6 Anhang

6.1 Literaturverzeichnis

- [1] P. Würfel, Physik der Solarzellen (Spektrum Akademischer Verlag, Heidelberg, 2000)
- [2] <u>www.iea.org</u>.
- [3] Shell AG, <u>http://www.shell.de</u>.
- [4] B. O'Regan und M. Grätzel, Nature 353 (1991) 373.
- [5] K. Zweibel, Photovoltaic Insider's Report XII (1993).
- [6] H. Tributsch, Berichte der Bunsen Gesellschaft 81 (1977) 361-368.
- [7] H. Tributsch und J. C. Bennett, Journal of Electroanalytical Chemistry *81* (1977) 97-111.
- [8] H. Tributsch, Farady Diskussions 70 (1980) 189.
- [9] F. Fan, H. S. White, B. L. Wheeler und A. J. Bard, J. Am. Chem. Soc. *102* (1980) 5142-5148.
- [10] H. Tributsch, Solar Energy Materials 1 (1979) 257.
- [11] R. Tenne und A. Wold, Appl. Phys. Lett. 47 (1985) 707-709.
- [12] O. N. Srivastava und G. Prasad, J. Phys. D: Appl. Phys. 21 (1988) 1028-1030.
- [13] F. Baumgartner, <u>www.ntb.ch/files/0/2772/thin_film_oct_99_baumgartner.pdf</u>.
- [14] V. Weiss, W. Bohne, J. Röhrich, E. Strub, U. Bloeck, I. Sieber, K. Ellmer, R. Mientus und F. Porsch, Journal of Applied Physics 95 (2004) 7665.
- [15] J. Pütz, Nasschemische Aufbringung von MoSx-Dünnschichten über Alkyldiammonium-tetrathiomolybdate, Dissertation (Universität des Saarlandes, Saarbrücken, 2002).
- [16] G. Schlichthorl, Untersuchung der Ladungsträgerkinetik in photoelektrochemische Systemen mit lichtinduzierter Mikrowellenreflektion, Dissertation (Freie Universität, Berlin, 1991).
- [17] H. Tributsch, G. Schlichthorl und L. Elstner, Electrochimica Acta *38* (1993) 141-152.
- [18] G. Schlichthorl und H. Tributsch, Electrochimica Acta 37 (1992) 919-931.
- [19] F. Wünsch, Untersuchung der Ladungsträgerkinetik energiewandelnder Halbleitergrenzflächen mittels kombinierter Mikrowellenreflexions- und Photostrommessungen, Dissertation (Technische Universität, Berlin, 1997).
- [20] H. Tributsch, Structur and bonding 49 (1982) 127.
- [21] H. Wise, Polyhedron 5 (1986) 145-150.
- [22] F. Wypych, T. Weber und R. Prins, Chem. Mater. 10 (1998) 723-727.
- [23] J. Bauer und F. Tvrz, Der Kosmos Mineralienführer (Gondron Verlag, Bindlach, 1993) 131.
- [24] A. R. Landsdown, Molybdenum Disulphide Lubrication, 1 ed. (Elsevier, Amsterdam, 1999)
- [25] H. Bergmann, B. Czeska, I. Haas, B. Mohsin und K.-H. Wandner, Mo-Molybdenum, Compounds with S. (Springer-Verlag, Berlin, 1992; Vol. B7)
- [26] A. B. Seddon, S. N. B. Hodgson und M. G. Scott, J. Mater. Sci. 26 (1991) 2599-2602.

- [27] B. V. A. Goetzenberger, J. Knobloch, Sonnenenergie: Photovoltaic (Teuber, Stuttgard, 1994)
- [28] W. Schottky, Zeitschrift f. Physik 113 (1939) 367.
- [29] R. Memming, Semiconductor Electrochemistry (Wiley-VCH, Weinheim, 2001)
- [30] M. Etman und M. Neumann-Spallart, Journal of Electroanalytical Chemistry *169* (1989) 411-422.
- [31] J. Bardeen, Phys. Rev. 71 (1947) 717.
- [32] L. J. Brillson, Surf. Sci. Reports 2 (1982) 123.
- [33] M. S. Tyagi, Introduction to Semiconductor Materials and Devices (John Wiley & Sons, New York, 1991) 275.
- [34] J. H. Werner und U. Rau, Silicon-Based Millimeter-Wave Devices; (edited by J. F. Luy und P. Russer); Springer (Berlin, 1994); 93-96.
- [35] R. A. Marcus, Ann. Rev. Phys. Chem. 15 (1964) 155.
- [36] H. Gerischer, (Academic Press, New York, 1970; Vol. 4 A) 463.
- [37] V. G. Levich, (Wiley Interscience, New York, 1966; Vol. 4) 249.
- [38] H. Gerischer, Z. Phys. Chem. 26 (1960) 232.
- [39] H. Gerischer, Z. Phys. Chem. 27 (1961) 48.
- [40] R. Memming, (Plenum Press, New York, 1983; Vol. 7) 529.
- [41] H.-J. Lewerenz und H. Jungblut, Photovoltaik (Springer Verlag, Berlin, 1995)
- [42] R. Tenne, A. Wold und D. Mahalu, Phys. Rev. B 38 (1988) 38.
- [43] W. Kautek, H. Tributsch und H. Gerischer, J. Electroanal. Chem. *127* (1980) 2471.
- [44] *Microwave (Photo)electrochemistry*; H. Tributsch, Ed.; Kluwer Academic/Plenum Publishers, 1999; Vol. 33, 435-522.
- [45] G. Petermann, H. Tributsch und G. Bogomolni., J. Chem. Phys. 78 (1982) 1579-1584.
- [46] W. W. Gärtner, Phys. Rev. *116* (1959) 4292.
- [47] F. Levy und A. M. Goldberg, Philos. Mag. 32 (1975) 367.
- [48] J. A. Wilson und A. D. Yoffe, Adv. Phys. 18 (1969) 193.
- [49] R. V. Kasowski, Phys. Rev. Lett. 30 (1973) 1175-1178.
- [50] R. Coehoorn, C. Haas, J. Dijkstra, C. J. Flipse, R. A. d. Groot und A. Wold, Phys Rev B Condens Matter. *35* (1987) 6195-6202.
- [51] W. Jaegermann und T. Mayer, Surface Science 335 (1995) 343-352.
- [52] W. Jaegermann, Surface Studies of Layered Materials in Relation to Energy Converting Interfaces. in *Photoelectrochemistry and Photovoltaics of Layered Semiconductors*; (edited by A. Aruchamy); Kluwer Academic Publishers (Dordrecht, 1992); 195.
- [53] D. Haneman und H. Tributsch, Chemical Physics Letters 216 (1993) 81-86.
- [54] E. Bucher, Solid state juncions of layered semiconductors in Photoelectrochemistry and Photovoltaics of Layered Semiconductors; (edited by A. Aruchamy); Kluwer Academic Publishers (Dordrecht, 1992); 1.
- [55] M. K. Agarwal und G. H. Yousefi, J. Mat. Sci. Lett. 9 (1990) 686-687.
- [56] W. Kautek, J. Phys. Chem. 30 (1980) 519.
- [57] W. Kautek, Solid State Physics 15 (1982) L519.

