The convergence of the
discrete solution

of the space-time-FDE and
the

time-FDECLD for

refinement of the grid

5.1 Introduction

This chapter is devoted to convergence proofs for random walk mod-
els of difference scheme type (discrete in space and time) for the
fractional diffusion without and with central linear drift.

For the space-time-fractional diffusion equation (space-time-FDE),
we prove the convergence for the general Cauchy problem

tDﬁu(x,t):DO"‘u(m,t) yu(z,0)=46(z),0<f<1,0<a<2,

(5.1.1)
where é)a is called the Riesz space-fractional derivative operator

and tDB is the Caputo time-fractional derivative operator (see Ap-

pendix A for more information). We have worked with such schemes
for simulating particle paths and for calculating probability densi-
ties evolving in time in the previous chapters. As in Chapter 4 we
distinguish the following cases with respect to the orders of o and 3

(a) a =2, = 1: classical diffusion equation,

(b) a=2,0< B < 1: time-FDE,

(c) 0 < a< 2,8 =1: space-FDE,

(d) 0<a<2 a#1,0< < 1: space-time-FDE,
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() a=1,0 < B < 1: a singular case of time-fractional diffusion
equation.

Case (a) is formally contained in case (b). By extending all formulas
to 8 = 1, the proof remains valid. The convergence in this special
case is also a well-known fact from classical random walk theory and
from numerical analysis. Case (c) has been well treated by Gorenflo
& Mainardi (see e. g. [34], [35] and [36]). We treat here cases (b),
(d) and (e).

For the time-fractional diffusion equation with central linear drift
(time-FDECLD), we prove the convergence for the equation

2

0 0
tD*ﬂ u(z,t) = ) u(:c,t)—i—% (zu(zx,t)) , u(z,0) = 6(x—z"), 0(5<162)§ 1,

where x* is the initial position of the particle. To avoid confusion
with the grid point oy = 0Oh, we denote here the initial position
not by xg, but by z*. As in Chapters 2 and 3, we distinguish the
following cases with respect to the value of the order 3

(f) B = 1: classical diffusion with central linear drift (the general-
ized Ehrenfest model),

(g) 0 < B < 1: time-fractional diffusion with central linear drift
(time-FDECLD).

Although case (f) is formally contained in case (g), we treat it sep-
arately because the transitions probabilities in this case are com-
pletely different from those of case (g).

For all these cases, we show that by properly scaled transition to
the limit of vanishing step sizes, in space and time, there is conver-
gence in the Fourier-Laplace domain which then implies convergence
in distribution (weak convergence) of the corresponding probability
densities for the location of the particle.

This chapter is organized as follows:

In Section 2, discretization of case (b) will be discussed. We give
an outline of the theory of the convergence of the discrete-space
discrete-time solution to the corresponding fundamental solution.

In Section 3, the general notations for the symmetric space-
fractional operators are given and the discretization is described
and discussed. Then the convergence of the model is studied and
interpreted for cases (d) and (e) separately.

In Section 5, The proof of the convergence for cases (f) and (g)
are discussed separately.
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5.2 Discretization of the time-FDE and condi-
tions of convergence

In this section we consider case (b) of Section (5.1) and show con-
vergence of the discrete solution of this model to the solution of the
Cauchy problem

82
PB u(z,t) = Wu(m,t) yu(z,0)=46(z), 0<p <1, (5.21)
x x
In the Fourier-Laplace domain equation (5.2.1) reads

sﬂﬁ(fc,s) e —|/£|25(/<a, s) .

Solving for 5(&, s), gives

A1
= s
u(&,s):78ﬁ+‘ﬂ‘2,s>0,fs€R, (5.2.2)
where the Laplace transform of a (generalized) function g(t) is de-
fined in (4.2.4) and the Fourier transform of a (generalized) function
f(z) is defined in (4.2.9).
The inverse Laplace transform of (5.2.2) gives

(K, t) = Bg(~|x[*")

where Ejg(z) is the Mittag-Leffler function of order 5. The series
and the integral representations of the Mittag-Lefler function are
given in Appendix C.

To generate a discrete approximate solution to equation (5.2.1),
we discretize the space variable z by using the definition of the grid
points (2.3.1) and (2.3.2). The dependent variable is then discretized
by introducing y;(t,), see (2.3.3).

