Chapter 11

Stereo Vision

11.1 Introduction

Calculating the distance of various points in the scene relative to the position
of the camera is one of the important tasks for a computer vision system. A
common method for extracting such depth information from intensity images
is to acquire a pair of images using two cameras displaced from each other by
a known distance. As an alternative, two or more images taken from a moving
camera can also be used to compute depth information. In contrast to intensity
images, images in which the value at each pixel is a function of the distance of
the corresponding point in the scene from the sensor are called range images
or density stereo map. Such images are acquired directly using range imaging
systems. Two of the most commonly used principles for obtaining such range
images are radar and triangulation. In addition to these methods in which the
depth information is computed directly, 3-D information can also be estimated
indirectly from 2-D intensity images using image cues such as shading and
texture. These methods are described briefly in this chapter.

11.2 Stereo Imaging

The geometry of binocular stereo is shown in Figure 11.1. The simplest model
is two identical cameras separated only in the x direction by a baseline distance
b. The image planes are coplanar in this model. A feature in the scene is viewed
by the two cameras at different positions in the image plane. The displacement
between the locations of the two features in the image plane is called the dis-
parity. The plane passing through the camera centers and the feature point in
the scene is called the epipolar plane. The intersection of the epipolar plane
with the image plane defines the epipolar line. For the model shown in the
figure, every feature in one image will lie on the same row in the second im-
age. In practice, there may be a vertical disparity due to misregistration of the
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11.2. STEREO IMAGING

epipolar lines. Many formulations of binocular stereo algorithms assume zero
vertical disparity.

Definition 11.1. A conjugate pair is two points in different images that are
the projections of the same point in the scene.

Definition 11.2. Disparity is the distance between points of a conjugate pair
when the two images are superimposed.

In Figure 11.1 the scene point P is observed at points p; and p,in the left and
right image planes, respectively. Without loss of generality, let us assume that
the origin of the coordinate system coincides with the left lens center. Compar-
ing the similar triangles PM C; and p; LC;, we get

T
—=— 11.1
o= (111
Similarly, from the similar triangles PNC, and p,LC), we get
r—b =z
7 (11.2)
Combining these two equations, we get
bf
= 11.
Ty -

Thus, the depth at various scene points may be recovered by knowing the
disparities of corresponding image points.

Note that due to the discrete nature of the digital images, the disparity val-
ues are integers unless special algorithms are used to compute disparities to
subpixel accuracy. Thus, for a given set of camera parameters, the accuracy
of depth computation for a given scene point is enhanced by increasing the
baseline distance b so that the corresponding disparity is large. Such wide-
angle stereopsis methods introduce other problems, however. For instance,
when the baseline distance is increased, the fraction of all scene points that
arc seen by both cameras decreases. Furthermore, even those regions that are
seen by both cameras are likely to appear different in one image compared to
the corresponding regions in the other image due to distortions introduced by
perspective projection, making it difficult to identify conjugate pairs.

Before we discuss the problem of detecting and matching features in image
pairs to facilitate stereopsis, we now briefly consider imaging systems in which
the cameras are in any general position and orientation.

11.2.1 Cameras in Arbitrary Position and Orientation

Even when the two cameras are in any general position and orientation, the
image points corresponding to a scene point lie along the lines of intersection
between the image planes and the epipolar plane containing the scene point
and the two lens centers as shown in Figure 11.2. It is clear from this figure
that the epipolar lines are no longer required to correspond to image rows.
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Figure 11.1: Any point in the scene that is visible in both cameras will be pro-
jected to a pair of image points in the two images, called a conjugate pair. The
displacement between the positions of the two points is called the disparity.
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11.3. STEREO MATCHING

In certain systems, the cameras are oriented such that their optical axes in-
tersect at a point in space. In this case, the disparity is relative to the vergence
angle. For any angle there is a surface in space corresponding to zero disparity
as shown in Figure 11.3. Objects that are farther than this surface have dispar-
ity greater than zero, and objects that are closer have disparity less than zero.
Within a region the disparities are grouped into three pools:

+d>0
-d<0
0d=0

These pools are then used to resolve ambiguous matches.

More recent research work has addressed the issue of dynamically control-
ling the position, orientation, and other camera parameters to facilitate better
image analysis. In systems known as active vision systems, the image analysis
process dynamically controls camera parameters and movements. Computing
the depths of various points in a scene is a common task in such systems.