[58]	R. Tenne, A. Wold und M. S. Wrighton, J. El. Chem. Soc. 129 (1982).
[59]	W. Kautek, H. Gerischer und H. Tributsch, Ber. Bunsenges. Phys. Chem. 83 (1979) 1000-1008.
[60]	M. S. Antonious, M. Etman und M. Savy, Journal of Electroanalytical Chemistry <i>242</i> (1988) 191-202.
[61]	H. J. lewerenz, H. Gerischer und M. Luebke, J. Electrochem. Soc. <i>131</i> (1984) 100-104.
[62]	W. Kautek und H. Gerischer, Electrochimica Acta 26 (1981) 1771-1778.
[63]	F.Decker und B. Scrosati, in <i>Photoelectrochemistry and Photovoltaics of Layered Semiconductors</i> ; (edited by A. Aruchamy); Vol. 14 Kluwer Academic Publishers (Dordrecht, 1992); 121-154.
[64]	B. A. Parkinson, T. E. Furtak, D. C. Canfield, K. Kam und G. Kline, Discussions of the Faraday Society <i>70</i> (1980) 233.
[65]	G. Kline, K. Kam und B. A. Parkinson, Solar Energy Materials 4 (1981) 301- 308.
[66]	G. Razzini, M. Lazzari, L. P. Bicelli, F. Levy, L. De Angelis, F. Galluzzi, E. Scafe, L. Fornarini und B. Scrosati, Journal of Power Sources 6 (1981) 371- 382.
[67]	H. Tributsch, J. Electrochem. Soc. 133 (1986) 339.
[68]	C. Levy und R. Tenne, Modifiaction of surface properties of layered semiconductors in <i>Photoelectrochemistry and Photovoltaics of Layered Semiconductors</i> ; (edited by A. Aruchamy); Vol. 14 Kluwer Academic Publishers (Dordrecht, 1992); 155.
[69]	A. J. Bard und F. Fan, J. Eletrochem. Soc. 128 (1980) 945.
[70]	G. Razzini, Journal of Power Sources 7 (1982) 275-280.
[71]	H. Gerischer, J. Electroanal. Chem. 150 (1983) 553.
[72]	P. Salvador und G. Campet, Phys. Rev. B 38 (1988) 9881.
[73]	R. Tenne, W. Spahni, G. Calzaferii und A. Wold, Journal of Electroanalytical Chemistry <i>189</i> (1985) 247-256.
[74]	R. Tenne und G. Hodes, Appl. Phys. Lett. 37 (1980) 428-430.
[75]	R. Tenne, R. Haak und R. Triboulet, Ber. Bunsenges. Phys. Chem. 91 (1987) 597-599.
[76]	A. M. C. P. Salvador, A. Mir, J. Phys. Chem. 100 (1996) 760-768.
[77]	A. M. Chaparro, P. Salvador und A. Mir, Journal of Electroanalytical Chemistry <i>422</i> (1997) 35-44.
[78]	A. J. Bard und H. S. White, J. Electrochem. Soc. 129 (1982) 265.
[79]	G. Djemal und N. Müller, Solar Energy Materials 5 (1981) 403.
[80]	S. J. Lippard und J. M. Berg, Bioanorganische Chemie (Spektrum Akademischer Verlag, Heidelberg; Berlin; Oxford, 1995)
[81]	I. Daizadeh, D. M. Medvedev und A. A. Stuchebrukhov, Mol Biol Evol 19 (2002) 406-415.
[82]	Y. Tian, M. Shioda, S. Kasahara, T. Okajima, L. Mao, T. Hisabori und T. Ohsaka, Biochimica et Biophysica Acta (BBA) - General Subjects <i>1569</i> (2002) 151-158.

[83] T. Rajh, A. E. Ostafin, O. I. Micic, D. M. Tiede und M. C. Thurnauer, J. Phys.

