Analysis of classical
diffusion in a potential well

2.1 Introduction

In 1827 an English botanist, Robert Brown, noticed that small parti-
cles suspended in fluids perform peculiarly erratic movements. This
phenomenon, which can also be observed in gases, is referred to as
Brownian motion [51]. It was not until 1905 that Albert Einstein
first advanced a satisfactory theory. Einstein considered the case of
the free particle, that is, a particle in which no forces other than
those due to the molecules of the surrounding medium are acting.
He was able to show that the probability density u(z,t) must satisfy
the partial differential equation

u(z,t)  u(x,t)
S = a5 (2.1.1)

where a > 0 is a certain physical constant depending on the universal
gas constant, the absolute temperature, the Avogadro number, and
finally the friction coefficient. The range of x is the whole line (i.e.
—00 <z < o0 )ast>0. The conditions imposed on u are

u(z,t) >0, / u(z,t)de=1.

The solution u(z,t) of equation (2.1.1) with the initial condition
u(z,0) = §(x—z*) is well known as the corresponding Green function
or the fundamental solution. u(z,t) represents at the time instant
t the probability density function of a particle being at the point x
and takes the form
— # —(z—z*)?/(4at)
u(z,t) N e

Y
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which has variance 0%(¢t) = [ az?u(x,t)de = 2at. As soon as the

—00

theory for the free particle was established, a natural question arose
how it should be modified in order to take into account outside
forces, for example, gravity which acts in the direction of the x—axis.
When there is an external force acting towards the origin = 0 and
proportional to the particle’s distance from it, Smoluchowski [99]
has shown that equation (2.1.1) should be replaced by

ou(z,t) O*u(z,t) 0

(bzu(z,t)), a>0,b>0, —co <z <o0,t>0,

(2.1.2)
The partial differential equation (2.1.2) which describes the elastic
diffusive motion of a bound particle (for example, small pendulum)
is a special case of the general (diffusion-convection equation) [105],
[110] and [99]. However the analytic solution of equation(2.1.2) with
the initial conditions u(z,0) = 6(z — z*) which has been obtained
by many authors, see e.g. [52],[84], [82] and [53], is

Y o2 oz

1 7(27z*e_bt)2

u(x,t) = p(xg; x,t) = ——— € 207 , 2.1.3
where 0% = ¢(1—e~?"). Here —b is called the drift parameter and a
is called the diffusion constant. In the limiting case b = 0, we have
the classical diffusion equation. In what follows we find the first mo-
ment of equation (2.1.2). For this aim we multiply equation (2.1.2)
by = and integrate over x € R. By using the natural properties,
namely u(z,t) — 0 and 2"u(z,t) — 0 for all n > 1 as || — oo, we
get the initial value problem

da(t) _
2L = ~b(a(t))

whose solution is

m(t) = (2(t)) = (2(0))e™ .

At this point it must be strongly emphasized that the theories
based on equation (2.1.1) and on equation (2.1.2) are only approxi-
mate. They are only valid for relatively large ¢ and in the case of an
elastically bound particle (i.e. only in the over-damped case). This
means that, the theories are valid only if the friction coefficient is
sufficiently large. These limitations of the theory were already rec-
ognized by Einstein and Smoluchowski but are often disregarded by
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writers who stress in the Brownian motion the velocity of the particle
to be infinite. An improved theory (known as exact) was advanced
by Uhlenbeck and Ornstein and by Kramers where equation (2.1.2)
is named as the Ornstein-Uhlenbeck equation. The stochastic pro-
cess described by this equation is a Markov process.

In what follows we are concerned with the discrete approach to
the Einstein-Smoluchowski (approximate) theory. This means that
we give a full discussion for the diffusion equation with central linear
drift and give examples for other drifts (see [28] and [29]). Therefore
we organize this chapter as follows.

In Section 2, we discuss Marc Kac’s discretization of the classical
diffusion in a potential well and its relation to the classical Ehrenfest
urn model.

In Section 3, we give the discretization of equation (2.1.2) and use
the explicit difference scheme to approximate its discrete solution.
We also give the relation between equation (2.1.2) and the Ehrenfest
urn model (see [15] and [16]).

