
Chapter 2

Machine Vision Background

2.1 Introduction

The goal of a machine vision system is to create a model of the real world from
images. A machine vision system recovers useful information about a scene from its
two-dimensional projections [2]. Since images are two-dimensional projections of
the three-dimensional world, the information is not directly available and must
be recovered. This recovery requires the inversion of a many-to-one mapping.
To recover the information, knowledge about the objects in the scene and pro-
jection geometry is required.

2.2 Relationships to Other Fields

Many fields are related to machine vision [42]. As we will see, techniques de-
veloped from many areas are used for recovering information from images.
In this section, we briefly describe some very closely related fields. No effort
is made to relate machine vision (also called computer vision) to other fields
exhaustively.

Image processing. Image processing techniques usually transform images
into other images; the task of information recovery is left to a human user. This
field includes topics such as image enhancement, image compression, and cor-
recting blurred or out-of-focus images. On the other hand, machine vision
algorithms take images as inputs but produce other types of outputs, such as
representations for the object contours in an image. Thus, emphasis in ma-
chine vision is on recovering information automatically, with minimal interac-
tion with a human. Image processing algorithms are useful in early stages of a
machine vision system. They are usually used to enhance particular informa-
tion and suppress noise.

Computer graphics generates images from geometric primitives such as lines,
circles, and free-form surfaces. Computer graphics techniques play a signif-
icant role in visualization and virtual reality. Machine vision is the inverse

27

2.2. RELATIONSHIPS TO OTHER FIELDS

problem: estimating the geometric primitives and other features from the im-
age. Thus, computer graphics is the synthesis of images, and machine vision
is the analysis of images. In the early days of these two fields, there was not
much relationship between them, but in the last few years these two fields
have been growing closer. Machine vision is using curve and surface represen-
tations and several other techniques from computer graphics, and computer
graphics is using many techniques from machine vision to enter models into
the computer for creating realistic images. Visualization and virtual reality are
bringing these two fields closer.

Pattern recognition classifies numerical and symbolic data. Many statisti-
cal and syntactical techniques have been developed for classification of pat-
terns. Techniques from pattern recognition play an important role in machine
vision for recognizing objects. In fact, many industrial applications rely heav-
ily on pattern recognition. Object recognition in machine vision usually re-
quires many other techniques. We will discuss some aspects of statistical pat-
tern recognition briefly in the follows chapters.

Artificial intelligence is concerned with designing systems that are intelli-
gent and with studying computational aspects of intelligence. Artificial intelli-
gence is used to analyze scenes by computing a symbolic representation of the
scene contents after the images have been processed to obtain features. Artifi-
cial intelligence may be viewed as having three stages: perception, cognition,
and action. Perception translates signals from the world into symbols, cogni-
tion manipulates symbols, and action translates symbols into signals that effect
changes in the world. Many techniques from artificial intelligence play impor-
tant roles in all aspects of computer vision. In fact, computer vision is often
considered a subfield of artificial intelligence.

Design and analysis of neural networks has become a very active field in the
last decade [38, 39]. Neural networks are being increasingly applied to solve
some machine vision problems. Since this field is in its infancy, there are no
established techniques for machine vision yet.

Psychophysics, along with cognitive science, has studied human vision for
a long time. Many techniques in machine vision are related to what is known
about human vision. Many researchers in computer vision are more interested
in preparing computational models of human vision than in designing ma-
chine vision systems. Our emphasis in this thesis will be on designing machine
vision systems; we will not make any effort to relate the techniques discussed
here to those in psychophysics.

Machine vision produces measurements or abstractions from geometrical
properties. It may be useful to remember the equation

V ision = Geometry + Measurement + Interpretation (2.1)

28

2.3. ROLE OF KNOWLEDGE

2.3 Role of Knowledge

Decision making always requires knowledge of the application or goal. As we
will see, at every stage in machine vision decisions must be made by the sys-
tem. Emphasis in machine vision systems is on maximizing automatic opera-
tion at each stage, and these systems should use knowledge to accomplish this.
The knowledge used by the system includes models of features, image forma-
tion, models of objects, and relationships among objects. Without explicit use
of knowledge, machine vision systems can be designed to work only in a very
constrained environment for very limited applications [49]. To provide more
flexibility and robustness, knowledge is represented explicitly and used by the
system. One objective in this thesis is to point out the types of knowledge
used by machine vision systems at different stages, that should be considered
to make the system more adaptive and robust. We will see that knowledge is
used by designers of systems in many implicit as well as explicit forms. The
efficacy and efficiency of a system is usually governed by the quality of the
knowledge used by the system. Difficult problems are often solvable only by
identifying the proper source of knowledge and appropriate mechanisms to
use it in the system.

