Chapter 6

Adaptive Control

6.1 Introduction

Computerized process control has advanced by leaps and bounds over the
last ten years in hardware and methods. Conventional PID controllers [79],
whether analog or digital, are only efficient where the system to be controlled
(the plant) or rather the model of that system represented within the controller
is characterized by constant parameters applicable at all operating points. And
yet, most complex systems are characterized by parameters that vary with the
system operating point, thus failing to meet the basic assumption just stated.
In such cases, a control signal generated by a conventional PID controller (i.e.
one for which the parameters are computed once and for all on the basis of
a constant-parameter system model) will inevitably give rise to progressively
more degraded operation of the overall control loop as the errors between con-
troller and actual process parameters increase. This can only be corrected by
modifying the controller coefficients. Which brings us to adaptive control.

6.2 Theory of Adaptive Control

Adaptive control represents an advanced level of controller design. It is rec-
ommended for systems operating in variable environments and/or featuring
variable parameters. Adaptive control is a set of techniques for the automatic,
on-line, real-time adjustment of control-loop regulators designed to attain or
maintain a given level of system performance where the controlled process
parameters are unknown and/or time-varying. Adaptive control is based en-
tirely on the following hypothesis: the process to be controlled can be mathe-
matically modelled and the structure of this model (delay and order) is known
in advance. The determination of the structure of a parametric system model is
thus a vital step before going on to design an adaptive control algorithm. The
capabilities of the adaptive control algorithm depends, to a large extent, on the
faithfulness with which the model represents the system and its behavior. The
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chief advantage, in practical terms, of adaptive control appears to be the capa-
bility to ensure quasi-optimal system performance in the presence of a model
with time-varying parameters.

Once the model and its structure have been identified, the next step is to se-
lect a control strategy. This choice depends in part on the nature of the problem
(regulation or tracking) and on the system characteristics (minimum phase or
not). The number of options available depends on the extent of our advance
knowledge of these characteristics.

The adaptive control algorithm is then designed in accordance with the
structure of the system model and the selected control strategy. As a rule, the
adaptive control algorithm can be seen as a combination of two algorithms. An
identification algorithm uses measurements made on the system and generates
information (a succession of estimates) for input to a control law computation
algorithm. This second algorithm determines, at each instant, the adaptive
controller parameters and the control to be applied to the system. This type
of adaptive control is termed indirect. For example, no control law computa-
tion algorithm is required at all if the parameters characterizing the adaptive
controller are directly identified. This is known as direct adaptive control.

In this thesis the two approaches of adaptive control previously mentioned
are treated. We will look first at adaptive control based on a direct scheme
using a reference model. There are two main reasons for this choice: first, this
type of control is relatively easy to implement; second, it has already found
practical applications in systems. A discussion follows on an adaptive control
system based on an indirect scheme which offers the best system response. This
type of control was introduced by Clarke [80,81]. It produces optimal control
over any system, with or without time delays and irrespective of whether the
inverse is stable or unstable. This scheme is known as generalized predictive
control.

The basic principle underlying adaptive control systems is relatively sim-
ple (Figure 6.1). An adaptive control system measures a certain performance
rating of the system (or plant) to be controlled. Starting with the difference be-
tween the desired and measured performance ratings, the adjustment system
modifies the parameters of the adaptive controller (or regulator) and the con-
trol law in order to maintain the system performance rating close to the desired
value(s).

Note that, in order to design and correctly adjust (or tune) a good controller,
we must specify the desired performance of the regulation loop and determine
the dynamic process model describing the relation between variations in con-
trol signals and output. This means we must determine the representation
model which, in turn, means that we must establish the system’s order and
time delay. The literature on adaptive control includes hundreds of papers on
different approaches to the problem. As a result, computer vision engineers
who are not specialists in adaptive control theory often find it very difficult
to determine which approach they should use to solve a given problem. The
aim of this chapter is to introduce to the two main principles of adaptive con-
trol identified to date and to use these techniques in the control of the robotics
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Figure 6.1: Basic principles of adaptive control

head for the object tracking. The two principles selected for discussion were
chosen on the basis of the goal of any design project, namely the determination
of a real-time control law applicable to a given process and the total number
of operations required to parameterize the control law is assumed to be one of
the criteria most important to the design engineer.

6.3 Numerical Domain Representation (Parametric
Models)

For any continuous, mono or multi-variable physical system, the search for a
suitable parametric model (whether by empirical methods or on the basis of
experimental data) leads to the use of linear differential equations to represent
the process to be identified. These equations are of the form:

d"Y(t) N d" 1Y (t)

. dmU(t)
dtn Pt

dtm

+..+a,Y(t) = o + ..+ 5, U(t) (6.1)

In nature, no system is rigorously linear in the mathematical sense. How-
ever, most processes approach linear behavior over a limited operating range.
Contrary to non-parametric models (finite impulse response), parametric mod-
els depend on a specific structure. The parametric model characterizes the dy-
namic behavior of a physical system in terms of its transfer function. This may
be deduced using a z-transform. Applying such a transform to Eqn. 6.1, we
obtain:

123



6.3. NUMERICAL DOMAIN REPRESENTATION (PARAMETRIC MODELS)
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Figure 6.2: Parametric model description in terms of process input and output.
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(6.2)

where (ay,...,a,) and (bo,...,b,,) represent the parameters of the sampled model,
d represent the time delay, n determines the order of the model, U(z) is the
model input and Y(z) is the output model. The most widely used parametric
model is illustrated in Figure 6.2.