In Section 4, we devise the implicit difference scheme.

In Section 5, we discuss the convergence of the approximate so-
lution of equation (2.1.2) for time tending to infinity.

In Section 6, we discuss the random walk of this model.

In Section 7, we give examples of other possible forces and the
discretization of their corresponding partial differential equations.

In Section 8, the numerical results of the cases of study are dis-
played.

2.2 The discretization of the diffusion-convection
equation

The classical diffusion in a potential well can be discretely modeled
by the random walk of an elastically bound particle equation (2.1.1).
Marc Kac [51] considered the case of the particle which can move
one step to the right or one step to the left. If the duration of
the step is 7 and its length is h, then the probability of moving in
either direction depends on the position of the particle [51]. More
precisely, if the particle is at x; = jh,j € Z , the probabilities of
moving to the right or to the left are

1 J 1 J
Pj:§(1—ﬁ),)\j:§(1+ﬁ),

where A_r = 0 and pr = 0, respectively. Here, R is a certain integer
and the possible positions of the particle are limited by the condi-
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tion —R < j < R, where R € N. If t, = n7, n € N, then the sketch
of the movement of the particle from the point z; at the time in-
stant t,, to the point x;_; or z;; at the time instant ¢, is as follows

x(tn) —h w(tn) +h t=thn1

pjxj*]- p]7.7+1

z(tn)

Here p; = p;;t1 and A; = p;;_1. These transition probabilities
satisfy the conservation relation (with integer indices j)

pi+A=1,-R<j<R.

Random walk models, discrete in space and time, for the standard
diffusion equation and its generalization (e.g. the presence of the
drift term) play an important rule in the theory of stochastic pro-
cesses. Such models are not only valuable for illuminating the mean-
ing of the diffusion but also for the numerical calculations, either as
Monte Carlo Simulation of the path of the particle in the diffusion
process or as discrete imitation of the process in form of redistribu-
tion of clumps of an extensive quantity (e.g. charge or mass).

Now, we are interested in the probability of finding the particle at
the point z; at the instant ¢,,:. To this aim, we use Kac’s transition
probabilities A; and p; to calculate this probability. The sketch of
the movement of the particle from the point z; ; or z;; at the time
instant ¢, to the point x; at the time instant ¢, is as follows

z(t,) t = tni1

pjflxj p]+17]

z(tn) — h z(ty) + h

Jj+1

1 .
Pj-1=DPj-15= 5(1_T)’ Aj+1 = Pjt1,j = 5(1‘*‘7), —R<j<R.
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Then the probability y](-"H) of finding the particle at the point z; at
the time instant ¢, satisfies the difference equation [51]

n+1 n n
y](' W= )‘j+1yj('+)1 + ijlya('f)l ' (2:2.1)

In the interest of formal completeness, we set \_gr = pg = 0. This
means that y](-") =0,for R+1 < j < —R—1. Equation (2.2.1)
in which the particle can move one step to the left or one step to
the right, is equivalent to the classical Ehrenfest urn model (see for

example [15] and [16]).

The relation between the Brownian motion of an elastically bound
particle with A > 0 and 7 > 0 and the classical Ehrenfest urn model
has first been pointed out by Schrédinger, Kohlrausch [97].

2.3 The discrete scheme and its relation to the
Ehrenfest model

The common numerical approach for the standard diffusion equation
is known to be based on the finite-difference method where the first
time derivative and the second space derivative are approximated
by difference quotients. For this purpose we discretize the space
variable z by the grid points

zj=jh, h>0, jEZ, (2.3.1)
and the time variable ¢ by
th=n17, 7T>0,neN. (2.3.2)

The dependent variable is then discretized by introducing y;(t,) as
approximation to the integral of the density w(z,t) over a small
interval of width h

zj+h/2
yi(tn) =~ / u(z, t,)de ~ hu(zj,t,), (2.3.3)
:Bj—h/2
where u(z,t) satisfies the differential equation (2.1.2) and is inter-

preted as a probability density function. Then according to equation
(2.3.3), we introduce a vector