2.4 Image Geometry

There are two parts to the image formation process [19]:

1. The geometry of image formation, which determines where in the image
plane the projection of a point in the scene will be located.

2. The physics of light, which determines the brightness of a point in the
image plane as a function of scene illumination and surface properties.

This section introduces the first of these two parts, the geometry of image for-
mation. Because an understanding of the physics of light is not necessary for
understanding the fundamentals of most vision algorithms, optics will be not
covered.

The basic model for the projection of points in the scene onto the image
plane is diagrammed in Figure 2.1. In this model, the imaging system’s cen-
ter of projection coincides with the origin of the three-dimensional coordinate
system. The coordinate system for points in the scene is the three-dimensional
space spanned by the unit vectors x, y, and z that form the axes of the coordi-
nate system. A point in the scene has coordinates (x, y, z). The x coordinate
is the horizontal position of the point in space as seen from the camera, the y
coordinate is the vertical position of the point in space as seen from the camera,
and the z coordinate is the distance from the camera to the point in space along
a line parallel to the z axis. The line of sight of a point in the scene is the line
that passes through the point of interest and the center of projection. The line
drawn in Figure 2.1 is a line of sight.

29

2.4. IMAGE GEOMETRY

x

y

z

z

f

x´

y´

(x´,y´)

r´

r

Object point

Image plane
(inverted)

Line of sight

Figure 2.1: The point on the image plane that corresponds to a particular point
in the scene is found by following the line that passes through the scene point
and the center of projection.

The image plane is parallel to the x and y axes of the coordinate system at
a distance f from the center of projection, as shown in Figure 2.1. Note that
the image plane in an actual camera is at a distance of f behind the center
of projection (as shown in Figure 2.1) and the projected image is inverted. It
is customary to avoid this inversion by assuming that the image plane is in
front of the center of projection as shown in Figure 2.2. The image plane is
spanned by the vectors x’ and y’ to form a two-dimensional coordinate system
for specifying the position of points in the image plane. The position of a point
in the image plane is specified by the two coordinates x’ and y’. The point (0,0)
in the image plane is the origin of the image plane. The position in the image
plane of a point in the scene is found by intersecting the line of sight with the
image plane according to the projection scheme as described in the following
sections.

2.4.1 Perspective Projection

The position (x’, y’) in the image plane of a point at position (x, y, z) in the scene
is found by computing the coordinates (x’, y’) of the intersection of the line of
sight passing through the scene point (x, y, z) with the image plane as shown
in Figure 2.2.

The distance of the point (x, y, z) from the z axis is r =
√

x2 + y2, and
the distance of the projected point (x’, y’) from the origin of the image plane
is r′ =

√
x′2 + y′2. The z axis, the line of sight to point (x,y,z), and the line

segment of length r from point (x, y, z) to the z axis (perpendicular to the z axis)

30

2.4. IMAGE GEOMETRY

(x,y,z)

y

x

r

z

x

x
x´

y´

x´

y´ r´

Figure 2.2: An illustration showing the line of sight that is used to calculate the
projected point (x’,y’) from the object point (x,y,z).

form a triangle. The z axis, the line of sight to point (x’, y’) in the image plane,
and the line segment of length r’ from point (x’, y’) to the z axis (perpendicular
to the z axis) form another triangle. The two triangles are similar, so the ratios
of the corresponding sides of the triangles must be the same:

f

z
=

r′

r
(2.2)

The triangle formed from the x and y coordinates and the perpendicular
distance r and the triangle formed from the image plane coordinates x’, y’ and
the perpendicular distance r’ are also similar triangles:

x′

x
=

y′

y
=

r′

r
(2.3)

Combining Equations 2.2 and 2.3 yields the equations for perspective pro-
jection:

x′

x
=

f

z

y′

y
=

f

z
(2.4)

The position of a point (x, y, z) in the ’mage plane is given by the equations

x′ =
f

z
x (2.5)

31

2.5. SAMPLING AND QUANTIZATION

y′ =
f

z
y (2.6)