11.3 Stereo Matching

Implicit in the stereopsis technique is the assumption that we can identify con-
jugate pairs in the stereo images. Detecting conjugate pairs in stereo images,
however, has been an extremely challenging research problem known as the
correspondence problem. The correspondence problem can be stated as follows:
for each point in the left image, find the corresponding point in the right image. To
determine that two points, one in each image, form a conjugate pair, it is nec-
essary to measure the similarity of the points. Clearly, the point to be matched
should be distinctly different from its surrounding pixels; otherwise (e.g., for
pixels in homogeneous intensity regions), every point would be a good match.
Thus, before stereo matching, it is necessary to locate matchable features. Both
edge features and region features have been used in stereo matching [45].

The implication of selecting a subset of all image pixels for matching is that
depth is only computed at these feature points. Depth at other points is then
estimated using interpolation techniques.

Note that the epipolar constraint significantly limits the search space for
finding conjugate pairs. However, due to measurement errors and other un-
certainties in camera position and orientation, matching points may not occur
exactly on the estimated epipolar lines in the image plane; in this case, a search
in a small neighborhood is necessary.

11.3.1 Edge Matching

We first present an algorithm for binocular stereo. The basic idea behind this
and similar algorithms is that features are derived from the left and right im-
ages by filtering the images, and the features are matched along the epipolar
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Figure 11.2: Two cameras in arbitrary position and orientation. The image
points corresponding to a scene point must still lie on the epipolar lines.
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Figure 11.3: Stereo cameras focused at a point in space. The angle of the cam-
eras defines a surface in space for which the disparity is zero.
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11.3. STEREO MATCHING

lines. In this discussion, the epipolar lines are along the image rows. This algo-
rithm [6] uses edges detected by the first derivative of Gaussian. Edges com-
puted using the gradient of Gaussian are more stable with respect to noise. The
steps in the stereo algorithm are:

1. Filter each image in the stereo pair with Gaussian filters at four filter
widths such that each filter is twice as wide as the next smaller filter. This
can be done efficiently by repeated convolution with the smallest filter.

2. Compute the edge positions within the row.

3. Match edges at coarse resolutions by comparing their orientations and
strengths; clearly, horizontal edges cannot be matched.

4. Refine the disparity estimates by matching at finer scales [9].

Note that computing the edge pixels to subpixel resolution would improve the
precision of depth computation. In order to simplify the matching processes,
the search for a match for each feature in one image takes place along the cor-
responding epipolar line in the second image for a limited distance centered
around its expected position. In addition, the orientation of edges is recorded
in 30° increments and the coarse orientations are used in matching. The ori-
entation can be efficiently computed by coarsely quantizing the x and y par-
tial derivatives and using a lookup table. One could also evaluate potential
matches by using a composite norm that includes terms that penalize differ-
ences in edge orientation, edge contrast, and other measures of lack of similar-
ity between potential features.

With active convergent cameras, the edges are matched at a coarse scale,
and then the angle between the cameras is adjusted so that the region has a
disparity of around zero, and the matching is redone at a finer scale. This
adjustment limits the value of the maximum disparity and hence reduces the
number of false matches and speeds up the matching process even when a
small-scale filter is used to compute the disparity accurately. The matching
process must begin at a coarse scale to determine an approximate value for the
disparity. There are fewer edges at a coarse filter scale, so there is little chance
of false matches.

11.3.2 Region Correlation

An important limitation of edge-based methods for stereo matching is that the
value of the computed depth is not meaningful along occluding edges where
the depth is not well defined. Along these edges the value of the depth is
anywhere from the distance of the foreground object’s occluding edge to the
distance of the background scene point. In particular, for curved objects oc-
cluding edges are silhouette edges, and the observed image plane curves in
the two images do not correspond to the same physical edge [14]. Unfortu-
nately, strong edges in the image plane are detected only along such occluding
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edges unless the object has other high-contrast nonoccluding edges or other
features. Thus one of the primary problems in recovering depth is the problem
of identifying more features distributed throughout the image as candidates
for correspondence. One of the many methods developed for finding potential
features for correspondence is to identify interesting points in both images and
match these points in the two images using region correlation methods [43].