™ = Ry R R )
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Here y(™ = y(t,) is a probability column vector. We suitably choose

the initial value y(®) such that Z Y; (©) = 1. Therefore we must have
j=—R

E: y7 _-IVn<EF%
j=—R
Discretizing by symmetric differences in space and forward in
time, we obtain an explicit difference scheme for generating a dis-
crete approximate solution to our model (i.e. to the diffusion with
central linear drift —bz described by equation (2.1.2),

A R k7 e U SV e
- =a B2 + o <$j+1yj+1 - xjflyjfl)
(2.3.4)
As always, a > 0 and b > 0. For the grid points z; = jh, the index j
is restricted to the range {—R,—R+1,...,R—1, R} where R € N.
We adjust the spatial step h such that R = 2% is an integer and

bh?
define the scaling parameter

T

h=1 - (2.3.5)
We complement equation (2.3.4) by prescribing the non-negative
R
initial value y(® obeying > y]( ) = = 1, and for convenience y]( ) =
j=—R

0V|j| > R+ 1. Tt is worth now to say that equation (2.2.1) with
= =3, R = 2% can be rewritten in the form of equation (2.3.4).
With symmetric difference quotients in space, we have consistency
of this approximation scheme of order (7+h?) for (h — 0 and T —0)
to the partial differential equation (2.1.2), where R = 2% — 00, 50
that in the limit the whole real axis is covered for the variable z.

Now solving equation (2.3.4) for y](-"H), we get

n j+‘1 n j__l n
y" ™ = (1-2ap)y" +ap (1 " —) wiatan (1 - —> W

R R
(2.3.6)
Equation(2.3.6) is equivalent to
y]('n+1) = ’Vy]('n) + )‘j+1y](‘3—)1 + pjfly](’ri)l ) -R < ] <R ) (2'3'7)

with
_ _ J o
Pj = Djj+1 = Qf <1 - E) , ¥ =pj; = (1 - 2ap),

Aj = Pjj1 = ap (1 + %) , (2.3.8)
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These transition probabilities satisfy the essential condition
pi+Aj+v=1Vje€[-R,R] . (2.3.9)

and

We interpret yj(-"ﬂ) at equation (2.3.7) as the probability of finding
the particle at the point z;, j € [—R, R], at the time instant t,1,
n € Ny. In order to have transition probabilities from the time
instant ¢, to t,,1, it is required that v > 0, which yields to the

scaling relation

1
O<u< —
N_Qa’

and all the occurring A\; > 0 and p; > 0. Besides the interpretation
of equation (2.3.7) as a random walk, it can also be considered as
a generalized Ehrenfest urn model. As v = 0, it converts into the
classical Ehrenfest urn model represented by equation(2.2.1). We
give in this section a brief review about the generalized Ehrenfest urn
model in order to show the connection between it and the Brownian
motion of an elastically bound particle.

With these conditions, the transition probabilities A;, v and p;
constitute a tridiagonal matrix P = (p; ;), where p; ; = 0V|i—j| > 2.
For ease of writing, we henceforth take

a=1 b=1 (2.3.11)
This simplification is allowed because the change of variables
T=oai,,t=p0t, ulz,t)=v,t),
transforms equation (2.1.2) into

v  afB 0% 0 .

and with 8 = 1/b, o = \/a/b, we get g—‘j = 1,08 = 1. Then the
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matrix P takes the form

P =
((1 —2u) 2u 0 0 0
& (=2p) p2-%) O 0
0 %2 (-2 p2-3) 0
0 0 u@2-3 (1-2p) F
0 0 0 n(2—%) (1—2p)
K 0 0 0 0 2u
(2.3.13)
Since

R

j=-R

the matrix P is a stochastic matrix and represents the transition
matrix of a Markov chain. For the interpretation of y(™ as a vector of
probabilities, we need the condition of preservation of non-negativity
which requires that

0O<wpu<1l/2and —R<j<R.

By using the stochastic matrix P, we can rewrite equation (2.3.4)
in the form

ymt) = pT ) (2.3.14)

Actually, the evolution of y(™ is that of a Markov chain [19] with
possible statesz_g,* gi1,---,Zr_1,Tg. In order to find the explicit
discrete solution of equation (2.3.4), we take the transpose of each
side of the matrix equation (2.3.14) and let

(y("))Tzz("), Vn eNy, z {z R,z R+1,.. zgl)l,z%)}.