With

e ¢!, is the time delay operator.

Al =1+aig ' + ... + angt

B(g ) =by+ ... +bnqg !

b(k), represents all noise sources expressed in terms of their equivalent
effect on output.

The model described by Eqn. 6.2 is known in the literature as the polynomial
parametric model. Expression Eqn. 6.2 is solely in terms of the process input
and output. The model can also be represented as a first-order differential
equation by converting expression Eqn. 6.1. This representation is known as
the parametric state model and is defined in accordance with equation Eqn.
6.3. Throughout the remainder of this chapter we will assume that polynomial
B(q™') is of the same degree as polynomial A(g™!).

Xi+1 = PX; + QU

Y, = CX,, (6.3)

Where

X, is the state vector pf dimension ((n+d) x 1).

P is the state matrix of dimension ((n+d) x (n+d)).
Q is the input vector of dimension ((n+d) x 1).

C is the output vector of dimension (1 x (n+d)).
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n is the order of the system.

The relation between these two representations of the parametric model is
given by:

—ar 10 07
0
P = —an, 0
0 1
L 0 0 0 ]
o -
0
Q=% |c=[10 0]
_bn_

While it is true that the parametric model approximates the behavior of the
physical system, one must be cautious when it comes to the physical interpre-
tation of the parameters contributing to the model’s structure. The purpose
of the parametric model is to approximate as closely as possible the behavior
of the system by ensuring the closest possible match between predicted and
observed output. This is done, moreover, within the limits of an accuracy vs.
simplicity trade-off that the automatic control specialist defines when choosing
the parametric model to generate the control law.

The advantages of the parametric model approach lie in its structure:

1. It enables us to describe, sufficiently accurately, the dynamics of an ar-
bitrary physical process using fewer parameters that are required by the
non-parametric model (finite impulse response).

2. Itisrelatively simple to implement on the controller. Using a well-known
property of the z transform (time delay theorem), we can proceed from
the polynomial parametric model to the difference equation of the fol-
lowing form:

Y(k) =bU(k—d)+...4+b,U(k—n—d)—a1Y(k)—...—a, Y(k—n)+e(k) (6.4)
with

e e(k) representing the generalized or residual noise

o e(k) =b(k)(1+aiq ' + ...+ ang )
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Given that we now have the time-history of the input and output signals, we
can readily predict the model output values. This important point is widely
used in modern regulation theory. The state parametric model is useful for de-
scribing multivariable systems. The main drawback of the parametric model
is the difficulty of determining the order of the system. If the designer under-
estimates the process order, model predictions will not match actual system
behavior. On the other hand, if the designer overestimates the order, the in-
creased complexity of the model will mean longer computation times. This
same comment also applies to the estimation of pure time delays. With most
industrial systems, we do not have access to the states values, which is a major
handicap for the state parametric model. There are state observer techniques
allowing the state estimation, but having a heavy penalty in terms of compu-
tation time.

6.4 Adaptive Control Using Reference Models

An adaptive controller may be of conventional design or it may be more com-
plex in structure [84], including adjustable coefficients such that their tuning,
using a suitable algorithm, either optimizes or extends the operating range of
the process to be regulated. The different methods of adaptive control differ as
to the method chosen to adjust (or tune) the control coefficients.

This section discusses adaptive control using parallel-serial reference mod-
els which, along with self-tuning control, are the only control schemes to have
found practical applications to date. The adaptive control scheme using par-
allel reference models (i.e. located in parallel on the closed-loop system) was
originally proposed by Whitaker in 1958. The version proposed at the time of-
fered a solution to the tracking problem, but not the regulation problem. Tak-
ing the figure 6.3 as reference note that a tracking problem is defined when the
reference value (r(k)) varies and when no disturbances (d(k)) are present in the
output (y(k)). A regulation problem is defined when the reference value is zero
or steady and when there is a disturbance in the output such that its effect must
be reduced by the control (u(k)).

The parallel model structure is suitable for solving the tracking problem
and is demonstrated by the fact that the model requires reasonable control
signals; the structure is not suitable for solving regulation problems and is
demonstrated by the fact that, in this case, the model requires unreasonable
control signals. We obtain unreasonable control signals because the estimated
error (differences between the output of the parallel reference model and that
of the system) converges to zero during a single sampling interval. To attenu-
ate the control signal, a serial reference model (i.e. in series with the estimated
error) can be added to the general structure. This imposes a converge-to-zero
requirement, with a chosen dynamic response, that is less severe than in the
previous case. Let us now look at this adaptive control method using parallel-
serial reference models more closely.
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Figure 6.3: Adaptive controller in closed loop.

