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Abstract

The report investigates the relation between global attractors of hyperbolic balance laws
and viscous balance laws on the circle. Hence it is thematically located at the crossroads of
hyperbolic and parabolic partial differential equations with one-dimensional space variable
and periodic boundary conditions. The two equations are given by:

u + f(u)e = g(u). (H)

and
U+ f(u)e = e + g(u) (P)

where z € S'. The results of the work can be split into two areas: The description of the
global attractor of equation (H) and the question regarding persistence of solutions on the
global attractor of (P) when e vanishes.

The key idea of the work is the introduction of finite dimensional sub-attractors. This tool
allows to overcome several difficulties in the description of the global attractor of equation
(H) and closes one of the last remaining gaps in its complete description: Theorem 2.6.1
yields a complete parameterization of all finite dimensional sub-attractors in the hyperbolic
setting.

The second main result corrects a result on the persistence of heteroclinic connections by
Fan and Hale [FH95] for the case € — 0 (Connection Lemma 3.2.8). The Cascading Theo-
rem 3.2.9 then yields convergence of heteroclinic connections to a cascade of heteroclinics
in case of non-persistence.

The report concludes with geometric investigations of the low dimensional sub-attractors.
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Chapter 1

Introduction

Parabolic differential equations with scalar spatial variable have been studied for a long
time. In particular viscous balance laws can be described as exceptionally well understood:
existence, uniqueness of solutions, long time behaviour, global attractors, heteroclinic orbits
etc. have been analysed in detail for a range of boundary conditions.

The same is true for scalar hyperbolic partial differential equations. In particular for hyper-
bolic balance laws, where again questions of existence, uniqueness, the long time behaviour,
global attractors and heteroclinics have been studied thoroughly.

However, when the two fields, viscous balance laws and hyperbolic balance laws come
together many question marks appear.

This thesis is devoted to the study of solutions on the global attractors of viscous balance
laws and their relation to solutions of hyperbolic balance laws when the viscosity is small or
vanishes. Before going into further details we set the formal stage that clarifies the setting
in which we will be working.

The hyperbolic balance law is given by
ut(x7t) + [f(u(x7t))]x - g(u(‘rvt))’ (H)

The viscous balance law is then given by

ui(z,t) + [f (u(z, )]s = euee(2, ) + g(u(z, t)). (P)
The subindex denotes the partial derivative with respect to the index. We solve for z € S!
with S! := R/(27Z). This is equivalent to imposing periodic boundary conditions on a

domain of length 27. By an easy scaling argument all our results remain true for the
situation of periodic boundary conditions in a domain of size L for any bounded and fixed
L € R. u is a function mapping from S x R — R.

The non-linearities f,¢g map from R — R. Furthermore we make additional hypotheses
that are assumed to hold throughout the whole work except if explicitly stated otherwise.
We impose:

(H1) fis C? and strictly convex (Ja € R s.t. f” > a > 0) and f/(0) = 0.
(H2) g is C! and dissipative, i.e. there exists a constant M > 0 such that
ug(u) < M (1.1)



for all |u| > M.

(H3) g has three simple zeros at u— < up < uy, where we assume ug = 0.

A discussion of the assumptions will follow in the next chapter. They guarantee the exis-
tence and uniqueness of solutions and the existence of a global attractor in both equations.
Roughly, (H1) is required in order to obtain unique admissible solutions for the hyperbolic
equation, (H2) will guarantee the existence of global attractors for (H) and (P).

Viscous balance laws can be understood as a parabolic regularisation of hyperbolic balance
laws. The latter are generalisations of conservation laws which do not possess a source term.
The hyperbolic equation (H) is the limiting equation of the parabolic equation (P) when
the viscosity vanishes.

Small or vanishing viscosity means that the viscosity parameter denoted by € goes to zero.
In terms of solutions there are two ways to look at this problem. From the perspective of
the balance law, by asking what happens to solutions when viscosity is added. This is the
transition form € =0 to € > 0.

Or from the perspective of the viscous balance law, by asking what happens to viscous
solutions when viscosity tends to zero, i.e. € — 0.

The answers to both questions are different in some cases but certainly there is a relation
between these.

Both equations possess global attractors (see Chapter 2), denoted by A° and A°, which

attract solutions in forward time. Thus the question about the relation between solutions
can be understood as a question about the global attractors.

It is unknown whether

lim A° = A” (1.2)

e—0

in the case of periodic boundary conditions. There are many ways how to understand
equation (1.2):

e In the sense of sequences: all u® € A° are a limit of a sequence of u® € A® and all
converging sequences u® € A have a limit that is contained in .A°.

e In the sense of sets: A° converges in the Hausdorff metric for sets in L', L> or L?

to AL,

e In the sense of solutions: all converging sequences of solutions u®(+,¢) € A° converge
to a solution u® € A% and all solutions u® € A° are a limit of a converging sequence
of solutions u® € A°.

e In the sense of C%orbit equivalence: this would mean that the orbit structure on A°
and A° is the same, hence there exists a C? bijective map mapping orbits of A® to
orbits of A°.

For Neumann boundary conditions Harterich [Haer97| could prove a very interesting result.
He proved under mild assumptions (i.e. f does not vanish at zeros of g) that the dimension
of the parabolic attractor A stays finite even for ¢ — 0 whereas the global attractor for
€ = 0 is infinite dimensional. However, the problem here is that for Neumann boundary
conditions the limiting equation is not well posed and the right hand side of equation (1.2)



has no interpretation. In Section 2.2 we will see that the finite dimensionality of the limit
does not hold for the S* case.

If we assume convergence of the limit in (1.2) in the sense of sub-sets of L or L! then it
is a direct consequence of our Theorem 3.2.1 that

lim A° ¢ A°.
e—0

However this still does not answer the question about the relations of solutions. It is one of
the main results of this work that heteroclinic solutions in A° do in general not persist for
e — 0. This corrects an outstanding result of Fan and Hale |[FH95| that states otherwise.

The Connection Lemma 3.2.8 states a purely algebraic necessary condition for the per-
sistence of heteroclinics: if a heteroclinic connection between a source us and a target u
persists, then the zero-number of the source is a multiple of the zero-number of the target.
This excludes persistence for a lot of connections!

If a heteroclinic connection does not persist, the Cascading Theorem 3.2.9 yields conver-
gence to a cascade of heteroclinics. This means the limit consists of heteroclinic connections
of (H) separated by sections of equilibria. Because we have pointwise convergence of solu-
tions, this implies that for small € the heteroclinic carries a fast-slow dynamic structure.

This dynamical structure is the focus of Chapter 4 where we explore the geometry of the
manifolds that form the global attractors. The tool of finite sub-attractors, introduced
in Sections 2.4 and 2.5 proves extremely useful here, especially in combination with the
main result of Chapter 2, Theorem 2.6.1, that provides an explicit parameterisation of all
sub-attractors of equation (H).

This characterises the general ideas behind the main results of this work: the Connection
Lemma, the Cascading Theorem and Theorem 2.6.1 on the sub-attractors of (H). The
structure of the dissertation is as follows:

Chapter 2 will present a detailed review of what is known about the global attractors of
equations (H) and (P), and will provide the necessary technical background. We begin with
definitions of global attractors in Section 2.1 followed by three sections on the parabolic
equation: after the existence of a global attractor is settled in Section 2.2, we apply the
developed theory to our equation to classify all rotating waves of the parabolic equation in
Section 2.3. This is possible by virtue of geometric singular perturbation theory, developed
by Fenichel in the 70s [Fen79|, in combination with rotated vector fields for ODEs.
Section 2.4 then solves the connection problem and allows us to fully classify the global
attractor of the parabolic equation. This goes back to results of Fiedler, Rocha and Wolfrum
[FRWO04]. At the end of this section we introduce our new tool, the finite dimensional sub-
attractors of order n in the parabolic setting.

Two sections on the hyperbolic equation then follow: Section 2.5 reviews questions on the
existence and uniqueness of solutions, the existence of a global attractor and the connection
problem. Many people have contributed to these results, the latest reference is |[Haer99].
In the last part of Section 2.5 we introduce the sub-attractors of order n for the hyperbolic
balance law.

Section 2.6 contains the main result of Chapter 2: Theorem 2.6.1. It yields an explicit
parameterisation of and the flow on all sub-attractors of finite order and proves their finite
dimensionality. It yields uniqueness of heteroclinic connections when the zero-numbers of



source and target only differ by two. The zero-number limitation is unsatisfactory, because
I believe it to be a purely technical constrain, however even this result will provide us with
an important tool in the analysis of the geometric structure of heteroclinic connections of
the parabolic equation.

Chapter 3 is devoted to the main theoretical results of this work on persitence of solutions:
the Cascading Theorem and the Connection Lemma already described above.

Chapter 4 explores the implications of these theorems. The chapter proceeds by slowly
increasing the dimension of the sub-attractors i.e. the number of zeros in the rotating
waves that are involved. Section 4.1 deals with the parabolic sub-attractor of order 2: A3.
By virtue of the uniqueness for heteroclinics in the hyperbolic equation to homogeneous
equilibria (Theorem 2.6.1 (e)), the result of this section yields convergence of sub-attractors
for £ — 0. Hence we can describe the solution manifolds of the parabolic equation on this
subattractor and their geometry which has not been done rigorously before.

Section 4.2 investigates the relation of solutions between A5 and A$. Here we use an
additional assumption that the dimensionality of A® is preserved when performing the
limit € — 0.

The section on geometry finishes with a proposition on how to construct the cascades
of heteroclinics in Section 4.3. The suggested construction is a generalisation from the
previous section’s result, but it is not rigorous. It gives interesting insights on how the
limits of heteroclinics might look.

We conclude in Chapter 5 with a discussion on the unanswered questions of this work and
a discussion on the possibilities of finding answers to some of them.



Chapter 2

Global Attractors

The aim of this chapter is to introduce global attractors and to present an overview about
what is known about attractors and their structure in the hyperbolic and parabolic cases. In
the parabolic setting we will apply these known results and adapt them to our equation; in
the hyperbolic setting we will push the limits a little further and obtain some new findings
on the geometric representation of finite dimensional parts of the global attractor. We will
combine the results of both equations to obtain our main result on the non-persistence of
heteroclinic connections in Chapter 3.

This chapter is organised as follows: in the first section we give a definition of global
attractors. The following two Sections 2.2 and 2.3 will present the general properties of
global attractors for the parabolic equation and use them in the following Section 2.4 to
solve the full connection problem. At the end of this section we introduce a new tool:
sub-attractors of order n.

The fifth and sixth sections are devoted to the study of the attractor of the hyperbolic
equation. In 2.5 we present the general properties of the global attractor and additionally
define in analogy to the parabolic setting the sub-attractors for the hyperbolic equation.

Theorem 2.6.1 in Section 2.6 proves a complete explicit parameterisation of all finite di-
mensional sub-attractors and yields uniqueness of certain heteroclinic connections. This
theorem thus closes one of the last remaining gaps of a full geometric description of the
global attractor of equation (H) and is one of the main results of this work.

It will help us to better compare the attractors of the hyperbolic and parabolic setting for
small € and will bring us a step further towards understanding the question of whether the
attractor of the parabolic equation converges to that of the hyperbolic equation for e — 0.

2.1 Preliminaries and Definitions

Although the attractors for the two equations show many similarities, we will present the
results separately. The tools and methods involved in the two settings are quite different.
Even the underlying spaces differ. We will see later that the parabolic equation “lives” in
H?, whereas the hyperbolic balance law “lives” in BV, thus the two equations have to be
treated in different frameworks.

The functional analysis setup concerning existence, uniqueness, regularity etc. is standard



material and has entered text books. I will not show proofs for most of the results, as they
can be found in the works quoted. I do include these results for a better readability of this
dissertation. Moreover the basic theory in each section will help us to understand from
where the assumptions (H1)-(H3) we have made originally come.

Let us now address the definition of global attractors. In general there are several different
ways to do this; some definitions are more suitable for the one or the other equation. The
following definition, however, will serve us well as a starting point:

Definition 2.1.1 Let
up = F(Uy Uy, Ugy) (2.1)
for x € S define a semiflow denoted by ® on a function space X. Then the global attractor

of the above PDE (2.1) is defined - if it exists - as the subset A of the phase space X that
consists of all global orbits of the equation.

A global solution here is defined as a solution that exists for all times ¢ € R and stays
bounded. It is far from obvious that such solutions exist, especially in backward time,
because the PDE (2.1) only defines a semiflow. Hence it cannot be solved in backward
time in general.

Thus we have to clarify what “exists for all times” means. We use the following (standard)
definition:

Definition 2.1.2 Let t € Rt be a positive time and ug(z) be an initial condition. We say
O (ug, —t) emists if there is a u € X such that ®(u,t) = ug. We call a solution u(z,t) that
exists for all t € R a global solution.

In other words, ®(up,t) exists for negative times if ug lies on a forward orbit for some
initial condition u. This does not imply that we solve the equation backwards because in
general u is not unique.

An alternative description of a global attractor yields the following definition:

Definition 2.1.3 The global attractor of equation (2.1) is defined - if it exists - as the
mazimal compact invariant subset A of the phase space X of equation (2.1), that attracts
all bounded subsets B C X.

Both definitions are equivalent for the parabolic equation (P) and the hyperbolic equation
(H) if we impose (H1)-(H3). However, this is far from obvious. The next sections will
provide for references.

The difference between Definition 2.1.1 and Definition 2.1.3 clearly lies in the starting point
of the definition. The first one uses global orbits that are collected to sets, the second focuses
on attracting sets in phase space. The second makes it clear where the term “attractor”
comes from.

2.2 The parabolic equation

In this section we will present general results on the solution theory of parabolic equations
and the properties of the global attractor. The results are true for more general equations
than equation (P).
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We therefore introduce a more general form of a parabolic equation than equation (P),
which we will use throughout this section:

Up = EUgy + h(u,uy) (2.2)
where h € C? and again 2 € S*. Obviously, if we set

h(u,ue) = g(u) — f'(u)uq

our equation (P) is of the above form.

For a more extensive overview than the one presented here of global attractors and patterns
in general reaction diffusion equations, I refer to the article of Fiedler and Scheel [FS03] or
the book of Chepyzhov and Vishik [CV02]. The latter even treats the non-autonomous case.
The first half of the first article is exclusively devoted to one dimensional reaction diffusion
equations under several boundary conditions including periodic boundary conditions.

It is known that the initial value problem (Cauchy problem) of PDE (2.2) together with
Neumann, Dirichlet or periodic boundary conditions is well posed and has unique solutions
for sufficiently regular initial conditions.

On the Sobolev space of twice weakly differentiable L?-functions
X = Ww**([0,2x],R) = H*([0, 2], R)

that satisfy the boundary conditions, the PDE generates a C! semiflow with the associated
semigroup
P X xRT — X

which assigns each pair (ug(z),t) € X x Rt the solution u(-,t) at time ¢ with initial
condition ug:
D (u(+,t0),t) :=u (-, to + t).

The books of Henry [Hen81| or Pazy |[Pazy83| which give a more detailed description are
the standard references for the semigroup theory related to parabolic PDEs.

The existence and structure of global attractors for (2.2) were first described for separated
boundary conditions such as Neumann or Dirichlet. In fact many publications focus up to
this day on these two cases.

Dissipativity of the non-linearity is the key for the existence of global attractors. Dissi-
pativity here is understood in the sense of Hale [Hale88| or Babin and Vishik [BV92]. A
sufficient condition for dissipativity of A in the Neumann or Dirichlet case is:

uh(u,0) <0 for |u| > M

for sufficiently large M € R.

In 1968 Zeleniak |Zel68| and later in 1978 Matano [Ma78| could achieve results not only
regarding existence but also giving an efficient description of the attractor in the case of
Neumann boundary conditions. They proved that any bounded solution tends to a single
equilibrium for ¢ — oo. This is due to the existence of a Lyapunov functional on the
phase space X. In fact, this holds true in negative time direction as well, if the solution
exists in negative time direction and stays bounded. This leads to the description of global

11



attractors for the Neumann case as the set of equilibria and their connecting heteroclinic
orbits (for a precise definition of heteroclinic orbit see equation (2.5)).

In the 90s Fiedler and Rocha proved in [FR96| that the connection problem can be solved
exclusively with information about the stationary solutions of the PDE. In other words,
once all equilibria are described, it is possible to decide which of the stationary solutions
are connected. We do not go into further detail here for Neumann b.c. as we are only
interested in the S! case.

In the S! case again dissipativity of h is sufficient for the existence of a global attractor on
X = H?. We quote the condition given by Matano and Nakamura in [MN97] that ensures
existence:

(A) For each K > 0 there exists C' > 0 such that |h(p, q)| < C(1+ ¢?) for |p| < K.
(B) There exists M > 0 such that h(p,0)p < 0 for all [p| > M.

In other words, the non-linearity has to be positive for negative first argument and negative
for positive first argument. In addition it has to grow sub-quadratically in the second
variable.

It is easy to see that our PDE (P) is dissipative in this sense. The above condition (B) is
the same as our condition (H2). Furthermore our non-linearity only grows linearly in the
second variable u, by definition. Hence we have existence of a global attractor.

In terms of the structure of the global attractor periodic boundary conditions are much
more complicated to deal with than separated boundary conditions. This is due to the
existence of rotating waves which cannot exist for separated boundary conditions.

If h depends in addition explicitly on x, the situation is even more complicated and few
results are known. The problem is that the Morse-Smale property of the attractor is de-
stroyed in this case. This is the main reason for not considering the x-dependent case.

For the homogenous case Angenent and Fielder [AF88] and Matano [Ma88| could show
that, similar to the Neumann case, any solution of (2.2) tends to a set of functions I'(v) :=
{v(-+8) : 0 € S} for t — +oo. Here v(x) is given by a solution of the ordinary differential
equation

Vgz + €z + h(v,0,) =0 (2.3)

for some value of ¢ € R and = € S'. This equation is usually called travelling or, in the
St case, rotating wave equation. Any non-homogenous solution v of (2.3) with non-zero ¢
is a time periodic solution u(z,t) of (2.2) if we define u(x,t) := v(z — ct). This solution is
called a rotating wave with wave-speed ¢. The orbit of this rotating wave is given by I'(v).

