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Preface

Scope The thesis presents parts of the work I did as a research assistant
in the Institute of Medical Genetics and Human Genetics at the Charité -
Universitätsmedizin Berlin under supervision of Peter. N. Robinson. It covers
the contents of five original publications, work that will be submitted for pub-
lication as well as unpublished work. The original publications that define the
main focus of the first three chapters are:

• the RECOMB conference paper Grossmann et al. (2006), in which we
introduced the parent-child approach for the so-called overrepresenta-
tion analysis of gene lists. An extended version of this procedure with a
benchmark demonstrating the advantages over prior approaches was
subsequently published in Bioinformatics journal as Grossmann et al.
(2007).

• In the Bioinformatics paper Bauer et al. (2008), we published the Ontolo-
gizer, which is a graphical user interface for overrepresentation analysis.

• In the NAR paper Bauer et al. (2010), we introduced model-based gene
set analysis (MGSA).

• In the Bioinformatics paper Bauer et al. (2011), a fast native version of
the MGSA algorithm is implemented for the R/Bioconductor, which is
a frequently used statistical software package.

These method papers are collaborative works, for which I contributed to
the design, the analysis, the manuscript writing, and provided the implemen-
tation. Many parts of this thesis are going to be published in a book titled
Introduction to Bio-ontologies, which I authored together with Peter N. Robin-
son (Robinson and Bauer, 2011). Also the contents of Chapter 4, where we
describe an algorithm for querying attribute ontologies, is introduced there.
A separate manuscript for this topic is in preparation. 1

Other Works I also contributed to other scientific projects, which are not in
immediate scope of this thesis. Together with Sebastian Köhler I designed,
implemented, and evaluated the candidate disease prediction tool Gene Wan-
derer (Köhler et al., 2008). The idea about constructing the Human Phenotype
Ontology was conceived in a discussion with Peter N. Robinson about how to

1In the meantime, a revised version has been published as BOQA in Bauer et al. (2012).
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cluster similar diseases for this project. The Human Phenotype Ontology be-
came a project of its own (Robinson et al., 2008). I co-authored the publication
of the Phenomizer (Köhler et al., 2009) and a related conference paper (Schulz
et al., 2009), of which the method presented in Chapter 4 is a direct follow
up. Additionally, I participated in the design and implementation of a trun-
cated variant of the suffix tree data structure (Schulz et al., 2008). Together
with Christian Rödelsperger and Peter Krawitz, I designed, implemented,
and evaluated methods for inferring chromosomal regions that are identical
by descent for related individuals using data obtained from high-throughput
sequencing technologies (Krawitz et al., 2010b; Rödelsperger et al., 2011). I
was involved in analyses of how ultra-conserved sequence elements influence
gene expression (Guo et al., 2008; Rödelsperger et al., 2009), in a study about
the ability for current short-read sequence mapping tools to detect micro in-
dels (Krawitz et al., 2010a), and in defining a procedure to computationally
predict enhancer targets (Rödelsperger et al., 2011). Finally, I was responsi-
ble for analyzing EST expression data in Hecht et al. (2006) and mircoarray
expression data in Ott et al. (2009).
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1
Introduction

Living beings are spread all over the earth. By now, their forms are adapted
to very different environmental conditions resulting in very specialized and
diverse organisms. That is, they can not only be found in liquid water, on soil
or in the air but can also live in extreme areas like hot springs or deeply found
earth crusts. But regardless of their variety, all living forms are composed of
biological cells as their main structural and functional units.

A cell is a complex machinery with capabilities to grow, to adapt to envi- Cells and diseases
ronmental conditions, or to reproduce. However, a cell may undergo some
form of functional impairment, which may result in a disease of the organ-
ism. According to the theory of cellular pathology originally developed by
Virchow, disease originates of an insufficiency of the regulatory instruments
inherent to the cells. To reverse a disease it is therefore necessary to under-
stand the behavior of the cells and this is one of the primary goals of biology.
During the last decades biologist have successfully begun to elucidate the bi-
ologically relevant functions of the cell on a molecular level.

The processes occurring in a cell are very complex involving many kinds Biological networks
of biological entities and interactions. In order to understand them, we can see
each process as different kind of interconnected biological network describing
the interaction among a limited set of biological entities sharing some criteria,
possibly with different levels of abstraction. One important biological net-
work is a genetic network, which describes the interactions among the genes
and is an instantiation of the genetic program of an organism inherent to all
cells.

So-called high-throughput methods have been in development for about two High-throughput
methodsdecades. They can be used to shed light on the complex structure and behav-

ior of biological networks in a global manner. While the research of molecular
biology was previously driven by testing hypotheses that were formulated
prior to the experiment, the advent of high-throughput methods has enabled
researchers to follow hypothesis-generating approaches as well. The hypo-
thesis-generating paradigm implies that large amounts of data are gathered
whose analysis requires appropriate computer algorithms.

Often, the actual result of this procedure is a list consisting of several hun- Knowledge integration
for molecular biologydreds of biological entities, which are in case of gene expression profiling ex-

periments identifiers of genes or their products. As a biological entity may
have different context-specific functions, it is difficult for humans to interpret
the outcome of an experiment on the basis of this gene list. Computational
approaches to store and access the biological knowledge about features of bi-
ological entities therefore play an important part in the successful realization
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1. INTRODUCTION

of research based on high-throughput experiments. For this reason, one as-
pect of this work is to present approaches to extract information from such
lists for human consumption using facts from already established knowledge
bases. This process is generally referred to as knowledge integration.

A disease not only affects a single cell but marks a state of the whole or-Knowledge
integration for clinical

expert systems
ganism. If a human suffers from a disease, it is the task of a physician to
identify the disease in order to plan a treatment or to discuss the prognosis.
A disease can be identified based on the signs and symptoms of the patient;
however, the large number of diseases especially in the field of medical genet-
ics makes a correct diagnosis a rather challenging task. We show in this work,
how a physician can be supported in this decision process using an approach
that shares concepts with the procedure developed for analyzing long lists of
genes.

1.1 Organization of this Thesis

In the remainder of this chapter, we introduce several notions from mathe-
matics and computer science on which this work is based. The actual work is
presented in the subsequent chapters.

To begin with, the second chapter formalizes the problem of searching forOverrepresentation
problem formalization a biologically meaningful description of results, which were gathered from

high-throughput methods such as gene expression profiling, by integrating
the contents of knowledge bases such as Gene Ontology. We review the ap-
proach that was previously considered as state of the art and identify, as a first
result of this thesis, some shortcomings of this approach. The second result of
this thesis, a procedure that tries to addresses shortcomings of the earlier one
using a simple modification, is presented subsequently. We also review other
approaches with similar objectives in the second chapter.

Within the third chapter, we develop an approach that aims to solve theMGSA approach
identified shortcomings of previous methods by using a Bayesian network
that among other things includes a proper error model for the results obtained
from the experiments. We show via benchmarks that this method reduces
the number of false-positives, assuming that we look for a short and non-
redundant description of the results.

The fourth chapter formulates the problem of querying items that are as-FABN approach
sociated to terms of ontologies while the query is only an incomplete descrip-
tion. This has quite practical applications, for instance, it provides a founda-
tion for aiding physicians who need to create a differential diagnosis for con-
sulting patients on the base of observable features in order to suggest further
actions. We develop a Bayesian approach to tackle this problem.

1.2 Models

Human beings try to understand the world that surrounds them by describ-
ing important aspects of a particular phenomenon in question in form of a
model. Descriptions often contain information how specific things of the phe-
nomenon relate to one another. Details that are less crucial or unknown are
simplified or omitted. Many models of the same phenomenon may exist in
very different levels of abstraction depending on what is known but also what

2



1.3. Foundations of Graph Theory

A

B
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D E

Figure 1.1: Directed Graph.

one wants to say about the phenomenon. Models are not only useful to rep-
resent knowledge and to allow people to communicate but they also allow
predictions that ideally match the observation.

Models can be expressed by many different means. A free text description Forms of models
using natural language or an image of a phenomenon, for instance, is a very
informal variant of a model. Informal models are mainly constructed for com-
municating with other people. They have certain amenities as they give peo-
ple a great deal of freedom what and how something is described, but have
the disadvantage that their actual interpretation is a very subjective matter, as
language is not unique. In contrast, formal models are based on concepts on
which there is a general agreement, which should reduce the subjective factor
of interpretation. Moreover, as formal models rely on defined structures, they
can be transferred easily to something on which computers can operate.

For the algorithms developed in this thesis, we make use of two formal Ontologies and
Bayesian networksmodel approaches. The first modeling concept are ontologies, which are special

forms of knowledge bases that, in general, provide ways to store, to manage,
and to retrieve human knowledge. Ontologies are special as the knowledge
is represented using a formal language of logical expressions. The second
one is the concept of Bayesian networks, which we use to formulate generative
stochastic processes. Some aspects of both formal model approaches can be
expressed by means of graph theory, which will be introduced subsequently.

1.3 Foundations of Graph Theory

Graphs are abstract entities of discrete mathematics that are used to encode
relationships of interest between objects of the same domain. In this work,
graphs are utilized to represent ontologies and direct dependency relations
between random variables.

Formally, a graph is a pair G = (V, E), in which V is finite set of ver- Graphs
tices (or nodes), representing the objects, and E a set of edges that expresses
relationships between these objects. An element of E can be an ordered pair
(vi, vj) ∈ V × V, in which case the edge is directed from vertex vi to vertex vj.
An element of E can also be a subset of V that has a cardinality of 2, in which
case the edge is undirected because a set doesn’t imply an order. We won’t con-
sider self-loops in this work. If all edges of G are directed, the graph is said
to be directed. An example is illustrated in Figure 1.1. If at least one edge is
directed we call the graph a partially directed graph. Otherwise the graph is an
undirected graph. In this work, we mainly deal with directed graphs.

3



1. INTRODUCTION

A directed path with length n is a sequence of vertices (v1, ..., vn) of a graph,Paths
which respects the edges, i.e., (vi, vi+1) ∈ E for i = 1, . . . , n− 1. Note that this
definition implies that all edges along the path are directed. A directed cycle
is a special path whose start vertex v1 equals to the end vertex vn. A directed
graph is acyclic if it contains no directed cycle; such graphs are referred to as
directed acyclic graphs (DAGs).

We say that vertex vi is a parent of vertex vj, if there is a directed edge
(vi, vj) in G, in which case vertex vj is commonly called a child of vertex vi.
The set of all parents of vi is denoted by pa(i). A family is defined as the set of
a vertex and all of its parents. The set of descendants of vertex vi consists of all
vertices to which a directed path that originates from vi can be constructed.
All other vertices are said to be non-descendants of vi. Similarly, the set of all
ancestors of a node vi contains all nodes from which a directed path can be
constructed to vi.

Example 1.1. Figure 1.1 illustrates an acyclic graph. Here, nodes A and C are
both parents of node D. Thus pa(D) = {A, C}. It follows that D is a child of
A and C. Thus, nodes A, C, and D represent a family. The descendants of A
are nodes B, D, and E. The only non-descendant of A is C. The ancestors of E
are A, C, and D.

1.4 Ontologies

In computer science, an ontology is a formal knowledge representation of a
model that describes a particular area of interest also referred to as the domain
of discourse. Ontologies allow for so-called semantic modeling, which is the main
ingredient of the Semantic Web (Berners-Lee et al., 2001). Semantic modeling
means that the semantics of the relations between the entities of the model
can be formally defined within the ontology such that the computer can also
“grasp” their meaning.

The foundation of the semantics is provided by the logical formalism ofOntology languages
are often based on
description logics

ontology languages in which the model is described. Almost all ontology lan-
guages can be mapped to particular subclasses of the well-researched family
of description logics, which contains decidable fragments of first-order logic
(FOL) (Baader et al., 2003).1 Computational reasoning algorithms that oper-
ate on these representations can then be used to infer new relationships that
were originally not asserted within the model, but also to validate the current
data for consistency. This has the practically advantage of reducing the size of
the storage that is needed for the representation of the knowledge but is also
especially useful for the integration of knowledge from different sources.

Foundations of Ontologies

As the logical formalism of ontologies was developed from description logics,
knowledge is expressed in terms of individuals, concepts, and roles. Con-
cepts provide a classification for individuals while roles capture relationships
between individuals. In light of first-order logic (Smullyan, 1995), concepts

1Some extensions of description logics also contain constructs that cannot be expressed in
first-order logics such as the transitive closure, which requires second-order logic (Baader et al.,
1990).
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1.4. Ontologies

are unary predicates for individuals. Roles are binary predicates between two
individuals and are used to model relationships between those individuals.
Note that the terms concepts, individuals, and roles have many synonyms in
literature. Depending on the context, concepts are also referred to as classes
or sets, individuals are referred to as instances and roles are referred to as
relations or properties.

Example 1.2. If we want to denote that a individual called Guybrush is a
mighty pirate we write: MightyPirate(Guybrush). MightyPirate is a unary
predicate and thus stands for a concept. If we want to express that the indi-
vidual Guybrush likes Elaine we write likes(Guybrush,Elaine). Thus, likes
represents a relationship between two individuals.

A further particular design restriction of description logics in contrast to Description logics
don’t allow
self-referentials

first-order logics is that concepts, roles, and individuals refer to distinct en-
tities, which means that for example a concept cannot be referenced as an
individual. This is a necessary but not sufficient condition for decidability in
inference procedures on most description logics dialects and hence also for
ontologies.

In addition to facts that declare the membership of individuals or their
relations, which are summarized in the assertional box (ABox), it is also pos-
sible to declare relations between concepts in the terminological box (TBox),
or between roles in the role box (RBox).

The TBox contains general inclusion axions that encode concept-subcon- Type propagation
cept relations. For instance, the TBox could contain the axiom that a concept
called A is a subconcept or subclass of B, denoted in description logics as
A v B.2 The semantics of this concept-level relation is then defined such that
each individual that is asserted to be a member of A is also an individual of B.
Thus, the semantics can be expressed by simple rules. In this case, the rule is
the so-called type propagation rule. Semantics of description logics can also be
expressed more formally, for example, by mapping the symbols to formulas
for FOL:

FOL(A v B) := (∀x)(A(x)⇒ B(x))

Here, we assume that A and B are atomic concepts, i.e., non-complex concepts.
The underlying process that makes implicit knowledge explicit is gener- Logical inference

ally known as logical inference or reasoning. A statement that is not explicitly
asserted, is an inferred one.

Example 1.3. Every mighty pirate is also a pirate. In description logics, we
write this knowledge as MightyPirate v Pirate. In combination with the
fact that MightyPirate(Guybrush) and the type propagation rule it follows
that Pirate(Guybrush). Thus, Pirate(Guybrush) is an inferred statement.

Particular concepts within these axioms are expressed using constructors Complex concepts
such as union (t), intersection (u), existential quantification (∃R.C), univer-
sal restriction (∀R.C), qualified number restrictions (e.g., ≥ nR.C), and many
more. Concepts constructed in that way are called complex concepts.

2Traditionally, description logics uses operators with square decoration.
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1. INTRODUCTION

Example 1.4. Using complex concepts we can state the concept of a pirate
more precisely: Pirate v Person u (= 3hasCompleted.Trial). That is, if
someone is a pirate then one must be a person and belong to the class of indi-
viduals who completed the three trials.3 Note that the construct Personu (≥
3hasCompleted.Trial) represents a complex class as it is constructed using
other classes. Using this knowledge, we infer that Guybrush also has com-
pleted three trials.

Next to statements about classes, we also make statements about proper-Rules for properties
ties. In this case, properties are addressed like classes. By this, most ontology
languages support the making of statements about the domain and the range
of a property. If we state that a property P has a domain D, then whenever
there is a statement using P we know that the subject of the statement must be
a member of D. In addition, it is also useful to be able to express relationships
between properties similar to the type propagation rule. This is facilitated by
the relationship propagation rule. By stating that a property P is a subprop-
erty of R we know that anything that is related via P is also related via R.
More about the syntax and semantics of description logic languages can be
found in Baader et al. (2003); Robinson and Bauer (2011).

The fact that a model can consist of both classes and instances differenti-Ontologies facilitate
schema and data

integration
ates ontologies from other forms of knowledge representations such as rela-
tional databases, in which the relational schema (classes, properties) is strictly
separated from the data (instances). Note that sometimes, and especially in
the bio-medical field, classes are referred also to as terms, properties are also
referred to as relations and individuals are referred to as instances. We use
these words interchangeably.

Ontologies can be easily represented using directed graphs, in which the
subjects and the objects of a statement (often classes) are mapped to nodes.
The predicate of a statement is represented by an edge, which usually is drawn
from the subject to the object. We shall see later graphical representations of
ontologies.

Gene Ontology

During the last decade ontologies have become very popular in the life sci-
ences. It all started, when it became more and more clear that core biological
processes of different species are very similar in their nature. This finding was
especially underpinned by the publication and the comparison of genomic se-
quences of quite distinct model organisms, in which it was discovered that
many genomic sequences are conserved. These observations led to the desire
to describe properties of the entities of living organisms such as proteins in a
species-independent manner such that they can be communicated with and
used by other people. Specific biological entities shall be characterized via a
controlled vocabulary with well-defined meaning in form of annotations. The
Gene Ontology (Ashburner et al., 2000) is designed to meet this purpose.

The Gene Ontology actually consists of three ontologies, which are some-
times also referred to as the three sub-ontologies of GO, in which

3Readers familiar with Monkey Island™ series know that the three trials are: mastering the
sword, mastering thievery, mastering treasure hunting. In description logic, this knowledge may
be expressed via nominals, i.e., Trial ≡ {SwordFighting, Thievery, TreasureHunting}.

6



1.4. Ontologies

• the biological process ontology models a collection of molecular events
with a defined beginning and end,

• the molecular function ontology models the basic functional role that a
gene or its product can carry, and

• the cellular location ontology models the compartments of a single cell at
the levels of subcellular structures and macromolecular complexes.

Each of the ontologies consists of terms, each of which bears a unique
name and a unique identifier. Formally, these are specific properties of the
terms, though here they can be seen as meta information of classes. Terms are
related to one another by various kind of relationships. At this writing, Gene
Ontology allows the usage of three major types of relations between two terms
A and B, which can all be formally defined using description logic. These are

• the is a relation, to express that A is a subclass of B, just as the relation
given previously in Section 1.4 and

• the part of relation, to express that all instances of A are always part
of B, but B may also exist without A,

• the regulates relation, to express that one process directly affects the
manifestation of another process implying that, considering only the
Gene Ontology, the relation can be used for subclasses of the biologi-
cal process ontology only.

The latter relation is a relatively new addition, of which Gene Ontology also
provides two sub-relationships, namely, positively regulates and negatively reg-
ulates, to further specify the impact of one process to another.

There is a semantics defined behind these particular relations. At first, all
of them are transitive. That is, if A is part of B and B is part of C then
A is also part of C. More generally, relations are propagated along other
relations. This construct has been formalized in description logics, where it is
called composition-based regular role inclusion axioms (RIAs) that are part of
the RBox. (Horrocks and Sattler, 2004) For instance, the GO axiom

is a ◦ part of v part of

means that if a term A is a term B, and if term B is part of term C, then A
is also part of term C. No further implication shall be made based on this
axiom. In particular, one cannot conclude that A is a C.

In addition to these relations, terms also have a definition. This definition Human readable and
logical definitionsis expressed in language that humans understand, but is ideally also specified

by means of class constructors, and thus by description logic. This aids to
validate the ontology or to compute new relationships between terms using
logical inference, but also eases the merging and comparison of ontologies, as
these definition can also use terms of other ontologies.

Figure 1.2 shows an excerpt of the some terms of the biological process on-
tology and their relations. For instance, consider the term cell cycle, whose
human readable definition given by GO is
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chromosome separation

chromosome segregation

biological process

regulation of cellular process

interphase of mitotic cell
cycle

mitotic cell cycle

cellular process

cell cycle process

cell cycle

negative regulation of
cellular process

regulation of biological
process

biological regulation

negatively
regulates

part of

is a

part of

regulates

part of

is a

is a

is a

is a

regulates

is a

is a

is a

is a

is a

Figure 1.2: Excerpt of the Gene Ontology Showing Various
Terms and their Relationships. Depicted are term from the bio-
logical process ontology. Usually, terms are arranged in a top-bottom
fashion, in which the upper part contains more general, i.e., broader
terms while the lower part represents more specific, i.e., more narrow
terms.

The progression of biochemical and morphological phases and
events that occur in a cell during successive cell replication or nu-
clear replication events. Canonically, the cell cycle comprises the
replication and segregation of genetic material followed by the di-
vision of the cell, but in endocycles or syncytial cells nuclear repli-
cation or nuclear division may not be followed by cell division.

The term that stand for the mitotic cell cycle is a subclass of this term. It mod-
els the progression through the phases of the mitotic cell cycle, which is most
common eukaryotic cell cycle. This is a relation states that anything that de-
scribes something as mitotic cell cycle is also a cell cycle. The most specific term
that is connected to this term merely by a is a relation in that lineage is called
S phase of mitotic cell cycle (not shown in the Figure). Similar, we have that a
cell cycle process is always a part of the cell cycle.
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As for another example, the human-readable definition for the term inter-
phase of mitotic cell cycle given by GO is

Interphase occurring as part of the mitotic cell cycle. Canonically,
interphase is the stage of the cell cycle during which the biochemi-
cal and physiologic functions of the cell are performed and replica-
tion of chromatin occurs. A mitotic cell cycle is one which canoni-
cally comprises four successive phases called G1, S, G2, and M and
includes replication of the genome and the subsequent segregation
of chromosomes into daughter cells.

The current logical definition of this term given by GO is

interphase of mitotic cell cycle v interphaseu ∃partOf.mitotic cell cycle

Using this definition, one can infer that interphase of mitotic cell cycle is part
of the mitotic cell cycle and that it is a special form of an interphase. In this
definition, only terms from the same ontology are used to define the term.
It is also possible to use terms from other ontologies to define a term. Note
however that logical definitions are not relevant to this work. We assume
here that the ontology is in a shape, in which all is a and part of relations
encoded in the logical definitions have been computed.

Annotations, Propagation and True Path Rule

While the definition of the terms and their relations provide the skeleton of Attribute ontology
and target domainsthe models that describe biology at cellular level, the annotations, which are

relations of gene products to various terms of the ontology, can can be seen
as the flesh which brings a specific organism to life. Generally, we refer in
this work to an ontology that is used to describe a set of items by some form
of annotation as an attribute ontology. The domain of the items is called the
target domain of the attribute ontology. That is, the GO is an attribute ontology
whose target domain is the domain of genes or genes products of a certain
species.

Strictly speaking, an annotation is another property or relationship within Annotations are used
to associate genes or
products to terms

the Gene Ontology that is defined at class-level and instance-level. It is a very
general form of a relation and therefore a relatively weak form of an associa-
tion. In particular, if a gene or its derived protein is annotated to a term of the
biological process ontology, then it is understood to play a role in this biolog-
ical process, or in other words, it participates in the process in the sense that
the biological process is hindered in some way if the gene has a defect. If a
gene is annotated to a term of the molecular function ontology then it is stated
that the gene product has the ability modeled by the term. Finally, annotations
of a gene product to terms of cellular component are understood that the gene
product is either located in or is a subcomponent of the cellular component.

Annotations within the Gene Ontologies are propagated along the is a Annotations are
propagated along
certain type of
relations

and part of relations. We refer to the rule under which this is modeled as
the annotation propagation rule. Its formal principle is also backed up by RIAs
of description logics. For instance, the rule

part of ◦ is annotated to v is annotated to
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1. INTRODUCTION

allows one to make inferences such as: if a gene is annotated to the term cell
cycle process as it participates in this process, then it is also annotated to the
term cell cycle as cell cycle process is asserted to be a part of cell cycle.

10
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Additionally, annotations follow the so-called true path rule. This true path True path rule
rule is related to the annotation propagation rule. It states that all statements
along the path of annotation propagation must be true. That is, if a gene prod-
uct is annotated to a term, then it is not only annotated to the more general
terms by the annotation propagation rule, it also means that we can be sure
that the inferred statements are true also in the biological sense. The impli-
cation of this rule is that creators of the ontologies and the annotations often
have to work together to fulfill these requirements. Sometimes, an assignment
of an gene product makes a structural change of the ontology necessary.

Annotations to terms of Gene Ontology are qualified among other infor- Further attributes of
annotationsmation with evidence codes that indicate how the annotation to the term is

supported. However, further intervention is needed here to deal with the
data, as this knowledge is not expressed using an formal ontology language.
This may be owing to the fact that OBO, which is the primary format, in
which the Gene Ontology is expressed, doesn’t know the concept of reifica-
tion, which is a construct that allows making statements about statements and
could encompass the qualifiers as futher modifications.

Bio-Ontologies

Besides these concept, the Gene Ontology did pioneering work that has in-
spired the construction of many other ontologies. At this writing, the OBO
foundry, which aims to create a suite of orthogonal interoperable reference
ontologies in the biomedical domain, lists about 95 ontologies. Eight of them
are full OBO Foundry ontologies, which means that they all conform to the
OBO principles. The remaining ones are considered as candidate ontologies.

The Human Phenotype Ontology is also one of the ontologies listed there. Human Phenotype
OntologyThis ontology has been developed during this thesis and describes human

phenotypic features. In context of this thesis, it provides the foundation to
introduce query algorithms for ontologies, which are described in Chapter 4.

1.5 Foundations of Probability Theory

A probability space is a triplet (Ω, Σ, P), in which the sample space Ω is a set,
in which all possible elementary events of an experiment are defined. The set
Σ contains events based upon the σ-algebra of subsets of Σ. The probability
measure P is a function that maps any event e ∈ Σ to a real value. It has to
fulfill the following properties:

1. ∀e : e ∈ Σ⇒ 0 ≤ P(e) ≤ 1,

2. P(Ω) = 1, P(∅) = 0, and

3. ∀E : E ⊆ Σ⇒ P(
⋃

ei∈E
ei) =

n

∑
ei

P(ei), if ei are pairwise disjoint.

The first property ensures that all probabilities assigned to any event must
be in a range from 0 to 1. The second property states that the probability of
the entire sample space has to be 1 and that the probability of no event is 0.
This matches the intuition that an experiment always produces an outcome.

11
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The third condition is the so-called countable additivity property, which is an
abstraction of intuitive properties of sizes: the elements’ contributions add up
if they are disjoint.

A random variable is a function that maps elements from the sample space Ω
to a measurable space referred to as the state space. The state space is often real-
valued, but don’t has to be. A probability distribution is a probability measure
over the state space.

If the sample space Ω of a random variable is finite or countable then the
random variable is said to be discrete. The probability measure is then de-
scribed by a probability mass function (PMF). As an example, consider toss-
ing a coin that we want to model using a random variable X. The sam-
ple space of this experiment is countable, it can be Heads or Tails, therefore
Σ = {Heads, Tails}. The random variable X maps the outcome of the experi-
ment to measurable entities, i.e., entities that we can calculate with. We define
X as:

X(ω) =

{
0, if ω = Heads
1, if ω = Tails

Thus, the state space of X is {0, 1}. The PMF of such variables is a Bernoulli
distribution, which, in this particular case, would assign to both elementary
events 0.5 if the coin is fair, i.e.,

P(X) = (P(X = 0) = 0.5, P(X = 1) = 0.5).

