Chapter 7

Fuzzy control

7.1 Introduction

The aim of this chapter is to define fuzzy control systems and to use this tech-
nique in the control of the robotic head for the object tracking. As important ob-
jective is also to carry out a comparison of the results obtained among this tech-
nique and the adaptive used in the previous chapter. The comparison not only
seeks to show the technical results with behavior indexes but also to present
comparisons in time of implementation and tunning.

Traditionally, an intelligent control system is defined as one in which clas-
sical control theory is combined with artificial intelligence (AI) and possibly
OR (Operations Research). Stemming from this definition, two approaches to
intelligent control have been in use. One approach combines expert systems in
Al with differential equations to create the so called expert control, while the
other integrates discrete event systems (Markov chains) and differential equa-
tions [85]. The first approach, although practically useful, is rather difficult
to analyze because of the different natures of differential equations (based on
mathematical relations) and Al expert systems (based on symbolic manipula-
tions). The second approach, on the other hand, has well developed and solid
theory, but is too complex for many practical applications. It is clear, there-
fore, that a new approach and a change of course are called for here. We begin
with another definition of an intelligent control system. An intelligent con-
trol system is one in which a physical system or a mathematical model of it is
being controlled by a combination of a knowledge-base, approximate (human-
like) reasoning, and/or a learning process structured in a hierarchical fash-
ion. Under this simple definition, any control system which involves fuzzy
logic, neural networks, expert learning schemes, genetic algorithms, genetic
programming or any combination of these would be designated as intelligent
control. Among the many applications of fuzzy sets and fuzzy logic, fuzzy
control is perhaps the most common. Most industrial fuzzy logic applications
in Japan, the U.S., and Europe fall under fuzzy control. The reasons for the
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7.2. BASIC DEFINITIONS

success of fuzzy control are both theoretical and practical [85]. From a theoret-
ical point of view, a fuzzy logic rule-base, can be used to identify both a model,
as a universal approximation, as well as a nonlinear controller. The most rele-
vant information about any system comes in one of three waysa mathematical
model, sensory input/output data, and human expert knowledge. The com-
mon factor in all these three sources is knowledge. For many years, classical
control designers began their effort with a mathematical model and did not
go any further in acquiring more knowledge about the system, i.e., designers
put their entire trust in a mathematical model whose accuracy may sometimes
be in question. Today, control engineers can use all of the above sources of
information. Aside from a mathematical model whose utilization is clear, nu-
merical (input/output) data can be used to develop an approximate model (in-
put/output nonlinear mapping) as well as a controller, based on the acquired
fuzzy IF-THEN rules. Some researchers and teachers of fuzzy control systems
subscribe to the notion that fuzzy controls should always use a model free de-
sign approach and, hence, give the impression that a mathematical model is
irrelevant. As indicated before, the authors, however, believe strongly that if a
mathematical model does exist, it would be the first source of knowledge used
in building the entire knowledge base. From a mathematical model, through
simulation, for example, one can further build the knowledge base. Through
utilization of the expert operators knowledge which comes in the form of a
set of linguistic or semilinguistic IF-THEN rules, the fuzzy controller designer
would get a big advantage in using every bit of information about the sys-
tem during the design process. On the other hand, it is quite possible that a
system, such as high dimensional large-scale systems, is so complex that a re-
liable mathematical tool either does not exist or is very costly to attain. This is
where fuzzy control (or intelligent control) comes in. Fuzzy control approaches
these problems through a set of local humanistic (expert-like) controllers gov-
erned by linguistic fuzzy IF-THEN rules. In short, fuzzy control falls into the
category of intelligent controllers, which are not solely model-based, but also,
knowledge-based. From a practical point of view, fuzzy controllers, which
have appeared in industry and in manufactured consumer products, are easy
to understand, simple to implement, and inexpensive to develop. Because
fuzzy controllers emulate human control strategies, they are easily understood
even by those who have no formal background in control. These controllers
are also very simple to implement.

