Aus dem Institut für Zahnärztliche Prothetik, Alterszahnmedizin und Funktionslehre der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

DISSERTATION

Vergleichende Untersuchungen ausgewählter mechanischer Kennwerte dreier Weißkeramiken in der CAD/CAM-Technik

zur Erlangung des akademischen Grades Doctor medicinae dentariae (Dr. med. dent.)

> vorgelegt der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

> > von

Juliane König

aus Berlin

Gutachter: 1. Prof. Dr. K.-P. Lange

2. Prof. Dr. J. Tinschert

3. Prof. Dr. W. B. Freesmeyer

Datum der Promotion: 30.01.2009

1.	EINLEITUNG	4
2.	LITERATURÜBERSICHT	7
2.1	Einführung – Kurzer geschichtlicher Überblick über die Entwicklung vollkeramischer Systeme	7
2.1.2	KLINISCHE ANWENDING	8
2.1.3	KERAMIKEN FÜR FRÄS- BEZIEHUNGSWEISE SCHLEIFSYSTEME	11
2.2	THEORETISCHE GRUNDLAGEN. MATERIALEIGENSCHAFTEN KERAMISCHER	
2.2	WERKSTOFFE, ATOMARE BINDUNGSVERHÄLTNISSE UND WERKSTOFFVERHALTEN	13
2.2.1	EIGENSCHAFTEN VON ZIRKONIUMDIOXIDKERAMIK IM ÜBERBLICK	14
2.2.2	NACHTEILE	14
2.2.3	ROHSTOFFE UND ADDITIVE	15
2.3	Oxidkeramik	16
2.3.1	Zirkoniumdioxid – Morphologie und Zusätze	16
2.3.2	PHASENTRANSFORMATION	17
2.3.3	CSZ (CUBIC STABILIZED ZIRCONIA)	18
2.3.4	PSZ (PARTIALLY STABILIZED ZIRCONIA)	18
2.3.5	TZP (TETRAGONAL ZIRCONIA POLYCRYSTAL)	19
2.3.6	Y-TZP (YTTRIA TETRAGONAL ZIRCONIA POLYCRYSTAL)	20
2.4	ZIRKONIUMDIOXID IST NICHT GLEICH ZIRKONIUMDIOXID	21
2.5	DISPERSIONS- BZW. MISCHOXIDKERAMIK	22
2.6	HIP	23
2.7	Grün- und Weißkeramik	24
2.7.1	BEARBEITUNG VON GRÜN- UND WEIßKERAMIKEN	24
2.7.2	HIP versus Grün- oder Weißkeramik	25
2.7.3	NACHTEILE BEI WEIßKERAMIKEN	26
2.8	CAD/CAM UND DAS MPG	26
2.9	KERAMIKGERECHTES CAD/CAM-KONSTRUIEREN	27
2.9.1	SINTERGERECHTES GESTALTEN DER GERÜSTE	27
2.9.2	"Intelligentes Gerüstdesign"	28
2.9.3	Konnektorendimensionierung	28
2.9.4	Norm-Anforderungen für Dentalkeramik	29
3.	PROBLEMSTELLUNG/ ZIELSETZUNG	31
4.	MATERIAL UND METHODE	33
4.1	VERWENDETE MATERIALIEN	33
4.1.1	CERCON BASE (DEGUDENT GMBH, HANAU, D)	33
4.1.2	DC-SHRINK (DCS DENTAL AG, ALLSCHWIL, CH)	34
4.1.3	LAVA FRAME (3M ESPE AG, SEEFELD, D)	34
4.2	CERCON BASE, <i>DC</i> -SHRINK, LAVA FRAME	35
4.3	HERSTELLUNG DER PRÜFKÖRPER	36
4.4	WEITERFÜHRENDE UNTERSUCHUNGEN MIT DC-SHRINK	38
4.5	SINTERSCHRUMPFUNG	38
4.6	BIEGEFESTIGKEITSBESTIMMUNG IM DREIPUNKT-BIEGEVERSUCH	38
4.7	WEIBULL-ANALYSE	40
4.8	Risszähigkeitsbestimmung mit der Indentermethode	40
4.8.1	Setzen der Vickers-Härteeindrücke	41
4.8.2	AUSMESSEN DER VICKERS-HÄRTEEINDRÜCKE	41
4.8.3	ERMITTLUNG DER E-MODULN	42
4.8.4	BERECHNUNG DER K _{IC} -WERTE	43
4.9	STATISTISCHE AUSWERTUNG	43