	Chem. 100 (1996) 4538-4545.
[84]	T. Rajh und M. Thurnauer, Semiconductor assisted metal deposition for nanolithography applications The University of Chicago, (United States of America, 2001) 6,271,130.
[85]	F. Mauge, J. Lamotte, N. S. Nesterenko, O. Manoilova und A. A. Tsyganenko, Catalysis Today <i>70</i> (2001) 271-284.
[86]	A. A. Tsyganenko, F. Can, A. Travert und F. Mauge, Applied Catalysis A: General <i>268</i> (2004) 189-197.
[87]	F. Marken, A. Neudeck und A. M. Bond, Cyclic Voltammetry in <i>Electroanalytical Methods: Guide to Experiments and Applications</i> ; (edited by F. Scholz); Springer-Verlag (New York, 2002).
[88]	J. Heinze, Angew. Chem. 96 (1984) 832.
[89]	A. J. Bard und L. R. Faulkner, Electrochemical Methods. Fundamentals and Applications (Wiley, New York, 1980)
[90] [91]	K. Heyrovsky, Principles of Polarography (Academic Press, New York, 1966) ISL, http://www.hmi.de/isl/ana/erda-1.html.
[92]	J. R. Tesmer und M. Nastasi. Handbook of Modern Ion
Beam	Materials Analysis (Materials Research Society, Pittsburg, 1995)
[93]	L. J. van der Pauw, Philips Technical Review 26 (1958/59) 220.
[94]	E. Benavente, M. A. Santa Ana, F. Mendizabal und G. Gonzalez, Coordination Chemistry Reviews 224 (2002) 87-109.
[95]	G. A. Scholz und R. F. Frindt, Materials Research Bulletin <i>15</i> (1980) 1703- 1716.
[96]	S. Srivastava, Materials Research Bulletin 26 (1991) 631-639.
[97]	R. Paul, Halbleiterphysik (Dr. Alfred Hüthig Verlag, Heildelberg, 1975)
[98]	A. Barkschat, Investigation of interfaces characterized by metal-centered electron transfer using electrochemical imaging techniques, Dissertation (Freie University, Berlin, 2004).
[99]	S. M. Ahmed, Electrochimica Acta 27 (1982) 707-712.
[100]	H. Tributsch, Structure and bonding 49 (1982) 127-175.
[101]	W. Jaegermann und D. Schmeißer, Surf. Sci. Reports 165 (1986) 143.
[102]	H. Gerischer und W. Kautek, J. Electroanal. Chem. 137 (1982) 239.
[103]	A. M. Bond, Electroanalysis 13 (2001) 1475.
[104]	T. Liu, J. Am. Chem. Soc. 124 (2002) 10942.
[105]	A. J. McEvoy, M. Etman und M. Hemming, Journal of Electroanalytical Chemistry <i>190</i> (1985) 225-241.
[106]	M. J. McKelvy und W. S. Glaunsinger, Annual Review of Physical Chemistry <i>41</i> (1990) 497.
[107]	N. Imanishi, M. Toyoda, Y. Takeda und O. Yamamoto, Solid State Ionics 58 (1992) 333-338.
[108]	Fernando Mendizábal, María Angélica Santa Ana, Eglantina Benavente und G. González, Journal of the Chilean Chemical Society <i>48</i> (2003).
[109]	G. Razzini und L. P. Bicelli, Surf. Technol. 20 (1983) 383.
[110]	H. Tributsch, Electronic Structure, Coordination Photoelectrochemical

Pathways and Quantum Energy Conversion by layered Transition Metal Dichalcogenides in *Photoelectrochemistry and Photovoltaics of Layered Semiconductors*; (edited by A. Aruchamy); Vol. 14 Kluwer Academic Publishers (Dordrecht, 1992); 83-119.

- [111] N. Lewis und A. Fajador, Science 274 (1996) 968.
- [112] B. Müller, M. Schubert und C. Oughourlian, Materials and Corrosion *51* (2000) 642.

6.2 verwendete Chemikalien, Materialien und technische Geräte

6.2.1 Materialien:

- Silber Epoxyd-2-Komponentenkleber von Panacol (Elecolit 3025)
- Indium Gallium Eutektikum am Hahn-Meitner-Institut hergestellt
- Platinpaste von SPI supplies; 569 East Gay Street, West Chester, PA 19380, USA; http://www.2spi.com/
- Epoxydkleber: Araldit Rapid, Zweikomponenten-Alleskleber auf Epoxidharzbasis.
- Scrintec 901: besitzt bei der Verarbeitung eine fließfähige Konsistenz und vernetzt zu einem hochdispersiven roten Siliconkautschuk.

6.2.2 Chemikalien:

- Acetonitril von Petrochem (HPLC grade, 99,9%).
- **p-Benzochinone** (M=108 g/Mol) von Merck (p.a.).
- **p-Hydroydrochinone** (M= 110 g/Mol) von Janssen Chemika (p.a.).
- L-Cystein (M=121 g/Mol) von Fluka (Mikro select >99,5).

Abb. 90 L-Cystein

• Natriumdodecylsulfat (M=288 g/Mol) von Fluka (p.a.)

Abb. 91 Natriumdodecylsulfat

- EDTA, (M=336 g/Mol)Ethylendiamintetraacetetdinatriumsalz von Aldrich
- **Eisen(III)chlorid** (M=162 g/Mol) von Merck (98 %)
- Eisen(II)chlorid Tetrahydrat (M=198 g/Mol) von Fluka (98 %)
- Ferrocen (M=186 g/Mol) von Fluka (purum 98 %)
- Hexacyanoferrat (rotes und gelbes Blutlaugensalz)
 - K₃[Fe(CN)₆] (Kaliumferricyanid) (M=329 g/Mol) von Merck (p.a.)
 - K₄[Fe(CN)₆] (Kaliumferrocyanid) (M=422 g/Mol) Trihydrat von Merck (p.a.).
- Iod (M=254 g/Mol) von Ferak (doppelt sublimiert).
- Kaliumiodid (M=166 g/Mol) von Merck (p.a.).
- Kaliumsulfat (M=174 g/Mol) von Merck (p.a.).
- Methionin (M=149 g/Mol) von Fluka (Mikro select >99,5 %).