The above equation can be obtained by plugging a travelling wave ansatz u(z,t) := v(z—ct)
into the PDE (2.2) and then requiring the time-derivative to vanish. In fact, if u(z,t) is a
travelling wave, i.e. there is some v(-) and ¢ # 0 such that

u(z,t) = v(x — ct), (2.4)

then v solves the rotating wave equation (2.3) and vice versa. This is an “if and only if”
relation. The above equation is commonly used to define the notion of rotating waves.

For ¢ = 0 equation (2.3) turns into the stationary problem of (2.2). The non-homogenous
equilibria then will be called frozen waves. For these I'(v) is an embedded circle of equilibria.

12



Finally the zeros u; of h(p,0) solve equation (2.3) for v(z) = w; and define the homogenous
equilibria.

This leads to definition the following sets. Let

e £° denote the set of homogenous equilibria;
e F*¢ denote the set of frozen waves;
e R° denote the set of rotating waves and

e H°¢ denote the set of heteroclinic connections.

We define a heteroclinic connection as a solution u(x,t) of (2.2) that has the property that

lim  w(z,t) € EEUFEURS
t_)+oo &€ € 15 (25)
lim  wu(z,t) € £5UF°UR".
t——o0
The result of Angenent and Fiedler or Matano quoted above means that any bounded
solution of (2.2) converges towards either a rotating wave, a frozen wave or a homogenous
equilibria in forward time direction. The same is true in backward time direction if the

solution stays bounded. Thus, they have obtained the following theorem:

Theorem 2.2.1 Let the non-linearity of equation (2.2) be dissipative and C%. Then the
global attractor A®of the PDE can be described as follows:

A*=E°UF UR® UH". (2.6)

In particular, any time periodic orbit is a rotating wave and any orbit in A%\ (E°UFEURE)
18 a heteroclinic connection connecting uy,us € £ U F° U RE with uy # us.

In [FRWO04] Fiedler, Rocha and Wolfrum were able to resolve the connection problem for
the periodic case as well. Their idea was to use homotopies, such that every solution of
the S' case solves a Neumann problem and vice versa. Then they could use their earlier
results on the Neumann case and extend it to the periodic case.

The key ingredient is the concept of k — (P)-adjacency (see Definition 2.4.1 in Section 2.4),
that was developed and used for the Neumann case in [FR96| and later in [Wol02a| and
[Wol02b|. The whole approach relies heavily on nodal properties that have their origin in
the fact that the linearisation of the PDE (2.2) is a Sturm-Liouville type problem. This goes
back to Sturm [Stul836|. A key observation is that the number of strict sign changes in a
solution can only drop along trajectories, hence can be considered as a discrete Lyapunov
function. This remains true for the difference of two solutions.

Information on the equilibria, the frozen and rotating waves is sufficient to determine which
objects are connected to each other by heteroclinic orbits. The relation of the maxima of
the rotating and frozen waves plays a key role in this analysis. Moreover, the direction of
the connection is given by the Morse indices; the target always has smaller Morse index
than the source. We will cover this in detail in Section 2.4 on the connection problem.

Let us conclude this section about the general properties of the global attractor by some ad-
ditional remarks. We have seen that the attractor both for Neumann and periodic boundary

13



conditions can be described in terms of stationary and periodic solutions and heteroclinic
connections between these solutions. Moreover the existence of connections can in princi-
ple be computed if the travelling wave ODE (that turns into the stationary problem for
¢ = 0) is well understood. However the problem still remains to describe the heteroclinic
solutions in terms of their geometry in the phase space. So a proof about how solutions
change in time within a heteroclinic connection is in general not known. In Chapter 4 we
will prove some results in that direction for some low dimensional cases. At this point the
works of Carr and Pego should be mentioned. In two long and very technical papers [CP89|
and [CP90], using invariant manifold techniques, they proved that the dynamics on the
heteroclinic connections in the simplest case (f = 0, g a cubic function) are exponentially
slow for e — 0.

Their proof strongly relies on the the fact that the viscosity parameter € is small and
their approach is not suitable to describe the full heteroclinic connection via the manifold
approach. The reason for this is that their description breaks down in neighbourhoods of
points, where the connecting orbit (viewed as a manifold in the extended phase space) is not
normally hyperbolic. In other words the linearisation in transverse direction cannot have
eigenvalues with zero real part. But the Morse index (for a precise definition see 2.3.10)
necessarily decreases along the heteroclinic connection (see Theorem C in [MN97]). At the
point where it actually gets smaller at least one eigenvalue has to cross the imaginary line,
hence this is a point on the heteroclinic connection where normal hyperbolicity breaks
down.

Another important question relates to the dimension of the global attractor. A general
result of Mallet-Paret [MP76]| already shows that the Hausdorff dimension of the global
attractor of (2.2) is finite if € > 0.

However it might not stay finite for ¢ — 0. Even in the simpler Neumann case there are
examples where the dimension of the attractor approaches oo for € — 0. The most famous
result is probably that of Chaffee and Infante [CI74], where already the number of isolated
equilibria goes to infinity for ¢ — 0, and so does the number of heteroclinic connections.

Hérterich [Haer97| could prove under mild assumptions, that in the Neumann case the
dimension of the attractor stays generically finite for viscous balance laws such as our
equation (P). In fact if the zero of f’ does not coincide with the middle zero of g in (P)
then this is the case. However, the example stays artificial, because the limiting equation
is not well posed for Neuman boundary conditions.

If the assumption of Hirterich is violated and the middle zero of g and the zero of f’
coincide then a Chaffee Infante type mechanism leads to a blow up of the dimension: more
and more stationary solutions with increasing zero-number appear when ¢ approaches 0.

Any Neumann solution can be extended by an easy reflection to a periodic solution on the
doubled domain. One might expect that the result of Harterich could be generalised to the
periodic case, where there is a well posed limiting equation. However, this is not possible,
because as we will see in Section 2.3 there is always a wave speed ¢, such that the zero of
(f" = ¢) and the middle zero of g coincide. This again leads for € — 0 to the generation of
infinitely many rotating waves with that particular wave speed. The waves have increasing
zero-numbers, similar to the Chaffee-Infante example. A consequence is a divergence of the
attractor’s dimension.

This is not as surprising as it might at first seem in this context. In the section on global
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attractors in the hyperbolic equation 2.5 we will see that for the hyperbolic equation where
€ = 0, continua of linearly independent stationary solutions exist and the global attractor
of the hyperbolic equation thus is infinite dimensional.

It has become clear that the rotating waves in the parabolic equation are important for the
analysis of the attractor. The following section is devoted to the study and classification
of these waves.

2.3 Rotating waves for the parabolic equation

In the description of the global attractor of the parabolic equation rotating waves play a
key role.

We first state our version of the rotating wave equation. If we set

h(u,ug) = g(u) = f'(u)uy
in equation (2.3) then all rotating waves of the PDE (P) are solutions of the ODE

Uz = (f(v) — c(e)v)r — g(v) (2.7)

with boundary conditions
v(0) =v(2m) (2.8)
0,(0) =v,(27). 2.9

Hence they are periodic solutions of equation (2.7) with minimal x-period 2% for some
n € N.

In the following we will describe all periodic solutions of (2.7), including those satisfying
(2.8) and (2.9). This analysis makes use of three aspects of the equation. The first is its
singular perturbed nature; the second is the fact, that (2.7) can be transformed to a planar
rotated vector field and the third is the fact, that one of the equilibria of the ODE (2.7)
undergoes a Hopf bifurcation for ¢ = 0.

We begin by rewriting equation (2.7) as a first order system in Lienard coordinates. The
equation then reads
evy, = f(w)—cle)v+p
Pz = —g(v).
These coordinates are adapted to the geometry of the problem. However, sometimes it is
more convenient to work with standard phase plane coordinates:

(2.10)

EWy

q
"(w)—c 2.11
o = Ll g, S

We will use both sets of coordinates as each one has its own advantages. We will always
use (v,p) when referring to the Lienard version and (w,q) when utilising phase plane
coordinates.

The coordinates can be transformed into each other by the transformation:

w(v,p) = v v(w,q) =w (2.12)
q(v,p) = f(v) —p p(w,q) = f(w) —q. (2.13)
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To not become confused by the rotating wave as a solution of the ODEs (2.10) or (2.11),
and the (time) dependent rotating wave solution of the PDE (P) we will use the letters
v(x) or w(x) when referring to the solution of the ODE, and we will use u(x,t) when we
refer to the solution of the PDE. Both solutions will be called "rotating wave”. Sometimes
we will drop the arguments for a better readability.

The ODEs are singularly perturbed in both coordinates. We use the theory developed by
Fenichel in the ’70s and "80s [Fen79] to analyse the properties of the two systems. Fenichel’s
idea was to split the dynamics into a slow part which is given by just putting ¢ = 0 and a

T

fast part which is obtained by rescaling § = £ and again putting € = 0.

The slow dynamics then are confined to a manifold that consists of stationary solutions of
the fast equation. Fenichel could prove that the manifold persists for £ > 0 if the manifold
is normally hyperbolic i.e. the linearisation of the fast field on the slow manifold has no
purely imaginary eigenvalues in the transverse direction.

In the Lienard case we obtain for the slow part after putting e = 0,

0 = f(v)—cOv+p
Pz = —g(v).

Therefore the slow dynamic is confined in the manifold given by
Fi=A{(v,p)ip=cv - f(v),v €R}

, which is just the graph of cv — f. The dynamics can be obtained by differentiation of the
first equation 0 = (f'(v) — ¢)vy + ps, which leads together with p, = —g(v) to:

9(v)
f'v) = ¢
This equation has in general one singularity depending on ¢, but for the appropriate choice
of ¢ this singularity can be removed.

Vg = (2.14)

For the fast dynamics we obtain upon rescaling and again putting € = 0 the equations

ve = f(v)—c(0)v+p
pe = 0.

This means that the fast vector field is given by horizontal lines and vanishes on the
slow manifold. Every point on the slow manifold has at least one zero eigenvalue with an
eigenvector that is tangential to the manifold.

An easy calculation yields that the second eigenvalue is non-zero except at a point (vg, cvg—
f(vo)) depending on ¢, where f’(vg) — ¢ = 0. Due to the convexity of f the point vy is
unique. At (vg, cvg — f(vg)) the fast vector field is tangential to the slow manifold.

This means F; is normally hyperbolic except at the point (vg,cvg — f(vg). The manifold
persists outside a neighbourhood of this point. It is therefore not clear if the persisting
unstable manifold W"(u_,cu_ — f(u_)) and the stable manifold W*(uy,cus — f(uy))
coincide and form a heteroclinic connection for € > 0. Later we will see that there is a
unique wave-speed ¢ such that they do in fact connect. Figure 2.1 shows a schematic plot
of the vector field in Lienard coordinates for ¢ = 0.
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(u—, f(u-))

Figure 2.1: Phaseportrait of equation (2.10) in Lienard coordinates for ¢ = 0. The dotted
box is the area where the slow manifold does not necessarily persist . The unstable and
stable manifolds of (us, f(u4)) might not coincide.

For phase plane coordinates the situation is a little different. Here the slow manifold 7, is
just given by the line with ¢ = 0. The fast vector field reads after rescaling

we = (¢
¢ = (f'lw)—c)qg—eg(w). (2.15)

Again the slow manifold is normally hyperbolic except in the unique point wy where
f'(wg) — ¢ = 0. The phase portrait in phase plane coordinates is given in Figure 2.2.
Again the flow on the slow manifold is given by

g(w)
fw) —c
To see this, we observe that ¢, = 0 in the slow manifold. We use this in the second equation
of (2.11) and plug in ew, = ¢ from the first equation to obtain the above expression.

Wy = (2.16)

The reason why we introduced phase plane coordinates at all, is that the system (2.11) is
a rotated vector field (mod ¢ = 0) with respect to the parameter c.

The notion of rotated vector fields was introduced by Duff [Duf53] and refined by Perko
[Per75, Per93]. For exact definitions I refer to their papers or to Definition 4.1 in [Haer03].

The geometric interpretation of this is that the whole vector field rotates in the same
direction when changing the parameter ¢ except on the curve ¢ = 0. A consequence of this
is the following result:

Lemma 2.3.1 (Duff,Perko) Consider a family of rotated vector fields. Suppose there is
an equilibrium which for all values of ¢ possesses a one-dimensional unstable manifold. Then
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fast vector field

Figure 2.2: Phaseportrait of equation (2.11) when ¢ = 0. The dotted box is the area where
the slow manifold does not necessarily persist.

this manifold moves either clockwise or anti-clockwise as the parameter c is increased. The
stable manifold moves in the same direction. Moreover, these directions are the same for
all saddle equilibria of the system.

Before we state the main proposition of this section concerning the structure and existence
of all periodic orbits of (2.7), we introduce the cyclicity set C. This set was used already in
[FRWO04] in this form, but the idea was introduced earlier in similar problems, for example
in [MNO7|.

Definition 2.3.2 The cyclicity set C, consists of all points (w,q) € R? that lie on a
periodic orbit of equation (2.11) for some value of ¢ or correspond to homogenous equilibria
(e,0) of (P) that undergo a Hopf bifurcation for some value of c.

We immediately observe that in our situation C, is non-empty because the homogenous
solution associated with the middle equilibrium w = 0 undergoes a Hopf bifurcation at
c=0:

There are three homogenous equilibria of equation (P) that correspond to (wg,0) =
{(u—,0),(0,0), (uy,0)}. The characteristic polynomial of the linearisation of (2.11) in these
equilibria is given by

Aj2 = _fwo)—e \/<f/(w°) - C>2 _ 9'(wo) (2.17)

2e 2e €

For wg = ux both eigenvalues are real. For wg = 0 the eigenvalues are imaginary with the
property that
sign(c) = sign(Re(N))
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and therefore undergo a Hopf bifurcation at ¢ = 0.

According to Lemma 4.2 in [FRWO04] the cyclicity set has in the case that it is not empty
the following properties

Lemma 2.3.3 The cyclicity set C, is bounded and open. There exist C?-functions
c,T:C,—R (2.18)
with the properties:

(1) For each non-stationary point (w,q) € C, the value c(w,q) defines the unique wave
speed for which (w,q) lies on a periodic orbit of (2.11). Similarly, T (w,q) defines
the minimal period of this orbit.

(i) The wave speeds ¢ are uniformally bounded.
(111) The minimal periods T tend to infinity at the boundary OC, of Cp.
(i) OC, consists of saddles and of points which are homoclinic or heteroclinic to saddles

for some parameter value of c.

We do not give a proof here but refer the reader to the paper quoted above. We now prove
three Lemmata that will allow us to classify all periodic orbits of our system (2.11) and
therefore all rotating waves.

Lemma 2.3.4 Let € > 0 be arbitrary. Then the following is true:

a) The cyclicity set C, is homeomorphic to a disc, i.e. it consists of one connected
component and has no holes.

b) All periodic orbits (w(z),q(z)) have the property that w(x) # 0 except at exactly two
points x1,xy where w(zy) = w(ze) = 0.

c¢) All periodic orbits can be uniquely parameterised by their mazima (o, 0), with o > 0.

Proof. We first prove c): we assume that vy # vy are two rotating waves with wave speeds
c1 and ¢o and identical maximum

o= ggg{vl (x)} = ggg{vz(w)}- (2.19)

We observe that the origin (0,0) has to lie in the interior of the area encircled by v and vy
respectively. This is a direct consequence of the Poincare-Bendixson Theorem for planar
flows.

If the curves do not intersect or touch each other, then necessarily either

vi () < ggg{w (z)}

or vice versa. This contradicts (2.19). See Panel ¢) in Figure 2.3 for illustration. The curves
therefore have to touch or intersect.

We now distinguish two cases:
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(i)

(ii)

Figure 2.3: Illustration for the proof of Lemma 2.3.4.

Assume ¢; = c¢o. In this case the two curves have at least one point in common.
Because trajectories of the same equation cannot intersect, we obtain vy = vs.

Assume c¢; # co. We investigate the vector field of (2.11) for ¢ = ¢ on the curve
defined by v;. Due to the fact that (2.11) is a rotated vector field with respect to ¢
we obtain, that the vector field has to either point strictly to the outside or strictly
to the inside of the area encircled by v1. This excludes touching points. Assume the
vector field points inwards, then the area encircled by v is positive invariant. See
again Panel ¢) for illustration.

Therefore v; enters at the intersection point but cannot intersect twice due to the
positive invariance of the area encircled by v; — and thus cannot be closed. This
contradicts that vy is a periodic orbit.

If the vector field points to the outside, the same argument holds (just reverse the
"time direction" x).

This proves c).

For b) we observe that the number of zeros is necessarily even. The fact that (0,0) lies
in the area encircled by the periodic orbit excludes the no-zero case. The fact that the
periodic orbit cannot intersect itself excludes the case of more than two zeros (see Panel
b) in Figure 2.3). This proves b).
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For a) we assume that C, is not homeomorphic to a disc. The nesting property of the
periodic orbits in c) excludes holes in C,. Hence ¢, must consists of nested closed curves.
Due to the boundedness of C, and the fact that (0,0) € Cp, there must be a minimum of
three curves. See Panel a) for such a situation.

According to 2.3.3 (iv) these curves must consist of saddles, homoclinic and heteroclinic
connections. There are only three equilibria

(u—70)7 (070)7 (U+,0).

The second one (0,0) is contained in the interior of the open set Cop. Therefore it is enough
to analyse homoclinic orbits of and heteroclinic orbits between (u_,0), (uy,0).

Due to Lemma 2.3.1 there can at most be one wave-speed c4 such that (u4,0) has a
homoclinic orbit. The same is true for at most one c_ and (u_,0).

Moreover, Theorem 1.2 in [Haer03] states that there is a unique value

1d '(w
C*(E) __ - g ( )
2dw \ f"(w)
for which there exists a heteroclinic connection that connects (u_,0) with (u4,0). Again
the rotated vector field property is the key to the proof. Using the same argument there

can be at most one value of ¢ such that there is a heteroclinic connection from (u4,0) to
(u—,0). (Note here that the fast orbits are given by curves defined through ¢ = f(w) — cw).

e+ O(3/?) (2.20)

w=0

From this we conclude that 0C, consists of maximal three curves, one given by the two
heteroclinic connections, two by the homoclinic ones.

We now prove that the equilibrium (0,0) is the only equilibrium inside each of the ho-
moclinic connections, which completes the proof, because then, the two homoclinic curves
cannot be nested.

However this is obvious, because the slow manifold given by ¢ = 0 persists due to Fenichel

for w > uy and w < u_. This proves a). -

The next Lemma gives a first-order description of all rotating waves. Here the singular
perturbed nature of the problem yields the result.