Now consider a random experiment, in which every trial results in one
of k possible outcomes, where the probability of observing an outcome i is
given by pi. When repeating this random experiment m times, let Xi count
the number of times outcome i is observed. The PMF is then described by a
multinomial distribution which is given by

P(X1 = x1, . . . , Xk = xk) = f (x1, . . . , xk; p1, . . . , pk) =

(x1 + . . . + xk)!
x1! . . . xk!

px1
1 . . . pxk

k , (1.1)

where ∑k
i=1 xi = m. Note that for the coin example we would have k = 2 and

p1 = p2 = 0.5.
The concept of random variables can be extended to uncountable sets as

well. A random variable X is said to be continuous if its probability distri-
bution is continuous, i.e., it is a probability density function f (x), which is
f (x) ≥ 0 for all x ∈ R and ∫ ∞

−∞
f (x)dx = 1.

The probability of a ≤ X ≤ b denoted as P(a ≤ X ≤ b) can be calculated
by integrating the density function from a to b. Note that this implies that for
continuous random variables P(X = a) = 0, for all a ∈ R.

As it is in the discrete case, there are several common classes of contin-
uous probability distributions. A very popular distribution for continuous
variables is the normal distribution, also referred to as the Gaussian distribution.
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1.5. Foundations of Probability Theory

The density function of the Gaussian is given by

f (x) =
1

σ
√

2π
e−

x−µ

2σ2 ,

where µ is the mean and σ2 the variance. The density function is often abbre-
viated as N(µ, σ2). The multivariate normal distribution is a generalization of
the normal distribution to more than one variable.

Another continuous distribution is the Dirichlet distribution. It is a mul-
tivariate distribution, whose density of order κ with parameter αi > 1 for
1 ≤ i ≤ κ is given by

f (x1, . . . , xκ ; α1, . . . , ακ) =
Γ(α1 + . . . + ακ)

Γ(α1) . . . Γ(ακ)
xα1−1

1 . . . xαk−1
κ , (1.2)

assuming that 0 ≤ xi ≤ 1 and ∑κ
i=1 xi = 1. The gamma function Γ(·) is a

generalization of the factorial for real numbers x ∈ R, that is, Γ(x + 1) =
xΓ(x).

For any probability space, two events, say A and B, are said to be inde-
pendent if and only if P(A∩ B) = P(A)P(B). That is, the probability that both
events A and B occur jointly is the product of the probability that events A and
B occur independently. Note that for P(A ∩ B) we also shall write P(A, B).
The conditional probability of event A given B denoted by P(A|B) is defined as

P(A|B) = P(A ∩ B)
P(B)

=
P(A, B)

P(B)
.

It represents the probability of A if it is known that B has occurred. If A and B
are independent, it follows that P(A) = P(A|B). We say that A and B are con-
ditionally independent given a third event C, if P(A∪ B|C) = P(A|C)P(B|C).

Two random variables X and Y are said to be independent if and only if
any outcome of X is independent given any outcome of Y, denoted by I(X; Y).
That is X and Y are independent in their probability distribution. Variables X
and Y are conditionally independent given another random variable Z, if they
are independent given any outcome of Z. We denote this by I(X; Y|Z).

A joint probability distribution (JPD) is a probability distribution of two or
more random variables together. The joint probability distribution of two
variables X and Y is denoted by P(X, Y). The marginal probability distribution
of X for P(X, Y) is the probability distribution of X ignoring Y altogether. If
both variables X and Y have discrete state spaces {x1, . . . , xn} and {y1, . . . , ym}
respectively, this can be achieved by

P(X) =

(
m

∑
j=1

P(X = x1, Y = yj), . . . ,
m

∑
j

P(X = xn, Y = yj)

)
.

Thus, we summarize according to the probability distribution over the state
space of Y. We shall write this as

P(X) = ∑
Y

P(X, Y)
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for short. If the JPD consists of more than one other variable in addition to X,
e.g., P(X, Y, Z) then we summarize over all combinations of the states of the
other variables. We then write

P(X) = ∑
¬X

P(X, Y, Z).

If the variables are continuous, we integrate over them.

1.6 Statistical Inference

The purpose of statistical inference is to draw a conclusion about a population
based on data obtained from a sample of the population. It provides a kind
of standardized procedure for evaluating the strength of evidence provided
by the sample, in which the research question is posed as a test between two
exhaustive and mutually exclusive hypotheses that are defined a priori:

• The null hypothesis H0 is the claim that the initially assumed is true. It is
generally taken to be a lack of association between the predictor and the
outcome.

• The alternative hypothesis H1 is the claim that the initially assumed is not
true. It indicates the existence of an association.

Hypothesis testing is often combined with the determination of a p-value.
The p-value is defined as the probability of observing a test statistic that is at
least as extreme as the one that was observed given that the null hypothesis is
true. The null hypothesis is rejected if the p-value is equal to or lower than the
significance level α, which by convention is often taken to be 0.05. If on the
other hand, the p-value for the test statistic is larger than this, we fail to reject
the null hypothesis.

Example 1.5. For a study concerning a treatment for increased blood choles-
terol levels, we assume that the mean level of low-density lipoprotein choles-
terol (LDL-C) is well characterized in the population and is known to be
87.9 mg/dl. The study involves 60 persons who are to receive a new dietary
supplement over three months. Before performing the study, however, the in-
vestigators would like to know if the 60 persons are representative of the pop-
ulation as a whole, that is, whether they have baseline LDL-C levels of about
87.9 mg/dl. We can state the null and alternative hypotheses as follows:

• H0: µ = 87.9 mg/dl

• H1: µ 6= 87.9 mg/dl

Since the sample is reasonably large, we can assume that the sample mean x
has approximately a normal distribution. We measure HDL-C levels in the
60 persons and obtain x = 90.9 and the sample standard deviation s = 9.7.
Figure 1.3 illustrates the distribution of the null hypothesis. As this is a two-
sided test, the p-value according to the null hypothesis is about 0.0166. Thus,
it is improbable that the 60 persons forming the test group are representative
of the general population with respect to LDL-C levels and we reject the null
hypothesis.
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µ = 87.9 x = 90.9

1− α Area of upper tail
p
2

Area of lower tail
p
2

Figure 1.3: Hypothesis Testing. The normal distribution with µ =
87.9 and sample deviation s = 9.7 is depicted. We observe a mean of
x = 90.9 in the study. As we perform a two-sided test, the least extreme
test statistics involve all values with a smaller probability density than
the density of x, i.e., the upper tail (values larger than x), and the
lower tail (values smaller than µ − (x − µ)). The area under both
tails (dark area) is identical as the normal distribution is symmetric
about µ. The sum of both areas corresponds to the p-value of the
null hypothesis being true, which in this case is 0.0166. This is smaller
than the predefined α = 0.05, thus we reject the null hypothesis. Any
null-hypotheses for observations not falling in the non-critical region
(light area) would be rejected.

In traditional statistics and using strict definitions, if a p-value is judged
to be significant because it is less than or equal to a given significance level
that had been set prior to performing the experiment, then the actual value of
the p-value is unimportant. For example, if the significance level has been set
to 0.05, then it would not be correct to say that a p-value of 0.00001 is more
significant than a p-value of 0.04. According to this view, a result is either
statistically significant or it is not. However, in science and in bioinformatics,
the actual level of the p-value is usually interpreted as meaningful, whereby
smaller p-values are taken to be more statistically significant.

In this work, we use statistical inference in Chapter 2, where we want to
detect overrepresented Gene Ontology terms within lists of genes that were
the result of a downstream analysis of a biological experiment.

1.7 Probabilistic Inference

The majority of the methods developed in this work involve probabilistic in-
ference. In this section, we introduce terms and notation of this mathematical
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framework.

Bayes’ Theorem

The application of Bayes’ Theorem plays a key role in probabilistic inference.
It follows from the definition of the conditional probability and relates the
conditional probability P(A|B) to P(B|A) for two events A and B such that

P(A|B) = P(B|A)P(A)

P(B)
. (1.3)

In this context, P(B|A) is referred to as the likelihood, as it is a probability of
parameter B, in contrast to P(A|B), which is called the posterior, it is derived
from the knowledge of B. P(A) is referred to as the prior, as it represents
the knowledge of A prior to the application of knowledge of B. P(B) is the
normalization constant.

If the posterior P(A|B) has the same algebraic form as the prior P(A) then
the prior is said to be the conjugate prior to the likelihood. For instance, if
the likelihood is a multinomial distribution (Equation 1.1 on page 12) and the
prior is a Dirichlet distribution (Equation 1.2 on page 13) then the posterior
will also have a Dirichlet distribution, albeit with updated hyperparameters
αi. Therefore the Dirichlet distribution is a conjugate prior to the multinomial
distribution.

In many applications, Bayes’ Theorem is used for a set of n mutually ex-
clusive events E1, E2, . . . , En such that ∑i P(Ei) = 1. Then, Equation (1.3) can
be written as

P(Ei|B) =
P(B|Ei)P(Ei)

∑i P(B|Ei)P(Ei)
.

This form of Bayes’ Theorem makes it clear why P(B) = ∑i P(B|Ei)P(Ei) is
called the normalization constant: it forces the sum of all P(Ei|B) to be equal
to one, thus making P(·|B) a real probability measure (see page 11).

Bayesian Networks

Bayesian networks are a generalization of Bayes’ Theorem to more than two
random variables. They are the main ingredients of the algorithms presented
in Chapters 3 and 4. Bayesian networks can can be seen as a mixture of
graph theory and probability theory. Formally, a Bayesian network is pair
B = (G, Θ) consisting of a DAG G = (V, E) and a set Θ with cardinality |V|
of local probability distributions (LPDs), of which each member is attached to
one node.

The vertices of the graph V = {1, . . . , n} bidirectionally map to random
variables X = {X1, . . . , Xn}. Here, we won’t distinguish between the vertices
and the variables they represent, and thus apply the previously introduced
nomenclature for graphs in order to describe relationships of variables. For
instance, if node j is a parent of node i, then we also say that variable Xj is a
parent of variable Xi.

In addition, the directed edges of the DAG assert direct dependency re-
lations of one variable to another. That is, if there is an edge between node
j and i then the state of Xi depends on the state of Xj. Moreover, the DAG
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encodes independence relations following the Markov condition, which states
that a variable given its parents doesn’t depend on any other non-descendant.
Thus, Bayesian networks specify a factorization of a joint probability distribu-
tion of the involved variables. It follows that the joint probability distribution
of the variables described by a Bayesian network can be calculated as:

P(X1, . . . , Xn) =
n

∏
i=1

P(Xi|Xpa(i)),

where Xpa(i) is the set of random variables which are all parents of Xi.

Local Probability Distribution

Although any LPD can be used for nodes of Bayesian networks, two are ex-
tensively used in practice: the multinomial distribution (MD) for discrete vari-
ables and the normal (Gaussian) distribution (GD) for continuous variables.

The MD for a variable Xi with m discrete states is a function of all members
of the variable’s family which maps all possible configurations to a probability
value between 0 and 1 such that for every parent configuration π

m

∑
i=1

P(Xi|Xpa(i) = π) = 1.

Usually, the MD is given as a conditional probability table.
For the GD, the distribution for each variable follows a normal distribution

whose mean depends linearly on the configuration of the parents:

P(Xi|Xpa(i)) = N(Xi, µi + ∑
j∈pa(i)

bij(Xj − µj), σ2
i ),

where bij defines the strength of the influence of variable Xj on Xi. Note that
bij 6= 0, otherwise one would not include Xj in the parent set of Xi. Note that
while non-linear relationships can be modeled using the MD, the fact that the
mean of the GD is a linear function of the states of the parents means that non-
linear relationships cannot be modeled with the GD. Also note that a Bayesian
network is not required to have either discrete or continuous nodes. Instead
one can mix nodes by defining different types of LPDs for the nodes.

Probabilistic Inference in Bioinformatics

Probabilistic inference and Bayesian networks have numerous applications
in bioinformatics including the analysis of DNA sequences, haplotype infer-
ence, pedigree analysis, and inference of genetic network structures. We shall
briefly describe two applications in this section.

Inference of Gene Regulatory Networks

Bayesian networks became an interesting research topic in bioinformatics with Bayesian networks for
modeling gene
regulatory networks

the advent of the microarray technology in the late 1990s and early 2000s. In
particular, one of the first work of bioinformatics, in which the methodology
of Bayesian networks was applied, concerned the field of gene regulatory net-
works (GRNs). For this purpose, it was assumed that a GRN can be expressed
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using Bayesian networks. In Friedman et al. (2000) Bayesian networks were
used to infer the network structure of gene regulatory interactions in yeast.
The objective was to infer the graph structure G of the network, i.e., whether
the expression of a gene A has an influence of the expression of a gene B, but
not how it actually influences its expression, i.e., whether it is up or down
regulated. The primary ingredient of an algorithm to uncover the network
structure is a function that weights the goodness of the structure of a graph
G with respect to the observed expression data O. Since we are dealing with
Bayesian networks it follows from probabilistic inference that the posterior
probability P(G|O), which is proportional to the product P(O|G)P(G)4 is a
natural measure for this purpose.

The general problem of the inference of the Bayesian network structureNavigation through
the space of all

structures
is NP-complete (Chickering, 1996). Therefore, a heuristic algorithm was ap-
plied, in which small local changes of the network structure G, such as adding,
removing or switching an edge, are applied to navigate through the full space
of network structures and to find a good model according to that score. This
approach was paired with an bootstrapping procedure to assess the confi-
dence of inferred edges.

A systematic study, in which the performance of the inference for timeFurther developments
course data was given in Husmeier (2003). In this work, the synthetic net-
work of Zak et al. (2003), which aims to model biological relevant network
motifs using differential equations, was used to generate data that was sub-
jected to the network inference algorithm. The results were compared to the
known network structure. In order to correctly model cycles and the time de-
lays, the structure was represented as a so-called dynamic Bayesian network.
Dynamic Bayesian networks are variants of Bayesian networks, in which the
state of variable at time point t may depend on the state of variables of pre-
vious time point, such as t − 1. For the purpose of the network inference,
it was suggested to use an adaption of the Metropolis-Hastings algorithm.
Many more investigations have been done since then, including the study of
the effect of the inclusion of prior knowledge (Werhli and Husmeier, 2008;
Steele et al., 2009). We cover many more aspects of Bayesian networks as a
tool to model and to infer gene regulatory networks in Bauer and Robinson
(2009). Note that in this thesis, in contrast to the inference of GRNs, we use
probabilistic inference only on models in which the structure of the network
is known.

Inference of Chromosomal Regions that are Identical by Descent

In order to identify genes that are causative for a disease, it is crucial to reduceIdentical by decent
the number of candidate genes that are tested. For this purpose, we presented
in Rödelsperger et al. (2011) an algorithm that uses probabilistic inference to
predict chromosomal regions that are identical by descent (IBD) in children
of consanguineous or non-consanguineous parents solely based on genotype
data of siblings derived from high-throughput sequencing platforms. The
rationale of this approach is that one normally expects that disease-causing
genes of autosomal recessive disorders are located in regions that are IBD for
all affected siblings. Since in this case all affected siblings inherit one affected

4In terms of the Bayes’ Theorem, this is the likelihood times the prior.
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allele from each of the two parents, this particular state is commonly denoted
as IBD=2.

We express the transmission of a parental allele based on a model of the Model for identical by
descentmeioses together with the exome sequencing results via a hidden Markov

model (HMM), which is a simple form of a Bayesian network. In particular,
our hidden Markov chain models the state transitions for adjacent chromo-
somal positions, i.e., between t − 1 and t, where the state of a chromosomal
position t depends on the state at t− 1 and the frequency of a recombination
event between t− 1 and t. Intuitively, the LPDs are chosen such that the like-
lihood of a state transition increases iff the recombination rate between t− 1
and t increases.

These states of the chain are not observable. What we ideally observe in- Emissions for identical
by statestead are the genotypes of all sequenced siblings. If the genotype for t is ob-

served as identical for all siblings, t is said to be identical by state (IBS). Posi-
tion t being IBS is a necessary condition of t being IBD=2, but not a sufficient
one. Or in other words, a position t being IBD=2 will always result in obser-
vation of t being IBS, but not being in IBD=2 also may be observed as IBS. This
can happen for example, if the parents are homozygous in that allele, which
is in absence of any other information, more likely to be the case, if the vari-
ability of the genomic context of the specific population is low. We therefore
defined a state propagation from a hidden state to a corresponding IBS state
that incorporates the variability of the population context.

In a realistic application, one also needs to deal with possible sequencing Error model
errors. This can be done using an additional state propagation from the IBS
state to a state we called IBS∗. The graphical representation of the model is
depicted in Figure 1.4. Note that it is common to filter the data before anal-
ysis in order to reduce the data. Often, chromosomal positions are consid-
ered that differ from the haploid reference sequence. This means that we may
miss some information. For instance, if sequence errors occur for a position
towards the haploid reference sequence for all sequenced siblings, then this
position is excluded from the analysis.

Using this model, we now can easily infer the states of the hidden Markov
chain given the IBS∗ information using probabilistic inference. Owing to the
tree structure of the HMM, the inference, i.e., the calculation of the poste-
rior marginal probabilities, can be done efficiently by employing the forward-
backward algorithm (Durbin et al., 2006). The method was successfully ap-
plied to filter exome sequence data in Krawitz et al. (2010b) and helped there
to identify PIGV mutations in the hyperphosphatasia mental retardation syn-
drome.

1.8 Classifier Evaluation

In many domains, it is rather difficult or even impossible to assess how well
a method performs in reality. This is also the case for the domains that are re-
searched in this work, which all can be cast as classical classification or infor-
mation retrieval problems. Also due the lack of appropriate gold standards,
we therefore will take advantage of simulations to compensate for this prob-
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X1 X2 . . . Xt . . . Xn

Y1 Y2 . . . Yt . . . Yn

Z1 Z2 . . . Zt . . . Zn

Figure 1.4: Generative Model for Noisy IBS Observations. The
Boolean variables Xt represent the IBD state, Yt the IBS state, and Zt
the observed IBS state after possibly inaccurate genotyping of chromo-
somal position t that we call IBS∗. The arcs represent direct depen-
dency relations. Nodes Yt and Zt and thus the corresponding LPDs
can be collapsed to get a traditional HMM.

lem. As the truth of the simulation is known, we apply general statistical
performance measures on the results of tested algorithm.

Many performance measures have been conceived that all account for sim-
ilar or different aspects. Throughout the rest of this work however, we will
mainly use the receiver operating characteristic (ROC) and precision/recall analy-
sis to compare the performance of algorithms.

The input of both measures is a tuple (li, pi) for each classified item i,
whereby li is the label of the item that identifies its class. We deal with binary
classification only. Therefore it is enough to distinguish between a negative
class and a positive class, e.g., li ∈ {−1, 1} or li ∈ {0, 1}. The other value pi
is the predicted value. For all algorithms that are presented in this work, pi
is real-valued. Without loss of generality, we assume that an item i, for which
pi ≥ t given a threshold t ∈ R is predicted to belong to the positive class.
Otherwise, it is predicted to belong to the negative class.

For a particular t, the prediction of an item i can be classified either as

• a true-positive, if i belongs to the positive class is correctly predicted as
positive,

• a false-negative, if i belongs to the positive class and is falsely predicted
as negative,

• a true-negative, if i belongs to the negative class and is correctly predicted
as negative,

• a false-positive, if i belongs to the negative class and is falsely predicted
as positive.

Furthermore, we define TP(t) as the number of all true-positives, FN(t) as the
number of all false-negatives, TN(t) as the number of all true-negatives, and
FP(t) as the number of all false-positives for a threshold t.
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Figure 1.5: ROC and Precision/Recall Plots. Two classification
methods are compared. The left part illustrates a ROC diagram, in
which ROC curves of two methods applied on the same data set are
plotted. Method 1 performs better than the second one, as it has a
better true-positive rate over the whole range and a higher area under
the ROC curve, as indicated in the legend. The right part shows clas-
sification results of the same two methods but using a precision/recall
plot. Also, this measure suggests an advantage of the first method
over the second one, as it gives correct classifications upto an recall to
70%.

The ROC curve is a graphical plot, in which the true-positive rate is drawn
versus the false-positive rate. (Fawcett, 2007) The former is defined as

tpr(t) =
TP(t)

P
=

TP(t)
TP(t) + FN(t)

,

while the latter is defined as

fpr(t) =
FP(t)

N
=

FP(t)
FP(t) + TN(t)

.

Variable P is the total number of positively labeled items, and N the number
of items with negative label.

Although one would not implement it in this way, a ROC curve can be con-
ceptually drawn by constructing a polyline with coordinates (fpr(t), tpr(t)) for
varying t. A random classifier would produce a straight line between points
(0, 0) and (1, 1), while a perfect classifier would be produce an open polyline
with points (0, 0), (0, 1), (1, 1). An example of an ROC plot is depicted in Fig-
ure 1.5. Usually, the overall performance according to the ROC analysis is
given by calculating the area under the ROC curve (AUROC). The area is 0.5
for a random classifier and 1 for a perfect classifier.
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1. INTRODUCTION

A precision/recall plot is in its construction similar to the ROC plot, how-
ever, on the x-axis the recall is plotted while on the y-axis the precision is used.
Both values can be obtained using the following definitions:

prec(t) =
TP(t)

TP(t) + FP(t)
recall(t) = tpr(t)

Thus, the precision is the fraction of true-positives items among that the algo-
rithm has classified as positive and the recall is equivalent to the true-positive
rate. When plotted in a graph, a perfect classifier would produce a polyline
between points (0, 1), (1, 1) and (1, 0). An example of a precision/recall plot
is depicted in the right part of Figure 1.5.

Performance measures can not only be used to compare performance of
different algorithms, but also to detect possible problems in the simulation
study or even in the algorithms. For instance, if the amount of noise is in-
creased, one would usually expect that the general performance of algorithms
decreases as the original is more distorted. If this is not case, there could be
a possible problem with the pipeline and careful investigation should be un-
dertaken to find out whether the behavior is indeed correct.
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Overrepresentation Analysis

High-throughput methods in molecular biology allow essentially all genes in
the genome to be measured experimentally. One widely used technology that
is used for this purpose are DNA microarrays. A microarray consists of thou-
sands of probes of either short oligonucleotides (about 25 to 60 nucleotides
long) or longer cDNA probes that are complementary to the sequences to be
measured. The cDNA or cRNA sample to be measured is then hybridized
to the probes on the microarray. This allows one to detect and quantify the
amount of the corresponding sequences in the sample, which in turn can be
used to deduce the expression levels (mRNA concentrations) of thousands of
genes. As we saw in the introduction, such gene expression profiling methods
can be used to refine the knowledge of gene regulatory networks, which is a
relatively complex task.

Often, the objective of a microarray experiment is somewhat simpler, if
microarray experiments are used to compare gene expression profiles under
two or more biological conditions, say a comparison between healthy and
diseased tissue or at different developmental stages. In this case, a typical
experiment involves three or four replicate microarray experiments for each
biological condition. The gene expression values obtained from the experi-
ments are subjected to statistical analysis that may involve a t test or variant
thereof on each of the genes on the microarray (Allison et al., 2006) in order to
determine which genes are differentially expressed.

More recently, massively parallel sequencing technologies such as RNA-
seq (Mortazavi et al., 2008) are further extending the range of transcription
profiling experiments that can be performed. Other functional genomics high
throughput experiments encompasses ChIP-on-chip (Buck and Lieb, 2004) or
gene knock-out screens using siRNAs (Simpson et al., 2008).

Many recent whole-genome studies, follow a data-driven approach, for
which hypothesis is not specified a priori. Instead, one seeks to discover new
phenomena and generate new hypotheses from these data. Loosely formu-
lated, the main question driving the analysis of data-driven experiments is:
“what is going on?”

Although for technical and biological reasons the nature of the data dif-
fers between these types of experiments, they often can be summarized by a
list of genes which responded to the experiment, e.g., genes found to be dif-
ferentially expressed as in the microarray or RNA-seq scenario, bound by a
particular transcription factor for ChIP-on-chip approaches, or whose knock-
down elicits a phenotype of interest in case of siRNA screening experiments.
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2. OVERREPRESENTATION ANALYSIS

However, extensive lists of responder genes are not per se useful to describe
or understand the biology behind an experiment.

A practical way to address the question of what is going on? is to perform a
gene-category analysis, i.e., to ask whether these responder genes share some
biological features that distinguish them among the set of all genes tested in
the experiment. First of all, gene-category analysis involves a list of gene cat-
egories, in which genes with similar features are grouped together, whereby
the exact definition of the attribute similar depends on the provider of the cat-
egories. For instance, if Gene Ontology is the choice, then genes usually are
grouped according to the terms, to which they are annotated. Another scheme
is the KEGG database (Kanehisa and Goto, 2000), in which genes are grouped
according to the pathways in which they are involved. The second ingredient,
is a statistical method for identifying enriched categories such as overrepre-
sentation analysis.

Although the principle goal of this kind of analysis is simple enough and
can be implemented using Fisher’s exact test (Rhee et al., 2008), statistical de-
pendencies in the knowledge base affect the results of the analysis. As we shall
see later, these dependencies are one source of the inflation of the number of
categories that are called as significantly overrepresented. This is especially
the case for categories provided by GO. While a list of 5 or 10 GO terms can be
remarkably helpful in the interpretation of a set of hundreds of differentially
expressed genes, a list of 50 or 100 GO terms is probably much less helpful to
the average biologist who is trying to design the next experiment, because it
is simply difficult to choose which of the many terms is most characteristic of
the biology of the experiment.

This chapter is a mixture of an introduction, a review, and a presentation
of thesis results. After a brief introduction to the nomenclature in the first sec-
tion, we formally explain the overrepresentation procedure based on Fisher’s
exact test, which we call term-for-term approach. We analyze the disadvan-
tages of this simple approach in subsequent sections. This analysis is one re-
sult of this thesis. This finding motivated the development of the parent-child
approaches (Grossmann et al., 2006, 2007) that will be described fifth section
of this chapter. These methods were co-developed by the author of this the-
sis. In the next section, we review two methods that also try to address the
disadvantages of the original procedure. We consider them in the benchmark
presented in Chapter 3. We finish this chapter with a short review of two ap-
proaches that are not based upon the hypergeometric distribution but still rely
on statistical inference.

2.1 Definitions

We refer to the set of items, which the study could possibly select, as the pop-
ulation set. We denote this set by the uppercase letter M while the cardinality
is identified by its lower case variant m. If, for example, a microarray experi-
ment is conducted, the population set will comprise all genes that the microar-
ray chip can detect. The actual outcome of the study is referred to as the study
set. It is denoted by N and has the cardinality n. In the microarray scenario
the study set could consist of all genes that were detected to be differentially
expressed.
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2.2. Term-for-Term

2.2 Term-for-Term

The standard approach to identify the most interesting terms is to perform
Fisher’s exact test for each term separately. We will explain the procedure and
its rationale in more detail in this section.

For each term t, the items in the population set M can be characterized
according to whether they are annotated to term t or not. In particular, the set
Mt with cardinality mt constitutes all items that are annotated to t. Generally,
a study set is assumed to be a random sample that is obtained by drawing n
items without replacement from the dichotomic population. In the following,
the random variable Xt describes the number of items of the study set that
are annotated to t in this random sample. The hypergeometric distribution
applies to Xt, i.e.,

Xt ∼ h(k|m; mt; n) := P(Xt = k) =

(
mt

k

)(
m−mt

n− k

)
(

m
n

) .

That is, P(Xt = k), which specifies the probability of observing exactly k an-
notated items in a study set of size n if the population set of size m contains
mt items that are annotated to term t, can be calculated as a product of the
number of ways of choosing k items from mt items that are annotated to the
term t and ways how to choose the remaining items, i.e., n− k, from items not
annotated to term t, i.e., m−mt, divided by total number of possibilities how
the n items of the study set can be chosen from m items.