The discretization of the time-fractional diffusion equation is
based on the Griinwald-Letnikov scheme for the Caputo time-fractional
derivative operator tD*ﬁ (see Appendix A) and symmetric approxi-

mation to 8‘9—;. Then the discretization of equation (5.2.1) for all
n e N() is

> (-1F (i) (W5 (tnr1-k) —y5(t0)) = pyjr1(tn)—20y;(tn) + pyi-(ta) ,
e (5.2.3)
and
_ s _J1 7=0,
y;(to) = b0 = {0 40,



with the scaling relation
p="1"/n* <B/2. (5.2.4)

This scaling relation ensures, after solving for y;(¢,+1), that all the
coefficients of y;(t,), for all n € Ny, are non-negative. An often
successful method to deal with a system of difference equation as
(5.2.3) is the method of generating functions. Therefore, for n € Ny,

we define .
z) = Zyj(tn)z’ , (5.2.5)
jez

for the two-sided sequence of the sojourn probabilities

{ ay72(tn)ay71(tn)ay0(tn)ayl(t ) y2( ) } Vn € NO . (526)

We note here that the sequence (5.2.6) satisfies the conservative and
non-negativity preserving conditions because all y;(¢,) > 0, and as

we have shown in Chapter 3, ) y;(t,) = 1. Therefore we obtain

j=—o0

0 -

> yi(tn)|z) =1, for |z| = 1. This means that the series (5.2.5)
j=—0o0
converges absolutely on the circle |z| = 1. From now on we assume
|z| = 1.

Now, by introducing the generalized function

Z(Sa:—xj yi(tn) ,Vn e Ny ,

jez

and applying the Fourier-transform, we obtain

F{ bz - (tn);k} = Y €™ iy;(ty) = ga(e™), KER.
JEZL JEZL
(5.2.7)
By comparing equations (5.2.5) and (5.2.7), we see that the Fourier-
transform of the sequence (5.2.6) coincides with the generating func-
tion g,(z), if we replace z by e*". In other words the Fourier trans-
form of the sequence of clumps y;(t,), j € Z, can be represented by

On ( einh) ]
Now let us introduce the following bivariate (two-fold) generating
function

Q(2,0) = au(2)¢" = Z(Z Y;(ta)27)C" (5.2.8)

78



as a function of ¢ for the sequence

{20(2), 01(2)), @2(2), -+ - } - (5.2.9)

Because all |g,(z)| < 1, the sequence Q(z, () converges for |(| < 1,
and from now on we assume |¢| < 1.

[e.°]
By introducing the generalized function ) §(t — t,)g,(2) and

n=0
applying the Laplace-transform, we get
LD 6t —ta)an(2); s} =D e gu(2) , s> 0. (5.2.10)
n=0 n=0

From equation (5.2.7) and equation (5.2.10), we deduce that if we re-
place z by e**" and ¢ by e™*7, in equation (5.2.8), we get the Fourier-
Laplace transform of the bivariate sequence {y;(t,)|j € Z, n € Ny}
which is obtained by collecting all the sequences (5.2.6). This means

o0

Qe e7*7) = Z(Z Yi(tn)e™™e ™ keR, s>0. (5.2.11)

n=0 jEZ

Our aim now is to prove that Q(e'*" e™*7) is related asymptotically
to the Fourier-Laplace transform of u(z,t) which represents the fun-
damental solution of the time-FDE (5.2.1). By considering (2.3.3),
we find that the discretization of the Fourier-transform of u(z,t)
formally gives the approximation

Uk, ty) ~ qn(ei"h) , k ER.

By taking the Laplace-transform of it and imitating a rectangle rule
for numerical integration, we get the formal approximation

~
-~

u(k,8) ~TQ(e* e™T) | s> 0. (5.2.12)

Our aim now is to find the explicit form of 7Q(e*", e *7) in order to
show that for a fixed x € R, for fixed s > 0, as n — oo, and under
the condition (5.2.4), we get

lim 7Q(e" e ) = 5(/4, s),

h,7—0
(i.e. the discrete solution approximates the Fourier-Laplace trans-
form of the corresponding fundamental solution). To this aim, we

-~

construct Q(z, () with the initial condition go(z) = 6(k) = 1. Then
by multiplying equation (5.2.3) by 2z’ and summing over all j € Z,
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S 14(7) (i sla-1) = (e =242)an2), S us(0)7 = 1.

(5.2.13)
Now multiplying equation (5.2.13) by (", and summing over all n €
Np, we get

oo n+l 00
33 V() (sl =106 =7 -242) Y- o)™
n=0 k=0 n=0

(5.2.14)
Using the definition (5.2.8), setting m = n + 1, and summing the
R.H.S of equation (5.2.14) over all m € N, we get

> Y C0(]) (sl = 1067 = (7 =242 Q(510).

m=1 k=0
(5.2.15)
Since g,(z) = 0, we can begin the summation over m with m = 0.