Lemma 2.3.5 Let T > 0 be given. Then there exists €y > 0 such that for all 0 < & < &g
there exists a rotating wave w with minimal period T

Through a shift we can assume that w(0) = 0 and w;(0) > 0, then w(x) can be written in
the following way:

w(z) =¢(x) +ole) for x€[0,29—cloge]U[zg +cloge, T (2.21)
w(zr) = ¢(§,$2) +o(e) for x € [xa—celoge, o+ cloge] (2.22)
where xo is the second zero of w. ¢(-) is a solution of
_ 9(¢) _
Py = £(6) $(0) =0

and Y (-, z2) is a solution of

e =f(0(D) + (@) (0) =0
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Proof. For existence we observe that the centre in the origin (0,0) undergoes a Hopf
bifurcation. The two eigenvalues A/, were already given in equation (2.17). The imaginary
part of Ay, is given by

vi=1Im(\ ) = g’(O)'

Thus, the limiting period at the Hopf bifurcation emerging limiting cycle is given by

2 2m\/e

We already know that 7 — oo when OC is approached. As 7 is a C? function on C and in
particular continuous we obtain existence if

g'(0)
472

by virtue of the intermediate value theorem.

~—

e<T?

=&

It remains to prove equations (2.21),(2.22). For this we have to assume that

/
0 <egy << 7Y (0). (2.23)
a7

We need ¢ to be small to be able to apply Fenichel’s his results. From Lemma 2.3.4 ¢) we
know that the periodic orbits can be parameterised by their maxima.

Moreover, Lemma 2.3.4 b) proves that w. has exactly two zeros. Without loss of generality
we shift the one with positive slope to x; = 0. We denote the other zero with x5 and
note that w'(z)|z=z, < 0 necessarily. We assume that the wave-speed ¢(e) = 0 and prove
equations (2.21,2.22). Then we will argue that the correct wave-speed is in fact small and
hence does not destroy the approximation.

We start computing the trajectory of (w(z),wy(x)) in = x2 and assume that
| W ()| p=aq| >> €o0- (2.24)

This is always possible because we are free in the choice of £g. We use phase plane coordi-
nates.

Due to equation (2.24) and (2.23) we can use the fast vector field to describe the solution
up to the first order. In forward time direction the solution will converge exponentially
to a e-neighbourhood of the unstable manifold of (u_,0). In backward time direction the
solution will converge exponentially to a e-neighbourhood of the stable manifold of (u.,0).
This part can be described due to Fenichel [Fen79| by the fast equations (2.15). This proves
equation in (2.22).

The unstable manifold of (u_, 0) is transversally stable in forward time direction. So is the
stable manifold of (u4,0) in negative time direction. Thus in both cases the solution is
given up to the first order by the slow equations (2.16) outside a neighbourhood of (0, 0)
where the normal hyperbolicity of the slow manifold breaks down; but we already know
that w is periodic, thus the two ends have to meet at (0,0). This proves equation (2.21).

We now argue that this remains true for non-zero wave-speeds c¢(¢). To do so we quote
Lemma 4.3 in [Haer03|. The lemma states that the wave-speed ¢* for which the heteroclinic
connection between u_ and uy persists obeys

|c*(e)| < oe

22



for some o > 0. The same equality holds for the wave-speed c(¢) of the periodic orbit by
virtue of the same argumentation as in [Haer(3|.

Hérterich argues that W"(u_) lies below the curve

9(®)
f'(¢) —c(e)

for ¢(e) < oe whereas W#(uy) lies above 7. This order reverses for ¢(e) > oe. Because
our periodic solution (w(z),w,(x)) converges exponentially to W*(u_) and W#(uy) as
argued above a intermediate value argument yields the desired inequality. This implies
that equations (2.21) and(2.22) hold as well for ¢ = ¢(¢).

Remark: I believe that in fact ¢(e) is given by equation (2.20). However in order to prove
that one would have to go through the whole blow-up construction in Chapter 5 of |[Haer(3].

V(9) == —f(¢) +¢

O

Remark 2.3.6 A different description of the periodic orbit that is sometimes usefull is
given by

) = { Pz —x2) + [¢ (2) = ¢(—22)] + 0(e) forx € [0, x2]
o(x — x9) + W (@) — (2T — xg)] +o(e) forx € [x2,T]

w(x (2.25)

Proof. A simple, straightforward calculation shows that this is true. The reason for this

is the exponential convergence of 9 to the states ¢(z2) and ¢(2m — x2).
U

The next Lemma uses the above descriptions to prove hyperbolicity of all rotating waves
in our equation which is a direct consequence of the monotonicity of 7 (w,q). This result
forms the basis of a relation between the zeros of a solution and the number of its unstable
eigenvalues.

Lemma 2.3.7 Let T be arbitrary but fized. Then there exists a €y > 0 such that for all
0 < & < go the minimal period T (w,q) grows monotone with the mazima of the periodic
orbits.

Proof. We use the formula of the periodic orbit w(z) obtained in equation (2.21). Let us
assume we have two periodic orbits w; and we with period 77 and 75 and the property
that

max wy =: a1 < a1 + 01 := Q@9 := max ws
z€[0,T1] z€[0,T5]

for some 07 > 0. It is sufficient to prove T7 < To — 09 for sufficiently small € and some
0o > 0.

Due to the fact that the periodic orbits are nested (Lemma 2.3.4 ¢)) a3 < a9 implies
immediately

0> min wi =:[1 > P := min ws.
z€[0.74] z€[0,T%]

The solution ¢(z) is strict monotonically growing because

_ 9(9)
f1(¢)
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due to the convexity of f and the fact that the zero of f’ and the zero of g at u = 0 are
simple. This implies invertibility of ¢ and monotonicity of ¢!

We now have

“1(B1) +oleloge) (2.26)
“H(B2) + ol loge) (2.27)

Ty =¢~ (1) = ¢
Ty =¢~'(az) — ¢
The monotonicity of ¢ implies

¢ M) = ¢ a4+ 61) = ¢ (o) + (97 (1)d1 + 0(61) > ¢~ (an) + by

for some d9 > 0 and
¢ (B1) < =9 (B2).

For sufficiently small 0 < € we obtain the desired inequality for some §, independent of &.
0

Corollary 2.3.8 Let T € R* be given. Then there is a unique periodic orbit with minimal
period T', and it is hyperbolic as a rotating wave of (P).

Proof. The uniqueness is a direct consequence of the monotonicity of the 7-map. The
hyperbolicity is also a direct consequence of the monotonicity of the 7-map. A periodic
orbit is non-hyperbolic if, and only if, the time 7 map has a vanishing derivative. See for

example Lemma 4.4 in [FRW04]. This would contradict monotonicity.
O

We are now set to construct rotating waves of the PDE (P) by using the periodic orbits
constructed earlier in this section. We introduce the zero-number of a function u : ST — R.

Let therefore u : S — R then we define
2(u) = t{x € SY;u(x) = 0}, (2.28)

if the zero set of u is not countable we define z(u) = co.

Theorem 2.3.9 Let n € 2N be given, then there exists 0 < g, such that for all 0 < e < e,
there exists an up to shift unique rotating wave v:, with the property

Proof. Every rotating wave with n zeros corresponds to a periodic solution of the rotating

wave equation (2.7) with period T}, = 2=,

n
Corollary 2.3.8 provides for the unique existence of a periodic orbit of the rotating wave
equation with period

This proves the Theorem.

A qualitative bifurcation diagram of how periodic solutions are generated is given in Figure
2.4. The numbers at the branches indicate the numbers of zeros, the vertical axis shows
the maximum of the rotating wave on the branch.
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Figure 2.4: Schematic bifurcation diagram of the Hopf bifurcation generating branches of
rotating waves (lines) with increasing zero-number.

O

The remainder of this section is devoted to the Morse index of solutions and the relation
between the Morse index i(u) and the zero-number z(u) of a rotating or frozen wave w.
The Morse index is the classical and generic tool to describe properties of solutions on
the global attractor. However, in the hyperbolic setting it is rather uncommon to even
introduce a Morse index. There the zero-number is more commonly used. This is the main
reason why we have already introduced the zero-number here.

Let L(u) define the linear operator obtained when the PDE (P) is linearised in the solution
u, and let o(L(u)) denote the spectrum of L(u). We follow the definition given in [MN97]
for the Morse index i(u).

Definition 2.3.10 For each u € £° U F° U R® we define the Morse index i(u) and the
generalised Morse indez ig(u) by
i(u) ;== #{\ € L(u); Re(\) > 0}

and

io(u) == #{\ € L(u); Re(\) > 0}.

Here §f counts eigenvalues repeatedly according to their multiplicity.

In terms of the Morse index we call a homogenous stationary solution u hyperbolic, if
io(u) = i(u).
We call a rotating wave u hyperbolic, if
io(u) =i(u) + 1.
Note that u, is always an eigenfunction of L(u) to A = 0. The wave is called hyperbolic, if

zero is a simple eigenvalue, hence u, is the only eigenvector to A = 0.

Remark 2.3.11 The Morse index © corresponds the number of strong unstable eigendirec-
tions of the solution u® € £ U F* U R®, hence equals the dimension of the strong unstable
manifold of u® in case of fived points. For rotating waves u® the dimension of the strong
unstable manifold is given by the Morse index +1.
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There is a one-to-one correspondence between the Morse index and the number of zeros in
a solution.

Lemma 2.3.12 Let u® € R® U F¢ then
i(u®) = z(u) — 1. (2.29)

For u® = ug we have
i(u® =uy) =0. (2.30)

To prove this Lemma we first quote a result that can be found for example in [FRW04|
Lemma 5.3:

Lemma 2.3.13 Let .
T=0,T

be the deriwative of the minimal period with respect to the mazimum of the periodic orbits
just as in Lemma 2.3.7. Then the Morse index of a rotating or frozen wave u is given by
the following relations:

i(u) =2(u) —1<==T>0 (2.31)
i(u) = 2(u) <= T < 0. (2.32)

Proof of Lemma 2.3.12
We obtain from Lemma 2.3.7 T > 0 which yields the result together with 2.3.13 for
u® € R°UF*.
For u® = u4 we use the fact that in Sturm-Liouville eigenvalue problems the eigenfunction
to the leading eigenvalue \g (eigenvalue with largest real part) has a sign, i.e. has no zeros.
This can be found in [CL55| in Chapter 8, Theorem 3.1.
A small calculation shows that \g = ¢/(u+) < 0 with constant eigenfunction. Hence i(uy) =
0.

0

The next section will apply the results on rotating waves to solve the connection problem
on the attractor. The Morse index will play a key role in this.

2.4 The connection problem

With the results of the previous section we are now ready to solve the connection problem
and to describe the structure of the global attractor.

The remaining question concerning the global attractor is which of the rotating waves
are connected. Let therefore uj and wuj be two rotating or frozen waves or homogenous
equilibria of equation (P) with Morse indices

i(ul))=a—1 i(uy) =b—1.

a
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We want to know if there is a heteroclinic orbit with source ug and target ug, i.e. if there
exists a solution u®(z,t) with

lm w(-,t) =u(-,t)

t——o00

lim ue(" t) :ule)(’ t)

t—o00
where u;, and uj are appropriately shifted. A key ingredient here is & — (P)-adjacency of
rotating waves. The concept of k-adjacency was developed and used in [FR96] and later in
[Wol02a| and [Wol02b] for the Neumann case. Fiedler, Rocha and Wolfrum presented in
[FRW04]| a version for the S' case which we will use:

Definition 2.4.1 (k — (P)-adjacency) Let ui,u; € £ UF°UR®. Then u and uj are
called k — (P)-adjacent if the following holds:

z(u, —up) =k

for some k € N and there does not exist a solution a% € £5 U F° U RS with the property

z(u;, —ul) = z(up — ul) =k and (2.33)
max u(x) is strictly between max uf(z) and maxug(z). (2.34)
zrest zeS!t zest

This notion of k — (P)-adjacency is the critical ingredient in Theorem 1.3 in [FRWO04]
answering the connection question. This theorem states that u? and uj are connected if,
and only if, they are k — (P)-adjacent. The authors call a violation of k — (P)-adjacency
the blocking principle because in this case there is another rotating wave u? that blocks
the connection. If blocking does not occur, then the “principle of liberalism” states that
the two solutions u and uj are connected. We use these results to prove the following

Theorem 2.4.2 Let uj, uj € £5UF° U RS with Morse indices i(uf) = a — 1 and i(uj) =
b— 1. Then there exists a heteroclinic orbit connecting ug, and ug, i.e. a heteroclinic orbit
with source ug and target uy if, and only if, a > b.

Proof. The “only if” has already been proven by Matano and Nakamura in [MN97|. The
statement can be found in Theorem C on page 5. It is a direct consequence of the fact that
due to the Sturm property of the problem the zero-number can only drop along trajectories
and so does the Morse index.

For the “if” part we have to prove k — (P)-adjacency of u; and u;. The key observation
lies in the fact that the number of zeros of the difference of two rotating waves is given by
the minimum of the zero-numbers individually. In other words, we have for @, 4 € F°URE
the following relation:

z(a — @) = min{z(a), z(a)}. (2.35)

This is not true in general, but a direct consequence of the fact that in our situation all
periodic orbits of the rotating wave equation are nested.

Now assume af € F° UR® with the property
z(uf —ul) = z(up —ul) = k and (2.36)
max us(x) is strictly between max v (x) and max uj(x) (2.37)
zeSt zeSt

zeS1t
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Figure 2.5: Structure of connections between rotating and frozen waves and homogenous
equilibria of Morse index ¢ < 7.

exists.

Due to Theorem 2.3.9 there is a unique rotating wave to each zero-number k € 2Ny for
fixed and sufficiently small € > 0. From this we conclude that

a#k#b
otherwise uf = g, or ug, = uj.
In case k > b equation (2.36) is violated. Hence, we have necessarily k£ < b. Due to the

nested property of rotating waves this implies maxuf > maxwu’ ,, which violates (2.37).
Thus ug and uj are k-(P)-adjacent and therefore connected.

In case u;, € £° or uy € £° the same argument works, the zero properties are obvious
because in this case u, or up is constant.

O

This yields that all rotating and frozen waves are connected to rotating and frozen waves
with lower Morse index and to u = u4. A representation of the connection structure of the
global attractor for all rotating and frozen waves and homogeneous equilibria with Morse
index ¢ < 7 can be found in Figure 2.5. In the figure the arrows indicate the direction of
the flow on the attractor.

What might be misleading in the figure is the fact that the connections between rotating
or frozen waves look as if they were one-dimensional. This is not the case!

It is a classical result by Henry |Hen85] and Angenent [Ang86| for Neumann boundary
conditions, that the unstable manifold W*(u;) of an equilibrium u; and the stable manifold
W*#(ug) of another equilibrium uy intersect transversally in our setting:

W“(ul) ﬁ WS(UQ). (2.38)
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Hence, the intersection is either empty or has maximal dimension.

Fielder, Rocha and Wolfrum were able to prove in [FRW04] that the same is true in the S1
case, thus, the dimension of an intersection is given by the difference of the Morse indices
of the source and the target. Note that in the S' case equation (2.38) has to be properly
interpreted. To obtain the full two-dimensional connection manifold connecting u; with s
the target us has to be properly shifted. We will discuss this in more detail in Section 4.1.

After we have solved the connection problem we introduce a new tool for our analysis:
sub-attractors of order n.

We have already seen that for positive € the attractor of the parabolic equation has finite
dimension. However for small € the dimension becomes very large. The idea of introducing
sub-attractors is that we only want to consider a low dimensional part of the whole attractor
when we investigate the limit € — 0. The clear advantage is that we do not have to deal
with difficulties arising from the divergence of the global attractor’s dimension in this limit.

For the parabolic attractor we define the sub-attractors of order n as the part of the whole
attractor that consists of the two stable homogenous equilibria and the rotating waves with
zero-number less or equal than n and all heteroclinic orbits between these objects. Note
that in order to have existence of a rotating or frozen wave solution with zero-number n,
¢ has to be sufficiently small, according to Theorem 2.3.9.

Definition 2.4.3 Let n = 2« for a € N and let €, be sufficiently small. Then we define
for0<e<ey:

o & ={uecéz(u)<n}={u=u_,u=uy};
ci={u € F5z(u) <n};
o RS :={u€REz(u) <n};
o HE :={ue€ Hlimy1oou€ EUF,URS}.
Then the finite dimensional subattractor of order n of the parabolic equation (P) is given

by
AE = EEUFEURE UME. (2.39)

It is immediately clear that the subattractors are contained in each other for increasing n.
In other words we have

A C A < n<m.
Figure 2.5 shows the sub-attractor of order n = 8: Ag.

From Definition 2.4.3 and Theorem 2.4.2 it is clear that A5, contains all unstable manifolds
W(uf) of all waves u® with zero-number z(u®) < n. On the other hand if u® € AZ then
u® must be contained in the closure of some unstable manifold W"(a°) of an element
u° € F° URE. By construction z(a°) < n must hold. This suggests another description of
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the sub-attractors A5 :

A5 = U {W*u);u® € FFURS 2(u®) =m}yUE, (2.40)
m=1
= U {We(uf);us € FEURE, z(uf) = m}
m=1
={WH(FUR:)}.

This description clearly is very useful. Because i(u®) = z(u®) — 1 for every rotating or
frozen wave we immediately conclude

dim W*(u®) = i(u®) = z(u®) — 1

and hence
dim A, =n

because all waves with given zero-number can be parameterised by S! (see Theorem 2.3.9).
It is a theorem that in fact

As = {We(FE UR)\(Fe_ URE )}

We do not prove this here, but it is also a consequence of the Morse-Smale property of the
attractor.

In the next section we will give an overview of the relevant results concerning the hyperbolic
equation. The solution theory is somewhat more complicated, but the structure of the
global attractor is very similar.

2.5 The hyperbolic equation

In the following we will provide the results concerning global attractors of scalar hyperbolic
balance laws. As in the previous section on parabolic equations, some of the results pre-
sented hold for slightly more general equations. Nevertheless we do not introduce a more
general equation such as uy = h(u,u;) here because in contrast to the previous sections
on the parabolic equation, the structure of the attractor and questions of the existence of
unique solutions rely on the fact that we are investigating a balance law and not a com-
pletely general hyperbolic equation. Especially the convexity of f is a key feature. Without
convexity none of the results presented holds true. Therefore we will state all results for
equation (H) together with assumptions (H1),(H2) and (H3).

