CTRW, fractional diffusion
and the effect of the central
linear drift

4.1 Introduction

In a random walk we consider a walker (particle) starting at time
t = 0 at a given point z in space and taking steps in a random
direction at time instants ¢,,. The steps may be of fixed or of random
length, depending on the considered model.

In Chapter 2, we have discussed the Ehrenfest model and repre-
sented it by a random walk with steps of length h to the left or to
the right along the real axis. The steps happen at instants ¢, = n7
and a linear drift acts toward the origin = 0. We have shown
that if h — 0 and 7 — 0, related to each other by proper scaling,
the random walker typically exhibits an approximate kind of Brow-
nian motion if there is no external force affecting the motion of the
particle (i. e. the free motion).

We have studied also the generalized Ehrenfest model in which
the walker (particle) as time proceeds from ¢, to ¢,.; can move one
step to the left or one step to the right or stay in its position. We
have shown in the simulation of this model that the random walker
tends always to return to the origin because of the presence of the
linear central force —bx, b > 0, which attracts the particle to the
origin.

In Chapter 3, we have studied the approximate solution and the
discrete simulation of the random walk of the time-fractional dif-
fusion equation with central linear drift for which we sometimes
use the abbreviation FDECLD. The time-FDECLD is a generalized
form of the fractional Fokker-Planck equation in using the fractional
derivative and a special form in using a central linear force. The sim-
ulation of the time-FDECLD showed the effect of the memory on
the motion of the particle which always remembered its all previous
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positions, including the initial position, and showed a tendency to
return to them.

We devote this chapter to the discussion of the continuous time
random walk (Montroll and Weiss 1965 [77]) for which the abbrevi-
ation (CTRW) is in common use. In CTRW a walker (particle) is
staying fixed during a waiting time of random length and then makes
an instantaneous space step that also may be of random length.

There are two different types of CTRW. The first type considers
independent time and space steps. This means the time and space
steps are identically independent distributed random variables and
the waiting time and the space step are independent of each other.
In what follows we use the abbreviation #d to refer to random vari-
ables which are identically independent distributed. Such random
walk is also called decoupled or separable. In the long time and
large distance limit the decoupled model of iid variables goes over
into the fractional diffusion equation by a properly scaled passage
to the limit of vanishing space and time steps. We leave aside the
second type of interest, namely the coupled or non-separable case
in which the steps in space and time are dependent on each other.

In this chapter we discuss in full details the decoupled CTRW and
its relation to the fractional diffusion equation and henceforth to the
fractional diffusion equation with central linear drift. We focus our
interest on processes in which the probability distributions of the
waiting times and jumps have fat tails characterized by power laws
with exponent between 0 and 1 for the waiting times and between
0 and 2 for the jumps.

This chapter is organized as follows:

In Section 2, we give a quick review over the theory of CTRW
and the renewal counting process. We also prove that the equation
of motion of the CTRW or so called master equation is a straight-
forward consequence of the basic theory of the compound renewal
process.

In Section 3, the time-fractional integral equation of CTRW is
discussed with some examples of the memory function.

In Section 4, the relation between the fractional integral equation
of the continuous time random walk (equation of motion of a free
particle) and the space-time-FDE will be described. We consider
the master equation in which the time derivative is replaced with
one of fractional order.

In Section 5, we discuss the relation between the space-FDE as
well as the space-FDECLD. We show that the fundamental solu-
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tions of these equations belong to the class of a-stable probability
densities functions. The transformation connecting the fractional
diffusion equation and the fractional diffusion equation with central
linear drift is also given and proved.

In Section 6, the simulation of the CTRW is interpreted for dif-
ferent fractional orders of the fractional diffusion equation and of
the fractional diffusion equation with central linear drift.

In Section 7 the numerical results are displayed and interpreted.

4.2 The basic theory of CTRW and the com-
pound renewal process

The theory of CTRW or compound ( cumulative) renewal process
was developed by Montroll and Weiss [77] in their study of statistical
mechanics and by Cox [13], respectively. In what follows we first give
a brief survey for the decoupled model. This model describes the
motion of a particle starting at the origin (zo = 0), and waiting a
period of time Ty, k = 1,2,---, at a particular location zy_1,k =
1,2,---, before moving instantaneously to the next location with
jump width X,k =1,2,---. We call T,k = 1,2, the waiting
times, where Ty = tp—tr_1, Vk, ,tx > tx_1. The waiting times T}, are
iid and likewise the jumps X, are iid. Furthermore the waiting times
and the jumps are independent of each other. The new position at
tyisxp = a1+ X, Vk=1,2,---, and the particle remains resting
at * = x5 1%1 the time interval ¢ <t < tx41-

T

0 tat3 tg- - - t
The sketch of the CTRW

As it is our intention to use the methods of the renewal theory,
we consider the sequence tq, ty,--- as renewal instants of a renewal
counting process [13]. The renewal counting process {N(¢),t > 0}
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registers the successive occurrence of an event during the time inter-
val (0,¢] where the time durations between consecutive events are
positive iid random variables Ty ,k = 1,2,---, such that 7T; is the
elapsed time between the (i — 1)st event and the ith event. The
basic stipulations of the compound renewal process are:

(1) the process starts at t =t = 0,
(2)t, =T1+To+---+T, ,n > 1refers to the time of the nth event.