7.2 Basic definitions

A common definition of a fuzzy control system is that it is a system which em-
ulates a human expert. In this situation, the knowledge of the human operator
would be put in the form of a set of fuzzy linguistic rules. These rules would
produce an approximate decision, just as a human would. Consider Figure
7.1, where a block diagram of this definition is shown. As shown, the human
operator observes quantities by observing the inputs, i.e., reading a meter or
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Figure 7.1: Conceptual Definition of a Fuzzy Control System.

measuring a chart, and performs a definite action (e.g., pushes a knob, turns on
a switch, closes a gate, or replaces a fuse) thus leading to a crisp action, shown
here by the output variable y(t). The human operator can be replaced by a
combination of a fuzzy rule-based system (FRBS) and a block called defuzzifier.
The input sensory (crisp or numerical) data are fed into FRBS where physical
quantities are represented or compressed into linguistic variables with appro-
priate membership functions. These linguistic variables are then used in the
antecedents (IF-Part) of a set of fuzzy rules within an inference engine to result
in a new set of fuzzy linguistic variables or consequent (THEN-Part). Variables
are then denoted in this figure by z, and are combined and changed to a crisp
(numerical) output y*(t) which represents an approximation to actual output
y(t). It is therefore noted that a fuzzy controller consists of three operations: (1)
fuzzification, (2) inference engine, and (3) defuzzification.

The fuzzification operation, or the fuzzifier unit, represents a mapping from
a crisp point z = (r129...7,)7 € X into a fuzzy set A € X , where X is the
universe of discourse and T denotes vector or matrix transposition. There are
normally two categories of fuzzifiers in use. The first is singleton and the sec-
ond is nonsingleton. A singleton fuzzifier has one point (value) z,, as its fuzzy
set support, i.e., the membership function is governed by the following rela-
tion:

pa ={ g i ey 7.1)
The nonsingleton fuzzifiers are those in which the support is more than a
point. Examples of these fuzzifiers are triangular, trapezoidal, Gaussian, etc.
In these fuzzifiers, j14(1) = 1 at z = x, where x = z;, may be one or more than
one point, and then p4(xz) decreases from 1 as x moves away from « = z, or
the core region to which = = z,, belongs such that 1 4 (z,) remains 1 (see Section
1.5). For example, the following relation represents a Gaussian-type fuzzifier:
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pa(z) = exp { (z = wP)TQ(:” ) } (7.2)

g

where the variance, 02 , is a parameter characterizing the shape of 4 ().

7.2.1 Inference Engine

The cornerstone of any expert controller is its inference engine, which con-
sists of a set of expert rules, which reflect the knowledge base and reasoning
structure of the solution of any problem. A fuzzy (expert) control system is
no exception and its rule base is the heart of the nonlinear fuzzy controller. A
typical fuzzy rule can be composed as [87]

IF Ais Ay AND Bis B; OR Cis ¢y THEN U is Uy

(7.3)

where A, B, C and U are fuzzy variables, Ay, B;,C; and Ujare fuzzy lin-
quistic values (membership functions or fuzzy linguistic labels), AND, OR, and
NOT are connectives of the rule. The rule in Equation 7.3 has three antecedents
and one consequent. Typical fuzzy variables may in fact, represent physical or
system quantities such as: temperature, position, output, elevation, etc. and
typical fuzzy linguistic values (labels) may be hot, very close, low, etc. The
portion very in a label very high is called a linquistic hedge. Other examples of
a hedge are much, slightly, more, or less, etc. The above rule is known as Mam-
dani type rule. In Mamdani rules the antecedents and the consequent parts of
the rule are expressed using linguistic labels. In general in fuzzy system the-
ory, there are many forms and variations of fuzzy rules, some of which will be
introduced here and throughout the chapter. Another form is Takagi-Sugeno
rules in which the consequent part is expressed as an analytical expression or
equation.

Two cases will be used here to illustrate the process of inferencing graph-
ically. In the first case the inputs to the system are crisp values and we use
max-min inference method. In the second case, the inputs to the system are
also crisp, but we use the max-product inference method.

Consider the following rule whose consequent is not a fuzzy implication

IF z; is A% AND x5 is A5 THEN v’ is BY, for i=1,2,j

(7.4)

Where AY and A} are the fuzzy sets representing the ith-antecedent pairs,
and B’ are the fuzzy sets representing the ith-consequent, and j is the number
of rules.
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Case 1. Inputs x; and 9 are crisp values, and max-min inference method
is used. Based on the Mamdani implication method of inference, and for a set
of disjunctive rules, i.e, rules connected by the OR connective, the aggregated
output for the j rules presented in Equation 7.4 will be given by

ppi(y) = max [min {/LAi (xl),,uAé(asg)” Jfori=1,2,....7 (7.5)

Figure 7.2 is a graphical illustration of Equation 7.5, for j=2, where A{ and
Al refer to the first and second fuzzy antecedents of the first rule, respectively,
and B! refers to the fuzzy consequent of the first rule. Similarly, A? and A% re-
fer to the first and second fuzzy antecedents of the second rule, respectively,
and BZrefers to the fuzzy consequent of the second rule. Because the an-
tecedent pairs used in general form presented in Equation 7.4 are connected by
a logical AND, the minimum function is used. For each rule, minimum value
of the antecedent propagates through and truncates the membership function
for the consequent. This is done graphically for each rule. Assuming that the
rules are disjunctive, the aggregation operation max results in an aggregated
membership function comprised of the outer envelope of the individual trun-
cated membership forms from each rule. To compute the final crisp value of
the aggregated output, defuzzification is used, which will be explained in the
next section.