2.4.2 Coordinate Systems

In this presentation, we have assumed that the center of projection coincides
with the origin of the three-dimensional space and that the camera axes are
aligned with the coordinate system used to specify the location of a point in the
scene. In general, the camera is displaced and rotated with respect to the three-
dimensional coordinate system used for specifying the coordinates of points in
the scene. The coordinates (xa, ya, za) in the absolute coordinate system must
be transformed into the coordinates (xc, yc, zc) of the point in the camera coor-
dinate system before projecting the points onto the image plane. The general
case is presented in Chapter 10 on calibration, which covers the mathematics of
transforming coordinates between coordinate systems. Absolute coordinates
are also called world coordinates.

Individual objects may have their own coordinate system, called model co-
ordinates. The scene consists of object models that have been placed (rotated
and translated) into the scene, yielding object coordinates in the coordinate
system of the scene (absolute coordinates). The scene coordinates in the abso-
lute coordinate system are transformed to camera coordinates before projection
onto the image plane.

Throughout the thesis, subscripts are used to denote the coordinate system,
and primes are used to denote the image plane coordinates of a point after
projection onto the image plane. Subscripts are omitted when the coordinate
system is clear, and the primes are omitted when it is clear that coordinates are
in the image plane. These conventions allow us to be precise about the coor-
dinate system when necessary and to distinguish between a point in camera
coordinates and its projection onto the image plane, but they allow the nota-
tion to be simplified to the common usage for point coordinates in analytic
geometry when we are presenting the equations for curves and surfaces.

In keeping with the convention, we will omit primes from image plane co-
ordinates for the rest of this chapter.

2.5 Sampling and Quantization

A continuous function cannot be represented exactly in a digital computer. The
interface between the optical system that projects a scene onto the image plane
and the computer must sample the image at a finite number of points and
represent each sample within the finite word size of the computer. This is sam-
pling and quantization. Each image sample is called a pixel.

Each pixel is represented in the computer as a small integer. Frequently,
the pixel is represented as an unsigned 8-bit integer in the range [0,255], with

32

2.5. SAMPLING AND QUANTIZATION

Figure 2.3: An image shown at many different spatial resolution. Top left: Orig-
inal image sampled at 320 x 240 and 256 gray levels. Top right: 160 x 120. Bottom
left: 80 x 60. Bottom right: 20 x 15.

0 corresponding to black, 255 corresponding to white, and shades of gray dis-
tributed over the middle values.

Many cameras acquire an analog image, which is then sampled and quan-
tized to convert it to a digital image. The sampling rate determines how many
pixels the digital image will have (the image resolution), and quantization
determines how many intensity levels will be used to represent the intensity
value at each sample point. As shown in Figures 2.3 and 2.4, an image looks
very different at different sampling rates and quantization levels. In most
machine vision applications, the sampling and quantizing rates are predeter-
mined due to the limited choice of available cameras and image acquisition
hardware; but in many applications it may be important to know the effects of
sampling and quantizing. The image processing book [30] discusses the factors
that should be considered in selecting appropriate sampling and quantization
rates to retain the important information in images.

33

2.5. SAMPLING AND QUANTIZATION

Figure 2.4: An image shown at many different gray level resolutions. Top left:
Original image sampled at 256 gray levels. Top right: 64 gray levels. Bottom left:
32 gray levels. Bottom right: 8 gray levels.

34

2.6. IMAGE DEFINITIONS

2.6 Image Definitions

It is important to understand the relationship between the geometry of image
formation, described in previous sections, and the representation for images
in the computer. There must be a bridge from the mathematical notation used
to develop machine vision algorithms to the algorithmic notation used in pro-
grams [56].

A pixel is a sample of the image intensity quantized to an integer value.
An image is a two-dimensional array of pixels. The row and column indices [i,
j] of a pixel are integer values that specify the row and column in the array of
pixel values. Pixel [0,0] is located at the top left corner of the image. The index i
points down, and j points to the right. This index notation corresponds closely
to the array syntax used in computer programs. The positions of points in the
image plane have x and y coordinates. The y coordinate corresponds to the
vertical direction, and the x coordinate corresponds to the horizontal direction.
The y axis points up, and the x axis points to the right. Note that the directions
corresponding to the two indices i and j in the pixel index [i,j] are the reverse of
the directions corresponding to the respective coordinates in the position (x,y).

