
Chapter 3

Tracking algorithms for active
systems

3.1 Introduction

Vision to the humanoid is essential, it is the predominant sensor that will al-
low the robot to interact with the real world, without its sensor the robot would
only be able to react to commands entered by the user. With the addition of a
vision system the robot can be made to act autonomously, it can actively re-
act to its surroundings making decisions based on the objects it encounters.
Although a humanoid biped robot requires many sensors to allow accurate ac-
tuation of its limbs, without a vision sensor the system can never truly interact
with its surrounds.

One of the main tasks of a robot for interact with their environment is the
identify objects of interest and to follow their evolution along the time, that
is known as visual tracking. Visual tracking can be described as the process of
determining the location of a feature in an image sequence over time. Examples
include tracking cars in an intersection via a traffic camera, or tracking the head
of a computer user with a web-cam. Another possible application is tracking
multiple small features of interest, such as corners of an object, in attempt to
determine its 3-dimensional geometry.

The target to be tracked might be a complete object (e. g. a person or a ball)
or small area on an object (e. g. a corner). In either case, the feature of interest
is typically contained within a target region, where the position is described in
X-Y coordinates in pixel units on the image.

Ideally, a tracking algorithm would be able to locate the object anywhere
within the image at any point in time. However typically only a limited region
of the image is searched (usually the same size as the target region). Reasons
for this are the efficiency (especially necessary for real-time applications) and
the fact that there might be many other similar-looking objects in the image.

The intuitive approach is to search within a region centred around the last

51

3.1. INTRODUCTION

Current
position Current

position

Target
region

Target
region

New position
New position

Case 1 Case 2

Figure 3.1: Case1: Tracking the object, without position prediction might be
successful, Case 2: Tracking without prediction will fail.

position of the object. But as figure 3.1 illustrates, this approach will fail it the
object moves outside the target range. There are many possible reasons why
the object might not stay within this region:

• The object is moving to fast

• The frame rate is too low.

• The searched region is too small.

These problems are related to each other and could be avoided by ensur-
ing a high enough frame rate for example. But given other constraints, these
problems are often unavoidable.

In addition, even when the target can be located, it seldomly appears the
same in all images. The appearance of the same target is continuously affected
by changes in orientation, lighting, occlusions, and imperfections in the cam-
era. So essentially, the true location of the target is very difficult to observe
accurately under the usual circumstances.

In summary, two major problems have been identified:

1. The object can only be tracked if it does not move beyond the searched
region.

2. Various factors such as lighting and occlusions can affect the appearance
of the target, thus making accurate tracking difficult.

To solve the first problem, we can attempt, predicting the location of the target,
and searching in the region centred around that location. But in making the

52

3.2. TRACKING IN COMPUTER VISION

prediction, it is necessary to consider the second problem as well. The previ-
ously obtained location measurements are likely not accurate, so the prediction
method needs to be robust enough to handle this source of error.

This thesis shows the design of a vision system for a humanoid robot so as
to allow the robot to view a soccer ball and to follow it over time.

Computer vision systems have been traditionally designed disregarding
the observer role (camera motion, stereo rig geometry, lens parameters, etc.)
in the perceptual process. Actually, most systems were designed to process
images which had been prerecorded in some sense or, at least, acquired inde-
pendently of the perception process. However, most biological vision systems
do not just see the surrounding space but they actively look at it and very often,
their visual processing is related to a specific task or set of task [1].

3.2 Tracking in computer vision

Estimation and tracking of motion in image sequences is a well-established
branch of computer vision. Real world scenes with large, rigid or deformable
moving objects are usually considered. Two main classes of motion estimation
methods are traditionally distinguished: the optical flow based and the local
feature based techniques. Powerful algorithms are available in both classes.
Applying them to particle flow image sequences may lead to essential im-
provement in visualisation and measurement results.

For this thesis was proven as tracking algorithms the based on optical flow
as well as those based on features. The algorithms based on optical flow showed
to be expensive to be implemented in real time tracking, for what was chosen
an algorithm based in features. The algorithm must be able to track in real
time yet not absorb a major share of computational resources: other tasks must
be able to run while the visual tracking is being used. These algorithms are
the CAMSHIFT, Kalman filter and Particle filter for this reason they will be
explained in detail in this thesis.

3.2.1 Optical flow techniques

The optical flow based algorithms extract a dense velocity field from an image
sequence assuming that image intensity is conserved during the displacement.
This conservation law is expressed by a spatiotemporal differential equation
which is solved under additional constraints of different form. A recent survey
of the optical flow techniques and a comparative empirical evaluation study of
their performance can be found in [130].

Recently, Quénot [132] presented an optical flow algorithm based on a dy-
namic programming technique. (A source code is available at the ftp site [131].)
Dynamic programming was originally used for searching the optimal match-
ing between two one-dimensional patterns. In [132], it is extended to two di-
mensions: the global matching is searched that minimizes the distance between
two images. This is achieved by the Orthogonal Dynamic Programming (ODP)

53

3.2. TRACKING IN COMPUTER VISION

Figure 3.2: Optical flow image

algorithm that slices the two images into properly selected sets of parallel over-
lapping strips. The corresponding strips are then matched as one-dimensional
signals. Two passes are done for two orthogonal slicing directions. This pro-
cess is iterated in a multiresolution way so as to refine the previously obtained
matching. The number of iterations is a parameter of the algorithm and de-
pends on the complexity of the velocity field. A few iterations are sufficient for
relatively simple flows.

The algorithm [132] yields a dense velocity field between any two images of
a sequence, provided that the displacements between the two frames are not
too large. The method computes a velocity value in each pixel of the image,
even though it may be less accurate near the image borders.

Both correlation methods and optical flow techniques imply matching per-
formed for the whole image, which can be very time consuming for large im-
ages. When individual particles can be detected, and when there is no need to
measure a velocity vector in each pixel of the image, feature based techniques
are also applicable and may provide a faster solution.

3.2.2 Feature based techniques

The feature based techniques extract local regions of interest (features) from
the images and identify the corresponding features in each image of the se-
quence [133,134]. Such algorithms have initially been developed for tracking a
small number of salient features in long image sequences. The tracking process
can be divided into two major subtasks: feature extraction and feature track-
ing. One can extract features only in the first image and search for the same
features in the subsequent images. This dynamic feature extraction scheme is
advocated by the KLT Tracker [134]. Alternatively, one can find features in each
static image prior to tracking and then find the corresponding features along
the sequence. Most of the feature tracking algorithms operate in this way such
as Camshift, although the dynamic feature extraction seems to be more natural
and reliable than the static one: the temporal information helps decide where
and how to search for features in the next frame.

54

3.2. TRACKING IN COMPUTER VISION

�������������

Figure 3.3: Illustrates feature selection by the KLT.