6.4.1 Closed-Loop System

An adaptive control system comprises not only a feedback-type control loop
(or inner loop) including an adaptive controller, but also an additional, or
outer, loop acting on the controller parameters in order to maintain system
performance in the presence of variations in the process parameters. This sec-
ond loop also has a feedback-loop-type structure, the controlled variable being
the performance of the control system itself. The arrangement is schematically
shown in Figure 6.4.
where:

e e, represents the parallel estimated error
o e, represents the serial estimated error.

This type of adaptive scheme offers the advantage of being able to accommo-
date separately both tracking and regulation problems. This is because the
desired performance of the controlled system are defined by a parallel model
for a tracking problem and by a serial model for a regulation problem.

6.4.2 Control Law

The dynamic behavior of the simulated system is defined by a parametric
model. We recall that its general structure is given by the relation:

A(g™")Y (k) = ¢~ "B(g~")U(k) (6.5)
where
e AlgY)=1+4+aig '+ ... +anqg !
e B(g79) =bg+ ... +bngt
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Figure 6.4: Adaptive control using reference models in closed loop.

e d, time delay.

The order of polynomials A(¢~!) and B(¢~!) and also the time delay of the
parametric model enable us to correctly dimension the control law. To bring us
nearer to the formulation of the adaptive control law, we first consider the case
where the system parameters are known.

6.4.3 Known System Parameters

With the objectives of tracking and regulation being independent, we can for-
malize their respective equations as: A — Regulation. (r(k) = 0). The problem
here is to determine a control (u(k)) that will eliminate an initial disturbance
(d(k)) with a dynamic response defined by the relation:

Al HY(k+d) =0 (6.6)
with
b Ar(qil) =1+ arlqil + .ot arg "
e d, time delay.

e 1, system order.
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The polynomial Ar(q~') is determined by the designer to be asymptotically
stable for order n. The polynomial represents the serial (or regulation) model.

B —Tracking. (d(k) = 0). The problem here is to determine a control (u(k))
such that the system output (y(k)) satisfies a relation of the form:

Ap(g™ )Y (k +d) = Bp(q~ )R (k) (6.7)

where

Aplg ) =1+apqg ™ + ...+ apng™™

Bp(qfl) = bpo + bp1q71 + ...bp(n_d)qi(nid)

n, order system.

d, time delay.

This corresponds to tracking a trajectory defined by the following reference
model:

1y _ ¢ "Bp(gh)
Gp(q ) Ap(qil) (68)

In general, one may assume that there is some link between the tracking dy-
namic response Ap (¢7') and the regulation dynamic response Ar(¢~!). How-
ever, in this thesis, and for the sake of simplicity, we shall assume identical
dynamic response to a variation in either load or reference value, i.e. we shall
assume Ap(q‘l) = Ar(¢~!). We shall further assume a reference model such
that the output is described by the relation:

Ay (g Y Yref(k + d) = By (¢ HR(k) (6.9)
Under these conditions, the aims to be achieved by the control signal can

be expressed in the form:
es(k+d) =Ap(g V) [Y(k +d) — Yref(k +d)] =0 (6.10)

The control law, with a parallel-serial reference model, can be deduced by
minimizing the following quadratic criterion:

Ik +d) = 2(k+d) = [Ay(g ") [Y(k + d) — Yref(k + d)]]* (6.11)

In the case of unit time delay (d=1), we can determine the control law di-
rectly by minimizing criterion Eqn. 6.11 relative to U(k). The problem may be
different, however, if the pure time delay of the controlled system is equal to or
greater than twice the sampling period. In order to obtain a causal regulator,
i.e. one such that U(k) is of the form:

Uk) = Fu(Y(k),Y(k — 1), ... Uk — 1),...) (6.12)

We must first rewrite the process output prediction in terms of the quanti-
ties measurable at time k and prior to time k. The prediction can be expressed
in the form:
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Ay HY(k+d) =Fy(Y(k),Y(k —1),..,U(k),U(k — 1),...) (6.13)

In the literature, an expression of this form is known as a d-step-ahead pre-
dictive model. An expression such as Eqn. 6.13 can be obtained directly using
the general polynomial identity:

Ap(g) =A(g S ) + ¢ Rg™) (6.14)
where
e S(g7)=1+s1g7"+ ...+ sq_1q” @Y
o R(g") =ro+rg '+ +rpag Y

This relation yields a unique solution for polynomials S(¢g~!) and R(¢~!) when
the degree of S(¢') is d-1. Polynomials S(¢~') and R(¢™!) can be obtained
either recursively or by dividing polynomial Ap(q_l) by polynomial A(g™!).
Polynomial S(¢~!) then corresponds to the quotient while ¢~ ?R(¢~!) corre-
sponds to the remainder. Multiplying both sides of Eqn. 6.14 by y(k+d) and
taking into account expression Eqn. 6.6, we obtain:

Ap(q )Y (k+d) =R(g~ )Y (k) + B¢ ")S(¢~")U(k) (6.15)

This can be rewritten in the form:

Ap(¢ Y (k+d) =R(¢)Y(k) +boU(k) + Bs(¢~ Uk — 1) (6.16)
where
e B(¢g")S(¢™") =bo+¢ 'Bu(q7)

Substituting Eqn. 6.16 into criterion expression Eqn. 6.11, we obtain:

J(k+d) = [R(q_l)Y(k) +boU(k) + Bs(q HU(k — 1) — Ap(g 1) Yref (k + d)]2
(6.17)
The criterion can now be minimized by determining the control u(k) for
which:

§I(k+d)
“0w " (6.18)

Combining this with expression Eqn. 6.17, we obtain:

bo [R(g7")Y (k) +boU(k) + Bs(¢~ " )U(k — 1) — Ap(q~ ") Yref(k + d)] =0
(6.19)
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Now, using expression Eqn. 6.9, we obtain the required control output in
the form:

1
=

where polynomials Bp(¢~") and R(¢™") are defined by:

Bo(q™!) = bpo +bp1g ™t + o+ bpn_ayq” "D

R(g™) = (ap1 — a1) + (ap2 — a2)g™ + ... + (@pn—dt1) — Gn-d41)g" "D =
ro+11qt + oo A Tmaprg” (MY

The control expressed in relation Eqn. 6.20 thus has the property of reduc-
ing criterion Eqn. 6.11 to zero while independently meeting the requirements
of both tracking and regulation. In other words, in the case of regulation (r(t)
= 0), criterion expression Eqn. 6.11 represents a minimum-variance condition
on the process output. Physically, this criterion implies minimizing the mean
energy of the filtered error expression in relation Eqn. 6.10. The equations
presented in this section were made possible by the fact that we knew the pa-
rameters of the controlled process. Let us now look at the case where these
process parameters are unknown.

U(k) [Bo(a™HR(k) = R(g~")Y(k) = Bs(¢~")U(k — 1)] (6.20)

6.4.4 Unknown System Parameters

In the adaptive case, the structure of the controller is the same as for known
system parameters, except that we replace the fixed parameters by variable
ones. With the role of the adaptive, or outer, loop being to determine the correct
values of these parameters, the self-tuning controller equation can be derived
from Eqn. 6.20 and written as:

1

[Bp<q-1>R<k> Rk g1 Y (k) = Bu(k, g~ Uk — 1)} (621)

where .

A

R(k,q ')and Bs(k, ¢~ ") are de controller parameter estimates at time k.

By defining the tuning vector 6(k) and the measurement vector (k) by the
following expressions:

0T (k) = {lg Sbl sz....s(nlld) r q....n_zﬂ] (6.22)
(k) =[UK)Uk -1)... Uk —d)Y(k)Y(k —1).... Y (k — d)] (6.23)

The controller equation can be rewritten in the form:

A
Bp(q ™ )R(K) = 0 T (k) (k) (6.24)
The next step is to determine the recursive parameter-vector self-tuning al-
gorithm.
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6.4.5 Determination of Controller Parameters

The self-tuning controller parameters are determined by recursive minimiza-
tion of a least-squares type criterion starting from asymptotic stability condi-
tions dictated by the model-process error. The aim then is to estimate the pa-
rameter vector at time k in such a way that it minimizes the sum of the squares
of the filtered errors between the process and the model over a time-horizon of
k measurements. This is expressed by the relation:

k k

TRy = 3020 = 37 [Apla) (Y(0) — Yref ()] (6.25)

i=1 i=1

This same condition can also be expressed in the form:
k A
10 = Y [Bula ™ IRG) - 700 (626)
i=1

The values of g(k) which minimize criterion Eqn. 6.26 are obtained by de-
termining the value of /¢9\(k) which cancels in the expression:
6J1(k)
A
d6(k)

=0 (6.27)

Applying relation Eqn. 6.27 to relation Eqn. 6.26, we obtain:

k
DD 3 [0mua R -0 0ue)] 0 629
5 0(k) i=1

From equation Eqn. 6.29 we have:

B RO
o(k) = =L (6.29)

()9 (1)

e

o(k) = = (6.30)
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Expression Eqn. 6.29 corresponds to the non-recursive least-squares algorithm.
AN
To obtain a recursive algorithm, we recompute the optimal value of (k + 1)
A A
for the minimization condition J(k+1) and express §(k+1) as a function of (k).
This yields:

A

Bk +1) = B(k) + F(k + 1) (k)es(k + 1) 6.31)

where
e F(k+1)=F(k)+¢(k+1)yT(k+1)

Here, F(k+1) represents the estimator tuning gain. This is an important vari-
able since it gives us an indication of the quality of estimation (covariance of
parameter estimates).