Case 2: Inputs 21 and x5 are crisp values, and max-product inference method
is used. Based on the Mamdani implication method of inference, and for a set
of disjunctive rules, the aggregated output for the [ rules presented in Equation
7.4 will be given by

ppi(y) = max |y (¥1), pai (z2) | fori=1,2,....j (7.6)

Figure 7.3 is a graphical illustration of Equation 7.6, for j=2, where Al and
A} refer to the first and second fuzzy antecedents of the first rule, respectively,
and B! refers to the fuzzy consequent of the first rule. Similarly, A? and A3
refer to the first and second fuzzy antecedents of the second rule, respectively,
and B? refers to the fuzzy consequent of the second rule. Since the antecedent
pairs used in general form presented in Equation 7.4 are connected by a logical
AND, the minimum function is used again. For each rule, minimum value of
the antecedent propagates through and scales the membership function for the
consequent. This is done graphically for each rule. Similar to the first case, the
aggregation operation max results in an aggregated membership function com-
prised of the outer envelope of the individual truncated membership forms
from each rule. To compute the final crisp value of the aggregated output,
defuzzification is used.

7.2.2 Defuzzification

Defuzzification is the third important element of any fuzzy controller. In this
section, only the center of gravity defuzzifier, which is the most common one, is
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Figure 7.2: Max-min Inference method.

156



7.2. BASIC DEFINITIONS
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Figure 7.3: Max-product Inference method.
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discussed. In this method the weighted average of the membership function or
the center of gravity of the area bounded by the membership function curve is
computed as the most typical crisp value of the union of all output fuzzy sets:

~ Jypaly)dy

YT T haly)dy @D

7.3 Fuzzy control design

One of the first steps in the design of any fuzzy controller is to develop a knowl-
edge base for the system to eventually lead to an initial set of rules. There are
at least five different methods to generate a fuzzy rule base [88]:

1. Simulate the closed-loop system through its mathematical model,

2. Interview an operator who has had many years of experience controlling
the system,

3. Generate rules through an algorithm using numerical input/output data
of the system,

4. Use learning or optimization methods such as neural networks (NN) or
genetic algorithms (GA) to create the rules, and,

5. In the absence of all of the above, if a system does exist, experiment with
it in the laboratory or factory setting and gradually gain enough experi-
ence to create the initial set of rules.

7.3.1 Example1

Consider the linearized model of the inverted pendulum Figure 7.4, described
by the equation given below,

A T S DR
Y= 1579 0 | " 146 | Y

with [=0.5m, m=100g, and initial conditions =7 (0) = [ 6(0) 6(0) ]Tz (10 ]T.
It is desired to stabilize the system using fuzzy rules.

Clearly this system is unstable and a controller is needed to stabilize it.
To generate the rules for this problem only common sense is needed, i.e., if
the pole is falling in one direction then push the cart in the same direction to
counter the movement of the pole. To put this into rules of the form Equation
7.4 we get the following;:
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Force, u

Figure 7.4: Inverted Pendulum.
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Figure 7.5: Membership Functions for the Inverted Pendulum Problem.
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IF 6 a_Positive and 0 is d_Positive THEN u is u_Negative
IF 6 a_Negative and 0 is d_Negative THEN u is u_Positive

As shown in Figure 7.5, the membership functions for the inputs are half-
triangular, while the membership function of the output is singleton. By sim-
ulating the system with fuzzy controller we get the response shown in Figure
7.6(b). It is clear that the system is stable. In this example only two rules were
used, but more rules could be added in order to get a better response.

7.4 Analisis of fuzzy control systems

In this section, some results of Tanaka and Sugeno [89] with respect to analysis
of feedback fuzzy control systems will be briefly discussed. This section would
use Takagi-Sugeno models to develop fuzzy block diagrams and fuzzy closed-
loop models. Consider a typical Takagi-Sugeno fuzzy plant model represented
by implication P'in Figure 7.7.

P! IF z(k)is AL AND..x(k —n +1)is A% ..