Some of the theorems quoted will be written for the case that g has n zeros located at
Uy, ..., Uy. In this case we just set n =3 and vy = u_, ug =0 and ug = u.

Before we investigate the question of global attractors we have to answer the question of
existence and uniqueness of solutions. The initial value problem (Cauchy problem) of (H)
can be solved by the method of characteristics. The classical solution u(x,t) to a initial
condition u(z,0) =: ug(x) can be described in the following way:

u(x(t),t) == v(t)
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where v, x are curves that solve the following ODE:

X'(t) = f'(v)
V(t) = g(v)
x(0) =z
v(0) = uo(xo)

for all zp € S*. Unfortunately classical solutions in general only exist for finite time. This
is even true for the simplest possible case where g = 0, f = %uQ and ug(x) € C*. To
see this one just has to choose an initial condition with sufficiently large negative slope
somewhere. In fact, if the negative slope in the initial condition becomes large the time up
to which a unique classical solution exists can become arbitrarily small.

Classical solvability breaks down due to the development of shocks. At the development
point of a shock, characteristics meet each other in a finite angle. If both characteristics
were to be continued they would intersect at that point transversally. Due to the convexity
of f the values of v on both characteristics differ from each other at the intersection point.
Hence the classical solution develops a discontinuity at this point so that the solution is in
particular not differentiable at this point as it would have to be in a classical solution.

However, there are weak solutions for times after classical solvability has reached its limit.
To obtain weak solutions one has to multiply both sides of the differential equation (H)
with C! test functions and integrate the equation over the whole domain. A weak solution
then is defined as a solution that satisfies the resulting equation for all C' test functions,
see equation (2.41).

Unfortunately the uniqueness of solutions is lost in this process. In general there are many
weak solutions to the same initial condition. To overcome this obstacle a additional entropy
condition can be imposed, that singles out a unique weak solution. This idea derives from
the physical entropy in thermodynamics. Entropy conditions for hyperbolic balance laws
in a weak framework were first considered by Volpert [Vol67| and Kruzhkov [Kr70].

We therefore define an entropy or admissible solution of the hyperbolic balance law (H) in
the following way:

Definition 2.5.1 We call u € BV ([0,00) x S1,R) an entropy or admissible solution of
equation (H) to the initial condition ugy(z)

o iful(e,0) = up(a);
o if it solves equation (H) in the weak sense:
/ [ugpr + f(u)pz — g(u)pldudt =0 (2.41)
STxR+

for all p € CL(S! x RT,R);
e and if the entropy condition
u(z+,t) < u(z—,1t) (2.42)

holds for all t > 0.
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Here u(z+,t) defines the right hand, u(z—,t) the left hand limit of v in z at time ¢ and
BV ([0,00) x S R) denotes the space of functions with bounded variation mapping from
[0,00) x ST to R.

Let P be the set of all partitions P = {x1,--- , 2y, }. Then we define the space BV in the
following way:

np—1
BV (S') := {u c LY(Sh): Iiup Z lu(x;) — u(zier)| < oo} . (2.43)
€P -1

Volpert |Vol67| and later, and for more general initial conditions (L), Kruzhkov |Kr70|
were able to prove the following result on the existence of solutions:

Proposition 2.5.2 If (H1) holds, then the Cauchy problem of equation (H) possesses a
unique entropy solution u with the property u : (0,00) — L' is continuous in time and
u(-,t) € BV(SY) for every time t > 0.

Therefore (H) together with (2.42) defines a semiflow on BV (S'). We denote that semiflow
by
®": BV xRt — BV
up,t q)h(u())t) = U(,t)
where u is the unique entropy solution to the initial condition ug.

Note that Kruzhkov proved that the initial condition does not have to fulfil the entropy
condition. Where the initial condition has up-jumps, i.e. u(z+,t) > u(x—,t) for some z,
these jumps are immediately smoothened by a rarefaction wave.

In order to compute weak solutions practically the notion of characteristics has to be
generalised. Generalised characteristics were first introduced by Dafermos in [Daf77]:

Definition 2.5.3 A Lipschitz curve x = x(t), defined on the interval [a,b] C R is called a
generalised characteristic associated with the solution u of (H) if it satisfies the inequality

X € [f,(U(X‘f‘a t))? f/(u(X_7 t))]

for almost all t € [a,b].

With this definition it is clear that generalised characteristics coincide with the classical
characteristics x(t) defined above, when the solution is differentiable. At points of non-
differentiability of w i.e. at shocks, the generalised characteristic is only required to satisfy
X'(t) € [f'(u—), f'(u+)] where u— and u+ are the lower and upper states of the shock
at x(t). Filippov was able to show in |Fi88| that there is at least one forward and one
backward characteristic through any point (z,t) € S* x RT.

It seems that there is a lot of freedom in computing forward characteristics. That this is
in fact not the case is shown by a proposition to be found in |Fi88|:

Proposition 2.5.4 Let x : [a,b] — R be a generelized characteristic. Then the following
holds for almost all t € [a,b]:

: "(u(x(®)£,0) if ulx(®)=1) = u(x(t)+1)
X(1) = | SO0 fubb=—0) e 0
u(x(t)+t) —u(x(t)—=t)

(2.44)

=
=
i
~
Vv
4
=
=
x
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Hence, x(t) is uniquely defined even at the position of shocks. If the solution u(z,t) pos-
sesses a shock at position zy then the shock speed is given by the Rankine-Hugoniot
condition for shock speeds

fu(zo+)) — flu(zo—))
u(wo+) —u(rg—)

Cshock = (2.45)

To distinguish between generalised characteristics and the characteristics of classical solu-
tions the notion of genuine characteristics is important:

Definition 2.5.5 A characteristic on the interval [a,b] is called genuine, if

u(x(t)—,t) = u(x(t)+,t) for almost allt € [a,b].
The set of backward characteristics through a point (Z,) spans a funnel between the

e minimal backward characteristic x~(t;Z,t) and the

o mazimal backward characteristic x™ (t; Z,1).

The properties of characteristics that are of importance for us are summarised in the next
propositions. For proofs we refer to Dafermos’ article [Daf77]. We will use these results in
the following section.

Proposition 2.5.6 Let (Z,t) € S' x R be arbitrary. Then the minimal backward charac-
teristic X~ (t;7,t) and the maximal backward characteristic x*(t;,t) are genuine.

Proposition 2.5.7 Genuine characteristics intersect only at their end points; backward
characteristics do not intersect in particular.

We now direct our attention to the existence of global attractors for equation (H). Fan and
Hale [FH95| were able to settle this question for the hyperbolic balance laws in 1995. As
in the parabolic case, dissipativity of g is the key to the existence of a global attractor. It
essentially guarantees that solutions stay bounded in forward time. (Note that convexity
of f and the linear dependence on u, already guarantee dissipativity of f’(u)us.)

Proposition 2.5.8 (Fan and Hale) Assume (H1), (H2) and (H3) hold. Then
A :={ug € BV(S") : ®°(ug, t) exists for allt € R and is bounded} (2.46)

is the global attractor of (H) in LP(SY), for any p € [1,00], i.e. it is invariant and attracts
bounded sets in LP(S').

This settles the existence of A°. We turn to the structure of the global attractor. Many
people have worked on this and for a good overview over the latest results we refer to
Hérterich [Haer97|.

Several authors proved Poincaré Bendixson type results for the scalar balance laws. See for
example Fan and Hale [FH93|, Sinestrari [Sin97| or Lyberopoulos |Lyb94]:
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Proposition 2.5.9 Fort — oo any solution of (H) tends either to a homogenous solution
u = wu; for some i € {1,..n} or it converges to a rotating wave solution

u(z,t) = v(x — ct)
where the wave-speed ¢ can only take the values ¢ = f'(ug;) for i € {1,--- ,”T_l}

In our case this implies

c= f'(uz) = f'(0) =0
which means that all waves are frozen waves. However the distinction is somewhat arbitrary,
because a coordinate change = +— x — ct can freeze any wave, or make it rotate again. In

this sense our assumptions f'(0) = 0 = ¢/(0) fix a coordinate system in which all waves
freeze.

For global solutions a theorem similar to 2.5.9 holds true in backward time. This leads
to a description of the global attractor A® as the unification of the homogenous steady
states, the frozen waves and heteroclinic connections between all these objects similar to
the parabolic case. Additionally the possible wave-speeds of all rotating waves are given a
priori.

Following the definitions made in the parabolic section we define

e &% to be the set of homogenous equilibria of (H);

FO to be the set of frozen waves of (H);

e RY to be the set of rotating waves of (H);

HO to be the set of heteroclinic connections between objects in £, F and R° defined
in the same way as in Section 2.2 equation (2.5).

Then the global attractor A” of (H) can be described as
A= UFPURPUH. (2.47)

In our case we have RY = 0.

In [Sin95]| Sinestrari was able to settle the description of all rotating or frozen waves. He
proved that for any possible wave speed ¢ = f’(a;) and for any closed set Z C S* there
exists a unique rotating wave uz with the property

Z ={y €S uz(y) = u}.
The uniqueness automatically proves that these are all waves. Hence, only the connection-
question remains.

For this it is convenient to introduce the map Z(-) that assigns each function u : S' — R
its zero set:

Z(u(-,t)) == {z € S u(z,t) = uy = 0}. (2.48)

This set plays a key role in understanding which rotating waves are connected to each
other when they have the same wave-speed. Note that

z(u) = 42 (u).
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If Z(u) is uncountable we define z(u) = oo.

In addition we define
uyz :=u € FYsuch that Z(uy) = Z

to be the unique rotating wave with zero set Z.

Fan and Hale were able to show in Theorem 3.7 in [FH95| that if two rotating waves are
connected by heteroclinic orbits, then the waves must have the same velocity. Moreover,
if heteroclinic orbits connect a homogenous equilibrium u = u; and a rotating wave with
speed f'(ug;), then |j — 2i| = 1.

On the attractor the zero-number z decays along trajectories, thus is a discrete Lyapunov
function, just as in the parabolic setting.

In 1997 Sinestrari was able to prove that a necessary condition for a connection from the
rotating wave ugz, to the wave uz, was

Zy C 4. (2.49)

Harterich was able to show that the above condition was not only necessary but also
sufficient. This gives the following picture of the structure of the global attractor of equation
(H), summarised in the three Theorems A, B and C in [Haer99|:

Theorem 2.5.10 (Theorem A) For any rotating wave u_o, there exist heteroclinic or-
bits which connect u_so to the homogenous states u =u_ and ©w = uy.

Theorem 2.5.11 (Theorem B) For any rotating wave uy o there exist (several) hetero-
clinic orbits that connect the spatially homogenous solution u = ug = 0 t0 Uyo-

Theorem 2.5.12 (Theorem C) Suppose that for two rotating waves u_oo and uyoo the
condition Z(us) C Z(U—_oo) holds. Then there is a heteroclinic solution that approaches
Utoo aS the time t tends to oo.

These three Theorems in principle allow a full description of the connection problem on
the global attractor. Harterich could even explicitly construct heteroclinic connections in
the phase space, however up to now there has been no result on the uniqueness of these
connections. The next section will provide a first result in that direction. Furthermore, we
will present some examples of how to construct explicitly frozen waves and heteroclinic
connections.

We conclude this section by defining the notion of sub-attractors in a similar way to the
parabolic setting.

Definition 2.5.13 Let n = 2a for o € N. Then we define:

e & ={u=u,u=u_};
o Foi={ueF%z2(u) <a};

o HO = {u € HO:limy_ 400 € & U]—'S}.
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Then we define the sub-attractor of order n of the hyperbolic balance law (H) by

AV =0y FOUHO. (2.50)

Just as in the parabolic setting it is clear that the sub-attractors are contained in each
other, hence we have
A c A = n<m.

At a first glance it seems strange to denote the hyperbolic sub-attractors by .,42 and not
AY. However in the next section and in Chapter 3 we will see that this makes a lot of
sense. Lemma 3.2.5 will yield that

lim (R, U F77) F?
e—

in the sense of solutions.

By analogy to the description of sub-attractors in the parabolic section we present an alter-
native representation of A% in terms of unstable manifolds. With the same argumentation
as for equation (2.40) we conclude that

(>

Al = {WHu);u’ € 7, 2(u°) = B} U EY (2.51)

=1

(>

(W) u € FO,2(u0) = B}
G=1

= {WH(F)}-

One of the results in the following section will be dim A% = n, which justifies the notation.

Definition 2.5.13 explicitly excludes frozen waves v where the zero set Z(v) includes whole
intervals. These solutions do not have a counterpart in the parabolic equation. A rotating
wave of the parabolic equation that vanishes on a whole interval has to be identically zero.

The last section of this chapter is devoted to the study of the sub-attractors .A%. Theorem
2.6.1 yields results on the parameterisation and the dimension of the .A%; moreover, it
proves uniqueness of some heteroclinics in A%. Theorem 2.6.1 is the main result of the
whole chapter and one of the main results of this dissertation.

2.6 Parameterisations for A"

Before we prove the main theorem of this section, Theorem 2.6.1 we will give two prepara-
tional examples: First we construct the unique frozen wave uy for a given Z C S', then we
will give an explicit representation of a heteroclinic connection between two frozen waves
vy and vs.

We begin with the single frozen wave: In Sinestrari’s result there are no restrictions re-
garding the zero set Z except closedness, so it could be finite, countable or uncountable.
Even if whole intervals are contained it is still possible to define a rotating wave with this
zero set.
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As an example of a frozen wave we will construct a frozen wave solution for Burgers
equation with a symmetric source term

flu) = 5o glu) = u(l — u?)

3
for the zero set Z = [Z,m] U {31 }.
The rotating wave equation for ¢ = 0 and the above f and g is given by

vle—vz

which has the fundamental solution v(x) := tanh (z — z).

To give a description of the travelling wave vz one just has to use appropriately shifted
copies of v(x) on S'\ Z in a way such that the resulting shocks are stationary according
to the Rankine-Hugoniot condition (2.45).

For the above given Z we define

tanh(:lt —_ %) fOI' x € [07 %]

B 0 for z€ [%77"]
vz(z) == tanh(z —w) for =z € [m, %77]
tanh(z — %71) for z € [2m,2n].

It is an easy exercise to show that this solution is in fact stationary. The uniqueness result
guarantees that it is the only rotating wave with this zero set. Figure 2.6 shows a plot of
vz. We remark that this frozen wave has infinitely many heteroclinic connections to other
frozen waves. It has heteroclinic connections to every rotating wave

vz

with closed Z € P(Z) where P(Z) is the powerset of Z. All directions are linearly indepen-
dent and hence the unstable manifold of this wave is already infinite dimensional.

The second example concerns heteroclinic connections between two rotating waves. Again
we use Burgers equation together with the source term g = u(1 — u?). We construct
the heteroclinic connection between the frozen waves vz, and vz, with Z; = {0,7} and
Zy ={0}.

Hérterich could construct in [Haer99| a heteroclinic orbit by a sequence of solutions where
the shocks travel along the profile defined by shifted copies of v(z). The shocks travel
towards each other such that they form a stationary shock when they collide. We set the
collision time at ¢ = 0 then the solution can be given in the following closed form:

tanh(x — %) for x€ 0,3 + A]
v(z,t) = { tanh(z — °F) for z € [3F + A, 1T —A] (2.52)
8 8 8
tanh(z — 1) for x € [IF — A, 27]

where A solves the following ODE in backward time

\(p) _ tanh(m/4 + A) + tanh(m/4 — A)
A(t) = tanh(mw/4 + A) — tanh(7/4 — A)
INOEES

37



L

-0.5

== = = = =

ol
3
3

[N

3

27
Figure 2.6: Stationary solution vy for Z = [Z, 7] U {3Z}.

The solution is plotted in Figure 2.6.

We have now seen how heteroclinic connections can be constructed in principle for Burgers
equation. A similar construction holds true for the general case.

The rest of this section is devoted to the preparation and proof of Theorem 2.6.1 on the
explicit parameterisation of the sub-attractors Ag. We first construct the manifold that
will represent the local unstable manifold of a frozen wave.

Let ¢(x) be the unique solution of the following equation:

9(v)
Vp = 2.53
7@ 2
v(0) = 0.
Furthermore ¢(z) exists for all 2 € R and
lim ¢(z) =u- lim ¢(z) = uy.

Let n = 2a for some o € N be given. Then we choose a sequence of « zeros 0 < z1 < xg <
e < T < 27

Due to Sinestrari there exists a unique frozen wave v0(x) with

Z(’L)g) = {‘/El’ T 7:1704}'
Without loss of generality we assume x1 = 0. All other cases can be generated by a shift
along S

Note that for every solution of equation (H) it is true that between two zeros there must
be a shock and between two shocks with sign changing left- and right-hand states there
must be a zero. This is even true in the case where f depends explicitly on z, see |[Ehrt05].
It is in particular true for vg. Hence there is a unique sequence of shocks 91, ..., 7, with

1< <w2 <Y< <Ya-1,Ta < Ja <21+ 27
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Figure 2.7: Heteroclinic orbit connecting uz, and uz,. The left and right states of the
shocks are indicated in red.

such that v is given by

W0 { p(z — ;) for x € [x, 7] (2.54)

a d(x —xipq) for x € [§,wi1]

where we have set x441 = 21 + 27 = 27. In case that g, > 27 we set §o := Jo(mod2m).
The sequence then reads 0 < gg < x1.... In the following we will not always make
this distinction but just identify x + 27 with = without explicitly mentioning this. For
convenience let us define the notation

Xo ={z1, s Tn }
0 .0
'U{xa} .—'Ua
We now define the solution uy, y,} With a shocks located between the zeros {z1, -+ , 24}

that consists piecewise of shifted copies of ¢(x). In general Ufx,,yo} 18 DOt stationary.
Let 0 <21 <y1 <9 <+ <2 < Yo < 27 then we define

o(x —x;)  for x € [z, v

Hxayal = { ¢(x —xiy1) for z € [yi, iya] (2:55)

fori=1,...,a and again x4y = 27.