9.	ANHANG	90
8.	LITERATURVERZEICHNIS	82
7.	ZUSAMMENFASSUNG	79
6.3	ZUSAMMENHANG MECHANISCHER KENNWERTE	77
6.2.5.	2 VERWENDUNG DES LICHTMIKROSKOPS	77
6.2.5.	1 FEHLER BEI DER RISSZÄHIGKEITSBESTIMMUNG	76
6.2.5	RISSZÄHIGKEIT	73
6.2.4	EINSATZ DES E-MODULS	72
623	werten Weirill l-Festickeit	09 70
0.2.2.	1 VERGLEICH DER WIESSERGEBNISSE WIT VEROFFENTLICHTEN BIEGEFESTIGKEITS- werten	60
0.2.1.	1 TOTENTIELLE FEHLEKQUELLEN BEI DEK BIEGEFESTIGKEITSBESTIMMUNG 1 Vedat eich ded Messedaednisse mit vedäffentlichten Diegefestigveits	08
0.2.2	DIEGETESTIGKEIT 1 Dotentiel i e Vehi edoliel i en del ded Diegebegtigveutsbegtinnung	0/ 20
0.2.1	SINTERSCHRUMPFUNG Biggefestigzeit	03 67
0.2	UEKUUN BASE, DU-ƏHKINK, LAVA FKAME Sinterschulmdeling	03 25
0.1.5	KISSZAHIGKETTSBESTIMMUNG Cedcon dage, DC Suding, Lana edame	63 (F
0.1.4	WEIBULL-ANALYSE	62
(1)	KECHENROUTINE	61
6.1.3	EINFLUSSGRÖBEN AUF DIE ERMITTELTEN E-MODULN AUS VERSUCHSAUFBAU UND	~~
6.1.2	BIEGEFESTIGKEIT	59
6.1.1	SINTERSCHRUMPFUNG	58
6.1	<i>DC</i> -Shrink – Vergleich der drei untersuchten Sintertemperaturen	58
6.	DISKUSSION	58
5.3.5	Risszähigkeitsbestimmung	57
5.3.4	WEIBULL-ANALYSE	56
5.3.3	E-MODUL-BESTIMMUNG AUS DER BIEGEFESTIGKEIT	56
5.3.2	BIEGEFESTIGKEITSBESTIMMUNG	55
5.3.1	SINTERSCHRUMPFUNG	54
5.3	LAVA FRAME	54
5.2.5	RISSZÄHIGKEITSBESTIMMUNG	53
5.2.4	WEIBULL-ANALYSE	51
5.2.3	E-MODUL-BESTIMMUNG AUS DER BIEGEFESTIGKEIT	51
5.2.2	BIEGEFESTIGKEITSBESTIMMUNG	49
5.2.1	SINTERSCHRUMPFUNG	49
5.2	DC-Shrink	49
5.1.5	Risszähigkeitsbestimmung	47
5.1.4	WEIBULL-ANALYSE	46
5.1.3	E-MODUL-BESTIMMUNG AUS DER BIEGEFESTIGKEIT	46
5.1.2	BIEGEFESTIGKEITSBESTIMMUNG	46
5.1.1	SINTERSCHRUMPFUNG	45
5.1	CERCON BASE	45
5	FRGFRNISSF	45

Abkürzungsverzeichnis

а	halbe Eindruckdiagonale	[mm]
Al ₂ O ₃	Aluminiumoxid	
b	Prüfkörperbreite	[mm]
С	Risslänge vom Mittelpunkt	[mm]
CAD	Computer Aided Design	
CAM	Computer Aided Manufacturing	
CaO	Calciumoxid	
CSZ / FSZ	vollstabilisiertes ZrO ₂	
d	Eindruckdiagonale	[mm]
E	Elastizitäts-Modul	[N/mm ²]
f	Durchbiegung	[mm]
F	Kraft	[N]
h	Prüfkörperhöhe	[mm]
Н	Vickers-Härte	[N/mm ²]
HIP	Hot Isostatic Postcompaction	Hot Isostatically Pressed
i	Prüfkörpernummer	
K _{ic}	kritische Risszähigkeit	[MPam ^{1/2}]
	Auflagenweite	[mm]
m	Weibull-Modul	
Μ	Biegemoment	[Nmm]
MgO	Magnesiumoxid	
MPG	Medizinproduktegesetz	
n	Prüfkörperanzahl	
Pi	Versagenswahrscheinlichkeit	
Pk	Prüfkörper	
PSZ	partiell stabilisiertes ZrO ₂	
σ	Biegefestigkeit	[MPa]
W	Widerstandsmoment	[mm ³]
Y ₂ O ₃	Yttriumoxid	
Y-TZP	Yttrium-stabilisiertes ZrO ₂	
ZrO ₂	Zirkoniumdioxid	
ZTA	ZrO ₂ -verstärktes Al ₂ O ₃	

1. Einleitung

In der Zahnmedizin, speziell im Bereich der zahnärztlichen Prothetik, wird in zunehmendem Maße metallfreier, vollkeramischer Zahnersatz als Kronen- und Brückengerüst eingesetzt.