The set of items that are annotated to t and members of the study set are Null and alternative
hypothesesdenoted by Nt. The cardinality of this set represents the observation. It is

denoted by nt. Now we want to assess whether the study set is enriched for
term t, i.e., whether the observed nt is higher than one would expect. This
represents the alternative hypothesis H1 of the statistical test. Performing a
statistical test also requires us to specify a null hypothesis H0. The null hy-
pothesis in this case would be that there is no positive association between
the observed occurrence of the items in the study set and the annotations of
the items to the term t. Thus, the proportion of items annotated to term t
would be identical for the study set and the population set.

In order to be able to reject the null hypothesis in support of the alterna-
tive hypothesis we need to conduct a one-tailed test, in which we ask for the
probability of the event that we see nt or more annotated items. This is given
by:

P(Xt ≥ nt|H0) =
min(mt ,m)

∑
k=nt

(
mt

k

)(
m−mt

n− k

)
(

m
n

) . (2.1)

If the probability of the null-hypothesis obtained by this equation is be-
low a certain significance level α, e.g., below α = 0.05, we reject the null-
hypothesis in favor of the alternative hypothesis. In that case, the tested term
t is regarded as an interesting term that contributes to the characterization of
the study set.
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Figure 2.1: Sets and Their Relations in the term-for-term Ap-
proach. In this example the population consists of m = 18 genes. The
size of the study set is n = 5, while mt = 4 genes of the population
are annotated to term t. This term has nt = 3 genes in common with
the study set. The model of the term-for-term approach is that all of
the n genes of the study set are drawn from the population. The null
hypothesis is that there is no association between the number of genes
that are in the study set and the number of genes that are annotated
to the term t, i.e., the study set is merely a random sample of the
population set. We therefore would expect that it contains the same
proportion of annotated terms as the population set does. The prob-
ability under the null hypothesis of the event to see at least nt genes
can be assessed via Equation (2.1).

Example 2.1. Suppose that we are given a population of m = 18 genes, in
which mt = 4 genes are annotated to the term t. The outcome of an experi-
ment, which triggers genes from the population, yields a set of 5 genes. This
means that the study set consists of n = 5 genes. Moreover, we observe that
a total of nt = 3 genes from the genes of the study set are annotated to term
t. Figure 2.1 illustrates the participating sets and how they are related to one
another in that particular situation.

We now want to find out, whether term t can be used to describe the out-
come, which in turn, can be used to characterize the experiment. We therefore
ask, whether term t is enriched in the study set. The application of Equa-
tion (2.1) yields a p-value of term t

P(Xt ≥ 3|H0) =

(
5
3

)(
13
2

)
(

18
5

) +

(
5
4

)(
13
1

)
(

18
5

) = 0.044.

Thus, the null-hypotheses is rejected and the term is said to be overrepre-
sented among the differentially expressed genes and is thus likely to reflect an
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important biological characteristic of the experiment.

2.3 Multiple Testing Problem

There is a problem which leads to difficulties when it comes to the interpre- Conducting many
independent
statistical tests leads
to the multiple testing
problem

tation of the result when this procedure is applied for more than one term,
which is generally the case. In fact, for hypothesis-generating studies, the
procedure is often applied to the terms from knowledge bases such as Gene
Ontology, which comprise a huge number of terms, which easily can go up
to the tens of thousands. Due to the high number of tests that need to be
conducted, the number of false-positives will be also high. This problem is
generally more severe the more statistical tests are performed.

To see this, suppose that there are T tests to be performed. We assume that
the null hypothesis is true for all of those tests. Before its actual determination,
any p-value can be considered as a random variable as well, for which P(p ≤
α|H0) ≤ α holds (Ewens and Grant, 2005). This implies that it can be expected
that αT tests lead to the rejection of a null hypothesis although it is true.

Example 2.2. If there are 10,000 null hypotheses that are true and all of them
are tested then we expect that we reject null hypothesis for about 500 test.
Obviously, describing the result of experiment with 500 random terms is not
useful.

Therefore, the result of a term enrichment analysis is further subjected to a
multiple test correction. The most simple, but also the most conservative form
is the Bonferroni correction (Abdi, 2007). Here, the p-value is simply multi-
plied by the number of tests. Bonferroni controls the so-called family-wise
error rate. It is a conservative approach because it handles all p-values as in-
dependent. A more involved procedure, which also takes dependencies into
account, is the Westfall-Young procedure (Westfall and Young, 1993). This cor-
rection is computationally more costly as it is based on resampling schemes.
There are other multiple test correction that do not aim to control the family-
wise error rate. For instance, Benjamini-Hochberg (Benjamini and Hochberg,
1995) controls the false discovery rate, which is considered by the American
Physiological Society as “the best practical solution to the problem of multiple
comparisons” (Curran-Everett and Benos, 2004).

In the following section, we further explore the structural origin of the cor-
relations of the p-values in the setting of enrichment tests for ontology terms.

2.4 The Gene Propagation Problem

While the application of multiple testing correction aims to reduce the num-
ber of false-positives in a very general manner, one can also try to tackle the
problem at a more basic level. The root of the problem is that if a term shares
genes with a second term, and one of the terms is overrepresented, then it is
not too surprising that the other term is also detected as overrepresented.

That the gene sharing of terms of an ontology is more a rule than an ex-
ception can be deduced from the principles of how ontologies are designed.
Within a ontology, terms describe concepts of a domain that can be related to
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Figure 2.2: Terms, their Relations and Numbers of an Extended
Example. Here, term t is the term that was the focus of the calculation
in Example 2.1. In addition, term t is a s and therefore s is a parent
of t. For completeness, r, which is the root of the ontology, is also
depicted. It is the only parent of s. As indicated in the last row,
the term-for-term procedure determines a p-value below 0.05 for both
terms. Thus, both terms will be considered as a meaningful summary
of the underlying experiment.

other terms by various types of relationships. The most prominent relation-
ship thereby is the is a relationship, which effectively propagates the mem-
bership of the subject (source) of the relationship to the object (destination).
That means, if a term T1, the subject, is related to an term T2, the object, by the
is a relationship, and a gene is annotated to T1 then it is implicitly annotated
also to term T2. We provided more information about the principles in Sec-
tion 1.4. In the context of overrepresentation analysis, we refer to the problem
as the propagation problem1, or in particular, as the items are genes here, the
gene propagation problem.

Example 2.3 (continuation of Example 2.1). In addition to m = 18 and n = 5,
and a term t with mt = 5 and nt = 4, there is second term s, which is the
only parent of t. For term s, we know that ms = 6 and ns = 4 holds. The
graphical structure of this situation is depicted in Figure 2.2. It is also indi-
cated there that the p-values of terms t and s are 0.044 and 0.022 respectively,
which means that both terms are flagged as significant for α < 0.05 if no mul-
tiple test correction is performed. Obviously, both terms share the majority
of items that are also part of the study set. One can argue that the fact that
term t is identified as overrepresented is a consequence of the fact that s is
overrepresented.

In order to demonstrate the extent of the problem for real applications, in
which usually a lot of terms are simultaneously tested, we constructed a study
set, in which the term localization was artificially overrepresented with genes
from yeast. Initially, this study set consisted of all genes that are annotated
to the term. Then, to introduce some background noise, each gene that is not
annotated to the term was added to the study set with a probability of α = 0.2
as well. Finally, each gene that is annotated to the term (and thus present in
the study set) was removed from the study set with probability of β = 0.2.

1This is in contrast to Grossmann et al. (2006, 2007), where we used term inheritance problem.
As it is not intuitive that parents inherit something form their children, we changed the terminol-
ogy here.
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2. OVERREPRESENTATION ANALYSIS

This procedure yielded a list of 2115 genes, which then was processed using
the term-for-term approach followed by the conservative Bonferroni correction.
The graphical representation of the result can be seen in Figure 2.3.

As expected, the analysis correctly identified the term localization as signif-
icantly enriched. In addition to that, it identified 184 other terms as signifi-
cantly enriched. In particular, 120 of them are descendants of localization. Five
of the eight children, to which at least one gene is annotated, are significant.
All in all, this suggests that descendants come up only because their annota-
tions converge in the term localization. Although, in the statistical sense, this is
a correct result, it is not desirable to use that huge amount of terms to charac-
terize the study set, especially as it is sufficient to use the term localization for
this purpose, and what is more, the result suggests a specificity that we did
not put in there. We therefore consider in this work each of the additional 184
significant terms as a false-positive and aim for approaches that reduces this
amount.

2.5 Parent-Child Approaches

In the parent-child approaches we want to address the effects of the propagation
problem that was introduced in the previous section. In remainder of this sec-
tion, let pa(t) be the set of parents of term t, which are for instance those terms,
to which t is connected by a is a relation. In order to introduce the principal
ideas of the parent-child approaches, we initially assume that there is only a
single parent of t, i.e., pa(t) = {s}.

The parent-child approaches address the propagation problem by condi-
tioning the probability of the term t on properties of its parental terms. The
statistical tests that are conducted now are very similar to the those that are
applied for the term-for-term approach, with the exception that we implement
a further restriction on the set on which the calculation is performed. Instead
of drawing the items from the full population M, we allow the items to be
drawn just from the set of items that are annotated to the parents of t, which
is written as Mpa(t) and whose size is mpa(t). This consideration yields the
following equation:

P(Xt = k|pa(t)) =

(
mt

k

)(
mpa(t) −mt

npa(t) − k

)
(

mpa(t)
npa(t)

) . (2.2)

Figure 2.4 summarizes the differences of the principal setting of the term-
for-term approach with the setting of the parent-child approaches. Effectively, in
the parent-child approaches, we change the population that underlies Fisher’s
exact test to the items annotated to the parents. Obviously, this also alters the
involved sets for the study set. As in term-for-term approach, we ask for the
probability of seeing at the observed number of items or a more extreme event.
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Figure 2.4: Differences between Term-for-Term and Parent-
Child Analysis. In contrast to the term-for-term approach that is
visualized in the left part of the figure, we shift the focus for the parent-
child approaches, which are depicted in right part, to a smaller set of
genes, for instance to the genes that are annotated to at least one of
the parents of term t, as indicated by the set whose size is mpa(t) = 6.
Genes that are not part of this set, do not contribute to the calcula-
tion. This has an effect on the involved proportions, and thus on the
outcome of the test. Effectively, for each term, we alter the population
of the association test.

This is calculated by applying the following equation:

P(Xt ≥ nt|H0) =

min(mt ,mpa(t))

∑
k=nt

(
mt

k

)(
mpa(t) −mt

npa(t) − k

)
(

mpa(t)
npa(t)

) . (2.3)

Example 2.4 (continuation of Example 2.3). As shown in Figure 2.2, the parent
of term s is the root r of the ontology, which is always annotated to all genes
of the population. Therefore, its p-value for the parent-child, ppc

s approaches
is identical to the p-value of the term-for-term approach, ptft

s , i.e., ppc
s = ptft

s =
0.22.

However, for term t, Equation (2.3) yields:

P(Xt ≥ nt|H0) =

(
4
3

)(
2
1

)
(

6
4

) +

(
4
4

)(
2
0

)
(

6
4

) = 0.6.

Thus, the null hypothesis for term t is not rejected, which is in contrast to
the result of the term-for-form approach. Given the initial observations that
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the study set is already skewed to the parent s of t makes the enrichment of
term t less surprising, which the parent-child approaches correctly reflect by
returning a higher p-value.

If term t has more than one parent term, then it is not immediately ap-
parent how to calculate mpa(t) and the observation npa(t) in Equations 2.2
and 2.3. In Grossmann et al. (2007), we have chosen to examine in detail two
approaches which lead to solutions with a similar formal and computational
complexity as the single-parent solution.

For the first approach, which we call parent-child union, we define the sets
of parents of a term t in the population and study set as the union of genes
annotated the parents of t:

M∪pa(t) =
⋃

u∈pa(t)

Mu, Npa(t) = N ∩M∪pa(t) (2.4)

Therefore, we let mpa(t) and npa(t) be the number of genes annotated to any of
the parents of the respective sets.

For the second approach, which we call parent-child-intersection, we define
the sets of parents of a term t as the intersection of genes that are annotated to
the parents of t:

M∩pa(t) =
⋂

u∈pa(t)

Mu, Npa(t) = N ∩M∩pa(t) (2.5)

Hence, we count the number of genes annotated to each of the parents of t.
Note that in Section 3.7, where we present a comparison of different methods,
we consider the parent-child union approach only, for sake of simplicity.

2.6 Topology-Based Algorithms

A different method to address the shortcoming of the term-for-term approach,
which is the inability to deal the gene propagation problem and thereby produc-
ing positively correlated results, was presented in Alexa et al. (2006). How-
ever, rather than conditioning on its parental terms when computing a term’s
relevance, which is the main idea of the parent-child approach, the authors
propose calculating a score for the term that depends on the relevance of the
children of the term, which are for instance those terms that are linked to the
term in question via an is a relationship. The authors argue that capturing
the meaning in that way is biologically more interesting as the definitions of
children is more specific. Following this argumentation, the authors formu-
lated two concrete algorithms that try to provide a more suitable, i.e., less
correlated, distribution of terms that get flagged as important. While the first
approach, which they called the elim-algorithm strictly favors significance of
the most specific levels of the GO graph, the weight algorithm relaxes this re-
striction such that terms that are most significant are retained. In the following
subsection, we describe both approaches.

Elim

As before, we understand the top of the graph as the root of the ontology,
while the bottom of the graph consists of the most specific terms. The idea of
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2.6. Topology-Based Algorithms

the elim algorithm is to traverse the graph representation of the ontology in
bottom-up fashion, which, for instance, can be accomplished by utilizing the
backtrack phase of a sort of depth-first search (DFS) (Cormen et al., 2001).

The elim procedure awaits a term t as a variable parameter and returns
a set of flagged genes. On its initial invocation, it begins with the root of
the ontology. For the current term t, we apply Fisher’s exact test in order to
relate the genes of the study set to the genes of the population with respect
to the genes that are annotated to term t. As in the parent-child approaches,
not all genes of the study set contribute to the calculation. For elim, a set of
previously determined genes is subtracted from the set of the study set before
the calculation for pt is carried out. This set is constructed by recursively
applying the elim procedure for all children of t and taking the union of the
result. If pt is significant, we add all genes of t to the set of flagged genes.
Finally, we return the set of flagged genes to the caller.

Note that when the DFS reaches a leaf node of the ontology, Fisher’s exact
test is performed exactly as in the term-for-term approach using Equation (2.1)
on page 25. Also notice that nodes can have multiple parents and thus it
regularly happens that we visit nodes twice when doing a plain recursion.
However, once determined, the set of flagged genes is invariant to further calls
of the procedure. Thus we can cache the set of flagged genes in the first visit
of the node and lookup the result on the next visit. The complete procedure is
summarized in Algorithm 1.

Algorithm 1: Pseudocode for the complete elim procedure. For simplic-
ity, the logic for the result cache has been omitted.

Input: term t, ontology graph G, study set N, population set M
Output: set of flagged genes F
F ← ∅ ; /* Initialize set of flagged genes */
foreach c ∈ getChildren(G, t) do

F ← F ∪ elim(c, G, N, M) ; /* Recursion */
pt ← fisherExact(M, N, Nt\F)
if isSignificant(pt) then

F ← F ∪ Nt ; /* Flag study genes of t */
return F

Obviously, the complexity of the algorithm is the same as the complexity
of a depth-search algorithm if we assume that the number of genes that are an-
notated to a term is constant. Note in the original publication of the elim, the
algorithm was based on an iteration over the levels of the GO DAG, which
partitions the nodes according their longest distance to the root. The algo-
rithm as shown here yields an equivalent result without the need to explicitly
keep track of the DAG levels.

Example 2.5 (continuation of Example 2.4). The p-value of term t matches the
p-value of term t of the term-for-term approach, i.e., pelim

t = ptft
t = 0.044. As this

is a significant result, at least, if correction for multiple testing is omitted, all
four genes that are annotated to t are removed in the consideration of upper
terms, i.e., we assume that those four genes are not annotated to them. This
leaves two genes for the computation of term s, of which only one is member
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of the study set (confer to Figure 2.4). With ms = 2, ns = 1, and the rest as
before, Equation (2.1) yields:

pelim
s = P(Xs ≥ 1|H0) =

(
2
1

)(
16
4

)
(

18
5

) +

(
2
2

)(
16
3

)
(

18
5

) = 0.49.

Hence, the elim method doesn’t report term s as important.

Weight

An equivalent characterization of the elim method is the following: If a term
t is identified as significant, all genes that are annotated to t are no longer
considered in the computation of the relevance of the ancestors of t. As it was
discussed in Example 2.1 at page 27 and as can also be seen in Figure 2.2, the
term-for-term approach assigns term s a lower p-value than it does for term
t. One may conclude that it is more appropriate to take term s than to take
term t in order to provide a compact description of the study set. However, in
Example 2.5 we saw that the application of the elim method results in usage
of term t to describe the outcome, which is contrary to that conclusion.

This concern is addressed by the weight method, which compares signifi-
cance scores of connected terms (a parent and its child) to identify the locally
most significant terms of the GO graph and to down-weight genes in less sig-
nificant neighbors. In order to accomplish this, the weight method handles the
involved set of genes as weighted sets, whose notation is formalized in the
following definition:

Definition 2.6.1. A weighted set W is a pair (A, w). A is a set, which is also
referred to as the underlying set of W. A member of A is also a member of W.
Furthermore, w : A→ R is the weight function of W, which attributes to each
member of W a weight. The cardinality of W, denoted by |W|, is a sum over all
weights of each member, i.e.,

|W| = ∑
a∈A

w(a).

The weight method maintains a weighted set W for each GO term t. The
underlying set of W corresponds to the genes that are annotated to t and the
weight function w initially is set to 1 for all members. In order to determine the
p-value of the term t within the study set, Fisher’s exact test is performed with
the cardinalities of the involved weighted sets2, which need to be rounded up
to the next integer if they are not already integers. To formalize this, we use
following notation:

mW = d|(M, w)|e, mW
t = d|(Mt, w)|e, nW = d|(N, w)|e, nW

t = d|(Nt, w)|e,
2Note that the modified version of Fisher’s exact test is often done multiple times for the

same term with changed weights so it can be argued whether the result for a term is a p-value
in a statistical sense. We still stick for this terminology as low values indicate support for an
association.
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whereby w is the weight function of W. For instance, nW
t is the cardinality of

the weighted set that has the set of genes that intersect with term t and the
study set as underlying set and that uses the weight function of W. Based on
Equation (2.1), we define the score function:

pW
t =

min(mW
t ,mW )

∑
k=nW

t

(
mW

t
k

)(
mW −mW

t
nW − k

)
(

mW

nW

) . (2.6)

Therefore, if all genes have a weight of 1, the calculation is equivalent to the
the calculation for the term for term approach.

As the elim method, weight processes the graph representation of the on-
tology in a bottom-up manner. The steps that are performed to determine the
significance of a single term is more complicated than it is for the elim method
because it incorporates alterations of the weights. The procedure computeTerm-
Sig that is described in the next paragraphs specifies how the term specific
weights of the genes are changed.

Let t be the term that is currently under analysis. First, we calculate pt
according to Equation (2.6). We then compare pt with the p-values of the chil-
dren. These have been already calculated in a previous step. Case (1) holds
if t is more relevant than any of its children, i.e., the p-value of t is smaller
than the p-value of all of its children. Then the weights associated with the
genes that are annotated to the children will be reduced. This has the effect
of increasing the p-value of the children. Case (2) holds if at least one child,
call it s, of t has a smaller or equal p-value than t. This time, the genes that
term s has in common with t will be down-weighted for term t and all of its
ancestors. In addition, the calculation of t is repeated with the modified set-
ting and by omitting the children that were already identified to have smaller
p-value than t. In general, the rationale of the down-weighting in both cases is
to decorrelate the p-values of the related terms such that their differences are
enforced while still maintaining the existence of the most significant terms.

In order to finish the description of the algorithm, the way how genes are
down-weighted needs to be exactly specified. For this purpose, denote by

pRatio(s, t) =
f (ps)

f (pt)

the ratio of the p-values of term s versus t, in which f (·) is an arbitrary in-
creasing function that can be used to influence the extent of the weighting.
Note that pRatio(s, t) ≤ 1, if ps ≥ pt.

For case (1), in which term s is the term with the smallest p-value, we mul-
tiply each weight of the genes of each child of s denoted by t by r = pRatio(s, t)
and recalculate the p-values of the children accordingly. As the ratio r is lower
than 1 this has the effect of down-weighting genes and thereby increasing the
p-values of the children. Concerning case (2), for each children t of s with
pt ≤ ps, we divide the weights of genes that t and s have in common for term
s and all of its ancestors by the ratio r = pRatio(s, t). In this case, the ratio r is at
least 1 thereby down-weighting the corresponding genes and consequently in-
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creasing their p-value. Pseudocode for the procedure computeTermSig is given
in Algorithm 2.3

Algorithm 2: Pseudocode for the computeTermSig

Input: term t, set of terms children
pt ← wFisherExact(M, N, Nt, Wt) ;
sigChildren← {c ∈ children|pRatio(pc, pt) > 1} ;
if sigChildren = ∅ then /* case (1): t has lowest p-value */

foreach c ∈ children do
Wc ←Wc ⊗ pRatio(pc, pt) ;
pc ← wFisherExact(M, N, Nc, Wc) ;

else /* case (2): t doesn’t have lowest p-value */
foreach c ∈ sigChildren do

foreach a ∈ ancestors(c) do
Wa ←Wa ⊗ pRatio(pt, pc) ;

computeTermSig(t, children\sigChildren) ;

As the elim method, the entire weight method can be embedded to a DFS-
like algorithm. That is, we call computeTermSig for each node in postorder.
The pseudocode is given in Algorithm 3. The weights and the p values can be
cached on the first visit of a node to avoid redundant calculations.

Algorithm 3: Pseudocode for the weight method. Caching is omitted to
simplify the presentation.

Input: term t, ontology graph G, study set N, population set M
foreach c ∈ getChildren(G, t) do

weight(c, G, N, M) ; /* Recursion */
computeTermSig(t, getChildren(G, t)) ;

2.7 Other Approaches and Extensions

In addition to approaches that take a fixed subset of the population as in-
put, procedures that take the measurements of the genes into account are also
widely in use. This is attractive as it frees the investigator from the need to
define a sometimes arbitrary cut off that is used to construct the study set.

A first version of the so-called Gene Set Enrichment Analysis (GSEA) that
received much attention of the scientific community was presented in Mootha
et al. (2003). Genes were ranked according to an interesting feature (e.g., the
difference of the mean of their expression values for two experimental condi-
tions). The null hypothesis is that the genes of the interesting set (e.g., genes
annotated to a term) have no association with that list, in which case they
would be randomly ordered. The alternative hypothesis is that the genes of

3Within the pseudocode, A ⊗ b refers the element-wise product of set A with scalar b, i.e.,
A⊗ b = {c|a ∈ A, c = ab}.
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the interesting set have an association. For instance, if the genes of the set are
grouped together on the top of the list we would assume that there is such an
association.

To capture the association via statistical means, the authors proposed a
normalized Kolmogorov-Smirnov (KS) test statistic. Let ri ∈ M be the gene of
the population M that has rank i in the gene list that is sorted according to the
interesting gene feature. Using the previously established notation, i.e., that
m is the total number of genes and Nt is the set of cardinality nt that contains
only genes that are annotated to t, the score is defined as:

ES(Nt) = max
i∈{1,...,m}

i

∑
j=1

Xj with Xj =

−
√

nt
m−nt

, if ri /∈ Nt√
m−nt

nt
, otherwise

Thus, the score is the maximum of a running sum that is increased if the gene
is annotated to t and decreased if the gene is not annotated to t. In order
to check if the obtained score is significant, the calculation is repeated for k
randomly chosen sets N1

t , . . . , Nk
t , which all are subsets of M with size nt. The

p-value for a term t is calculated as

pt =

∣∣{i|ES(Ni
t) ≥ ES(Nt)}

∣∣
k

.4

The GSEA method went a slight revision in Subramanian et al. (2005), where
ad-hoc modifications are implemented that are supposed to countervail the
well-known lack of sensitivity of the KS test (Mason and Schuenemeyer, 1983;
Irizarry et al., 2009).

With Whole Transcriptome Shotgun Sequencing, which is also called RNA-
seq, advances in sequencing technologies bring in new opportunities to the
field of transcript expression profiling as it is now possible to measure lev-
els of vast amounts of transcripts in very high resolution (Morin et al., 2008;
Wang et al., 2009). With all its merits, this new technique however provides
new challenges for down stream analyses, which includes the gene enrich-
ment analysis that is the topic of this chapter.

Following the analysis of Oshlack and Wakefield (2009), in which a re-
lation between the length of a transcript and the ability to detect this tran-
script as differential expressed was described, Young et al. (2010) developed
an approach that aims to account for this effect within the gene enrichment
setting. After determining n genes as differential expressed with any applica-
ble method (e.g., Robinson and Smyth (2007) or Mortazavi et al. (2008)), the
authors propose to fit a probability weighting function (PWF) that quantifies
the likelihood of a gene being differentially expressed by means of the tran-
script length. That way, any trend, i.e., whether longer transcripts increase or
decrease the power of the differential expression test, is included in the sta-
tistical test that is used to assesses whether a term is significantly enriched or
not.

While the test statistics continues to be the number of differentially ex-
pressed genes, i.e., nt, the null distribution no longer matches the hypergeo-
metric distribution. Therefore, the authors propose a resampling strategy to

4Note that according to the formula pt could become 0. We fix this here and and in all fol-
lowing resampling approaches by assuming that the observed test statistic is always a part of the
random samples.
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estimate it. For this purpose, k sets N1, . . . , Nk all of cardinality n are randomly
drawn from the population without replacement, whereby the probability of
a gene being included in this set is determined by the PWF. The numbers of
genes of these sets that are annotated to term t, i.e., n1

t , . . . , nk
t determine the

null distribution. The p-value is calculated as:

pt =

∣∣{i|ni
t ≥ nt}

∣∣
k

In addition to the resampling strategy the authors also explain how one can
approximate the null distribution using the Wallenius distribution.(Fog, 2008)

Note that both procedures that were briefly described here need to be ap-
plied for each term t. As there can easily be more than 10,000 terms that need
to be tested, the number of resampling steps needs to be rather large in order
to deal with the multiple testing problem (see Section 2.3, page 27).
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3
Model-Based Gene Set Analysis and

Systematic Benchmarks

We have seen in the previous chapter that a major difficulty of the standard
approach of extracting a meaning of gene lists with help of Gene Ontology
and a statistical procedure is that each term is analyzed in isolation. Because
of annotation propagation rule we observe statistical dependencies between
terms that are close to one another in the ontology graph. Thus, if one term is
called significant then commonly one or more terms in the ontological neigh-
borhood are also called significant. A similar problem can affect terms that
are distant to one another in the ontology but that share genes to which they
are annotated, i.e., whose annotations are correlated. The parent-child and
the topology algorithms were developed in the attempt to compensate these
effects by means of more or less local adjustments to the statistical tests being
performed for the GO terms. As we will show in Section 3.7, the procedures
are able to reduce false-positive results on simulated data, and tend to return
smaller lists of terms on real data sets.

All of these procedures still have in common that they successively test
overrepresentation for each of the terms. They make use of the structure of GO
to address statistical dependencies, so they are limited to structured vocabu-
laries like ontologies. Additionally, they not fundamentally differ from the
original paradigm of term-for-term testing with the Fisher’s exact test. When
used with different gene categorization databases such as the KEGG (Kane-
hisa and Goto, 2000) or other schemes (Mootha et al., 2003; Subramanian et al.,
2005) that are not structured in that way, they even produce exactly the same
results as the term-for-term approach.