Density stereo map

For the calculation of the density stereo map we will obtain the depth of
each pixel of the image. In this thesis it is used for it the Cox algorithm [68],
which solves this problem using dynamic programming. However a series of
restrictions should be completed to apply this algorithm:

Epipolar restriction. We will make that the cameras are completely paral-
lel, so that the point corresponding to an image (left) is in the same line in the
other image (right), making this is limited the search space. This will allow
us to solve the problem for each line in an independent way. We will anal-
yse line to line the image, obtaining the stereo density for each one of them.
Therefore, if the input image has N lines, we will have N problems of one line
each one. Each one of these problems of one line will solve them by dynamic
programming.

o Order restriction. It indicates, that if the point pi corresponds with pj,
then a point to the right of pi will correspond with a point to the right of
pj , being i and j elements in the left and right image.

o Unit restriction. A point will correspond as maximum with a point in the
other image, except in the case of occlusions.

e Smootness restriction. If pi corresponds with pj, then pi+1 will corre-
spond with a near point to pj, except for the cases of depth discontinu-
ities.

Dynamic programming. We will use dynamic programming to solve the prob-
lem of the obtaining of the density stereo map of each line. We will build a
matrix in which the row will correspond to the pixels of the left line image,
and the columns will correspond to the pixels of the right line image. In this
matrix we will represent the correspondences between the pixels of both im-
ages, and the pixels without correspondence due to an occlusion in the other
image. Each element of this matrix represents the correspondence among one
left image point of the current line, and one right image point corresponding
to the current column. We can see an example of this matrix in the Figure 11.4.
The matrix is calculated by rows, indicating in each square the cost of establish-
ing this correspondence. To calculate the cost in each position we have three
possible actions:

1. Correspondence. We leave of the previous square in the diagonal. In this

case we establish the correspondence between the following pixel of the
left line and the following one of the right line.
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2. Occlusion in the left image. If an area that appears in the right image is
hidden in the left image for some object, we will assign all these pixels
from the right image to a single pixel of the left image. Therefore, we will
leave from the previous square of the matrix in horizontal sense.

3. Occlusion in the right image. This ist the same as in the previous case, it
is possible that there is an area in the left image that is not visible in the
right image. In this case, we will leave from the previous square of the
matrix in vertical sense.

We will give to each one of these actions a cost inside the matrix. If it is
opted by the correspondence of two points, as cost we will have the compat-
ibility of these two points, supposing a normal distribution. We will provide
the typical deviation of this distribution. In case that the pixels are equal we
will have a cost 0. We can calculate the cost like:

1(z — 2;)?

Occlusions. In the case of occlusion, we will have a pixel group in the
image that do not appear in the other one because they are hidden for some
object. In this case all these pixels that do not have couple will correspond
with only one point in the other image. We will give a fixed penalty to the cost
when an occlusion appears. The penalty in the occlusion will be:

Ppo
In{ ———m—m—+— 11.5
((1 — PD)\/27TO'> ( )

where ¢ is the typical deviation considered to compare the intensity of the
pixels. Pp € [0,1] is the detection probability that indicates the probability that
there is not an occlusion, and ¢ is the vision field . With a high deviation ¢ will
be more probable to match points with different intensity, but this can produce
that points are matched that do not really correspond. If the value of Pp is
small then it is bigger the occlusions number that we will have in the resulting
image; we will usually use a high value, as Pp ~ 0.98 . If the vision field is
reduced it will also increase the occlusions number. We usually consider If the
vision field is reduced it will also increase the occlusions number. We usually
consider ¢ = 7.

Algorithm. In the algorithm of dynamic programming we will have to cal-
culate the cost matrix C, in which each element C;; corresponds to match the
pixel i of the left image line with the j of the right. We will analyze the matrix
for rows and for each cell we will keep the minimum cost of arriving from one
of the three previous adjacent cells. A movement in horizontal or vertical in
the matrix corresponds to an occlusion, while in diagonal it corresponds to a
correspondence. Besides the cost matrix we will have a pointer matrix M that
registers the followed path to arrive to each cell. We can see this algorithm in
algorithm 3.
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Figure 11.4: Solution example for dynamic programming. Top: Scene captur-
ing the cameras left and right. Down: Matrix of dynamic programming with
the optimum path of correspondence.
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Algorithm 3 Cox Algorithm Forward phase

Occlusion = In (%)

for(i=1; ; i++) {C(i,0)=i*Occlusion}
for(i=1; ; i++) {C(0,i)=i*Occlusion}
for(i=1; ; i++)

{

for(i=1; ; i++)

{

minl=C(i-1,j-1)+ c(21,4, 22,5);

min2=C(i-1,j)+Occlusion;
min3=C(i,j-1)+Occlusion;
C(i,j)=cmin=min(min1,min2,min3);
If(minl==cmin) M(i,j)=1;
If(min2==cmin) M(i,j)=2;
If(min3==cmin) M(i,j)=3;

}

}

Once built these matrices will leave from the last position of the pointer
matrix and we will follow the path that has produced a smaller cost to back.
Of this way we will obtain what point of the right image has been matched
with one point of the left image. For each correspondence between two points
p and g, we can establish the disparity in this point as the distance among them,
p-q. We can see the back phase algorithm in the algorithm 4.