The process is well known if we know the probability law for the
waiting times 7,, = t,, — t,—1 ,n > 1, namely their probability den-
sity 9(t). So we introduce the cumulative distribution function ®(¢)
defined as

d

B(t) = Pr(T <t) = /w(t’)dt’ () = ()

In renewal theory ®(t) is often called the failure probability. We
introduce also the function ¥(t) defined as

U(t) = Pr(T > t) = / Y(t)dt =1— / )d,  (4.2.1)

which is called the survival probability and is equal to the probability
of no events at or before the instant ¢. The waiting time density 1 (?)
is related to ¥(t) by

dv(h)

Y(t) = T (4.2.2)

Now we discuss shortly the function m(t) = (N(t)) = > Pr(ty <
k=1

t), which is called the first moment of the renewal process, in order
to show the importance of the waiting density (¢). The function
m(t) represents the average time of events in the interval (0, ¢], then
m(t), ¥(t) and ®(¢) and their probability density functions satisfy
the renewal equation (see [54] and [20])

m(t) = ®(t)+ /0 it — ()t = /0 Lemt— (@) t> 0.
(4.2.3)
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To proceed further, we use the machinery of the Laplace transform
defined for a (generalized) function g(t) as

g(s) = /e‘“g(t)dt. (4.2.4)

Furthermore, we use the Laplace convolution of two (generalized)
functions g;(¢) and go(t) which is defined as

(g1 % g2)(t) = /gl(t,)92<t —tYdt', 0<t< .

Therefore, by applying Laplace transform to equation (4.2.3) we get

sy - )

SN A\ 4.2.5
s(1 —(s)) (4:29)

where

B(s) = ¥(s) and W(s) = 1=9(s) .

S S

For more information about the renewal process and its properties
(see [85] and [13]).

Now we define the probability distribution function
Fo(t)=Prts=T1+To+---+T, <t) ,k>1, (4.2.6)

for the probability that the sum of the first & waiting times is less
or equal to t. The corresponding probability density is f; = %k(t).
From the definition of the distribution function Fj(t), we notice
that it satisfies the normalization condition. This means that the
probability density function for ¢, is ¥(t) = fi(¢t) and for ¢, is
(*v)(t) = fo(t) and consequently for #; is 1**(t) = fi(t). From the
definition of ¥(¢) in equation (4.2.1) as a residual probability func-
tion, we define the counting function N(¢) which equals the number
of events in the interval (0,¢]. The function N(t) is a step function,

see [13]. By using the definition of fi(t) we can write

pe(t) = Pr(N(t) = k) = Pr(ty <t sy > ) = / Fo#)B(E—t) dt' = (fur)(t)
" (4.2.7)
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Let us now introduce the concept of the compound renewal pro-
cess. Such process is determined by the probability law of the wait-
ing time T (i. e. ¥(t)) and also by the probability law of the jump
X. Let us denote the jump density by w(z) and introduce the dis-
tribution function of the jump defined as

T

W(z) = / w(€)dé = Pr(X < ),

—0o0

by restricting our definition to processes with one spatial dimension.
Assume z = X; + X9+ ---+ X, k > 1, to be the sum of k
independent random jumps in one dimension. Then the probability
density of zy is wi(z) = w**(x) Vk > 1, where w*’(z) = §(x)). To
find the probability density at time ¢ for the particle to be at the
position x, we set

p(z,t) =Y (%™ % ¥) (1) w(z) . (4.2.8)

This equation describes the compound renewal process as a subor-
dination of a random walk to a renewal process ( see [13] Chapter 8
formula (4)). In the Fourier-Laplace domain, it reads

s ) = LY S i),

where the Fourier transform of a (generalized) function f(z), z € R,
is defined as

o0

ﬂﬂm%=ﬂ@:/wwwm. (4.2.9)

—0o0

Since |9(s)@(k)| < 1 for all k # 0 and s # 0, we have

By = 12 1 . (4.2.10)

s 1—1y(s) (k)

In what follows, we aim to prove that equation (4.2.10) coincides
with the Fourier-Laplace transform of the integral equation of the
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CTRW. To this end we rewrite equation (4.2.10) as

s ) = 22 4 3s) ) i, )

Then first, by taking the inverse Fourier transform, we get

Bla,s) = 6a) B(s) + { [ wlo — (e, 9) do'}i(s)

second, by taking the inverse Laplace transform, we get

p(z,t) = 6(z)T(t) + /{/ w(z — 2 )p(a', t')dz'} (t — t')dt' .

(4.2.11)
As we have seen, the inverse Fourier-Laplace transformation of equa-
tion (4.2.10) converts the probability density of the compound re-
newal process into the probability density of the decoupled model,
equation (4.2.11). In this last equation ¥(¢), w(z) and p(z,t) are
non-negative probability density functions. p(z,t) represents the
probability density of finding the walker at the position z at the in-
stant ¢, starting with the initial condition p(z,0) = §(z), and w(z)
serves as the transition probability density from the point £ to the
point £ + z. Finally, 1(t) represents the probability density of the
waiting time between two successive jumps. Equation (4.2.11) is
known by physicists as the integral equation of the CTRW (see for
example: [77] [96], [46], [45] and [47] ).