It has been shown elsewhere [82] that if k (experiment time) increases, the

1/9\(k) estimates tend towards constants. In this case, the variance of the es-
timates tends towards zero (F(k+1) = 0). The least-squares algorithm briefly
presented here has progressively less effect on new measurement values. This
is acceptable if the process is unvarying in time. However, this is not the case
in this thesis since the system parameters are explicitly assumed variable. This
problem can be resolved by modifying the J; (k) criterion. We need to arrange
for the criterion to forget earlier measurement values by adding a suitable
weighting factor. When this is done, the criterion to be minimized becomes:

k
Ja(k) = " Ae2(i) (6.32)
i=1
where

e )\ represents the weighting, or forgetting factor (0 < A < 1).

The thus modified least-squares algorithm is detailed in APPENDIX A. The
main difference between algorithms is which variables are contained in vector
1. In the literature, this quantity is referred to as the measurement vector while
e;(k) is termed the post-prediction tuning error. In order to ensure the stabil-
ity of the overall system, the recursive least-squares identification algorithm
must meet the following three conditions:

1. The rapid decrease in the prediction error (es(k) ) must occur during the

A
periods when §(k) , the unknown parameter of the system to be identi-
fied, is constant.

2. Irrespective of any variations in the domain bounded by 0 (k), the ad-

N
justed parameter (k) of the identifier must remain within the appropri-
ate bounded domain.
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A A
3. The variation g(k) - #(k + 1) in the estimated parameter must decrease
at the same time as the prediction error e, (k) . If e, (k) is below a certain

threshold, then 9(1@) - g(k + 1) must be zero.

These conditions can only be met by making further changes to the recursive
least-squares algorithm. Several authors have already tackled this problem. We
have used their results to improve the robustness of the controller parameter
estimation algorithm.

6.4.6 Comment

The use of a control strategy based on an output signal minimum-variance cri-
terion theoretically requires that the system to be regulated (the plant) have
a stable inverse (i.e. b,_1 > by,). It is therefore important to have some prior
knowledge of the nature of the plant, and its behavior over its entire operating
range. Parametric identification is used to determine not only the structure of
the representation model (order and time delays), but also the nature of the sys-
tem to be regulated (i.e. whether it is a minimum-phase system or not). Note
also that this type of controller can be used to define tracking and regulation
performance totally independently.

The main disadvantage of a control strategy using a minimum-variance cri-
terion applied to the variable to be regulated is that it always leads to a direct
adaptive scheme. This presents a problem for the other control strategies where
the control law parametering is broken down into two distinct steps, namely:

e Estimation of parameters of the system representative model, and
o Adjustment of controller parameters using system parameters.

This method of breaking down control law parametering leads to an indirect
adaptive scheme. Note, however, that it can be an advantage to have a means
of monitoring system dynamic response in real time. Thus, the estimation of
process parameters can be used for diagnostics, monitoring, etc. Let us now
look at this indirect adaptive scheme more closely.

6.5 Generalized Predictive Control

6.5.1 Introduction

The adaptive control scheme presented in the previous section is useful when
the system to be controlled has a stable inverse. This leads to investigations
to see if other control schemes, associated with the least-squares identification
method, can generate stable control signals irrespective of the nature of the
system to be controlled. Given that the minimization of the mean tracking
error energy (Eqn. 6.25) is not sufficient to ensure control stability in the case
of a so-called non-minimum phase system, it seems fairly natural to investigate
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what happens if one introduces a control weighting term into the expression
for the criterion to be minimized. This is expressed by the relation:

k
Js(K) =" [Ap(a™ ") (Y(i) = Yref())] " + alU(k)? (6.33)
i=1

where
e « is the strictly positive weighting term.

An improvement in this criterion [83] has been suggested on the basis of the
following observation. A car driver does not need to have a complex mathe-
matical model in mind in order to be able to drive. All he needs is the ability
to recall a set of images of possible trajectories produced by a corresponding
set of control actions on the car steering wheel. Given the driver’s view of the
road to be followed, the human control algorithm chooses the control action (or
signal) that will produce the vehicle trajectory closest to the desired trajectory.

From this we conclude, in other words, that to obtain a robust control
scheme, we can use the predictions obtained from the identification of the sys-
tem to be controlled and minimize a least squares criterion involving the dif-
ference between the predicted desired trajectory and the predicted trajectories
in response to the control signals. This criterion has been formulated by Clarke
and is expressed in the form:

Ny_l 2 N, —1

Ja(k) = > [Yref(k +i+d) —SA((k:—H'—i-d)] + ) aAU(k+1)* (634)
i=0 =0

where:

A
Y (k + i + d) is the output prediction with N,,.

Yref is the predicted output of the reference model over horizon N,,.

U(k+i) represents the predicted control over N,,.
e N, determines the horizon on the outputs.

e N, determines the horizon on the control

e « is the control weighting factor.

¢ A represents the differentiation operator (A = 1-¢71).