The algorithm was programmed in C++, producing acceptable density stereo
maps for a depth of 1.5 meters, the figure 11.5 shows the images obtained as a
result.

11.3.3 Detection of Interesting Points in Regions

In matching points from two images, we need points that can be easily identi-
fied and matched in the images. Obviously, the points in a uniform region are
not good candidates for matching. The interest operator finds areas of image
with high variance. It is expected that there will be enough of such isolated
areas in images for matching.

The variances along different directions computed using all pixels in a win-
dow centered about a point are good measures of the distinctness of the point
along different directions. The directional variances are given by

L= Y [fley) - fey+ )P

(z,y)€S
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Figure 11.5: Results of the Cox algorithm. Right Image, left image and density
stereo map.
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Algorithm 4 Cox Algorithm Back phase

p=N;

q=M;
while(p!=0 && q!=0)
{
switch(M(p,q))
{

case 1:

p matches g
p—q—

break;

case 2:

p is unmatched
p—

break;

case 3:

g is unmatched
g

break;

}

}

L= Y [flx,y) - fle+1,y)

(z,y)€S

L= Y [fxy) - f@+Ly+1)?

(z,y)eS

L= Y [f@y) - f@+ly-1P (11.6)

(z,y)€S

where S represents the pixels in the window. Typical window sizes range
from 5x5 to 11x11 pixels. Since simple edge points have no variance in the di-
rection of the edge, the minimum value of the above directional variances is
taken as the interest value at the central pixel, (z.,y.) . This eliminates edge
pixels from consideration since an edge pixel in one image would match all pix-
els along the same edge in the second image, making it difficult to determine
exact disparity (especially when the edge is along the epipolar line). Thus, we

have

I(.ﬁc,yc) :min([l,IQ,I3,I4) (117)
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Finally, to prevent multiple neighboring points from being selected as inter-
esting for the same feature, feature points are chosen where the interest mea-
sure has a local maxima. A point is considered a "good" interesting point if, in
addition, this local maxima is greater than a preset threshold.

Once features are identified in both images, they can be matched using a
number of different methods. A simple technique is to compute the correlation
between a small window of pixels centered around a feature in the first image
and a similar window centered around every potential matching feature in the
second image. The feature with the highest correlation is considered as the
match. Clearly, only those features which satisfy the epipolar constraint are
considered for matching. To allow for some vertical disparity, features which
are near the epipolar line are also included in the potential matching feature
set.

Consider two images f; and f,. Let the pair of candidate feature points
to be matched have a disparity of (d,,d,). Then a measure of similarity be-
tween the two regions centered around the features is given by the correlation
coefficient r(d,, d,)) defined as

> [filwy) = fi] [foz + doyy + dy) — o]
r(dy.dy) = 0=

=

> [filzy) - fl]2 > [fele+dey+dy) — f2]2}
(z,y)€S (z,y)€S

(11.8)

Here f; and f, are the average intensities of the pixels in the two regions

being compared, and the summations are carried out over all pixels within
small windows centered around the feature points.

Instead of using the image intensity values in the above equation, the ac-
curacy of correlation is improved by using thresholded signed gradient mag-
nitudes at each pixel. This is done by computing the gradient at each pixel in
the two images without smoothing and then mapping these into three values,
-1, 0, and 1, using two thresholds, one above zero and the other below zero.
This transforms the images into square waves that produce more sensitive cor-
relations. If this is done, it is not necessary to include the normalization terms
shown in the equation for correlation, and r(d,, d, ) simplifies to the sum of the
products of corresponding pixel values.