To proceed further, we need the convolution of two general se-
quences which is equivalent to the multiplication of their generating
functions (see Feller [20]). If {a,} and {8} are any two numerical
sequences with absolutely convergent power series

a(Q) =) anl™, B =D BiC*,
n=0 k=0
then . .
a(Q)BE) =c() =D el o= B n
r=0 n=0

This means that the R.H.S of equation (5.2.15) with m ranging
from zero to infinity can be represented as a multiplication of the
two generating functions

€)= 32 (-1 (7) ¢+ = (0= 0F B0 = Y- (amoale) = 1067

Setting again m = n + 1 and shifting the index of n in the series
B(¢), we get the new version of equation (5.2.15), namely

(1-¢)
¢

(@0~ T=7) = iz =242 Q. 0) . (5:2.10)
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Solving for Q(z, (), we get

_ -9
Q=) = A= —cula =253 (5.2.17)

Replacing z by e*", ¢ by e™*", we get asymptotically for A — 0,
T—0

(z'=24+2)~ —(kh)> , 1—C)P ~ sPuh. (5.2.18)

Now multiplying both sides by 7, using the scaling relation (5.2.4),
and passing to the limit, equation (5.2.17) gives

sA1 ~

lim 7Q(e*", e*) = = u(k,s) . (5.2.19)

h—0,7—0 TP k2

Using the continuity theorem of probability theory (see Feller [20]

and Lukacs [61]) we deduce from equation (5.2.19) with the scaling

relation (5.2.4) that the solution of the difference scheme of the time-

FDE converges in distribution to the corresponding fundamental so-

lution. By using the inverse-Laplace transform for equation (5.2.19),
we get

’llig(l) TQ(e"" 1) — U(k,t) = Eg(—r*tP) |

and we can find the behaviour of the second moment of the density

u(x,t) as a function of t: (o(t))? = —BB—;Q(K,t)\KZO = 1“(21—fﬂ) (see

[30]). In the special case 8 = 1, 7Q(e",t), tends to e *"t, for
h — 0, and consequently (o(t))? = 2t (see [34]).

5.3 Discretization of the space-time-FDE and
conditions of convergence

In this section, we begin our discussion by considering case (d) of
Section (5.1). This means that we discuss the outcome of replacing
the second order space-derivative in equation (5.2.1) by the Feller
operator [18] in the symmetric case with order 0 < a < 2.

In equation (5.1.1) the operator zDO * is called the Riesz space-

fractional differentiation operator. We adopt, for simplicity, the
notation introduced by Zaslavski [89]. We recognize that DO"‘ for-
T

mally is a power of the positive definitive operator D? = —% and

z
must not be confused with a power of the first order differential op-
erator D (see [35] for a detailed presentation of the theory of this
T
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operator and related operators). Since —|k|* = —(k?)*/2, we can set
xDO"‘ = —(—%)a/ 2 which proves that the Riesz derivative is a sym-
metric fractional generalization of the second derivative. For more
information about the Fourier transform and the pseudo-differential
operators as semi groups of linear operators, see e. g. [25], [48] and
[49].

The Fourier transform of a;Doa reads

]:{E_DOO‘@(QS);H}: —‘K,‘aa;(f{), O<a§2’H€R’ (531)
while
F%i@u%@=r4mw&@,neN,neR. (5.3.2)

This means that, in Zaslavski’s notations, we have

[e%

De®(z) = ——
z 0 (:L.) d|.’L‘|a )

0<a<2. (5.3.3)

From (5.3.1-5.3.3), we easily see that in the case a =1

do(z) .
Is Tk} .

F{D'9(a);n} # F{

Then the Fourier-Laplace transform of the space-time-FDE (5.1.1),
for0< B <1and0< a< 2, reads

sﬂi(/ﬂ, s)—sP 1= —|n|"§(/~c,s) :

Solving for i(n;, s), gives

~ sﬁ_l

a(ﬁ:,s):m,3>0,/€€R, (5.34)

and the inverse Laplace transform of this equation gives
u(k,t) = Eg(—|k|*t?) .

From this relation we can deduce that in the case 0 < a < 2, the
second moment of the density u(z,t) is infinite for all ¢ > 0 (see
(30]).

We express now the operator a:Doa as the negative inverse of
the suitable integral operator (Riesz potential) I§ whose symbol
is (|k|~®). We write

D= -I,*,0<a<2,a#l, (5.3.5)
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where [, @ is the inverse of the symmetric Riesz potential (see Samko
& Marichev [90])

I§®(x) = c_(a) I3®(x) + c4 () I2®(z) , a # 1, (5.3.6)

where -
c(a) =ci(a) = 1/(20037)

Therefore, the symmetric Riesz potential can be written as

[°®(z) = —

= 5. com t * < “J.
0 ooy ([12(2) +1°0(2)) 0 <@ <2, a# 1, (537)

where I¢ denote the Riemann-Liouville fractional integral opera-
tors, by some people called Weyl integrals. They are defined as

Z

e = [ @- 9B,

> (5.3.8)
1°®(z) = ﬁ / (€ — 2)* 1 B(€)de

Z

The symmetric Riesz potential is then defined as

18®(z) = QF(Q)C;(M . / @ —gelBE)de. (5.3.9)

The Riesz potential operator is well defined if the index is located
in the range (0,1) and we have the semi group property,

Y —IeIf 0<a<1,0<fB<1,a+8<1.