The x and y coordinates are real numbers, stored as floating-point numbers
in the computer. Image plane coordinates (x, y) can be computed from pixel
coordinates [i,j] of an n by m pixel array using the formulas

x = j − m− 1
2

(2.7)

y = −
(

i− n− 1
2

)
(2.8)

which assume that the origin of the image plane coordinate system corre-
sponds to the center of the image array.

In an imaging system, each pixel occupies some finite area on the image
plane. Machine vision algorithms that depend on the exact shape of the pixel
footprint will not be covered in this thesis, so we may assume for concreteness
that the pixels partition the image plane into equal-sized squares. Positions
in the image plane can be represented to fractions of a pixel. The coordinates
(xij , yij) of the pixel with indices [i, j] are the location of the center of the pixel
in the coordinate system of the image plane. Since we are concerned only with
the location of the center of the pixel in the image plane (the location at which
the image sample was taken), the pixel may be further abstracted to a point
in the image plane. The array of pixels in the computer program corresponds
to the grid of image plane locations at which the samples were obtained, as
illustrated in Figure 2.5.

In diagramming images, we may show the image as a square tessellation of
a rectangular region, with each square shaded to indicate the image intensity
of that pixel.

This is purely a technique for visualization and does not imply that the
shape of the pixel matters to the algorithm being discussed. For the purposes

35

2.7. LEVELS OF COMPUTATION

of nearly all of the algorithms discussed in this thesis, the image can be mod-
eled as a square grid of samples of the image intensity, represented in the com-
puter as an array of pixel values. The camera and digitizing electronics are
designed to ensure that this assumption is satisfied. Some variations, such as
different spacing between the rows and columns in the grid, distortions due
to lens imperfections, and errors in the construction of the camera, can be re-
moved through calibration without changing the algorithms that process the
image.

To summarize, a pixel is both a gray value, which is a quantized sample of
the continuous image intensity, and an image location, specified as the row and
column indices in the image array. The image array is obtained by sampling
the image intensity at points on a rectangular grid. Points in the image plane,
specified with coordinates x and y, may lie between the grid locations at which
pixels were sampled.

2.7 Levels of Computation

An image usually contains several objects. A vision application usually in-
volves computing certain properties of an object, not the image as a whole. To
compute properties of an object, individual objects must first be identified as
separate objects; then object properties can be computed by applying calcula-
tions to the separate objects [59].

Definitions and algorithms for connectivity and segmentation that will al-
low different objects to be represented as distinct subimages will be presented
in the next chapters. For now, consider computer vision algorithms from the
viewpoint of locality of computation. Consider each algorithm in terms of its
input-output characteristics. Here our aim is to characterize operations so that
we can discuss the nature of input and output and how best to implement these
operations. Note that the input to a computer vision system is an image, and
the output, unlike that of image processing systems, is some Symbolic quan-
tity denoting identity or location of an object, for instance. The amount of data
processed by a vision system is very large, and that makes the computational
requirements of a computer vision system very demanding. The last few years
have witnessed many special architectures designed for computer vision. Since
we want to discuss characteristics of operations to predict their computational
requirements, we classify the levels of operations and study their general char-
acteristics.

2.7.1 Point Level

Some operations produce an output based on only a point in an image. Thresh-
olding is an example. A thresholding algorithm produces output values that
depend only on the input value, for a preset threshold. Thus,

fB [i, j] = Opoint{fA[i, j]} (2.9)

36

2.7. LEVELS OF COMPUTATION

a[0,0]

column j

m columns
j

row i

n rows

i

pixel a[i,j]

Image array

Image plane

(x´,y´)

x´

y´

(x´,y´)

Figure 2.5: Relationship between image plane coordinates and image array
indices. Note that the location of the origin of the x-y plane is arbitrary with
respect to the image array.

where fA and fB are the input and output images, respectively. This oper-
ation can be efficiently implemented using a lookup table (see Figure 2.6).

2.7.2 Local Level

A local operation produces an output image in which the intensity at a point
depends on the neighborhood of the corresponding point in the input image.
Thus,

fB [i, j] = Olocal{fA[ik, jl]; [ik, jl] ∈ N [i, j]} (2.10)

An example of such an operation is shown in Figure 2.7. Smoothing and
edge detection are local operations. Since these operations require values from
a neighborhood in the input image, array processors or Single Instruction,
Multiple Data (SIMD) machines may be suitable for implementing these op-
erations. In general, these operations can be easily implemented on parallel
machines and can often be performed in real time.