Many authors have treated this integral equation and its relation
to the fractional diffusion equation in order to show its importance
in the theory of anomalous diffusion (see for example: [1], [2], [57]
and the references therein).

We are going now to give a simple example of a compound re-
newal process.

Example :
The Poisson process is characterized by an exponential waiting
time with density

Yt) =X A>0,t>0 .
Its survival probability is
V(t)=Pr(T>t)=e™,t>0.
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The exponential waiting time is an essential property of the mem-
oryless renewal process (Markov Process). In the Laplace domain,

we have
1

A+ s

P(s) = )\—)\i—s and U(s) =

The moments of the waiting time are
(T) =1/X,(T? =1/X%,-- - (T™) =1/\".

It is well known that the Poisson process counts the number of
events occurring in an interval of length ¢ and it is often defined by
the equation

, 8§>0.

Pr(N(t) = k) = (Aki,)kekt >0, (4.2.12)

The renewal function comes out as
(N(@t))=m(t)y=XAt,t>0 .

In the Laplace domain it takes the form m(s) = 2.

4.3 The time-fractional integral equation of the
CTRW and the memory function

In this section we complete our survey of the integral equation of
the CTRW by discussing the recent applications of the CTRW in
economics and finance (see for examples [93], [67], [41] and [83]).
Therefore, we consider again p(z,t) as the probability density for
finding the random walker (particle) at the position z at the instant
t while being initially at x = 0 (i. e. p(z,0) = §(z)). We also
keep the definition of the survival probability ¥(¢) as in equation
(4.2.1) and the definition of w(z) as the jump density. The only
change made here is that we write equation (4.2.10) representing
the Fourier-Laplace transform of the integral equation of the CTRW
in another form by introducing a new function v(s) in the Laplace
domain as follows (see [67]):

First, rewrite equation (4.2.10) as

spl(r,5) (1 - B()i(s)) = 1 - 9(s)
By subtracting from each side 31%(/{,3) ¥(s) and then dividing by
s1h(s), one gets
SU=PEplrs) 1 s o 1
“30s) 230 = bk, s)(@(k) —1) = —.
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Finally, by defining
1—4(s)
s9(s)

and subtracting 7(s) from both sides, we get the other version of
equation (4.2.10)

(s)(s Bk, 5) — 1) = (@(k) — 1)p(k, 5) , (4.3.2)

and then by taking the inverse Fourier-Laplace transform, we get
another version of the integral equation of the CTRW (a master
equation), namely

v(s) = (4.3.1)

t

/ V(t—t') %p(m,t')dt' — —p(z, )+ / w(z—az)p(z', t)da’ , (4.3.3)

0 —00

where the auxiliary function v(t) is connected to the survival prob-
ability ¥(¢) by the convolution equation

t

/Vt—t )dt' .

0

The function v(t) is called the memory function. By using it, the
CTRW described by the integral equation (4.3.3) turns, in general,
out to be a non-Markovian process. However, by special choices of
v(t), the process is a memoryless. Examples:

(a) if (s) = 1 (i.e. v(t) = 4(t)), then by using equation (4.3.1)
we get ¢)(s) = =, which leads by taking the inverse of Laplace-
transform to ¥(t) = e™?,

(b) if 7(s) = 3, A > 0 (ie. v(t) = 6(¢)/A), then ¥(s) = 25
leading to ¥ (t) = Ae~*. This waiting time represents the general
compound Poisson process. With this choice, equation (4.3.3) takes

the form

Op(z, 1)
ot

= Apleit) + X [ pleule-a)ds, (@43.4)

known as Kolmogorov’s forward equation for the compound Poisson
process. It is also called the Kolmogorov-Feller equation, and in the
special case A = 1, it gives the integral equation of example (a).
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(c) If U(s) # const, then we have a non-Markovian process (i.e.
a process with memory). If we choose v(t) to have a power-law time
decay as

t—B
I'(1-p)
which in Laplace-domain reads 7(s) = -5, then equation (4.3.3)
turns out as

v(t) = ,0< B <. (4.3.5)

Bz T
PHD — e+ [ plotu—a)as, (@36)

with the Caputo fractional derivative which is usually denoted by
one of the following symbols.

o8

9 s

o i
(see Appendix A and [37]). The authors of [64] and [94] call equa-

tion (4.3.6) the integral equation of the Mittag-Leffler process. By
applying the relation (4.3.1), the waiting time density of the mem-

and by taking

(4.3.7)

ory process in Laplace-space now reads ¥(s) =
the inverse Laplace-transform we have

¢@:—%%eﬁy (4.3.8)
The completely monotonicity of the Mittag-Leffler function Eg(z),
with z = —z was first studied by Pollard [81]. The special case
as z = —t? is studied in [37]. The results of [74] and [37]) are in
agreement with [45]. For more information about the Mittag-Leffler
function and its history, see ([17] and Appendix C). It is worth to say
here that equation (4.3.6) is obtained by choosing at the beginning
the survival probability ¥(t) = Eg(—t?) [64].