Therefore, equation (2.3.14) is rewritten as

A =, p (2.3.15)

and for the numerical calculations, it is convenient to write the ma-
trix P in the form

= (I+pH), (2.3.16)
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where [ is a unit matrix and H is a square matrix whose rows sum
to zero and is defined as

(—12 2 0 0 e 0
0 22 (2—2R) (292) 0 8
R R
0 ... ... o (2-2) -2 2 0
0 0 (2-% -2 3
\o ... .. 0 0 0 2 2
(2.3.17)

By using equation (2.3.16), we rewrite equation(2.3.15) as:
2D = 0 (T + pH) . (2.3.18)

Before describing the implicit analogue of equation (2.3.15 ), we
compare this model with the discrete generalized Ehrenfest model
described by Vincze [107]. Vincze considers N balls, numbered from
1to N, K of them in an urn U;, N — K in an urn U,. In an urn
Up there are N + s slips of papers (s > 0) each of them having
probability (N + s)™! of being randomly drawn. N of the slips are
numbered from 1 to N, the other s slips are not numbered. We
repeat indefinitely the following experiment.

We draw a slip from the urn Uy. If it carries a number we move
the ball which has the same number from the urn (U; or Us) in which
it is lying to the other urn (U or Uy). If the slip is not numbered,
we leave the ball in its urn. Then we put the slip back into the
urn Uy. If we record the states as the number of balls in the urn
Ui, then there are three probabilities: N e for the next state to be

K-1%x Nis K for the next state to be K + 1, and finall

next state to be K again. If (s = 0), we have the classmal Ehrenfest
model described by many authors see [92], [51],[6], [24], [4], and [T7].

In other words, if :vsf) is the number of balls in urn U; after n-

steps, then the transition probabilities are

Dhg = P(;,;Sll = k|x§f) =k)=+% k=01,...,N,

Prg1=P@l), =k -1zl =k) = *£- k=1,2,...,N |

Prgsr = Pl =k + 1)zl = k) = f;z\’; k=0,1,2,...,N -
1,

and we have
Dr Pk k—1FDk k1 = 1 VE=0,1,2,...,N, ppp+; =0  Vj>
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This model is also called the modified Ehrenfest model, and if s = 0,
the only possible changes of states are from k& to £k — 1 or from k&
to k + 1 with probabilities k/N or (N — k)/N respectively. The
stochastic matrix representing the generalized Ehrenfest model is

P, =

s_ 1 _8 0 . e . 0
(s+1N ss+N 1 _ sl 0 0 \
5 — N vy .

0 N =% 1-= 0 .. o 0

) . o ) o .

0 0 s—I——N s—:N 1 - % 0

0 . . . 0 &= s 1 — N1

s+N H[_VN ss—|—N
\ o0 .. . . 0 0 2 =/
(2.3.19)

This matrix is the same as the matrix P defined at (2.3.13), if N is an
even number (N € 2N), R = %, and p = ﬁ The position z =
0 corresponds to N/2 balls in Uy, the position x = Rh corresponds
to N balls in urn U;, and the position £ = —Rh corresponds to 0
balls in urn U;. The absolute probability of finding k£ balls in urn
U, after n + 1 steps is written as

i1 . w N—k+1 () s w k+1
P = P(ay)y) = p”) &Hv'ﬂiz+N+AL§?N’
(2.3.20)

where £ = 0,1,..., N — 1. This equation can be interpreted as the
discrete diffusion with central linear force. In the limit, this equation
tends also to the partial differential equation(2.1.2).

2.4 The implicit scheme (© — Method)

The 6- method is also known as the weighted method. The idea of
the 6- method is to replace y,(cn) in the R. H. S. of equation (2.3.4)
by (Oyy"™ + (1 — 0)yy”) for k=5 —1,5,j+ 1. Let

1—-60=46,
where 6 € [0,1]. With # = 0, we have the explicit difference scheme,
with 8 = 1/2, the Crank-Nicholson implicit scheme, finally with

(0 = 1), the fully implicit scheme. Now applying this method on
our model, we get the equation.