- Molybdän(VI)oxid (M=144 g/Mol) von Aldrich (99,5 %)
- NAT (Tris(carboxymethyl)amine) (M=191 g/Mol)von Aldrich (99 %).

$$\begin{array}{c} O \\ HO - C - CH_2 - N \\ CH_2 - C - OH \\ CH_2 - C - OH \\ O \end{array}$$

- Natron- und Kalilauge beide von Merck.
- **1-Octanthiol** (Dichte²⁰: 0,84 g/cm³,M= 146 g/Mol) von Aldrich (98 %).
- **Perchlorsäure** (Dichte¹⁵: 1,53 g/cm³) von Merck.
- Schwefelsäure (Dichte²⁰: 1 g/cm³) von Merck.
- **TBAP** (Tetra-n-butylammoniumperchlorate) (M=341 g/Mol) von Merck (p.a.)
- Natriumthiocyanat (M=81 g/Mol) von Aldrich (98 %)
- Tween 20 (Poly-n-oxyethylenesorbitan-monolaureate, n ca. 20) (Dichte²⁵: 1.1 g/cm³, M=1222 g/Mol) von Aldrich ().

Tween 80 (Poly-n-oxyethylenesorbitan-monooleate, n ca. 20) (Dichte²⁵: 1.1 g/cm³) von Fluka.

$$\begin{array}{cccc} HO(CH_{2}CH_{2}O)_{w} & (OCH_{2}CH_{2})_{x}OH & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

Abb. 95 Tween 80

• **Tween 85** (Poly-n-oxyethylenesorbitan-trioleate, n ca. 20) (Dichte²⁵: 1.1 g/cm³) von Aldrich.

6.2.3 technische Geräte:

Verwendete LEDs und Lampen:

- Laser Diode Controler von Profile, Model LDC 200m mit:
 - 626 nm LED von Conrad: superhelle LED: Nr. 186597-14 mit 6500 mcd
 - 875 nm LED von Conrad: Nr. 185809-14
- Schott KL 1500 mit halogen reflector lamp HLX 64634 EFR 15 V, 150 W, 3200 K von Osram.
- Xenonlape, 450 Watt, XBO/W von Osram.

Potentiostat:

• Modell :POS 73 von Bank

Lock In:

- Modell DSP830 von Stanford Research System
- Modell 5205 von EG&G

Mikrowellenquelle:

 Millimeter Oszillator Company, Model 28MT100-35 S/N 105 verwendeter Bereich: 36000 Hz (160 mW)

6.2.4 Kristallchargen:

- c12 Ampulle Ø 20, 2, 190mm Transportmittel I₂ (7.3mg/cm3), 2 g MoS₂ + 25 mg MoO₃
- r5: Ampulle Ø 30, 2, 110mm, Transportmittel Br₂, 2 g MoS₂ + MoO3 (25mg) Temperaturgradient 930/890°C
- r9: Ampulle Ø 30, 2, 75mm, 2 g MoS₂ +MoO3 (25mg) Transportmittel Br₂; Temperaturgradient 930/890°C
- r12: Ampulle Ø 30, 2, 75mm, 2 g MoS₂ + MoO3 (25.7mg) Transportmittel Br₂;,Temperaturgradient 900/850°C
- r14: Ampulle Ø 30, 2, 75mm, 2 g MoS₂ + MoO3 (28mg) Transportmittel Br₂; Temperaturgradient 900/850°C
- r15: Ampulle Ø 30, 2, 75mm, 2 g MoS₂ + MoO2 (26mg) Transportmittel Br₂; Temperaturgradient 900/850°C

6.3 Abbildungsverzeichnis

Abb.	1 Wirkungsgrade verschiedener Solarzellen [13].	1
Abb.	2 Struktur, Kristallsymmetrie und Energieverteilung der d-Zustände einiger	
	Schichtgitterverbindungen nach [20].	5
Abb.	3 Darstellung eines Schichtgitters der VI Nebengruppe mit Bindungsabständen und möglicher	ı
	Besetzungslücken zwischen den Van-der-Waals-Schichten [21].	6
Abb.	4 Ein auf Quarzgestein natürlich gewachsener MoS_2 Kristall. Deutlich zu erkennen die	
	hexagonale Kristallstruktur (rot umrandet) [23].	7
Abb.	5 Energieabhängigkeit der a) Zustandsdichte b) der Fermiverteilung und c) der	
	Ladungsträgerkonzentrationen in einem intrinsischen Halbleiter (aus [27]).	.10
Abb.	6: Energieschema a) der Donorzustandsdichte, b) die Lage des Fermi-Niveaus und c) die	
	Ladungsträgerkonzentration eines n-Halbleiters (aus [27])	. 10
Abb.	7 Angleichung der Fermi-Niveaus bei Kontakt von Metall und Halbleiter.	. 14
Abb.	8 Bildung eines Kontaktes zwischen Metall und Halbleiter mit ähnlichen Lagen des Fermi-	
	Niveaus	. 15
Abb.	9 Darstellung eines Rückkontaktes eines hochdotierten Halbleiters mit einem Metall.	. 15
Abb.	10 Einstellung des Kontaktes zwischen einem Metall und ein Halbleiter mit vielen	
	Oberflächenzuständen	. 16
Abb.	11 Kontakt zwischen einem p- und einem n-Halbleiter (aus [27]).	. 16
Abb.	12 Verteilung der Zustandsdichte des Redoxelektrolyten. Bei Kontakt mit einem Halbleiter glei	cht
	sich das Fermi-Niveau der Halbleiters dem E _{R,O} an	.21
Abb.	13 Energetische Lage der Bänder einiger Halbleiter und der Redoxpotentiale gegen die	
	Vakuumenergie und gegen die NHE Scala (leicht modifiziert aus [41])	.22
Abb.	14 Bildung der quasi-Fermi-Niveaus unter Belichtung.	. 23
Abb.	15 Hier sind die Verschiedenen Prozesse die nach Generation der Ladungsträger einsetzen	
	dargestellt (nach [16]).	.24
Abb.	16 Mechanismen die zum Abbau der gebildeten Überschussladungsträger führen	. 25
Abb.	17 Geometrische Einteilung eines n-Halbleiters. Rot eingezeichnet der angenäherte Verlauf der	es
	elektrischen Feldes in der Raumladungszone nach (II.35)	. 27
Abb.	18 Elektromagnetisches Spektrum.	. 34
Abb.	19 Wechselwirkung und Reflektion der Mikrowellenstrahlung	. 36
Abb.	20 Prinzip der (gechoppten) modulierten Anregung	. 37
Abb.	21 Quantenausbeuten von p-Wolframdiselenid bei 626 nm Beleuchtung (1,5 mW/cm ²) in	
	Eisen(III) in 0,5 M Schwefelsäure	.40
Abb.	22 Berechnete Eindringtiefe der Belichtung für verschiedene Absorptionskoeffizienten nach de	em
	Lambert-Beerschen-Gesetz.	.41
Abb.	23 Quantenausbeute bei 875 nm Anregungswellenlänge (0,9 mW/ cm ²) bzw. bei 626 nm	
	Anregungswellenlänge (0,9 mW/ cm ²) mit 0,25 M Eisen(II)/Eisen(III) in 0,5 M Schwefelsäure u	Ind
	einer Vorschubgeschwindigkeit von 20 mV/s	. 42
Abb.	24 Verschiedene Verlustprozesse von Ladungsträgern an Oberflächenzuständen. 1) Transpor	rt