One of the principal difficulties in stereo reconstruction is in the selection
of interesting points. Such points are typically selected based on high local vari-
ance in intensity. Unfortunately, such points occur more frequently at corners
and other surface discontinuities where the smoothness constraint does not
hold. In some machine vision applications, this problem is solved by using
structured light. Finding and matching such points are further simplified by
knowing the geometry of the projected patterns.
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11.4 Shape from X

In addition to the stereo imaging method described above, numerous other
methods known as shape from X techniques have been developed for extract-
ing shape information from intensity images. Many of these methods estimate
local surface orientation rather than absolute depth at each point. If the actual
depth to at least one point on each object is known, then the depth at other
points on the same object can be computed by integrating the local surface
orientation. Hence these methods are called indirect methods for depth com-
putation. We briefly describe some of these methods here and provide pointers
to other chapters where they are described in more detail.

Photometric Stereo

In the photometric stereo method, three images of the same scene are ob-
tained using light sources from three different directions. Both camera and
objects in the scene are required to be stationary during the acquisition of the
three images. By knowing the surface reflectance properties of the objects in
the scene, the local surface orientation at points illuminated by all three light
sources can be computed. One of the important advantages of the photomet-
ric stereo method is that the points in all three images are perfectly registered
with one another since both camera and scene are stationary. Thus, this method
does not suffer from the correspondence problem. The primary disadvantages
of this method are that it is an indirect method and it may not be practical to
employ an imaging system in which the illumination is so carefully controlled.

Shape from Shading

Shape from shading methods exploit the changes in the image intensity
(shading) to recover surface shape information. This is done by calculating
the orientation of the scene surface corresponding to each point (z’,y’) in the
image. In addition to the constraint imposed by the radiometric principles,
shape from shading methods assume that the surfaces are smooth in order to
calculate surface orientation parameters. Clearly, shape from shading is an in-
direct method for depth computation. Furthermore, the smoothness constraint
is not satisfied at all points and the surface reflectance properties are not always
known accurately, resulting in inaccurate reconstructions.

Shape from Texture

Image plane variations in the texture properties such as density, size, and
orientation are the cues exploited by shape from texture algorithms. For exam-
ple, the texture gradient, defined as the magnitude and direction of maximum
change in the primitive size of the texture elements, determines the orientation
of the surface. Quantifying the changes in the shape of texture elements (e.g.,
circles appearing as ellipses) is also useful to determine surface orientation.
From images of surfaces with textures made up of regular grids of lines, possi-
bly due to structured lighting (described in the following section), orientation
may be uniquely determined by finding the vanishing points. Besides being in-
direct methods for depth computation, shape from texture methods also suffer
from difficulties in accurately locating and quantifying texture primitives and
their properties.
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Shape from Focus

Due to the finite depth of field of optical systems, only objects which are at
a proper distance appear focused in the image whereas those at other depths
are blurred in proportion to their distances. Algorithms to exploit this blurring
effect have been developed. The image is modeled as a convolution of focused
images with a point spread function determined by the camera parameters and
the distance of the object from the camera. The depth is recovered by estimat-
ing the amount of blur in the image and using the known or estimated line
spread function. Such reconstruction problems are mathematically ill posed.
However, in some applications, especially those requiring qualitative depth
information, depth from focus methods are useful.

Shape from Motion

When images of a stationary scene are acquired using a moving camera, the
displacement of the image plane coordinate of a scene point from one frame to
another depends on the distance of the scene point from the camera. This is
thus similar to the stereo imaging described in earlier sections. Alternatively,
a moving object also produces motion disparity in image sequences captured
by a stationary camera. Such a disparity also depends upon the position and
velocity of the object point.

11.5 Range Imaging

Cameras which measure the distance to every scene point within the viewing
angle and record it as a two-dimensional function are called range imaging sys-
tems, and the resulting images are called range images. Range images are also
known as depth maps.

Two of the most commonly used principles for range imaging are triangu-
lation and radar. Structured lighting systems, which are used extensively in
machine vision, make use of the principle of triangulation to compute depth.
Imaging radar systems use either acoustic or laser range finders to compute the
depth map.

11.5.1 Structured Lighting

Imaging using structured lighting refers to systems in which the scene is illu-
minated by a known geometrical pattern of light. In a simple point projection
system, a light projector and a camera are separated by a baseline distance b
as shown in Figure 11.6. The object coordinates (x, y, z) are related to the mea-
sured image coordinates (x’,y") and projection angle 6 by

[z,y, 2] [y f] (11.9)

- fcotld —a’

The range resolution of such a triangulation system is determined by the
accuracy with which the angle 6 and the horizontal position of the image point
z’ can be measured.
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Figure 11.6: Camera-centered triangulation geometry.