Finally let us define the general solution @y, .1 with a or less shocks that consists piece-
wise of shifted copies of ¢(z) where all shocks are contained in [0, 27).
Let 0 < g1 <o <+ < gq < 2w then we define if g; < §;11

o(x —x;)  for x € [z, Y5

Hxayal = { ¢(x —xiy1) for z € [§i,wiy1] (2:56)
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and if g; = Yiy1 = = Yirm

. Pz —wx;)  for x € [z, 7]
U = - 2.57
(xa.ye} { ¢(x — Titm+1) for € [Pitm, Titrm+1] (2:57)
Then the two sets of all these solutions with fixed {x1,--- ,z,} are given by
Afrmay = Uxayayi0 <21 Syp <@ <0 < S Yo < 27} (2.58)
and .
A{ml,...,xa} = {ﬂ{xa,ya};o S <<y < 277} (259)
Clearly we have )
Vet € Aferwa) € Aol
and we have . .
A{fi177"zﬁ} g A{ZEl,...,(Ea}
if ; € {x1,..., 24} forall 1 <j < g and 8 < a. Note that there is no solution consisting
piecewise of ¢(x — x;) for x; € {z1,...,z,} that has more than « shocks. We argue as

follows: We assume that the solution has a zero located at 21 = 0 and another zero at xs.
Now we explicitly construct the set of all admissible solutions u(z) that consist piecewise
of shifted copies of ¢(x — x; — 2mk;) for some k; € Z and i € {1,2}; with the additional
property that u(x; = 0) = 0. Due to the monotonicity of ¢ it is clear that u possesses at
least one shock.

Let us denote all shock positions by 0 < y1 < --- < yg < 2m. By construction we will see
that 8 < 2. Figure 2.6 illustrates the construction: all shocks are down shocks, therefore u
must consist of sequences given by

(X + 1), 0(2), p(x — 21), d(x — 27), p(x — 11 — 270), P(x — 4m)... (2.60)

Because u(0) = 0 we start at = 0 with u(z) = ¢(z) locally. At the first shock we can
only jump to a solution ¢(-) that lies to the right of ¢(-) in the sequence in equation (2.60)
without violating the entropy condition (2.42). This applies to all following shocks. In order
to obtain a solution on S' we have to end at x = 27 with ¢(z — 27). Hence we can jump
twice at most. It is clear that the same argument works for arbitrary a € N. The same
applies to solutions that do not have a zero at all.

Let us now state the main theorem:
Theorem 2.6.1 Let n =2« and o« € N. Then the following is true:

a) The local unstable manifold W/;éc(v?xa}) of v?xa} is given by Ag, ..y defined in
equation (2.58):
VVl%c(vf{]xa}) = A{xl,...,ma} (2-61)

where v?xa} is the unique frozen wave of equation (H) with zeros at {x1,...,2q}-

b) The global unstable manifold W“(v?xa}) of v?xa} is then given by

W“(U?Xa}) = {<I>0(u,t);u € Afgy,matr L € R*}. (2.62)
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oz —2m)

¢(x —x1 — 2m)

Figure 2.8: Schematic plot showing why a construction of ufy, y,) fails.

¢) The semiflow on A{xl,...,xa} defined in equation (2.59) can be described by the follow-
ing equation for the shock parameters y;:
f(oly; —x5)) — f(0(y; — 7541)

bilt) = o(yj — x5) =y — jp1) (2.63)

d) The dimension of the sub-attractors A° of order n is given by
dim A% = n.
e) Let v1 be a frozen wave of equation (H) with
z(vy) = 1.
Then there exist unique heteroclinic connections u(x,t) and u(x,t) with
lim a(-,t) = lim a(-,t) =v;
t——o00 t——o0
lim a(-,t) = u_
t—o0
lim a(-,t) = ug.
t—00

f) Let 0 <z < w9 < -+ ,xq < 21 and let v1 and vy be frozen waves of equation (H)
with the property

Z(v) ={z1,...,2a}
and

Z(va) = {Thy, -, Ty
where ki1 — ki € {0,1} for all 1 <i < 3—1. Then there exists a unique heteroclinic
connection u(x,t) with the property

lim wu(-,t) =wvy(-)

t——00

lim wu(-,t) = va(-).

t—o0
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Before we prove the theorem, we prove a important lemma:

Lemma 2.6.2 Let {x,} :={z1,..., 20} with0 <z < -+ < x4 < 27 be given.

(i) The set A{x17,,,7xa} is overflowing invariant under the semiflow of equation (H). Over-
flowing means that if a solution ugy, va1 € A{xl,...,ma} leaves A{xl,...,ma} at time t =0
then either yy = x1 or Yo, = 1 + 27 in Ufxq,ya)-

(1) The set Agy, . 2.} 18 overflowing invariant under the semiflow of equation (H).

Proof. Let u(z,0) € A{ml,...,xa} such that u(z,0) = ugx, y,3 With y1 > 0 and y, < 2.
Again we assume z; = 0.

Local forward invariance of fl{xl,,,, .z} follows from the fact that the profiles ¢ that define
Ufx,,yo} are stationary. Hence u is stationary except near the points y;, and so we only
have to prove invariance locally at the shock points. Without loss of generality we only
investigate the shock located at ;.

Therefore let u(x,0) be given by

u(m,O):{ o o) for o<y (2.64)

x —x9) for x>y

At yp there is a unique forward characteristic x(¢) on which the shock evolves. It can be
obtained by integrating the Rankine-Hugoniot condition 2.45. The other characteristics
necessarily point towards x(¢) for t > 0. So to the left and right of x the solution wu(z,t)
must be stationary and is given by ¢(z) for x < x(¢) and by ¢(z — z2) for x > x(t). See
the Figure 2.6 for illustration. x(¢) is uniquely determined by the differential equation:

() = flo(x(t)—)) — f(o((x(t) — z2)+))
P(x(t)—) — d((x(t) — x2)+)
x(0) = vo.

(2.65)

The slope of x(t) is bounded from above and hence, if ¢ is sufficiently small we have
obtained local forward invariance of the shock.

For the backward invariance we observe that a minimal characteristic x~(¢) and a maximal
backward characteristic x(¢) for t < 0 emanate from y;. For the area between x~ and ™
there are in principle many possibilities to define the solution such that we obtain wu(z,t)
for t > 0. For backward invariance it is enough if we find one u(z,t) € A{wl,...,xa} fort <0
with this property.

Let therefore x(t) be the unique shock characteristic emanating from y; and hence

(s t) = { @(qﬁ(m) for = <

x—x9) for x>y
for t > 0.

Let now tg < 0 be given. Then we define

i t>.:{ o)  for @€ [\ (to). X(to))
,to) - ¢z —x) for x e (X(to), X" (to)]

42



x(1)

characteristics

|

Figure 2.9: Illustration for the proof of Lemma 2.6.2.

for some x(to) € [x (to), X (to)]. Local backward invariance follows if we can prove that
there is exactly one x(to) such that if we solve equation 2.65 with initial condition (o)
we obtain

X(0) = x(0) = »o.
Uniqueness of x(#g) is clear because the convexity of f implies together with the monotonic-
ity of ¢ monotonicity of x. Hence, this implies that x(0) depends monotonically on x(to),
which implies uniqueness of X(tp) due to uniqueness of x(0). Hence backward invariance
follows.

As far as uniqueness is concerned, the backward solution is not unique in A{ml,...,ra} in
general, due to the possibility of shock splittings in backward time direction. But it is
clear that if we assume that this does not happen, we obtain uniqueness of the backward
solution in A{xl,...,ra}-

For the overflowing property we assume u(x,0) € A{xl,...,ma} with y; = 0. Then the forward
characteristic x(¢) in 2 = y; = 0 is given by the equation

B —[(d(Ya — 27)
x(®) = — (Yo — 27)

for t € [0,6), ¢ positive and small and x(0) = 2. Thus, after identification of 0 and 27 we
obtain that the solution to be locally given by

<0

o(x) for 0<x<uys
¢(x —2m) for x(t) <z <2rm
o(x —ya) for yo <z < x(P)

In the case of y; = yo = 0 we have to replace y» by 3 in the first line. If there is only one
shock, we can drop the last line and replace ys with g, in the first line.

This proves the overflowing property of A{xl,...,ma}'
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Due to the fact that Ay, ..y C fl{wl““’ma} we conclude invariance of Ag, . 1 by
virtue of the same construction immediately. The overflowing property works just as for
Afz,,...za)> here the boundary is given by the condition y; = z; or y; = z;41 for some

je{l,...,a}.
O

Corollary 2.6.3 For every u(z,0) € Az, zq) there is a unique backward orbit in Agy, 4 3

Proof. From the proof of the previous lemma we deduce that it is sufficient to show
that shocks in u cannot split in backward time. This is clear by construction because any
solution in Ay, ..} has exactly a zeros and a shocks.

O

Proof of Theorem 2.6.1

In fact, we have already proven part ¢). Equation (2.65) yields exactly equation (2.63) if
we replace x(t)+ by the y;. Hence we can integrate solutions along the (invariant) manifold
Az, wa}y Dy using equation (2.63) for every y; (1 < j < n). Note that y; and y;,1 can
meet. Thus y; is only lipschitz not C1.

For a) we prove that all solutions u(:,0) € Ay, . .} converge in backward time to viy,y,

this shows
A{xl,...,xa} - I/Vvl,léc(v?xa})‘ (266)

Then we show maximality of Ay, ..y in the sense that all solutions u(:,t) converging to
v?xa} are contained in Ay, .. for sufficiently small ¢ < 0 which proves

I/Vl?)c(v?xa}) - A{ml,...,xa}- (267)

The first part is a consequence of Lemma 2.6.2 and the convexity of f. Now we assume
u(-,0) € Ay, 2.} Because of the overflowing invariance and backward uniqueness we
conclude

u('? t) S A{:cl,...,xa}

for all ¢ < 0. In addition
lim u(-,t) € FOUE®

t——o00

because this is true for all solutions that are globally bounded in backward time. Taking into
account that v?xa} is the only frozen wave in Ag,, ..y and hence Ay, .1 N EOUF =

{v?xa}} we have obtained equation (2.66).

For the other direction we argue indirectly. Assume that there exists u(z,t) with
: _,0
u(z,t) ¢ Afg,. 2,y for allt <0 and tl}r_noou(:n,t) = Ulxo}-
Then for sufficiently small £ < 0 there must be a & € S such that forall 1 <j < a+1

u(Z,t) # ¢(T — ;). (2.68)

Due to the fact that u connects to ona we can always choose (Z,%) such that @(Z,t) is
smaller than the maximum and larger than the minimum of the stationary solution with
one zero.
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We now prove that @ cannot converge to voxa in backward time which will yield the result:
the idea is to use a stationary solution to calculate the backward characteristic of u that
starts in (Z,7) and thereby construct a contradiction.

Assuming equation (2.68) holds, then there is a stationary solution u, € F° with the
following properties:

us(T) = u(a,t)

Z(us) = {xs}

where s ¢ {x1,...,24}.
We investigate the (genuine!) backward characteristic (x(t),v(t)) with

x(t) = 7 and v(t) = us(Z,1) =

(,1).

s

Because uy is stationary, the characteristic has the property that
lim x(t) = zs
t——o00

and
lim v(t) = 0.

t——o0

Then

lim wu(zs,t) = lim wug(xs,t) = 0.
t——o00 t——o00

This contradicts lim;_, o u(-,t) = v?xa} because v?xa}(acs) # 0.
This yields the maximality of Ay, .1 (equation (2.67)) and hence a) follows.

b) follows from the fact that due to unique forward solvability we obtain the global unstable
manifold by using the semiflow to forward-solve the local unstable manifold. Dissipativity,
or the fact that Ay, .3 C A® ensures boundedness of the forward iteration, hence
equation (2.62) follows.

For d) we use the fact that
dim (lec(vng})} = dim (W“(U?XQ})} (2.69)

which is true due to forward uniqueness of solutions.

For n = 2a0 = 2 the sub-attractor of order n = 2 consists of all frozen waves with one zero
and heteroclinic connections to u-4. In other words

A3 = Wig(F3) U E,
For fixed x1 we have
dim (VVlZc(U?ml}) =1
From the uniqueness of frozen waves with given z; € S' we deduce

dim A9 = 2

For n = 2a¢ > 2 we use

AL = {(W"(u);u e FO}UEL (2.70)
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Figure 2.10: Unique shock-splitting of one shock in backward time in Ay, ;.1

First we prove

dim {W*"(u);u € FO 2(u) = a} =2a=n.

For each fixed set of zeros {0 < 1 < -+ < 24 < 2w} we have by part a) of this theorem

dim (Wﬁ,c(v?xa})> = dim (A, 40y) =

Moreover, all frozen waves v with zero-number z(v) < a can be parameterised by (x1,...x,) €
(Sl)a = T, hence
dim FY = dimT* = a.

Putting everything together we obtain by using equation (2.70)
dim A} = dim Wi ({F)} = dim Wi (v}, ) + dimT* =a+a=n

Hence d) is proven.

For e) we count dimensions to obtain uniqueness. For a« = 1 the unstable manifold of vy
is one dimensional, thus the connection must be unique.

For f) we argue in the following way: the condition k;11 — k; € {0,1} implies that at most
every second zero can vanish, hence we can reduce the proof to the situation where

Z(’Ul) = {0,%2}

and
Z(Ug) = {0}

Let us denote the unique shock position of vy by y and the two unique shock positions of
v1 by Y1, 2.

It is a consequence of ¢) that in the class of solutions Ay, ;. all stationary shocks are
unstable. In order to obtain the solution vy with only one shock, the two shocks emanating
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form y; and yo consequently have to meet at the position y in such a way that the resulting
shock is stationary.

We define ¢t = 0 as the time at which the two shocks collide. So the question of uniqueness
of heteroclinic connections reduces to the question of uniqueness of shock collisions in
Afz, 2z} OF In negative time direction the questions of uniqueness of the splitting of shocks
at a given position; but this is clear.

Let u(zx,t) be the solution where two shocks meet at time ¢ = 0 at position z = y then the
lower state of the left shock and the upper state of the right shock have to have the same
value. By construction of Ay, ,,1 it must be given by ¢(y — z2):

|

lim limu(z,t) = lim lim u(x,t) = — x32).
lim g u(z, ) =l lim u(a.£) £ oy — 22)

See Figure 2.10 for illustration. Note that the two limits in & and ¢ are not interchangeable.

Hence uniqueness of the splitting follows by uniqueness of backward solutions in the case

of u € Ay, 4,y With two shocks. This proves e) and the Theorem is proven.
O

Note that for the situation of Theorem 2.6.1 e) we can explicitly parameterise the whole
heteroclinic connection from vy to uy. The stationary solution vy with Z(v1) = {x1} has
one unique shock at position y;. Then using Theorem 2.6.1 b) and ¢) we can parameterise
the whole connection manifold W*"(vy) as follows: for any k € Z and any y; € [2km, 2(k +
1)) we define

- d(x — 1 + 2km) for 0<ax<wy —2kn
Uiy g}y (T) = { d(x —x1 +2(k—1)m) for 27 >ax >y — 2kn (2.71)
Then W*(vy) is given by
W(v1) = {ufq, 4y € BV;y1 € R} (2.72)

Corollary 2.6.4 Again let o € N and n = 2«. Then the set of heteroclinic connections
between two frozen waves with zero-number z < « is completely contained in

A, = {A{xl,m,ma};o <@ < <@y < 2«} . (2.73)

Proof Let vy, v be two frozen waves with

Z(’Ul) = {xl,...,xﬁ}
Z(’Ug) C Z(Ul)

for some given 0 < 21 < ---,2g3 < 27 and § < «. Let u(x,t) denote a heteroclinic
connection between v and vy. Then

u('7t) € A{xl,...@ﬁ} - A{:cl,...,xg} - A{xl,...,x57,,,7xa}
for some xg41,...,7, and t sufficiently small.

Now assume u(-,1) ¢ fl{ml,m,wm“,%} for some ¢ € R. Then we conclude

u('? t) ¢ A{ml,...,xﬁ,...,xa}
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for all t > ¢ due to the overflowing property of fl{mh

X GyenTat
This contradicts
i) = v
because .
02 € Afyy apza)

where A denotes the interior of A in the topology of the manifold fl{xh

TGy T}

0

Theorem 2.6.1 and Corollary 2.6.4 are quite remarkable. They do not only provide a full
parameterisation of the unstable manifolds of the F0, they also suggest that in analogy to
the parabolic equation it is possible to define a Morse index ip as the number of unstable
eigendirections of a frozen wave.
In the hyperbolic setting, too there is the relation between zeros and the index but here it
would be given by

in(u) = z(u). (2.74)

This shows that for our purpose of comparing solutions for € > 0 and € = 0 sub-attractors
AZ and AY are a good tools.

However, it is important to note that the connection properties of both sub-attractors are
remarkably different. An example of how Ag looks like has already been given in Figure
2.5. The situation for the AY is far more complicated. Just from the definition of A% and
Theorem 2.6.1 we can conclude that AY consists of a a-torus T of frozen waves plus
heteroclinics. Every point on this torus has heteroclinics to a sub-torus T# and the number
of connections in each point on T® is given by (g) In addition there are connections to
U4

Surprisingly, Corollary 2.6.4 yields that all the heteroclinics that connect from the a-torus
back to a sub-torus are contained in the set of all A{ml,...,xa} for given o € N, which was
denoted by A,

We will investigate this in Chapter 4 in greater detail for the low dimensional cases.

In the following Chapter 3 we will address the question whether the attractor of the
parabolic equation converges to the attractor of the hyperbolic equation or, more precisely,
whether every solution in A% has a counterpart in .AY. The discussion above suggests that
this is not the case, because although equation (2.74) shows similarities with equation
(2.29) in the limiting process, every second zero in a rotating or frozen wave u° vanishes
(see Remark 3.2.6). Hence for o # 1 the number of unstable dimensions of the frozen and
rotating waves in the parabolic and hyperbolic setting do not match.
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Chapter 3

Persistence or non-persistence?

This chapter is devoted to the question of whether solutions on the global attractor of the
parabolic equation (P) persist for ¢ — 0 or not. In other words, the guiding question of
this Chapter is whether

lim u® (-, t) = u°(-, )

e—0
for u® € A° and some u? € A". We have already determined in the introduction that this
is one of the aspects of the question whether.A® converges to A" for vanishing ¢.

The main persistence results root in a result by Fan and Hale [FH95]| on the persistence of
heteroclinic orbits. We will present their theorem in the first section although it is in fact
wrong. However, most of the proof is correct and delivers one of our key claims: pointwise
convergence of solutions.