Now we can extend our definitions according to Feller [18] and
Samko [90] to introduce the inverse Riesz potential operator in the
whole range 0 < a < 2 as

-1
D*=_—~ __[[;*4+]°,0<a<?2 1, (5.3.10
20 2608(0471'/2)[+ + 1 ]? o~ ,0475 ( )

where I * are the inverses of the operators I¢. This means the op-
erators I are obtained from the definitions of I equation (5.3.8)
by changing the sign of a. Off course, appropriate assumptions are
required for the functions to which these operators are applied. In
the Fourier domain, I§ is represented by the symbol —|k|*, and we
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see that D0 ¢ is also meaningful as a pseudo-differential operator if
z

a = 1, but is different from D = &

We want now to discretize the Riesz fractional operator lz“ by a

suitable finite difference scheme to approximate the solution of the
space-time fractional diffusion equation (5.1.1), excluding the case
o = 1 which we treat later. To do so we approximate the inverse
operators 11 by the Griinwald-Letnikov scheme (see Oldham &
Spanier [79], Ross & Miller [72], and recently Gorenflo & Mainardi
(e.g. [36], [35], [34] and [27]). Recalling now our discretization
(2.3.1 and 2.3.3) the inverse of the Riemann-Liouville integrals can
formally be obtained as the limit

IT*=1lim I @ (5.3.11)
h—0 h +

where hIifo‘ denote the approximating Griinwald-Letnikov scheme

which reads

(A)o<ax1
_ 1 e
7 0(a) = 1 (D)ol % 4 (5.3.12)
B)l<a<2

% ¢(z) = hia ( ) 5T (h=1h).  (5313)
=0
The shift in the index j in (5.3.13) is required to obtain a scheme
with all coefficients which are non-negative in the final formula for
Y;(tnt1), see equation (5.3.26).
So far the discretization of the Riesz potential operator is as
follows

D%y, e (I T+ 17 <2 1,j€Z.
Dy;(tn) = 2COS_(h+ + 17 yt) , 0<a<2,a#1,j¢€
(5.3.14)
We must distinguish the discretization of hIif"‘ with respect to the
value of a:
o 1 & e
L i(tn) = h—a;(—n <k>yﬁk ,0<a<1,  (5.3.15)
while
—a 1 e
L wi(ta) = E;(_D L uimme, L<a<2, (5316)
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Now we adjoin the discretization of IPOO‘, for case (A), with the dis-

cretization of D?, with the infinite sequence {y;(t,)}, 7 € Z, to get
T %

the discretization of the space-time-FDE for these two cases.

First for the case (A):
By using equation (5.3.12), the discretization of equation (5.1.1)
reads

n+1

_BZ ( >{yj(tn+1_m)—yj(0)}
e 7 D (-1 <|Z|)?ij(tn)+2yj(tn)}. (5.3.17)

2608 k20

Introducing now the scaling parameter

= — 3.1
= (5.3.18)

and solving for y;(t,+1), we get

wltn) = S0 (D)) + 3

m=0 m=2

S (P,

+(B——)y]( 2608% Z( 1) <|k|>y] p(tn) - (5.3.19)

k40

In order to have a random walk of the model, all the coefficients
in the L.H.S must be non-negative for all values of n > 0. This
means that the following two conditions must be satisfied. For the
coefficient of y;(t,), we have the condition

(1) (5 - Cofazl) Z 0
which is equivalent the condition related to the scaling parameter
(5.3.18)

0<,u§ﬁcos%,0<a<1. (5.3.20)

Furthermore (2) and (3) hold:
(2) (D ke () 20 ,a#1, k#0,

For the scaling relation (5.3.20), we observe that the scheme (5.3.19)
has the further properties of non-negativity and conservation.
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(3) i (_1)m(5l) >0, zn: (—1)m+1(5l) > 0, and

m=0 m=2

Sr(l) 3

m=0 m=1

(—1)’”“(6) =1¥n>1,0<8<1.

m

Therefore equation (5.3.19) represents a random walk model of
the space-time-FDE as time proceeds from ¢, to ¢,,1. If we use the

initial condition y;(0) = §;o and use the last three properties, we
can prove by induction that ) y;(t,) =1Vn > 1.
jez

Now we convert equation (5.3.19) into a single equation by using
the generating function g,(z), defined as in equation (5.2.5). As we
have done in the previous section, we multiply both sides of equation
(5.3.19) by 2’ and sum over all —oo < j < co. We get

S B —1ign(2) 1
)™ mitem(2) — 1y = “HIE) g Zya i (1 ey
D7 ()) araon) =1 = S (0= D -2y
(5.3.21)
where go(2) = 1 and the series is convergent at |z| = 1. Now we

use the bivariate (two-fold) generating function Q(z,() defined as
in equation (5.2.8) by multiplying both sides of equation (5.3.21) by
¢™ then sum over n € Ny. We get

1-¢)F!