2000 (I — pH) = 2™ (I + pbH) ,
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where H is defined in (2.3.17). Solving for z("*V), we get
2D =0 (I + pfH).(I — pfH)™) . (2.4.1)

Now let B
Py= (I + pfH).(I — pbH)™"),

where we want Py to represent a stochastic matrix whose rows sum
to one. This wish leads us to various conditions regarding the rela-
tions between y and 6. It is sufficient that (I — uH) is a diagonally
dominant M-matriz and the matrix (I + ufH) is a non-negative ma-
triz (see [33] and [106]). Obviously, I — ufH is a strictly diagonally
dominant M-matrix,and hence its inverse is non-negative because it
has the property of {(—), (+)}: (-) all off-diagonal elements are < 0,
(+) all rows sums are > 0. I + ufH is non-negative iff 1 —2ud > 0.
So we arrive at the conditions

O<p<1/2 if 6=0,

0<u§ﬂﬁ§ if 0<6<1,

O<pu<oo if 6=1.

Now we introduce the column vector

n={1,1,,...,1}7 .

The rows of Py must sum to 1 which is equivalent to

Po.om=m.

To show that this is true is an easy exercise. Since the sum of the
rows of H are all zero, we have H.np = 0. This leads to (I—ufH).n =
n, and (I+ubH).n = n. Therefore n = (I+ubH).n = (I+pbH).(I—
ubH).m.

Now, we prove yj(-”) = 1Vn which is equivalent to prove that
J

> z](.") = 1Vn. To this purpose, we use the simple rule: a col-
J

umn vector w = (wi,ws,---)T is a probability column vector iff
w; >0, i=1,2---, and wP.n = 1. Till now, it is proved that
(I — ufH)~! and P, are stochastic matrices. Then to complete the

) = 1, hence

R

proof, we choose the initial value y(®) such that > y](.o
j=R

2 1 = 1. So the desired relation is true for n = 0 and by induction

for all n > 0.
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It is known that the implicit scheme allows to predict the future
faster than the explicit scheme. This property is considered as the
most important advantage of the implicit scheme. Therefore, we
shall use the implicit scheme to predict the convergence of the model
as t — oo because the number of steps, calculated according to the
relation n = f, is less than the corresponding number of steps of

the explicit scheme.

2.5 Convergence to the stationary solution of
the model for time tending to infinity

Vincze, Fritz et al. and Kac (see [107], [22] and [51]) showed that
the elements of the iterated stochastic matrix P; defined in (2.3.19)
of the generalized discrete Ehrenfest model (Urn model) converge
to the binomial distribution for n — oco. This means
bo pr --- PN
lim Pf=1|: = :
n—oo
o b1 ... PN
with N

pk:2N<k>, k=0,1,...,N ,
N being the total number of balls. As N — oco. The vector p =

N

(po, - . ., pn) satisfies Y pr = 1, and is interpreted as the stationary
k=0

distribution of the Markov chain whose matrix is P;.

Both the probability of finding k£ balls in the urn U; after n +
1 steps, see equation (2.3.20), and the probability of finding the
particle at the point z; at the time instant ¢,,, see equation (2.3.7),
are interpreted as discrete approximation to a diffusion with central
linear force. In other words, by taking the limit as Rh — oo they
could be modeled by equation (2.1.2) (see [99]).

Since the stochastic matrix P defined in (2.3.13) representing the
random walk approach for equation (2.3.7) and the stochastic ma-
trix P, representing the random walk approach for equation (2.3.20)
are related to each other (see Section 3), the matrix P™ has an anal-
ogous limit as n — co and the elements of each row converge to the
binomial distribution. So far, to show the behaviour of the model
as n — oo, we form a sequence of numbers d = {d(t1),d(t2), -},
where t; <ty < --- — oco. The number d(¢;) is defined as

dt) =Y 12" — g, (25.1)
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where —R < 7 < R, and

2R
g, = 2728 ) 2.5.2
=22 (252)

The iteration index n is calculated from the relation nrt = t;, 1 =
1,2,--+ — oo, while 7 is calculated from the scaling parameter
(2.3.5).