..AND u(k) is Bf AND...AND u(k —m + 1) is B’

m
THEN 2 (k + 1) = a) + alz(k) + ...

vt aiz(k—n+1)+biuk) + ...+ 0 uk —m +1) (7.8)

where P?, (i=1,2,...,j) is the ith implication, j, is the total number of implica-
tions, a;) , (p=1,2,...,n) and bfl (9=1,2,...,m) are constant consequent parameters, k
is time sample, x(k),..., x(k-n+1) are input variables, #n and m are the number of
antecedents for states and inputs, respectively. The terms A, and B}, are fuzzy
sets with piecewise-continuous polynomial (PCP) membership functions. PCP
is defined as follows.

Definition 1

A fuzzy set A satisfying the following properties is said to be a piecewise
continuous polynomial (PCP) membership function A(x) [4]:

(), € [po, p1]
A(z) = (7.9)
ps(x), & € [ps—1,ps]
where u;(x) € [0,1] for x € [pi—1,pi], i=1,2,..,s and —co0 < py < p1 < ... <
Ps—1 < ps < O0.
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Figure 7.6: Simulation result for example 1, (a) Simulink diagram and (b) Sys-
tem response.
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uk) —> —» x(k+1)

Figure 7.7: Single-Input, Single-Output Fuzzy Block Represented by ith Impli-
cation P".

wi(x) = Z cé-xj (7.10)
7=0

where ¢, are known parameters of polynomials 1;(z).

Given the inputs

x(k)=[ 2(k) @z(k—1) - z(k—n+1)]"

u(k)=[ uk) u(k—1) - wk-m+1)]" (7.11)

Using the above vector notation, Equation 7.11 can be represented in the
following form,

P?: IF x(k) is A* AND u(k) is B

THEN z'(k+1) =af+ Y alz(k—p+1)+ Y buk—q+1)  (7.12)

p=1 q=1
where AP = [ A7 Ay ... AL T, Bi=[Bi Bj --- Bi ] “x(kis
A" are equivalent to antecedent “x(k) is A} AND ... x(k-n+1) is A%,”. The final
defuzzified output of the inference is given by a weighted average of z*(k + 1):

Zj: wizt(k +1)
z(k+1) = Z=1J— (7.13)
D>, wt
i=1

where it is assumed that the denominator of Equation 7.13 is positive, and
z'(k + 1) is calculated from the ith implication, and the weight w* wi refers to
the overall truth value of the ith implication premise for the inputs in Equation
7.12.

Since the product of two PCP fuzzy sets can be considered as a series con-
nection of two fuzzy blocks of the type in Figure 7.7, it is concluded that the
convexity of fuzzy sets in succession is not preserved in general. Now let us
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consider a fuzzy control system whose plant model and controller are repre-
sented by fuzzy implications as depicted in Figure 7.8. In this figure, r(k) repre-
sents a reference input. The plant implication P'is already defined by Equation
7.12, while the controllers dth implication is given by

C?: TF x(k) is D* AND u(k) is F*

THEN fi(k+1) =cf+ Y cla(k—p+1) (7.14)
p=1

whereDY=[ D¢ D§ ... DI ]T,Fiz [ F{ Fj - Fi }T,andof
course u(k)=r(k)-f(k). The equivalent implication S%is given by

Sid ;TP x(k) is( A* AND D?) AND v* (k) is( B AND F¢)

THEN z'4(k 4 1) = ag — b'cd + bir(k) + Z (aﬁ - bic;l)x(k —-p+1) (7.15)

p=1

where i=1,...,l;, d=1,...l3, and I, and [, are the total number of implications
for the plant and the controller, respectively. The term v*(k) is defined by

v (k) = [(k) = n(x(k)),r(k = 1) = n(zr(k = 1)), ...

r(k—m41) —n(z(k —m+1))]7 (7.16)
where 7(.) is the input-output mapping function of block C? in Figure 7.8,

ie., f(k) =n(z(k)).

7.4.1 Example 2

Consider a fuzzy feedback control system of the type shown in Figure 7.8 with
the following implications:
PL:IF x(k) is A THEN x!(k + 1) = 1.85x(k) — 0.65x(k — 1) + 0.35u(k)
P2 TF x(k) is A2 THEN 2?(k + 1) = 2.56x(k) — 0.135z(k — 1) + 2.22u(k)
C*': 1F x(k) is D*> THEN f!(k+1)=k{x(k)-kix(k-1)
C?%: 1F x(k) is D*> THEN f2(k+1)=k?x(k)-k3x(k-1)
It is desired to find the closed-loop implications Sid =172, and d=1,2.
Noting that u(k)=r(k)-f(k) in Figure 7.8 and the implications in Equation 7.15,
we have
S TF x(k) is (A AND D) THEN 2! (k + 1) = (1.85 — 0.35k1)2(k) + ...
..(0.65 — 0.35k1)z(k — 1) + 0.35u(k)
S12: TF x(k) is (A AND D?) THEN z'2(k + 1) = (1.85 — 0.35k%)x (k) + ...
..(0.65 — 0.35k2)z(k — 1) + 0.35u(k)
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Plant
u(k)
r) + o X(k+1)
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Figure 7.8: Fuzzy control system depicted by two implications and its equiva-
lent implication.