	von Elektronen über Defekte in der Rasumladungszone. 2) Rekombination in der	
	Raumladungszone und 3) Einfangen von Ladungsträgern (trappen) von Ladungsträgern (aus	
	[41])	44
Abb.	25 Darstellung der Ablenkung von lichtinduzierten Minoritätsladungsträgern eines n-	
	Schichtgitterhalbleiters. c_{\perp} und $c_{ }$ stellen die Minoritätsladungsträgerkonzentrationen dar (aus	
	[41])	45
Abb.	. 26 Adsorption von A) 1,2 Diphenylphoshinoethan, B) Phenylisocyanid und C)	
	Dimethylditiocarbamat an ungesättigten Molybdänbindungen (aus [64])	46
Abb.	. 27 Semi-Intercalation von tertiär-Buthyl-pyridin (aus [64])	47
Abb.	28 links: Kristall über der Eintrittsöffnung für die Mikrowellenreflexion. rechts: fertige	
	photoelektrochemische Zelle	51
Abb.	29 Messanordnung für den Rückkontakttest. Kontakt 1 sollte mit einem Material hergestellt	
	werden, b	52
Abb.	30 Das Hydrochinone/ Chinone Redoxsystem	54
Abb.	31 Eine typische CV Kurve mit a) Potentialänderung, b) Antwortsignal gegen die Zeit und c)	
	Antwortsignal gegen das angelegte Potential.	56
Abb.	. 32 Schematischer Aufbau einer DEMS Messzelle, mit Arbeitselektrode (WE), Gegenelektrode	
	(CE), Referenzelektrode (REF) und Massenspektrometer (MS).	58
Abb.	33 Aufbau der elektrochemische Zelle für kombinierte Mikrowellenreflexions- und	
	photoelektrochemische Messungen	61
Abb.	34 Apparativer Aufbau für die kombinatorische Messung von Photostrom und	
	Mikrowellenreflexion. Der Strahlengang der Mikrowellenstrahlung ist rot eingezeichnet	61
Abb.	35 Herleitung der Bragg Bedingung.	63
Abb.	. 36 Prinzip der ERDA [91]	64
Abb.	. 37 Messanordnung für die Hall-Spannung	67
Abb.	38 Methode nach Van Der Pauw	68
Abb.	39 Kontakttest vom synthetischen Kristall R5 im Metall(1)/Halbleiter/Metall(2) Anordnung mit	
	Metall(1): Platin (ca. 25 mm ²) und Metall(2):Platin (5 mm ²). R= 12,5 Ω cm ²	71
Abb.	40 Kontakttest vom synthetischen Kristall c12 im Metall(1)/Halbleiter/Metall(2) Anordnung mit	
	Metall(1): Platin (ca. 30 mm ²) und Metall(2):Platin (6 mm ²). R= 9,9 Ω cm ²	72
Abb.	41 Rückkontakttest eines natürlichen MoS ₂ Kristalls mit verschiedenen Kontaktmaterialien	73
Abb.	42 AFM Aufnahme eines synthetischen Kristalls. Deutlich zu erkennen Kristallabbruchkanten ar	า
	denen sich die dangling bonds befinden	79
Abb.	43 TEM Aufnahme einer Schraubversetzung auf der Kristalloberfläche. (EHT 1kV)	80
Abb.	44 Oberfläche eines synthetischen MoS2 Kristalls mit Tween 80 modifiziert. An den Stufen lager	rt
	sich diese Verbindung bevorzugt an	81
Abb.	45 Strom/Spannungskurve eines natürlichen Kristalls (SPI) in 0,5 Kaliumsulfatlösung.	
	Vorschubgeschwindigkeit (2 mV/s) bei einer Elektrodenoberfläche von 12 mm ² und einer	
	zweiminütigen anodischen Vorpolarisierung bei 1,2 V vs. SCE.	83
Abb.	46 Strom/Spannungskurve desselben Kristalls unter analogen Bedingungen wie in Abb. 45 mit	