For the Ehrenfest model, the row vector d approximates an ex-
ponential function

d(t) ~ ce

where w and c are constants and w is called the rate of convergence.
Such exponential convergence is a general property of an ergodic
Markov chain. The numerical estimation of w, shows that it seems
to tend to 1 as ¢ tends to infinity.

For calculating the sequence of numbers d, we used the The im-
plicit scheme because the number of steps in this case is less than
needed with the explicit scheme. At the numerical simulation of the
convergence of this model, we plot logd against logt because the
numbers d(t;) are so small.

We deduce from the relation (2.3.3) that the binomial vector g/h
approximates the normalized exact solution u(z) of the stationary
equation of the Ehrenfest model equation (2.1.2). By stationary
solution we mean, the solution of the system as ¢ — co. In other
words

tlirc{lo u(z,t) = u(z).

Then equation(2.1.2) with a = b = 1 takes, after replacing ‘?9—‘; by 0,
the form

_ Q%u(z) | O(zu)
© Ox? * or

The solution of this equation is

0 (2.5.3)

u(z) = 2y cre 12
T

The requirement that u(z) should be a probability density func-
tion and hence u(z) > 0 leads to ¢; = 0. To calculate the second
constant, we use the normalization condition

/00 u(z)dr =1.

—0o0
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So we get the stationary solution of the diffusion equation (2.1.2)
witha=b=1

u(z) = Le_””z/2 = Le_U(m) .

V2 V2m
In our numerical imitation of the stationary solution we plot the

vector §/h and u(z) to make visible that they approximate each
others.

2.6 Random walk simulation

We discuss in this section the random walk of the elastically bound
particle (diffusion under the action of the force bz, b > 0), which
is also known as the generalized Ehrenfest model. We deduce from
the previous sections that for a particle making a random walk on
the spatial grid z; in discrete instants ¢y, y](n) in equation (2.3.7)
represents the sojourn probability. In addition we proved that it has
the properties of conservation of total probability and preservation
of non-negativity. We proved also that the discrete redistribution
process is related to a Markov chain in which if time proceeds from
t, to t,.1, the sojourn-probabilities are redistributed according to
the transition law

y =3 pi . n €N j E[-RR], k=41

k=—o00

(2.6.1)
Here p; ;1 denote the suitable transfer coeflicients, which represent
the probability of transition from z;i, to x;. The transfer coeffi-
cients are to be found consistently with the finite-difference equa-
tion (2.3.4) equipped with the given proper initial condition. Thus
the summation in equation (2.6.1) is over all indices k for which
pj—k,; 7 0. The transfer coefficients must be non-negative and their
sum must be one. In our case p;; = v, pjj+1 = pj, Pjj—1 = A; and
pjj+k = 0V |k| > 2 (see Section 3).

The interpretation of the motion is as follows: Suppose the parti-
cle is sitting at the point z; at the time instant ¢,. Then for the next
time instant t¢,,; the particle has the opportunity to jump to the
point x;_; with transition probability A;, or to the point z;;; with
transition probability p;, or to stay at its position x; with transition
probability . So far we can imagine the sketch of the motion of the
particle as follows
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(zj-1,tp11) (), tn11) (Tit1,tni1)

)‘j Pj

(wj’ tn)

To simulate this process, we generate a uniform random numbers
u € [0,1) and then use the Monte Carlo method. Suppose the
particle is sitting at the point z; at the time instant ¢,,. Then the
particle will, as time proceeds from ¢, to t,,;, jump to the point
zj_1, &j, or zj1 depending on whether u € [0, );), u € [Aj, A; +7),
or u € [A\j +,1), respectively. The results of this simulation is
considered in the special case a = b = 1.

We found from the simulation of this model that although the
presence of the drift, the particle can freely jump far away from
its initial positions. It can reach every grid-point in the interval
[—Rh, Rh], but always returns back to the origin. In strict mathe-
matical words, it always return to the origin with probability 1.

