
Chapter 10

Camera calibration for stereo
vision

10.1 Introduction

The camera calibration problem is to relate the locations of pixels in the image
array to points in the scene. Since each pixel is imaged through perspective
projection, it corresponds to a ray of points in the scene. The camera calibra-
tion problem is to determine the equation for this ray in the absolute coor-
dinate system of the scene. The camera calibration problem includes both the
exterior and interior orientation problems, since the position and orientation of
the camera and the camera constant must be determined to relate image plane
coordinates to absolute coordinates, and the location of the principal point,
the aspect ratio, and lens distortions must be determined to relate image ar-
ray locations (pixels coordinates) to positions in the image plane. The camera
calibration problem involves determining two sets of parameters [60]: the ex-
trinsic parameters for rigid body transformation (exterior orientation) and the
intrinsic parameters for the camera itself (interior orientation).

We can use an initial approximation for the intrinsic parameters to get a
mapping from image array (pixel) coordinates to image plane coordinates.
Suppose that there are n rows and m columns in the image array and assume
that the principal point is located at the center of the image array:

cx =
m− 1

2
(10.1)

cy =
n− 1

2
(10.2)

The image plane coordinates for the pixel at grid location [i,j] are

x̃ = τxdx(j − cx) (10.3)
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10.2. SIMPLE METHOD FOR CAMERA CALIBRATION

ỹ = −dy(i− cy) (10.4)

where dx and dy are the center-to-center distances between pixels in the x
and y directions, respectively, and τx is a scale factor that accounts for distor-
tions in the aspect ratio caused by timing problems in the digitizer electronics.
The row and column distances, dx and dy, are available from the specifications
for the CCD camera and are very accurate, but the scale factor τxmust be added
to the list of intrinsic parameters for the camera and determined through cal-
ibration. Note that these are uncorrected image coordinates, marked with a
tilde to emphasize that the effects of lens distortions have not been removed.
The coordinates are also affected by errors in the estimates for the location of
the principal point (cx,cy) and the scale factor τx.

We must solve the exterior orientation problem before attempting to solve
the interior orientation problem, since we must know how the camera is posi-
tioned and oriented in order to know where the calibration points project into
the image plane. Once we know where the projected points should be. we can
use the projected locations p′iand the measured locations p̃i, to determine the
lens distortions and correct the location of the principal point and the image
aspect ratio. The solution to the exterior orientation problem must be based
on constraints that are invariant to the lens distortions and camera constant,
which will not be known at the time that the problem is solved.

10.2 Simple Method for Camera Calibration

This section explains the widely used camera calibration method published by
Tsai [61]. Let p′0be the location of the origin in the image plane, r′ibe the vec-
tor from p′0to the image point p′i = (x′i, y

′
i), pi = (xi, yi, zi) be a calibration

point, and ri be the vector from the point (0, 0, zi) on the optical axis to on the
optical axis to pi . If the difference between the uncorrected image coordinates
(x̃i, ỹi) and the true image coordinates (x′i, y

′
i) is due only to radial lens distor-

tion, then r′iis parallel to ri. The camera constant and translation in z do not
affect the direction of ri , since both image coordinates will be scaled by the
same amount. These constraints are sufficient to solve the exterior orientation
problem [61]. The figure 10.1 shows graphically the problem.

Assume that the calibration points lie in a plane with z = 0 and assume that
the camera is placed relative to this plane to satisfy the following two crucial
conditions:

1. The origin in absolute coordinates is not in the field of view.

2. The origin in absolute coordinates does not project to a point in the image
that is close to the y axis of the image plane coordinate system.

Condition 1 decouples the effects of radial lens distortion from the camera con-
stant and distance to the calibration plane. Condition 2 guarantees that the y
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Figure 10.1: Representation of the calibration problem

component of the rigid body translation, which occurs in the denominator of
many equations below, will not be close to zero. These conditions are easy to
satisfy in many imaging situations. For example, suppose that the camera is
placed above a table, looking down at the middle of the table. The absolute
coordinate system can be defined with z = 0 corresponding to the plane of the
table, with the x and y axes running along the edges of the table, and with the
corner of the table that is the origin in absolute coordinates outside of the field
of view [62].