In this chapter, we develop a completely different approach to tackle the
problem of summarizing a list of responder genes. We specify a Bayesian net-
work that models the outcome of a biological experiment as a consequence of
an activation of predefined categories. Using this model, the original problem
can be formulated as an optimization problem that, as we will see, is related
to the set cover problem (Karp, 1972), whereby the choice of active categories,
and optionally other parameters, define a probability value. As our approach
fundamentally depends on the model, we call it a model-based gene set anal-
ysis, or MGSA for short. MGSA tries to find the best combination of categories
that together explain the experimental result. We also report values for each
category that specify the probability of the involvement of the category in the
biological process under investigation. In contrast to the algorithms that were
presented in the previous sections, no statistical tests such as the Fisher’s exact
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test or variants thereof are performed for each term. Instead, the probability
value is optimized for the set of parameters.

The chapter is organized as follows. In the first section we specify the
Bayesian network that is the foundation of MGSA. In the next section, we use
the model to derive a probability function that relates the activity of terms to
the observed responder genes of the experiment. The third section formalizes
the seeking for the most probable term configuration and presents complexity
results. In the fourth section, we turn the focus on reporting marginal prob-
abilities of the activity state for terms. The next section presents strategies
how the remaining parameter of the model can be estimated. Section six then
compares all methods that were considered in this work using a systematic
benchmark setting. The method is applied to real datasets. Section seven then
sets MGSA into the context of the other approaches and discusses the results.
The last section outlines details of an efficient implementation of the MSGA
function and presents the Ontologizer application as well as the Bioconductor
package mgsa, in which the procedure has been implemented for end-users.

3.1 Bayesian Network to Model Gene Response

We model gene response in a genome-wide experiment as the result of an acti-
vation of a number of biological categories. These categories can be pathways
as defined by the KEGG database (Kanehisa and Goto, 2000), GO terms (Bar-
rell et al., 2009), or any other scheme (Mootha et al., 2003; Subramanian et al.,
2005) that associates genes to potentially overlapping biologically meaning-
ful categories. Because we primarily work with GO, we call these categories
terms. Our method does not make use of the graph structure of GO other than
assuming that the annotations inferable by dint of the annotation propagation
rule have been already made explicit. Recall that this rule states that if a gene
is associated to a term, then it is also associated to all of terms along the path
up to the root of the ontology.

We assume that the experiment attempts to detect genes that have a par-Noisy observations of
responder genes ticular state (such as differential expression), which can be on or off. The true

state of any gene is hidden. The experiment and its associated analysis pro-
vide observations of the gene states that are associated with unknown false-
positive (α) and false-negative rates (β), which we will assume to be identical
and independent for all genes. For instance, in the setting of a microarray ex-
periment, the on state would correspond to differential expression, and the off
state would correspond to a lack of differential expression of a gene.

Furthermore, our model assumes that differential expression is the conse-Activity of terms
quence of the annotation to some terms that are active. An additional param-
eter p represents the prior probability of a term being active. The probability
p is typically low (less than 0.5), introducing an effective penalization for the
number of active terms. This favors a solution that contains a relatively low
number of terms that are active.

More formally, the model can be described using a Bayesian network with
three layers that is augmented with a set of parameters. A simple instance of
the model is depicted in Figure 3.1. In more detail, the network consists of:

1. A term layer T = {T1, . . . , Tm} that consists of m Boolean nodes corre-
sponding to m terms of the ontology. A term i can be active or inactive,
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T1
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T3
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H3

O1
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O3

Figure 3.1: The Graphical Representation of an MGSA Network.
An example structure for four terms and three genes is displayed. Gene
categories, or terms (Ti) that constitute the first layer can be either
active or inactive. Terms that are active enable the hidden state (Hj)
of all genes annotated to them, the other genes remaining off. The
observed states (Oj) of the genes are noisy observations of their true
hidden state.

which we denote by Ti = 1 or Ti = 0 respectively.

2. A hidden layer H = {H1, . . . , Hn} that contains n Boolean nodes repre-
senting the n genes of which annotations are available. There are edges
from the terms to genes to which they are annotated. For instance, if
gene 1 is annotated to terms 1 and 2 then there is an edge between T1
and H1 and another edge between T2 and H1. The state of the nodes re-
flects the true activation pattern of the genes. The hidden state of a gene
i can be on or off, which is denoted as Hi = 1 or Hi = 0.

3. An observed layer O = {O1, . . . , On} that contains Boolean nodes reflect-
ing the experimentally observed state of all genes. The observed gene
state nodes are directly connected to the corresponding hidden gene
state nodes in a one-to-one fashion. The observed state of a gene i is
on, iff Oi = 1. Otherwise, its observed state is off.

Note that we use in the context of MGSA i as an index for terms, while we use
j as the an index for genes.

For didactic purposes, we will initially explain a simplified version of our
procedure in which the parameters α, β and p are considered to have known,
fixed values. Consequently, the parameters will not be handled as full random
variables in the following considerations and omitted from the inputs of the
equations. The more general case will introduced in Section 3.5, where we
augment the Bayesian network with true random variables that represent the
mentioned parameters.
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The state propagation from one node of a layer to a node of another layer
is modeled using various LPDs, denoted by P. The JPD for this simplified
Bayesian network can be written as

P(T, H, O) = P(T)P(H|T)P(O|H) = P(T)
n

∏
j=1

P(Hj|T)P(Oj|Hj). (3.1)

We model the state of each term i ∈ {1, . . . , m} to be active with probability
of p. The Boolean random variable Ti that represents the state of term i there-
fore follows a simple Bernoulli distribution with hyperparameter p, which
is formally expressed as P(Ti = 1) = p. Denote by mx|T the number of
terms that have state x for a given configuration of the variables of T, i.e.,
mx|T = |{j|Ti = x}|, then

P(T) = pm1|T (1− p)m0|T = pm1|T (1− p)m−m1|T . (3.2)

Thus, the probability of a particular configuration of T is the product of p to
the power of the number of active terms and 1− p to the power of inactive
terms. Observe that P(T) is a monotonously decreasing function with respect
to m1|T if p < 0.5. That is, the more terms are active the less probable is the
configuration.

For the T → H links, we specify that the hidden state of a gene j is on ifActive terms switch
genes on at least one of the terms to which gene j is annotated is active. Otherwise it is

off. In the following, we denote by T(j) ⊆ {1, . . . , m} the set of terms to which
gene j is annotated. This is equivalent to the indices of nodes of the parents of
Hj in the Bayesian network. For the LPD of Hj we thus have:

P(Hj = 1|T) =
{

1, if ∃ i ∈ T(j) : Ti = 1
0, otherwise

(3.3)

Note that this transition is deterministic.
For the H → O connection we choose the following two Bernoulli distri-Probabilistic

propagation between
hidden and observed

layer

butions:

P(Oj = 1|Hj = 0) = α

P(Oj = 0|Hj = 1) = β

Therefore, α is the probability that a gene j is observed to be on, i.e., Oj = 1,
although its true hidden state is actually off, i.e., Hj = 0, and thus, none of the
terms which annotate the gene are active. Such genes are false-positives. Cor-
respondingly, β is the probability of a gene being observed to be off although
at least one term that annotates it is active. Such genes count as false-negatives.

The MGSA network is sufficiently specified now. Figure 3.2 is a represen-
tation of the example network of Figure 3.1 in which also the local probability
distributions are included.

3.2 Probabilistically Motivated Scoring Function

The result of a biological experiment and its downstream analysis is a list of
genes. We model this list of genes via the random variables of the observed
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T1 = 0 T1 = 1
1− p p

T1 = 0 T1 = 1
1− p p

T1 = 0 T1 = 1
1− p p

T1 = 0 T1 = 1
1− p p

T1 T2 H1
0 0 0
0 1 1
1 0 1
1 1 1

T1 ∨ T2 ∨ T3 H2
0 0
1 1

T2 ∨ T3 ∨ T4 H3
0 0
1 1

H1 O1 = 0 O1 = 1
0 1− α α
1 β 1− β

H2 O2 = 0 O2 = 1
0 1− α α
1 β 1− β

H3 O3 = 0 O3 = 1
0 1− α α
1 β 1− β

Figure 3.2: The Fully Specified MGSA Network from Figure 3.1.
Note that the propagation from the term layer to the hidden layer is
deterministic, so the last column of a hidden node specifies a value
and not a probability. The LPDs of nodes with three parents are given
using a space-saving notation.

layer O. The researcher seeks for a high-level description of the results, which
in our case is given by the activity state of the terms modeled within the term
layer T. In order to present the user a suitable term configuration, we need
to quantify how a particular configuration fits the observation using a scoring
function. In our Bayesian framework the natural scoring function is given by
the posterior distribution P(T|O), i.e., the conditional probability of a term
configuration that given the observed states of all genes. The process of com-
puting P(T|O) is commonly referred to as probabilistic inference.

From the definition of the conditional probability and summing over all
possible combinations of the realizations of variables of H we get:

P(T|O) =
P(T, O)

P(O)
=

∑H P(T, H, O)

P(O)

By plugging in the factorized JPD of Equation (3.1), we get for the numerator:

∑
H

P(T, H, O) = P(T)∑
H

n

∏
j=1

P(Hj|T)P(Oj|Hj) = P(T)P(O|T) (3.4)
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3. MODEL-BASED GENE SET ANALYSIS AND SYSTEMATIC BENCHMARKS

Observe that the factor ∏n
j=1 P(Hj|T) = 1, only if P(Hj|T) = 1 for all genes

j. By Equation (3.3) this is the case, if Hj = 1 and at least one term that is an-
notated to gene j is active, or if Hj = 0 and all terms that are annotated to gene
j are inactive. We shall use HT

j to denote Hj together with this realization, and

HT as the set containing all HT
j . For all other configurations of H, the factor

∏n
j=1 P(Hj|T) = 0. Thus, it is enough to limit the calculation of Equation (3.4)

to a single configuration.

Denote by nxy|T = |
{

j|Oj = x ∧ HT
j = y

}
| the number of genes having

observed state x and hidden state y if the T → H states are propagated
as defined in Equation (3.3). For instance, n01|T corresponds to the num-
ber of genes observed to be not differentially expressed but whose hidden
state is on, i.e., the number of false-negatives, because some or all terms that
are annotated to them are active according to T. Then, by considering the
LPDs of nodes, we get the following product of Bernoulli distributions for
P(O|T) = ∏n

j=1 P(Hj|T)P(Oj|Hj):

P(O|T) = αn10|T (1− α)n00|T (1− β)n11|T βn01|T (3.5)

Thus, the probability to see a particular configuration of O given the activity
states of terms T relates the false-positive and false-negative rates with the
appropriate counts. Note that in this work we define 00 = 1.

By plugging Equations (3.2) and (3.5) into Equation (3.4) we get for the
numerator of the posterior equation:

P(T)P(O|T) = pm1|T (1− p)m0|T αn10|T (1− α)n00|T (1− β)n11|T βn01|T (3.6)

The posterior equation’s denominator is P(O). This is the normalization
constant, which involves the summation over H and T states. In the next
section, we will see that it is not necessary to determine it when seeking for
an appropriate T.

3.3 Maximum a Posteriori

In order to provide a suitable explanation of the observation, we are looking
for a term configuration T, for which the posterior P(T|O) is maximal. We
denote this configuration as TMAP. As observed in the last section, P(O) is a
constant so that

P(T|O) ∝ P(T)P(O|T),
hence we do not need to consider P(O), when looking for TMAP alone, i.e.,

TMAP = arg max
T

P(T|O) = arg max
T

P(T)P(O|T).

In general, probabilistic inference is NP-hard (Cooper, 1990), while effi-
cient algorithms can be conceived if the underlying graph structure is a tree
or a polytree.(Rebane and Pearl, 1988) Both special cases do not apply for our
network structure. We show that the inference procedure within our network
structure is, like the general case, NP-hard.
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T

P(T|O)

MAP

Figure 3.3: Maximum a Posteriori. The MAP is a configuration,
in which a posterior probability function for the given observations is
maximal. The configuration here is T, which collectively represents
the states of the terms, while the observation is O, which collectively
represents the observed states of the genes.

For the purpose of making some general statements of the complexity of
MAP-MSGA, we look at its decision problem. We express the decision prob-
lem as

LMAP-MGSA = {(G(1), . . . , G(m), o1, . . . , on, α, β, p, s)|
G(1), . . . , G(m) ∈ P({1, . . . , n}), o1, . . . , on ∈ B, α, β, p, s ∈ [0, 1],

∃(t1, . . . , tm) ∈ Bm : P(T = t)P(O = o|T = t) ≥ s
with t = (t1, . . . , tm), o = (o1, . . . , on)}.

Here, G(i) defines the set of genes to which a term i is annotated, thus it in-
duces the structure of the Bayesian network. It captures the same links as T(j)
for a gene j from Equation (3.3), but refers to the children of a term node in
the Bayesian network. Furthermore, P(S) denotes the power set for a set S
and B = {0, 1}. Therefore, a word of LMAP-MGSA describes all term activity
combinations, for which each term i represents a subset of n genes, that yield
a probability or score of at least s.

Theorem 3.3.1. The decision problem of MAP-MGSA is NP-complete.

Proof. Recall that an NP-complete language is in NP and is NP-hard. The for-
mer gives an upper bound while the latter gives a lower bound of the running
time for the respective computational model. Showing that a language L is
in NP can be done by constructing a non-deterministic Turing machine that
decides the language in polynomial time. Showing that L is NP-hard means
to show that every other language that is in NP is polynomial-time reducible
to it, i.e., ∀L′ ∈ NP : L′ ≤p L with L′ ≤p L meaning that there is a polynomial-
time function f : Σ∗1 → Σ∗2 such that

∀x ∈ Σ∗1 : x ∈ L1 ⇔ f (x) ∈ L2.

MGSA is in NP. It is easy to conceive an algorithm that decides LMAP-MGSA
on a non-deterministic Turing machine:

• Check, if the input x conforms to the syntax of LMAP-MGSA. Reject x if
this is not the case.
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• Generate a term configuration vector (t1, . . . , tm) ∈ Bm in a non-deter-
ministic way.

• Set t = (t1, . . . , tm) and by that T = {T1 = t1, . . . , Tm = tm}.
• Calculate k = pm1|T (1− p)m0|T αn10|T (1− α)n00|T (1− β)n11|T βn01|T

• If k ≥ s, accept x otherwise reject.

Obviously, all steps can be executed in polynomial time using a non-determin-
istic Turing machine, whereby step 2 is the only non-deterministic one. Hence,
LMAP-MGSA ∈ NP.

MSGA is NP-hard. In order to show ∀L′ ∈ NP : L′ ≤p L it suffices to reduce
a problem that is already known to be NP-complete to L using a polynomial
computable function f . In particular, here we will show that the decision
variant of the problem SETCOVER (Karp, 1972) denoted as LSC can be reduced
to LMAP-MGSA. There are many syntactic variants for the notation of SC. We
use following form:

LSC = {(S1, . . . , Sm, n, l)|S1, . . . , Sm ∈ P({1, . . . , n}), n, l ∈N,

∃I ⊆ {1, . . . , m} :
⋃
i∈I

Si = {1, . . . , n} ∧ |I| ≤ l}

Thus, LSC contains tuples that describe instances, in which l or less subsets
among m given subsets of the set U = {1, . . . , n} can be chosen to cover U.
We construct f as follows:

f (x) =

{
(S1, . . . , Sm, 1, . . . , 1, 0, 0, 0.2, 0.2l · 0.8m−l), if x = (s1, . . . , sm, n, l)
({1, 2}, 1, 1, 0, 0, 0.2, 1), otherwise

Obviously, f is computable using polynomial running time.
We now show that x ∈ LSC ⇒ f (x) ∈ LMAP-MGSA holds. By definition,

if x ∈ LSC, then there is an index set I ⊆ {1, . . . , m} of cardinality not larger
than l that defines the subsets whose union is {1, . . . , n}. We now consider
the MGSA solution, in which all l elements of this particular index set I cor-
respond to the active terms, i.e., ti = 1 ⇔ i ∈ I. For this solution, the hid-
den states of all n genes are on. Furthermore, as by construction oi = 1 for
1 ≤ i ≤ n, it follows that n00|T = n01|T = n10|T = 0 and n11|T = n. As
α = β = 0, the active terms as defined by I leads to P(O|T)=1.1 There-
fore, P(O|T)P(T) of the selection I would be at least pl · (1 − p)m−l and as
p = 0.2, at least 0.2l · 0.8m−l as constructed. Note that this is a monotonously
decreasing function with respect to l, thus a smaller l can only lead to a larger
probability.

Finally, we show that x 6∈ LSC ⇒ f (x) 6∈ LMAP-MGSA holds. Suppose that x
is a valid input, then x 6∈ LSC implies that there there is no set cover of size l or
less. Consequently, there is also no selection of active terms that hit all genes.
It follows that the number of false-negatives n10|T > 0 so that αn10|T = 0, due
to α = 0. Therefore P(O|T)P(T) = 0 < pl · (1− p)m−l and f (x) 6∈ LMAP-MGSA

1Recall that we defined 00 = 1.
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as claimed. In the second case, suppose that x is not a valid input. Then
f (x) = ({1, 2}, 1, 1, 0, 0, 0.2, 1) 6∈ LMAP-MGSA holds, as P(T)P(O|T) = 0.2 < 1
if term 1 is chosen. As this is the only possibility to hit all genes, the claim
follows in a straightforward fashion.

Intuitively, we have just shown that the decision problem of MGSA is a
generalization of SETCOVER. If the decision problem of MSGA is NP-com-
plete, then the corresponding optimization problem is NP-hard.2 Thus, at this
writing, no efficient algorithm is known that can be used to find an optimal
solution.

In such a situation, it often makes sense to fall back to approximation al-
gorithms or heuristics. A simple heuristic is given by a greedy algorithm,
in which one starts with an empty set of active terms, and extend it in each
round with one term among the remaining ones that improves the score best.
We proceed that way until no improvement can be detected. Pseudocode for
this greedy procedure is given in Algorithm 4.

Algorithm 4: Algorithm to obtain approximated MAP for P(T|O).

Data: Observations O
Result: Set of active terms for local MAP
A1 ← ∅ ; /* Set of indices of active terms */
l ← 1 ; /* Running index */
repeat

b← arg max
i∈{1,...,m}

score(Al ∪ {i});

Al+1 ← Al ∪ {b} ;
l ← l + 1 ;

until score(Al+1) ≤ score(Al);
return A

function score(A) /* Calculate score for set of active
terms */

T ← {Ti = si|i ∈ {1, . . . , m}, si ∈ B, si = 1⇔ i ∈ A} ;
k← P(T)P(O|T) ;
return k

3.4 Estimating Marginal Probabilities with Known
Parameters

If the MAP procedure is carried out, the result is a unique combination of
active terms, which is estimated to be the most likely combination given the
observation. However, due to the mentioned computational difficulties in ob-
taining a MAP solution, the best that an approximation algorithm or heuris-
tics such as Algorithm 4 could deliver is a MAP that is locally maximal in the
neighborhood. This is illustrated in Figure 3.4.

2As can be easily verified, the optimization problem is also in NP.
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T

P(T|O)

MAP
Local MAP

Figure 3.4: Global vs. Local MAP. If the function describing the
posterior probability is too complex, it may be difficult to obtain the
global MAP. This is the case here, as the problem is NP-complete. An
approximation algorithm, such as the described greedy algorithm, may
only return a local MAP.

Even if we would accept the gap between the local MAP and the global
MAP, there are a number of additional disadvantages. The MAP approach
identifies a single configuration of the term states that corresponds to a (local)
maximum of the value of the posterior distribution. However, there is no
reason to believe that the point estimate produced by the MAP is better than
nearby configurations with similar posterior probabilities.

Example 3.1. Suppose that there are two terms, whose activity state is repre-
sented by variables T1 and T2. The set of genes to which term 1 is annotated
is given by the set of genes {1, 2, 3}. The set of genes to which term 2 is anno-
tated is {2, 3, 4}. We observe that gene 2 and 3 is triggered by the experiment.
This situation is depicted on the left part of Figure 3.5. If term 1 were the only
active term, then the observation could be explained by risking an error of
one false-negative. The same can be noticed if term 2 is the only active term.
Both settings are depicted in middle and in the right of Figure 3.5. The re-
maining two possible configurations lead either to two false-negatives or two
false-positives. Assuming for the moment, that the α = β ≤ 0.5, the best solu-
tion is attained if one term is active. But this solution is ambiguous. A single
MAP solution does not account for that.

Additionally, a MAP solution or an estimate of it would provide merelyMarginal Probabilities
a list of terms in the active state without providing a weighting or ranking of
the terms. But this is the case for all algorithms that were presented before.
The solution to those points is to report the marginal posterior probabilities of
terms to be active, i.e., P(Ti = 1|O).

Oftentimes, marginal probabilities cannot be derived analytically. ThisMetropolis-Hasting
algorithm also holds for our network. Therefore, we estimate these values using a vari-

ant of the Metropolis-Hasting algorithm, which is a Markov chain Monte
Carlo (MCMC) method (Diaconis and Saloff-Coste, 1995; Andrieu et al., 2003;
Diaconis, 2009). The MCMC algorithm performs a random walk over the term
configurations, which asymptotically provides a random sampler according
to the target distribution P(T|O).

Given the current configuration of the terms denoted by Tt, the algorithmAcceptance
probability proposes a neighbor state Tp in accordance to a proposal density function
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Figure 3.5: Two Explanations for the Same Model. The config-
uration that is showed on the left, represents the problem setting of
Example 3.1. The configuration that is displayed in the middle explains
the observations as good as the last configuration does. A MAP ap-
proach would return just one of the solutions. The truth is that we
cannot distinguish between both solutions.
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Figure 3.6: The Setting of Figure 3.5 with Marginal Probabilities.
Probabilities of term activity can be used to make the ambiguity of
solutions apparent.
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QT(·|Tt). We sample a value r uniformly from the range (0,1). Then, if

r < Paccept(Tt, Tp) =
P(Tp|O)QT(Tt|Tp)

P(Tt|O)QT(Tp|Tt)
(3.7)

the proposal is accepted, i.e., Tt+1 = Tp, otherwise it is rejected, i.e., Tt+1 =
Tt. Recall that by applying Bayes’ Theorem we get

P(Tp|O) =
P(O|Tp)P(Tp)

P(O)
(3.8)

and similarly for Tt. Substituting these expressions for P(Tp|O) and P(Tt|O)
cancels out the normalization constant P(O). The acceptance probability is
then:

Paccept(Tt, Tp) =
P(O|Tp)P(Tp)QT(Tt|Tp)

P(O|Tt)P(Tt)QT(Tp|Tt)
. (3.9)

Equation (3.9) is used iteratively to define a random walk through theEstimating marginals
space of term activity configurations. Let l be the number of iterations that
are performed and C(Ti) be the number of samples in which term i was active.
Then we approximate the desired marginal via

P(Ti|O) ≈ C(Ti)

l
.

In order to finish the description of the algorithm, we need to define classesProposal distribution
of operations of which a proposal is chosen with that probability, that is, we
need to specify QT(Tp|Tt). We denote by Tp ↔T Tt the binary relation that
states that Tp can be constructed from Tt by either

• toggling the active/inactive state of a single term, or by

• exchanging the state of a pair of terms that contains a single active term
and a single inactive term.

We denote by N(T) the cardinality of the neighborhood of a given configura-
tion for T, that is, the number of different operations that can be applied once
to T in order to get a new configuration. This number can be easily calculated.
At first, there are m terms in total, each of which can be toggled. In addition,
there are m0|Tm1|T possibilities to combine terms that are on with terms that
are off. Thus, there are a total of N(T) = m + m0|Tm1|T valid state transitions.
We would like to sample the valid proposals with equal probability, therefore
the proposal distribution QT is determined by

QT(Tp|Tt) =

{
1

N(Tt)
, if Tp ↔T Tt

0, otherwise.
, (3.10)

which we can use to rewrite Equation (3.9) to:

Paccept(Tt, Tp) =
P(O|Tp)P(Tp)N(Tt)

P(O|Tt)P(Tt)N(Tp)
.

The procedure is shown in Algorithm 5. For simplicity, the burn-in period is
omitted from the pseudocode. In particular, the state space of the situation
described in Example 3.1 and possible transitions from one state to another
are illustrated in Figure 3.7.
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Figure 3.7: State Space of the Example in Figure 3.6. Possi-
ble transitions according to our proposal distribution are indicated by
arrows.
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Theorem 3.4.1. Algorithm 5 converges to the desired stationary distribution.

Proof. It is easy to see that all states of the chain are reachable from any state, as
the Markov chain is finite and it is possible to reach an arbitrary state from any
other state by a fixed number of operations. This accounts for the irreducibil-
ity of the chain. Moreover, the chain is aperiodic as it is always possible to
stay in the same state, as any proposal can be rejected.Therefore, the resulting
Markov chain is ergodic, which is a sufficient condition for a convergence to a
stationary distribution, which matches the desired target distribution (Stewart,
2009).

Algorithm 5: A Metropolis-Hasting algorithm to estimate P(Ti = 1|O).

Data: O, l (number of steps), α, β, p
Result: P(T1 = 1|O), . . . , P(Tm = 1|O))
Tt ← {T1 = 0, . . . , Tm = 0};
for t← 1 to l do

Tp ∼ QT(·|Tt), i.e., given Tt choose a neighbor candidate by either

• toggling the activation state of a term

• exchanging an active term with an inactive one

a← P(O|Tp)P(Tp)N(Tt)
P(O|Tt)P(Tt)N(Tp)

r ∼ U(0, 1)
if r < a then

Tt ← Tp

return
(

C(T1)
l , . . . , C(Tm)

l

)
Note that although Theorem 3.4.1 states that the sampled distribution con-

verges it does actually not state how many steps are required for the con-
vergence. In theory, the number of steps required could be larger than the
available amount of processing power allows for. In our implementation, l
defaults to 100, 000 as we archived good results with this setting for real data
and synthetic data. We also take advantage of a burn-in period, in which a
certain number of iterations is used to initialize the MCMC chain. In our im-
plementation, the default is 20,000 iterations. General, an indicator for not
achieving a stationary distribution is to compare the results of several MCMC
runs and then to increase the number of steps if the results are not consistent.

3.5 Estimating Parameters via Expectation Maximization

So far, we have assumed that the parameter α, β and p for the model are given.
This is an impractical limitation as their realizations are usually not known in
advance. In order to estimate the missing parameter, we derive an expectation
maximization (EM) algorithm in this section.

We collectively denote the model parameter p, α and β as parameter vec-Maximum likelihood
criterion tor θ. We will show how these parameters can be fitted according to the max-

imum likelihood criterion, which states that we want to find a θ such that
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the likelihood P(O|θ) is maximal. Typical one introduces the log likelihood
function defined as

L(θ) = ln P(O|θ).
Observe that the value of θ, which maximizes P(O|θ) also maximizes L(θ).

To maximize L(θ), we employ a variant of the EM algorithm. The EM
algorithm is an iterative algorithm that updates at each iteration an estimate
of the parameters θ. Each iteration consists of two steps:

• Given the observed data O and a current estimate of the parameters,
denoted as θold, the expected activity states for the terms is estimated in
the so-called expectation (E) step.

• In the maximization (M) step, a new estimate of the parameters θnew is
calculated using the configuration obtained in the E step.

The entire EM procedure can be expressed by mathematical means:

θnew = arg max
θ

{l(θ|θold)}

with
l(θ|θold) = ET|O,θold

(ln P(O, T|θ)).