2.7 The diffusion under the action of a general
drift

After Smulochowski had extended the theory of Einstein, Fokker and
Planck discussed the effect of the presence of a general external field
F(z) on the diffusion process. The most essential restrictions are
that F'(z) must be an odd and non-negative function for z > 0. We
assume U(z) to be defined as a symmetric differentiable potential
(i. e. U(z) = U(—=)) and increasing for > 0, and define F'(z) as

F(z) = —2U(z). Now we rewrite equation (2.1.2) as
ou(z,t)  &u(z,t) 0
5% % a2 o2 (F(z)u(z,t)) . (2.7.1)

In this general situation of a potential well, the drift is directed
towards the origin. Many forms of U(x) can affect the particle to be
attracted by the origin so they can also be studied. In this section
we consider three types of over-damped non-linear oscillators driven
by Lévy noise. The three Lévy oscillators are characterized by the
potentials (with b > 0) (see [10]):-

(1) U(z) = %, the quartic Lévy oscillator,
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(2) U(z) = (%* + &%) | d > 0, the anharmonic Lévy oscillator,
(3) U(z) = %, m = 1,2,... the strongly non-linear Lévy os-
cillator.
Therefore, equation(2.1.2) can be interpreted as the diffusion of a
particle under the action of the external linear force F'(z) = —bz,b >

0, which is derived from the quadratic potential U(z) = %.

First, we deal with the quartic Lévy oscillator. This means the
diffusion is under the effect of the central cubic force F(x) = —bz®.
In this case equation (2.7.1) is rewritten as

Ou(z, t) a32u(:c, t)

ot Ox?

where ¢ > 0. As we have done before for ease of writing we put
a = b = 1. Then by discretizing equation (2.7.2) and solving for

+ b(% (b2® u(z, 1)) , (2.7.2)

y](.nﬂ), we get
(n+1) (n) (n) (n) (n)
Y —Y% YTty 1 s ) s ()
- = 12 oh Tiv1Yje1 — TjalYj-1) -
Setting u = 7/h?%, and solving for y](."ﬂ), we get

4 4

o = -z (14 G 0 ) ol (1- G- 08 )
(2.7.3)

In analogy to the diffusion with central linear drift, y]("), n € Ny in

equation(2.7.3), represents the probability of finding the particle at

the point z;, at the time instant t,.;. We define R = (%)'/® and

require R € N, and the interval of computation as [—Rh, Rh|. The

transition probabilities from the time instant ¢,, to the time instant

tp41 are

v=(1=2u) =pj+, (2.7.4)
-3
, J
pi = (1l — ﬁ) = Djj+1 5 (2.7.5)
, 53
)‘j = /J(l + ﬁ) = Pjj-1 - (276)

The condition of non-negativity for these transition probabilities
limits the range of j, to be —R < 57 < R, R € N. With these
conditions, we see that the condition of conservation is fulfilled

y+pi+X=1Vj€{-R -R+1,--- ,R—1,R}.
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The solution of equation(2.7.2) by using the explicit scheme is
y" Y =y (I - pH),

where y(™ is a row vector, and the matrix Hisa tridiagonal matrix
whose rows sum to zero. By using the transition probabilities v, g;
and X;, we find that each j/R in the matrix H defined at (2.3.17)
is replaced by j3/R?® in the matrix H, and the matrix (I — pH) is
also a stochastic matrix (i.e. its rows sum to 1).

The partial differential equation which represents the diffusion
under the effect of an anharmonic Lévy oscillator.

Ou(z,t) 0?u(z,t) 0 5
= — . 2.7.
pn 3 + 9% ((cz + dz®) u(z,t)) (2.7.7)
Herea > 0,c > 0and d > 0. Putting a = d = ¢ = 1 and Discretizing

this equation and solving for the sojourn probability y;-‘“, we get

2 4

g = (1 =2y <1 + G+ )+ 56+ 1)3> y

eu(1-B0-0-6-0) - @

The transition probabilities to jump from the point z; at the time
instant ¢, to the point z;_q, or to z;, or finally to z;,1 at the time
instant t,.1, respectively are