Suppose that there are n calibration points. For each calibration point, we
have the absolute coordinates of the point (xi,yi,zi) and the uncorrected image
coordinates (x̃i, ỹi). Use these observations to form a matrix A with rows ai.

ai = (ỹixi, ỹiyi,−x̃ixi, − x̃iyi, ỹi) (10.5)

Let u = (u1, u2, u3, u4, u5) be a vector of unknown parameters that are re-
lated to the parameters of the rigid body transformation:

u1 =
rxx

py
(10.6)

u2 =
rxy

py
(10.7)

u3 =
ryx

py
(10.8)
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10.2. SIMPLE METHOD FOR CAMERA CALIBRATION

u4 =
ryy

py
(10.9)

u5 =
px

py
(10.10)

Form a vector b = (x̃1, x̃2, ..., x̃n) from the n observations of the calibration
points. With more than five calibration points, we have an overdetermined
system of linear equations,

Au = b (10.11)

for the parameter vector u. Solve this linear system using singular value
decomposition, and use the solution parameters, u1, u2, u3, u4 and u5, to com-
pute the rigid body transformation, except for pz, which scales with the camera
constant f and will be determined later.

First, compute the magnitude of the y component of translation. If u1 and
u2 are not both zero and u3 and u4 are not both zero, then

p2
y =

U − [U2 − 4(u1u4 − u2u3)2]
1
2

2(u1u4 − u2u3)
(10.12)

where U = u2
1 + u2

2 + u2
3 + u2

4; otherwise, if u1 and u2 are both zero, then

p2
y =

1
u2

3 + u2
4

(10.13)

otherwise, using u1and u2,

p2
y =

1
u2

1 + u2
2

(10.14)

Second, determine the sign of py.Pick the calibration point p = (x, y, z) that
projects to an image point that is farthest from the center of the image (the
scene point and corresponding image point that are farthest in the periphery
of the field of view). Compute rxx, rxy, ryx, ryyand pxfrom the solution vector
obtained above:

rxx = u1py (10.15)

rxy = u2py (10.16)
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10.2. SIMPLE METHOD FOR CAMERA CALIBRATION

ryx = u3py (10.17)

ryy = u4py (10.18)

px = u5py (10.19)

Let ξx = rxxx+rxyy +px and ξy = ryxx+ryyy+pyIf ξxand x̃ have the same
sign and ξy and ỹ have the same sign, then py has the correct sign (positive);
otherwise negate py . Note that the parameters of the rigid body transformation
computed above are correct, regardless of the sign of py, and do not need to be
changed.

Third, compute the remaining parameters of the rigid body trasformation:

rxz =
√

1− r2
xx − r2

xy (10.20)

ryz=

√
1− r2

yx − r2
yy (10.21)

Since the rotation matrix must be orthonormal, it must be true that RT R =
I. Use this fact to compute the elements in the last row of the rotation matrix:

rzx =
1− r2

xx − rxyryx

rxz
(10.22)

rzy =
1− ryxrxy − r2

yy

ryz
(10.23)

rzz =
√

1− rzxrxz − rzyryz (10.24)

If the sign of rxxryx + rxyryy is positive, negate ryz . The signs of rzx and rzy

may need to be adjusted after computing the camera constant in the following
step.

Fourth, compute the camera constant f and pz , the z component of transla-
tion. Use all of the calibration points to form a system of linear equations,

Av = b (10.25)

for estimating f and pz . Use each calibration point to compute the corre-
sponding row of the matrix,
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10.2. SIMPLE METHOD FOR CAMERA CALIBRATION

ai = (ryxxi + ryyyi + py,−dy ỹi) (10.26)

and the corresponding element of the vector on the right side of Equation
10.25,

bi = (rzxxi + rzyyi)dy ỹi (10.27)

The vector v contains the parameters to be estimated:

v = (f, pz)T (10.28)

Use singular value decomposition to solve this system of equations. If the
camera constant f < 0, then negate rzy and rzy in the rotation matrix for the
rigid body transformation.

Fifth, use the estimates for f and pz obtained in the previous step as the
initial conditions for nonlinear regression to compute the first-order lens dis-
tortion κ1 and better estimates for f and pz . The true (corrected) image plane
coordinates (x′, y′) are related to the calibration points in camera coordinates
(xc, yc, zc) through perspective projection:

x′ = f
xc

zc
(10.29)

y′ = f
yc

zc
(10.30)

Assume that the true (corrected) image plane coordinates are related to the
measured (uncorrected) image plane coordinates using the first term in the
model for radial lens distortion:

x′ = x̃(1 + κ1r
2) (10.31)

y′ = ỹ(1 + κ1r
2) (10.32)

where the radius r is given by

r =
√

x̃2 + ỹ2 (10.33)

Note that the uncorrected (measured) image plane coordinates (x̃, ỹ) are
not the same as the pixel coordinates [i,j] since the location of the image center
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10.3. AFFINE METHOD FOR CAMERA CALIBRATION

(cx, cy), the row and column spacing dx and dyand the estimated scale factor
τx have already been applied.