It has been shown that iteratively maximizing l(θ|θold) is the same as maxi-
mizing L(θ). (Borman, 2004)

The l samples from the MCMC yield an estimate of the integral in the E
step:

l(θ|θold) =
1
l

l

∑
t

ln P(Tt, O|θ)

Following Equation (3.6), the log likelihood for a configuration T, O reads in
our setting:

ln P(T, O|θ) =n10|T ln(α) + n00|T ln(1− α)+

n01|T ln(β) + n11|T ln(1− β)+

m1|T ln(p) + m0|T ln(1− p)

Averaging now over the l samples of the MCMC and denoting by a bar the
sample average of a variable, we obtain:

l(θ|θold) =n10|T ln(α) + n00|T ln(1− α)+

n01|T ln(β) + n11|T ln(1− β)+

m1|T ln(p) + m0|T ln(1− p) (3.11)

The M-step updates θ by maximizing l:

θnew = arg max
θ

{l(θ|θold)}.

53



3. MODEL-BASED GENE SET ANALYSIS AND SYSTEMATIC BENCHMARKS

To obtain the estimates of, for instance, α, we take the partial derivatives of
(3.11) with respect to α and solve the equation set to zero.

∂l(θ|θold)

∂α
=

1
α

n10|T −
1

1− α
n00|T = 0

By solving this equation, we get:

αnew =
n10|T

n10|T + n00|T
. (3.12)

Analogously, for β and p we obtain:

βnew =
n01|T

n01|T + n11|T
, pnew =

m1|T
m

. (3.13)

Algorithm 6 summaries the steps that are necessary to estimate the param-
eter and to infer the activity states of the terms. This algorithm is composed of
a deterministic and a stochastic part, and it is therefore difficult to give a con-
vergence criterion that can be used to decide when the algorithm can deter-
mine.3 Also this approach considers only a point estimate for the parameters.
Hence, the arguments that we gave against the MAP can be applied here as
well. In the next section we show how the parameters can be estimated within
the MCMC framework.

Algorithm 6: EM algorithm to estimate the parameters α, β, p.

Data: O, l (number of MCMC iterations), e (number of EM iterations)
Result: P(T1 = 1|O), . . . , P(Tm = 1|O)
Initialize start values for θ = (α, β, p)
for l ← 1 to e do

Get l samples from P(T|O, θ) using Algorithm 5 ;
Calculate n00|T , n10|T , n01|T , n11|T , n11|T , m0|T , m1|T ;
Update θ according to Equations (3.12) and (3.13) ;

(P(T1 = 0|O), . . . , P(Tm = 1|O))←Result of Algorithm 5 with final θ ;
return (P(T1 = 1|O), . . . , P(Tm = 1|O))

3.6 Estimating Marginal Probabilities with Unknown
Parameters

The estimation of the parameter α, β, and p can be easily integrated directly
into the MCMC algorithm. To do so, we add an additional type of nodes to
the network:

• A parameter set that contains continuous random variables with values
in [0, 1] corresponding to the parameters of the model α, β and p. These
parameterize the distributions of the observed and the term layer.
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p
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T2

T3

T4

H1
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O1
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α

β

Figure 3.8: Graphical Structure of the Example Network Aug-
mented with a Set of Parameter Variables. We augment the net-
work of Figure 3.1 from page 41 by additional nodes that are drawn
using dashed circles in this figure. These nodes correspond to the pa-
rameters of the model and are: the prior probability of each term to
be active, p, the false-positive rate, α, and the false-negative rate, β.

That is, we handle these parameters as true random variables. The graphical
representation of the augmented network is given in Figure 3.8.

The parameters now must be explicitly considered in the joint probability
distribution:

P(p, T, H, α, β, O) = P(p)P(T|p)P(H|T)P(α)P(β)P(O|H, α, β), (3.14)

where P(T|p) is given by Equation (3.2), P(H|T) is given by Equation (3.3),
and P(O|H, α, β) corresponds to P(O|H) of the basic model. As p, α, and β
are now true random variables, we must define a prior distribution on them
as well. Here we have used uniform distributions to introduce as little bias as
possible.

We are seeking for a scheme to sample from the JPD

P(p, T, α, β|O) =
P(p, T, α, β, O)

P(O)
.

In order to utilize the Metropolis-Hasting algorithm for this purpose, we are
required to provide an efficient calculation for the numerator. This is straight-
forward, because the numerator factors to

P(p, T, α, β, O) = P(p)P(T|p)P(α)P(β)P(O|T, α, β), (3.15)

and moreover, P(O|T, α, β) can be determined using Equation (3.5).
In addition to term state transitions, we also need to take parameter tran- Proposal mixture
3For standard EM algorithm usually the difference of the old values of the to be estimated

parameters and the values of the new parameter is used as an indication for convergence.
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sitions within the proposal density into account. We define the new proposal
density as a mixture of the state transition density QT and a parameter tran-
sition density QΘ. We denote the current realization of the parameters by
Θt = {αt, βt, pt} and by Θp ↔Θ Θt the relation whether Θp can be constructed
from Θt. The fully specified proposal density is then

Qs(Tp, Θp|Tt, Θt) =


QT(Tp|Tt)s if Tp ↔T Tt and Θp = Θt

QΘ(Θp|Θt)(1− s) if Θp ↔Θ Θt and Tp = Tt

0 otherwise.

The additional parameter s ∈ (0, 1) ⊂ R can be used to balance term activity
transition proposals against parameter proposals. That is to say, depending
on the outcome of a Bernoulli process with hyperparameter s, we either pro-
pose a new term activity configuration or a new parameter setting. For the
experiments described in this work, s was set to 0.5.

Many possibilities for the proposal density of the parameter transition QΘ
and for the relation ↔Θ can be envisaged. We have considered transitions
Θp ↔Θ Θt for which Θp differs from Θt in the realization of not more than a
single variable.

In contrast to the configuration space of the terms’ activation state, the
domain of these new variables is continuous. However, an internal study
revealed that the algorithm is not overly sensitive to the exact parameter set-
tings. Therefore, we can restrict the range of the variables to a set of discrete
values. For the experiments described in this work, we used the restrictions
α, β ∈ {0.05k|0 < k < 20} and p ∈ {1/m, .., 20/m}, where m is the number of
terms.

At last, we can state the proposal density function for parameter transi-
tions:

QΘ(Θp|Θt) =

{
1

|A|+|B|+|P| , if Θp ↔Θ Θt

0, otherwise,
(3.16)

in which A, B, and P stand for the domain of the parameters α, β, and p
respectively. Note that QΘ is symmetric, i.e., QΘ(Θt|Θp) = QΘ(Θp|Θt).

3.7 Benchmarks

If we run EM-MGSA or MCMC-MGSA on the generated study set that was
used in Section 2.4 at page 27 to demonstrate the gene propagation problem,
only the term localization is assigned a high marginal probability value as in-
dicated in the graphical representation of the result in Figure 3.9. The term
that ranked at position two in this run was pyramidine nucleoside monophos-
phate biosynthetic process with a marginal probability of 0.15. That means un-
like the term-for-term approach no additional term came up, hence the number
of terms that we call a false-positive in this work, is reduced to the minimum.

In order to compare all the different algorithms in a more general manner,
we present a systematic benchmark in this section. For this purpose, we treat
the problem of finding important terms as a classical information retrieval
problem, in which relevant entities are terms describing the study set. We
conduct this benchmark using simulations, in which artificial study sets with
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localization
1062/1348
p = 1.000

biological process
2055/6357

p < 1.0× 10−300

Figure 3.9: Artificially Generated Study Set Analysis with MGSA.
The full MCMC-MGSA procedure was run with the same study set as
the term-for-term procedure in Section 2.4. MGSA reported a high
marginal probability only for localization. As this is also the term, for
which the study set was artificially enriched, MGSA perfectly identified
the term that describes the genes best.

known term configuration and known parameters were generated, and which
then should be recovered again in absence of the model parameters.

All the simulations were based on revision 1.846 (dated 2009/10/21) of the
Gene Ontology term definition file. We restricted the entire simulation study
to genes of Drosophila melanogaster. Annotations for this species were taken
from revision 1.157 (dated 2009/10/19) of the gene association file provided
by FlyBase (Grumbling and Strelets, 2006), using all annotations regardless of
their evidence code. This results in a total of 12,484 genes that are annotated
directly or by propagation to 7078 GO terms.

Study Set Generation

In order to generate the study sets, one value for the false-positive rate α and
one for the false-negative rate β were set. A number (varying from one to five)
of unrelated terms (i.e., pairs of terms related by parent-child relationships
were avoided) are randomly picked to be in active state, or in other words,
supposed to be enriched. In the remainder of this section, we denote by lij the
state or label of term i within study set j, i.e., lij = 1, if term i is active, or lij = 0
otherwise.

Each single study set j is then filled with all genes that are annotated to
the term i for all lij = 1. Next, the noise that occurs in every experimental
setup was simulated by removing each gene with a probability of β from the
study set. Then, genes from the population not annotated to any of the active
GO terms were added to the study set with a probability of α. The whole pro-
cedure was repeated 1500 times for each combination of considered α and β
settings providing 1500 different study sets of varying sizes for that combina-
tion.

Performance Evaluation

All tested algorithms were then applied to the generated study sets. Two
variants of the procedures, MGSA′ and GenGO′ were run using the correct
value of α, β and p in order to provide an upper bound for the performance
that the estimation of these parameter can achieve. Note that the study set
generation procedure controls merely the expected values of the proportion
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of false-positive and false-negative genes for the study sets, whereas the ac-
tual proportion of each individual study set may differ. MGSA′ and GenGO′

were supplied with the true values of α and β for each generated study set
and p was set according to the number of GO terms that were set to active.
The application of the algorithms results in prediction values (scores) for lij,
denoted by pij. We remark that for posterior marginal probabilities higher
values (rather than lower as with p-values) indicate stronger support for the
state active. Benchmarking of the methods was done by using standard mea-
sures for the evaluation of discrimination or information retrieval procedures.
We made use of receiver operating characteristic (ROC) curves and preci-
sion/recall curves, pooling the results of all study sets of identical parameter
combinations. In addition to the values of a ROC analysis, i.e., the AUROC,
we calculated the k-truncated ROC value for each study set j via

ROCk(j) =
1

kP

k

∑
i=1

ti,

in which P = ∑i lij is the total number of positives and ti represents the
number of true-positives above the i-th false positive(Gribskov and Robin-
son, 1996; Schaffer et al., 2001). We report the average over k-truncated ROC
values of all study sets for k=10.

Results

We simulated 1500 study sets in which the number of active terms varied
from one to five. The simulations were performed with 12,484 genes from
Drosophila that are annotated directly or indirectly via to parent-child rela-
tionships to 7078 GO terms. We followed this approach for each combination
of α ∈ {0.1, 0.4.0.7} and β ∈ {0.25, 0.4}, resulting in a total of 6000 simulated
study sets.

Dealing with unknown values of the parameters α, β and p had required a
substantial extension of our basic algorithm. As written above, we conceived
two variants for this purpose: one that is based on the EM framework (Sec-
tion 3.5) and the other one that considers the parameter as full random vari-
ables such that their estimation can be directly integrated within the MCMC
algorithm as part of the probabilistic inference (Section 3.6). In addition to
both methods, we ran the basic version of the algorithm, MGSA′, in which
the parameters are known and fixed a priori. The simulations allowed us to
investigate the ability of the two variants to cope with unknown parameter
values.

Figure 3.10 displays precision/recall plots for two settings of α and β. ItEM vs. MCMC vs.
optimum can be seen that both estimation approaches perform reasonably well in the

situation with unknown parameter values. In addition, with respect to this
measure, the MCMC algorithm has a slightly better performance than the EM
algorithm as it has a higher precision for the whole range of recall cutoffs.
This finding and the architectural issues of the EM algorithm, i.e., that it is a
mixture of a stochastic and deterministic algorithm as well as that it delivers
only a point estimate, lead us to favor the full MCMC over the EM approach.
We therefore omit the EM algorithm in the description of the further results.
When we write MGSA, we refer to the full MCMC algorithm.
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Figure 3.10: Precision/Recall Performance of Both MGSA Pa-
rameter Estimation Strategies. The MCMC-EM versus the full
MCMC algorithm are compared. Precision/recall plots of two settings
α = 0.1, β = 0.25 and α = 0.1, β = 0.4 are displayed. The full MCMC
algorithm produced slightly better results with respect to the preci-
sion/recall plots. This finding was observed for all tested parameter
combinations.

We then compared MGSA and MGSA′ against three single-term associ-
ation procedures: the standard term-for-term (TfT) GO overrepresentation
analysis by Fisher’s exact test (Rhee et al., 2008), parent-child union (PCU)
analysis (Grossmann et al., 2007), and the topological weight (TopW) analy-
sis (Alexa et al., 2006). We additional compare our method to the other global
model approach called GenGO (Lu et al., 2008). Similar to our approach,
GenGO has two parameters that are intended to capture false-positive and
false-negative responders and an additional parameter that penalizes super-
fluous terms. In the original implementation of GenGO, a heuristic procedure
was used to search for the best values of these parameters. Unfortunately, the
full GenGO software is not applicable for batched runs. We have implemented
the algorithm denoted as GenGO′ in the simple case where the parameters are
known. For the simulations described here, we follow the authors’ recommen-
dation to set the penalty parameter to 3, while the remaining parameter were
set to the optimal values. This provides an upper bound on the performance
of the GenGO procedure with unknown parameters.

Gene Ontology analyses typically contain a very large number of terms.
Therefore, an important issue is whether a GO analysis method inflates the
number of terms reported as significant. The most critical measure is therefore
the precision, i.e., the proportion of true-positives among all true-positives
and false-positives. In Figure 3.11 we compare the precision of the different
methods at a fixed recall of 20%, which is the proportion of true-positives
among all positively labeled terms.

This result demonstrates that both the parent-child and the topological ap-
proaches indeed improve the classification result in relation to the term-for-
term approach at this fixed level of recall. However, an even more drastic
improvement of the global model approaches can be observed as well. Both
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Figure 3.11: Barplots of Precision at a Recall of 20% for Various
Settings of α and β. MGSA attains a higher precision for the same
level of recalls across different noise settings. For the high-noise sce-
nario depicted on bottom-right, all methods fail to classify a reasonable
amount of terms correctly.

global model methods GenGO′ and MGSA dominate all three single-term as-
sociation approaches by a factor of at least 3 (5 for MGSA) in precision at 20%
recall across all investigated parameter settings. For a false-positive rate α of
0.1, the improvement reaches even 8 to 10-fold. Moreover, MGSA largely out-
performs GenGO’ in all settings, for example with a precision of≈95% versus
≈ 80% for GenGO’ in the case of α = 0.1 and β = 0.4. Values of k-truncated
ROC scores that are listed in Table 3.1 confirm the ranking of these methods
when focusing on stringent cut-offs.

Figure 3.12 displays the precision/recall plots for the whole range of re-
call cut-offs with all investigated parameter settings. Here, the improvements
of MGSA over other approaches are seen at any cut-off. Notably, the perfor-
mance of GenGO’, which reports only a single maximum likelihood solution
and discards any alternative solution, even if it is almost as likely, drops much
earlier than MGSA . This behavior is more apparent in Receiver Operating
Characteristic curves that are presented in Figure 3.13. Indeed, away from the
most stringent zone, GenGO appears as the least accurate of all tested meth-
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α β TfT PCU TopW GenGO′ MGSA′ MGSA
0.1 0.25 0.36 0.30 0.33 0.41 0.52 0.50
0.1 0.4 0.33 0.26 0.27 0.35 0.43 0.42
0.4 0.25 0.22 0.18 0.16 0.22 0.27 0.25
0.4 0.4 0.14 0.10 0.07 0.12 0.16 0.13
0.7 0.25 0.02 0.01 0.01 0.02 0.03 0.01
0.7 0.4 0.00 0.00 0.00 0.00 0.07 0.05

Table 3.1: ROC10 Analysis. The ROC10 score is the area under the
ROC curve up to the tenth false-positive. Generally, k-truncated ROC
scores range from 0 to 1, with 1 corresponding to the most sensitive
and selective result.

ods indicating that configurations nearby the approximated maximum can
include relevant terms.

Together these results on simulation confirm the drastic improvement of
global model approaches. Additionally, they demonstrate that our marginal
posterior method, MGSA largely outperforms GenGO by showing an accu-
rate behavior on the whole range of cut-offs.

3.8 Application to Biological Data

In this section, we show how the methods behave if they are applied to data
gained from two biological experiments. For this purpose, each subsection
provides a short introduction to the biological topic in question before the
results are presented.

Gene Expression Profiles of Developing Mouse Aorta

In the first application, we used data from Ott et al. (2011), where the gene
expression of the developing mouse aorta was investigated using microarray
hybridization. In this experiment, the thoracic aorta was harvested from 15
newborn and 15 six-week old C57BL/6 wildtype mice. Five samples each
were combined to get three pooled aortic samples for each group. For gene-
expression analyses, 500 ng total RNA of each RNA sample was labeled using
the Agilent single-color Quick-Amp Labeling Kit and hybridized on Agilent
Whole Mouse Genome Microarrays (4x44K). After normalization, a subset of
genes for data interrogation was generated that excluded probes that were
absent or marginal in all of the six samples. The relative expression of each
probe in aortic samples of newborn versus six-week old mice was determined.
A t-test was performed followed by Benjamini and Hochberg multiple-testing
correction in order to determine which genes were differentially expressed.4

The result of the above experiments and analysis is a list of differentially
expressed genes, i.e., the study set, as well as a list of all genes that were mea-
sured by the microarray hybridization, i.e., the population set. Note that it is
possible to construct a study set either from all differentially expressed genes

4The microarray data used here are available in raw form the ArrayExpress database
(www.ebi.ac.uk/arrayexpress) under the accession number E-MEXP-2342.
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or to construct separate study sets from differentially expressed genes that
were up-regulated and those that were down-regulated. Which is “correct”
will depend on the particular experiment and the questions of the researcher.
These data represent the input for the GO analysis. The actual expression lev-
els of the genes or the p-values of the differentially expressed genes are not
needed.

Term for Term

The term-for-term approach yield a total of 126 GO terms that were found to
be significant at a significance level of α = 0.05 after a Bonferroni test correc-
tion. The top results are given in Table 3.2.

ID Name Adj. p-value nt (nt/n) mt (mt/m)

GO:0031012 extracellular matrix 3.228× 10−13 71 (4.8%) 269 (1.6%)
GO:0016043 cellular component organization 4.323× 10−13 237 (15.9%) 1548 (9.5%)
GO:0005515 protein binding 2.184× 10−12 581 (38.9%) 4847 (29.6%)
GO:0005578 proteinaceous extracellular matrix 6.862× 10−12 68 (4.6%) 265 (1.6%)
GO:0032502 developmental process 9.473× 10−9 311 (20.8%) 2373 (14.5%)
GO:0005634 nucleus 2.432× 10−8 455 (30.5%) 3791 (23.2%)
GO:0010468 regulation of gene expression 2.932× 10−8 273 (18.3%) 2039 (12.5%)
GO:0009653 anatomical structure morphogenesis 3.792× 10−8 147 (9.8%) 926 (5.7%)
GO:0019222 regulation of metabolic process 1.196× 10−7 310 (20.7%) 2413 (14.8%)
GO:0006996 organelle organization 1.689× 10−7 138 (9.2%) 869 (5.3%)
GO:0007275 multicellular organismal development 2.216× 10−7 280 (18.7%) 2142 (13.1%)
GO:0048856 anatomical structure development 3.178× 10−7 244 (16.3%) 1814 (11.1%)
GO:0060255 regulation of macromolecule metabolic

process
3.637× 10−7 288 (19.3%) 2227 (13.6%)

GO:0045449 regulation of transcription 4.612× 10−7 253 (16.9%) 1904 (11.6%)
GO:0080090 regulation of primary metabolic process 9.260× 10−7 284 (19.0%) 2208 (13.5%)
GO:0019219 regulation of nucleobase, nucleoside,

nucleotide and nucleic acid metabolic
process

1.304× 10−6 260 (17.4%) 1989 (12.2%)

GO:0048731 system development 1.344× 10−6 229 (15.3%) 1702 (10.4%)
GO:0048523 negative regulation of cellular process 1.402× 10−6 141 (9.4%) 921 (5.6%)
GO:0043283 biopolymer metabolic process 1.557× 10−6 530 (35.5%) 4658 (28.5%)
GO:0051171 regulation of nitrogen compound

metabolic process
1.570× 10−6 261 (17.5%) 2002 (12.2%)

GO:0034960 cellular biopolymer metabolic process 1.784× 10−6 479 (32.1%) 4141 (25.3%)
GO:0006350 transcription 1.812× 10−6 256 (17.1%) 1958 (12.0%)
GO:0031323 regulation of cellular metabolic process 1.918× 10−6 292 (19.5%) 2299 (14.1%)
GO:0031326 regulation of cellular biosynthetic

process
2.002× 10−6 269 (18.0%) 2082 (12.7%)

GO:0009889 regulation of biosynthetic process 2.440× 10−6 269 (18.0%) 2086 (12.8%)
GO:0048519 negative regulation of biological

process
3.094× 10−6 150 (10.0%) 1009 (6.2%)

GO:0006357 regulation of transcription from RNA
polymerase II promoter

3.174× 10−6 86 (5.8%) 481 (2.9%)

GO:0005488 binding 3.334× 10−6 1011 (67.7%) 9890 (60.5%)
GO:0010556 regulation of macromolecule

biosynthetic process
3.338× 10−6 261 (17.5%) 2017 (12.3%)

GO:0006355 regulation of transcription,
DNA-dependent

7.130× 10−6 239 (16.0%) 1826 (11.2%)

Table 3.2: Term-for-term analysis of aorta experiment. 16,359
genes annotated to at least one GO term were in the population set,
of which 1494 genes were significantly downregulated. Only the first
30 significant GO terms are shown. The column Adj. p-value shows
the Bonferroni-adjusted p-values. A total of 126 GO terms were found
to be significant at a significance level of α = 0.05.
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It can be seen that three times as many genes in the study set (genes down-
regulated in the aorta of 6-week old mice) as in the population set (4.8% vs.
1.6%) are annotated to the GO term extracellular matrix. This reflects the fact
that much of the synthesis of the extracellular matrix (which is an important
component of aortic tissue) occurs early in development and is characteristi-
cally down-regulated later in development. Therefore, extracellular matrix can
be taken to be one of the most important characteristics of the set of genes
downregulated in the adult aorta of the mouse. Similar things can be said
about the other significant terms. For instance, the fifth term in the list, devel-
opmental process, presumably reflects that fact that genes involved in develop-
mental processes are down-regulated in the adult aorta compared to the aorta
in newborn mice because certain developmental processes in the aorta have
been completed by the age of six weeks.

On closer inspection, we can detect a problem with the interpretation of
this analysis. Many of the terms are highly similar to one another. For in-
stance, proteinaceous extracellular matrix is a subclass (is_a child) of extracel-
lular matrix in the GO ontology. Therefore, any gene annotated to proteina-
ceous extracellular matrix is automatically also annotated to extracellular matrix.
Which GO term should we take as being representative of our experiment?
The most significant term (extracellular matrix)? The most specific term (pro-
teinaceous extracellular matrix)? Both terms? Similarly, multiple GO terms re-
lated to development are flagged as significantly overrepresented: develop-
mental process, anatomical structure morphogenesis, multicellular organismal devel-
opment, anatomical structure development, system development. The genes anno-
tated to each of these terms, which are close to one another in the GO graph
structure, show a high degree of overlap. It is unclear whether to take one
of these terms or all of them as providing the best summary of the salient
biological characteristics of the dataset.

Another problem is the sheer number of GO terms that have been flagged
significant by the method. While a list of 5, 10, or even 20 GO terms char-
acterizing an experiment can be extremely helpful as a way of summarizing
the main results of an experiment and suggesting areas for follow-up experi-
ments, a list of 100 terms is more likely to be confusing.

MGSA

An important difference between overrepresentation methods and MGSA is
that the overrepresentation algorithms essentially are performed as hypothe-
sis tests for each of the GO terms under consideration, whereas MGSA is not
a hypothesis test but rather a procedure to find the posterior probability of
any GO term being in the active state. In overrepresentation analysis, if there
is a statistically significant p-value for a term being overrepresented, then we
consider the term to be representative of the results of the experiment. Al-
though also for MGSA the actual cutoff probability can be determined the
user, by default we assume that a term is a representative of the experiment,
if its marginal posterior probability was found to be larger than 0.5.

Another important difference between MGSA and the overrepresentation
methods is that a random number generator is used to determine the random
walk for the MCMC algorithm in MGSA. This means that the results can differ
from run to run, especially if too few iterations are used. Usually, the differ-
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ID Name Marginal nt (nt/n) mt (mt/m)

GO:0031012 extracellular matrix 0.974 71 (4.8%) 269 (1.6%)
GO:0040029 regulation of gene expression, epigenetic 0.939 14 (0.9%) 39 (0.2%)
GO:0016055 Wnt receptor signaling pathway 0.859 30 (2.0%) 129 (0.8%)
GO:0017053 transcriptional repressor complex 0.513 7 (0.5%) 16 (0.1%)

Table 3.3: MGSA of aorta experiment. 16,359 genes annotated to
at least one GO term were in the population set, and 1494 annotated
genes that were significantly downregulated were in the study set. A
total of four GO terms were found to be have a marginal probability of
being in the active state of more than 0.5.

ences from run to run are very minor, but if the fluctuations are too large, the
number of MCMC steps can be increased, in order to promote convergence of
the MCMC run.

The application of MGSA to the same aorta dataset that was examined in
the previous paragraph, yields the results given in Table 3.3. Clearly, the list is
much smaller. In particular, the finding that Wnt receptor signaling pathway had
a posterior probability greater than 0.5 led Ott et al. (2011) to an experimental
investigation of β-catenin activation in the developing and adult aorta (private
communication). As displayed in Figure 1 of the manuscript, a substantial
difference was indeed observed, confirming differential Wnt signaling, which
is a new biological finding. Although Wnt receptor signaling pathway is also
detected as significantly enriched with a p-value smaller than 0.05 using the
term-for-term approach, it appears in not in the top 30 of the list.