; -hZ j3h4
X = (1 + 5+ 55) = pigr (2.7.9)
y=(1-2u) =p,;, (2.7.10)
, jh2 j3h4

pi=n(l - o T) = Pjj+1 - (2.7.11)

The condition of conservation is also fulfilled:

Therefore the transition probabilities form a stochastic matrix if the
following conditions are satisfied

where in this case

R —1 N (9 + /327 + h?)
[3h2(9 + v3v/27 1 7)) /° (Onty/e
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The explicit scheme and the implicit scheme of this model take the
same form as for the previous drifts. The only difference is in the el-
ements of the matrix H defined at (2.3.17). The stationary solution
of equation (2.7.1) is

u(z) =C e V@ |

where C is a constant to be determined from the normalization
condition.

In the following section, we give the numerical simulation of the
diffusion under the effect of some of these types of forces as well
as the comparison between the convergent numerical solutions as
n — oo and the stationary solutions of the differential equation.

It is worth to say that equation (2.7.1) is a special form of the
so called Fokker-Planck equation. Usually the abbreviation FPE
is used in mentioning this equation. The FPE describes normal
diffusion problems involving external fields and often modelled as

0
au(x,t) = Lppu(z,t) . (2.7.12)
Here Lpp is a linear operator often defined by its action on a function
0? 1 9 ,dU(z)
L ) =K — t — t) . (2.7.13
FPu(xa ) 012 ’U,(LC, )+ mi oz dz ’U,(LC, )) ( )
Here d({i—gf) = —F(z), represents the external field, m is the mass

of the diffusing particle, u; is the friction coefficient, and K is the
generalized diffusion constant. This equation has many applications
in the stochastic processes and physics and has been widely studied
by many authors (see for example [86], [84], [82] and [53]).

2.8 Numerical results

Figures[1-8] correspond to the motion under the action of the linear
force (i.e. F(z) = —z):

Figure [1] corresponds to the explicit scheme where y(® = {0,--- ,1,---

Figure [2] corresponds to the explicit scheme where
O ={ A ... L ... 11
Y =gri1r " o3RI 0 3RFLS .
Figure[3] corresponds to the implicit scheme with § = 1/2 where

y© ={0,---,1,---,0}.
Figure[4] corresponds to the implicit scheme with # = 1 where
y© ={0,---,1,---,0}.
Figure[5] describes the convergence of the model, in which we plot
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t against log d.

Figure[6] describes the convergence of the model, in which we plot
log t against log d.

Figures [7,8] show the approximate stationary numerical solution
and the stationary solution of the model.

Figures [9-16] describing the motion under the action of the cubic
force (i.e. F(z) = —2®):

Figure[9] corresponds to the explicit scheme where y® = {0,--- ,0,---

Figure[10] corresponds to the fully implicit scheme where y(-o) =

J
5j0,j - [—R, R]

Figure[11] correspond to the fully implicit scheme where all y](-o) =
seJ €[-R,R].

Figure[12] corresponds to the fully implicit scheme where y© =
{0.5,---,0,---,0.5}.

Figure[13] illustrates the convergence of the model, in which we plot
t against log d.

Figure[14] illustrates the convergent of the model, in which we plot
log t against log d.

Figures [15,16] show the approximate stationary solution and the
approximate solution of the model.

Figures [17-20] correspond to the simulation of the random walk
of a particle moving under the action of a linear force. Finally, we
note that all these figures are plotted for R = 10.

Figure 2.1: y(o) = Figure 2.2: y(O) =
1
{0,---,1,---,0} {ﬁ,...,m}
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Figure 2.7: approximate Figure 2.8: stationary so-

solution
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Figure 2.9:
{0,---,1,---,0}

Figure 2.11: y©

pu=—p=1,6=1
0.08
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-75 -5 -25 0 25 5 75

Figure 2.10: y(©

{0,---,1,---,0}

Figure 2.12: y©

1 1
{m’...,m} {0_5,...,0’0...’0‘5}
o 6=1,p=1,u=— 6=1,p=1,y=—
0
-5
1 15 2
-5 t
0 2 4 6 8 10 _10
-10
-15
-15
-20
-20
_25 -25
_30 -30

Figure 2.13: convergent

Figure 2.14: convergent
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