Vor allem Zirkoniumdioxid wird im Dentalbereich vermehrt erfolgreich als Abutment-, Bracket-, Gerüst- sowie als Implantatwerkstoff angewendet [21, 68, 102, 103].

Aus der Palette der verschiedenen Zirkoniumdioxid-Werkstoffe wird überwiegend das Yttriumoxid-stabilisierte 3Y-TZP-Material in der zahnärztlichen Prothetik angewendet. Die Unterscheidung wird dabei weniger durch die verschiedenen werkstoffkundlichen Parameter der einzelnen Anbieter vorgenommen, vielmehr muss man zwischen der Art der Verarbeitung und der Technologie der Herstellung einer dentalen Restauration differenzieren.

Grundsätzlich existieren zwei subtraktive Produktionsstrategien:

- die Bearbeitung des ZrO₂ im dichtgesinterten oder zusätzlich gehipten Zustand (HIP),
- die Bearbeitung im gr
 ünen oder weißen Zustand [68].

Beide Möglichkeiten stehen für die CAD/CAM-Verarbeitung industriell gefertigter Blöcke zur Verfügung.

Gegenüber den konventionellen Herstellungsverfahren zeigen sich durch die Verwendung industriell präfabrizierter Keramikblöcke einige Vorteile: Definierte, gleich bleibende und reproduzierbare mechanische Eigenschaften können durch die Minimierung von Defekten erreicht werden [13, 94]. Durch Barcode-Kennzeichnung der Blockrahmen wird eine MPG-konforme Dokumentation ermöglicht.

Die stetig voranschreitende Entwicklung führt schon heute zu einer Vielzahl verschiedener Vollkeramiksysteme. Exemplarisch für die weiteren Untersuchungen sind die Weißkeramiken der Firmen DeguDent GmbH (Hanau, D), DCS Dental AG¹ (Allschwil, CH) und 3M ESPE AG (Seefeld, D) ausgewählt worden.

Dentalkeramische Materialien weisen strukturbedingt eine hohe Sprödigkeit auf. Darin liegt häufig die Ursache plötzlichen, vorzeitigen Versagens der keramischen Restauration, die bisweilen zu Indikationseinschränkungen geführt hat. Der Bruch wird

¹ Mit Wirkung vom 01. 11. 2007 ist der in dieser Arbeit nachfolgend weiterhin DCS AG (Allschwil, Schweiz) genannte Hersteller in die Bien-Air DCS Solutions SA, Allschwil, Schweiz, übergegangen.

dabei auf das Wachstum bereits im Material vorhandener oder in Folge einer nachträglichen Bearbeitung an der Oberfläche geschaffener Defekte zurückgeführt [99, 104].

Um den Einfluss der nachteiligen Eigenschaften möglichst gering zu halten und die positiven Eigenschaften zur Geltung zu bringen, muss die Werkstoffauswahl sehr sorgfältig getroffen werden und es sind einige wichtige Konstruktionsrichtlinien zu beachten.

Für die Werkstoffauswahl sind im Wesentlichen die folgenden mechanischen Kennwerte von Bedeutung:

- Festigkeit gegenüber Zug (meist als Biegefestigkeit angegeben),
- Druckfestigkeit,
- Risszähigkeit,
- Kennwerte des unterkritischen Risswachstums [58].

Diese bestimmten Materialeigenschaften spielen bei der grundlegenden Einschätzung neu entwickelter keramischer Materialien für den Einsatz in der Zahnheilkunde und bei der Eingrenzung auf sinnvolle Indikationsbereiche eine maßgebliche Rolle. Inhaltlich soll der Fokus in dieser Arbeit deswegen auf die mechanischen Festigkeitswerte gerichtet werden.