3.2.3 The KLT Tracker

In [4], Shi and Tomasi present the KLT (Kanade-Lucas-Tomasi) Tracker, an al-
gorithm that selects features which are optimal for tracking, and keeps track of
these features. The basic principle of the KLT is that a good feature is one that
can be tracked well, so tracking should not be separated from feature extrac-
tion. If a feature is lost in a subsequent frame, the user can optionally ask the
procedure to find another one to keep the number of features constant.

A good feature is a textured patch with high intensity variation in both x
and y directions, such as a corner. Denote the intensity function by g(x,y) and
consider the local intensity variation matrix

Z =
[

g2
x gxgy

gxgy g2
y

]
(3.1)

A patch defined by a n x n window is accepted as a candidate feature if in
the center of the window both eigenvalues of Z, λ1 and λ2, exceed a predefined
threshold λ: min(λ1, λ2) > λ. A separate parameter sets the minimum distance
between (centers of) features.

The (maximum) number of features to be tracked, Nf , is specified by the
user. In the first frame of a sequence, the candidate features are ranked accord-
ing to their strength defined by min(λ1, λ2) > λ, then Nf strongest features are
selected if available. (If not, all candidates are used.)

The KLT defines a measure of dissimilarity that quantifies the change of
appearance of a feature between the first and the current image frame, allow-
ing for affine image changes. At the same time, a pure translation model of
motion is used to track the selected best features through the sequence. For
reliable and fast processing, the maximum interframe displacement is limited,
although it can be quite large compared to that of the conventional optical flow
approaches.

55

3.3. CAMSHIFT

3.3 Camshift

In order, therefore, to find a fast, simple algorithm for basic tracking, we have
focused on a local feature based technique called color-based tracking [141]-
[145], yet even these simpler algorithms are too computationally complex (and
therefore slower at any given CPU speed) due to their use of color correlation,
blob and region growing, Kalman filter smoothing and prediction, and contour
considerations. The complexity of the these algorithms derives from their at-
tempts to deal with irregular object motion due to perspective (near objects to
the camera seem to move faster than distal objects); image noise; distractors,
such as other objectes in the scene; object occlusion by other objects; and light-
ing variations. We want a fast, computationally efficient algorithm that han-
dles these problems in the course of its operation, i.e., an algorithm that mit-
igates the above problems for free. The Continuously Adaptive Mean SHIFT
(CAMSHIFT) algorithm [146], is based on the mean shift algorithm [140], a
robust non-parametric iterative technique for finding the mode of probability
distributions.

The mean shift algorithm operates on probability distributions. To track
colored objects in video frame sequences, the color image data has to be repre-
sented as a probability distribution [140]; normally it is used color histograms
to accomplish this. Color distributions derived from video image sequences
change over time, so the mean shift algorithm has to be modified to adapt
dynamically to the probability distribution it is tracking. The new algorithm
that meets all these requirements is called CAMSHIFT. For object tracking,
CAMSHIFT tracks the x, y, and Area of the flesh color probability distribu-
tion representing the object. Area is proportional to Z, the distance from the
camera.

Figure 3.3 summarizes the algorithm description, taking as example the
face tracking. For each video frame, the raw image is converted to a color prob-
ability distribution image via a histogram model of the color being tracked.
The center and size of the color object are found via the CAMSHIFT algorithm
operating on the color probability image (the gray box is the mean shift algo-
rithm). The current size and location of the tracked object are reported and
used to set the size and location of the search window in the next video image.
The process is then repeated for continuous tracking.

In order to use CAMSHIFT to track colored objects in a video scene, a prob-
ability distribution image of the desired color in the video scene must be cre-
ated. In order to do this, we first create a model of the desired hue using a
color histogram. Normally is used the Hue Saturation Value (HSV) color sys-
tem [147][148] that corresponds to projecting standard Red, Green, Blue (RGB)
color space along its principle diagonal from white to black (see arrow in Fig-
ure 3.4).

This results in the hexcone in Figure 3.5. Descending the V axis in Figure 3.5
gives us smaller hexcones corresponding to smaller (darker) RGB subcubes in
Figure 3.4. HSV space separates out hue (color) from saturation (how concen-
trated the color is) and from brightness. Always it is created the color models

56

3.3. CAMSHIFT

Choose initial search

Set calculation region at
search window center but

larger in size than the

Use x and y to set

Report x and y
of the object

Image

HSV Image

Color histogram
look-up in calculation

region

Color probability

Find center of mass
within the search

Center search window
at the center of mass

Converged

NO

YES

H S V

Meanshift algorithm

Figure 3.4: Block diagram of color object tracking

57

3.3. CAMSHIFT

Figure 3.5: RGB color model.

Figure 3.6: HSV color model.

58

3.4. CAMSHIFT DERIVATION

by taking 1D histograms from the H (hue) channel in HSV space.

3.4 CAMSHIFT Derivation

The closest existing algorithm to CAMSHIFT is known as the mean shift algo-
rithm [149][150]. The mean shift algorithm is a non-parametric technique that
climbs the gradient of a probability distribution to find the nearest dominant
mode (peak).

To calculate the mean shift algorithm, the following steps are carried out:

1. Choose a search window size.

2. Choose the initial location of the search window.

3. Compute the mean location in the search window.

4. Center the search window at the mean location computed in Step 3.

5. Repeat Steps 3 and 4 until convergence (or until the mean location moves
less than a preset threshold).

3.4.1 Proof of Convergence

The Kernel estimation of density is the most popular method:
Given n points that are data xi, i=1,..., n in a d-dimensional space Rd, the

estimator of density based on kernel with kernel K(x) and matrix H that is
defined positive of dimension d x d is given for:

∧
f(x) =

1
n

n∑

i=1

KH(x− xi) (3.2)

where

KH(x) = |H|− 1
2 K(H− 1

2 x) (3.3)

The d-variate kernel K(x) is a bounded function with compact support sat-
isfying:

∫

Rd

K(x)dx = 1 (3.4)

∫

Rd

xK(x)dx = 0 (3.5)

lim
|x|→∞

|x|d K(x) = 0 (3.6)

59

3.4. CAMSHIFT DERIVATION

∫

Rd

xxTK(x)dx = cKI (3.7)

where cK is a constant and I the identity matrix. The previous conditions
can be seen as: (3.4) the integral in all domain is one, (3.5) the mean or expected
value is 0, (3.6) has compact support, and (3.7) it converges. The multivariate
kernel can be generated in two different ways:

KP (x) =
d∏

i=1

K1(xi) (3.8)

KS(x) = ak,dK1(|x|) (3.9)

where the constant ak,d is defined as:

a−1
k,d =

∫

Rd

K1(|x|)dx (3.10)

this constant simply assures that the integral of KS(x) be 1, although this
condition can be ignored in this context.

In this case we are interested in the radially symmetric kernels as it is the
case of KS(x) and in a special of kernels that satisfy the following condition:

K(x) = ck,dk(|x|2) (3.11)

Only necessary to define k(x) (that is called the kernel profile) for positive
values. The normalization constant ck,d that makes that K(x) integrates to one,
is assumed strictly positive.