Analysis of Expression Data from Fermentative and Respiratory
Respiration in Yeast

In the second application, raw tiling array data comparing yeast fermentative
growth (YPD: Yeast extract Pepton Dextrose) and respiratory growth (YPE:
Yeast extract Peptone Ethanol) (Xu et al., 2009) were processed to provide
normalized intensity values for each probe in each hybridization. The ex-
pression level of each transcript in each growth condition was estimated by
the midpoint of the shorth (shortest interval covering half of the values) of
the probe intensities of the transcript across all arrays of the growth condi-
tion. Transcripts were called expressed if their expression level was above
a threshold (David et al., 2006). Transcript expression levels of the two con-
ditions ’YPD’ and ’YPE’ were normalized against each other using the vsn
method (Huber et al., 2002) as differential expression at the transcript level
appeared to still depend on average expression value. Next, transcripts were
called differentially expressed if they showed at least two-fold change be-
tween the two conditions. For the term analysis, we used Gene Ontology
annotations obtained from the Saccharomyces Genome Database (Hong et al.,
2008) as of October 22nd 2009 and restricted our analysis to the biological pro-
cess ontology. The application of the term-for-term approach followed by a
Bonferroni correction for multiple testing and a cut off at a family-wise error
rate of 0.05, yielded a list of 79 terms to be statistically significant. The top 30
is displayed in Table 3.4.
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ID Name Adj. p-value nt (nt/n) mt (mt/m)

GO:0055114 oxidation reduction 2.157× 10−38 113 (23.2%) 314 (6.0%)
GO:0006091 generation of precursor metabolites and

energy
2.866× 10−29 88 (18.0%) 242 (4.6%)

GO:0015980 energy derivation by oxidation of
organic compounds

5.184× 10−23 63 (12.9%) 156 (3.0%)

GO:0045333 cellular respiration 5.715× 10−23 50 (10.2%) 100 (1.9%)
GO:0006119 oxidative phosphorylation 1.122× 10−19 33 (6.8%) 50 (1.0%)
GO:0009060 aerobic respiration 3.142× 10−16 40 (8.2%) 87 (1.7%)
GO:0006811 ion transport 7.906× 10−16 60 (12.3%) 187 (3.6%)
GO:0006084 acetyl-CoA metabolic process 8.058× 10−15 24 (4.9%) 34 (0.7%)
GO:0006099 tricarboxylic acid cycle 5.337× 10−14 22 (4.5%) 30 (0.6%)
GO:0046356 acetyl-CoA catabolic process 5.337× 10−14 22 (4.5%) 30 (0.6%)
GO:0008219 cell death 2.395× 10−13 28 (5.7%) 51 (1.0%)
GO:0016265 death 2.395× 10−13 28 (5.7%) 51 (1.0%)
GO:0051187 cofactor catabolic process 4.774× 10−13 23 (4.7%) 35 (0.7%)
GO:0009266 response to temperature stimulus 8.458× 10−13 59 (12.1%) 207 (4.0%)
GO:0042773 ATP synthesis coupled electron transport 1.437× 10−12 18 (3.7%) 22 (0.4%)
GO:0042775 mitochondrial ATP synthesis coupled

electron transport
1.437× 10−12 18 (3.7%) 22 (0.4%)

GO:0022904 respiratory electron transport chain 1.437× 10−12 18 (3.7%) 22 (0.4%)
GO:0009109 coenzyme catabolic process 3.490× 10−12 22 (4.5%) 34 (0.7%)
GO:0051186 cofactor metabolic process 1.152× 10−11 55 (11.3%) 194 (3.7%)
GO:0034605 cellular response to heat 2.074× 10−11 51 (10.5%) 173 (3.3%)
GO:0006082 organic acid metabolic process 3.567× 10−11 84 (17.2%) 390 (7.5%)
GO:0009408 response to heat 3.794× 10−11 54 (11.1%) 193 (3.7%)
GO:0043436 oxoacid metabolic process 5.921× 10−11 81 (16.6%) 372 (7.1%)
GO:0019752 carboxylic acid metabolic process 5.921× 10−11 81 (16.6%) 372 (7.1%)
GO:0006753 nucleoside phosphate metabolic process 3.087× 10−10 53 (10.9%) 196 (3.8%)
GO:0009117 nucleotide metabolic process 3.087× 10−10 53 (10.9%) 196 (3.8%)
GO:0022900 electron transport chain 3.176× 10−10 26 (5.3%) 55 (1.1%)
GO:0016054 organic acid catabolic process 3.238× 10−10 25 (5.1%) 51 (1.0%)
GO:0046395 carboxylic acid catabolic process 3.238× 10−10 25 (5.1%) 51 (1.0%)
GO:0042180 cellular ketone metabolic process 3.253× 10−10 81 (16.6%) 383 (7.4%)

Table 3.4: Term-for-term analysis on the yeast set. A total of
79 terms were found to be significant after Bonferroni correction. The
table displays the top 30.

ID Name Marginal nt (nt/n) mt (mt/m)

GO:0055114 oxidation reduction 1.00 113 (23.2%) 314 (6.0%)
GO:0009266 response to temperature stimulus 1.00 59 (12.1%) 207 (4.0%)
GO:0006820 anion transport 0.814 10 (2.0%) 31 (0.6%)
GO:0032787 monocarboxylic acid metabolic process 0.702 40 (8.2%) 142 (2.7%)
GO:0009636 response to toxin 0.622 8 (1.6%) 22 (0.4%)
GO:0015891 siderophore transport 0.592 4 (0.8%) 6 (0.1%)
GO:0008643 carbohydrate transport 0.578 8 (1.6%) 27 (0.5%)

Table 3.5: MGSA on the yeast set.

Clearly, this is a rather large list to describe the experiment. Many of the
terms are highly related. We then also run MSGA on the same dataset. Only
seven terms got assigned a marginal distribution larger than 0.5. The results
of this run is shown in Table 3.5.

For MGSA, we investigated how the results of MGSA fluctuate by running
20 independent Markov chains, each of length 107, using a cut-off of 0.5 on the
posterior probability to call a term on, i.e., a level at which a term is estimated
to be more likely to be on than to be off. MGSA reports only seven terms with
a marginal posterior probability greater than 0.5. These seven terms showed a
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posterior above 0.5 consistently across ten chains. Hence, results for the most
likely terms were reproducible between runs. We checked the robustness of
these results against variations in the study set by creating 2000 random sub-
samples of the study set containing 90% of the original genes. The terms iden-
tified by the original analysis were consistently identified in the subsamples
as can be seen in Figure 3.14.

Respiration and fermentation are two well-studied growth modes of yeast,MGSA identifies the
core description of the

experiment
thus facilitating the interpretation of the results. Among the seven terms, ox-
idation reduction summarizes the main biological process that distinguishes
growth in these two different media, namely the use of oxidation phosphory-
lation during respiration to regenerate ATP. The other terms, such as carbohy-
drate transport or monocarboxylic acid metabolic process capture processes that
are linked to the change of carbon source but not directly involved in the oxi-
dation reduction reactions. Hence, MGSA provides a high-level, summarized
view of the core biological process, respiration, avoiding redundant results
while still keeping the necessary level of granularity in other branches of the
ontology.

The term cell death illustrates very well the difference between single-term
association approaches and global model approaches. Both procedures that
test merely for an enrichment, term-for-term and parent-child union, report cell
death as an enriched term whereas MGSA does not. It happens that mitochon-
dria are implicated both in cell death and in respiration (Green and Kroemer,
2004). The differentially expressed genes annotated to cell death encode mi-
tochondrial proteins and are also involved in respiration. Hence, it is correct
to report cell death enriched for differentially expressed genes. However, cells
are not dying in any of these two conditions. The enrichment is due to the

0.0 0.2 0.4 0.6 0.8 1.0

carbohydrate transport

monocarboxylic acid metabolic process

response to toxin

siderophore transport

anion transport

response to temperature stimulus

oxidation reduction

Figure 3.14: Robustness Analysis. A total of 1000 subsamples with
90% of the genes of the yeast data set were analyzed with MGSA. The
boxplot displays the top 7 terms that were ranked according to median
of the marginal probabilities.
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sharing of genes with respiration, a process which is genuinely differentially
activated. In this study set, 113 genes are annotated to oxidation reduction in-
cluding 25 out of the 28 genes annotated to cell death. MGSA, which infers
the terms that are active and not simply enriched, does not report cell death,
because oxidation reduction is more likely to generate the observed gene states.
One should also note that cell death is not a type of respiratory pathway or
vice versa. Methods such as TfT that examine the statistical significance of
each term separately cannot compensate for correlations between terms due
to gene sharing. Although methods such as PCU and TopW can compensate
for some kinds of statistical correlations that arise because of the inheritance
of annotations from descendant nodes in the GO graph (Alexa et al., 2006;
Grossmann et al., 2007), they fail in situations such as the one described here
because, the oxidation reduction and cell death share some annotated genes but
are not directly connected to one another by the graph structure of GO.

3.9 Implementation

In this section, we describe the software that provide users an implementa-
tion of the methods that were covered in this and in the last chapter. First, we
briefly describe the Ontologizer application, which has been developed dur-
ing this thesis and provides and interface to various gene enrichment meth-
ods for end-users. Next, we give a short introduction to the MGSA package
for Bioconductor, which provides a seamless integration of the MSGA method
for users of Bioconductor/R. Last, we describe how the MCMC sampling al-
gorithm is implemented efficiently in both of those packages.

Ontologizer

The Ontologizer is a software tool that is intended for biologists and bioinfor-
maticans who want to conduct a gene-category analysis as it was presented
in Section 3.8. The Java Webstart application comes with a versatile graph-
ical user interface that is based on the Standard Widget Toolkit, which is
developed under the umbrella of the Eclipse Foundation (Eclipse Founda-
tion, 2010). With sources being available from http://sf.net/projects/
ontologizer, Ontologizer is released under a BSD-like licence. In the mean-
time, parts of our implementation have also been integrated by other authors
into different frameworks, e.g., geWorkbench (Floratos et al., 2010).

An Ontologizer project requires the specification of the OBO-file, which
defines the GO structure, and the association file, which maps the genes to
GO terms. Both types of files are available from the Gene Ontology web-
site5, but can also be downloaded directly within the application. In addition,
annotation files as provided by the AffyMetrix’ NetAffx Analysis Center (Liu
et al., 2003) are supported. It is possible to convert identifiers in the association
file into other gene names by supplying a simple text file with mappings. A
project comprises a population set and its study sets. To define these sets, a ba-
sic text field is provided where genes can either be entered manually, inserted
by copy-and-paste, or imported from external files. Genes with annotations
are then highlighted.

5http://www.geneontology.org
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In addition to the choice among the different calculation methods6, the
user can choose from a number of multiple-testing correction procedures. Pro-
cedures for controlling the family-wise error rate such as the classic Bonferroni
correction and the single-step minP procedure of Westfall and Young (West-
fall and Young, 1993) but also methods that control the false discovery rate are
supported.

After the analysis is finished, a new window appears with a table show-
ing rows of terms, similar to the one depicted in Figure 3.15. A row contains
the name and id of the term, a p-value or a marginal probability, an annota-
tion count, and other information. Enrichment of a term is indicated by color
coding according to the sub-ontology to which the term belongs (biological
process, molecular function and cellular component), whereby the intensity of
the color correlates with the significance of the enrichment or the importance
of term. The terms displayed in the table can be restricted to all descendants
of any term in GO. This can be used to display terms only in one sub-ontology
or, say, to display all terms that are descendants of the term development.

Users can click on any term in the table to display properties and results
related to the term such as its parents and children, its description and a list of
all genes annotated to the term in the study set. This information is presented
as a hypertext in the lower panel with links to parent and child terms. Clicking
on a gene’s name reveals all the terms directly annotating the gene.

The Ontologizer also provides a tightly integrated graphical view of the
results. For this purpose, Ontologizer make use of the open source graph vi-
sualization package GraphViz (Gansner and North, 2000), which must be in-
stalled on the user’s computer for the graphical functions of the Ontologizer
to work. Within the graph view, GO terms are represented as nodes and the
parent-child relationships as directed edges. Clicking on a node in the graph
will cause the corresponding term in the table to be activated, thereby dis-
playing information about the term. A node’s context menu provides further
actions, such as copying the names of the genes annotated to the term to the
clipboard.

By default, only the graph induced by the enriched terms (i.e., the graph
formed by these terms and all of their ancestor terms) are displayed. If the
resulting graph contains too many terms for easy visualization, it is possible
to restrict the induced graph to a subset of terms, such as all enriched terms
in one of the sub-ontologies. It is also possible to add or remove an arbitrary
term to the graph inducing term set by using the checkboxes in the table view.
Finally, the results of the analysis can be saved in a variety of tabular and
graphical formats.

MGSA Package for Bioconductor

In addition to the implementation inside the Ontologizer framework, we also
provide a fast native C implementation of MSGA that is bound by a tiny
wrapper to the R language (R Development Core Team, 2005). The MGSA
package has been accepted for inclusion in Bioconductor (Gentleman et al.,
2004), which a framework for statistic software primarily target for bioinfor-

6At this writing, Ontologizer supports term-for-term, parent-child union, parent-child intersec-
tion, elim, weight, and MGSA.
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Figure 3.15: Screenshot of the Ontologizer Application.

matical analyses. Our MGSA implementation supports the MCMC algorithm
as described in Section 3.6. As it is desirable to perform several restarts of
the MCMC algorithm to confess the convergence of the algorithm, we imple-
mented a multi-threaded variant using OpenMP (Dagum and Menon, 1998),
in which each run is handled in a separate thread. The implementation there-
fore benefits from the multi-core processing units that modern computer hard-
ware offers.

For GO analysis, the mgsa package takes advantage of the GO.db package
to read the structure of Gene Ontology, so no external file is needed. For an-
notations to different species, a readGAF function is provided, which is able to
read annotations from files adhering to the gene association format (GAF),
which is the format of the files that are distributed by Gene Ontology. If
gaf.filename contains the location of a GAF file, observations is a vec-
tor of character strings describing the genes of the study set, then an MSGA
analysis is as simple as entering

library(mgsa)
mapping<-readGAF(gaf.filename)
results<-mgsa(observations,mapping)
plot(results)

after the R command prompt. An overview of the features of this package
is available in Bauer et al. (2011). A more detailed tutorial is provided in the
package vignette that can be invoked with:

vignette("mgsa")
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Support for dealing directly with OBO-files, which can be obtained from the
Gene Ontology Website, is provided by the robo package, which accompanies
Robinson and Bauer (2011).

An Efficient Implementation of the MCMC Algorithm

The MGSA approach takes advantage of an MCMC sampling scheme in order
to calculate the posterior marginal probability of each term. An important
parameter in this approach is the number of sampling steps. The more steps
are performed the better is the convergence of the sampling algorithm but the
more time is spent on the problem. Therefore it is crucial to keep the cost for
the calculation of each step to a minimum.

In each step, a new proposal configuration based on the current configu-
ration is constructed. Either

1. the state of a term is toggled or

2. the states of two terms that are different are exchanged.

We can efficiently implement the process of selecting and applying a proposal
using following elements:

• The activation states, Ti, of all m terms are implemented as a basic array
term of Boolean values.

• The partition array contains references to terms and is ordered according
to terms’ activation states. That is, all inactive terms appear before the
active terms. This invariant is maintained during the sampling loop. We
refer to terms by integers.

• The integer m0 represents the number of terms that are not activated.
Note that the number corresponds to the index of what we call pivot
element of the partition array, that is, the pivot element is the last element
in the first partition.

• The posOfTermInPartition array is used as a lookup table, in which terms
are mapped to their corresponding slot within the partition array. For
instance, if we read 5 at index 2 from this array, we know that index 5 of
the partition array refers to term 2.

In the following, we describe how we update these fields, if the selected
proposal is applied. Note that in order to exchange the state of an active term
i with an inactive term j, we can deactivate term i followed by the activation
term j. Therefore, it is enough to consider the activation and deactivation of a
single term. Also, we restrict the description to the activation part only as the
deactivation part follows analogously.

If we want to activate term i, we first set its state value within the term
array to true. Then we determine its current position pos within the partition
array by reading the value of posOfTermInPartition using key i. Within par-
tition, the element at index pos now becomes the value of the pivot element.
The array posOfTermInPartition is updated accordingly. Similarly, we write i
to the position of the pivot element and update posOfTermInPartition. Finally,
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we decrement m0 by one, which means that the element next to the original
pivot element becomes the new pivot element. Essentially, what the proce-
dure does is an exchange of the current pivot element with the element that is
to be activated, while maintaining all invariants. Obviously, this is a constant
time operation.

In order to select a proposal from the space of all proposals given the cur-
rent configuration, we choose a random value p between 0 and m + m0(m−
m0). If p < m, then the proposal is to toggle the state of term p (0-based). Oth-
erwise the proposal is to exchange the states of term i with term j, while the
reference of i is stored at index m0 + (p−m)÷m0 of the partition array (thus i
is an active term), and the reference of j is stored at index (p−m)%m0, of the
partition array (therefore j is an inactive term). In these formulas, operator ÷
refers to the integer division, while operator % refers to the modulo operation.

Algorithm 7: Procedure activateTerm
Data: term i to be activated
term[i]← 1 ;
pos← posOfTermInPartition[i] ;
partition[pos]← partition[m0] ;
posOfTermInPartition[partition[pos]]← pos ;
partition[m0]← i ;
posOfTermInPartition[i]← m0 ;
m0 ← m0 − 1 ;
foreach g ∈ genes[i] do /* Update nxy */

hidden[g]← hidden[g] + 1 ;
if hidden[g] == 1 then

if observed[g] == 1 then
n11 ← n11 + 1 ;
n10 ← n10 − 1 ;

else
n01 ← n01 + 1 ;
n00 ← n00 − 1 ;

3.10 Discussion and Conclusions

Data-driven molecular biology experiments can be used to identify a list of
genes that respond in the context of a given experiment. With the advent of
technologies such as microarray hybridization and next-generation sequenc-
ing that enable biologists to generate data reflecting the response profiles of
thousands of genes or proteins, gene-category analysis has become ever more
important as a means of understanding the salient features of such experi-
ments and for generating new hypotheses. By using the knowledge-bases
such as GO, KEGG, or other similar systems of categorization, these analyses
have become a de facto standard for molecular biological research. Almost all
previous methods are based on algorithms that analyze each term in isola-
tion. For each term under consideration, the methods test whether the study
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Algorithm 8: Procedure MGSA-MCMC

curScore← P(O|Tt)P(Tt)N(Tt)−1 ;
for t← 1 to l do

p← rand(m + m0(m−m0)) ;
if p < m then

if term[p] == 0 then activate (p) ;
else deactivate (p) ;

else
exchange(partition[m0 + (p−m)÷m0], partition[(p−m)%m0]);

newScore← P(O|Tt)P(Tt)N(Tt)−1 ;
a← newScore/curScore
r ← unirand() ;
if r < a then curScore← newScore ;
else undoProposal(p) ;
for a← m0 to m do /* sample active terms */

counts[partition[a]]← counts[partition[a]] + 1 ;

set is significantly enriched in genes annotated to the term compared to what
one would expect based on the frequency of annotations to the term in the
entire population of genes or using other related statistical models (Goeman
and Bühlmann, 2007).

We demonstrated that single-term association methods that determine theOf forests and trees
significance of each term in isolation essentially do “not see the forest for the
trees”, by which we mean that they tend to return many related terms, which
are statistically significant if considered individually. These methods are not
designed to return a set of core terms that together best explain the set of
genes in the study set. Although some methods have been developed that
partially compensate for statistical dependencies in GO (Alexa et al., 2006;
Grossmann et al., 2007), Lu et al. (2008) published for the first time a method
that addressed the problem by modeling the gene responses using all cate-
gories together. The modeling process was also our motivation to develop
MGSA.

Modeling requires formulating a generative process of the data. We andAnswering “what is
going on” using a
model approach

Lu et al. (2008) considered the categories as the potential cause of the gene
responses. Fitting the model then enables distinguishing between the causal
categories (according to the model) from the categories merely associated with
gene response. Although one cannot conclude that the identified categories
are causal in reality (this is only a model and one only has observational data),
this feature of model-fitting explains why it provides a better answer to the
question “what is going on?” than testing for associations on a term for term
basis.

In contrast to methods presented in Chapter 2, our approach includes an
error model, and therefore is aware that genes within the study set may be
false-positive observations or that genes that are not included within the study
set are false-negative ones. To answer the question of what’s going on in an ex-
periment, MGSA infers the active categories among all considered categories
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given the actual gene state observations. We demonstrated via real world
applications that MGSA indeed returns compact and useful information. In
systematic benchmarks we showed that, for our model, this approach is supe-
rior to a wide range of other procedures that aim for the same goal, that is, to
identify the meaning of gene sets.

Searching for an optimal set of terms that together explain a biological ob- Common
false-positive and
false-negative rates
for all genes

servation is a more difficult problem than examining each term for enrichment
one at a time. This holds not only true for the computational efforts one needs
to do to find a solution, but also for the general model, in which we must spec-
ify how the terms interact with one another. One always imposes assumptions
on the model that must be kept in mind when the results are interpreted. One
simple assumption of our model is that we have a common false-positive and
false negative rate for all genes.

Another assumption of our model is that the activation of a single term Assumption that one
term activates all
associated genes

suffices to activate genes. For instance, when the biological process sub ontol-
ogy of GO is used, our model implies that the experimental stimulus targets
one or more a priori unknown biological processes, and that all of the genes to
which the terms are annotated are triggered somehow by the stimulus. That
is, we assume that all of the genes that are annotated to the process always
participate in that process triggered by a stimulus. GO only states that a gene
is annotated to a term of the biological process sub ontology if it participates
in this process, which at a first glance is a different statement. However, we
justify our assumption by the way how GO is organized and with the kind of
data we deal with, i.e., that there is no information given how the genes inter-
act, both for GO and for the input list. We argue that it is not appropriate to
describe the experiment using a term t, if the experiment causes a superset of
genes that are annotated to t to be triggered and if this superset is annotated to
a term s. The fact that there are more genes is the input list can be seen as an
indication that the experimental stimulus was not specific enough and only
term s describes the experiment in an appropriate way. We therefore suggest
that considering the forest instead of the trees is an advantageous strategy
for gene category analysis, and that global model procedures such as the one
presented in this work may be better able to describe the biological meaning
of high-throughput datasets than are procedures that examine associations of
categories one at a time.

One further restriction of our approach is that statements between a cate- Closed world
assumptiongory and a gene are interpreted using closed world assumption, which means

that a gene is either associated to a category or not. This does not conform
to the principle that is used to represent knowledge with ontologies like GO,
which follow the open world assumption. The open world assumption means
that from the absence of a fact, we cannot conclude the converse of a fact. For
instance, if it is not stated that a gene is annotated to a term, then we cannot
conclude that a gene doesn’t participate in that process, unless this knowl-
edge is asserted, which is the case for only few of the genes via NOT qualifier
in the GAF file. None of the current methods for overrepresentation analysis
explicitly deals this issue. However, as in MGSA a gene that is truly associated
with feature described by the term, but currently isn’t included in the annota-
tion of that term, will be counted as false-positive, the open world assumption
is reflected implicitly by parameter α. Similarly, parameter β would account
for false annotations. How this kind of uncertainty influences the result and
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3. MODEL-BASED GENE SET ANALYSIS AND SYSTEMATIC BENCHMARKS

whether it makes sense to consider this as part of the model is topic of further
research.

We perform the Bayesian inference using a simple Markov chain MonteApproximate Bayesian
Inference Carlo sampling method because finding the exact solution is intractable. How-

ever, inherent to this class of algorithms is the problem that it is not obvious at
which step the Markov chain converges to desired distribution. We therefore
recommend to rerun the chain several times to give a kind of confidence on
the solution. In contrast to sampling approaches, approximation algorithms
such as the variational messaging passing algorithm (Winn and Bishop, 2005)
provide approximated solutions to the problem via restricted families of dis-
tributions that on the one hand shall approximate the posterior distribution
of Bayesian networks as good as possible, but also allow a lower bound of the
solution to be calculated and updated efficiently. It is therefore also worth-
while to test algorithms for approximate Bayesian inference on our inference
problem.

As we saw in Section 2.7, recent transcription profiling techniques suchFuture extensions
as RNA-seq provide not only new opportunities for researches but also new
challenges for downstream analysis. The extensions that is made for methods
that are based on Fisher’s exact test, could be incorporated in our model as
well. In this case, the α and β parameter no longer would be identical for all
genes but would depend on the length of the transcripts.

Currently, the observations are represented as Boolean variables. Whether
a gene i is present in a study set is often the result of performing a statisti-
cal test for this gene some obtained data. Depending on that p-value and the
chosen significance level, the observation state of the gene i becomes 0 or 1.
Obviously, a loss of information occurs here, which otherwise could help to
distinguish the class of the observation (false-positive, false-negative, etc). In
the future, it therefore will be interesting to consider an extension to the ap-
proach in which the observations are modeled as a continuous variables. The
approach would then be suitable for ranked lists of genes similar to the GSEA
approach that was briefly reviewed in Section 2.7 on page 36.
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4
Querying Attribute Ontologies

In the previous chapter, we described how to find terms of an attribute ontol-
ogy that can be used to summarize or describe a set of items. In this chap-
ter, we will address the converse problem, which can also be formulated as a
query problem using ontologies. That is, in comprehensive set of items each
of which is annotated to a set of terms of an attribute ontology, we want to
find a particular item that is best described by a given set of terms.

That the problem of searching in ontologies is an interesting topic was Semantic similarity
and Human
Phenotype Ontology

hinted in Lord et al. (2003). However, most of the work that followed focused
on the development and the analysis of semantic similarity measures, whose
purpose is to compare two items (i.e., proteins) by quantifying their similarity
on the basis of their similarities in annotations to terms of an ontology. This
changed with the advent of the Human Phenotype Ontology that we devel-
oped to represent human phenotypes by describing phenotypic features of
genetic diseases (Robinson et al., 2008). In addition to providing a controlled
vocabulary that simplifies integration of heterogeneous knowledge, one ad-
ditional goal was to give clinicians assistance when performing a differential
diagnosis of their patients. Clinicians enter the features (terms) of a patient
and are then presented with a list of possible diseases.

The development of computational tools that support clinicians in the pro- Clinical expert
systemscess of making a diagnosis is an important topic of health informatics. The com-

puter-assisted diagnostic tool Internist-I, which was developed in the 1970s,
was an early expert system that was mainly targeted at the field of internal
medicine (Miller et al., 1982; Myers, 1987). Another early expert system cre-
ated in the 1970s was MYCIN whose original purpose was to assist clinicians
to identify the type of bacteria that causes infections (Shortliffe and Buchanan,
1990). It consisted of a rule-based inference engine that also made use of cer-
tainty factors, by which simple uncertainties could be expressed. This model
“ was achieved only with frequently unrealistic assumptions and with persis-
tent confusion about the meaning of the numbers being used.” (Heckerman
and Shortliffe, 1992). In the same publication, Bayesian networks and proba-
bilistic inference were advocated to overcome these limitations.

In this chapter, we develop an approach that integrates the knowledge A Bayesian approach
for querying
ontologies

stored in an ontology and in the accompanying annotations into a Bayesian
network in order to provide a general framework to search for items in do-
mains that are described by attribute ontologies. The usage of a Bayesian
network accounts for the goal that observations may be only vaguely given.
The algorithm can be considered as a foundation for the setting of a clinical
support systems. This will be further detailed in the first section, where we
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also consider a second use case. The following two sections briefly introduce
the methodology of search procedures that are based on semantic similarity.
These were published in Robinson et al. (2008); Köhler et al. (2009); Schulz
et al. (2009). The fourth section presents the newly developed algorithm that
is based on Bayesian networks. This is original work that has not been pub-
lished elsewhere at the time of this writing.1 The next section compares the
algorithms using simulations. Finally, a discussion of the results is provided
in the the sixth section.

4.1 Motivation

Among the most important tasks of medical doctors is making a timely di-Physicians making a
diagnosis agnosis for their patients, in order to conduct further action, for instance to

plan the treatment or to discuss prognosis. To do so, the physician observes
the patient’s symptoms by various means. Based on these observations, the
physician diagnoses the patient with a disease. Of course it is vital that the
diagnosis is correct, in order to provide the best possible treatment. But the
sheer number of diseases that have overlapping features and the fact that pa-
tients can show features with different degree of severity or even unrelated
ones make diagnostics an art of its own. It requires experienced and special-
ized personal.

The Human Phenotype Ontology (HPO) that we developed aims to pro-The Human
Phenotype Ontology
describes phenotypic

abnormalities

vide a standardized vocabulary of phenotypic abnormalities that can be en-
countered in human disease. Terms are semantically connected via is a re-
lations. Other relation types are not defined as of this writing. The current
focus of the HPO is on the description of monogenic diseases that are listed in
the Online Mendelian Inheritance in Man (OMIM) database (McKusick, 2007).
Thus, the items that are annotated to terms are diseases as listed in OMIM. As
in GO, annotations are propagated along the is a relation type.