Thus, the control weighting term () ensures control stability in all cases where
the system has an unstable inverse, provided the time delay is greater than
unity. The differentiation operator (A) enables us to obtain a control that is
free of static error in the variable to be controlled (Y) relative to the reference
trajectory (Yref).
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Figure 6.5: Generalized predictive control using closed loop.

6.5.2 Closed-Loop System

As with all adaptive control systems, the system discussed in this section fea-
tures not only a conventional servo-type feedback loop, but also an additional
loop designed to identify the on-line process and determine the parameters
to be adjusted on the basis of the process parameters. The arrangement is
schematically shown in figure 6.5.

The main advantage of this indirect adaptive scheme is that it gives access
to the process parameters, which is important for monitoring or diagnostics.
The main disadvantage is the increased computation time required to parame-
ter the control law.

6.5.3 Control Law (Definition of Parametric Model)

The parametric model required to formulate the control law was defined earlier
on. Recall that the mathematical structure is of the form:

Ak, q™)Y (k) = ¢~ Bk, 1)U (k) (6.35)

where
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° g(k, ¢ Y and ]%(k‘, g~ ') are the polynomials estimated by the identifier at
each sampling interval.

In the remainder of this thesis, we will simplify the mathematical notation by
omitting the ~ symbols (indicating estimated variables) and the (k) portion of
the different terms indicating that the variable is estimated at each sampling
interval k x Ts.

6.5.4 Definition of System Output Prediction

The prediction of the parametric model output which is to say the probable
behavior of the process output between time k; and some future time k; is
deduced using a j-step-ahead prediction model.

The general expression for such a model is:

E;(gHA(g A+ ¢ Fi(¢h) =1 (6.36)

e k; is the given future time-horizon
o Fi(q™) = foj + o + fij 154~ FI+D
e Ej(¢)=1+..+¢e_1g UtV

This expression is known as a Diophantine equation. The expression for the
predicted model output can be deduced by multiplying the two sides of equa-
tion Eqn. 6.35by E;(¢~1) A, then substituting the expression for Ej (¢~ 1) A(¢g~1)A
from equation Eqn. 6.36. This gives:

Y(k+j) =Fj(g ")Y(k) + Gj(¢ " )AU(k — d + j) (6.37)

where
* Gj(¢7") =Ej(¢)B(¢ ).

The sequence of predicted parametric model outputs can now be represented
by vector Y. Note that for all future sampling intervals smaller than or equal to
the system time delay (i.e. for j <d), the Y(k+j) values can be computed using
the input and output data available up to time k. For sampling intervals greater
than the system time delay (i.e. for j > d), we need to know the future control
U(k+j). These assumptions form the basis of generalized predictive control.
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6.5.5 Determination of Polynomials F;(¢™') and G;(¢!)

In section 3.4.3 we showed that we could obtain the polynomials S(g~!) and
R(¢™') by simple division. The disadvantage, however, of this technique is
that it is very time consuming. Clarke [3] proposes a recursive method for the
determination of polynomials F;(¢™') and E;(¢™!). This is the solution that
we have adopted.

6.5.6 Determination of Control Law

Above, we derived an expression (Eqn. 6.37) for predicting the behavior of the
process output signal. The behavior of the reference model output signal, on
the other hand, is predicted by expression (Eqn. 6.38). We must now solve this
equation from sampling time (k+d) to the chosen time-horizon (k+d+N-1).
Yref(k +d) = =A% (g~ ") Yref(k +d — 1) + By (¢ ")R(k) (6.38)

where
. A;(qfl) =a1¢g ' +...+aqg ™"

Determining the output of the parallel reference model at a future time is not
difficult since the polynomials A,(¢~*) and B,(¢™") are known and are con-
stant at each sampling time. The sequence of reference model outputs from
sampling time (k+d), can be expressed in vector form as follows:

Yref = [Yref(k+d)..Y(k+d+ N —1)] (6.39)

Recall that the parallel reference model plays the same role as that defined
for the adaptive controller of a parallel-serial model (Section 1.4).
The prediction error at future time k+; is given by:
A
e(k+j)=Yref(k+j) —Y(k+) (6.40)
Thus:

e=Yref —Y

We saw earlier that at time k, certain elements of vector Y are functions of
known and unknown data. Among the unknowns, we can define the predicted
control vector U as follows:

U = [AU(K)....AU(k + N — 1)] (6.41)

A clever decomposition of expression Eqn. 6.44 enables us to separate the
terms that depend on known data at time k and those that are unknown at time
k, such as vector U. We thus obtain:

e=Yref-GU-f

138



6.5. GENERALIZED PREDICTIVE CONTROL

where
e G is a triangular matrix of dimension N x N

The elements of G are generated by reformulating the Diophantine equation in
recursive form.