	MoO ₃ ohne Vorpolarisierung
Abb	47 Natürlicher Kristall SPI: A) Darstellung der Strom/Spannungskurve (drei Zyklen) gegen die
	Zeit. Die Bereiche der anodischen Zersetzung (schwarze Pfeile) und der kathodischen
	Wasserstoffbildung (rote Pfeile) sind eingezeichnet. B) Simultan zu den Strom/Spannungskurven
	detektierte gasförmige Produkte. (Messung in 0,5 M Schwefelsäure mit 20 mV/s
	Vorschubgeschwindigkeit gegen NHE. Hier wurde mit dem angelegten Potential teilweise stehen
	geblieben.)
Abb	48 Natürlicher Kristall (Australien) in 0,5 M Schwefelsäure. Nur die Fläche parallel zur c-Achse
	des Kristalls ist dem Elektrolyt exponiert. oben: Strom/Spannungskurve. unten: Detektierte
	gasförmige Zersetzungsprodukte. (Vorschubgeschwindigkeit 20 mV/s gegen NHE)88
Abb	49 Tantaldisulfid in 0,5 M Schwefelsäure. oben: Strom/Spannungskurve. unten: Detektierte
	gasförmige Zersetzungsprodukte. Deutlich zu erkennen die kathodische
	Schwefelwassertstoffbildung. (Vorschubgeschwindigkeit 20 mV/s gegen NHE)
Abb	50 Titandisulfid in 0,5 M Schwefelsäure. oben: Strom/Spannungskurve. unten: Detektierte
	gasförmige Zersetzungsprodukte. (Vorschubgeschwindigkeit 20 mV/s gegen NHE)90
Abb	51 Hysterese einer photoelektrochemischen Strom/Spannungskurve in 0,5 M Kaliumsulfat mit 0,1
	M Fe(II)/(III). 1 Hinzyklus; 2 Rückzyklus. Anregung 626 nm (0.7 mW/cm ²) bei einer
	Vorschubgeschwindigkeit von 20 mV/s93
Abb	52 Photodegradation eines natürlichen Kristalls in 0,5 M Kaliumsulfat. Messungen nach einem,
	20 und 50 Zyklen bei einer Vorschubgeschwindigkeit von 5 mV/s und unter hoher
	Beleuchtungsdichte (Halogen Weisslicht: 8,2 mW/cm ²)
Abb	53 Der Potentialrücklauf aus Abb. 5294
Abb	54 Angriffspunkt für das Photoätzen einer Schichtgitterverbindung95
Abb	55 synthetischer Kristall R5 unter Halogenbeleuchtung (8,7 mW/cm ²) bei pH=2 und pH=14 in 0,5
	M Kaliumsulfatlösung
Abb	56 Photoätzen eines synth. MoS2 Kristalls (R5, 9 mm ²) mit Perchlorsäure bei 1,2 V und einer
	Beleuchtung von 626 nm (0,5 mW/cm ²). Inset stellt den Photoätzprozess nach 35 min dar97
Abb	57 Probe R5 vor und nach dem Photoätzprozess (900 s bei 1,2 V in 1 N HCLO ₄ bei 0,5 mW/cm ²
	mit 626 nm Anregung). Diese Messung wurde in 0,5 M Kaliumsulfat mit 0,1/0,001 M Kl/l ₂ bei 626
	nm Anregung (0,5 mW/cm ²) und 20 mV/s Vorschub durchgeführt
Abb	58 Änderung der Konzentration des Redoxelektrolyten bei 1,2 V vs. SCE und gleichzeitige
	Änderung des Photostromes (—) und der Mikrowellenreflexion () bei 626 nm Beleuchtung in
	lod/ lodid
Abb	59 c12 in 0,005 M Hexacyanoferrat und 0,25 M Hexacyanoferrat. 626 nm Beleuchtungsintensität
	(0,7 mW/cm ²) Vorschubgeschwindigkeit 30 mV/s101
Abb	60 p-WSe ₂ in 0,5 M Schwefelsäure mit unterschiedlichen Fe ²⁺ /Fe ³⁺ Konzentrationen bei 1,5
	mW/cm ² Anregungsdichte und einer Vorschubgeschwindigkeit von 20 mV/s102
Abb	mW/cm ² Anregungsdichte und einer Vorschubgeschwindigkeit von 20 mV/s
Abb Abb	mW/cm ² Anregungsdichte und einer Vorschubgeschwindigkeit von 20 mV/s