AR g e iy ¢ s e S

Replacing now z by e and ¢ by e *", where k € R and s >
0, we shall prove that 7Q(e*" e=°7) tends to the Fourier-Laplace
transform of the solution of the space-time-FDE (5.1.1). To do so,
we use the asymptotic relations:
First as h — 0, we have (1—e™"")* ~ (ikh)?, (1—e*h)* ~ (—ikh)?,
which imply

(—irh)* + (ikh)* = 2(|;~c|h)"‘cosoz2—7r .

Second as 7 — 0, we have (1 —e™*7)? ~ (s7)".
Now substituting back with these asymptotics in equation (5.3.22),
multiplying both sides by 7, using the scaling relation (5.3.18), and
comparing the result with equation (5.3.4), we get

sP-1

li ikh _—sT - —
h—>(1),I?—>oTQ(e e B+ |k|e

Y

(k,s), keR,s>0,
(5.3.23)
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and the inverse-Laplace transform of 7Q(e**" e™*7) gives

u(k,t) = Eg(—|k|*"), 0<a<1,t>0. (5.3.24)
From this equation we can deduce that the second moment of the
density u(z,t) is infinite for ¢ > 0 (see [30]).

Second for the case (B):
For 1 < ar < 2, we use the discretization of D" at equation (5.3.13),

together with the discretization of Dﬁ for the infinite sequence
{-+y_a(tn), y-1(tn), yo(tn), v1(ts ) -+ }, to discretize equation (5.1.1).
We get

n+1

SO ( ){y, wriom) = i(to)}

S Z (Z) {Wir1-x(tn) + yj-14x(tn)} - (5.3.25)

2003
€z

Let us use the scaling parameter (5.3.18), shift the indices of y,4+14x(¢y),
and solve for y;(t,+1). We get

wltn) = 202 )0 +2 N (PO

OSM {yj—l—l(tn) + yj—l(tn)

LY - <‘k+1‘> W)} (5.3.26)

k£0,1€Z

Let us remark that the discretization in the special case a = 2
reduces the scheme to the symmetric difference approximation of
L(“) and so we get the time-FDE, treated in Section 2.

Agam (5.3.26) is to represent the random walk for space-time
fractional diffusion equation, for 1 < a < 2, as time proceeds from
tn to 41, the coefficients of y;(¢,) must be non-negative and fur-
thermore ) y;(t,) = 1Vn € Ny. For this aim we have the following

JEL
condition:

®) a) 20,

which leads to the following inequality related to the scaling relation

an
—fB cos%r
Q

0<p < , 1<a<2, (5.3.27)
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which can be satisfied because cos% < 0, as 1 < a < 2. By compar-
ing equation (5.3.26) with equatlon (5.3.19), we see that conditions
(2,3) for 0 < a < 1, are also satisfied for 1 < a < 2. With the scaling
relation (5.3.27), and with conditions (2,3), we find that equation
(5.3.26) can simulate the random walk of the model.

Now we shall prove the convergence of the discrete solution corre-
sponding to case (B). We multiply equation (5.3.25) by 27 and sum
over all j € Z. We get

> (" (f;) {qn+1-m(2) — 1}

= 2(;:” Gn(2) {z (1= 2)* + 2(1 - %)a} . (5.3.28)

Now multiplying both sides of this equation by (" and summing
over all n € Ny, we get, for |z| =1, || < 1,

Q-9
(1 - C) 2cos {Z( )a + z_l(l - z)a} .

We follow now the same proceedure as in case (A) to prove that
if we replace z by e*" and ¢ by e™*", where k € R and s > 0,
7Q(e*" e7°7) tends to the Fourier-Laplace transform of the solution
of the space-time-FDE (5.1.1). To do so, we use the asymptotic
relations of case (A), besides the following one

1
2cos( %)

+ei/¢h(1 . efil-:h)oe}

Q(z,¢) =

(5.3.29)

{e—inh(l o ez’nh)a

([wlh)> am
cos( ) ( h)

~ (|xlh)*{cos(rh) + tan(=-)sin(xh)}

~ (|k|h)* ash — 0.
(5.3.30)
Substituting back in equation (5.3.29) after multiplying by 7, we get
(s7)B + p(kh)>’
Then using the scaling parameter (5.3.18), we get again the result
(5.3.23), and with the inverse Laplace transform, again (5.3.24).