Use the y components of the equations for perspective projection, lens dis-
tortion, and the rigid body transformation from absolute coordinates to camera
coordinates to get a constraint on the camera constant f, z translation, and lens
distortion:

ỹi(1 + κ1r
2) = f

ryxxa,i + ryyya,i + ryzza,i + py

rzxxa,i + rz,yya,i + rzzza,i + pz
(10.34)

This leads to a nonlinear regression problem for the parameters pz , f, and
κ1. We use the measurements for y, rather than r, because the x measurements
are affected by the scale parameter τx. The spacing between image rows dy is
very accurate and readily available from the camera specifications and is not
affected by problems in the digitizing electronics.

Since the calibration points were in a plane, the scale factor τx cannot be
determined. Also, the location of the image center, cx and cy, has not been
calibrated.

10.3 Affine Method for Camera Calibration

The interior orientation problem can be combined with the exterior orientation
problem to obtain an overall transformation that relates (uncalibrated) image
coordinates to the position and orientation of rays in the absolute coordinate
system. Assume that the transformation from uncorrected image coordinates
to true image coordinates can be modeled by an affine transformation within
the image plane [63]. This transformation accounts for several sources of cam-
era error:

Scale error due to an inaccurate value for the camera constant.
Translation error due to an inaccurate estimate for the image origin (prin-

cipal point).
Rotation of the image sensor about the optical axis.
Skew error due to nonorthogonal camera axes.
Differential scaling caused by unequal spacing between rows and columns

in the image sensor (nonsquare pixels).
However, an affine transformation cannot model the errors due to lens dis-

tortions.
In the development of the exterior orientation problem, we formulated equa-

tions for the transformation from absolute coordinates to image coordinates.
Now we will add an affine transformation from true image coordinates to mea-
sured (uncorrected) image coordinates to get the overall transformation from
absolute coordinates to measured image coordinates.

The affine transformation in the image plane that models the distortions
due to errors and unknowns in the intrinsic parameters is
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10.3. AFFINE METHOD FOR CAMERA CALIBRATION

x̃ = axxx′ + axyy′ + bx (10.35)

ỹ = ayxx′ + ayyy′ + by (10.36)

where we are mapping from true image plane coordinates (x′, y′) to uncor-
rected (measured) image coordinates (x̃, ỹ). Use the equations for perspective
projection,

x′

f
=

xc

zc
(10.37)

y′

f
=

yc

zc
(10.38)

to replace x’ and y’ with ratios of the camera coordinates:

x̃

f
= axx

(
xc

zc

)
+ axy

(
yc

zc

)
+

bx

f
(10.39)

ỹ

f
= ayx

(
xc

zc

)
+ ayy

(
yc

zc

)
+

by

f
(10.40)

Camera coordinates are related to absolute coordinates by a rigid body
transformation:

xc = rxxxa + rxyya + rxzza + px (10.41)

yc = ryxxa + ryyya + ryzza + py (10.42)

zc = rzxxa + rzyya + rzzza + pz (10.43)

We can use these equations to replace the ratios of camera coordinates in
the affine transformation with expressions for the absolute coordinates,

x̃− bx

f
=

sxxxa + sxyya + sxzza + tx
szxxa + szyya + szzza + tz

(10.44)
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10.3. AFFINE METHOD FOR CAMERA CALIBRATION

ỹ − by

f
=

syxxa + syyya + syzza + ty
szxxa + szyya + szzza + tz

(10.45)

where the coefficient are sums of products of the coefficients in the affine
transformation and the rigid body transformation. What we have is a pair of
equations, that relate absolute coordinates to uncorrected image coordinates.
The affine model for camera errors has been absorbed into the transformation
from absolute to camera coordinates. Equations 10.44 and 10.45 can be written
as

x̃− bx

f
=

x̃c

z̃c
=

sxxxa + sxyya + sxzza + tx
szxxa + szyya + szzza + tz

(10.46)

ỹ − by

f
=

x̃c

z̃c
=

syxxa + syyya + syzza + ty
szxxa + szyya + szzza + tz

(10.47)

to show that the (uncorrected) image coordinates are related to the camera
coordinates by perspective projection, but the space of camera coordinates has
been warped to account for the camera errors.