S21: 1F x(k) is (A% AND D') THEN z%!(k + 1) = (2.56 — 2.22k})z(k) + ...
.(0.135 — 2.22k)z(k — 1) + 2.22u(k)
522: TF x(k) is (A2 AND D?) THEN z2%(k + 1) = (2.56 — 2.22k%)z(k) + ...
(0,135 — 2.22k3)x(k — 1) + 2.22u(k)

7.5 Stability of fuzzy control systems

One of the most important issues in any control system fuzzy or otherwise is
stability. Briefly, a system is said to be stable if it would come to its equilibrium
state after any external input, initial conditions, and/or disturbances have im-
pressed the system. The issue of stability is of even greater relevance when
questions of safety, lives, and environment are at stake as in such systems as
nuclear reactors, traffic systems, and airplane autopilots. The stability test for
fuzzy control systems, or lack of it, has been a subject of criticism by many
control engineers in some control engineering literature [90].

Almost any linear or nonlinear system under the influence of a closed-loop
crisp controller has one type of stability test or as other. For example, the stabil-
ity of a linear time-invariant system can be tested by a wide variety of methods
such as Routh-Hurwitz, root locus, Bode plots, Nyquist criterion, and even
through traditionally nonlinear systems methods of Lyapunov, Popov, and cir-
cle criterion. The common requirement in all these tests is the availability of
a mathematical model, either in time or frequency domain. A reliable math-
ematical model for a very complex and large-scale system may, in practice,
be unavailable or unfeasible. In such cases, a fuzzy controller may be designed
based on expert knowledge or experimental practice. However, the issue of the

164



7.5. STABILITY OF FUZZY CONTROL SYSTEMS

Yd + e u Linear
Fuzzy —» Process >y
- Controller Model

Figure 7.9: Class 1 of fuzzy control system stability problem.

stability of a fuzzy control system still remains and must be addressed. The
aim of this section is to present an up-to-date survey of available techniques
and tests for fuzzy control systems stability. From the viewpoint of stability a
fuzzy controller can be either acting as a conventional (low-level) controller or
as a supervisory (high-level) controller. Depending on the existence and na-
ture of a systems mathematical model and the level in which fuzzy rules are
being utilized for control and robustness, four classes of fuzzy control stability
problems can be distinguished. These four classes are:

Class 1: Process model is crisp and linear and fuzzy controller is low level.

Class 2: Process model is crisp and nonlinear and the fuzzy controller is low
level.

Class 3: Process model (linear or nonlinear) is crisp and a fuzzy tuner or an
adaptive fuzzy controller is present at high level.

Class 4: Process model is fuzzy and fuzzy controller is low level.

Figures 7.9-7.12 show all four classes of fuzzy control systems whose sta-
bility is of concern. Here, we are concerned mainly with the first three classes.
For the last class, traditional nonlinear control theory could fail and is beyond
the scope of this section. It will be discussed very briefly. The techniques for
testing the stability of the first two classes of systems (Figures 7.7 and 7.8) are
divided into two main groupstime and frequency.

7.5.1 Time-Domain Methods

The state-space approach has been considered by many authors [91]-[99]. The
basic approach here is to subdivide the state space into a finite number of cells
based on the definitions of the membership functions. Now, if a separate rule is
defined for every cell, a cell-to-cell trajectory can be constructed from the sys-
tems output induced by the new outputs of the fuzzy controller. If every cell of
the modified state space is checked, one can identify all the equilibrium points,
including the systems stable region. This method should be used with some
care since the inaccuracies in the modified description could cause oscillatory
phenomenon around the equilibrium points.