Um das Festigkeitsverhalten keramischer Werkstoffe zuverlässig zu charakterisieren, ist neben der Bestimmung der Biegefestigkeit besonders die Betrachtung der Risszähigkeit sinnvoll [25, 66, 87]. Beiden kommt große Bedeutung zu, da ein Versagen vollkeramischen Zahnersatzes immer durch das Wachstum bestehender Defekte (Risse) in der Keramik entsteht.

Sind die Biegefestigkeits- und kritischen Risszähigkeitswerte keramischer Materialien ermittelt worden, können sie zur Festlegung bzw. zur kritischen Überprüfung des Indikationsbereiches herangezogen werden.

Dazu werden Prüfverfahren benötigt, die eine schnelle, einfache, zuverlässige und preiswerte Kontrolle der Materialeigenschaften von Keramiken ermöglichen. Die einschränkenden Eigenschaften der Gerüstkeramiken müssen verlässlich eingegrenzt werden, so dass die untersuchten Materialien neben den bisher verfügbaren und bewährten Verfahren zur Herstellung von Zahnersatz, wie Metallkeramik oder hochfester Zirkoniumdioxidkeramik, eingeordnet werden können. Von den Ergebnissen solcher Prüfverfahren wird erwartet, die Einsatzbreite der Weißkeramiken tendenziell eher erweitert oder eingeschränkt empfehlen zu können.

Unter der Vielzahl der heute bekannten Prüfverfahren sind diejenigen auszuwählen, deren Durchführbarkeit und Verlässlichkeit in der Generierung aussagekräftiger Ergebnisse am plausibelsten erscheinen.

Darüber hinaus bedarf es zur vollständigen Einschätzung der Weißkeramiken klinischer Langzeitstudien, die seit kurzem verstärkt veröffentlicht werden.

2. Literaturübersicht

In der Bevölkerung wächst seit Jahren das Bewusstsein für die Problematik der Materialverträglichkeit beim Einsatz von Biomaterialien sowohl in der Medizin als auch in der Zahnmedizin. Zirkoniumdioxid- und Aluminiumoxidkeramiken haben sich als so genannte Biokeramiken, unter anderem als Gelenkersatz im langjährigen Einsatz bewährt.

Auch in der Zahnheilkunde werden die wachsenden Möglichkeiten prothetischer Restaurationen hinsichtlich kaufunktioneller, ästhetischer und biokompatibler Rehabilitation nach Zahn- und/oder Zahnhartsubstanzverlust seit einigen Jahren verstärkt nachgefragt.

Neben den bereits genannten Aspekten sind für die Patienten weiterhin die voraussichtliche Nutzungsdauer einer Restauration, der zu erwartende Behandlungsaufwand, der möglichst schonende Umgang mit der verbliebenen Zahnhartsubstanz und die entstehenden Kosten maßgebliche Entscheidungskriterien bei der Wahl der am besten geeigneten prothetischen Versorgung.

Der wesentliche Vorzug vollkeramischer Restaurationen liegt für die Patienten jedoch in der Ästhetik, in der Transluzenz der Gerüstmaterialien. Während bei der klassischen Metallkeramik einfallendes Licht von der Opakerschicht reflektiert wird, ergibt sich bei vollkeramischen Restaurationen ein Strahlengang, der dem eines natürlichen Zahnes entspricht. Zusätzlich können die Gerüste einiger Hochleistungskeramiken in der Farbe des Dentins eingefärbt werden [14, 34, 43, 103].

2.1 Einführung – Kurzer geschichtlicher Überblick über die Entwicklung vollkeramischer Systeme

Bereits Ende des 19. Jahrhunderts wurde mit der Herstellung von vollkeramischen Kronen begonnen. Bis zur Entwicklung der metallkeramischen Systeme in den 50er Jahren waren diese so genannten Jacket- oder Mantelkronen die einzige festsitzende ästhetische Restaurationsmöglichkeit für den Frontzahnbereich.

Allerdings wiesen die Jacketkronen eine geringe Festigkeit und einen schlechten Randschluss auf, weswegen sie auch aufgrund der Weiterentwicklung und Verbesserung der keramikverblendeten Metallkronen, für die aktuell 40 Jahre klinische Erfahrungen vorliegen, kaum mehr angewendet wurden [33, 34]. Seit Beginn der 90er Jahre des vorigen Jahrhunderts richtete sich das Interesse in immer größerem Umfang auf Dentalkeramik als Gerüstwerkstoff, um damit neben dem Frontzahnbereich auch im Seitenzahngebiet vollständig metallfreie Restaurationen einbringen zu können [34].