Returning to Equations 10.44 and 10.45, we can absorb the corrections to
the location of the principal point, bx and by , into the affine transformation to
get

x̃i(szxxa,i + szyya,i + szzza,i + tz)

− f(sxxxa,i + sxyya,i + sxzza,i + tx) = 0 (10.48)

ỹi(szxxa,i + szyya,i + szzza,i + tz)

− f(syxxa,i + syyya,i + syzza,i + ty) = 0 (10.49)

which shows that each calibration point and its corresponding measured
location in the image plane provides two linear equations for the parameters
of the transformation. The nominal value f for the camera constant is not ab-
sorbed into the affine transformation since it is needed for constructing the ray
in camera coordinates.

The set of calibration points yields a set of homogeneous linear equations
that can be solved for the coefficients of the transformation. At least six points
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10.4. NONLINEAR METHOD FOR CAMERA CALIBRATION

are needed to get 12 equations for the 12 unknowns, but more calibration points
should be used to increase accuracy. To avoid the trivial solution with all coef-
ficients equal to zero, fix the value of one of the parameters, such as tx or ty , ,
and move it to the right side of the equation. Form a system of linear equations,

Au = b (10.50)

where u is the vector of transformation coefficients; row i of the A matrix
is filled with absolute coordinates for calibration point i and products of the
absolute coordinates and x̃i, ỹi or f ; and element i of the b vector is the con-
stant chosen for tx or txy. Since the affine transformation within the image
plane is combined with the rotation matrix for exterior orientation, the trans-
formation matrix is no longer orthonormal. The system of linear equations can
be solved, without the orthonormality constraints, using common numerical
methods such as singular value decomposition.

The transformation maps absolute coordinates to measured image coordi-
nates. Applications require the inverse transformation, given by




x
y
z


 = S−1







x̃i

ỹi

f


−




tx
ty
tz





 (10.51)

which can be used to determine the equation of a ray in absolute coordi-
nates from the measured coordinates in the image. Note that the camera con-
stant f has been carried unchanged through the formulation of the calibration
algorithm. Since corrections to the camera constant are included in the affine
transformation (Equations 10.35 and 10.36), the focal length of the lens can be
used for f. Finally, the transformation from pixel coordinates [i,j] to image co-
ordinates,

x̃ = sx(j − cx) (10.52)

ỹ = −sy(i− cy) (10.53)

is an affine transformation that can be combined with the model for camera
errors (Equations 10.35 and 10.36) to develop a transformation between abso-
lute coordinates and pixel coordinates.

10.4 Nonlinear Method for Camera Calibration

Given a set of calibration points, determine the projections of the calibration
points in the image plane, calculate the errors in the projected positions, and
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10.4. NONLINEAR METHOD FOR CAMERA CALIBRATION

use these errors to solve for the camera calibration parameters. Since it is neces-
sary to know where the calibration points should project to in the image plane,
the exterior orientation problem is solved simultaneously [64]. The method
presented in this section is different from the procedure explained in Section
10.3, where the interior and exterior orientation problems were combined into
a single affine transformation, in that the actual camera calibration parameters
are obtained and can be used regardless of where the camera is later located in
scene.

The principle behind the solution to the camera calibration problem is to
measure the locations (x′i, y

′
i) of the projections of the calibration points onto

the image plane, calculate the deviations (δxi, δyi) of the points from the cor-
rect positions, and plug these measurements into the equations that model the
camera parameters. Each calibration point yields two equations. The solution
requires at least enough equations to cover the unknowns, but for increased ac-
curacy more equations than unknowns are used and the overde-termined set
of equations is solved using nonlinear regression.