90 0 o o o (
91 9o o
[ ] [ ] [ ] [ ]
G = . . . (6.42)
[ ] [ ] [}
° ° 0
|l gN gn-1 © e e e gy |

The elements of vector f are the components of the part of the prediction
depending on known data at time k. This vector can be written in the form:

Fd(q_l)Y(k +¢[Galg™") — go] AU(K — 1)
Far1(g7 )Y (k) + ¢* [Gat1(q 1) —90—91¢" '] AUk — 1)

Fayn(g ) Y(k) 4 ¢V [Gd+N71(q_1) —go— 919 ' nglq_(N_l)] AUk —-1)

(6.43)
The control vector, U, can be determined by minimizing criterion J,(k) as
expressed in equation Eqn. 6.45. In vector form, this criterion is given by:

Jy=ele+aUTU (6.44)

It can be shown that this criterion has a simple optimal solution for:

U=[G"G +al] " G [Yref — f)] (6.45)

Control u(k) is computed from AU(k) using the following expression:

U(k) = U(k — 1) + AU(k — 1) (6.46)

The power of generalized predictive control can be gauged from the fact
that it allows us to reduce the control prediction time-horizon. The only diffi-
culties are the mathematical problems posed by the inversion of matrix (GT G+
al) of dimension N x N and the associated computation times. But this can be
overcome by defining a control prediction time-horizon such that N, < N and
an output prediction time-horizon such that Ny,< N . This reduces the number
of columns of matrix (GT G) so that we can now write:

AU(k+N,) =AUk + N, +1) = -+ =0 (6.47)
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6.5.7 Comment

The main advantage of generalized predictive control is that the control is al-
ways stable irrespective of the nature of the system to be regulated (the plant).
Thus, without making any changes to the control law obtained by minimizing
criterion Eqn. 6.41, generalized predictive control can readily control systems
with an unstable inverse matrix.

The approach suffers, however, from one serious drawback. The weight-
ing factor a plays a determining role in system dynamic response, enabling us
to obtain reasonable control signals for trajectory tracking or for attenuating
the effects of disturbance. This is not, however, very satisfactory since a de-
fines the dynamic response of the loop system in a fashion that is difficult to
determine in advance. In our study, the only way we found of approaching
the desired performance through the adjustment of a was by iterative trial and
error. This is a step backwards compared to the asymptotic performance of
adaptive control using parallel-serial reference models where the desired dy-
namic response was explicitly contained in polynomials A, (¢~1) and Ar(g1).
Worse still, when the parameters of an industrial system vary from one op-
erating point to another, weighting factor a must be modified to match the
variation in the process dynamic response.

6.6 Monocular and stereo head description

In this section it is presented the description of the active vision systems used
in this thesis. First the monocular mechanical system is described and later the
stereo system. In this section it is also described the firmware used inside the
microcontroller to assure the electronic control of both vision systems.

6.6.1 Mechanical description

The monocular head system (figure 6.6) consists of two aluminium links cou-
pled to two motors in such a way that the complete system has two degrees of
freedom. The first link is coupled to the motor 1 allowing to have an angular
movement on the z axis of the monocular head, while the second link is cou-
pled to the motor 2 and the camera; allowing to have a movement around the
x axis of the monocular head. With this configuration controlling appropiately
the movement of the motor 1 can be accomplished the object tracking in the x
coordinate of the image, while if it is controlled appropiately the motor 2 can
be accomplished the object tracking in the y coordinate of the image.

For the angular movement of the system was chosen by their relationship of
speed and control easiness servomotors. For the Motor 2 a servomotor J/R S-
3251 was chosen, while for the motor 1 which supports the total system weight
was chosen the servomotor FUTABA (conrad ES-030), that is lightly bigger
in relation to the motor 2. The images of the monocular head are captured
by a USB camera that gives 30 frames per second, where each frame has the
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Figure 6.6: Physical monocular head system.

dimensions of 352 x 288. The figure 6.7 shows the complete system as well as
the lateral and top views.

The stereo head was built following the same model that the monocular,
this is with two degrees of freedom generated by two motors acting in different
ortogonal axes (figure 6.8). The motors of the stereo system are two FUTABA
(conrad ES-030) servomotors whose torque allows to support bigger loads in
comparison to the monocular system.

The stereo head possesses 2 cameras mounted in the superior part that al-
low to follow objects and to measure its respective distance. The cameras have
an interface USB and work to a speed of 15 frames per second, each camera
gives an image of dimensions 240 x 176 . The figure 6.9 shows the complete
system as well as the lateral and top views.

6.6.2 Electronic description

Because the speed of the object to track is uncertain, the motors that in this
case determine the tracking speed should be controlled to react swiftly to the
changes that experiences the object to follow. To fulfil these objectives a control
system based on PIC microcontroler to regulate the behavior of both servo-
motors was designed, as well as to communicate to high speed by means of
control commands with the PC.