The HPO and the annotation can be used to assist human geneticists inSearch algorithm to
aid physicians in their

decision
their decision. What the physician determines or observes are distinct fea-
tures of the patient, which can be represented by terms of the HPO. The ob-
jective of a search algorithm would be to find the diseases which best match
the observed features by taking the structural properties HPO into account.

The second application that demonstrates the principle demand in being
able to efficiently search using ontologies covers the problem of finding Web
sites in the World Wide Web (WWW). Most current search engines are index-
based, which means that the whole documents are scanned and their contain-
ing words are stored in a database together with a reference to the document.
In order to find a Web site, users are required to enter keywords of interest.
The keywords from a query for the database which then emits references to
the documents which contain these keywords.

Now suppose that there is an ontology that structures the keywords ofOntology-guided
searching in the

WWW
general topics of interests in various levels of detail. Terms of this ontology
can be associated to URLs that link to the pages in the WWW. With ontology-
aware search algorithms such as those covered in this chapter, it is possible to
take the relations of various concepts in to account. For instance, one would

1Many of the contents will appear in the book Introduction to Bio-ontologies (Robinson and
Bauer, 2011). Also, a separate manuscript is in preparation.
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Endocrine abnormality
468

IC=2.3252

Atherosclerosis
38

IC=4.8361

Abnormality of the
cardiovascular system

824
IC=1.7595

Episodic hypertension
2

IC=7.7805

Human Phenotype
4787

IC=-0.0000

Organ abnormality
4752

IC=0.0073

Hypertension
78

IC=4.1170

Figure 4.1: Excerpt of the Human Phenotype Ontology. De-
picted are some terms of the Human Phenotype Ontology including
their annotation counts to OMIM entries and the resulting information
content.

be able to retrieve documents that do not contain any of the entered terms
but instead terms that are spelled differently and have the same or similar
meaning. Obviously, if a translation of the terms to other languages exists,
this approach also would allow to enter the keywords in a different language
than language used for the document.

In the remainder of this chapter, we assume that the ontology that serves
as the input of the procedure possesses a single root. If that is not the case, we
always can create an artificial root that subsumes the original roots.

4.2 Semantic Similarity

There is a lot of literature when it comes to the topic of semantic similarity in
conjunction with ontologies. Originally motivated to compare two items that
are annotated to terms of an ontology, these measures can, in principle, also
be used to search in ontologies as we will show in this section. Most vari-
ants of semantic similarity measures can be seen as special cases of similarity
measures, which are defined in this work as follows:

Definition 4.2.1. A similarity measure sim over a finite set I of items is a func-
tion sim : I × I → R with sim(i, j) ≤ sim(i, i) and sim(i, j) ≥ 0 for all i, j ∈ I.
Additionally, if sim(i, j) ≤ sim(j, i) for all i, j ∈ I holds, sim is said to be a
symmetric similarity measure.

We revise here a widely used semantic similarity measure that was ini-
tially conceived in Resnik (1995). The base of this measure (and many others)
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4. QUERYING ATTRIBUTE ONTOLOGIES

is the so-called information content (IC) of a term t, which intuitively tells us
something about the specificity of t. It is expressed using the items that are
annotated to t and analogously defined to the self-information content of the
outcome of random variable known from information theory (Shannon, 1948;
Mackay, 2002), which can be quantified by

IC(t) = − log(p(t)), (4.1)

where p(t) is the probability that an item randomly picked from the set of
all items is annotated to term t. This corresponds to the number of items
annotated to t divided by the total number of items. The IC is therefore a
non-negative number, which is 0 for the root matching the intuition that the
root term is anything but an informative or a surprising term as all items are
implicitly annotated to the root, whereas it reaches its maximum for a term
to which only a single item is annotated. More precisely, the IC is a non-
negative monotonic decreasing function along the path induced by the anno-
tation propagation because the number of items that are annotated to terms at
this path will stay the same or increase. As an example, consider Figure 4.1,
in which some terms of the Human Phenotype Ontology including their in-
formation content values are shown.

In order to define the semantic similarity of two items, the Resnik measureSemantic similarity of
two terms relies on the semantic similarity of two terms, which is often the IC of the most

informative common ancestor (MICA) of both terms

sim(t1, t2) = max
t∈Anc(t1)∩Anc(t2)

IC(t). (4.2)

Clearly, this is a symmetric similarity measure over the set of terms of an on-
tology according to Definition 4.2.1, due to the monotonicity of the IC over the
ancestors and symmetry of the disjoint set operation. In addition to that defi-
nition, more complex formulas have also been conceived (Couto et al., 2007).

The similarity of terms is then used to define the similarity of items. Also,Semantic similarity of
two items here there are number of variants conceivable that differ mostly in how the

similarities of the terms that are annotated to the items are combined. Often-
times, the following definitions are used:

simmax(I1.I2) = max
t1∈I1,t2∈I2

sim(t1, t2) (4.3)

simmax◦avg(I1, I2) =
1
|I1| ∑

t1∈I1

max
t2∈I2

sim(t1, t2) (4.4)

simavg(I1, I2) =
1

|I1||I2| ∑
t1∈I1

∑
t2∈I2

sim(t1, t2). (4.5)

Note that the measure of Equation (4.4) is not symmetric, while the other mea-
sures are symmetric, which means that they return the same value regardless
of the order of the arguments. However, one can also create a symmetric vari-
ant of Equation (4.4) by considering the average of this measure, in which,
the order of arguments is kept in one case, but is switched in the other case.
However, this leads to the problem that simmax◦avg(Ii, Ij) may be larger than
simmax◦avg(Ii, Ii), which violates Definition 4.2.1.
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4.3. P-Value Calculation

In the following, we fix the meaning of I1 and I2. The first set of terms will
be referred to as the query denoted by Q. The second set of terms is defined as
the target set, which is always an item that is part of the database. For disease
j, we denote this set by TSj.

Using this notation we can introduce the simple idea of a score-based Querying via seman-
tic similaritysearch algorithm. Basically, the algorithm returns the semantic similarity of

the query Q for all entries of TSj, of which there are total of n. For instance, if
measure of choice is Equation (4.4), we calculate

sj = simmax◦avg(Q, TSj)

for each disease 1 ≤ j ≤ n. Each score sj can be considered as an indication
of how well the query matches the annotations of disease j. Therefore it is
appropriate to rank the possible diseases according to the scores.

4.3 P-Value Calculation

One difficulty of the Resnik score is that one cannot compare the score of one Lack of normalization
pair p1 = (Q1, TS1) with another pair p2 = (Q2, TS2), if Q1 6= Q2 and TS1 6=
TS2. To see this, consider the score of a query set Q1 that matches a target set,
i.e., TS1 = Q1. Then consider a different pair in which both sets also match.
It is obvious from the definition of the score that those both pairs may have
different scores although both correspond to perfect matches.

While this may be not seen as a problem when one is interested only in the
ranking how target sets match the query, one cannot infer anything from the
obtained score value using the value alone. Often, the user is interested to see
how trustworthy a result is based on a measure that he is already confident
with.

The p-value is a concept that clinicians are familiar with, because many Normalization using
p-valuesmedical studies are evaluated using statistical tests that lead to a p-value,

which is a measure to judge the significance of a certain result. Therefore,
the most straightforward approach to achieve a normalization of the result
is to explore the distribution of the scores for each target set. The score of a
query versus a target set is regarded as the observation statistics. The p-value
is then calculated by integrating over the upper tail of the whole distribution
as it is common for statistical tests (see Figure 4.2).

Although the idea is quite simple, the generation of the full distributions Computing the score
distributionis computationally a very demanding process. However, here one has to note

that it is not necessary to calculate the distribution at query time, but it is
sufficient to calculate it at deployment time and to update it in a regularly
interval, depending on the changes of the ontology and the annotations. Also
note that for special cases, we do not need to determine the score distribution
enumerating all possible combinations or by using a sampling approach. As
shown in Schulz et al. (2009), for some semantic similarity measures and for
relatively small set of query terms it is sufficient to enumerate the terms of the
graph induced by each target rather than the terms of the whole ontology.

When we later present a benchmark of the methods, we do not take ad-
vantage of the algorithm for calculating p-values analytically. Instead we de-
termine the distributions using the sampling schema as described above. We
will refer to the procedure based on this measure as the p-value procedure.
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Q

Figure 4.2: Score Distribution for a Single Target Set (Schema).
The query Q is the score as determined using a similarity measure.

4.4 Frequency-Aware Bayesian Network

The previous sections demonstrated how semantic similarity analysis in the
HPO can be used to implement a decision support system for clinical diag-
nostics. The basic strategy involved finding the diagnosis (disease) that is
most similar to the query terms. This approach, however, has at least two
drawbacks. First, it is not explicitly designed to deal with mistaken or irrele-
vant query terms. Second, these approaches do not utilize information about
the frequency of a given phenotypic abnormality among all patients with the
same disease. Both ingredients are clinically important.

For instance, a patient may have signs or symptoms unrelated to the un-
derlying diagnosis. Consider phenylketonuria, or PKU for short, which is a
hereditary metabolic disease that is characterized by numerous phenotypic
abnormalities in untreated patients. A person with PKU may additionally de-
velop an unrelated disease such as rheumatoid arthritis (RA). However, the
examining physician who is trying to make a diagnosis may not recognize
that the clinical signs resulting from RA are not related to those resulting from
PKU.

On the other hand, it is important to recognize that not every person with a
given disease necessarily has all of the signs and symptoms that are associated
with the disease. For instance, nearly all patients with Marfan syndrome have
dilatation, i.e., an expansion, of the ascending aorta, but only about half have
ectopia lentis, which is a displacement of the lens of the eye. If a feature occurs
more frequently in one disease than in another, then, all else equal, we would
tend to believe that the former disease explains the presence of that feature
better than the latter disease and therefore can be considered as the more likely
candidate.

In this section, we introduce a Bayesian approach that takes advantage of
these considerations. We first define one variant of the model that ignores
the knowledge about frequencies, to simplify the presentation. We then show
how the inference can be done for this network, both for the item to be sought
and for the parameter of the model. The restriction to ignore the frequencies
is relaxed in the forth part. In the fifth section, we present a benchmark, in
which we compare the different methods based on simulations. The last sec-
tion discusses the approach and gives an outline of future topics.
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. . .

. . .

Item Layer Hidden Term Layer Observed Term Layer

Figure 4.3: Sketch of the Bayesian Network that is Used for
Modeling Searching in Ontologies Including Dependency Rela-
tions. The item layer solely consists of links to the next layer, which
is the hidden layer. The hidden and the observed layer also contain
intra-connections that are used to satisfy type propagation. The prop-
agation within the hidden layer is always done upwards the most general
term, while the propagation within the observed layer takes place in the
opposite direction.

Modeling Queries

The principle structure of the model looks similar to the framework of MGSA
that was introduced in the previous chapter. In MGSA, we modeled the obser-
vations of responder genes as a result of the activation states of sets or terms
using a three layer approach. The goal was then to infer the states of sets
based on the observations. In FABN, we also have three layers. However, the
entities that the nodes in the layers represent are switched. The first layer now
contains the variables that represent the state of the items, while the second
and third layer represent the state of the terms. As before, the second layer is
referred to as the hidden layer and third layer is called the observed layer. In
the next paragraph, we will briefly explain the structure of the network, while
the remaining paragraphs outline further details.

High-Level Description of the Model

We model the queries using a Bayesian networks that consists of Boolean vari-
ables of the domain {0,1} that represent either a state of an item or a state of a
term. An overview of the Bayesian network is presented in Figure 4.3.

We denote the n Boolean variables of the first layer as I1, . . . , In. They rep-
resent the n items of interest, e.g., the particular diseases. By Ij = 1 we express
that item j is active. Transferred to the setting of clinical diagnostics this corre-
sponds to the situation that the patient has disease j. On the other hand, Ij = 0
means that the item is inactive, i.e., the patient doesn’t suffer from disease j.
The states of the items is jointly described by the set I = {I1, . . . , In}.

Items are connected to the variables of the second layer, which represent
the hidden state of the m terms of the ontology, which is the HPO in our ap-
plication. Thus, there a total of m variables in that layer, which are denoted
by H1, . . . , Hm and jointly denoted by H. By Hi = 1 we state that term i is
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on in the hidden layer, which in the clinical diagnostic application means that
the patient truly shows symptom i. Otherwise, i.e., if Hi = 0, the term i is
off and the patient doesn’t show symptom i. The connections between ele-
ments of I and elements of H are made in accordance to the annotations. We
assume that an item differs from another one in at least one annotation and
incorporate merely the asserted annotations, which means that we connect
the items to the most specific terms to which they are associated. Associa-
tions that are normally inferred according to annotation propagation rule are
not directly integrated into the model. Instead, the hidden layer also contains
intra-connections that essentially correspond to the structure of the ontology,
and by which we will later express the effects of the annotation propagation
rule within the Bayesian network.

Furthermore, the hidden states of the terms are connected to the observed
states of the terms, which are the entities of the third layer. They are denoted
as O1, . . . , Om and jointly denoted by O. If, Oi = 1 then we state that term i is
on in the observed layer. In the clinical application it means that the physician
identified the symptom i as present in the patient. Otherwise, if Oi = 0 the
state of term i is off in the observed layer and thus identified by the physician
as not present or relevant. The observed state for a term depends on the cor-
responding state of the hidden layer, so there are links between elements of
H and O in a one-to-one fashion, i.e., Hi is connected to Oi. The propagation
between H and O is probabilistic and thus is used to model false-negatives
and false-positives.

Example 4.1. Consider the situation in which a patient has a disease j, i.e.,
Ij=1, that is annotated by the HPO terms 1, 2, 3, and 4. Imagine that a physi-
cian has examined the patient and is now entering query terms into a diagnos-
tic program to get some help with the differential diagnosis. Say the physician
enters the terms 1, 2, 3 and 7. Since the disease is also characterized by term 4
but the physician did not enter it, we can consider term 4 to be a false-negative
because the physician failed to observe or to enter this term. or because the
patient did not have 4 despite the fact that he or she had the disease j. On
the other hand, since the physician entered the term 7 but this term is not
associated with the disease, we can consider 7 to be a false-positive because
the physician made some error in the interpretation of the clinical findings, or
because the patient has both disease as well as the phenotypic abnormality 7
owing to some other cause.

The observed layer also contains intra-connections according to the struc-
ture of the ontology although the dependency relations may have a different
direction than those of the hidden layer. The JPD of the network is given by
P(I, H, O). Due to links that occur within a single layer, P(I, H, O) is not as
easily decomposable as it was for MGSA. The next part introduces the nota-
tion that is relevant in order to write up a decomposed version of the JPD.

Annotation Propagation Rule for Bayesian Networks

In terms of description logics, the annotation propagation rule is a complex
role inclusion axiom, which passes annotations along other relations such as
is_a. For the HPO and OMIM diseases, it means that if a disease j is anno-
tated to term i then it is also annotated to all subsumers of j, i.e., to all ancestors
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of term j. It also makes sense to model the query process in a similar fashion,
i.e., to propagate the property of a term of being entered along the is_a re-
lation. Essentially this means that if a term is entered then all of the more
general terms are implicitly entered as well. The true path rule is involved
as well, which means that the Physician verifies that all entered symptoms,
including the implicit ones, are indeed true for the patient. Consequently, we
also need to take the propagation of the false-positives and false-negatives
into account. In FABN, this is implemented by using intra-connections in the
observed layer.2

Recall that we denote by Ij the Boolean random variable that corresponds
to the state of an item j. Similarly, Oi and Hi denote Boolean random variables
that capture the observed and hidden state of term i of the network. In order
to express the annotation propagation rule, we allow the subscript of those
random variables to be an set of indices, by which we refer to the correspond-
ing set of random variables. E.g., O{1,2} refers to {O1, O2}. In particular, by
pa(i) we denote a set that contains terms to which annotations of i are prop-
agated directly. For the HPO this corresponds to the previous level of terms
that are direct subsumers of i, i.e., the parents of i. We use ch(i) to the denote
a set that contains terms that have their annotation propagated to i, which
for the HPO includes the next level of terms, i.e., the children of i. Note that
the terms parent and children refers to relationships of the ontology and not
the Bayesian network. Finally, a(i) denotes the set of items to which term i is
directly annotated.

Example 4.2. Consider Figure 4.4 on page 86. For instance, we have:

a(2) = {} a(3) = {1} a(4) = {2}
pa(2) = {1} pa(3) = {2} pa(4) = {3}
ch(2) = {3, 6} ch(3) = {4, 5} ch(4) = {}

If X denotes a set of random variables X1, . . . , Xn then X∨ defines another
Boolean random variable, such that X∨ = 1, if and only if there is any Xi ∈ X
with Xi = 1, otherwise X∨ = 0. In other words, X∨ is the logical disjunction
defined by X∨ = X1 ∨ X2 ∨ . . . ∨ Xn. Similarly, we define X∧ as the logical
conjunction of all variables of X. That is, X∧ = 1 if and only if all members of
X are 1, otherwise X∧ = 0.

We will use this notation to express the annotations propagation rule in
form of a LPD that we impose over the nodes of the Bayesian network. Trans-
lated to the setting of FABN the rule means that if a term is on then all terms to
which annotations propagate, which are normally the the more general terms,
need to be on as well. For a closed world assumption, we could also state that
if a term is is not on, then it is off and all of its more specific terms are off as
well. Although, OWL and OBO, which are the most widely used languages to
express bio-ontologies, by default follow the open world assumption, which
effectively means that we cannot say anything about things that are not as-
serted, for simplicity, we assume the closed world assumption here.

2In contrast, in MGSA, the modeling of this propagation was such that the nodes representing
the GO terms are connected to the nodes representing all of the annotated genes, including the
genes are directly annotated to the term and genes annotated to the descendants of the term. This
feature allows one to use MGSA also for arbitrary gene sets or categories.
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Figure 4.4: Two Possible Configurations of the Item and Hidden
Layer of an Exemplary Structure. Item I1 is annotated to terms 3,
while item I2 is annotated to terms 4 and 7. The propagation of the
on states within the hidden layer is always directed to the root of the
ontology in order to model the effects of the annotation propagation
rule within the Bayesian framework. In A) a configuration is depicted,
in which item 1 is the only active item. Therefore, terms 1, 2, and 3
are on. In B) only item 2 is active, therefore terms 1, 2, 3, 4, and 7
are on.

So far, we omitted many details of the required dependency structure of
our Bayesian network as well as the LPDs for the various classes of variables.
These will be specified in the following paragraphs.

Local Probability Distributions of Hidden Term States

Figure 4.4 depicts the structure of the connections between the item and hid-Propagation from the
item layer to the
hidden layer is
deterministic.

den layers. For the state propagation between the item layer and the hidden
layer we specify that a the hidden state for term i is on, if an item that is di-
rectly annotated to that term i is active. Otherwise if all items of a(i) are inactive
then the hidden term is off if this term has no other dependencies within the
hidden layer.

For the dependencies within the hidden layer, we implement the anno-Intra-dependencies
within the hidden
layer are modeled
according to the

annotation
propagation rule in a
deterministic manner.

tation propagation rule as an LPD for each variable Hi that is set to the state
on if the hidden state of at least one of the terms to which term i is a direct
subsumer, i.e., one of the directly related more specific terms, is on as well.
This specification gives rise to the intra-dependency structure: For the HPO,
it corresponds to the direction of the is a relation. In other words, this state
propagation is deterministic and forms a logical or operation on all of the in-
puts, to which also the state of directly associated items contribute. Formally,
the LPD of a single Hi is specified as:

P(Hi = 1|I∨a(i), H∨ch(i)) = max{I∨a(i), H∨ch(i)} (4.6)

P(Hi = 0|I∨a(i), H∨ch(i)) = 1−max{I∨a(i), H∨ch(i)} (4.7)

For a fixed configuration I = (i1, . . . , in) and a combination of hidden states
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of the m terms H = (h1, . . . , hm) it follows that

m

∏
i

P(Hi = hi|I∨a(i), H∨ch(i)) =

{
1, ∀j : ij = 1⇔ item j is annotated to term i
0, otherwise

(4.8)
which also expresses that only one (h1, . . . , hm) agrees with a given I. Other
combinations are invalid.

Local Probability Distributions of Observed Term States

What remains to be done is to specify the state propagation to the variables of
the observed layer. As in the previous chapter we model the state propagation
between the hidden layer and the observed layer using probabilistic means,
in which the global model parameter α and β represent the probability of a
false-positive and false-negative event respectively.

Note that if the inter-connections would be the only dependencies for the
states in the observed layer, invalid configurations can be imagined for the
observed layer as can seen in the following example.

Example 4.3. Suppose that for the network in Figure 4.4 item I1 is 1. Then H3
is 1 and following the state propagation, all ancestors of term 3 have state 1 as
well. The states of all other terms of the hidden layer are 0. Now suppose that
there is a true-negative event for the propagation of the hidden state of term
6, which means that state is observed as 0, i.e., O6 = 0. In addition, there is a
false-positive event for term 5 which means that O5 = 1. This a invalid con-
figuration: It doesn’t comply with the effects of the annotation propagation
rule, as term 6 is a parent of term 5.

We address this issue using intra-connection for the observed layer as well,
which are in charge of propagating false-positives and false-negatives via ob-
served states of other terms of the ontology. This will be independent of their
hidden states and therefore may block the state propagation from the hidden
layer to the observed layer. In the following, we deal with this problem in
two separate cases, in which one case stands for the false-negative propaga-
tion and the other one the false-positive propagation. For each each case, two
variants of modeling are presented. Note that we will make use of graphical
examples, in which, for simplicity, we assume a strict linear ontology, i.e., an
ontology, in which each term has just a single parent.

Propagation of false-negatives. The left part of Figure 4.5 depicts how one
can explain false-negatives. A false-negative, i.e., the observed state off for a Top-down

propagationterm with hidden state on, can be fully explained due to the fact that either
at least one single ancestor was already false-negative or, given that all an-
cestors are on (and thus all ancestors are true-positives) by chance according
to the false-positive rate β. Essentially, the off -case is propagated in a top-
down fashion, in which a false-negative is only accounted once per branch,
i.e., when it is encountered first.

In the context of the motivating example, which is to search for a disease
by using observing features from an ontology, this modeling can intuitively
be justified if we assume that the Physician differentiates the features along
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A)

False-negatives

H1 = 1

H2 = 1

H3 = 1

H4 = 1

H5 = 1

O1 = 1

O2 = 1

O3 = 0

O4 = 0

O5 = 0

P

1− β

1− β

β

1

1

B)

False-positives

H1 = 0

H2 = 0

H3 = 0

H4 = 0

H5 = 0

O1 = 1

O2 = 1

O3 = 1

O4 = 0

O5 = 0

P

α

α

α

1− α

1

Figure 4.5: Propagation of Mistakes. A) False-negative propa-
gation. Here, the 0-case is propagated in a top-down fashion. That
means that state 0 of O4 can be explained by the state 0 of O3. There-
fore, a false-negative is counted only once per branch. B) False-
positive propagation. A false-positive observation at O3 is propa-
gated to O2 and O1 because of the annotation-propagation rule. In
this example, that means that three false-positives are counted, one
each for O3, O2, and O1.

the graph of the ontology in a term-by-term strategy. The inability to name a
very specific feature of a patient can be explained by the inability to name its
more general manifestation, for instance, as the Physician is no specialist for
this branch of the ontology.

Within the depicted situation this means that the fact that the state of term
4 is off, i.e, O4 = 0 can be fully explained by fact that term 3 has been observed
to beoff. i.e., O3 = 0. Any other explanation in this model would violate the
true path rule and therefore an invalid configuration (the probability of such
configurations is 0).

Using the above-defined notation, the local probability distribution is de-
fined as:

P(Oi = 0|Hi = 1, O∧pa(i) = 0) = 1 (4.9)

P(Oi = 1|Hi = 1, O∧pa(i) = 0) = 0 (4.10)

P(Oi = 0|Hi = 1, O∧pa(i) = 1) = β (4.11)

P(Oi = 1|Hi = 1, O∧pa(i) = 1) = 1− β (4.12)

Note that we indeed specified all possible cases for the observation states of
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the more general terms. To see this, consider that stating that the observation
state of all terms is on is equivalent to stating that each state of all terms is not
off.

Propagation of false-positives. An example of false-positive propagation is
shown in the right part of Figure 4.5B. We also assume that terms are chosen
from more general to more specific ones. In this case, we consider each Hi =
0 6= Oi = 1 mismatch as false-positive event, i.e., we consider each decision
to include a term that is not on in the hidden layer as a mistake. The probably
of this event is α. The probably that a term is correctly identified as off given
that all of its more general terms are on is therefore 1− α. If term i has at least
a single parent that is off, then Oi = 0 holds, which follows from the true path
rule as Oi = 1 would imply that all parents are on. Thus, the probability of the
former event is 1, while the probability of the latter is 0. These considerations
are reflected more formally by following LPD:

P(Oi = 0|Hi = 0, O∧pa(i) = 0) = 1 (4.13)

P(Oi = 1|Hi = 0, O∧pa(i) = 0) = 0 (4.14)

P(Oi = 0|Hi = 0, O∧pa(i) = 1) = 1− α (4.15)

P(Oi = 1|Hi = 0, O∧pa(i) = 1) = α (4.16)

The Joint Probability Distribution for FABN

Using the LPDs, of the last paragraphs, we can now specify the JPD P(I, H, T).
It is:

P(I, H, O) = P(I)

[
m

∏
i=1

P(Hi|I∨a(i), H∨ch(i))

] [
m

∏
i=1

P(Oi|Hi, O∧pa(i))

]
(4.17)

Given a particular configuration (H, O) for the variables of the hidden and
observed layers respectively, we define

mxyz|OH =
∣∣∣{i|Oi = x ∧ Hi = y ∧O∧pa(i) = z

}∣∣∣
to represent the number of all treated cases.3 Note that

m = ∑
x,y,z∈{0,1}

mxyz|OH

holds. In order to resolve the probability of the variables of the observed layer,
i.e., the last product term of Equation (4.17), we assume that we are not given
an invalid configurations, i.e., m110|OH = m100|OH = 0. Furthermore observe
that the conditional probabilities for cases m010|OH and m000|OH do not con-
tribute to the product as they are 1. Therefore, only four of the eight possible
values contribute to the conditional probabilities of Oi, so that we have:

m

∏
i=1

P(Oi|Hi, O∧pa(i)) = βm011|OH (1− β)m111|OH (1− α)m001|OH αm101|OH (4.18)

3Notice that the order of x, y, and z matches the order of the variables within the specifications
of the LPDs.
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Probabilistic Inference for the Items

For simplicity, we assume first that parameters α and β are fixed, so we do
not need to list them explicitly in the declaration of probabilities. Recall that
FABN was motivated by the goal of providing a decision support system for
physicians who would enter a list symptoms and get back a list of prioritized
list of differential diagnosis. Therefore, the interesting quantity is the proba-
bility distribution of the activity state of the items I given the observation O,
which is denoted as P(I|O). After applying the definition of conditional prob-
ability and demarginalizing P(I, O) for H, of which 2m distinct configurations
are possible, we have

P(I|O) =
P(I, O)

P(O)
=

∑H P(I, H, O)

P(O)
.