2.7.3 Global Level

The output of certain operators depends on the whole picture. Such operations
are called global operations:

P = Oglobal{f [i, j]} (2.11)

This operation is shown in Figure 2.8.

37

2.7. LEVELS OF COMPUTATION

(,)Af x y (,)Bf x y

(x,y) (x,y)

Figure 2.6: Top: Point operations are applied to individual image pixels and
produce an output image as the result. Bottom left: Original image. Bottom
right: Thresholded image where pixels from the original image with a gray
level value greater than 128 are set to white, while the remaining pixels are set
to black.

The output of these operators may be an image or it may be symbolic out-
put. A histogram of intensity values and the Fourier transform are global op-
erations. Global operations are responsible for the slowness of vision systems.
We will see that most operations at higher levels are global in nature and pose
the biggest challenge to designers of algorithms and architectures.

2.7.4 Object Level

Most applications of computer vision require properties to be computed at the
object level. Size, average intensity, shape, and other characteristics of an object
must be computed for the system to recognize it. Many other characteristics
of an object must be determined for defect detection. Operators restricted to
those pixels belonging to an object are occasionally applied to determine these
properties. This leads to very difficult questions: What is an object? How do
we find objects?.

We will see that an object is defined in a particular context. In fact, many
operations in machine vision are performed to find where a particular object is
located in an image. We must use all points that belong to an object to compute
some of its characteristics, but we must use those characteristics to identify
those points. We will see that significant efforts are spent to solve the figure-
ground problem (separation of foreground pixels from background pixels) to

38

2.7. LEVELS OF COMPUTATION

N

(x,y)

(,)Af x y (,)Bf x y

Figure 2.7: Top: Local operations are applied to pixel neighborhoods and pro-
duce an output image as the result. Bottom left: Original image. Bottom right:
Smoothed image where each pixel value is the average gray value calculated
from its 5 x 5 local neighborhood in the original image.

39

2.7. LEVELS OF COMPUTATION

0 50 100 150 200 250

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Gray levels

N
um

be
r

of
 p

ix
el

s

Figure 2.8: An example of a global operation: an image (Top) and its histogram
(Bottom). A histogram is a plot of the number of pixels at each gray value
contained in the image.

40

2.8. BINARY IMAGE PROCESSING

group points into objects.
At this point, we should just remember that to understand the contents

of an image, a machine vision system must perform several operations at the
object level.

2.8 Binary Image Processing

An image contains a continuum of intensity values before it is quantized to
obtain a digital image. The information in an image is in these gray values. To
interpret an image, the variations in the intensity values must be analyzed. The
most commonly used number of quantization levels for representing image in-
tensities is 256 different gray levels. It is not uncommon, however, to see digital
images quantized to 32, 64, 128, or 512 intensity levels for certain applications,
and even up to 4096 (12 bits) are used in medicine. Clearly, more intensity
levels allow better representation of the scene at the cost of more storage.

In the early days of machine vision, the memory and computing power
available was very limited and expensive. These limitations encouraged de-
signers of vision applications to focus their efforts on binary vision systems. A
binary image contains only two gray levels. The difference this makes in the
representation of a scene is shown in Figure 2.9.

In addition designers noted that people have no difficulty in understand-
ing line drawings, silhouettes, and other images formed using only two gray
levels. Encouraged by this human capability, they used binary images in many
applications.

Even though computers have become much more powerful, binary vision
systems are still useful. First of all, the algorithms for computing properties of
binary images are well understood. They also tend to be less expensive and
faster than vision systems that operate on gray level or color images. This is
due to the significantly smaller memory and processing requirements of binary
vision. The memory requirements of a gray level system working with 256 gray
levels will be eight times that of a system working with a binary image of the
same size. The storage size may be further reduced by using techniques such
as run-length encoding. The processing time requirements are lower because
many operations on binary images may be performed as logical operations
instead of integer arithmetic operations.