_1
14562

4.4 The relation between the integral equation
of the CTRW and the fractional diffusion
equation

Henceforth, we shall give the relation between the integral equation
of the CTRW in the Fourier-Laplace domain (4.2.10) and the frac-
tional diffusion equation with proper use of the probability density of
the jump. The space-time fractional diffusion equation is obtained
from the standard diffusion equation by replacing the second order
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space derivative with D0 @ (which is the symmetric fractional Riesz

operator of order o € (0,2], while the first order time derivative
is replaced by the Caputo time derivative of order 8 € (0,1] (see
equation (4.3.7) and Appendix A). We get

7%Dﬁu(ac,t)z Doau(a:,t), 0<a<2 0<p<1, (4.4.1)

and as initial condition we take
u(z,0)=6(z), z€R, t>0.

The operator D0 ¢ is a linear pseudo differential operator with symbol
T

—|k|* (see [25], [48]) and [49]. This means the Fourier representation
of the symmetric fractional Riesz derivative operator D0 * of order

a € (0,2] for a sufficiently smooth function f(z), z € R, has the
form

-~

f{ﬁ)o‘f(:c);n}:—|m|af(ﬁ), keR. (4.4.2)

The Caputo fractional derivative tD'B and its relations with the

Riemann-Liouville fractional derivative are explained in Appendix
A. In the Laplace domain, it reads (see Gorenflo, Mainardi and et
al [65] , [31], [37] and [66]).

L{DPf(t);s} = SLF(s)—sPUF(0M), 0<B<1,s>0. (44.3)

So far, in the Fourier-Laplace domain equation (4.4.1) takes the form
(see [35])
= sht
U(K,S)ZW,S>O,HER, (444)

and the Laplace inversion leads to the characteristic function
u(k,t) = Eg(—|k|*t?) .

Our aim now is to search for probability densities w(z) and (t)
which by combination of Fourier and Laplace transforms approx-
imately convert equation (4.2.10) to equation (4.4.4) by a proper
limiting procedure using the asymptotic behaviors of W (z) and ¥(t)
near zero. So far, in what follows we shall state two Lemmata con-
necting the asymptotic behaviours of w(z) and #(t), near infinity to
the asymptotic behaviour of their transforms @(x) and 9(s), near
Zero.
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Lemma 1 :  Assume w(z) > 0, w(z) = w(—z) for z € R,

[ w(z)dz =1 and either

o? = /a:zw(a:)da: < 00, (4.4.5)

(relevant in the case o = 2) or with b > 0 and some a € (0, 2),
w(z) ~blz| @ for = oo . (4.4.6)

The we have for k € R the asymptotic relation

1 — @(H) ~ ,U«|K,‘a for k— 0, (4'4'7)
with 2
% ’Lf o = 2 ,
h= T ; (4.4.8)
{m f0<a<?2,

trivially W(0) =1 .

]
ok

Proof : In the case a = 2, the relation 0? = — (f) |x=0 immedi-
ately implies

1—@(k) ~ pus®
hence equation (4.4.7) is satisfied for a = 2 with p = "72 In the
case 0 < a < 2 and v # 0, we find by a simple calculation, using
the symmetry of w(z),

w(k)—1= —4/sin2% w(z)dzx . (4.4.9)
0
Now with the formula (see [44])

(—a)cos(am/2)

r r
/ ¢t gin2¢ d¢ = o1 a EeR,
0
with the identity
o
T(ET(1 =€) = R

and finally with the property of w(z) given in equation (4.4.6), we
get

(k) ~ 1 - b

I'(a+ 1)sin(amr/2) Y, k= 0. (4.4.10)
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By using the definition of y in equation (4.4.8) we get for k € R the
asymptotic relation (4.4.7).

Lemma 2 : Assume ¥(t) >0 fort >0, [¢(t)dt =1, and either
0

p = / tY(t)dt < oo, (4.4.11)
0
(relevant in the case f = 1), or, with ¢ > 0 and some [ € (0,1),
Y(t) ~ =Pt fort — oo . (4.4.12)
Then we have the asymptotic relation
P(s) = 1= As® 4+ o(s?) for s >0 , (4.4.13)
with
A= {‘# | Z:g;; L (4.4.14)

Proof : In the case § = 1 equation (4.4.13) is a consequence of the
law of large numbers (see the book of Feller Vol. 2 chapter XIIT
[20]) which states: If Ty, T3, -- -, T, are independent random vari-
ables with a common Laplace transform ¢ and if E(T}) = p = ¢'(0),
then the Laplace transform of the sum 77 + 715 + - - - + T, is ¢™ and
near the origin ¢(s) = 1 — ps + o(s) for a fixed s > 0.

For the case 0 < B < 1, the proof is directly obtained by an
application of a Tauberian Theorem which can also be found in the
book of Widder [111] as Corollary (1 a). This corollary states: If
a(t) ~ AtY/T(v +1) as t — oo for some A # 0 and some non
negative v, then

o0

A
/ e *da(t) ~ — for s =07, (4.4.15)
s
0

Substitute 1 (t) from equation (4.4.12) into equation (4.2.2) and in-

tegrating the resulting equation we get ¥(t) = %t_ﬂ. Then as an
application of the corollary of Widder, we set o/(¢) = ¥(t), and then

integrate both sides, we get
A c 1
at) = —— ' =—— 1P
U=re D’ "B
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which leads to v = 1 — 8 and consequently A = %%ﬁ) Here A

represents the constant of integration. Then we can write \i(s) as a
direct application of equation (4.4.15), as

U(s) ~ AP s 07T . (4.4.16)

Now to obtain J(s), we apply the Laplace transform to equation
(4.2.2) and use the assumptions ¥(0) = 1, ¥(oco) = 0. We get

P(s)=1- sil(s). Finally, by replacing A by A, defined in equation
(4.4.14 ), and substituting back in the equation ¥(s) = 1 — s¥(s),
we get the required equation (4.4.13).