By using Equation (4.17), we get for the numerator:

∑
H

P(I, H, O) = P(I) ∑
H∈{0,1}m

[
m

∏
i=1

P(Hi|I∨a(i), H∨ch(i))

] [
m

∏
i=1

P(Oi|Hi, O∧pa(i))

]
,

(4.19)
while the exhaustive summation over all possible configuration of the hidden
layer can be simplified due to Equation (4.8) on page 87, where we exploited
the deterministic propagation between the item layer and the hidden layer.
That is, for H we only need to consider a single configuration (hI

1, . . . , hI
m), in

which hI
i = 1, iff term i is directly or indirectly annotated to the active items

of i. The probability of other possible assignments of H is 0.4 Thus we have:

∑
H

P(I, H, O) = P(I)
m

∏
i=1

P(Oi|Hi = hI
i , O∧pa(i)). (4.20)

In terms of the Bayes Theorem P(I) is the prior while the product over the
probability of the m cases is the likelihood P(O|I), i.e.,

∑
H

P(I, H, O) = P(I)P(O|I). (4.21)

Finding the configuration of items that best explain the observed data it is
equivalent to maximizing P(I|O) for I. For this purpose, it is enough to max-
imize the product of the likelihood P(O|I) and the prior P(I) as P(O) is the
normalization constant. In general, the optimization problem to maximize
this product is NP-complete.5 It is tempting to estimate the solution the same
way as it was done in the previous chapter by devising an MCMC algorithm,
which would also give access to the marginal posterior probabilities of each
item to be active. However, it can be argued whether the freedom in allowing
all kinds of combinations for the items is necessary or even appropriate. For
instance, in the medical setting Physicians typically search only for a single
diagnosis rather than a combination of diseases that a patient could have.6 If

4Later, in the frequency-aware version of the model, we implement a probabilistic propaga-
tion where this simplification no longer can be made.

5The proof is analogous to the proof given in the previous chapter.
6This is in contrast to setting of the MGSA procedure, in which multiple GO terms are sought

to explain the observed data.
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4.4. Frequency-Aware Bayesian Network

we consider configurations of I, in which only a single item is active then we
are able to find the best explanation in steps linear to the number of terms
assuming the structure of the ontology as given.

In order to implement this simplification, we do not need to leave the
Bayesian framework. We realize this model restrictions by defining the prior
P(I), which also can be written as P(I1, . . . , In) as

P(I1 = i1, . . . , In = in) =

1, if
n

∑
j=1

ij = 1

0, otherwise
.

Obviously, we are also able to determine the marginals exactly without raising
complexity, as

P(I|O) =
P(O|I)P(I)

P(O)
=

P(O|I)P(I)

∑
I′

P(O|I′)P(I′)
,

where the sum is taken over the n valid models. The procedure is summarized
in Algorithm 9.

Algorithm 9: Procedure BayesSearch
Data: Observations α, β, o1, . . . , on
a← 0 ; /* Normalization constant accumulator */
for j ∈ {1, . . . , n} do /* For each item */

for i ∈ {1, . . . , m} do /* For each term */
if j is directly or indirectly annotated to i then hi ← 1 ;
else hi ← 0 ;

for x, y ∈ {0, 1} do
mxy1|OH ← |{i|oi = x ∧ hi = y}| ;

aj ← βm011|OH (1− β)m111|OH (1− α)m001|OH αm101|OH ;
a← a + aj ;

for j ∈ {1, . . . , n} do
pj ←

aj
a ;

return (p1, . . . , pn) ;

Parameter-Augmented Network

FABN uses two parameters, α and β, that correspond to the false-positive and
false-negative rates. Up to now, we treated them as constants. However, in a
realistic application, we cannot expect the user to provide them, which means
that we have to deal with the parameter within the algorithm. We accomplish
this by integrating out α and β. As the integral is not tractable, we integrate
over a grid of suitable range of different combinations of α and β.

Formally, we augment the Bayesian network with two nodes A and B that
represent the respective parameter values, i.e., the realization of A is α while
the realization of B is β. The LPD of nodes within the observed layer now
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4. QUERYING ATTRIBUTE ONTOLOGIES

depends on those variables as well. In the following, we represent A and B as
a single variable Θ = (A, B). Thus the LPD is parameterized as:

P(Oi|H I
i , O∧pa(i), Θ).

The joint probability distribution of the augmented network is factored as:

P(I, H, Θ, O) = P(I)

[
m

∏
i=1

P(Hi|I∨a(i), H∨ch(i))

]
P(Θ)

[
m

∏
i=1

P(Oi|Hi, O∧pa(i), Θ)

]
.

The likelihood P(O|I) becomes

P(O|I) = ∑
H

[
m

∏
i=1

P(Hi|I∨a(i), H∨ch(i))

]
∑
Θ

P(Θ)

[
m

∏
i=1

P(Oi|Hi, O∧pa(i), Θ)

]
,

while we assume that A and B and thus Θ are discrete random variables.

Extending the Model by Frequencies

As mentioned above, in many diseases any given sign or symptom may not
occur in all patients but only in a certain proportion of the patients. We will
refer to this quantity as the frequency of a disease feature. The HPO project
provides feature frequencies for an increasing number of diseases based on
original publications and data extracted from OMIM. It is appealing to use
this information to improve the results of a clinical decision support system.
For instance, it is apparent that a feature that is annotated to diseases 1 and
2, but which is two times more common among patients with disease 1 than
with disease 2, provides more evidence for disease 1 in a patient who exhibits
the phenotypic feature and for whom we are trying to identify a correct diag-
nosis. As we shall see in this section that our model can be easily enhanced to
incorporate this kind of information.

To begin with, we define the frequency of seeing a certain phenotypic fea-
ture represented by term j for disease i as 0 ≤ f j,i ≤ 1. To simplify the spec-
ification, we assume now that f j,i = 0, iff an item i is not annotated to a term
j. Using this convention, we reformulate the LPDs of the hidden nodes as
follows:

P(Hi = 1|I, H∨ch(i) = 0) = 1−
n

∏
j=1

(1− Ij f j,i) (4.22)

P(Hi = 0|I, H∨ch(i) = 0) =
n

∏
j=1

(1− Ij f j,i) (4.23)

P(Hi = 1|I, H∨ch(i) = 1) = 1 (4.24)

P(Hi = 0|I, H∨ch(i) = 1) = 0 (4.25)

Obviously, Equations (4.22) and (4.23) are the interesting ones as this is the
part where the propagation is no longer deterministic. Following these equa-
tions it is given by H∨

ch(i) = 0 that all the children of term i are off within

92



4.5. Benchmarks

the hidden layer. Therefore the state of hidden term i depends only on the
frequencies and the activity state of the items. Note that if f j,i represents the
probability that term i is on if item j is active then the probability that term
i is off if item j is active is 1− f j,i. If we additionally incorporate the activ-
ity state of the item, we get 1− Ij f j,i, that is, if item j is inactive, i.e., Ij = 0,
then term j is off with probability of 1. The hidden state of term i given all
items is off, if the propagation of each active item independently lead to an off
state. The probability of this event is the product of 1− Ij f j,i for each item j
as given in Equation (4.23). Equation (4.23) follows from this as it models the
complementary event.

Using this definition, the calculation for the likelihood becomes more com-
plex the more annotations with frequencies are available, i.e., the more non-
deterministic state propagations are included in the model, because the num-
ber of possibilities that needs to be explored grows exponentially in the num-
ber of such annotations. In the search procedure, we therefore restrict the
search space to the k least frequent annotations, all other annotations always
considered as present. As we will see in the following Benchmark, even
though this is a simple heuristic, we are able maintain highly precise predic-
tions for a greater recall.

4.5 Benchmarks

In order to compare the methods, we implemented a systematic benchmark
that is similar to the one presented in the previous chapter, in which we use
the terms of the HPO and all associated OMIM diseases. The term defini-
tion and the association files were downloaded at 2010/06/23 from http:
//www.human-phenotype-ontology.org. These files provided annotation
information for about 5000 OMIM diseases to approximately 7300 terms.

We assign the symptoms of a selected disease to a patient always according
to available frequency information. Note however that frequency information
is available only for a fraction of all diseases. Therefore we assume that a fea-
ture without an associated frequency is always present in the patient. For each
generated patient, we simulate the uncertainties of the diagnostic process by
adding not assigned features with probability α and by removing present fea-
tures with probability β. This represents a kind of noise intended to represent
realistic clinical situations in which not all patients have textbook presenta-
tions of disease and not all physicians have same expertise. We then apply
one of following procedures:

• Resnik: The ranking mechanism based on the Resnik score as described
in Section 4.2 on page 79.

• ResnikP: The ranking mechanism based on the p-value approach as de-
scribed in Section 4.3 on page 81. We use 250,000 random queries to
approximate the score distribution. Ties are resolved using the score.

• ResnikP’: Same as ResnikP but ties are resolved using the original labels.
That is, if disease i and disease j get the same p-value and disease i is the
searched disease, disease i is ranked better than disease j. This approach
gives an approximate upper bound of the p-value approach.
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Figure 4.6: Frequency-Aware Propagation. Here, I2 is active, while
I1 is inactive. Given that, the probability that H4 is on is f2,4. The
probability that H7 is on is f2,7. Additionally, the frequencies between
the diseases and all other terms are 0 so they can be omitted. Thus,
there are four possible configurations of the model. The probability of
configuration A) is f2,4 f2,7, B) is (1− f2,4) f2,7, C) is f2,4(1− f2,7), while
for D) it is (1− f2,4)(1− f2,7).

• BN: The Bayesian approach without taking frequency into account but
with parameter inference.

• FABN: The frequency-aware Bayesian approach with parameter infer-
ence as described in Section 4.4.

• FABN’: The frequency-aware Bayesian approach without parameter in-
ference, i.e., with parameter set to the correct values. This gives an upper
bound for the performance of the algorithm.

Each of them returns a list, in which each disease is associated either with a
score or a probability value. We then processed these lists in a similar way as
we did in Section 3.7 on page 57. Note that in the p-value approaches small
values provide support for diseases, while large values provide support for
diseases in FABN and in the score-based Resnik approach.
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Figure 4.7 on page 96 shows the ROC performance for the setting, in which
all OMIM diseases were considered. The curve for ResnikP’ is not shown as
this was identical to the ResnickP approach. In all simulations, the Bayesian
network approach attains a higher performance. For simulations, in which
only little noise was applied to disturb the signal, the improvement over the
p-value approach is not as high as when more noise was applied. The cor-
responding precision/recall plots that are depicted in Figure 4.8 on page 97
give further details. As can be seen, the Bayesian approach yields a higher
precision over the entire range of recalls with all tested noise configurations.
Also here, the improvement is stronger the more noise is applied, which ac-
counts for the fact that the Bayesian approach comes with an error model.
The diagrams also display the performance for the Bayesian approach that
we provided with the correct values of the noise parameter. It can be con-
cluded that the parameter estimation procedure doesn’t have an huge impact
on the outcome. This test setting could not be used to demonstrate that taking
the frequency information into accounts leads to an overall improvement be-
cause the proportion of diseases with available frequencies version diseases
is still very small. In other words, the performance of BN was observed to be
as good as the performance of FABN. Thus we omit the presentation of the
curves of BN.

In order to see the effect, whether the inclusion of frequency information Benchmarking the
advantage of
integrating frequency
information

within the calculation has an impact on the performance, we run another sim-
ulation in which only diseases with available frequency information are con-
sidered. Additionally, an annotation was taken into account, only if it was
qualified PCS or ICE evidence codes, which means that this annotation rep-
resents knowledge derived from a published clinical study or is based on in-
dividual clinical experience of the annotator. This simplified the classification
task, as the number of considered diseases is now 30 instead of about 5000
that were used before. To get some meaningful results, we now generate 100
patients per disease.

The ROC curves for different settings of α and β are displayed in Figure 4.9
on page 98. We omitted curves for FABN’ and ResnickP’ to avoid the over-
loading of the panels. The AUROC score of FABN is higher than of any of the
other methods. Importantly, it is higher than BN, in which frequency infor-
mation were omitted. Generally, for the lower-noise settings, the difference of
FABN to all other methods is relatively small and the score isn’t in a range of
a perfect classifier. Again, the performance can be better distinguished using
a Precision/Recall plot, which is depicted in Figure 4.10 on page 99. It can be
seen that the precision of the FABN algorithm is always as good or higher as
the precision of the other methods.

4.6 Discussion and Conclusions

We understand an attribute ontology as an ontology that is developed to pro-
vide a vocabulary for the description of items of some particular domain,
which we call target domain. Both, the attribute ontology and the associa-
tions to items forms a knowledge base. A useful operation on this sort of
knowledge bases is to retrieve appropriate items given a set of query terms.
Because the specificity of the terms of an ontology vary and the query doesn’t
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need to fully match the descriptions of an item, this is not a trivial task.
One particular use-case of such algorithms can be found in medicine. The

arguably most important task of physicians is to make a correct diagnosis for a
patient, as this is required to plan the treatment or to discuss prognosis. How-
ever, the sheer amount of possible diseases makes this a quite challenging
problem. Therefore, clinical expert systems have been proposed to support
trained personal in the diagnosis. With the Human Phenotype Ontology we
provide a controlled vocabulary that describes phenotypic features of human
beings. Terms of the HPO are annotated to diseases of the OMIM database,
which contains a comprehensive set of genetic diseases. Thus, this knowl-
edge base provides a valuable resource that can be used for a medical expert
system.

We proposed a Bayesian network approach for the problem of queryingA Bayesian approach
for querying a target

domain
a target domain that is described via attribute ontologies. Transferred to the
medical application the network models a generative process, in which a dis-
ease causes observable symptom features that are structured according to the
ontology. After the physician has entered the observations, probabilistic infer-
ence is applied in order to assign probabilities to each disease. The probabili-
ties reflects the belief about the disease being the cause for the observations.

Using simulations that should mimic an examination of a patient, we com-
pared the algorithm with algorithms that we proposed before, which are all
based upon semantic similarity. We found that the Bayesian network ap-
proach yielded better performance with respect to various classification eval-
uation measures. One reason for this improvement is that our Bayesian net-
work models possible false-positive and false-negative observations, and also
models the effects of the annotation propagation rule. Additionally, we also
are able to include frequency information with this approach and showed that
this improves the classification performance of the algorithm.

The usage of a Bayesian networks allows for further modifications that canParameters can be
used to specify
certainties of
assignments

be considered when the approach is implemented. For instance, if a physician
is absolutely sure that a certain observed feature is present, then it is possible
to reasonably account for this by asserting a very small α range to that fea-
ture. Analogously, a very small β range value can be asserted for a particular
feature, if the physician is sure that the feature is not present in the disease
of the patient. This additional knowledge is especially helpful in a situation,
where the result is ambiguous, for instance, if no disease attains a probability
value larger than 0.5. In contrast, a rather large α range can be asserted, if the
physician is unsure about the feature.

Currently, we modeled the propagations of the Bayesian network to followClosed vs. open world
assumption the closed world assumption. As in the last chapter, this does not match the

fact that ontology languages normally use the open world assumption. This
means for instance, if a disease is not associated to a term, then it doesn’t
follow that this disease cannot show the feature described by the term. It
merely means that it is unknown whether there is an association, thus the
association and the implications are undefined. It therefore makes sense to
consider a third state in the Bayesian network that accounts for the unknown.
The impact of this on the performance needs to be evaluated. In the future,
it also seems reasonable to enhance the annotations to also support negative
annotations to fully benefit from the extended approach.
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4.6. Discussion and Conclusions

Our inference procedure currently assumes that exactly one disease is re- Assumptions for
keeping the
calculations tractable

sponsible for the observations. This assumption was imposed over the model
in order to keep the probabilistic inference efficient. Note however that all
other methods, which were presented here, are also not able to identify two
or more diseases at once. Using FABN however, we may get rid of these
limitations, if computational efficiency or exactness is sacrificed.7 Also for
efficiency reason, we only considered merely the frequency information for
k-lowest probable features. In order to generalize the algorithm for both as-
sumptions, it may be therefore worthwhile to apply a sampling scheme simi-
larly to the one that has been used for MGSA in the previous chapter, which
however will have an impact on the exactness of the result.

7Currently, about 5000 diseases are annotated, so iterating over combination of more than
two active diseases is not practical.
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Summary

In this work, approaches that integrate different kinds of observations to-
gether with knowledge bases are presented. Two methods have applications
in the post-processing of results obtained from high-throughput molecular bi-
ological experiments that usually deliver long list of biological entities that
respond in the context of a given experiment. In order to justify and inter-
pret results, it has become standard to combine these lists with knowledge
bases, in which biological entities are categorized according to different cri-
teria. The most prominent biomedical knowledge base provider is the Gene
Ontology that conceptualizes features of genes and their products in a species-
independent manner. The concepts are called terms and structured by various
types of semantically meaningful parent-child relationships. The standard ap-
proach to address the integration problem was to apply Fisher’s exact test on
a term-for-term basis. As discussed in this thesis, this approach tends to pro-
duce many false-positives when applied to structured knowledge bases that
contains more than thousands of terms, as relations between terms are ig-
nored. In our first contribution, we proposed a change in the quantities that
are used in the Fisher’s exact test such that the direct dependency relations
between a term and its parent are considered. Via simulations we show that
this indeed reduces the number of false positives. Furthermore, we propose a
Bayesian network, in which the observed feature of genes, i.e., the feature of
being differentially regulated, are expressed as a generative process that has
active terms as input and respects the noisy nature of experimentally gained
data. We show that this approach is a generalization of the SetCover prob-
lem. We propose a stochastic procedure based on the Metropolis-Hastings
framework to actually approximate the Bayesian inference problem. Via sim-
ulations, we verify that this approach is able to maintain precise predictions
at much higher recalls than previous algorithms did.

In the second part, another model-approach is proposed that allows one
to query attribute ontologies for items in a target domain. For this purpose,
we directly integrate an error model and a subset of the implications of logical
inference within the Bayesian network. Although the algorithm can be used
for arbitrary domains, including for searches in the World Wide Web, we focus
its application on the Human Phenotype Ontology to provide a basis for a
clinical expert system. For this particular use case, we also integrate frequency
information and show via simulations that the inclusion of this knowledge
improves classification performance.
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Zusammenfassung

In dieser Arbeit werden algorithmische Verfahren zur Integration von Be-
obachtungen und Wissensbanken vorgestellt. Dabei liegt der Schwerpunkt
des ersten Teils in der Auswertung von Daten, die mit Hilfe von moleku-
laren Hochdurchsatzverfahren gewonnen werden. Deren Erebnisse liegen
gewöhnlich in Form einer langen Liste von biologischen Entitäten vor, die
den Ausgang des biologischen Experiments zusammenfasst. Um eine In-
terpretation zu ermöglichen, werden die Listen standardmäßig mit Wissens-
banken abgeglichen. Hierbei wird häufig auf die Wissensbank Gene Ontol-
ogy zurückgegriffen, in der molekularbiologisches Wissen über Merkmale von
Genen und ihren Produkten in Spezies-unabhänger Weise konzeptualisiert ist.
Die Konzepte werden als Terms bezeichnet, die mit Hilfe verschiedener so-
genannter Eltern-Kind-Beziehungen semantisch strukturiert sind. Bisherige
Ansätze zum Abgleich der Ergebnislisten mit den Wissensbanken verwen-
deteten den exakten Test nach Fisher für jeden einzelnen Term. Wie in dieser
Arbeit festgestellt wird, führt diese Herangehensweise zu falsch-positiven Re-
sultaten, falls die verwendete Wissensbank strukturiert ist, wie es bei Gene
Ontology der Fall ist, da Beziehungen zwischen einzelenen Terms ignoriert
werden. In der zuerst vorgestellten Methode wird deshalb eine Änderung der
zugrunde liegenden Teststatistik vorgeschlagen, die eine Berücksichtigung
direkter Eltern-Kind-Beziehungen vorsieht. Simulationensreihen bestätigen
eine Verringerung der falsch-positiven Resultate. Die zweite vorgeschlagene
Methode basiert auf einem Bayesschen Netz, das die Beobachtungen der Gene
mit Hilfe eines Term-Aktivitätsmusters erklärt, wobei das bei Messungen auf-
tretende Rauschen berücksichtigt wird. Es wird gezeigt, dass dieses Prob-
lem eine Verallgemeinerung des bekannten Mengenüberdeckungsproblems
ist. Um die Lösung einer Instanz zu finden, wird eine stochastische Prozedur
vorgeschlagen, die auf dem Metropolis-Hastings-Framework aufbaut. Aus-
wertungen von Simulationen bestätigen, dass dieses Vorgehen präzise Aus-
sagen bei deutlich höherer Trefferquote liefert, als es mit bisherigen Verfahren
möglich war.

Im zweiten Teil der Arbeit wird ein Modell-basierendes Verfahren vorge-
schlagen, das annotierte Objekte ausgibt, die am Besten auf eine möglicher-
weise unvollständige oder fehlerbehaftete Beschreibung passen, wobei sich
die Beschreibung aus Terms einer Ontologie zusammensetzt, die zur Annota-
tionen der Objekte dient. Es wird zu diesem Zweck ein Fehlermodell und eine
Teilmenge von möglichen Schlüssen der logischen Inferenz in einem Bayess-
chen Netz vereint. Obwohl der abgeleitete Algorithmus für beliebige On-
tologien und Wissensgebiete angewandt werden kann, liegt der Schwerpunkt
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dieser Arbeit bei der Verwendung des Algorithmus auf Grundlage der Hu-
man Phenotype Ontlology, um eine Basis für ein klinisches Expertensystem zu
bilden. Es wird gezeigt, dass das Modell sehr leicht um die Berücksichtigung
von Häufigkeiten erweitert werden kann. Anhand von Simulationen wird
bestätigt, dass die Hinzunahme dieses Wissens die Klassifikationeigenschaft
verbessert.
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Theses

1. When gene lists are analyzed using the term-for-term approach, the out-
put gets inflated with many related terms.

2. Although the parent-child and topology approaches aim for reducing
the number of terms that are reported, they are not fundamentally dif-
ferent from the term-for-term approach and especially designed for the
structure of GO.

3. MGSA returns a core set of terms that describe the result accurately
without suggesting a specificity of the experiment that is not supported
by the observations.

4. It follows that modeling approach of MGSA leads to a non-biased un-
derstanding of of results of molecular biological experiments.

5. MGSA can also be used for non-ontologically structured categorization
schemes.

6. FABN yields a better classification performance than non-model based
methods.

7. FABN is an efficient algorithm in the one-disease case.

8. It follows that FABN doesn’t rely on a client-server model that was used
for the p-value approach and can be practically used on standard com-
puter hardware and even on modern mobile phones with real-time re-
sponse.

9. FABN can be generalized to find more than one disease as an explana-
tion for observed features.
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Glossary

attribute ontology An attribute ontology models classes of features that are as-
sociated or annotated to other classes or instances.

false-positive rate The false-positive rate of a set of classification result is the
proportion of false-positives among all negatively labeled items.

Gene Ontology The Gene Ontology is an attribute ontology aimed to stan-
dardize descriptions for genes and their products.

Human Phenotype Ontology The Human Phenotype Ontology is an attribute
ontology aimed to standardize descriptions for genetic diseases.

population set The population set contains all genes, of which an experiment
could possible select. In a typical microarray experiment, the set consists
of genes that are measurable with the chip.

precision The precision of a set of classification results is the proportion of
true-positives among all positively classified items.

query set The query set contains all terms that are entered by the user to per-
form the ontology search.

recall The recall of a set of classification result is the proportion of true-positives
among all positively labeled items. It is equivalent to the true-positive
rate.

study set The study set is a set of interesting genes. For a typical microarray
experiment, the set could contain genes that were measured as differen-
tially expressed.

target domain A target domain is the domain that is described via terms of an
attribute ontology.

target set The target set of a particular item contains terms to which the item
is annotated.

true-positive rate The true-positive rate of a set of classification result is the
proportion of true-positives among all positively labeled items. It is equiv-
alent to the recall.
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Acronyms

AUROC Area under the ROC curve

DAG Directed acyclic graph
DFS Depth-first search

EM Expectation maximization

FABN Frequency-aware Bayesian network approach
FOL First-order logic

GAF Gene annotation format
GESA Gene set enrichment analysis
GO Gene Ontology

HPO Human Phenotype Ontology

ICE Individual clinical experience

JPD Joint probability distribution

LPD Local probability distribution

MAP Maximum a posteriori
MCMC Markov chain Monte Carlo
MGSA Model-based gene set analysis
MICA most informative common ancestor

NP Nondeterministic polynomial

PCS Published clinical study

RIA Role inclusions axioms
ROC Receiver operator characteristic
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List of Symbols

Chapter 2

H0 Null hypothesis
H1 Alternative hypothesis
M Population set
m Cardinality of the population set
Mt Set of genes that are annotated to term t and contained within the pop-

ulation set M
mt Number of genes in the population that are annotated to term t
Nt Set of genes that are annotated to term t and contained within the study

set N
nt Number of genes in the study set that are annotated to term t
pa(t) Set of parents of term t
t A term of an ontology

Chapter 3

α False-positive rate
β False-negative rate
B Set of Boolean values, i.e., {0,1}
H A set {H1, . . . , Hn} describing the hidden states of all genes
Hj Random variable describing the hidden state of gene j
i Index for a term
j Index for a gene
m Number of terms
n Number of genes
O A set {O1, . . . , On} describing the observed states of all genes
Oj Random variable describing the observed state of gene j
P(S) Power set of an set S
Qs Mixture proposal distribution of term activity and parameter
QT Term activity proposal distribution
QΘ Parameter proposal distribution
T A set {T1, . . . , Tm} describing the activity states of all terms
Ti Random variable describing the activity state of term i
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Chapter 4

α False-positive rate
β False-negative rate
f j,i Frequency that diseases j causes phenotype described by term i
H A set {H1, . . . , Hm} describing the hidden states of all terms
Hi Random variable describing the hidden state of term i
I A set {I1, . . . , In} describing the activity states of all items or diseases
i Index for a term
Ij Random variable describing the activity state of item or disease j
j Index for an item or a disease
m Number of terms
n Number of items or diseases
O A set {O1, . . . , Om} describing the observed states of all terms
Oi Random variable describing the observed state of term i
Q Query set
TSj Target set for disease j
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Index

alternative hypothesis, 14
assertional box, 5
attribute ontology, 9

Bayes’ Theorem, 16
Bayesian networks, 3, 16–17
Bernoulli distribution, 12, 42
Bioconductor, 70
biological process, 6

cellular location, 6
closed world assumption, 75, 100
concept

atomic, 5
complex, 5

dynamic Bayesian networks, 18

expectation maximization, 52

false-negative, 20
false-positive, 20
first-order logic, 4
FOL, see first-order logic
frequency, 92

gene sharing, 27
GSEA, 36

high-throughput methods, 1, 23
hypergeometric distribution, 25

identical by descent, 18
inference

logical, 5
probabilistic, 15
statistical, 14

information content, 79

joint probability distribution, 13

JPD, see joint probability distribu-
tion

knowledge base, 3
knowledge integration, 1–2

local probability distribution, 16
logical inference, 5

MAP, 44–48
marginal probability distribution, 13
Markov condition, 17
maximum a posteriori, see MAP
maximum likelihood criterion, 52
molecular function, 6
multiple testing, 27

NP-complete, 45
null hypothesis, 14

Ontologizer, 69–70
ontology, 3–11
open world assumption, 75, 100

p-value, 14
phenotypic features, 77
power set, 45
precision, 21
precision/recall, 20
probability distribution, 12
propagation problem, 27–28

random variable, 12
recall, 21
receiver operating characteristic, 20
RIA, see role inclusion axioms
ROC, see receiver operating char-

acteristic
role box, 5
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role inclusion axioms, 7

significance level, 14
similarity measure, 79
statistical performance measures, 19

AUROC, 21
precision/recall, 20
ROC, 20
ROCk, 57

target domain, 9
terminological box, 5
true-negative, 20
true-positive, 20
type propagation, 5

weighted set, 34
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