Most of the existent circuits in the market for servomotor control have an-
swers intervals from 0.5 to 0.25 seconds, this speeds can be considered as inad-
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Lateral

Top

Figure 6.7: Monocular head system.
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Figure 6.8: Physical stereo head system.

missible for a tracking application in real time. Another additional problem is
the communication protocol with the electronic circuit which is based usually
on the send and verification of data, this makes slower the positions processing
that the motors should carry out. Also most of the circuits are not distributed
as circuit integrated but as monolithic electronic target with several compo-
nents that which complicates the flaw detection. For all this in this thesis was
preferred to develop a servomotor controller that does not have the previous
problems. The developed controller is based on the microcontroller PIC16F84,
which being based on a recursiv program allows to improve the answer speeds
to the minimum as well as to assure the simplicity of the communication pro-
tocol. The programmed device will be in the successive identified as servo-
DRIVER.

6.6.3 Program description

The servoDRIVER program can be divided in three parts. In the first part all
the internal resources of the microcontroller are configured, in the second part
the initial positions of the motors are configured, finally the third part has an
infinite cycle that consists of two phases that act jointly; in the first one the
position of the servo motors it is refreshed one by one while in the other one
is proven if exist data in the communication port to change the position of the
motors. The program description can be summarized in the flow diagram of
the figure 6.10.
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Camera 2 \

Motor 1

Lateral

// Top

Figure 6.9: Stereo head system.
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bit out3 @ PORTC.2;
bit outl @ PORTC.0;
bit out2 @ PORTC.1;
bit out4 @ PORTC.3;
bit out5 @ PORTC.4;
bit out6 @ PORTC.5;
PORTB = 0b.0000.0000;
TRISB = 0b.1111.1111;
PORTC=0;

TRISC=0;

void delay(char milisec)

{
OPTION=3; /
dof

TMRO=0;
whilg(TMR0<125) ;}

Resources configuration

Motor[apunta]=127;

for(apunta=1;apunta<=12;apunta++)

out1=0;

NO

Change
position

motor
> | |«
\/
outl=1; i
delay2(); / Refresh position if((inp==1) && (comando==0))
if(Motor[1]>0) {indice=PORTB;
delayl(Motor[1]); comando=1;

}

if((inp==0)&&(comando==1))
{Motor[indice]=PORTB;
comando=0;

}

4

Figure 6.10: Flow diagram of the servoDRIVER program.
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DIP
M2 <] 1 B[ 1 M1
M3 <L W 1 ™o
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B0 —»L] - [le 57
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Figure 6.11: Integrated circuit ServoDRIVER

The program was coded completely in C language using the compiler HI-
THEC®.

6.6.4 Operation

The servoDRIVER allows to control 4 motors simultaneously, its pins distribu-
tion is shown in the figure 6.11. The pin description can be seen in the table
6.1.

When the Chip is connected or reseted places all the motors halfway its
value taking a position of 127. The chip operation is made in two phases in
the first it is sent the number of motor that is wanted to control and later the
position for it.

6.6.4.1 Phasel

To select the motor only should be placed first in the data bus (BO ...B7) the
motor number (a number from 0 to 3), if in any way a superior value is sent
(that does not correspond to any motor), the chip simply ignores it. After it is
placed the pin M/C at 1 logical maintaining the state as minimum 1 ms.

6.6.4.2 Phase?2

To send the position, it is carried out a similar process. First it is placed in the
data bus (B0 ...B7) the position coded as minimum 0 and as maximum 255. As-
suring this we have only to put the pin M/C at 0 and to maintain it as minimum
1 ms.
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Pin Description
MOM1,M2y M3 Ouputs (Servomotors)
BO.......... B7 if M/C=0
Angular position of the motor
from O to 255
if M/C=1
Motor number (0,1,2,3)
Vss Ground
Vbp 3to 5 Volts
OSC1ly OSC2 Oscillator 8 MHz
R Reset
M/C Selection of internal register
1 Motor number
0 Position

Table 6.1: Pin description

6.6.5 Connection

For the chip operation should be connect two very simple auxiliary circuits one
for the operation of the oscillator and another for the chip reset.

For the oscillator operation can be considered two different options; to use
an quartz oscillator ( figure 6.12 Top) or a resonator (quartz and capacitors are
in the same package, figure 6.12 Down).

In both cases the quartz oscillator or resonator should be of § MHz and in
the case of using quartz oscillator the capacitors C1 and C2 are of 22pF.

In the chip operation is important to have the possibility to begin the control
of the motors in an initial possition, this is specially desirable in those cases in
which the motors take harmful positions for the mechanical system and we
want to place the motors in the initial position without necessity of energy
desconection. The circuit that is proposed for this objective is schematized in
the figure 6.13.

6.6.6 Connection with the PC

The servoDriver to control the position of the motors receives the position com-
mands of the PC parallel port actively. The connection is made connecting
the data bus from the parallel port to the pins of the servoDRIVER labelled as
B0,B1,B2,B3,B4,B5,B6 and B7, as well as to the pin M/C. The figure 6.14 shows
the details of the interface.
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Figure 6.12: Top: Quartz oscillator, Down: resonator.
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Figure 6.13: Reset circuit.
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Figure 6.14: Connection with the PC

Parallel Port
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