Using a matrix H fully parametrized increases the complexity of the esti-
mate, in the practice is used H like a diagonal matrix with only one parameter
h, that is to say H = h2I, with this we reduce the complexity of the analysis.

But to be able to use this approach it is necessary to assure that we have a
Euclidian metric for the feature space. This means that the form in which the
data are distributed is considered as threshold, the distance from a point to the
data mean in the dimensional space. Of this way x belongs to the grouping m,
if dE<=U. Considering that

dE(x, µm) = |x− µm|2 = (x− µm)T(x− µm) (3.12)

The figure 3.6 shows a Ecludian distribution (a) with a threshold U, while
the other distribution (b) it is not Ecludian, where the thresholds U1 and U2
are different.

If we take only h as parameter, the kernel density estimator (KDE) has the
form:

∧
f(x) =

1
nhd

n∑

i=1

K(
x− xi

h
) (3.13)

60

3.4. CAMSHIFT DERIVATION

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

U

(a)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

U1
U2

(b)

Figure 3.7: (a) Ecludian distribution with a threshold U, (b) not Ecludian dis-
tribution.

61

3.4. CAMSHIFT DERIVATION

In the practice can be proven (by means of the calculation of AMISE -
asymptotic mean integrated square error- between the density and their es-
timate) that this measure is minimized if we use the kernel of Epanechnikov

KE(x) =
{

1
2c−1

d (d + 2)(1− |x|2) |x| ≤ 1
0 otherwise

(3.14)

that has the profile:

kE(x) =
{

1− x 0 ≤ x ≤ 1
0 x > 1 (3.15)

Where cd is the volume of the d-dimensional sphere. Although we can also
use the normal multivariate kernel

KN (x) = (2π)−
d
2 exp(−1

2
|x|2) (3.16)

that has the profile:

kN (x) = exp(−1
2
x) x ≥ 0 (3.17)

Using the profile notation, the density estimator can be written as

∧
f

h,K
(x) =

ck,d

nhd

n∑

i=1

k

(∣∣∣∣
x− xi

h

∣∣∣∣
2
)

(3.18)

Now then, to make the analysis we need to locate the modes of this density,
that is to say, we have to find the points where ∇f(x) = 0. Using the lineal
property of (3.18) and the chain rule can be written:

∇
∧
f

h,K
(x) =

2ck,d

nhd+2

n∑

i=1

(x− xi)k!(
∣∣∣∣
x− xi

h

∣∣∣∣
2

) (3.19)

Assuming that the derived of the profile k exists for all x we can define the
profile:

g(x) = −k!(x) (3.20)

that originates the kernel

G(x) = cg,dg(|x|2) (3.21)

Introducing g(x) in (3.19) we have that:

∇
∧
f

h,K
(x) =

2ck,d

nhd+2

n∑

i=1

(x− xi)g(
∣∣∣∣
x− xi

h

∣∣∣∣
2

) (3.22)

dividing and multiplying inside of (3.22) by

62

3.4. CAMSHIFT DERIVATION

∑n

i=1
g(

∣∣∣∣
x− xi

h

∣∣∣∣
2

) (3.23)

we have:

∇
∧
f

h,K
(x) =

2ck,d

nhd+2

[
n∑

i=1

g

(∣∣∣∣
x− xi

h

∣∣∣∣
2
)]


∑n

i=1 xig
(∣∣x−xi

h

∣∣2
)

∑n
i=1 g

(∣∣x−xi

h

∣∣2
) − x


 (3.24)

It is assumed that (3.23) is a positive number, condition that satisfy the ker-
nels usually used.

In the expression (3.24) we can see that the first term is proportional (only
the constants change) to the density estimator in the point x using the kernel
G(x), which has the expression:

∧
f

h,G
(x) =

cg,d

nhd

n∑

i=1

g

(∣∣∣∣
x− xi

h

∣∣∣∣
2
)

(3.25)

this term is the difference between the weighted mean (where the kernel
G(x) is using for the weights) and x that is the kernel center, from(3.24), (3.25)
and (3.26) becomes:

∇
∧
f

h,K
(x) =

∧
f

h,G
(x)

2ck,d

h2cg,d
mh,G(x) (3.26)

yielding:

mh,G(x) =
1
2
h2c

∇
∧
f

h,K
(x)

∧
f

h,G
(x)

(3.27)

As we can see, the vector Mean-Shift in the position x calculated with the
kernel G(x) is proportional to the gradient of the density estimator obtained
with the kernel K. The normalization is carried out by the density estimator
with the kernel G(x) in the point x (the denominator of the expression). Then
the direction of the vector Mean-Shift coincides with the maximum growth of
the density. Therefore by means of the sequential calculation of this vector, we
can find the stationary points of the estimated density, that is to say, the modes.
Being then the procedure:

• Given an initial position, to calculate the vector Mean-Shift mh,G(x)

• to displace the kernel G(x) in the direction of mh,G(x).

63

3.5. KALMAN FILTER FOR VISION TRACKING.

The previously explained normalization is in fact which gives a great perfor-
mance to the algorithm, because where there are few points, the vector has a
big magnitude (because the normalization denominator is small), therefore the
steps are large, which is correct because the areas of few points do not have in-
terest for the feature space analysis. On the other hand when we are in an area
of the space with high density the vector magnitude is small (because the nor-
malization denominator is large) and the steps are small, to make an analysis
but detailed.

3.5 Kalman filter for vision tracking.

The celebrated Kalman filter, rooted in the state-space formulation or linear dy-
namical systems, provides a recursive solution to the linear optimal filtering
problem. It applies to stationary as well as nonstationary environments. The
solution is recursive in that each updated estimate of the state is computed
from the previous estimate and the new input data, so only the previous es-
timate requires storage. In addition to eliminating the need for storing the
entire past observed data, the Kalman filter is computationally more efficient
than computing the estimate directly from the entire past observed data at each
step of the filtering process.

In this section, we present an introductory treatment of Kalman filters to
pave the way for their application in vision tracking.

Consider a linear, discrete-time dynamical system described by the block dia-
gram shown in Figure 3.8. The concept of state is fundamental to this descrip-
tion. The state vector or simply state, denoted by xk, is defined as the minimal
set of data that is sufficient to uniquely describe the unforced dynamical be-
havior of the system; the subscript k denotes discrete time. In other words,
the state is the least amount of data on the past behavior of the system that is
needed to predict its future behavior. Typically, the state xk is unknown. To
estimate it, we use a set of observed data, denoted by the vector yk.

In mathematical terms, the block diagram of Figure 3.8 embodies the fol-
lowing pair of equations:

1. Process equation

xk+1 = Fk+1,kxk + wk (3.28)

where Fk+1,k is the transition matrix taking the state xk from time k to time
k + 1. The process noise wk is assumed to be additive, white, and Gaussian,
with zero mean and with covariance matrix defined by

E
[
wnwT

k

]
=

{
Qk for n=k
0 for n 6= k

(3.29)

where the superscript T denotes matrix transposition. The dimension of the
state space is denoted by M.