Qe e°T) ~ h—0,7—0. (5.3.31)

This proceedure proves that the discrete solution of the space-
time-FDE converges in distribution to the Fourier-Laplace trans-
form of the corresponding one, for0 < a<land 1 < a < 2.
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Third for case (e):
It remains to prove the convergence also for a = 1, related to the
Cauchy distribution. In what follows we give the proof of the con-
vergence at a = 1 to complete the theory [34] . We rewrite equation
(5.1.1) for . = 1 as

DPu(z,t) = zDol u(z,t) ,u(z,0)=460(z), 0< <1, (53.32)

t *x

with the scaling parameter
p="1°/h . (5.3.33)

As in the previous sections we take Fourier-Laplace transform of

both sides, and get
= sh~1
U(K), S) = m .

The inverse Laplace transform gives
u(k,t) = Eg(—|x|t?) .

We cannot use the Griinwald-Letnikov discretization of D ® at equa-

tions (5.3.15, 5.3.16) because the denominator in equat1on (5.3.14)
is zero for a = 1. Instead of the Griinwald-Letnikov discretization,
we use the discretization used in [34]. The authors of [34] replaced
the factor (—1)*(%), k € Z, in equation (5.3.12) by =2 for k = 0, and
W for # 1k € Z. Therefore by using the scahng parameter

(5.3.33), we have

Z(_l)m (7/781) {yj(tn—l—l—m) - y](O)} = —27#3/](0)
H 1
Tr %;Z k(k + 1)y]+’“(t e %;Z m%—k(tn) , (5.3.34)

and solving for y;(t,+1), we get
+
yj(tn+1) = ( - y] Z m+1< >y] (tn+17m)

+Z<—1>m(6) DI RIS AR NI
- (5.3.35)



This equation represents the random walk of equation (5.3.32) under
the restriction

2
B_ ,uZOv
mw

which is equivalent to 0 < p < %” Furthermore, we have

= 1
> =1

“—~ k(k+1)

and Condition (3) of the cases (A) and (B) is also satisfied. By using
these conditions and properties, it can be easily proved by induction

that

> yilta) = D yi(0) Yn e N
Jj=—o0 Jj=—00

Now to prove the convergence of this model, we multiply both sides
of equation (5.3.34) by 2’, then sum over all j € Z, and use the
relation

Z%zk =1—-(1—2z"Ylog(1—-2),|z|]=1.

oo Bl +1)
We get
Z (_1)m (’Ifl) {Qn—H—m(Z) o 1}

— —qu()E{(1~ 2 log(1 — 2) + (1= 2)log(1 2}, (5.3.36)

where the generating function g¢,(z), is defined in equation (5.2.5).
Now multiplying both sides of equation (5.3.36) by (", and summing
over n € Ny, we get, for |(| < 1,

1-¢F

(1= + {1 = 2 Hlog(1 — 2) + (1 — 2)log(1 — z 1)} |

(5.3.37)

where the two-fold generating function Q(z,(), is defined in equa-

tion (5.2.8). Now we want to prove that 7Q(e"", e™°7) tends to the

Fourier-Laplace transform of the solution of the space-time frac-

tional diffusion equation (5.3.32). To do so, we replace in equation

(5.3.37) 2z by " ( by e=*". Then we use the well known relation
for a complex number W =z +iy, WeC, 2 € R yeR,

Q(z,¢) =

logW = log|W| + i arctan? ,
T
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and get

(1 — e *Mlog(1 — ") + (1 — e*M)log(1 — e~*")
. sinkh
= 2{(1— h)log|l — e*h nkh arctan———} .
{(1 — coskh)log|1 — e""| + sinkh arc an— cos;-eh}
(5.3.38)

Now we use: lim, ,i1.arctanu = +7, and get after multiplying
both sides of equation (5.3.37) by 7

BgB—1

ikh _—sT
TQ(e™, ™) TPsP + plk|h T ( )

Finally, by using the scaling parameter (5.3.33) we get
Tﬁsﬂfl 8671 ~

il L G

and applying the inverse Fourier transform, we get
u(k,t) = Eg(—|x|t?) ,t>0. (5.3.40)

As we have seen the approximate solutions of the space-fractional
diffusion and the space-time-fractional diffusion tend in the scaled
limits h — 0, 7 — 0, to the Fourier-Laplace transform of the ana-
lytic solution u(z,t). We have seen also that the Mittag-Leffler func-
tion (see Appendix c) plays an important rule in the detailed anal-
ysis of the process. What we have proved are in agreement with the
continuity theorems (see [61]). For concluding our discussion about
the convergence of the discrete model to the space-time-fractional
diffusion, we note that the continuity theorems for inversion of the
Fourier and Laplace transform are required (see [61]and [20]).