The second class of methods is based on Lyapunovs method. Several au-
thors, [89], [94], [95], [97] [100]-[107], have used this theory to come up with cri-
terion for stability of fuzzy control systems. The approach shows that the time
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Figure 7.10: Class 2 of fuzzy control system stability problem.
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Figure 7.11: Class 3 of fuzzy control system stability problem.
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Figure 7.12: Class 4 of fuzzy control system stability problem.
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derivative of the Lyapunov function at the equilibrium point is negative semi
definite. Many approaches have been proposed. One approach is to define a
Lyapunov function and then derive the fuzzy controllers architecture out of the
stability conditions. Another approach uses Aisermans method [91] to find an
adopted Lyapunov function, while representing the fuzzy controller by a non-
linear algebraic function u=f(y), when y is the systems output. A third method
calls for the use of so called facet functions, where the fuzzy controller is re-
alized by boxwise multilinear facet functions with the system being described
by a state space model. To test stability, a numerical parameter optimization
scheme is needed.

The hyperstability approach, considered by other authors [108]-[110] has been
used to check stability of systems depicted in Figure 7.9. The basic approach
here is to restrict the input-output behavior of the nonlinear fuzzy controller by
inequality and to derive conditions for the linear part of the closed-loop system
to be satisfied for stability.

Bifurcation theory [97] can be used to check stability of fuzzy control systems
of the class described in Figure 7.10. This approach represents a tool in deriving
stability conditions and robustness indices for stability from small gain theory.
The fuzzy controller, in this case, is described by a nonlinear vector function.
The stability in this scheme could only be lost if one of the following conditions
becomes true: (1) the origin becomes unstable if a pole crosses the imaginary
axis into the right half-planestatic bifurcation, (2) the origin becomes unstable
if a pair of poles would cross over the imaginary axis and assumes positive real
parts Hopf bifurcation or (3) new additional equilibrium points are produced.
The last time-domain method is the use of graph theory [13]. In this approach
conditions for special nonlinearities are derived to test the BIBO stability.

7.5.2 Frequency-Domain Methods

There are three primary groups of methods which have been considered here.
The harmonic balance approach, considered in references [111]-[113], among
others, has been used to check the stability of the first two classes of fuzzy
control systems (see Figures 7.9 and 7.10). The main idea is to check if per-
manent oscillations occur in the system and whether these oscillations with
known amplitude or frequency are stable. The nonlinearity (fuzzy controller)
is described by a complex-valued describing function and the condition of har-
monic balance is tested. If this condition is satisfied, then a permanent oscil-
lation exists. This approach is equally applicable to MIMO systems. The circle
criterion [92],[110],[114],[115] and Popov criterion [116],[117] have been used to
check stability of the first class of systems. In both criteria, certain conditions on
the linear process model and static nonlinearity (controller) must be satisfied.
It is assumed that the characteristic value of the nonlinearity remains within
certain bounds, and the linear process model must be open-loop stable with
proper transfer function. Both criteria can be graphically evaluated in simple
manners. A summary of many stability approaches for fuzzy control systems
has been presented in Jamshidi[88].
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7.5.3 Lyapunov Stability

One of the most fundamental criteria of any control system is to ensure stability
as part of the design process. In this section, some theoretical results on this
important topic are detailed.

We begin with the ith Takagi-Sugeno implication of a fuzzy system:

P! IF z(k)is AL AND... x(k —n +1)is A%

THEN z'(k + 1) = af + aix(k) + ... + aLx(k —n +1) (7.17)

with 7=1,...,j. It is noted that this implication is similar to Equation 7.12
except since we are dealing with Lyapunov stability, the inputs u(k) are absent.
The stability of a fuzzy control system with the presence of the inputs will be
considered shortly. The consequent part of Equation 7.17 represents a set of
linear subsystems and can be rewritten as [89]

IF 2(k)is A} AND... z(k —n+1)is AL, THENx(k +1) = A;x(k)  (7.18)

where x(k) is defined by Equation 7.11 and the n x n matrix A, is

ai ay - oan_y a,
1 0 - 0 0

A= 0 1 -0 0 (7.19)
0 0 -~ 1 0

The output of the fuzzy system described by Equations 7.17-7.19 is given
by

i wiA;x(k)
x(k+1)= :1]7 (7.20)
> w
=1

where w' is the overall truth value of the ith implication and j is the total
number of implications. Using this notation we then present the first stability
result of fuzzy control systems [89].

Theorem 1

The equilibrium point of a fuzzy system Equation 7.20 is globally asymp-
totically stable if there exists a common positive definite matrix P for all sub-
systems such that

ATPA, —P <Ofori=1,..,j. (7.21)

168



7.5. STABILITY OF FUZZY CONTROL SYSTEMS
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-1 0 1 -1 0 1

Figure 7.13: Fuzzy sets for example 3.