2. Measurement equation

64

3.6. OPTIMUM ESTIMATES

� �
kw

1k+x
1−z kx

1,k k+F

kH

kv

ky

Process equation Measurement equation

Figure 3.8: Signal-flow graph representation of a linear, distrete-time dynami-
cal system.

yk = Hkxk + vk (3.30)

where yk is the observable at time k and Hk is the measurement matrix. The
measurement noise vk is assumed to be addilive, white, and Gaussian, with
zero mean and with covariance matrix defined by

E
[
vnvT

k

]
=

{
Rk for n=k
0 for n 6= k

(3.31)

Moreover, the measurement noise vkis uncorrelated with the process noise
wk. The dimension of the measurement space is denoted by n.

The Kalman filtering problem, namely, the problem of jointly solving the
process and measurement equations for the unknown state in an optimum
manner may now be formally stated as follows:

Use the entire observed data, consisting of the vectors y1,y2,,yk, to find
for each k ≥ 1 the minimum mean-square error estimate of the state xk .

The problem is called filtering if i = k , prediction if i > k and smoothing if
1 ≤ i < k.

3.6 Optimum estimates

Before proceeding to derive the Kalman filter, we find it useful to review some
concepts basic to optimum estimation. To simplify matters, this review is pre-
sented in the context of scalar random variables; generalization of the theory
to vector random variables is a straightforward matter. Suppose we are given
the observable

yk = xk + vk (3.32)

65

3.6. OPTIMUM ESTIMATES

where xk is an unknown signal and vk is an additive noise component.
Let xk denote the a posteriori estimate of the signal xk, given the observations
y1, y2,, yk. In general, the estimate x̂k is different from the unknown signal
xk. To derive this estimate in an optimum manner, we need a cost (loss) func-
tion for incorrect estimates. The cost function should satisfy two requirements:

The cost function is nonnegative.
The cost function is a nondecreasing function of the estimation error xk de-

fined by

x̃k = xk − x̂k (3.33)

These two requirements are satisfied by the mean-square error defined by

Jk = E[(xk − x̂k)2]

Jk = E[(x̃k)2] (3.34)

where E is the expectation operator. The dependence of the cost function
Jk on time k emphasizes the nonstationary nature of the recursive estimation
process.

To derive an optimal value for the estimate x̂k we may invoke two theorems
taken from stochastic process theory [153, 156]:

Theorem 3.1 Conditional mean estimator If the stochastic processes {xk}
and {yk} are jointly Gaussian, then the optimum estimate x̂k that minimizes
the mean-square error Jkis the conditional mean estimator:

x̂k = E[xk |y1 , y2, ..., yk] (3.35)

Theorem 3.2 Principle of orthogonality Let the stochastic processes {xk}
and {yk} be of zero means; that is,

E[xk] = E[yk] = 0 for all k (3.36)

Then:

(i) the stochastic process {xk} and {yk} are jointly Gaussian; or

(ii) if the optimal estimate x̂k is restricted to be a linear function of the observ-
ables and the cost function is the mean-square error,

(iii) then the optimum estimate x̂k given the observables y1, y2,, yk is the
orthogonal projection of xk on the space spanned by these observables.

66

3.7. KALMAN FILTER

3.7 Kalman filter

Suppose that a measurement on a linear dynamical system, described by Eqs.
(3.28) and (3.30), has been made at time k. The requirement is to use the in-
formation contained in the new measurement yk to update the estimate of the
unknown state xk. Let x̂−k denote a priori estimate of the state, which is already
available at time k. With a linear estimator as the objective, we may express the
a posteriori estimate x̂k as a linear combination of the a priori estimate and the
new measurement, as shown by

x̂k = G(1)
k x̂−k + Gkyk (3.37)

where the multiplying matrix factors G(1)
k and Gk are to be determined.

The state-error vector is defined by

x̃k = xk − x̂k (3.38)

Applying the principle of orthogonality to the situation at hand, we may
thus write

E
[
x̃kyT

i

]
= 0 for i = 1, 2, ..., k − 1 (3.39)

Using Eqs. (3.30), (3.37), and (3.38) in (1.39), we get

E[(xk −G(1)
k x̂−k −GkHkxk −Gkvk)yT

i] = 0 for i = 1, 2..., k. (3.40)

Since the process noise wk and measurement noise vk are uncorrelated, it
follows that

E[vkyT
i] = 0 (3.41)

Using this relation and adding the element G(1)
k xk−G(1)

k xk , we may rewrite
Eq. (3.40) as

E[(I−GkHk −G(1)
k)xkyT

i + G(1)
k (xk − x̂−k)yT

i] = 0 (3.42)

where I is the identity matrix. From the principle of orthogonality, we now
note that

E[(xk − x−k)yT
i] = 0 (3.43)

Accordingly, Eq. (3.42) simplifies to

(I−GkHk −G(1)
k)E[xkyT

i] = 0 for i = 1, 2, ..., k − 1 (3.44)

For arbitrary values of the state xk and observable yi, Eq. (3.44) can only be
satisfied if the scaling factors G(1)

k and Gk are related as follows:

I−GkHk −G(1)
k = 0 (3.45)

67

3.7. KALMAN FILTER

or, equivalently, G(1)
k is defined in terms of Gk as

G(1)
k = I−GkHk (3.46)

Substituting Eq. (3.46) into (3.37), we may express the a posteriori estimate
of the state at time k as

xk = x̂−k + Gk(yk −Hkx̂−k) (3.47)

in light of which, the matrix Gk is called the Kalman gain.
There now remains the problem of deriving an explicit formula for Gk.

Since, from the principle of orthogonality, we have

E[(xk − x̂k)yT
i] = 0 (3.48)

it follows that

E[(xk − x̂k)ŷT
i] = 0 (3.49)

where ŷT
k is an estimate of yk given the previous measurement y1,y2, ...,yk−1.