Now to prove that (4.4.7) and (4.4.13) lead to equation (4.2.10)
(i.e. to the Fourier-Laplace transform of p(z,t)), we introduce two
special scales for the waiting times and for the jumps. We define
with a suitable positive scaling parameter 7, the new time instants
as

to(r) = + 1T + -+ 1T, forn e N,

and rewrite the asymptotic equation (4.4.13)

~

Y(s7) =1—=A(s7)P +0o(7?) for7 = 0, s fixed . (4.4.17)

Also we define the sum of jumps with a positive scaling parameter
h as

zn(h) =hX; +hXs+---+hX,, z9(h) =0forn e N,

and rewrite the asymptotic equation (4.4.7) as

w(kh) =1— p(|lc/h)* +o(h*) forh — 0, k fixed . (4.4.18)

So the reduced waiting time density can be written as ¥, (t) =

M,t > 0 and the reduced jump density as wy(z) = M, zeR
Then the Laplace transform of the reduced waiting density and the

Fourier transform of the reduced jump density respectively are

Bel(s) = Bls7) , Wu(k) = (k) (4.4.19)

Now by replacing ¥(t) by ¥.(t) and w(z) by wp(x) in equation
(4.2.11) we get pp (x,t) which in Fourier-Laplace space reads
1— 9y(s)

Pre(8) = —— 5 4 U (8) W(K) Be(mys) . (4.4.20)

60



Solving for ;ﬁhﬁ(/ﬂ, s) we get
~ 1-— @ZT s 1
Py = 0L
§ 1 —1.(s) wn(k)

Then by using equation (4.4.19), equation (4.4.17) and equation
(4.4.18) in equation (4.4.21) we get

(4.4.21)

= AP sP1
Busls) = 5 .
(18) + u(hr)® + Au(hk)2(1s)? + O(horh)
(4.4.22)
Taking here the limit as h —+ 0 and 7 — 0 and introducing the
scaling relation

AP = uh® (4.4.23)
one obtains
sh—1

W=U(fs,s),s>0,nem{. (4.4.24)

plr,s) —

In this kind of passing to the limit 5(&, s) and 11;'(143, s) are asymptot-
ically equivalent in the Fourier-Laplace domain. Then the asymp-
totic equivalence in space-time domain between the integral equa-
tion of the CTRW (4.2.11) after rescaling the fractional diffusion
equation (4.4.1) is provided by the continuity theorem for sequences
of characteristic functions after having applied the analogous the-
orem for sequences of Laplace transforms (see [20]). Therefore we
have convergence in law or weak convergence for the correspond-
ing probability distributions (see e.g. [66]). Let us finally remark
that another way of treating the connection between CTRW and
the fractional diffusion is to exploit extensively the principle of sub-
ordination. Let us quote as a recent example [69]. In our work we
have preferred the Fourier-Laplace method.

4.5 The space-fractional diffusion equation with-
out and with central linear drift

Let us consider here the asymmetric Riesz pseudo-differential op-
erator D"‘ which has the symbol —|k|*i?*¥(%) with a skewness 6

such that 18] < min{a,(2 — a)}. We have used the definition of
the pseudo-differential operator A which acts with respect to the
variable € R on a sufficiently well- behaved function ¢(z). A is
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defined through its Fourier representation, namely

o0

[ e a@) @iz = Ao

— 00

Here A(k) represents the symbol of A, given as A(k) = (Ae )¢ tire
(see [48] and [49]). We discuss now the space-FDE

Ou(z,t) o
5 — L u(z,t), 0<a<?2, (4.5.1)
with the initial condition u(z,0) = f(z). Equation (4.5.1) is a
generalization of equation (4.4.1) in the special case § = 1 by ad-
mitting the parameter 6 of asymmetry (skewness) (see Feller [18]
and Gorenflo and Mainardi [65], [35], [38] and [31]). We want here
to prove that the function u(k,t) is the characteristic function of an
a-stable probability density. To do so, we take the Fourier trans-
form of equation (4.5.1) and solve the resulting ordinary differential
equation. We get (with sig(k) = k/|k| = —1, 0, or 1, depends on
k <0, =0, or > 0 respectively)

10

Gulr, 1:0) = capl—ts[* ¢ T4 a(s,0) = flr),  (45.2)
where g,(k, t; 0) is the Fourier transform of the Green function cor-

responding to the initial condition g,(z,0;6) = 6(x) (see [38]). The
solution of equation (4.5.1) can be written as

uot) = [ gule - EOFC)dC, Ve >0
For the strictly stable distributions, we use the parameterization
of Feller for the characteristic functions (see Appendix B)
Pa(r; 9) = eap| —|n[* % *90)] (45.3)
of the densities p,(z; #) where the skewness parameter 6 is restricted
to the following region, depending on «, (see [18] and [101])

(4.5.4)

0 < a, if 0<a<1,
0 <2—-a, ifl<a<g2.

