Appendix C: The
Mittag-Leffler function

The Mittag-LefHler function E,(2) is an entire function defined as
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This is the original form which is studied by Mittag-Leffler (see
for example [17], [75], [42] and [76]). The Mittag-LefHler function
arises naturally in the solution of the fractional integral equations
(see [63] and [65]). Actually it appears as the solution of the Abel
integral equation of the second type (see for example [102], [26] and
[42]). This function has many applications specially in the study of
the fractional generalization of the kinetic equation, random walks,
Lévy flights, and the so called superdiffusive transport (see [45], [70],
[3] and [100]). The generalized Mittag-Leffler function is defined as
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It is known that this function has various applications in the theory
of fractional differential equations, see for example [72] and [90].
We remark that E,1(z) = Eq(2) = exp(z). This means the Mittag-
Leffler function generalizes the exponential function (see [46], [47]).
For more details about the analytical properties of the Mittag-Leffler
function (see [17] and [63]). It is known that the Mittag-Leffler
function E,(—z), z € R is a completely monotonic function for all
0 < a <1 ( see for example [37] and [81]). This proof of completely
monotonicity was extended to E, g(—z) in [73] and [95], where it was
proved for 0 < a <1, B > a. It is recently proved that E, g(1/z) is
also a completely monotonic function for all & > 0 and S > 0 [74].
The computation of the generalized Mittag-Leffler function E, (%)
and its derivative are carried out in [32].
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In our treatment of the CTRW, the Mittag-Leffler function ap-
pears in the special form Egz(—t?) which represents the survival
probability function ¥(t) (see Chapter 4). For 0 < 8 < 1 and
1 < B < 2 the functions of the form Ez(—t?) appear in certain
relaxation and oscillation processes called fractional relazation and
fractional oscillation processes, respectively. The series expansions
and the asymptotic representations of ¥(t) = Eg(—t?) and the neg-
ative sign of its derivative ¢(t) = —4& Es(—t?) which represents for
us, in the case 0 < B < 1, the waiting time probability density
function are :
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see [67]. The expression of 9(t) is equivalent to the one obtained
in [45] in terms of the generalized Mittag-Leffler function in two
parameters. In the limiting case 8 = 1, we have ¥(t) = ¢(t) =
exp(—t) and our memory process reduces to a memoryless process.
The integral representation of ¥(¢) and (t) are (see for example
[37] and [65])
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In the special case 8 = 1/2 the Mittag-Leffler function is related to
the error function by the formula
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Vi

where erfc denotes the complementary error function.
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The infinite series in equation (C.3) exhibits a behaviour similar
to that of a stretched exponential for 0 < # < 1 and for small values
of

8
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Whereas for large t, it has the asymptotic representation
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Ep(—tP) = 1— ~ exp{—t?/T(B+1)}, 0 <t < 1. (C.8)

Eg(—tP) ~ t— 00. (C.9)
At the end of our survey, we present some figures to show the be-
haviour of the Mittag-Leffler function as a completely monotonic
function for different values of 5 € (0,1) and ¢. First, we plot the
function e* at figure [C.1] to show its fast decay. Figure [C.2] shows
the behaviour of the functions Eg(—t?) computed by the aid of the
integral representation (C.5) for 0 < ¢ < 15. Figure [C.3] exhibits
the same function in a small interval (i. e. 0 < ¢ < 1). The stretched
exponential function (C.8) is plotted in figure [C.4]. Finally figures
[C.5,C.6] represent the Mittag-Leffler function Ez(—t?) at a and the
stretched exponential function es:p(r(;—fm) at bfor 0 <t <1. These
two figures show that the stretched exponential and the Mittag-
Leffler function have the same behaviour for ¢ near zero, but when ¢
increases the stretched exponential function decays faster than the

Mittag-Lefller function.

p=1

Figure C.1: exp(-t) Figure C.2: t: 0 —» 15
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Figure C.3: t: 0 — 1 Figure C.4: exp(—tP/T(1+F))

E B=.75 Es p=5

Figure C.5: see a and b Figure C.6: see a and b
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