Define the innovations process

ỹk = yk − ŷk (3.50)

The innovation process represents a measure of the "new" information con-
tained in yk; it may also be expressed as

ỹk = yk −Hkx̂−k

= Hkxk + vk −Hkx̂−k

= vk + Hkx̃−k (3.51)

Hence, subtracting Eq. (3.49) from (3.48) and then using the definition of
Eq. (3.50), we may write

E[(xk − x̂k)ỹT
k] = 0 (3.52)

Using Eqs. (3.39) and (3.47), we may express the state-error vector xk − x̂x

as

xk − x̂k = x̃−k −Gk(Hkx̃−k + vk)

= (I−GkHk)x̃−k −Gkvk (3.53)

Hence, substimting Eqs. (3.51) and (3.53) into (3.52), we get

E[{(I−GkHk)x̃−k −Gkvk}(Hkx̃−k + vk)] = 0 (3.54)

68

3.7. KALMAN FILTER

Since the measurement noise vk is independent of the state xk and therefore
the error x̃−k the expectation of Eq. (3.54) reduces to

(I−GkHk)E[x̃−k x̃−k
T]HT

k −GkE[vkvT
k] = 0 (3.55)

Define the a priori covariance matrix

P−k = E[(xk − x̂−k)(xk − x̂−k)T]

= E[x̃−k x̃−k
T] (3.56)

Then, invoking the covariance definitions of Eqs. (3.31) and (3.56), we may
rewrite Eq. (3.55) as

(I−GkHk)P−k HT
k −GkRk = 0 (3.57)

Solving this equation for Gk, we get the desired formula

Gk = P−k HT
k [HkP−k HT

k + Rk]−1 (3.58)

where the symbol [•]−1 denotes the inverse of the matrix inside the square
brackets. Equation (3.49) is the desired formula for computing the Kalman
gain Gk, which is defined in terms of the a priori covariance matrix P−k . To
complete the recursive estimation procedure, we consider the error covariance
propagation, which describes the effects of time on the covariance matrices of
estimation errors. This propagation involves two stages of computation:

1. The a priori covariance matrix P−k at time k is defined by Eq.
(1.21). Given P−k , compute the a posteriori covariance matrix
Pk , which, at time k, is defined by

Pk = E[x̃kx̃k
T]

= E[(xk − x̂k)(xk − x̂k)T] (3.59)

2. Given the "old" a posteriori covariance matrix, Pk−1 , compute
the "updated" a priori covariance matrix P−k .

To proceed with stage 1, we substitute Eq. (3.52) into (3.59) and note that the
noise process vk is independent of the a priori estimation error x̃−k . We thus
obtain

Pk = (I−GkHk)E[x̃−k x̃−k
T](I−GkHk)T + GkE[vkvT

k]GT
k

= (I−GkHk)P−k (I−GkHk)T + GkRkGT
k (3.60)

69

3.7. KALMAN FILTER

Expanding terms in Eq. (3.60) and then using Eq. (3.58), we may reformu-
late the dependence of the a posteriori covariance matrix Pk on the a priori
covariance matrix P−k in the simplified form

Pk = (I−GkHk)P−k − (I−GkHk)P−k HT
k GT

k + GkRkGT
k

= (I−GkHk)P−k −GkRkGT
k + GkRkGT

k

= (I−GkHk)P−k (3.61)

For the second stage of error covariance propagation, we first recognize
that the a priori estimate of the state is defined in terms of the "old" a posteriori
estimate as follows:

x̃−k = Fk,k−1x̂k−1 (3.62)

We may therefore use Eqs. (3.28) and (3.62) to express the a priori estimation
error in yet another form:

x̃−k = xk − x̂−k

= (Fk,k−1xk−1 + wk−1)− (Fk,k−1x̂k−1)

= Fk,k−1(xk−1 − x̂k−1) + wk−1

= Fk,k−1x̃k−1 + wk−1 (3.63)

Accordingly, using Eq. (3.63) in (3.56) and noting that the process noise wk

is independent of x̂k−1 we get

P−k = Fk,k−1E[x̃k−1x̃T
k−1]F

T
k,k−1 + E[wk−1wT

k−1]

= Fk,k−1Pk−1FT
k,k−1 + Qk−1 (3.64)

which defines the dependence of the a priori covariance matrix P−k on the
"old" a posteriori covariance matrix Pk−1.

With Eqs. (3.62), (3.64), (3.58), (3.47), and (3.61) at hand, we may now sum-
marize the recursive estimation of state as shown in figure 3.9. This figure also
includes the initialization. In the absence of any observed data at time k = 0,
we may choose the initial estimate of the state as

x0 = E[x0] (3.65)

70

3.7. KALMAN FILTER

1 1,k k k k k+ += +x F x w

k k k k= +y H x v

kw
kQ

 0

kv
kR

 0

0 0ˆ []E=x x

0 0 0 0 0[([])([])TE E E= − −P x x x x

, 1 1ˆ ˆk k k kF−
− −=x x

, 1 1 , 1
T

k k k k k k k
−

− − −= +P F P F Q

T
k k

k T
k k k k

−

−=
+

P H
G

H P H R

ˆ ˆ ˆ()k k k k k k
− −= + −x x G y H x

()k k k k
−= −P I G H P

Initialization

 State estimate

State with
measurement

corection

Figure 3.9: Sumary of the Kalman filter

71

3.8. EXTENDED KALMAN FILTER

and the initial value of the a posteriori covariance matrix as

P0 = E[(x0 − E[x0])((x0 − E[x0])T] (3.66)

This choice for the initial conditions not only is intuitively satisfying but
also has the adventage of yielding an unbiased estimate of the state xk.

The Kalman filter uses Gaussian probability density in the propagation pro-
cess, the diffusion is purely linear and the density function evolves as a gaus-
sian pulse that translates, spreads and reinforced, remaining gaussian through-
out.

The random component of the dynamical model wk leads to spreading (in-
creasing uncertainty) while the deterministic component Fk+1,kxk causes the
density function to drift bodily. The effect of an external observation y is to su-
perimpose a reactive effect on the diffusion in which the density tends to peak
in the vicinity of observations.

3.8 Extended Kalman filter

The Kalman filtering problem considered up to this point in the discussion has
addressed the estimation of a state vector in a linear model of a dynamical
system. If, however, the model is nonlinear, we may extend the use of Kalman
filtering through a linearization procedure. The resulting filter is referred to as
the extended Kalman filter (EKF) [155,157]. Such an extension is feasible by virtue
of the fact that the Kalman filter is described in terms of difference equations
in the case of discrete-time systems.

To set the stage for a development of the extended Kalman filter, consider a
nonlinear dynamical system described by the state-space model

xk+1 = f(k,xk) + wk (3.67)

yk = h(k,xk) + vk (3.68)

where, as before, wk and vk are independent zero-mean white Gaussian
noise processes with covariance matrices Rk and Qk respectively. Here, how-
ever, the functional f(k,xk) denotes a nonlinear transition matrix function that
is possibly time-variant. Likewise, the functional h(k,xk) denotes a nonlinear
measurement matrix that may be time-variant, too.

The basic idea of the extended Kalman filter is to linearize the state-space
model of Eqs. (3.69) and (3.70) at each time instant around the most recent state
estimate, which is taken to be either x̂k or x̂−k epending on which particular
functional is being considered. Once a linear model is obtained, the standard
Kalman filter equations are applied.