We recognize that p,(z;6) = po(—x;—60). If a = 2, we have by
(4.5.4), only with # = 0, the corresponding distribution is Gaussian.
In the case @ = 1 with the special choice § = 0 gives the Cauchy
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distribution. In general we also assume the restriction (4.5.4) to be
satisfied.

If a linear force acts towards the origin and affects the motion
of the free particle, then the equation of motion will be modelled
by the diffusion equation with central linear drift (FPE). As we
have mentioned before the space-FDECLD is a generalization to
the FPE in using the fractional derivative and a special form of a
central linear force. The Fokker-Plank equation is one of the most
celebrated equations in physics because it is very useful for studying
the dynamic behaviour of the solution of the stochastic differential
equations driven by various kinds of noise, in our treatment we use
the Lévy noise. The classical form of this equation is discussed
and interpreted in Chapter 2. We discuss in this section the space-
FDECLD which is obtained from the classical FPE by replacing the
second order derivative with respect to & by §D0°‘. Therefore the

space-FDECLD takes the form

W) — (ol ) +aDTol6, ), 0<a <2, (455)
where a > 0 is the diffusion constant and b > 0 is the drift constant.
The stochastic process modelled by the space-FDECLD is still a
Markovian process. We aim now to prove that the characteristic
function of the solution of the space-FDECLD also belongs to the
class of a-stable probability densities and is related to the solution of
equation (4.5.1). To this aim, we take the Fourier transform of both
sides of equation (4.5.5), and get the ordinary differential equation

ov(k,7) 0v(k,T) o 07 sio(k)~
5 = —bﬁT —alk|%e (K, T) . (4.5.6)

To solve this equation, we use the method of characteristics which
leads to the chain of equations

d_T . d_m _ dv(k,T)
T b (alno(s, Ty )

(4.5.7)

Using the first equality sign of equation (4.5.7), and integrating both

sides, we get

c; = ke .

Using the second equality sign of equation (4.5.7), and integrating
both sides, we get

c2 = V(k,T)exp %Maew%”g(“)] ,
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where c; and ¢y are the constants of integrations. Then solving these
last two equations for ¢; and cy by using the initial condition

5(k,0) =1,

we get the characteristic distribution of the solution of the space-
FDECLD with the initial condition v(&,0) = 6(&)

(s, 7) = exp[—m\abia _ mbar)eif3siglw)) (4.5.8)
(6
Setting
1 ba (ba)?
r_ _ y=bary _ U2 \"/ 3
T—ba(l ey =1 2!T+ TR

we notice that 7/ — 7 as b — 0 which is the same as in equa-
tion (4.5.2) (i. e. the fractional diffusion without drift). By this
abbreviation we rewrite equation (4.5.8) to take the standard form

Ok, 7) = exp[—|k|* ar’ €759 (4.5.9)

For the strictly stable distributions of this equation, we use the
notation (see Appendix B)

ok, 0) = exp[ —|K|® ewTﬂSig(")] ,a=1, (4.5.10)

clearly we notice that TLQ(K), 0) = pa(k,0) (see [109] and [104]).
Comparing the structures of equations (4.5.8) and (4.5.9) gives
rise to the conjecture that the solution of the space-fractional dif-
fusion equation and the solution of the space-fractional diffusion
equation with central linear drift can be transformed to each other
with some nonlinear rescaling for the space coordinate and for the
time coordinate. Actually Biler et al [5] have given without proof
the following transformation theorem after choosing, without loos-
ing generality, the constant drift b = 1 and 8 = 0. We state here the
transformations theory without this restriction for 6.

Theorem 1 (on transformation):
Consider the transformations (4.5.12) and (4.5.11) between the two
pairs of independent variables (z,t) and (&, T)

E=z(at+1)V*, 7=a Yog(at+1), (4.5.11)
and )
r=¢E", t= a(e‘” -1). (4.5.12)
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By the transformation (4.5.12), a solution u(z,t) of the space-FDE
(4.5.1) goes over into a solution v(&, T) of the space-FDECLD (4.5.5).
By the transformation (4.5.11) the solution v(&,T) of (4.5.5) goes
over into the solution u(z,t) of (4.5.1). These transformations are
inverse to each other, and we have the relation

v(&,7) = (at + 1)1/°' u(z,t),

with its inverse

u(z,t) =e "v(,T) .
We notice here as T =0 = £ = x, and so the solutions of the two
considered equations with the same initial condition are equivalent.

Proof : The theorem is valid for a = 2 (see [20]). For 0 < a < 2,
we use the following lemma (see [72]) and [80]).