Smaller memory requirements and faster execution times are not the only
reasons for studying binary vision systems. Many techniques developed for
these systems are also applicable to vision systems which use gray scale im-
ages. A convenient way to represent an object in a gray level or color image is
to use its mask. The mask of an object is a binary picture in which the object
points are 1 and other points are 0. After an object has been separated from
the background, its geometric and topological properties may be required in
decision making. These properties can be computed from its binary image. All
the techniques discussed in this chapter can be applied to a region in a gray
image. Thus, though we will discuss these techniques in the context of binary

41

2.8. BINARY IMAGE PROCESSING

Figure 2.9: A gray level image and its corresponding binary image.

images, their application is not limited to binary images.
In general, binary vision systems are useful in cases where a silhouette con-

tains enough information to allow recognition of an object and where the envi-
ronment can be adequately controlled. To obtain a good silhouette, the objects
must be easily separated from the background. This can be achieved by using
special illumination techniques and by having only a few objects in the scene.
There are many industrial situations that fulfill these requirements. For exam-
ple, binary vision systems have found application in optical character recogni-
tion, chromosome analysis, and recognition of industrial parts. In these cases,
the binary vision system usually uses a threshold to separate objects from the
background. The proper value of this threshold depends on illumination and
on reflectance characteristics of objects. The resulting binary picture allows
computation of geometric and topological properties (features) of objects for the
given task. In many applications, these characteristics are enough for recogni-
tion of objects.

It should be mentioned here, however, that with the increase in the com-
plexity of applications, more and more vision systems are using gray scale im-
ages. This is due to the fact that in many material handling and assembly tasks,
the illumination cannot be controlled to obtain good contrast between objects
and background. Care has to be exercised to make the system insensitive to
small changes in illumination and reflectance characteristics of other objects in
a scene. In many applications, this becomes a formidable task. Similarly, in in-
spection tasks, it may not be possible to recover subtle information using only
two intensity levels. Internal details of an object may be lost in thresholding
and may make the task of detecting surface defects very difficult.

Certain generally used conventions concerning binary images will be fol-
lowed in this chapter. Object pixels will have the value 1 and background
pixels will have 0. In displaying pictures, 0 is white and 1 is black; thus, in
binary images, the background is white and objects are black. We will also as-
sume that pictures are of size n x m pixels and are represented in a computer
as a two-dimensional array. This representation allows us to visualize images
with the spatial relationships between points maintained in the form familiar

42

2.9. THRESHOLDING

to people.
The techniques discussed in this chapter, though simple, have played a very

important role in robotic vision. We will study the following aspects of binary
vision systems in this chapter:

• Formation of binary images

• Geometric properties

• Topological properties

• Object recognition in binary images.

Many concepts discussed here are used in all aspects of machine vision. Many
definitions are related to digital geometry and are useful in discussions related
to sampled images. In general, after an image has been segmented into several
objects, each object is represented as a region. Discussions related to these
object regions use the terminology and concepts discussed in this chapter.

2.9 Thresholding

One of the most important problems in a vision system is to identify the subim-
ages that represent objects. This operation, which is so natural and so easy for
people, is surprisingly difficult for computers. The partitioning of an image
into regions is called segmentation. Ideally, a partition represents an object or
part of an object [22]. Formally, segmentation can be defined as a method to
partition an image, F[i,j], into subimages, called regions, Pi,..., Pk, such that
each subimage is an object candidate.

Definition 1.1 A region is a subset of an image.
Definition 1.2 Segmentation is grouping pixels into regions, such that

• ∪k
i=1Pi= Entire image ({Pi} is an exhaustive partitioning.)

• Pi ∩ Pj = ∅, i 6= j ({Pi} is an exclusive partitioning.)

• Each region Pi satisfies a predicate; that is, all points of the partition have
some common property.

• Pixels belonging to adjacent regions, when taken jointly, do not satisfy
the predicate. As shown above, a partition satisfies a predicate.

This predicate may be as simple as has uniform intensity but is more complex
in most applications. Segmentation is a very important step in understanding
images.

A binary image is obtained using an appropriate segmentation of a gray
scale image. If the intensity values of an object are in an interval and the inten-
sity values of the background pixels are outside this interval, a binary image

43

2.9. THRESHOLDING

can be obtained using a thresholding operation that sets the points in that in-
terval to 1 and points outside that range to 0. Thus, for binary vision, segmen-
tation and thresholding are synonymous. Many cameras have been designed
to perform this thresholding operation in hardware. The output of such a cam-
era is a binary image. In most applications, however, cameras give a gray scale
image and the binary image is obtained using thresholding.