To compute the depth at all points, the scene is illuminated one point at a
time in a two-dimensional grid pattern. The depth at each point is then cal-
culated using the above equation to obtain a two-dimensional range image.
Because of its sequential nature, this method is slow and is not suitable for use
with dynamically changing scenes. In a typical structured lighting system ei-
ther planes of light or two-dimensional patterns of light are projected on the
scene. The projected pattern of light on the surfaces of the objects in the scene
is imaged by a camera which is spatially displaced with respect to the source
of illumination. The observed image of the light patterns contain distortions as
determined by the shape and orientation of object surfaces on which the pat-
terns are projected. This is illustrated in Figure 11.7. Note that the light pattern
as seen by the camera contains discontinuities and changes in orientation and
curvature. The 3-D object coordinate corresponding to any point in the image
plane may be calculated by computing the intersection of the camera’s line of
sight with the light plane. To obtain the complete object description, either
the light source is panned as shown in the figure or the object is moved on a
conveyor belt to acquire multiple images. Different surfaces in the object are
detected by clustering stripes of light having similar spatial attributes.

In dynamically changing situations it may not be practical to project light
stripes in sequence to acquire the complete image set covering the entire scene.
Note that if multiple stripes of light are simultaneously projected to acquire
the entire depth map, there would be potential ambiguities in matching stripe
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Figure 11.7: lllustration of striped lighting technique.

segments resulting from object surfaces at different depths. In such a case,
patterns of multiple stripes of light in which each stripe is uniquely encoded
are projected. For example, using a binary encoding scheme, it is possible to
acquire a complete set of data by projecting only log2 N patterns where (N - 1)
is the total number of stripes. This method is illustrated in Figure 11.8 for N =
8.

Each of the seven stripes has a, unique binary code from (001) to (111). Since
log2 8 is 3, only three images are acquired. Each image is identified by the bit
position 1, 2, or 3 of the 3-bit binary code. A particular stripe of light is turned
ON in an image only if its corresponding bit position is 1. For example, stripe
2 (010) is ON only in the second image, whereas stripe 7 (111) is ON in all three
images. The stripes in the set of three images are now uniquely identified and
hence there would be no ambiguities in matching stripe segments. In rapidly
changing scenes, a single color-coded image is used instead of several binary-
encoded images.

Structured lighting techniques have been used extensively in industrial vi-
sion applications in which it is possible to easily control the illumination of the
scene. In a typical application, objects on a conveyor belt pass through a plane
of light creating a distortion in the image of the light stripe. The profile of the
object at the plane of the light beam is then calculated. This process is repeated
at regular intervals to recover the shape of the object.
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11.5.2 Imaging Radar

A second method for range imaging is imaging radar. In a time-of-flight pulsed
radar, the distance to the object is computed by observing the time difference
between the transmitted and received electromagnetic pulse. The depth in-
formation can also be obtained by detecting the phase difference between the
transmitted and received waves of an amplitude-modulated beam or the beat
frequency in a coherently mixed transmitted and received signal in a frequency-
modulated beam. Several commercial laser beam imaging systems are built
using these principles.

Range images are useful due to their explicit specification of depth values.
At one time it was believed that if depth information is explicitly available,
later processing would be easy. It became clear that though the depth informa-
tion helps, the basic task of image interpretation retains all its difficulties.

11.6 Active Vision

Most computer vision systems rely on data captured by systems with fixed
characteristics [51]. These include both passive sensing systems such as video
cameras and active sensing systems such as laser range finders. In contrast to
these modes of data capture, it is argued that an active vision system in which
the parameters and characteristics of data capture are dynamically controlled
by the scene interpretation system is crucial for perception. The concept of ac-
tive vision is not new. Biological systems routinely acquire data in an active
fashion. Active vision systems may employ either passive or active sensors.
However, in an active vision system, the state parameters of the sensors such
as focus, aperture, vergence, and illumination are controlled to acquire data
that would facilitate the scene interpretation task. Active vision is essentially
an intelligent data acquisition process controlled by the measured and calcu-
lated parameters and errors from the scene. Precise definitions of these scene-
and context-dependent parameters require a thorough understanding of not
only the properties of the imaging and processing system, but also their inter-
dependence. Active vision is a very active area of research.
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