The corrected result will be presented in the beginning of Section 3.2. It is the starting
point for the proof of the main results of this Chapter:

e The persistence result for rotating waves (Theorem 3.2.5).

e The Connection Lemma 3.2.8 that yields that whereas some heteroclinic connections
persist, others do not.

e The Cascading Theorem 3.2.9, which states that in case a heteroclinic does not
persist, it converges to a cascade of heteroclinic solutions and frozen waves.

Section 3.3 then addresses the question of which connections on the parabolic attractor do
not persist. We prove the surprising result that persistence of heteroclinics and cascading
appears for every choice of f and g as long as (H1)-(H3) are satisfied.

3.1 The result of Fan and Hale

The latest, most important and outstanding result on the question of persistence of het-
eroclinic orbits on the parabolic attractor so far is the result of Fan and Hale from 1995.
In [FH95| Fan and Hale address the question of viscous regularisations of the hyperbolic
equation.
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In the first part of the paper they investigate the connection problem of the global attractor
of the hyperbolic equation. These results were already presented in Section 2.5. In the
second part of the publication Fan and Hale investigate the regularised equation, which is
precisely our equation (P).

In Theorem 4.7 they state a persistence result for heteroclinic connections within this
framework. Their theorem reads:

Theorem 3.1.1 If B = {u®(z,t),0 < e <&} is a set of connecting (heteroclinic) orbits
of the parabolic equation (P), then there is a sub-sequence {u*"(xz,t)} of B converging to
u(z,t) as ¢ — 0 a.e. in S x R where u®(x,t) is a connecting orbit of the hyperbolic
equation (H).

Unfortunately this theorem is wrong. The claim that convergence is a.e. on S* x R is not
true. As a result of this the limiting solution wug is not necessarily a heteroclinic connection.

Taking a closer look at the proof of their theorem one realises that it is almost completely
correct. Only their conclusion using a diagonalising sequence argument at the very end of
the proof is wrong. This argument does not work here. And it is not solely the argument
that is wrong. We will see that in fact the claim is wrong as well!

We will see that the limit of a heteroclinic connection is a global solution, however, this
does not imply that this global solution is a heteroclinic connection as one might expect.
An additional complication is the fact that the limiting object in general depends on how
the heteroclinic orbits u®(-,¢) are parameterised in ¢ and how sub-sequences are chosen.
This means in general

‘CDO (hm u(x,t), 7') —us(z,t+7)

e—0
is not necessarily small for small € > 0 (see page 59). The reason for this is that the limit
is only pointwise on compact intervals [T, T, but not uniform.

In general the limit of a heteroclinic connection of the parabolic equation limits to a set of
solutions of the hyperbolic equation. This set in fact is a subset of the global attractor of
(H).

If we look at the dimensionality of the sub-attractors introduced in the last chapter, we
see that dim A% = dim AS. However in A% half of the dimensions consist of frozen waves
whereas in AS the set of rotating waves is one dimensional. This already suggests that
persistence of heteroclinics might fail just for dimensional reasons. We will see that the
situation is even worse than that.

3.2 Cascade of heteroclinics
Let us state the corrected result of Fan and Hale first:

Theorem 3.2.1 (Global Solution) Let B := {u°(x,t) € H® : 0 <& < go} for some gy <<
1. Then there exists a subset {u"(xz,t)} of B with the property that

lim v (z,t) = u®(z,t)
n—oo

a.e. on S for all t € [-T,T]. Moreover u®(z,t) is a global solution of equation (H).
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For a better readability I include a full proof of the theorem. It closely follows the one in
the paper of Fan and Hale |[FH95|, pages 1251-1253; but I have included some additional
explanations and references. The theorem is proved by using the method of compensated
compactness, which was developed in the 70s by Murat and Tartar see for example [Mu78|
and [Tar79] and references therein. The theorems of Functional Analysis quoted in the
proof can be found for example in the book of Werner [Wer|.

The proof uses the Div-Curl Lemma by Murat [Mu78|:

Lemma 3.2.2 (Div-Curl-Lemma) Assume that {vi},{wr} are two bounded sequences
in L2(U,R™) where U C R™, such that

(i) {div vy} is compact in W=L2(U;R),

(ii) {curl wi} is compact in W—L2(U; R™"),
If v, = v and w, — w in LZ(U, R™), then vy - wy, — v - w in the sense of distributions.

Proof of Theorem 3.2.1 (Global Solution):
Due to the maximum principle and hypothesis (H3) all u* € B are globally bounded
in L*°. Hence there exists a sub-sequence in B denoted by {u®} again and a function

u € L®(S' x R, R) such that
u Doz, t) in L°(S! x R, R) (3.1)

This is a direct consequence of the Theorem of Alaoglu-Banach in its sequential form,
which states that the unit ball in the dual space of a vector space X is weak™ sequentially
compact if X is separable.

We use X = L' which is separable and thus X’ = L™ and obtain that there exists a
sub-sequence {u®} and a function u(z,t) as claimed above such that

/ [uf(x,t) — u(z,t)] pdedt — 0 fore — 0
STxR

for all ¢ € C*(S! x R,R). Note that it is sufficient to test with smooth functions because
C* is dense in L.

Now let g € C(R) be arbitrary. Due to the global boundedness of the solutions in B we
have by virtue of the same argument

g(uf(z,t)) = g(u(x,t)) := g(z,t) in L°(S* x R,R).
Then there is a family of Borel probability measures
{vor: (2,t) € ST x R},

such that we have the following representation:

o (1)) ™ glua, 1) = gla,1) = /R (v (V) (3.2)



in L>°(S! x R, R). This is a consequence of the Theorem of Radon-Nikodym. For a detailed
proof see Theorem 5 in [Tar79|.
It is important to note that “probability measure” implies that the v, ; are signed.

In the following we will show that v, is in fact a point measure at (x,t) with weight
u(z,t). This will yield the pointwise convergence.
Let ¢ € C%(R) be a convex function. Then we define

() = / " () (s)ds. (3.3)

Therefore we can write

in L=(S! x R, R).
Now we look at dpp(u) = ¢ (u)0pu® and obtain by using (3.1), (3.3) and the PDE (P)

Y

P(u); + Y(u)r = € (B(u)ea — " (1) (1)) + & (u%)g(u®). (3.4)
We claim that

T
sup// e(uf)?dzdt < oo (3.5)
S1
0

e>0

and therefore /e0,p(uf) € L?(S* x [0,T)).
To see (3.5) we use ¢(u) = u? in (3.4) and integrate over S* x [0, T]. We obtain

/Sl(ue(x,T))2da; :/Sl(uf(g;,o)ﬁdx _ 2/0T /Sl e(u)2dadt
+2/OT /31 uEg(uf)dadt.

The left hand side of this equation and the first and last term of the right hand side are
globally bounded for all € > 0, hence we have obtained (3.5).

We conclude e, (uf) — 0 in L?(S x [0,7]) and thus

£z (uf) — 0in WL2(ST x [0,77).
Furthermore e¢” (uf)(us)? and ufp(uf) are bounded in the space of signed Radon measures
on S' x [0, T] with finite mass.

Now we can apply Corollary 1 of Chapter 1 of Evans [Ev90] which yields that the right
hand side of (3.4) is compact in W—12(S! x R*). Note that this remains true if ¢ is only
piecewise C? and continuous. In this case we obtain a piecewise version of equation (3.4).
The argumentation remains the same and we again obtain ey, (u¢) — 0 in L2(St x [0, 7).

We now want to apply the Div-Curl-Lemma 3.2.2. We define two sequences:



Then by (3.2) we have

ve - 10 2t /R FOe(N) — MW)]dva(A).

The Div-Curl-Lemma provides

* —

Ua'waﬂv'w:(fau)'((ﬁa_w)'

Hence we obtain

/R FOe(N) = AbA)dves (V) = Fa, 1) / ey (V) — e, 1) | BN dva(N)

R R

which is equivalent to

/R [(F) = f(@.)e(N) + (u(@,t) = Np(N)] dug () = 0. (3.8)

We now choose p(A\) = |\ — u(x,t)| which is in fact only CY (but piecewise C?), then

A
P(A) = / f'(5)¢' (s)ds = sign(A — u(z, 1)) (f(A) — f(u(z,1))).

With this equation (3.8) reduces to

(e, ) = Fa) [ 1A= ula)ldve(3) =0,
Thus, one of the factors must be zero, this either leads to

f(ﬁ(x7t)) - .f(x7t) =0 (3'9)
or to
Supp{yx,t} = {u(a;, t)}

Recalling the definition of f in equation (3.2) we observe that supp{v,:} = {u(z,t)} again
implies equation (3.9).

Now we choose ¢(A) = f(A) — f(u(z,t)) and therefore ¢(\) = f)‘(f’(s))st. In this case
(3.8) takes the form

A

[ o= st - - atwo) [

u

(f’(S))2d8] dv,(\) = 0. (3.10)

We use Hdlder’s inequality for the first term of the integrant and obtain:
2 g ’ g 2
() = fladat)? = ([ £10-105) <) 7662

Hence the integrant of equation (3.10) is either zero or negative, therefore it must be zero.
Here we have used the fact that v,; is a probability measure. From the fact that the
integrant of (3.10) is zero we conclude that either f’ = const or A = u(z,t) and therefore

A = u(z,t)
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because f” > 0 due to (HI).

We now have obtained that v, is a point measure at (x,t) with weight u(z,t) but this
implies that the convergence of u® to u is pointwise a.e. on S! for all times t € [0, 7).
The same argument works for negative times hence we have pointwise convergence a.e. on
St x [-T,T).

Because T was arbitrary, u(z,t) is globally bounded for ¢t € R. Otherwise there would exist
a time £y and a point zg, such that uw would have to become large in a neighbourhood
of (to, o). That is impossible because |u®| is globally bounded by max{|u_|,|u4|}. This
yields that u(z,t) is a global solution of the hyperbolic equation (H).

Due to the global boundedness of the u? it is clear, that u° is a solution of the hyperbolic
equation. One just has to apply the Theorem of Dominated Convergence to the weak
formulation of the parabolic equation and let ¢ — 0.

O

Certainly the question arises why “global solution” does not imply “heteroclinic connection”
in this case. The main obstacle for this is the occurrence of additional equilibria. Figure 3.1
illustrates why “global solution” does not necessarily imply heteroclinic connection when
additional frozen waves occur in the limiting process. Both panels show the (¢ — t) plane,
every point represents a solution profile u(-) € L. The t-variable is compactified. Both
panels show the same set of heteroclinic orbits u°(-,-) and its limit in . Panel a) depicts
the convergence of a solution for ¢ € [T, T]. Because u®(-,0) converges to an equilibrium
the length covered by u®(-,t), t € [-T,T] gets shorter with smaller ¢ and vanishes for
e = 0. This is true for all finite T

In b) we have shifted u%(-,0) of Panel a) to the left to a solution @ where we set ¢ = 0.
Again we investigate a sequence of 4°(-,0) converging to the @°(-,¢) now including time.
What used to be a cone becomes trapezoidal. If we let ¢ go to oo then the limiting functions
@°(-,t) for t € [T, T] will converge to the heteroclinic connection of the left and centre
equilibrium. This idea will be used in Theorem 3.2.9. Note that the dashed curves in the
figure are in general just curves and do not necessarily have to be straight lines as depicted.
Note that in both cases we do not have persistence allthough in Panel b) we have conver-
gence to a heteroclinic connection, but the heteroclinic orbit does not connect the limits
of target and source of the parabolic connection.

Let us now state two corollaries to the Global Solution Theorem. The first one concerns
rotating waves.

Corollary 3.2.3 Let B := {u°(z,t) € FFURS0 < e <o} for some 0 < eg << 1. Then
there exists a subset {u*"(x,t)} of B with the property that
lim v (z,t) = u’(z,t)

n—oo

a.e. on S x [T, T]. Moreover u°(z,t) is a global solution of (H).
Second, we make a statement on all possible limits of solutions in the set B:

Corollary 3.2.4 Let B be defined as in Theorem 3.2.1 and let all parameterisations in t
be fized. Let u € BV (S! x [T, T],R) with

u(z,t) == ili% u (-, Ty + 1)

o4
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Figure 3.1: Convergence of a heteroclinic orbit connecting uj, and uj for e — 0. The dots
symbolise the frozen waves for € = 0, the small circles rotating waves for € > 0. For e =0
an additional frozen wave appears in the middle. In Panel a) convergence to the centre
frozen wave is depicted. In Panel b) convergence for 4°(-,-) is displayed . It is clear why
there is no uniform convergence for all ¢ € R in this case.
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a.e. on St x [=T,T] for sequences {e,} — 0 and {r,} and all bounded T € R. Then
u(-t) € A°.

Proof. Certainly u must be globally bounded and due to the convergence of the limit be
a solution of the hyperbolic equation. Therefore it must be a global solution and hence

u(-,t) € A°.

0

In the case of rotating waves Corollary 3.2.3 can be improved considerably. The limiting
object is not only a global solution but again a frozen wave of the hyperbolic equation.
This is the content of the following Theorem. Note that we use ODE theory here to obtain
a much stronger result regarding convergence. We prove convergence for all €.

Theorem 3.2.5 (Rotating Waves) Let a = 2a for a € N and u be the up to shift
unique rotating or frozen wave of (P) with the property

z(uy) =a

wE(0,0) = 0

Then the limit
lim u (x,t) = ul (x,t)

E—

exists almost everywhere and ul(x,t) is a frozen wave of the hyperbolic equation (H) with

0 =a. (3.11)

2(uq

Proof. We perform the proof in several steps:

(i) For the existence of the limit we assume a = 2, the other cases just work with the
same argument.
We observe that, according to Lemma 2.3.5, the rotating wave v associated to u (-, t)
and its derivative lie in a o(e) channel around ¢(z) outside a e log e-neighbourhood
of some x5(e).
Because x9(e1) — wo(e2) < Cle; — e9| for some constant C', the limit of u® for e — 0
exists outside any open neighbourhood of x5 and is in fact uniform. This proves the
existence.

(ii) It remains to prove that ug is a rotating wave. From Corollary 3.2.3 we obtain that
uo(x,t) is a global solution and therefore lies on the attractor. Because it converges
uniformly to ¢ outside a neighbourhood of xy, the solution wy neither can be a
homogenous solution, nor a heteroclinic connection. From equation 2.47 follows that
it must be a rotating wave which is unique up to shifts. This proves the claim.

(iii) The relation between the zero-numbers of the parabolic wave and the hyperbolic one
is obvious. All frozen waves for € = 0 have positive derivative in all their zeros (see
Section 2.6). We have seen that these persist. For ¢ > 0 all rotating wave profiles
are continuous and thus have alternating signs in the derivative. Together with the
already proved persistence this yields (3.11).
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Remark 3.2.6 The relation of the zero-number between solutions on the parabolic attrac-
tor u® € A® and their limits is true for all elements u € A°. The zero-number drops by one
half when taking the limit € — 0, counting multiplicity in the case of double zeros.
This immediately 1mplies

lim A5 C A2 (3.12)

e—0

i the sense of solutions.

The zero-number property is true because all solutions u € AY have the property that the
derivative in the zero is positive. Assume u has a zero at x¢ with negative slope, then using
the backward characteristic emanating from xy we conclude that the limit in backward
time u_o has also a zero at xp. The sign of the derivative cannot change, hence it is
negative. This contradicts the fact that u_., must be a frozen wave. Because the sign of
the derivative in the zeros of all u* alternates, the zero-number drops by one half. Moreover
it must be finite for ¢ # 0.

Coming back to rotating waves, we summarise that all rotating waves persist for ¢ — 0.
Moreover there is the relation between the zero-number of the rotating wave for € > 0 and
the number of zeros of the limiting frozen wave.

Definition 3.2.7 Let a := 2a for some a € N be given and let €y be sufficiently small.
Then us(-,-) denotes the up to rotation unique rotating wave with zero-numbers z = a for
all 0 < e < gq.
The set of rotating and frozen waves us, with a given zero-number z(ug) = a shall be denoted
by

By, ={u, e FFUR :0<e<ep}.

Moreover we fix the notation of Theorem 3.2.5 by defining

ud (-, ) == lim uS (-, ).
e—0
As mentioned above, the persistence result that is valid for rotating waves, is not true for
heteroclinic orbits although Theorem 3.2.1 yields convergence to a global solution. The
next Lemma will provide a criterion when heteroclinic orbits cannot persist. In order to
prove this criterion we define the set of heteroclinic orbits connecting two rotating waves
ug, and uj with zero-number a and b by

B = {ua € H®: lim u®(-,t)= ufvtlim u(,t) =up, 0<e< Eo} . (3.13)

t——o00

The rotating wave ug, is called the source and uj the target.

Lemma 3.2.8 (Connection Lemma) Let B,, By and By, be defined as above with a =
200 and b =20 for o, 3 € N and let u® € By, with

u(z,t) == lim u(z,1) (3.14)

n—~0o0

a.e., where gy, 1s a sequence for which the u*™ converge due to Theorem 3.2.1.
If
lim u%(-,t) = u2(") and lim u%(-,t) = u%()

t——o00 « t—o00
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for all fixed time parameterisations of u(-,t). Then there exists a k € N such that

a = kb. (3.15)

In other words, if a # kb for all k € N then the limit of the heteroclinic orbits connecting
the rotating waves ug and uy does not connect the limits of the rotating waves given by u?
and u%, thus the heteroclinic connection cannot persist.

Proof. For all 0 < € < gp the rotating waves u and uj are periodic solutions of the

rotating wave equation. Their period is given by T, = %’T and Tj, = %’r

If the heteroclinic connection uf(-,t) persits, u® and u% have to be connected by a hetero-
clinic orbit. According to Theorem 2.5.12 this implies

Z(u%) C Z(u?). (3.16)

Taking the limit € — 0 for the rotating waves, we obtain that the zeros of u? and u% must
be periodic in x and the distance of neighbouring zeros is given by T, and T} respectively.
Then equation 3.16 implies

T, = KT,
for some k € N.
Hence
a=kg3
which implies
a=kb

just as desired.
O

The fact that on the global attractor of the parabolic equation all rotating waves are
connected to all waves with strictly lower Morse index, implies that the condition in the
connection Lemma 3.2.8 is non-empty.

In case of non-persistence there is much more to say. In fact in the next theorem we will
prove that the limit of the heteroclinic connections consists of a finite cascade of heteroclinic
connections.

In order to prove this statement we have to circumvent the problem that the parameteri-
sation in ¢ gets “stuck” in an emerging stationary state. We have heuristically argued that
this can happen (see Figure 3.1). We will make this argument rigorously here.