Thresholding is a method to convert a gray scale image into a binary image
so that objects of interest are separated from the background. For thresholding
to be effective in object-background separation, it is necessary that the objects and
background have sufficient contrast and that we know the intensity levels of
either the objects or the background. In a fixed thresholding scheme, these
intensity characteristics determine the value of the threshold.

Let us assume that a binary image B[i, j] is the same as a thresholded gray
image FT [i, j] which is obtained using a threshold T for the original gray image
F[i,j]. Thus,

B[i, j] = FT [i, j] (2.12)

where for a darker object on a lighter background

FT [i, j] =
{

1 if F [i, j] ≤ T
0 otherwise (2.13)

If it is known that the object intensity values are in a range [T1, T2], then we
may use

FT [i, j] =
{

1 if T1 ≤ F [i, j] ≤ T2

0 otherwise (2.14)

A general thresholding scheme in which the intensity levels for an object
may come from several disjoint intervals may be represented as

FT [i, j] =
{

1 if F [i, j] ∈ Z
0 otherwise (2.15)

Note how knowledge about the application domain is incorporated into the
thresholding algorithm. It has, in fact, been tailored for the domain; therefore,
the same threshold values may not work in a new domain. The threshold is
usually selected on the basis of experience with the application domain. In
some cases, the first few runs of the system may be used for interactively ana-
lyzing a scene and determining an appropriate value for the threshold.

Automatic thresholding of images is often the first step in the analysis of
images in machine vision systems. Many techniques have been developed for
utilizing the intensity distribution in an image and the knowledge about the
objects of interest for selecting a proper threshold value automatically. This
was briefly introduced in Figure 2.8, where an image and its histogram are
given.

44

2.9. THRESHOLDING

Figure 2.10: A gray level image and its resulting binary images using different
thresholds. Top: Original gray-level image. Left: Image threshold with T=125.
Right: T1=70 and T2=160.

45

2.10. GEOMETRIC PROPERTIES

2.10 Geometric Properties

Suppose that a thresholding scheme has given us objects in an image. The next
step is to recognize and locate objects. In most robotic applications, the cam-
era location and the environment are known [23]. Using simple geometry, one
may find the three-dimensional locations of objects from their two-dimensional
positions in images. Moreover, in most applications the number of different
objects is not large. If the objects are different in size and shape, the size and
shape features of objects may be determined from their images to help the sys-
tem recognize them. Many applications in robotic have utilized some simple
features of regions for determining the locations of objects and for recognizing
them (e.g., size, position, orientation).

If there are several objects, one can compute these features for each ob-
ject. An object is usually represented by a connected component or a region.
The concept of connectedness and the algorithms for finding connected com-
ponents in an image will be discussed later in this chapter. For the present
discussion, let us assume that an image has only one object.

2.10.1 Size

In general, for a binary image it is well known that the area A is given by

A =
n∑

i=1

m∑

j=1

B[i, j] (2.16)

This is the zeroth-order moment.

2.10.2 Position

The position of an object in an image plays an important role in many appli-
cations. There are different ways to specify the position of an object, such as
using its enclosing rectangle or centroid. In robotic applications, objects usu-
ally appear on a known surface, such as a table, and the position of the camera
is known with respect to the table. In such cases, an object’s position in the im-
age determines its spatial location. The position of an object in an image may
be defined using the center of area of the object image. Though other methods
such as the enclosing rectangle of the object image may be used, the center of
area is a point and is relatively insensitive to noise in the image.

The center of area in binary images is the same as the center of mass if we
consider the intensity at a point as the mass at that point. To calculate the
position of the object, we use

x̄

n−1∑

i=0

m−1∑

j=0

B[i, j] =
n−1∑

i=0

m−1∑

j=0

jB[i, j] (2.17)

46

2.10. GEOMETRIC PROPERTIES

Figure 2.11: A soccer ball image and its resulting binary image with their re-
spective centroid.Left: Original image. Right: calculated centroid.

ȳ

n−1∑

i=0

m−1∑

j=0

B[i, j] =−
n−1∑

i=0

m−1∑

j=0

iB[i, j] (2.18)

where x̄ and ȳ are the coordinates of the center of the region measured with
respect to the top left pixel. Thus, the position of an object is

x̄ =

∑n−1
i=0

∑m−1
j=0 jB[i, j]
A

(2.19)

ȳ =
−∑n−1

i=0

∑m−1
j=0 iB[i, j]
A

(2.20)

These are the first-order moments. The position calculated using first mo-
ments is not necessarily an integer and usually lies between the integer values
of the image array indices. We emphasize that this does not imply that the
calculated position is better than the resolution of pixel coordinates.