Lemma 3 : Ifz =d€, f(z)=g(&) and a > 0, then
D2g() = a® Df(x)
Proof of Lemma 3: It is known that the operator Do * has the

symbol T)}‘ = —|x|*%%9) and in general:
T

(D®h) (k) = —|k[*i® 9 (k)

z 0
and 1
(D7) = 5 [ €= (DR ) dr
In particular:
— ) 1 ~ K
D¢ — || ;0519(K) &5 — le Oszg - v
(D79 (k) = Il #1509 Gr) = —|wfe i) — F(%) |

and

(D g / |,€|a -fsig(k —mwf( )
By changing the variable /f/ a = v and substituting back in the last
equation we get the statement of Lemma 3.
By applying this lemma we get

D*v(& 1) = {Doa (ev (z(at + 1Y a tog(at + 1)) = eloatl)r Doau(a:,t) )
(4.5.13)
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By applying the chain rule on the functions v = u(z,t), v = v(§, 1),
z=z(& 1) and t =t(£,T), we get

ov 270U | (ayny,0u
e TeT " 4 elat)r 2 4.5.14
5, eu+e £8x+e 57 (4.5.14)
and finally
9 (§v) 2r O u
= T— . 4.5.15
o e % +v (4.5.15)

We substitute now the results of equations (4.5.13- 4.5.15) in equa-
tion (4.5.5) and get equation (4.5.1). The other direction can be
similarly proved.

After this discussion we note that for every solution of u(z,t)
there is a corresponding solution for v and vice versa. We note also
that we have used for the space-FDE the initial condition u(z,0) =
d(z) and also for the space-FDECLD v(£,0) = 6(&), where § is
the Dirac function. Therefore, we can represent the fundamen-
tal solution of the fractional diffusion equation as the Green func-
tion(see[65])

u(z,t) = gal(z,t) ,

where g,(x,t) is the Green function with Fourier transform (4.5.2).
We refer here to the scaling property of the Green function defined
as (see [65])

ax

—1/a
galaz,bt) = b / ga(m,t).

Consequently, introducing the similarity variable z/t'/*, we can
write

ga(x,t) = t_l/apa(xt_l/a) , with ﬁ(’{) = exp(_|5|a) )

where we have the following special cases

1 2
92(z,4;0) = —=t"2exp[-] |

2y/m 4t
1 t
t;0) = ——— 4.5.16
gl(xa ) ) 7T$2+t2 ) ( )
1 —2¢2
gij2(z,t,—1) = 7532 ].

o exp|

So finally, the fundamental solution to the space-FDECLD (4.5.5)
with the general initial condition v(&, 0) = 6(£ —&p) can be obtained
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from the solution u(z,t) = go(z — o) of equation (4.5.1) with the
initial condition u(z,0) = d(z — xg), o = &, as

ot/ (ozl/" = §oef)> L (45a7)

’U(g’ T) = (1 _ e—aT)l/apa (1 _ e—ar)l/a
For 7 — oo this solution becomes stationary

v(&, 1) — al/apa(al/af) ,

in contrast to the stationary solution u(z,t) of equation (4.5.1)
which leads to zero everywhere for t — oo. If we put o = 2 and
B = 1in this formula, we get the well known solution of the classical
diffusion with central linear drift (2.1.3).

The following figures show the analytical solution for different
values of ¢ for the standard diffusion equation (i.e. o = 2) on the
left and the analytical solution of the diffusion equation with central
linear drift on the right. The figures show also that the coordinates
representing the space and the time in the diffusion with drift are
compressed and the width of the curve is also narrower than the
corresponding one on the left.

Figure 4.1: standard dif- Figure 4.2: diffusion with
fusion g»(z, t;0) central linear drift
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4.6 The simulation of the space-fractional diffu-
sion equation without and with central lin-
ear drift

For the purpose of simulations, we recall the notations of Section
2, to produce approximate particle paths for space-time FDE and
henceforth to space-FDECLD. We simulate the both cases in the
spatially symmetric case # = 0. We need for a given 0 < a < 2,
a jump width satisfying Lemma (1), to create a sequence of iid
random jumps {Xi, Xs,---,X,}. We need also for 0 < f < 1, a
waiting time density satisfying Lemma (2), to generate a sequence
of iid random waiting times {73, 7T5, -+ ,T,}. The time instant ¢, is
defined as (see e. g. [21])

t():O, tn:T1+T2++Tn ,Tn:tn—tn_l, TLZ 1. (461)
The position z,, of the walker at time %, is defined as
Tp=2(tn) =2(0)+ X1+ Xo+---+ X, ,n>1. (4.6.2)

In equation (4.6.2) the walker starts at « = x(0) at time ¢ = 0.
Consequently the random walker waits at a given location x,_; for
time T},, n > 1, before taking a jump X,, which is independent on
the waiting time T,,. Notice that we allow z(0), in equation (4.6.2),
to be different from zero. This will be interesting for the simulation
of the space-FDECLD because we see how the particle is attracted
to the origin.

Among the methods of random sequence generation with the
given probability law, the method of inversion seems most simple
and effective [55].

In the case § = 1, the waiting time distribution is exponential
and the simulation of the waiting time 7', in this case, is simply done
by the equation

T=—logr, re|0,1), (4.6.3)

where 7 is a uniformly distributed random number.