More explicitly, the approximation proceeds in two stages.
Stage 1. The following two matrices are constructed:

72

3.8. EXTENDED KALMAN FILTER

Fk+1,k =
∂f(k,xk)

∂x

∣∣∣∣
x=x̂k

(3.69)

Hk =
∂h(k,xk)

∂x

∣∣∣∣
x=x̂k

(3.70)

That is, the ijth entry of Fk+1,k is equal to the partial derivative of the ith
component of F(k,x) with respect to the yth component of x. Likewise, the ijth
entry of Hk is equal to the partial derivative of the ith component of H(k,x)
with respect to the jth component of x. In the former case, the derivatives are
evaluated at x̂k while in the latter case, the derivatives are evaluated at x̂−k .
The entries of the matrices Fk+1,k and Hk are all known (i.e., computable), by
having x̂k and x̂−k available at time k.

Stage 2. Once the matrices Fk+1,k and Hk are evaluated, they are then
employed in a first-order Taylor approximation of the nonlinear functions F(k,x)
and H(k,x) around x̂k and x̂−k , respectively. Specifically, F(k,x) and H(k,x)
are approximated as follows

F(k,xk) ≈ F(x, x̂k) + Fk+1,k(x, x̂k) (3.71)

H(k,xk) ≈ H(x, x̂−k) + Hk+1,k(x, x̂−k) (3.72)

With the above approximate expressions at hand, we may now proceed
to approximate the nonlinear state equations (3.67) and (3.68) as shown by,
respectively,

xk+1 ≈ Fk+1,kxk + wk + dk (3.73)

ȳk ≈ Hkxk + vk (3.74)

where we have introduced two new quantities:

ȳk = yk − {h(x, x̂−k)−Hkx̂−k } (3.75)

dk = f(x, x̂k)− Fk+1,kx̂k (3.76)

The entries in the term ȳk are all known at time k, and, therefore, ȳk can be
regarded as an observation vector at time n. Likewise, the entries in the term
dk are all known at time k.

Given the linearized slate-space model of Eqs. (3.75) and (3.76), we may
then proceed and apply the Kalman filler theory of Section 3.7 to derive the
extended Kalman filter. Figure 3.10 summarizes the recursions involved in
computing the extended Kalman filter.

73

3.8. EXTENDED KALMAN FILTER

(,)k k k kk= +y h x x v

kw
kQ

 0

kv
kR

 0

0 0ˆ []E=x x

0 0 0 0 0[([])([])TE E E= − −P x x x x

1ˆ ˆ(,)k kk−
−=x f x

, 1 1 , 1
T

k k k k k k k
−

− − −= +P F P F Q

T
k k

k T
k k k k

−

−=
+

P H
G

H P H R

ˆ ˆ ˆ(,)k k k k kk− −= + −x x G y h x

()k k k k
−= −P I G H P

 Initialization

 State
estimate

State with
measurement

corection

1 (,)k k kk+ = +x f x w

1,
ˆ

(,)

k

k k

k

−
+

=

∂=
∂ x x

f x
F

x

ˆ

(,)

k

k

k

−=

∂=
∂ x x

h x
H

x

Linearization

Figure 3.10: Summary of the Extended Kalman Filter

74

3.9. VISION TRACKING WITH THE KALMAN FILTER

3.9 Vision Tracking with the Kalman filter

The main application of the Kalman filter in robot vision is the following object,
also called tracking [158]. To carry out this, it is necessary to calculate the object
position and speed in each instant. As input is considered a sequence of images
captured by a camera containing the object. Then using a image processing
method the object is segmented and later calculated their position in the image.
Therefore we will take as system state xkthe position x and y of the object in
the instant k. Considering the above-mentioned we can use the Kalman filter to
make more efficient the localization method of the object, that is to say instead
of looking for to the object in the whole image plane we define a search window
centered in the predicted value x̂−k of the filter.

The steps to use the Kalman filter for vision tracking are:
1. Initialization (k=0). In this step it is looked for the object in the whole

image due we do not know previously the object position. We obtain this way
x0. Also we can considerer initially a big error tolerance (P0 = 1).

2. Prediction (k>0). In this stage using the Kalman filter we predict the
relative position of the object, such position x̂−k is considered as search center
to find the object.

3. Correction (k>0). In this part we locate the object (which is in the neigh-
borhood point predicted in the previous stage x̂−k) and we use its real position
(measurement) to carry out the state correction using the Kalman filter finding
this way x̂k.

The steps 2 and 3 are carried out while the object tracking runs. To exem-
plify the results of the use of the Kalman filter in vision tracking, we choose the
tracking of a soccer ball and consider the following cases:

a) In this test we carry out the ball tracking considering a lineal uniform
movement, which could be described by the following system equations

xk+1 = Fk+1,kxk + wk




xk+1

yk+1

∆xk+1

∆yk+1


 =




1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1







xk

yk

∆xk

∆yk


 + wk

yk = Hkxk + vk

[
xmk

ymk

]
=

[
1 0 0 0
0 1 0 0

]



xk

yk

∆xk

∆yk


 + vk

In the figure 3.11 the prediction of the object position is shown for each
instant as well as the real trajectory.

75

3.9. VISION TRACKING WITH THE KALMAN FILTER

0 50 100 150 200 250 300 350
50

100

150

200

x coordinate

y
co

or
di

na
te

Object state
Object estimated state

Initial position

Final position

Figure 3.11: Position prediction with the Kalman filter

b) One advantage of the Kalman filter for the vision tracking is that can be
used to tolerate small occlusions. The form to carrying out it, is to consider
the two work phases of the filter, prediction and correction. That is to say, if
the object localization is not in the neighborhood of the predicted state by the
filter (in the instant k), we can consider that the object is hidden by some other
object, consequently we will not use the measurement correction and will only
take as object position the filter prediction. The figure 3.12 shows the filter
performance during the object occlusion. The system was modeled with the
same equations used in the previous case.

c) Most of the complex dynamic trajectories (changes of acceleration) can-
not be modeled by lineal systems, which results in that we have to use for
the modeling nonlinear equations, therefore in these cases we will use the ex-
tended Kalman filter. The figure 3.13 shows the acting of the extended Kalman
filter for the vision tracking of a complex trajectory versus the poor perfor-
mance of the normal Kalman filter. For the extended Kalman filter the dynamic
system was modeled using the unconstrained Brownian motion equations

xk+1 = f(k,xk) + wk

76

3.10. PARTICLE FILTER FOR VISION TRACKING.

50 100 150 200 250 300 350
0

20

40

60

80

100

120

140

160

180

200

x coodinate

y
co

or
di

na
te

Object state
Object estimated state

Initial position

Final position

occlusion

Figure 3.12: Kalman filter during the occlusion




xk+1

yk+1

∆xk+1

∆yk+1


 =




exp
(− 1

4 (xk + 1.5∆xk)
)

exp
(− 1

4 (yk + 1.5∆yk)
)

exp
(− 1

4∆xk

)
exp

(− 1
4∆yk

)


 + wk

yk = h(k,xk) + vk

[
xmk

ymk

]
=

[
1 0 0 0
0 1 0 0

]



xk

yk

∆xk

∆yk


 + vk

while for the normal Kalman filter, the system was modeled using the equa-
tions of the case a).