An example of these concepts can be applied to find the centroid a soccer
ball in an image. First the image is transformed of the RGB model to the HSV
model, which is more appropriate for the color segmentation, later the image
is divided in its characteristic planes H,S and V. From those planes we take
only the S plane and then we apply a threshold value of 220. Once the object is
segmented, then we can use the equations 2.19 and 2.20 to identify the centroid.
The figure 2.11 shows the result of this process.

These are the first-order moments. The position calculated using first mo-
ments is not necessarily an integer and usually lies between the integer values
of the image array indices. We emphasize that this does not imply that the
calculated position is better than the resolution of pixel coordinates.

47

2.11. ORIENTATION

2.11 Orientation

Calculating the orientation of an object is a little more complex than calculating
its position [26]. For some shapes (such as circles), orientation is not unique.
To define unique orientation, an object must be elongated. If so, the orientation
of the axis of elongation can be used to define the orientation of the object.
Usually, the axis of least second moment, which in 2-D is equivalent to the axis
of least inertia, is used as the axis of elongation.

The axis of second moment for an object image is that line for which the
sum of the squared distances between object points and the line is minimum.
Given a binary image, B[i,j], compute the least-squares fit of a line to the object
points in the binary image. Minimize the sum of the squared perpendicular
distances of all object points from the line,

χ2 =
n−1∑

i=0

m−1∑

j=0

r2
ijB[i, j] (2.21)

where r11is the perpendicular distance from an object point [i,j] to the line.
To avoid numerical problems when the line is nearly vertical, represent the line
in polar coordinates:

ρ = x cos θ + y sin θ (2.22)

As shown in Figure 2.12, θis the orientation of the normal to the line with the x
axis, and p is the distance of the line from the origin. The distance r of a point
(x, y) is obtained by plugging the coordinates of the point into the equation for
the line:

r2 = (x cos θ + y sin θ − ρ)2 (2.23)

Plugging the representation of the line into the minimization criterion yields
the regression problem for fitting a straight line to the object points. Determine
the model parameters ρ and θ by minimizing

χ2 =
n−1∑

i=0

m−1∑

j=0

(xij cos θ + yij sin θ − ρ)2B[i, j] (2.24)

Setting the derivative of χ2 with respect to ρ to zero and solving for ρ yields

ρ = x̄ cos θ + ȳ sin θ (2.25)

which shows that the regression line passes through the center of object
points (x̄,ȳ). After substituting this value of ρin the above equation for χ2and
replacing

x′ = x− x̄

48

2.11. ORIENTATION

θ

0

y

x

ρ

cos sinx yρ θ θ= +

Figure 2.12: Polar representation of a straight line.

y′ = y − ȳ (2.26)

the minimizations problem becomes

χ2 = a cos2 θ + b sin θ cos θ + c sin2 θ (2.27)

The parameters

a =
n−1∑

i=0

m−1∑

j=0

(x′ij)
2B[i, j] (2.28)

b = 2
n−1∑

i=0

m−1∑

j=0

x′ijy
′
ijB[i, j] (2.29)

c =
n−1∑

i=0

m−1∑

j=0

(y′ij)
2B[i, j] (2.30)

are the second-order moments. The expression for χ2 can be rewritten as

χ2 =
1
2
(a + c) +

1
2
(a− c) cos θ +

1
2
b sin θ (2.31)

Differentiating χ2, setting the result to zero, and solving for θ yield

tan 2θ =
b

a− c
(2.32)

The orientation of the axis is given by

49

2.11. ORIENTATION

sin 2θ = ± b√
b2 + (a− c)2

(2.33)

cos 2θ = ± a− c√
b2 + (a− c)2

(2.34)

The axis of orientation is obtained for the minimal value of χ2. Note that if
b=0 and a=c, the object does not have a unique axis of orientation. The elonga-
tion E of the object is the ratio of largest to smallest values for χ.

E =
χmax

χmin
(2.35)

When the expressions for sin 2θ and cos 2θ are substituted into equation
2.31, their signs determine whether χ2 is a maximum or minimum. Note that
the elongation is 1 for a circle and that this is lower bound on E.

50