	Oberfläche)
Abb.	63 Konzentrationsreihe der Probe R5 in Acetonitril (0,1 M TBAP) mit 626 nm Anregung (1
	mW/cm ²) 1. Kein Redoxsystem 2. 0,001/0,1 lod/lodid 3. 0,005/0,5 lod/lodid (Vorschub 30 mV/s)
Abb.	64 Probe R5 in Acetonitril (0,1 M TBAP) mit 626 nm Anregung (1 mW/cm ²) 1. Kein Redoxsystem
	2. + 5µl H ₂ O (Vorschub 30 mV/s)
Abb.	65 Probe R5 in Acetonitril (0,1 M TBAP) mit 626 nm Anregung (0,9 mW/cm ²) 1. 0,005 M/0,5 M
	lod/lodid 2. + 5 μ l H ₂ O (Vorschub 30 mV/s)
Abb.	66 Tween 80
Abb.	67 XRD von Kristalliten der Charge R12, die mit verschiedenen Tween Verbindungen modifiziert
	wurden ([001] Reflex)
Abb.	68 XRD von modifiziertem mikrokristallinem Molybdändisulfid ([001] Reflex)
Abb.	69 Ein natürlicher Kristall (Australien) wurde zuerst mit Tween 80 und anschließend mit Tween
	20 modifiziert. (Fläche parallel zur c-Achse 12 mm ² , in 0,5 M Kaliumsulfat,
	Vorschubgeschwindigkeit 20 mV/s)
Abb.	70 Dunkelstrom eines natürlichen Kristalls (SPI), der mit Tween 80 modifiziert wurde (0,5 M
	Kaliumsulfatlösung, Vorschubgeschwindigkeit 20 mV/s bei einer Oberfläche von 25 mm ²) 113
Abb.	71 Photostrom und Mirkowellenreflexion von R5 in 0,5 M Kaliumsulfat nach Modifikation mit
	Tween 80 unter Halogenbeleuchtung (8,7 mW/cm ²) bei einer Vorschubgeschwindigkeit von 15
	mV/s und einer Probenoberfläche von 14 mm ²
Abb.	72 Kristall c12 nach Modifikation mit Tween 80 (15h) unter Halogenbeleuchtung (8,7 mW/cm ²)
	bei einer Vorschubgeschwindigkeit von 20 mV/s in 0,2 M Hexacyanoferratlösung
Abb.	73 Ethylendiamintetraessigsäure
Abb.	74 Dunkelströme nach Adsorption von EDTA (14 h) an einem natürlichen Kristall (SPI) in 0,5 M
	Kaliumsulfat (Vorschubgeschwindigkeit 10 mV/s bei einer Oberfläche von 25 mm ²) 117
Abb.	75 R5 in 0,5 M K_2SO_4 nach der Modifikation mit EDTA (12 h) bei einer Vorschubgeschwindigkeit
	von 20 mV/s und 626 nm Beleuchtung (0,8 mW/cm ²)
Abb.	76 Probe eines synthetischen Kristalls mit EDTA modifiziert (12 h) mit 0,1 M Hydrochinone in 0,5
	M K ₂ SO ₄ bei einer Vorschubgeschwindigkeit von 10 mV/s und 626 nm Beleuchtung (1 mW/cm ²).
Abb.	77 L-Cystein
Abb.	78 Dunkelstromkennlinie eines natürlichen Kristalls in 0,5 M K_2SO_4 bei dem nur die Fläche
	parallel zu der c-Achse den Elektrolyten exponiert wurde (Vorschubgeschwindigkeit 20 mV/s).
Abb.	79 XPS des 2p Schwefelpeaks von Cystein auf n-Molybdänditellurid
Abb.	80 Photospannungsmessung eine natürlichen Kristalls vor und nach der Modifikation mit Cystein.
A 1- 1	
ADD.	81 naturiicner MoS ₂ Kristali (SPI) der 14 n mit Cystein modifiziert wurde. Messung in 0,5 M
	Kallumsultatiosung mit 0,005 M Schwetelsaure. Vorschubgeschwindigkeit 20 mV/s bei einer
	Anregungsdichte von 8,7 mW/cm ⁻ mit Halogen Weisslicht

Abb.	82 Wechselwirkungsmöglichkeiten von Cystein an Molybdändisulfid	125
Abb.	83 Photostrom und Mikrowellenreflexion eines natürlichen Kristalls (SPI) 0,1 M K ₃ /K ₄ [Fe(CN) ₆]	in
	0,5 M K ₂ SO ₄ (Vorschub 20 mV/s, Xenon Lampe)	126
Abb.	84 Quantenausbeute bei 875 nm Anregungswellenlänge (0,9 mW/ cm²) bzw. bei 626 nm	
	Anregungswellenlänge (0,9 mW/ cm ²) mit 0,25 M Eisen(II)/Eisen(III) in 0,5 M Schwefelsäure u	nd
	einer Vorschubgeschwindigkeit von 20 mV/s	127
Abb.	85 R12 in 0,5 M Kaliumsulfatlösung mit 0,3 M Hexacyanoferrat. 875 nm mit einer Intensität 0,8	88
	mW/cm ² (2.7 *10 ¹⁵) bei einer Vorschubgeschwindigkeit von 20 mV/s	128
Abb.	86 Natürlicher Logarithmus der Mikrowellenreflexion aus Abb. 85	130
Abb.	87 synthetische Kristall r15 bei 875 nm in 0,5 M Kaliumsulfat mit 0,001/0,1 M lod/lodid (0,4	
	mW/cm ² bei 20 mV/s Vorschub) und r15 bei 626 nm in 0,5 M Kaliumsulfat mit 0,0005/0,05 M	
	lod/lodid (0,8 mW/cm ²).	131
Abb.	88 Natürlicher Logarithmus der Mikrowellenreflexion aus Abb. 87	132
Abb.	89 Berechnete Oberflächenkonzentration der Minoritätsladungsträger und	
	Ladungstransferkonstante für Abb. 87	133
Abb.	90 L-Cystein	145
Abb.	91 Natriumdodecylsulfat	146
Abb.	92 Methionin	146
Abb.	93 NTA	147
Abb.	94 Tween 20	147
Abb.	95 Tween 80	147
Abb.	96 Tween 85	148

6.4 Tabellenverzeichnis

Tab. 1 Einige grundlegende Materialparameter von MoS2 aus [24-26].	8
Tab. 2 Einige ermittelte Werte der Durchtrittswiderstände mit verschiedenen Kontaktmaterialien7	3
Tab. 3 Ergebnisse der ERDA Messungen. (s) bedeutet an der Oberfläche und (bulk) im Volumen des	
Kristalls7	5
Tab. 4 Ergebnisse der Leitfähigkeits- und Hall-Messungen. In Klammern sind die Fehler der	
Messungen angegeben7	7
Tab. 5 Peakmaxima von den Strom/Spannungskurven aus Abb. 45 und Abb. 46	4
Tab. 6 Änderung der Gitterkonstanten c durch die semi-Intercalation von Tween 20, Tween 80 und	
Tween 85	0

