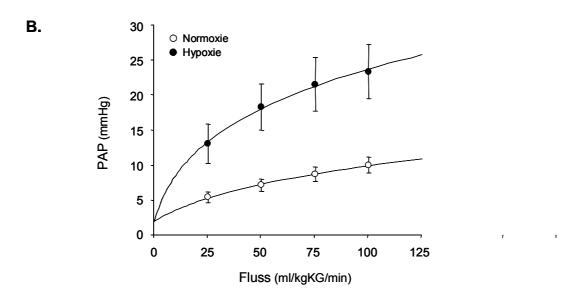
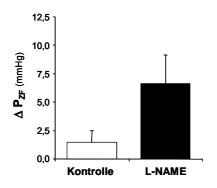

	PAP (mmHg)				Lineare Regression		Non-lineare Regression	
	25 ml/kg/min	50 ml/kg/min	75 ml/kg/min	100 ml/kg/min	P _{ZF}	R _{LIN}	α %/mmHg	R ₀
1	5,9	7,1	8,8	9,8	4,5	53,6	10,4	0,58
2	4,7	6,1	7,5	8,8	3,4	53,8	6,1	0,21
3	4,9	6,1	7,4	8,3	3,8	45,8	10,8	0,40
4	6,4	7,7	9,5	10,8	4,9	59,7	9,4	0,62
5	6,2	8,5	10,1	11,6	4,7	70,3	6,5	0,44
6	4,7	6,9	8,6	10,5	2,9	76,9	4,0	0,14
7	5,0	7,4	9,0	10,2	3,5	69,8	4,3	0,22
MW	5,4	7,1	8,7	10,0	4,0	61,4	7,3	0,37
SD	0,7	0,9	1,0	1,1	0,8	11,2	2,9	0,19

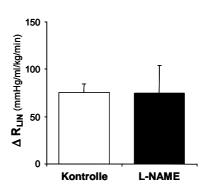
<u>Tabelle 5:</u> Perfusionsdruck (PAP) während Variation des Perfusionsflusses während <u>Hypoxie</u> während Perfusion mit 1 mM <u>L-NAME</u>. Daten von 7 Einzelversuchen sowie deren Mittelwert (MW) und Standradabweichung (SD).

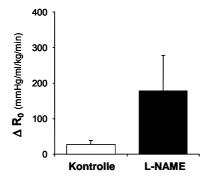
	PAP (mmHg)				Lineare Regression		Non-lineare Regression	
	25 ml/kg/min	50 ml/kg/min	75 ml/kg/min	100 ml/kg/min	P _{ZF}	R _{LIN}	α %/mmHg	R_0 mmHg/ml/kg/min
1	15,6	19,7	23,3	26,3	12,3	142,1	4,9	2,44
2	9,7	12,5	13,9	15,1	8,4	69,6	13,7	2,96
3	15,8	21,5	24,3	25,4	13,9	125,6	6,7	3,05
4	14,9	20,8	24,2	24,9	12,9	133,8	5,4	2,81
5	14,9	20,7	24,3	25,1	12,7	136,4	5,2	2,64
6	10,1	15,7	19,9	24,4	5,7	188,4	1,3	0,43
7	10,5	17,0	20,8	22,3	7,9	156,0	2,7	0,72
MW	13,1	18,3	21,5	23,3	10,6	136,0	5,7	2,15
SD	2,8	3,3	3,8	3,9	3,1	35,8	4,0	1,10

der Gefäßdistensibilität (α = 3,2±1,1 %/mmHg ohne L-NAME versus 7,3±2,9 %/mmHg; p < 0,05) sowie des Gefäßwiderstands unter Nulldruck-Bedingungen (R_0 , = 0,19±0,07 mmHg/ml/kgKG/min ohne L-NAME versus 0,37±019 mmHg/ml/kgKG/min mit L-NAME; p < 0,05) führte.

Tabelle 5 zeigt die Einzelwerte während L-NAME-Perfusion unter hypoxischen Bedingungen. Die pulmonalvaskuläre Druck-Fluss-Kurve wurde während Hypoxie deutlich durch L-NAME zu höheren Drucken hin verschoben (Abbildung 10). Dabei kam es zu einer Verschiebung der linearen Regressionsgeraden nach oben, was in einer signifikant größeren Hypoxie-induzierten Zunahme von PZF unter L-NAME-Perfusion von 6,6±2,5 mmHg im Vergleich zu 1,5±1,0 mmHg ohne L-NAME (p < 0,05) Ausdruck fand (Abbildung 11). Die Zunahme der Steilheit der Regressionsgeraden durch Hypoxie veränderte sich im Gegensatz dazu durch Perfusion mit L-NAME nicht (Hypoxie-induzierte Zunahme von RIIN 75±9 mmHg/ml/kgKG/min ohne L-NAME versus 75±30 mmHg/ml/kgKG/min mit L-NAME).


Abbildung 10: Mittlere Perfusionsdrucke (PAP) ± SD während Perfusion mit 25, 50, 75 und 100 ml/kgKG/min Perfusatfluss (Q) während normoxischer (O) und hypoxischer (●) Ventilation unter Zusatz von 1 mM <u>L-NAME</u> Hieraus ermittelte Rehressionskurven nach linearer (A.) und non-linearer (B.) Regressionsanalyse.


Die Analyse der pulmonalvaskulären Druck-Fluss-Kurven mittels non-linearer Regression ergab, dass der Hypoxie-induzierte Abfall der Gefäßdistensibilität (α) sich in seinem Ausmaß nicht durch Perfusion der Lungen mit L-NAME veränderte. Im Gegensatz hierzu verstärkte L-NAME den Anstieg von R₀ durch Hypoxie (Hypoxie-induzierte Zunahme von R₀ = 0,26±0,12 mmHg/ml/kgKG/min ohne L-NAME versus 1,78±0,99 mmHg/ml/kgKG/min mit L-NAME; p < 0,05)(Abbildung 11).

In Abbildung 11 auf der nächsten Seite, fällt die gleichsinnige Veränderung von PZF und

R₀ sowie von R_{LIN} und α durch die verschiedenen Versuchsbedingungen (Hypoxie, L-NAME) auf. Es ergab sich daher die Frage, in wiefern diese Parameter jeweils miteinander korrelieren. Es wurden daher alle erhobenen Werte für P_{ZF} mit denen für R₀, sowie die für R_{LIN} mit denen für α korreliert (jeweils n = 28 Wertepaare). Dabei zeigte sich eine gute Korrelation zwischen P_{ZF} mit denen für R₀ (R₀ = 0,26 *P_{ZF} – 0,70; r^2 = 0,87; p < 0,01), während R_{LIN} zwar signifikant aber schwach mit α korrelierte (R_{LIN} = -0,05 * α + 9,12; r^2 = 0,34; p < 0,01).

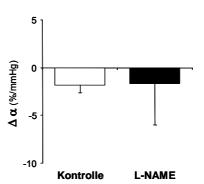


Abbildung 11: Hypoxie-induzierte Veränderungen (Δ) der Parameter der linearen (P_{ZF} , P_{LIN}) und non-linearen (α , P_{CIN}) Regressionsanalyse der pulmonal-vaskulären Druck-Fluss-Beziehung mit (L-NAME) und ohne (Kontrolle) Perfusion der isolierten Mäuselungen mit 1 mM L-NAME.