Appendix A: Important
definitions

In this Appendix, we give some important definitions used in the
fractional calculus (i.e. the differentiation and the integration of an
arbitrary positive order). The fractional calculus is recently widely
applied in many fields related to mathematics and real physics prob-
lems. A growing number of articles and mathematical and physical
books have appeared in the last 25 years (see for example: [79], [72],
[87], [80], [90], [37], and [88]). For a very general theory, see [56].

There is no unique definition for the fractional integral operator
or for the fractional differential operator. Many versions are applied
to functions defined on a half-axis or on the whole real line. The
fractional integral usually represents the convolution with a power
function, while the fractional derivative is usually defined as the
left-inverse to the fractional integration operator.

We give here a survey on fractional integration and differentiation
in the interval 0 <t < co as we need for our purpose.

First we consider the Riemann-Liouville fractional integral, de-
noted by J#, and defined by

Lﬁﬂﬂzrén/(tfg&ﬂdnt>0,ﬂ>0. (A1)

For completeness we set J*f(t) = f(t). This means J° is an identity
operator. The Riemann-Liouville integral satisfies also the semi-

group property
JUIPf(E) = JPIf(t) = JUP(), @82 0.
This can directly be seen by applying the definition and interchange

the order of the integration. An interesting example is the integral
of the power function t¥,v > —1
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From the definition (A.1), we can deduce that the operator J? is a
natural generalization of the integration of an integer order, which
accordingly to the (n- fold) iterated integration can be shown to be

/(t —7)" M f(r)dr,t > 0. (A.2)

From this equation, we deduce that D"J" = I, but J"D" # I,
where n € N and [ is the identity operator. Actually

1
n — 1!

JUf(t) =

J"DR(t) = f(£) - Zl 190

k!
k=0

Assuming now m —1 < < m € N, and as a consequence of the
last discussion, we expect to have D? JPu(t) = u(t). Formally we
obtain

u(t) = DPf(t),

as a solution of the Abel integral equation
JPu(t) = f(t),t>0,8>0,
if f(t) is a sufficiently smooth function. Setting
JMu(t) = JVPJPu(t) = TP £(t)
letting ¢(t) = J™P£(t), and assuming all ¢¥)(0) = 0, for k =
0,1,---,m — 1, then we can set
D™¢(t) = D™J™ P f(t).

Now by using this equation and the definition of the identity oper-
ator I, we can set

u(t) = D™J™u(t) = D™J™Pf(t) .

This means

DPf(t) = D™J™P£(t) . (A.3)
Therefore, the Riemann-Liouville fractional derivative, the most
used fractional derivative operator, for a sufficiently smooth func-

tion f(t) given in an interval [0, c0), is defined as (see for example:
90], [37], and [78))

Y A £(r)
(DPF)(t) o= { T aem Jo Gy AT, m 1 < f<m,
LF() m=_ .

(A.4)
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For the important case 0 < § < 1, we have m = 1, and the widely
used relation
DPf(t) = D*JY7P f(t) .

From the definitions (A.1) and (A.4), we can define the Riemann-
Liouville fractional derivative D? as the left inverse of J?, g >
0. Therefore some authors prefer to write the Riemann-Liouville
fractional integral operator J? as D=7 (e.g. [80], [90] and [72]). For
completeness, we have D® = I. The Riemann-Liouville fractional
derivative of the power function t*, gives

I'(p+1)
T(u+1-0)

This means the Riemann-Liouville fractional derivative of a non-zero
constant is different from zero. In fact

r'(1)
INOE)

DP ¢ = P >0.

DP1 = DP® = t7? ifo<pB<1.

The alternative fractional derivative operator is the Caputo frac-
tional derivative of order 5 > 0 (see [37]). It can be defined by
interchanging the operators in the R. H. S. of equation (A.3). This
gives

DPf(t)=Jm P D" f(t), m—1<B<m,

and more explicitly

¢
1 £ () _
DPf(t) = P(m_ﬂ){of apwdr form—1<B<m,
42 F(t) for f=m.

(A.5)
The Caputo fractional derivative D? can also be defined through its

image in the Laplace transform domain, which is
L{DPf(t); s} = P F(s)=s" 1 f(0)=F(0)sP 2= - fm D (0)s" ™ , s > 0.

The definition (A.5) is more restrictive than (A.4) because it re-
quires that f(™(t) exists. It is convenient for our work to mention
the relation between the Riemann-Liouville fractional derivative and
integral operators and the Caputo fractional derivative of order 3,
in the special case 0 < 8 < 1. Since we have

DPf(t) = J'PDf(t) = D’ (f(t) - £(01)) (A.6)

99



and

DP(f(t) = £(0)) = DJ"P(£(t) = £(0)) = D°f(t) — =&

we can deduce that
fo(t)=DB(f(t)—f(0)), 0<pB<1, (A.8)
which in the Laplace domain reads

LD f(t); s} = 5 f(s) = 5" 1 (0) s > 0.

Equation (A.8) represents the relation between the Riemann-Liouville
and the Caputo fractional derivative, and the dependence on the ini-
tial conditions. This equation is important for solving the fractional
differential equations.

In what follows, we consider the finite difference scheme for a
function f(t) which is differentiable up to an integer order n € N,
or up to a fractional order B € R*. The backward finite difference
operator of an integer order n € N is defined as

n = n
@200 = Y0 () st k)
k=0
If the function is differentiable up to an integer order n € N, then
we have AR (2
F™(¢) = lim (A7) , (A.9)
T—0 Tn
By generalizing formula (A.9) to 5 > 0 instead of n and taking oo
as the upper limit of the summation, we get the definition of the
Grinwald-Letnikov fractional derivative of order § > 0. With the
fractional finite difference operator of a positive order (3

@O =Y vt (F)sa-rn, @)

for a sufficiently smooth function f(t¢), defined on the whole line (see
[90]), we define

root TP

(A.11)

We note that for 8 > 0, the series |(§)| converges absolutely. We
k=0

note also that



f®)(t) is called the Griinwald-Letnikov fractional derivative of order
B > 0 for a function f(¢). It can also be defined on a half line ¢t > 0
by the finite difference operator

(AP f)(t Z (> (t — k1), (A.12)

where ¢t > a. Then we have

t—

£6) (¢ _115%7 Z () (t —kr) (A.13)

k=0

where 7 = 2= — 0 (see [80] and [90]). We have used this definition,
with a = 0, to discretize the model discussed in Chapter 3.

Because of the importance of the Griinwald-Letnikov operator it
is worth to say that this operator has been modified by Vu Kim
Tuan and Gorenflo [103] in order to show that the error committed
by approximating (D f)(t) by 77# (AP f)(t) possesses an asymptotic
expansion of integer powers of the step length 7 (as 7 — 0) if f is
sufficiently smooth. For more information see [103].
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