6.5 Symbole und Konstanten

ρ	Spezifischer Widerstand [Ω cm]
μ	elektrochemisches Potential
α	Absorptionskoeffizient [cm ⁻¹]
τ	Lebensdauer
σ	Leitfähigkeit [Siemens/cm]
υ	Geschwindigkeit
μ _n / μ _p	Beweglichkeit von Elektronen oder Löchern
с	Lichtgeschwindigkeit
C _{ox} / C _{red}	Konzentration von Akzeptor und Donator
D	Diffusionskonstante
E_{C} und E_{V}	Energie von Leitungs- und Valenzband
1	Strom [A]
k	Boltzmannkonstante
k _{ct}	Ladungstransferkonstante
L	Diffusionslänge der Löcher
L _d	Debye-Länge
MWR	Mikrowellenreflexion
N _A	Zustandsdichte an Akzeptoren
N _C	Zustandsdichte im Leitungsband
N _D	Zustandsdichte an Donatoren
N _V	Zustandsdichte im Valenzband

p und n		Löcher und Elektronen				
QE		Externe Quantenausbeute				
R		Widerstand	b	oder	allgemeine	
		Gaskonsta	nte			
suund su		Volumen-			und	
S _{br} und S _{sr}		Oberfläche	enreko	mbination		
Т		Zeit [s]				
U		Spannung				
V		Spannung				
W		Raumladu	ngszor	nenbreite		
R:	Allgemeine Gaskonstante	9	8, 314	4 J mol⁻¹ K⁻	1	
Ν	Avogadrosche Konstante		6, 022 x 10 ²³ mol ⁻¹			
k:	Boltzmannsche Konstante		1, 381 x 10 ⁻²³ J K ⁻¹			
d:	Elementare elektrische Ladu		1, 602 x 10 ⁻¹⁹ C			
F:	Faradaysche Konstante		9, 649 x 10 ⁴ C mol ⁻²			
C:	Lichtgeschwindigkeit		2, 998 x 10 ⁸ m s ⁻¹			
h:	Plancksches Wirkungsquantum		6, 626 x 10 ⁻³⁴ J s			

6.6 Danksagung

An erster Stelle gilt mein Dank Prof. Tributsch, der mir immer mit fachlichem Rat und Anregungen zur Seite stand. Er hat mir zu jeder Gelegenheit Mut und Unterstützung zukommen lassen. Auch das weit gefächerte Interesse für alles, was um uns herum in der Welt und Natur passiert, wirkt immer wieder ermutigend.

Dr. Donner danke ich sehr herzlich für die sofortige Übernahme dieser Arbeit als Zweitgutachterin und die folgenden netten Gespräche.

Die beiden Herrn, Dr. Marinus Kunst und Dr. Frank Wünsch, haben mir – jeder auf seine Art - so vielfältig geholfen, dass ich gar nicht wüsste wie ich diese Arbeit ohne sie hätte durchführen können. Frank danke ich schon allein dafür, dass er mich "genommen" hat und mir kompromisslos, zu jeder Zeit und überhaupt immer wenn er konnte (oder auch nicht) Unterstützung, Rat, Tat und Hilfe zukommen ließ. Marinus danke ich herzlichst für das vielen Diskussionen, das nette Begrüßen am Morgen, das Kakaotrinken bei Wissenschaft und Weltgeschehen, sowie die aufbauenden Anrufe zu Hause.

Dr. Peter Bogdanoff danke ich für die vielen, vielen beantworteten Fragen und den ebenso vielen Spaß zusammen.

Dr. Fiechter und Dr. Tomm danke ich ebenfalls für die Unterstützung und, natürlich noch viel wichtiger, für die Kristalle, ohne die das hier gar nicht möglich gewesen wäre.

Iris Dorbant danke ich für die unauffällige und kompromisslose Hilfe und Unterstützung.

Herzlichen Dank auch Mirjam und Karin, die mir ebenfalls immer prompt und freundlich Unterstützung zukommen ließen.

Thomas danke ich für die Hilfe und das Verständnis, das anscheinend jeder in so einer Phase braucht.

Meinen Freunden und Mitbewohnern sowie meinen Eltern danke ich für Anteilnahme und tatkräftige Unterstützung.

Stefan Seeger danke ich hier noch namentlich, allen anderen müssen mir glauben, dass ich ihnen (auch ohne explizite Nennung) zutiefst dankbar bin.

159

Anhang

6.7 Lebenslauf				
Name:	Thomas E. R. Moehl			
Geburtstag:	08.12.1972			
Geburtsort:	Dortmund			
Schulausbildung				
1979 - 1985	Besuch der Rothenburg Grundschule in Berlin Steglitz			
1985 - 1992	Besuch des Gymnasiums Königin Luise Stiftung in Berlin Dahlem			
1988 - 1989	Einjähriger Aufenthalt in den USA in einer Gastfamilie und Besuch der J. P. McCasky High School in Lancester, Pennsylvenia			
Sommer 1992	allgemeine Hochschulreife			
Hochschulausbildung				
1993 - 1997	Grundstudium der Chemie an der Freien Universität Berlin			
1997 - 2000	Hauptstudium der Chemie an der Freien Universität Berlin			
März 2000 – August 2000	Diplomarbeit in der Arbeitsgruppe von Prof. Tributsch am Hahn Meitner Institut Berlin mit dem Thema: "Vergleichende Untersuchungen von Sensibilisatoren in nanostrukturierten Injektionssolarzellen."			
2000	studentische Hilfskraft am Hahn Meitner Institut			
seit Februar 2002	Promotion am Hahn Meitner Institut			