For this purpose we again use the set B, and assume that

lim u®(z,t) = u’(z,t) a.e. on S* x [T, T]

E—

but

Without loss of generality we can assume u°(-,t) € F° otherwise we could use limy_, oo u%(-, )
for the argument. Additionally u"(z,t) shall not correspond to the target frozen wave u%.
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Then the following is true: there is a § > 0 such that for every sufficiently small € > 0
there exists a 7" > 0 such that

[u (-, T) — u®(-, T)|| > 0. (3.17)

It is obvious that on the one hand

On the other

for T — oc.
Hence

6 (-, T) =) = [[u (- T) = u® (- 0)]| = [[uj(-) = u’ ()]
for T — oc.

But [[uf(-) — w%(-)]| > &. If this was false then u°(-,7) would converge to the target
equilibrium which was excluded. In fact we can choose any 0 < § < ||u%() —u9()]|.

We have not specified any norms here. This was not necessary as the argument holds for
the L', the L? or the L™ norm.

This means nothing else than that, no matter how large T is chosen, for all £ > 0 there is
always a part of the heteroclinic orbit u(-,t) for ¢ > T that lies outside the cone of conver-
gence (see Figure 3.1). We therefore introduce a different parameterisation to circumvent
this problem.

In order to do this we have to use the concept that all heteroclinic connections are embedded
manifolds in the extended phase space. In other words, the graph of the map
uf iR — L2
t—us(-1)
given by (uf(-,t),t) defines an embedded manifold in L? xR. Due to the global boundedness
of all u® , this graph is also a manifold in L*> x R.
We now introduce a different parameterisation by the transformation

t
Ti=
(g (-, )] 2

and define:
Us(7) == u°(-,¢t).

In case there are 74 with U®(74) = « , then we define
Us(r) :==U° (r—) for 7 < 7_
US(r) := U (ry) for 7 > 4.

This compensates for the fact that in the case uj and wuj are frozen waves U(-) can have
finite length.

We now have U® : R — L? and graph(U(-)) = graph(u®(-)) but graph(U(-)) is parame-
terised by arc length.

99



£

The map U®(+) : R — L? is differentiable and we have
Ut

=1
] ‘ ’

hence the U® are a bounded sequence of equicontinuous functions and therefore have, after
possibly taking a sub-sequence, a continuous limit U? for all 7 € [~7_,7,] for arbitrary
but finite 7. Hence U(-) is again a manifold that can be parameterised by 7 and is locally
connected.

o)l =

The new parameterisation has the important property that it cannot get “stuck” as the
parameterisation over the ¢ could.

Before stating the Theorem, we add the following notion: we say that U?(y) lies to the
right of U%(71) on U if and only if 75 > 71 for fixed &.

Theorem 3.2.9 (Cascading) Let again

By = {uEEHE: lim u"::ufl,tlimuezuf7 0<€<€0},
— 00

t——o00

where a = 2« and b = 20.

Then there exists a sub-sequence {e,} — 0 of {e} such that the limit in n of the u*» € By,
consists entirely of frozen waves or of a cascade of heteroclinic conmections interrupted by
sections of frozen waves.

There are at most a— 3 different heteroclinic orbits and o — B+ 1 sections of frozen waves.

Proof. We begin the proof by defining the set of all possible limits of By, denoted by U.
Let therefore I'y be the set of all sub-sequences {e,,} and {7, } for which

lim U (7, + 7)

n—oo

converges to a BV-function ern} {Tn}(T) such that, if we define
un(-,0) = U*n(r,)

then u®(-,t) — u’(-,t) a.e. on S' x [T, T)] for all finite T € R. The set of all these
functions shall be denoted by

U, = {U{En},{Tn} € BV, ({511}, {Tn}) S Fl} (3.18)

then Corollary 3.2.4 yields U; C A°.

The following proof is a finite induction with respect to the number of heteroclinic orbits

in U.

If Uy NH? = () then the limit of the heteroclinic connections in By, does not contain a
heteroclinic connection of equation (H). Hence the Theorem is true.

Therefore assume 3({e, }, {7n}) € I'1 such that

ul(z,0) := lim U (7,)

n—oo
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Figure 3.2: Schematic plot to illustrate the construction in the proof.

is not a frozen wave or equilibrium of equation (H) and thus lies on a heteroclinic connec-
tion. Without loss of generality we assume that

: 0 0 : 0 0
Jim 1) £Q() orlm ud(, 1) # ()
otherwise the heteroclinic orbit persists and we are finished.
Let us assume

i (- 8) = u, () #

t—o00
Due to the Sturm property the number of zeros can only drop along heteroclinics for € > 0,
the same is true for ¢ = 0 (see as well equation (2.49)). We conclude that

z(ugl) <a-1
because the source of the heteroclinic can have at most « zeros. Here we have used the
fact that the number of zeros in any u%(-,¢) has at most o many zeros, by Remark 3.2.6.

We go back to arc length parameterisation. Because ugﬂ =+ u% there must be a sequence 7,
such that

lim U (7,) = ugl.
n—oo

We now define
I's cIy

to be the subset of sub-sequences ({£,},{7m}) € I'1 with the property that they lie right
of 7p,:

o ({em} {mm}) €t
{em},{mm}) €T1 & o {e,,} sub-sequence of {&,,} and

o Ty > Ty
In analogy to U; we define

Uz = {ugen,frm} € BV ({em}, {Tm}) € Ta}
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Due to the fact that z(ug) <« — 1, we have the property that
2(u°(t) <a—1

holds for all u®(-,t) € Us. Again we use the fact that the zero-number decreases in both
equations (P) and (H).

There are two cases:

e Either Uy NH® = (). Then all parts of the heteroclinic connections that lie to the
right of the U™ (0) converge to frozen waves.

e Or there are other heteroclinic connections in Us. Let ug (x,t) € Uz have the property
that z(limy_, o uy(-,¢)) is maximal among all heteroclinic connections. Then we have
2(lim ud(-, 1)) < a — 2.
t—o00

We now repeat the above construction until the set U, NH° = (). Because « is finite,
k must be finite as well.

The same construction works in negative time direction with finitely many steps. Hence
we have found a sub-sequence again denoted by {e,} for which the set of heteroclinic
connections U™ (-) converges to a sequence of heteroclinic orbits intercepted by sections
of frozen waves. There can be at most  — [ heteroclinics, and consequently o — 3 + 1
sections of stationary solutions in the limit, because the number of zeros has to drop at
least by one in every heteroclinic connection.

Thus the theorem is proven.

O

Remark 3.2.10 F2 can be parameterised completely by its zeros and therefore is a «
dimensional torus T® embedded in BV (S',R); see Section 2.6. All sections of frozen waves

of a cascade of heteroclinics in the above Theorem 3.2.9 are contained in this manifold.

As a Corollary to Theorem 3.2.9 we obtain two necessary conditions on the persistence of
a heteroclinic orbits.

Corollary 3.2.11 (Persistence) Let u®(x,t) be a heteroclinic orbit connecting ug, with
ug. Then the following statements are true:

(i) Let the set Uy defined in (3.18) contain at least one solution u®(x,t) that is not
stationary. If
lim (1) = ug (")
t——00
and
: 0. — 0.
lim w(-t) = ()

then the heteroclinic connection u®(x,t) persists.

(ii) Let Uy NF° = {ug,u%} then the heteroclinic orbit persists.
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Now we have settled the question of persistence. The Connection Lemma 3.2.8 provides a
necessary condition for the persistence of heteroclinic connections between given rotating
or frozen waves. Corollary 3.2.11 yields two independent sufficient conditions for the per-
sistence of a heteroclinic orbit.

In addition Theorem 3.2.9 gives a result on the structure of the limit of heteroclinic con-
nections in case of non-persistence: a cascade of heteroclinic connections in A°.

In the following and last section of this chapter we will combine the results on persistence
with the result from Section 2.4 on the connection problem of the global attractor of
equation (P). A more detailed analysis of the geometrical properties of the global attractors
will follow in Chapter 4.

3.3 Persistence and non-persistence!

In this section we will show that for all choices of f and ¢ satisfying the assumptions
(H1)-(H3) there exist heteroclinic connections in H® that do not persist for ¢ — 0. The
next chapter will yield that there are always connections that do persist, however these
results of persistence are so far limited to low dimensional cases.

We have seen in Section 2.4 that on the global attractor of the parabolic equation a solution
up € £ U F U RE is connected to another solution ug € £ U F¢ U R if and only if

z(ul) > Z(U,Q) (3.19)

Figure 3.3 shows the sub-attractors Aj, Ag,and Ag in the upper part and Aj, and Aj, in
the lower part. In the first three illustrations the connections to the constant states u = uy
are also included, whereas we have omitted these connections in the two lower pictures.
Equation (3.19) yields that the attractor possesses a gradient-like structure, hence the flow
on all connections points downwards (see Figure 2.5).

Our main concern regards the question which of the connections do not persist. Lemma
3.2.8 yields a purely algebraic relation on the zeros to decide this. The only heteroclinic
connections that possibly persist are the ones where the zero-number of the target wave is
a natural fraction of the zero-number of the source. Hence the heteroclinics in the set By,
defined in 3.13 possibly persist if there exists a k¥ € N such that

a = kb. (3.20)

In Figure 3.3 the connections that satisfy equation (3.20) are drawn as solid lines, the
connections that violate equation (3.20) are drawn with dashed lines. These connections
are the ones where we know a priori that they do not persist. So all sub-attractors larger
than Aj contain connections that do not persist. All figures are independent of the choice
of f and g.

The next Chapter will yield persistence of some connections, but only for limited low
dimensional examples. The general question or whether connections that fulfil equation
(3.20) persist or not, cannot be answered yet, but will be discussed in some detail in the
Conclusion in Chapter 5.

63



€
10

Figure 3.3: Depicted are the sub-attractors of order n = 4,6,8,10 and 14. Heteroclinics
that do not persist are drawn with dashed lines.
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Chapter 4

The geometry of sub-attractors

In this chapter we will investigate the implications of our main results of the last chapters
on the geometry of sub-attractors and the relation of solutions in A% and AS. We will
investigate topological aspects of the manifold A, and use this knowledge to describe
the geometry of the heteroclinic connections of the parabolic equation. Here, “geometric
description” does not mean to draw further images on connection properties but to describe
these connections as manifolds in L? x R and, by doing so, shed some light on the topology
of the A;,. Not all of the results presented are rigorous.

The main obstacle in making all results on the geometry and topology of the A? rigorous
is that we have not addressed the spectral problem of the parabolic or hyperbolic equation.
The problem is that the pointwise convergence of solutions (Theorem 3.2.1), the result on
the dimensions of sub-attractors dim A% = dim A% (Theorem 2.6.1) and the zero properties
of solutions (Remark 3.2.6) only imply

: 0
i% A; C A,

in the sense of sequences and solutions, but not
lim A, = AY,

In other words we do not know whether the limiting procedure is surjective. In order
to prove surjectivity we would need results on the convergence and persistence of the
tangent vectors of the manifolds. If we restrict ourselves to neighbourhoods of the rotating
and frozen waves (which would be sufficient in our case) we would need a result on the
convergence of eigenvectors associated to the eigenvalue problem

epun — f (W) (uS) 20 — f'(u)pe + g (u)p = Ap (4.1)

for waves u® € F° U R® to the eigenvectors of the hyperbolic problem and certain e
independent bounds on the associated spectral projections. The difficulties are manifold
here:

e There is no generic way to explicitly compute the eigenvectors of (4.1)

e Equation (4.1) is only self-adjoint with respect to a scalar product that explicitly
depends on ¢, hence the spectral projections associated with these eigenvectors also
depend explicitly on €.
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e The target manifold W% (ul) for u2 € F° given by Algy,.. w0} 18 MO C!' on BV xR
or L* x R but only Lipschitz.

e The dimensions of the unstable manifolds for e = 0 and € > 0 do not match:
lin(l)(dim W (uf)) # dim W*(u®)
e—
0

for u* — u”.
We have seen already that in the case z(u®) > 2, u® a frozen wave

dim (W (u®)) = i(uf) = 2(u¥) — 1 # dim W*(u?)) = 2(u®)/2

We do not attempt to overcome all these difficulties here, but we will sometimes make the
following assumption:

Assumption (D) Let v € F*URS with 2(u5) = a and lim._ouS = uQ. Then there exist
for all g > ¢ > 0 neighbourhoods N¢ of us in A5 and a neighbourhood N° of u® in A®
such that

lim N = N"

e—0
i.e. for all u® € NO there exists a sequence u® € N¢ such that lim._ou® = u° and all
u® € N are limits of a sequence of u* € N°.

Geometrically Assumption (D) states in particular, that the dimension of a neighbourhood
N°¢ of a rotating or frozen wave in A% does not change in the limiting process.

Now let us investigate the sub-attractors of the lower dimensions. We will do this for
general f and g, but if explicit representations of solutions are plotted we use the special
case where the source term ¢ is odd and the transport term f is even and given by

flu) == %uz g(u) == u(l —u?). (4.2)

In principle explicit representations of solutions can be given for all f and g once the
stationary problem of the hyperbolic equation given in equation (2.53) is solved.

Let me include a technical note: In the following we will compare the solutions of the
hyperbolic and parabolic equations. Although the solution of the parabolic equation does
not possess shocks in the sense of discontinuities, we will refer to the zeros that develop in
the limit ¢ — 0 discontinuities as well as shocks. In addition when we refer to a drift of
zeros in the hyperbolic setting, we mean a drift with respect to the parameterisation on
the respective manifold.

4.1 The sub-attractors A) and A3

According to the definition of Ay given in equation (2.50) in Chapter 2, the sub-attractor
AY consists of all frozen waves with zero-number z = 1, the two stable homogeneous
equilibria v = ug and all heteroclinic connections between these objects.

The frozen waves form a sub-manifold of Ag that can be represented as an S

66



u(x,t) =u_

Figure 4.1: Geometric representation of the sub attractor A3.

Uy

Afar=0)

<

Y
U{z1=0}
\
\
\
AS
Uu_ y1 =0

Figure 4.2: Stereographic projection for the case z; = 0.

Due to Theorem A (2.5.10) in Chapter 2 all frozen waves are connected to u(z) = us.
Theorem C (2.5.10) states that these are all heteroclinic connections in Ay and Theorem
2.6.1 e) yields uniqueness of these heteroclinics. Equation (2.71) provides together with
equation (2.72) an explicit parameterisation of these connections W“(}"S). Hence we can
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define an explicit embedding

¥y : ST x R -BV(SY,R)

(‘Thyl) HEQ('xhyl) = u{xl,yl}

where wug, .1 is defined in equation (2.71). The flow on graph(Xz) can be computed
explicitly and is given by equation (2.63) in Theorem 2.6.1 ¢).

By a stereographic projection & we can map the whole object onto the surface of a ball,
thus obtaining a representation of A as an S2, shown in Figure 4.1.

The stereographic projection S is outlined in Figure 4.2 where we have set 1 = 0. In
the figure the heteroclinic connection on the S? is depicted in black, the frozen wave is
depicted in red. The explicit parameterisation of the heteroclinic by the shock position
y1 € R is represented by the blue line. If we see Figure 4.2 as one slice of Figure 4.1 we can
understand how solutions evolve along the heteroclinics on the S2. The three diagrams on
the right in Figure 4.1 show schematically how the shape of these solutions evolves.

Can we use this description to describe the parabolic sub-attractor A57 There all rotating
waves with Morse index ¢ = 1 are given by

ut(z — c(e)t) = uj(x +0)

with § € S'. In a co-moving coordinate system every rotating wave can be frozen. Every
now frozen wave is connected by a heteroclinic orbit to w4 and w_. Due to Theorem 3.2.5
all rotating waves persist, hence we have converge to the red S! in Figure 4.1 for ¢ — 0.

Due to Corollary 3.2.11 all heteroclinic connections persist as well. By uniqueness of the
heteroclinic connections in Ag we obtain that

lim A5 = A,
e—0

where this limit is understood as a limit of sequences and solutions. Furthermore there is
a one-to-one correspondence between orbits on the sub-attractors, hence .Ag and A5 are
CP-orbit equivalent. Thus the above explicit description of Ag is a leading order description
of A5 in the appropriately co-rotating coordinate system.

This describes the geometry of these heteroclinic connections of the parabolic equation in
first order in a completely rigorous way, because we have not used Assumption (D) here.

4.2 The sub-attractors A} and A5

We begin with the analysis of the sub-attractor of the hyperbolic equation. Theorem 2.6.1
yields dim A} = 4 and Corollary 2.6.4 states that all connections between rotating waves
are contained in Ay defined in equation (2.73). However, this does not yet explain the
topology of the sub-attractor .A3.

Following the definition of A} := & U FY U HY we will first classify all homogeneous
equilibria and frozen waves. It is clear that £ = {u_,u,}. Due to Sinestrati the frozen
waves can be uniquely parameterised by the position of their zeros x1,x2, so they form a
two-torus:

FO—T? .= §' x 8!
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filled with
heteroclinics

Figure 4.3: Heteroclinic connections in A with targets u = u..

The torus also contains the frozen waves FS=S' that possess only one zero.

Each element of this torus has a heteroclinic connection to the homogeneous equilibria
u = u4. This can be depicted by a spindle with a quadratic horizontal section and u_
located at the top and bottom. See Panel a) in Figure 4.3. The heteroclinic connections
are plotted in black or green and the frozen waves in red. The edges of the red quadratic
horizontal section have to be identified in order to obtain the torus. The sub-attractor
AY is contained in this picture as well and is depicted in green. Figure 4.1 is obtained
after identification of the two corners involved that lie on the torus .7-—2. Note that we have
not plotted all heteroclinics in Figure 4.3. The complete spindle is filled with heteroclinics
starting in .7-'2 and ending at u = u..

The more interesting part of AZ is the part of the attractor that consists of all frozen waves
FY and the heteroclinic connection between these waves. Theorem C (2.5.12) at the end
of Section 2.5 yields that every frozen wave @ with zero-number z(@) = 2 is connected to
two waves g, &y With zero-numbers z(t,) = 1.