5.4 The convergence of the time-FDECLD

We begin this section by considering case (f) of Section (5.1). The
discrete solution of this case has been already discussed in Chapter 2.
For this case, i.e. for = 1, equation (5.1.2) in the Fourier-Laplace
space reads
9= 2 = (2 =

na—ﬁu(n, s) + (k* + s)u(k,s) = ™ |, u(0,s)=1/s . (5.4.1)
Now, we recall the discretization of equation (5.1.2) for 5 =1 from
Chapter 2. For our purpose, it is convenient to write this discretiza-
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tion for all n € N, in the form

yj(trH—l) - yj(tn) = N(yﬂ—l(tn) - Qyj(tn) + yj—l(tn))+

uh? . .

7{(.7 + Dyjua(te) — (1 — Dyj—1(ta)} . (5.4.2)
where p is defined in equation (2.3.5). As in Chapter 2, we restrict
the index j to the range {—R,—R+1,...,R — 1, R} where 5 =
R € N. This means the two-sided sojourn probability vector of this
model is defined as

Y(tn) = {Yr(tn) y-r+1(tn), -+ v0(tn), - Yr-1(ts), yr(tn)} , V0 € No .

(5.4.3)
The initial column vector which is suitable with the initial condition
of equation (5.1.2), namely u(z,0) = 6(z — z¥), is

1 j=m,

0 idm. (5.4.4)

Yj(to) = Gjm = {

where m € [—R, R] and z* = mh. Recall equation (2.3.7) represent-
ing the random walk of this model, in which the particle sitting on
the point z;, j € (—R, R) at the time instant ¢, has the opportunity
as the time proceeds to t,,1 to jump to x;_; with transition proba-
bility A;, to the point z; with transition probability v, or finally to
xj4+1 with transition probability p;. The transition probabilities A;,
v and p; are defined as in equation (2.3.8) but with a =b =1, and
satisfy the same conditions (2.3.9) and (2.3.10). Using condition
(2.3.10) in (5.4.2) we have proved in Chapter 2 that

This condition guarantees that we have a closed Markov chain. This
means there is no jump to outside the interval [—R, R]. We have
proved also in Chapter 2, with the aid of condition (2.3.9), that the
vector (5.4.3) satisfies

R R

Do yilta) = Y ylt) =1, (5.4.6)

j=—R j=—R

where y;(t,) > 0 Vj € [-R,R]. Using equation (5.4.5), we can
extend equation (5.4.6) to

D yita) =D yilte) =1 . (5.4.7)

j€Z jez
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Therefore we can use the definition of the generating function g, (z)
defined in (5.2.5) for the infinitely extended sequence of sojourn
probabilities

y(tn) = { T 0) yR(tn); y*R+1(tn)a o ayO(tn)a o 7yR71(tn)a yR(tn)7 Oa e } )
(5.4.8)

Vn € Ny. Here ¢,(2) is also convergent on the circle |z| = 1. Again

we can use the definition of the bivariate (two-fold) generating func-

tion Q(z, () defined in (5.2.8) for the sequence (5.2.9) which is also

convergent for || < 1.

Our aim now is to prove that if we replace z by e*** and ¢ by e=*7,
then with the limit as h — 0 and 7 — 0, the sequence T7Q(e*" e=*7)
satisfies also the ordinary differential equation (5.4.1). To do so, we
will find the explicit form of 7Q(e*", e~*7). Therefore, we multiply
each side of (5.4.2) by 27 and sum over all z € Z. We get

_ y_
(In+1(z) - qn(z) = ,u(In(Z) {(z 1_94 z) _ Rﬁ . szR+1}+
h? Ry
u Z Jy;(t SR B+ Rypz®™1}. (5.4.9)

JEZL

After using the definition of R and the identity Y jy;(tn)2? =

JEZ
2 £ Y yi(tn)7?, we get
JEZ

Gnt1(2) — @n(2) = pgn(2) (271 =2+ 2) +

uThz (7= 2) 2 —a(z) . (5:410)

Now multiplying both sides by (" and summing over all n € N we
get

d

£(Q(50) =) = Q(a,0) = Qe ) (o — 2+ )+
ph? 2 d
= (1-2)2-Q(() . (54.11)

Then solving for Q(z, (), we get

ph?

(1) 2000 + {Gu (e —242) ~ (1-0}Q( Q) = 2"

(5.4.12)
Replacing now z by e**" ( by e *7, and taking the limit as h —
0, 7 — 0, we can use equation (5.2.18). Therefore we get after
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multiplying both sides by 7

K %(TQ(ei“h, e ) + (K + ) (1Q(e, ) = e*™h | (5.4.13)

So far, we have proved that 7Q(e*", e¢=*" is also a solution for the
ordinary differential equation (5.4.1) exactly as 5(/4, s). Therefore
the discrete solution of the classical diffusion equation with central
linear drift tends asymptotically as h — 0, and 7 — 0, to the
corresponding analytic solution in the Fourier-Laplace domain in
spite of vanishing outside a finite interval which however exhausts
for h tending to zero.