In the case 0 < 8 < 1, we use the results of Section 3. We look
for the waiting time density 1(t) satisfying Lemma (2). This means
it must have an asymptotic decay like ¢t~ ¥+ 0 < 8 < 1 and the
survival probability ¥(¢) should asymptotically behave like %t_ﬂ ,
at infinity . The Mittag-Leffler function Eg(—t?) (see Appendix
c) satisfies this asymptotic behaviour for the survival probability.
Furthermore, it is a completely monotonic function and behaves
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for t — 0 like (1 — rfz;)- It is shown in [45] and [67] that the
Mittag-Leffler density is suitable for the description of the random
walk. However it is difficult to invert the Mittag-Leffler function
numerically. Therefore, we look for a simpler suitable function which
has some of the properties of the Mittag-Leffler function. We chose

(see [20] and [67])

1
V) =13 T(1—B)tF’

t>0,0<pB<1. (4.6.4)

The function v, (t) behaves also asymptotically like the Mittag-
Leffler function as ¢t — oo and shares with it the property of com-
plete monotonicity in ¢ > 0 ( see [20] and [67]). For the simulation
of the waiting time 7', we generate a random number 7, uniformly
distributed in [0,1). Then with r* = (1 — r), we take

r= (s (1)) (465)

where r* = U*(T).

Before discussing the simulation of the CTRW of the space-FDE,
with 0 < a < 2 and o # 1, we consider the special cases a = 1
and a = 2 corresponding to the Cauchy distribution and the nor-
mal (Gaussian) distribution respectively. Their simulation is simply
done by equating a uniformly random number u € [0,1) by the
cumulative density function

z

F(z) = / p(y)dy,

with
1 ifa=1,
p(z) = {"(1“'“"2;2 P o (4.6.6)
\/T_ﬂ' € lfOl =2.
Then the the random jump X is calculated as
_ tlan(w(u - 3)) ?fa =1, (4.6.7)
s(1+erf(u/2)) ifa=2,

T
where erf(z) = % [ e7¥" dy denotes the error function.
0

For simulating the random variable X of the remaining cases
0 < a <2, a#l, weuse the probability density function which has
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been successfully applied by Gorenflo & Mainardi [36] who modified
a method of Chechkin & Gonchar [9]. This density is given by

_ g |$|a—1
wy(z) = 2+ @R’ (4.6.8)

and the corresponding cumulative function is

T

11 :
W () = / w*<£)d5={;1+1“1 Fes0 46
2

W 1f$>0

—00

This W (z) satisfies the conditions of Lemma (1). Now, with a uni-
formly distributed random number z = € (0, 1], we find by inverting
W (z), the jump

/e
v Gas 1) =12,

4.6.10
(L -1 ifz<1/2. o10)

1
1-2z
1
2z

In the case of space-FDECLD, the situation is slightly different.
Therefore, for the simulation of the random jump X, we use equation
(4.6.10). For the waiting time 7', we use equation (4.6.3). Then we
calculate the position z,, in equation (4.6.2), and the time instant
tn, in equation (4.6.1), of the space-FDE (4.5.1). Finally to simulate
the path of the random walker of the space-FDECLD (4.5.5), we use
theorem (1) to transfer the pair (z,,t,) to the pair( &,,7,). These
steps are done at every n > 1.

4.7 Numerical results

Figures [3-10] correspond to the simulation of the continuous ran-
dom walk of a free diffusive particle corresponding to the space-
time-FDE with different values of o and /3.
The Cauchy random walk is simulated in fig [3] and the Brownian
motion is simulated in in fig[5]. While in fig[4] and fig [6] we show
the effect of the power law waiting time on the jumps of the Cauchy
and the Gaussian distribution function of the jumps respectively.
Fig[7-10] represent the symmetric space-FDE approximated by
using the density w,(z) for the jump. For the waiting time we use
the exponential waiting time (i.e. as § = 1) in figures [7,8], and the
power law waiting time 1,(t) (i.e. as 0 < 8 < 1) in figures [9,10].
In these Figures we have taken z; = 0 and the number of steps
n = 1000.
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Figures [11-20] display the simulation of the CTRW of the space-
FDECLD with the initial condition zy = & = 0, (in the first col-
umn) and the comparison between it and the CTRW of the space-
FDECLD with the initial condition zy = & = 100, (in the second
column). The simulation shows that the space and the time coordi-
nates of the space-FDECLD are compressed by using the transfor-
mation theorem (1). It also shows that in the long range the walker
is attracted to the origin in both cases g = 0 and xy # 0. We have
taken the number of steps here to be 10000.

a=1,p=1 a=1,4=0. 90
: : H
200 200
o o
200 * —200
400 400
600 —-600
00 o0
o w w0 wo we o aw  aw w0 e
T T
Figure 4.3: Cauchy Figure 4.4: time-FDE
a=2,p=1 a=2,5=0.75
% %
25 25
20 20
15 x 15
10 10
5 5
0 o
0 200 400 600 800 1000 0 1 2 3 4 5 6
T T
Figure 4.5: Gauss Figure 4.6: time-FDE
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a=1.5,6=1 @=1.25,4=1
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Figure 4.7: space-FDE Figure 4.8: space-FDE
a=1.75,5=.75 a=1.5,5=.75
" " x 100
Figure 4.9: space-time- Figure 4.10: space-time-
FDE FDE
a=1,p=1 a=1,p=1
Figure 4.11: Cauchy, & = Figure 4.12: & = 0,6 =
0 100
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Figure 4.15: space- Figure 4.16: & = 0,6 =
FDECLD 100

a=1.75,5=1 @=1.75,5=1
. 71: iy o
0 22
Figure 4.17: space- Figure 4.18: & = 0,¢ =

FDECLD 100
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a=1.25,5=1

a=1.25,6=1
Figure 4.19: space- Figure 4.20: & = 0,¢ =
FDECLD 100
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