If we look at Panel a) in Figure 4.3, this means nothing else than that every point on the
torus of frozen waves that is coloured in red has two heteroclinic connections to two points
on the green curve on that torus. This is shown in Panel b) where we have parameterised
the torus by the zeros (x1,z2) given as the horizontal and vertical axes. Some (but not
all) heteroclinics are shown in black for illustration. The lines are vertical if the zero z;
persists, horizontal if the zero o persists. In principle there should be two heteroclinics
emerging at every point. The one arrow coloured in blue represents the heteroclinic orbit
shown in Figure 2.6 in Chapter 2 for Burgers equation.

The uniqueness result in Theorem 2.6.1 f) guarantees the uniqueness of these connections
and equations (2.56) and (2.56) provide an explicit parameterisation of these connections.
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To show the complete connection picture it is convenient to use another representation that
divides out the S' symmetry. This representation is shown in Figure 4.4 and will prove
useful for the comparison with the global attractor of the parabolic equation.

To understand the Figure it is best to start with the red vertical line. This line represents
FJ/S1: the manifold that contains all frozen waves with zero-number z = 2 after having
divided out the S' symmetry. The centre point (in blue) on this line is the 7-periodic
frozen wave with equidistant zeros. This is the only wave on the red line that is a limit of
waves of the parabolic equation. No other waves on the red line can be obtained as limits
of waves for ¢ — 0. If they were, the rotating wave equation (2.7) would have to have
self-intersecting solutions, which is impossible (compare with Figure 2.3 Panel b)).

The coordinates on the red manifold are given by the distance between the two zeros z;
and x5. On the bottom the distance is zero, in the middle at the blue dot it is m and
then it goes to zero again towards the top. #1 and x2 change in such a way that the two
shocks always remain in the same position (for Burgers equation (4.2) this means due to
symmetries that % = 7 along the red manifold). The three solution profiles drawn in
red show how the solutions evolve along the manifold. The red manifold is also included
in Panels a) and b) of Figure 4.3 as a red dashed line with a blue dot on the torus T? in
case of Burgers equation.

Each of the frozen waves has two connections to frozen waves with z = 1, one connection
where the zero x; persists and one where x9 persists. These are represented by the black
arrows connecting to the green circle representing F9. To the left z; persists and to the
right x9 persist, this induces coordinates on the circle of frozen waves with zero-number
z = 1. The green solution profiles in Figure 4.4 indicate how solutions evolve along the
circle. A clockwise rotation along the S* in the figure corresponds to a shift of the solution
to the right.

Now we are ready to include the S symmetry in the figure that was divided out before.
To do this we just have to rotate the whole figure along a circle in transverse direction
attached to the blue dot representing the wave with two equidistant zeros. We obtain a
filled torus where we have a figure similar to the one in Figure 4.4 in every slice.

Inside the torus the red line and the heteroclinic connections rotate once around the centre
point with higher symmetry (blue point) and therefore form a spiral. Figure 4.5 shows a
geometric representation of this. We have plotted half of the torus. The blue line corre-
sponds to the frozen waves in A that are limits of waves of the parabolic equation with
zero-number z = 4. The heteroclinics are shown only in the beginning and the end . They
rotate with the red manifold and are always perpendicular to that manifold. There is a
colour gradient included to illustrate the rotation of the heteroclinics. Note that the green
S1 does not rotate. Heteroclinics in the same colours correspond to each other. The green
circle corresponds to the green circle in Figure 4.4. To obtain the full picture we have to
identify all points on the surface of the torus with the green S', hence retract the torus
surface to the S1!

The result on uniqueness of the heteroclinic in Theorem 2.6.1 yields uniqueness of all
heteroclinic connections described above. In particular all connections are one-dimensional.
It follows that AJ\W#(ux) is in fact a three-dimensional manifold that can be represented
as described.

Let us turn to the parabolic equation. We will focus on the part of rotating and frozen
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Figure 4.4: Heteroclinic connections in A} from frozen waves with zero-number 2z = 2 to
waves with zero-number z = 1. The S! symmetry is divided out.
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lim (77525

Figure 4.5: Torus representing W*(F9) M W#*(F?) after identification of the two ends of
the cylinder and identification of the surface with the S' drawn in green.

waves with z = 4 to waves with z = 2. The connection between two individual waves uj
with z(uj) = 4 and u§ with z(u§) = 2 is due to the transversality result of stable and
unstable manifolds in equation (2.38)

W (ug) W (u3)

two-dimensional. This has to be properly interpreted. In the time dependent framework
the above means that there exist two heteroclinic connections @ and u with

that converge in forward time to appropriately shifted copies of v5(+) where we set u5(0,0) =
v5(0), i.e. there exist 6,0 € S such that

lim @ (2, ) = uj(z + 0,t) (4.3)
tlim W (x,t) = u§(x +6,1). (4.4)

é, 6 € ST are called the asymptotic phase. The transversality condition does not make any
predictions on the phases, it only says that the connection is two-dimensional.

If we include the shift symmetry we obtain that

dim (AS\W*(us)) = dim (W“(Ri) &) WS(R;)) — 3. (4.5)
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Figure 4.6: Heteroclinic connections in Aj from frozen waves with zero-number z = 2 to
waves with zero-number z = 1. The S! symmetry is divided out.

or the equivalent result in the case where the waves uj , are frozen.

Here we see already that the two-dimensional manifold W*%(u§) M W#(u5) cannot persist

completely, because
dim (W*(u3)) A W*(u?)) =1

due to uniqueness!

From Remark 3.2.6 and Theorem 3.2.1 we obtain that
lim AT\ () © ADW® (1), (4.6)
In addition we know that
dim AJ\W*(us.) = dim AQ\W*(ud) = 3

due to equation (4.5) and Theorem 2.6.1, but this does not imply equality in equation
(4.6). Here we use Assumption (D) in a neighbourhood N¢(u§) and N%(u9). The local
surjectivity of the limit in N°(u}) translates to the existence of heteroclinics in W%(uj)
that converge in a neighbourhood of uj.

Hence there is a heteroclinic connection in
W (ug) M W (u5)

that locally persists to the connection drawn in blue in Figure 4.4. Corollary 3.2.11 then
yields persistence of the full heteroclinic to the blue connection.
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Because
dim(W*(ug) M We(u5)) =2

but
dim(W*(ud) A W) =1

the heteroclinic orbit associated to the other linear independent direction W%(u§)
W#(u§) cannot persist.

This is remarkable because it shows that not only complete connection manifolds between
rotating waves of the parabolic equation do not persist. Even within a connection manifold
where target and source obey the connection condition (3.15) there are connections that
do not persists. This is a result of our dimensional argument.

Can we deduce convergence of W¥(u5) M W*(u5) to the manifold depicted in Figure 4.47

Unfortunately the transversality condition of the stable and unstable manifolds in equation
(2.38) does not necessarily imply that

We(ug)NFs = Fs =5

As far as I am aware there is no result on the asymptotic phase of the heteroclinic con-
nections already mentioned in equations (4.3) and (4.4). However if we assume this to be
true (which would be a consequence of Assumption (D)), then we could deduce that the
heteroclinic orbit associated to the direction other than the persisting one would converge
locally to the line of frozen waves with zero-number z = 2 depicted in red in Figure 4.4.
In order to deduce global convergence to the red line we would have to choose the correct
parameterisation of the red manifold. In other words we would have to choose the correct
slice in the full three-dimensional manifold represented by the torus in Figure 4.5. Our
parameterisation is such that the shocks have fixed positions on the whole (red) manifold
in Figure 4.4. Tt thus represents the separatrix of the shock movement to the left and the
right respectively.

Assuming that this is correctly chosen, then the unstable manifold in the case € > 0 given
by
W (ug) W (u3)

would converge pointwise to that depicted in Figure 4.4 and hence viscosity would induce
a slow drift on the red manifold of waves with two zeros. This is shown in Figure 4.6. In
this light it is plausible that our particular parameterisation of the frozen waves with two
zeros is correct. The drift that is induced by the € > 0 is such that the shocks remain in
their position and remain stationary by construction. In all other parameterisations the
shocks would have to adiabatically follow the drift of the zeros. There is no reason why this
should be happening because the shocks are unstable in the hyperbolic framework and it
is to be expected that they are unstable in the parabolic framework also. Note in addition
that even if W%(uj) M W*(u§) would be represented by another parameterisation, hence
we would have to choose another section of the torus in Figure 4.5 to obtain the correct
illustration, qualitatively Figure 4.6 would remain the same.

If we summarise the results, we observe that the (two-dimensional) part of the unstable
manifold of uj that connects to F5 carries a dynamical slow-fast structure. This is a
consequence of Assumption (D) together with the dimensional argument stating that not
all heteroclinics in W%(u§) M W#*(u§) can persist.
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In addition we were able to argue that Figure 4.6 represents qualitatively W"(uj) al
W (u3).
At this moment, however, I would call the part on the parabolic setting a good educated

guess or a conjecture that still needs a rigorous proof. Here I refer to discussion in the
Conclusions in Chapter 5.

4.3 Heteroclinic Cascades

To get a parameterisation of a heteroclinic cascade we have to make Assumption (D).
However, I would like to mention that the existence of heteroclinic cascades is already a
consequence of the Connection Lemma, the Cascading Theorem and the solved connection
problem on the parabolic attractor.

To find a heteroclinic cascade one has to at least consider Ag and A respectively. The set of
frozen waves for Ag is then a three torus T = T2 x S1. Even if we factor out the rotational
symmetry and consider only connections between waves with z = 3 and z = 2 we have to
consider a torus T? where each element on the torus has three heteroclinic connections to
the one-dimensional sub-torus given by a S'. This object is four-dimensional.

We will therefore not try to iterate the procedure of the last two sections but only attempt
to determine how solutions evolve along a specific connection. Here we only consider Burg-
ers equation (4.2), but the same approach works for any equation.

Let us start this time with the parabolic equation and consider u§ € F§ with z(u§) = 6
that connects to uj € Fj§ with z(uj) = 4.

The two waves converge for ¢ — 0 to u,uy € FV with 2(uj) = 3 and z(u9) = 2. Lemma
3.2.8 states that ug and ug are not connected. Hence, connections between ug and uj
converge for ¢ — 0 either to a line of equilibria or to a heteroclinic cascade. In the latter
case following the result of the previous section it is clear that the connection itself then
carries a slow-fast structure for € > 0.

Panel a) in Figure 4.7 shows the possible targets of uJ labeled u3,, u9, and u,. None of
the targets is a limit of a frozen wave of the parabolic equation.

We construct a connection between ug and ug consisting of heteroclinics and frozen waves
in A2, based on the assumption that the development of solutions along the manifold of
frozen waves is such that either shocks do not move or they move in the same way as
the neighbouring zeros. This implies due to symmetry that neighbouring zeros drift at the
same speed. In the case where the sign of their movements differs, the shock stays at its
position, whereas in the other case the profile between the zeros stays unchanged.

Following the construction of the last section this assumption makes sense, however, I
cannot prove that it must be like this.

Panel b) in Figure 4.7 shows possible ways how to construct connections between ug and
uY based on the above assumptions. The smaller diagrams show the source and target
of the desired connection and two intermediate steps u,% which are a target (@) or a
source (@) of a heteroclinic connection of the hyperbolic equation. Red arrows in the small
diagrams correspond to the movement of zeros along the manifold, blue arrows indicate
shock movements.
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Figure 4.7: Heteroclinic connections in AY from frozen waves with zero-number z = 3 to
waves with zero-number z = 2.

We start the explanation of Panel b) with the connection to the right. We first use the
heteroclinic connecting to ugb. Then we let the zeros drift towards each other until they
have reached the positions of the zeros in the target ug.

The connection to the left starts with a line of frozen waves until two of the zeros are at
the position of the target u3. Both connections consist of a heteroclinic already described
in Panel a) and a line of equilibria that is contained in JF.

I believe there exist heteroclinic connections from ug to uj that converge to the above
constructed heteroclinics and lines of equilibria, but again a rigorous proof is lacking.

This approach can be adapted to waves with more and more zeros. Figure 4.8 shows the
construction for a situation where the source uj, has twelve zeros and the target uj has two.
Hence there can be at most three heteroclinic connections in the cascade. The dynamical
slow-fast structure of the heteroclinic is shown on the right. The respective limiting objects
for e = 0 are shown in the large square on the left. The blue crosses symbolise shocks, the
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Figure 4.8: Heteroclinic connection between a wave with zero-number z = 12 and a wave

2.

with zero-number z

slow drifts of the zeros and blue

arrows represent fast movements of shocks. Every second profile is plotted for illustration.

red dots zeros. As in Figure 4.7 the red arrows represent

7



Chapter 5

Conclusions

The starting point of this dissertation was the question of the relation between solutions
on the global attractor of the viscous balance law (P) and its hyperbolic limit (H). Both
equations possess a global attractor that can be described by the set of equilibria, rotating
waves and heteroclinic connections. Despite the fact that all equilibria and rotating or
frozen waves of the parabolic equation persist to equilibria and frozen waves of the hyper-
bolic equation and the additional pointwise convergence of all solutions on the attractor,
heteroclinic connections do in general not persist.

Even in the case of the finite dimensional sub-attractors this implies that the sub-attractors
do not persist in the sense of solutions, i.e. A% is not CY-orbit equivalent to .A%. The only
exception seems to be the sub-attractor of order two where we could prove rigorously

lim A5 = A (5.1)

in the sense of solutions and sequences which implies C%-orbit equivalence. For the higher
dimensional cases the result on the dimensions of subattractors

. 0 .
dim A, =dim A =n
and the consequence of the persistence theorem
lim A5, C AY
suggests that equality holds in the last equation in the sense of sequences. However we do

not yet have a proof for this.

An important tool in the low dimensional case was the result of the explicit parameteri-
sation of all sub-attractors A% by A, in the hyperbolic setting. This closes one of the last
gaps in the full geometric description of the global attractor of equation (H). The miss-
ing link here lies in the geometric description of heteroclinics between frozen waves with
uncountable zero set. However I believe our approach to be applicable in this case as well.

This would still not be sufficient to prove the convergence of the full parabolic attractor
A to the hyperbolic attractor AY so this remains an open question.

Moreover it is unclear to me how we can prove the limiting cascade of heteroclinics for a
connection between given target and source in the parabolic setting for large zero-numbers.
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A rigorous proof of Assumption (D) would be a start in this direction. This would yield
local persistence of manifolds and as a consequence prove global persistence of the fast
connections on the parabolic attractor. It would also imply that condition (3.15) in the
Connection Lemma was not only necessary but sufficient for the persistence of at least
one heteroclinic connection between the respective target and source. For the slow parts
converging to frozen waves the result would remain local.

In this sense the Cascading Theorem re-opens Pandora’s box of possible limits of hetero-
clinics in equation (P), which Fan and Hale had seemingly closed in the mid ’90s by their
persistence result.

Although the slow manifolds on the parabolic attractor converge to frozen waves of the
hyperbolic equation, these manifolds have to be considered as being far from equilibria. A
local persistence result of stable or unstable manifolds of rotating or frozen waves would
not be applicable. An approach that could yield a way out of this impasse towards the
description of the slow parts of such cascades might be the description of heteroclinics by
virtue of invariant manifold theory.

Carr and Pego already achieved this in a very explicit approach in the '90s (see [CP89],[CP90])
for the case of the dynamic Allan-Chan equation where

flu)=0

with Neumann boundary conditions. Their work has never been generalised to viscous bal-
ance laws. The transport term f(u) here introduces several technical difficulties, some of
which have been already mentioned in the beginning of Chapter 4. Especially the eigen-
value problem (4.1) becomes a lot more challenging. However, our results suggest strong
similarities to the results of Carr and Pego.

Hence, there still remains much scope for exploration!
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Chapter 6

Appendix: Notation

Here you will find a list of expressions and notation. Constants are only listed if they are
of relevance throughout the document.

€ viscosity parameter in the balance law

a,b zero-number for rotating waves of the parabolic equation
o, zero-number for frozen waves of the hyperbolic equation
t time variable

T fixed time

T spatial variable, large scale

X set of zeros {z1,..., 24}

& spatial variable on the small scale ({ = 7)

Oy, 0,0 partial derivative w. respect to x,t,§

Oz second partial derivative with respect to x (¢, & respectively)
fu) transport term

g(u) source term

us(z,t) general notation of a solution of the PDE (P)
ul(x,t) general notation of a solution of the PDE (H)

c wave speed
Uy rotating wave with zero set Z
ug (-, t) time-dependent rotating wave for € > 0 with zero-number a,b

ud 6(" t)  rotating wave for ¢ = 0 with zero-number «,f3
v¥(+),v°(+) solutions of the rotating wave equation

v, p rotating wave of (P) in Lienard coordinates
w,q rotating wave of (P) in phase plane coordinates
10) solution of the stationary problem of (H)
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characteristic

maximal and minimal backward characteristic
value of a solution on a characteristic y

right and left hand limit of v in z

test function

family of borel probability measures

phase space and dual space

space of integrable, squareintegrable and bounded functions
space of twice weakly differentiable L? functions

space of functions with bounded variation

linear operator representing the linearisation of (P) un u
spectrum of L

set of functions consisting piecewise of ¢(x — x;) and « shocks
separated by the x;

set of functions consisting piecewise of ¢(x — x;)

set of all Ay, .3 for fixed a

set of rotating or frozen waves for 0 < e < ¢p with z =a

set of heteroclinics for 0 < € < ¢¢ between rotating or frozen waves
with 2z =a and 2z =b

parameterisation of heteroclinic orbit by arc length

set of limits of U®"(7,)

unstable manifold of v

stable manifold of v

slow manifold in Lienard coordinates

slow manifold in phase plane coordinates

cyclicity set in Lienard coordinates

cyclicity set in phase plane coordinates

map assigning each periodic wave in the cyclicity set its wave speed
map assigning each periodic wave in the cyclicity set its minimal
period

n-sphere

n-torus

sets of sequences {e, }{7,,}

set of partitions P = {x1,...x,}

powerset of Z

Morse index and generalised Morse index of u
zero-number of u

zeroset of u
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&0 set of homogenous equilibria of (P) and (H)

Fe,F0 set of frozen waves of (P) and (H)

RE,RY set of rotating waves of (P) and (H)

HEHO set of heteroclinic orbits of (P) and (H)

Az A0 global attractor of (P) and (H)

EeEY subset of homogenous equilibria of order n (P) and (H)
Fo, FY set of frozen waves of of order n (P) and (H)

RE,RO set of rotating waves of of order n (P) and (H)

HE L HY subset of heteroclinic orbits of order n (P) and (H)

A A0 sub-attractor of order n for (P) and (H)
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