It is noted that the above theorem can be applied to any nonlinear system
which can be approximated by a piecewise linear function if the stability con-
dition (21) is satisfied. Moreover, if there exists a common positive definite
matrix P, then all the A;matrices are stable. Since Theorem 1 is a sufficient con-
dition for stability, it is possible not to find a P > 0 even if all the A; matrices are
stable. In other words, a fuzzy system may be globally asymptotically stable
even if a P > 0 is not found. The fuzzy system is not always stable even if all
the A,;’s are stable.

Theorem 2

Let A, be stable and nonsingular matrices for i=1,...j. Then A;A, are stable
matrices for i,d=1,...j, if there exists a common positive definite matrix P such
that

ATPA, —P < Ofori=1,...,j. (7.22)

7.5.4 Example 3
Consider the following fuzzy system:
P':TF x(k) is A' THEN z'(k + 1) = 1.22(k) — 0.6z (k — 1)
P?:TF x(k) is A> THEN 2?(k + 1) = 1.22(k) — 0.6z(k — 1)
Where A;are fuzzy sets shown in Figure 7.13. It is desired to check the

stability of this system.
The two subsystems matrices are

12 —0.6 1 04
e[ e[

The product of matrix A, A, is
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ALA, — [ 0.6 —0.48 ]

1 -04

whose eigenvalues are A\; 2 = 0.1 £ j0.48 which indicates that A, A, is a
stable matrix. Thus, by Theorem 2 a common P exists, and if we use P with the
following,

2 —1.2
P{—Lz 1 }

then both equations ATPA; — P < 0 for i=1,2 are simultaneously satisfied.
This result was also verified using simulation. Figure 7.14 shows the surface
response and the simulation result, which is clearly stable.

Thus far, the criteria which have been presented treat autonomous (either
closed-loop or no input) systems. Consider the following non-autonomous
fuzzy system:

P! IF 2(k)is AYAND....AND z(k — n + 1)is AL AND

u(k)is B AND...AND u(k — m + 1) is B’

m

THEN 2% (k+1) = ajy +a’x(k)+...+a’x(k—n+1)+biu(k)+...+b) x(k—m+1)
(7.23)
Here, we use some results from Tahani and Sheikholeslam [107] to test the
stability of the above system. We begin with a definition.
Definition 2
The nonlinear system

x(k+1) =f[x(k),u(k), k]

y = g[x(k), u(k), k] (7.24)

is totally stable if and only if for any bounded input u(k) and bounded ini-
tial state and bounded initial state x, the state x(k) and the output y(k) of the
system are bounded, i.e., we have

for all |x¢| < oo and for all ju(k)| < oo = |x(k)| < oo and |y (k) < o0

(7.25)

Now we consider the following theorem:
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Figure 7.14: (a) Surface response and (b) simulation result for example 3.
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My A M. A

Figure 7.15: Fuzzy sets for example 3.

Theorem 3
The fuzzy system Equation 7.23 is totally stable if there exists a common
positive definite matrix P such that the following inequalities hold

ATPA;, —P < Ofori=1,..., . (7.26)

Where A;is defined by Equation 7.19. The proof of this theorem can be
found in Sheikholeslam [118].

7.5.5 Example 4

P TF x(k) is A* THEN z'(k + 1) = 0.85z(k) — 0.25z(k — 1) + 0.35u(k)
P2:TF x(k) is A> THEN z?(k + 1) = 0.56z(k) — 0.25z(k — 1) 4 2.22u(k)
where A’Ai are fuzzy sets shown in Figure 7.15. It is desired to check the
stability of this system. Assume that the input u(k) is bounded.
The two subsystems matrices are

0.85 —0.25 0.56 —0.25
a7 s [

If we choose the positive definite matrix P
3 -1
e=[ 5]
then it can be easily verified that the systems is totally stable The product

of matrix A, A.is

0.23 —0.21
Arfy = [ 0.56 —0.25 }

The eigenvalues of product of matrix A, A, are A1 2 = 0.012 £ j0.25 which
indicates that A, A, is a stable matrix.
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7.5.6 Stability via Interval Matrix Method

Some results on the stability of time varying discrete interval matrices by Han
and Lee [119] can lead us to some more conservative, but computationally
more convenient, stability criteria for fuzzy systems of the Takagi-Sugeno type
shown by Equation 7.17. Before we can state these new criteria some prelimi-
nary discussion will be necessary.