3.10 Particle filter for vision tracking.

In this chapter, the extended Kalman filter (EKF) has been used as the stan-
dard technique for performing recursive nonlinear estimation in vision track-
ing. The EKF algorithm, however, provides only an approximation to optimal

77

3.10. PARTICLE FILTER FOR VISION TRACKING.

−50 0 50 100 150 200 250 300 350
0

50

100

150

200

250

x coordinate

y
co

or
di

na
te

Object state
Object estimated state EKF
Object estimated state KF

Initial position

Final position

Figure 3.13: Tracking of a complex movement using an EKF.

nonlinear estimation. In this section, we present an alternative filter with per-
formance superior to that of the EKF. This algorithm, referred to as the Particle
filter (Condensation filter, as it is known in the vision community). The ba-
sic difference between the EKF and Particle filter stems from the manner in
which random variables are represented for propagating through system dy-
namics. In the EKF, the state distribution is approximated by a gaussian ran-
dom variable which is then propagated analytically through the first-order lin-
earization of the nonlinear system. This can introduce large errors in the true
posterior mean and covariance of the transformed gaussian random variables
which may lead to suboptimal performance and sometimes divergence of the
filter. The Particle filter address this problem by using a deterministic sam-
pling approach. The state distribution is approximated by a random variable
(not necessarily gaussian), but is now represented using a minimal set of care-
fully chosen sample points. These sample points completely capture the true
mean and covariance of the random variable and, when propagated through
the true nonlinear system, captures the posterior mean and covariance accu-
rately to second order (Taylor series expansion) for any nonlinearity. The EKF,
in contrast, only achieves first-order accuracy. No explicit Jacobian or Hessian
calculations are necessary for the Particle filter. Remarkably, the computational
complexity of the particle filter is the same order as that of the EKF.

78

3.11. OPTIMAL RECURSIVE ESTIMATION

3.11 Optimal recursive estimation

Given observations yk, the goal is to estimate the state xk. We make no as-
sumptions about the nature of the system dynamics at this point. The optimal
estimate in the minimum mean-squared error (MMSE) sense is given by the
conditional mean:

x̂k = E[xk|Yk
0] (3.77)

where Yk
0 is the sequence of observations up to time k. Evaluation of this

expectation requires knowledge of the a posteriori density p(xk|Yk
0) . Given

this density, we can determine not only the MMSE estimator, but any "best"
estimator under a specified performance criterion. The problem of determining
the a posteriori density is in general referred to as the Bayesian approach, and
can be evaluated recursively according to the following relations:

p(xk|Yk
0) =

p(xk|Yk−1
0)p(yk|xk)

p(yk|Yk−1
0)

(3.78)

where

p(xk|Yk−1
0) =

∫
p(xk|xk−1)p(yk|xk)dxk−1 (3.79)

and the normalizing constant p(xk|Yk
0) is given by

p(yk|Yk−1
0) =

∫
p(xk|Yk−1

0)p(yk|xk)dxk (3.80)

This recursion specifies the current state density as a function of the pre-
vious density and the most recent measurement data. The state-space model
comes into play by specifying the state transition probability p(xk|xk−1) and
measurement probability or likelihood, p(yk|xk) . Specifically, p(xk|xk−1) is
determined by the process noise density p(wk) with the state-update equation

xk+1 = f(k,xk) + wk (3.81)

For example, given an additive noise model with Gaussian density, p(wk) =
N(0,Rv), then p(xk|xk−1) = N(F(xk−1),Rv). Similarly, p(yk|xk) is deter-
mined by the observation noise density p(vk) and the measurement equation

yk = h(k,xk) + vk (3.82)

In principle, knowledge of these densities and the initial condition p(x0|y0) =
p(y0|x0)p(x0)

p(y0)
determines p(xk|Yk

0) for all k. Unfortunately, the multidimen-
sional integration indicated by Eqs. 3.78-3.80 makes a closed-form solution in-
tractable for most systems. The only general approach is to apply Monte Carlo
sampling techniques that essentially convert integrals to finite sums, which
converge to the true solution in the limit.

79

3.12. PARTICLE FILTER IN VISION TRACKING

Particle filtering [159, 161] was originally developed to track objects in clut-
ter or a variable of interest as it evolves over time, typically with a non-Gaussian
and potentially multi-modal probability density function (pdf). The basis of the
method is to construct a sample-based representation of the entire pdf (equa-
tion 3.78). A series of actions are taken, each one modifying the state of the
variable of interest according to some model (equation 3.81). Moreover at cer-
tain times an observation arrives that constrains the state of the variable of
interest at that time.

Multiple hypothetical state (particles) of the variable of interest xk are used,
each one associated with a weight that signifies the quality of that specific par-
ticle. An estimate of the variable of interest is obtained by the weighted sum
of all the particles. The particle filter algorithm is recursive in nature f(k,xk)
(prediction stage), including the addition of random noise wk in order to simu-
late the effect of noise on the variable of interest. Then, each particle’s weight
is re-evaluated based on the latest measurements available (update stage). At
times the particles with small weights are eliminated, with a process called re-
sampling. More formally, the variable of interest (in this case the object position
xk = [xk yk]) at time k is represented as a set of M samples (the "particles")
Si

k = [xi
k bi

k] : i = 1, 2, ..., M , where the index i denotes the particle num-
ber, each particle consisting of a hypothetical value of the variable of interest
xk and a weight b that defines the contribution of this particle to the overall
estimate of the variable, where

∑M
i=1 bi

k = 1. The figure 3.14 shown the process
carried out by the particle filter.

If at time k we know the pdf of the system at the previous instant k -1 then
we model the movement effect with f(k,xk) to obtain a prior of the pdf at
time k (prediction). In other words, the prediction phase uses a model in or-
der to simulate the effect that a movement has on the set of particles with the
appropriate noise added wk. The update phase uses the information obtained
from the measurements to update the particle weights in order to accurately
describe the moving object’s pdf. Algorithm 1 presents a formal description of
the particle filter algorithm.

3.12 Particle filter in Vision Tracking

Robust real-time tracking of non-rigid objects in computer vision is a challeng-
ing task. Particle filtering has proven very successful for non-linear and non-
Gaussian estimation problems. Particle filtering was originally developed to
track objects in clutter, that is to say, one of its main characteristics represents
the possibility to track objects although exists the presence of other objects that
have similar characteristic.

We want to apply a particle filter in a color-based context. Color distribu-
tions are used as target models as they achieve robustness against non-rigidity,
rotation and partial occlusion. Suppose that the distributions are discretized
into m-bins. The histograms are produced with the function h(xi) , that assigns
the color at location to the corresponding bin (considering xi the pixel coordi-

80

3.12. PARTICLE FILTER IN VISION TRACKING

Resampling

1 1[]i i
k kb− −x

1 1(,)i
k k kk − −= +x f x w

1
i
kS −

i
kS

[]i i
k kbx

Predict

Measure
Observation density

1 1()k kp − −x y

()k kp x y

1
i
k −x

Figure 3.14: Process carried out by the particle filter.