Assume that the approximate position and orientation of the camera in ab-
solute coordinates is known. Since we have initial estimates for the rotation
angles, we can formulate the exterior orientation problem in terms of the Euler
angles in the rotation matrix. The parameters of the regression problem are the
rotation angles ω, φ, and κ; the position of the camera in absolute coordinates
px,py and pz ; the camera constant f ; the corrections to the location of the prin-
cipal point (xp,yp); and the polynomial coefficients for radial lens distortion κ1,
κ2, and κ3. The equations for the exterior orientation problem are

x′

f
=

rxxxa + rxyya + rxzza + px

rzxxa + rzyya + rzzza + pz
(10.54)

y′

f
=

ryxxa + ryyya + ryzza + py

rzxxa + rzyya + rzzza + pz
(10.55)

Replace x’ and y’ with the corrected positions from the camera model,

(x̃− xp)(1 + κ1r
2 + κ2r

4 + κ3r
6)

f

=
rxxxa + rxyya + rxzza + px

rzxxa + rzyya + rzzza + pz
(10.56)

(ỹ − yp)(1 + κ1r
2 + κ2r

4 + κ3r
6)

f

=
ryxxa + ryyya + ryzza + py

rzxxa + rzyya + rzzza + pz
(10.57)
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and replace the elements of the rotation matrix with the formulas for the ro-
tation matrix entries in terms of the Euler angles, provided in Equation 10.13.
Solve for the camera parameters and exterior orientation using nonlinear re-
gression. The regression algorithm will require good initial conditions. If the
target is a plane, the camera axis is normal to the plane, and the image is
roughly centered on the target, then the initial conditions are easy to obtain.
Assume that the absolute coordinate system is set up so that the x and y axes
are parallel to the camera axes. The initial conditions are:

ω = φ = κ = 0.
x = translation in x from origin.
y = translation in y from origin.
z =distance of the camera from the calibration plane.
f = focal length of the lens.
xp = yp = 0.
κ1=κ2=κ3=0.
It is easy to build a target of dots using a laser printer. The uncorrected

positions of the dots in the image can be found by computing the first moments
of the connected components.

The disadvantage to nonlinear regression is that good initial values for the
parameters are needed, but the advantage is that there is a body of literature on
nonlinear regression with advice on solving nonlinear problems and methods
for estimating errors in the parameter estimates.

10.5 Binocular Stereo Calibration

In this section we will discuss how the techniques presented in this chapter can
be combined in a practical system for calibrating stereo cameras and using the
stereo measurements. This provides a forum for reviewing the relationships
between the various calibration problems.

There are several tasks in developing a practical system for binocular stereo:

1. Calibrate the intrinsic parameters for each camera.

2. Solve the relative orientation problem.

3. Resample the images so that the epipolar lines correspond to image rows.

4. Compute conjugate pairs by feature matching or correlation.

5. Solve the stereo intersection problem for each conjugate pair.

6. Determine baseline distance.

7. Solve the absolute orientation problem to transform point measurements
from the coordinate system of the stereo cameras to an absolute coordi-
nate system for the scene.
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10.5. BINOCULAR STEREO CALIBRATION

There are several ways to calibrate a binocular stereo system, corresponding to
various paths through the diagram in Figure 10.2. To start, each camera must
be calibrated to determine the camera constant, location of the principal point,
correction table for lens distortions, and other intrinsic parameters. Once the
left and right stereo cameras have been calibrated, there are basically three
approaches to using the cameras in a stereo system.

The first approach is to solve the relative orientation problem and deter-
mine the baseline by other means, such as using the stereo cameras to measure
points that are a known distance apart. This fully calibrates the rigid body
transformation between the two cameras. Point measurements can be gath-
ered in the local coordinate system of the stereo cameras. Since the baseline
has been calibrated, the point measurements will be in real units and the stereo
system can be used to measure the relationships between points on objects in
the scene. It is not necessary to solve the absolute orientation problem, unless
the point measurements must be transformed into another coordinate system.

The second approach is to solve the relative orientation problem and obtain
point measurements in the arbitrary system of measurement that results from
assuming unit baseline distance. The point measurements will be correct, ex-
cept for the unknown scale factor. Distance ratios and angles will be correct,
even though the distances are in unknown units. If the baseline distance is ob-
tained later, then the point coordinates can be multiplied by the baseline dis-
tance to get point measurements in known units. If it is necessary to transform
the point measurements into another coordinate system, then solve the abso-
lute orientation problem with scale (Section 12.7), since this will accomplish
the calibration of the baseline distance and the conversion of point coordinates
into known units without additional computation.

The third approach is to solve the exterior orientation problem for each
stereo camera. This provides the transformation from the coordinate systems
of the left and right camera into absolute coordinates. The point measurements
obtained by intersecting rays using the methods of Section 12.6 will automati-
cally be in absolute coordinates with known units, and no further transforma-
tions are necessary.
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Figure 10.2: A diagram of the steps in various procedures for calibrating a binocular stereo
system.
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