Consider a linear discrete time system described by a difference equation
in state form:

x(k+1) = (A+ G(k))x(k),x(0) = xo (7.27)

where A is an n x n constant asymptotically stable matrix, xis the n x 1 state
vector, and G(k) is an unknown nxn time varying matrix on the perturbation
matrixs maximum modulus, i.e.,

|G(k)| < Gforallk (7.28)

where the |e|represents the matrix with modulus elements and the inequal-
ity holds element-wise. Now, consider the following theorem.

Theorem 4

The time varying discrete time system Equation 7.27 is asymptotically sta-
ble if

p(|Al+Gp) <1 (7.29)

where p(e) stands for spectral radius of the matrix. The proof of this the-
orem is traightforward, based on the evaluation of the spectral norm |z(k)| or
x(k) and showing that if condition Equation 7.29 holds, then klim lz(k)] = 0.

The proof can be found in Han and Lee [119].

Definition 3

An interval matrix AI(k) is an n x n matrix whose elements consist of in-
tervals [b;5,¢;5] for ij=1,..,n,i.e,

[b11, c11] e [b1n, C1n]

Al (k) = (7.30)

[bi, cij]
[bnlv cnl] o [bnna cnn]
Definition 4
The center matrix, A, and the maximum difference matrix, A,, of A;(k) in
Equation 7.30 are defined by

AC:B+C
2
Am:C;B (7.31)
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where B=b;; and C=c;;. Thus, the interval matrix A;(k) in 30 can also be
rewritten as

Ar(k)=[Ac— A, Ac+ Al = A+ AA(R) (7.32)

with [AA(k) < A,
Lemma1l
The interval matrix A (k) is asymptotically stable if matrix A ¢ is stable and

plAd + An) <1 (7.33)

The proof can be found in Han and Lee [119]. The above lemma can be used
to check the sufficient condition for the stability of fuzzy systems of Takagi-
Sugeno type given in Equation 7.18. Consider a set of m fuzzy rules like Equa-
tion 7.18,

IF 2(k)is A; AND...2(k —n + 1) is AL THEN x(k + 1) = A;x(k)

(7.34)

IFz(k)isAT'AND...z(k — n 4+ 1)isA'THENx(k + 1) = A, x(k)

where A,; matrices for i=1,...,m are defined by Equation 7.19. One can now
formulate all the m matrices A;, i=1,...,m as an interval matrix of the form 30 by
simply finding the minimum and the maximum of all elements at the top row
of all the A ;matrices. In other words, we have

[a?,a7"]  [ag",a5?] - [ailyape] [ant e
1 0 o 0 0
As(k) = 0 1 a 0 0 (7.35)
0 0 .. 1 0

where a/"and a** for i=1,...,n are the minimum and maximum of the re-
spective element of the first rows of A; in Equation 7.19, taken element by ele-
ment. Using the above definitions and observations, the fuzzy system Equation
7.34 can be rewritten by

IF 2(k)is AL AND...2(k —n +1)is A, THENx(k + 1) = Abx(k)  (7.36)

where i=1,..,m and A?! is an interval matrix of form Equation 7.35 except
that o] = a!** = a;. Now, finding the weighted average, one has
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i
> wAx(k)
x(k+1) =" (7.37)
wi
=1

?

Theorem 5
The fuzzy system Equation 7.37 is asymptotically stable if the interval ma-
trix A (k) is asymptotically stable, i.e., the conditions in Lemma 1 are satisfied.

7.5.7 Example 5

Reconsider Example 10.3. It is desired to check its stability via the matrix inter-
val approach

The systems two canonical matrices are written in the form of an interval
matrix (30) as

Aslk) = [ 1.12] [-06,~0.4 }

The center and maximum difference matrices are

11 05 0.1 0.1
s[5 e [

Then, condition 33 would become,

plad+am=p| K2 G <1851

Thus the stability of the fuzzy system under consideration is inconclusive.
In fact, it was shown to be stable.

Consider the following fuzzy system:

P TF x(k) is A* THEN z'(k + 1) = 0.3z(k) + 0.5z(k — 1)

P2 TF x(k) is A2 THEN z?(k + 1) = 0.2z (k) + 0.2z(k — 1)

where A‘are fuzzy sets shown in Figure 7.17. It is desired to check the
stability of this system using matrix interval method.

The two subsystems matrices are

0.3 05
=[]
0.2 0.2
e[

The systems two canonical matrices are written in the form of an interval
matrix 30 as
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Ay (k) = [ [0.2,10.3] [0.260.5] ]

The center and maximum difference matrices are

0.25 0.35 0.05 0.15
SR

Then, condition 7.33 would become,

p(IA + Ap) = p [ 03 0(')5 ] — 0873 < 1
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