81

3.12. PARTICLE FILTER IN VISION TRACKING

Algorithm 1 Particle Filter Algorithm

From the particles at time-step k-1, Si
k−1 = {xi

k−1, bi
k−1

∣∣ i = 1, 2, ..., M}.
1. For each particle we calculate the cumulative probability as

c0
k−1 = 0

ci
k−1 = ci−1

k−1 + bi
k−1

∣∣∣∣ i = 1, 2, ...,M

we have in this way Si
k−1 = {xi

k−1, bi
k−1, c

i
k−1

∣∣ i = 1, 2, ..., M}.
2. We select M states (they can repeat) starting from Si

k−1 (resampling), carry-
ing out the following procedure

• We generate a random number r ∈ [0, 1], uniformly distributed.

• We find , the smallest j for which cj
k−1 > r.

• The elected state is –xi
k−1 = xj

k−1

3. We spread the states {–xi
k−1

∣∣ i = 1, 2, 3...,M} using the model xi
k =

f(k, –xi
k−1) + wk.

4. For each new state xi
k we find their corresponding b starting from the mea-

surement p(y|x)obtained for each hypothesis.
5. We carry out the normalization

∑M
i=1 bi

k = 1 and build the particles Si
k =

{xi
k, bi

k

∣∣ i = 1, 2, ..., M}.
6. Once the M samples have been constructed: estimate, if desired, moments
of the tracked position at time k as

E[Si
k] =

∑M

i=1
bi
kx

i
k

82

3.12. PARTICLE FILTER IN VISION TRACKING

e

ix

Figure 3.15: Configuration of the density of the particles, centered in
xidependent of the distance e.

nates (x,y)). In our experiments, the histograms are typically calculated in the
RGB space using 8x8x8 bins. To make the algorithm less sensitive to lighting
conditions, the HSV color space could be used instead with less sensitivity to
V (e.g. 8x8x4 bins).

We determine the color distribution inside an upright circular region cen-
tered in with radius r. To increase the reliability of the color distribution when
boundary pixels belong to the background or get occluded, smaller weights
are assigned to the pixels that are further away from the region center by em-
ploying a weighting function

k(e) =
{

1− e2 e < 1
0 otherwise (3.83)

where e is the distance from the region center. Thus, we increase the re-
liability of the color distribution when these boundary pixels belong to the
background or get occluded. The figure 3.15 shows the advantage of using
the distance e to improve the reliability of the measurement.

The color distribution py = {p(u)
y }u=1,2,3,...m. at location y is calculated as

p(u)
y = f

I∑

i=1

k

(∣∣y − xi
∣∣

r

)
δ[h(xi)− u] (3.84)

where I is the number of pixels in the circular region, δ is the Kronecker
delta function and the normalization factor

f =
1

∑I
i=1 k

(
|y−xi|

r

) (3.85)

ensures that
∑m

u=1 p
(u)
y = 1.

In a tracking approach, the estimated state is updated at each time step by
incorporating the new observations. Therefore, we need a similarity measure
which is based on color distributions. A popular measure between two distri-
butions p(u) and q(u) is the Bhattacharyya coefficient [162, 163].

83

3.12. PARTICLE FILTER IN VISION TRACKING

ρ[p, q] =
∫ √

p(u)q(u)du (3.86)

Considering discrete densities such as our color histograms p = {p(u)}u=1,2,3,...m.

and q = {q(u)}u=1,2,3,...m.the coefficient is defined as

ρ[p, q] =
m∑

u=1

√
p(u)q(u) (3.87)

The larger ρ is, the more similar the distributions are. For two identical nor-
malized histograms we obtain ρ = 1, indicating a perfect match. As distance
between two distributions we define the measure

d =
√

1− ρ[p, q] (3.88)

which is called the Bhattacharyya distance.
The proposed tracker employs the Bhattacharyya distance to update the a

priori distribution calculated by the particle filter. Each sample of the distribu-
tion represents a circle with radius r and is given as

xi
k = [xi

k yi
k ∆xi

k ∆yi
k] (3.89)

where x, y specify the location of the circle, ∆x and ∆y the motion. As we
consider a whole sample set the tracker handles multiple hypotheses simulta-
neously.

The sample set is propagated through the application of a dynamic model

xi
k+1 = f(k,xi

k) + wi
k (3.90)

where f(k,xi
k) defines the deterministic component of the model and wi

k

is a multivariate Gaussian random variable. In this thesis we currently use
an unconstrained Brownian model for describing the region movement with
velocity ∆x, ∆y and radius r.




xk+1

yk+1

∆xk+1

∆yk+1


 =




exp
(− 1

4 (xk + 1.5∆xk)
)

exp
(− 1

4 (yk + 1.5∆yk)
)

exp
(− 1

4∆xk

)
exp

(− 1
4∆yk

)


 + wk (3.91)

To weight the sample set, the Bhattacharyya coefficient has to be computed
between the target histogram and the histogram of the hypotheses. Each hy-
pothetical region is specified by its state vector Si

k. Both the target histogram q
and the candidate histogram pSi

k
are calculated from Eq. 3.84 where the target

is centered at the origin of the circular region.
As we want to favor samples whose color distributions are similar to the

target model, small Bhattacharyya distances correspond to large weights

84

3.12. PARTICLE FILTER IN VISION TRACKING

bi =
1√
2πσ

exp

(
−

(1− ρ[pSi
k
, q])

2σ

)
(3.92)

that are specified by a Gaussian with variance σ. During filtering, samples
with a high weight may be chosen several times, leading to identical copies,
while others with relatively low weights may not be chosen at all. The pro-
gramming details for one iteration step are given in the Algorithm 1.

To illustrate the distribution of the sample set, Figure 3.15 shows the sam-
ples distribution considering the flesh color as target histogram q. The samples
are located around the maximum of the Bhattacharyya coefficient which rep-
resents the best match to the target model.

Given a particle distribution Si
k, we need to find the state which defines

with accuracy the object position. Three different methods of evaluation have
been used in order to obtain an estimate of the position. First, the weighted
mean (x̂k ≈ ∑M

i=1 bi
kx

i
k) be used; second, the best particle (the xj

k such that
bj
k = max(bi

k) : i = 1, 2, ...M) and, third, the weighted mean in a small window
around the best particle (also called robust mean) can be used. Each method
has its advantages and disadvantages: the weighted mean fails when faced
with multi-modal distributions, while the best particle introduces a discretiza-
tion error. The best method is the robust mean but it is also the most computa-
tionally expensive. In cases where the object to track is surrounded of objects
whose characteristics are similar the best method is to use as state that defines
the object position the best particle.

85

3.12. PARTICLE FILTER IN VISION TRACKING

maximum1

maximum2

(a)

(b)

Figure 3.16: a) Distribution of the sample set and b) generated multi-modal
probability density function.

86