We consider now case (g) of Section (5.1), i. e. the time-
FDECLD, whose discrete solution is discussed in Chapter 3. For
this case we have also a closed interval with the same R = h2—2 but
the scaling relation of this case is defined in equation (3.2.3). For
this case, i.e. for 0 < # < 1, equation (5.1.2) in the Fourier-Laplace
space reads

0= 2 B\~ _ ikz* B-1 = _
Ka_ﬁu(’{as) + (/{ +s )u(/{as) =e€ s ) u(O,s)—l/s :
(5.4.14)
The solution of this equation gives a complicated expression for
u(k, s) that we do not write down here. To discuss the convergence
of this model we join equations (3.2.1) and (3.2.2) for the special
case a = b =1, to get

S 1) (0s(twrs-135(00) = s (6) =205 04054 00)) 4

ph?

510+ Dyjatn) = (G = Dyj—a(ta)} - (5:4.15)

As we have shown in Chapter 3, this equation represents, for all
n € N, a diffusion process with a memory and the random walk of
this process is modelled by equation (3.6.1). For a quick review we
interpret equation (3.6.1) as follows: for all n € N, we suppose that
the particle is sitting in the point z;. When the time proceeds from
the time instant ¢, to t,,1, it has the opportunity to jump to z;_;
with the transition probability A;, to the point x; with the transition
probability v, to z;4; with transition probability p;, to go back to
its previous position z;(¢,+1—x) with the transition s or back to z;
at (to) with transition probability b,. This means that the particle
remembers always all its history z; € [-Rh, Rh] where b,, and sy, are
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defined in (3.2.5) and (3.6.2) respectively. But for n = 0, it behaves
typically as in the case § = 1. Again we use equation (5.4.5) and
the initial condition (5.4.4). Then with the aid of equation (3.2.7),
we can prove that the extended vector (5.4.8) representing this case
satisfies also the conservation condition (5.4.7).

Now we can use the definition of the generating function g,(z)
defined in (5.2.5) for the extended sequence of the sojourn proba-
bilities (5.4.8) which is also convergent on the circle |z| = 1. Again
we can use the definition of the bivariate (two-fold) generating func-
tion Q(z,t) defined in (5.2.8) for the sequence (5.2.9) which is also
convergent on |¢| < 1.

Our aim now is to prove that if we replace z by e*** and ¢ by
e™T, 7Q(e*", e7°T) satisfies asymptotically the ordinary differential
equation (5.4.14). To do so, we multiply first each side of (5.4.2) by
2/ and sum over all z € Z. We get

S (-1 (f) (Grron()—2") = piga(2) {224 2) - Lot~y

h? Ry_gr
+ ,u_ Z 3y (tn)2? + R + Rygrz™™} . (5.4.16)
JEZ

Again by using the definition of R and the identity > jy;(t,)z’ =
JEL
2> yi(ta)2?, we get
€z
n+1
k B my\ __ -1
Z(—l) 1 (gni1-k(2) = 2™) = pgn(2) (277 —2+2) +

—(zt-2)z %qn(z) . (5.4.17)

Now multiplying equation (5.4.17) by ¢", summing over all n € Ny,
and using equation (5.2.16), we get

>

n=0 k=0

n+1

1y (/,j) (nson(2) = O = pQ(z,¢) (1 24 2) +

“h2 (1—22) dz Q(2.0) . (5.4.18)

Since the summation in the R.H.S of this equation is the same as
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the R.H.S of equation (5.2.16), we have

(1-¢) i

C (Q(zaC)_fC):MQ(Z: )(Z71_2+Z)+
ph? 2y @
Fr(1=2)2Q(0) - (5419)

Solving for Q(z, (), we get

S (1= ) () + Qe Q) (Gl T =24 2) — (1- ) =

— 2" (1=¢)F1 . (5.4.20)

Replacing now z by e** ( by e~*7, taking the limit as h — 0
and 7 — 0, under the scaling relation (3.2.3), we can use equation
(5.2.18), and get after multiplying both sides by 7

K (rQE, ™)) + (K + ) (rQ(E, 7)) ~

dK .
sPletrmh k>0, (5.4.21)

where 7Q(0,s) = 1/s. So far, we found that the asymptotic ordi-
nary differential equation (5.4.21) with z* = mh is structured like
the ordinary differential equation (5.4.14) and 7Q(e™*" e7°7) repre-
sents an approximation to u(k,s). We can interpret this result in
the following words: the Fourier-Laplace transform of the discrete
solution of equation (5.1.2) satisfies the same ordinary differential
equation (5.4.14) asymptotically as h — 0 and 7 — 0. The results of
this section are in agreement with the numerical results of Chapter
2, for the case f = 1, and with the numerical results of Chapter 3,
for the case 0 < 8 < 1.
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