Abb. 2.1: Übersicht über Werkstoffe und Verarbeitungsmöglichkeiten, modifiziert nach WITKOWSKI [106]

2.1.2 Klinische Anwendung

Die ersten klinischen Erfahrungen mit vollkeramischen Brücken aus konventionellen Glas- und Feldspatkeramiken führten aufgrund hoher Frakturraten zunächst zu enttäuschenden Ergebnissen.

In-Ceram Alumina (glasinfiltrierte Aluminiumoxidkeramik, Zahnfabrik VITA, Bad Säckingen, D) war eine der ersten Keramiken, deren Indikationsbereich vom Hersteller auf kleine Frontzahnbrücken erweitert wurde. Entgegen den VITA-Empfehlungen wurde dieses Material auch im Seitenzahngebiet getestet. Gerüstfrakturraten von 35 % wurden ermittelt und damit die Anwendung für den Seitenzahnbereich ausgeschlossen. Günstigere Prognosen für Brücken im Seitenzahnbereich scheint neueren Daten zufolge eine zirkonoxidverstärkte In-Ceram-Keramik aufzuweisen [33, 34, 41]. Mit IPS Empress 2 (Ivoclar, Schaan, FL) steht seit dem Ende der 90er Jahre eine lithiumdisilikatverstärkte Presskeramik zur Verfügung, die vom Hersteller neben Einzelkronen ausschließlich für Brücken im Front- und Prämolarenbereich freigegeben wurde. Mit einer Biegefestigkeit von über 300 MPa bietet diese Keramik eine beachtliche Festigkeit bei gleichzeitiger Transluzenz, wodurch auf eine Verblendung fast verzichtet werden kann [33, 34, 66].

Brücken aus Procera-All Ceram (Procera, Nobel Biocare, S), die ein Gerüst aus dichtgesintertem Aluminiumoxid aufweisen, stellen eine mögliche Wahl für vollkeramische Brücken dar. Allerdings fehlen hier noch Langzeitergebnisse zum klinischen Verhalten.

Ebenfalls in den 90er Jahren wurde von der DCS (DCS Dental AG, Allschwil, CH) an der CAD/CAM-Fertigung von Kronen und Brückengerüsten aus nachverdichtetem gehiptem Zirkoniumdioxid gearbeitet. Die Strukturkeramik weist mit Biegefestigkeiten von 900 MPa bis 1000 MPa die zu dieser Zeit besten für die Zahnheilkunde nutzbaren Materialeigenschaften auf [22, 33, 50].

Die klinische Zuverlässigkeit von Brücken mit zirkoniumdioxidbasierten Gerüsten erscheint im Vergleich zu allen bisher eingesetzten Gerüstkeramiken gesteigert. Dreiund mehrgliedrige Brückengerüste, die aus einem in der tetragonalen Phase metastabilen Zirkoniumdioxid hergestellt wurden, erreichen vergleichsweise sehr hohe Bruchlastwerte [17, 26, 34, 40, 63, 88, 89, 91].

Eine weitere Entwicklung wurde von der Eidgenössischen Technischen Hochschule (ETH) Zürich in Zusammenarbeit mit STURZENEGGER et al. vorangetrieben [81]. Zirkoniumdioxidgerüste sollten unter Umgehung der aufwändigen Schleifarbeiten am vollständig gesinterten Werkstoff hergestellt werden können.

Da vorgesinterte Rohlinge eine nur geringe Materialfestigkeit besitzen, kann ohne größeren Zeit- und Arbeitsaufwand die Gerüststruktur herausgefräst werden. Allerdings wird dieser Vorteil gegenüber vollständig gesinterten Zirkoniumdioxidrohlingen durch einen anschließenden mehrstündigen Sinterprozess mit Sinterschrumpfung geschmälert [16, 33].

TINSCHERT et al. veröffentlichten 2005 eine prospektive Studie über Brückengerüste aus *DC*-Zirkon (DCS Dental AG, Allschwil, CH). *DC*-Zirkon ist ein gehiptes, mit 5 Gew.-% Yttriumoxid in der tetragonalen Phase metastabiles Zirkoniumdioxid (Y-TZP). Über einen Beobachtungszeitraum von drei Jahren wurden drei- oder mehrgliedrige Brücken mit maximal zwei aufeinander folgenden Brückengliedern im Frontund Seitenzahnbereich untersucht. In 4 von 65 Fällen traten partielle Verblendungsabplatzungen auf, deren Häufigkeit mit metallkeramischen Verblendungen einhergeht. Gerüstfrakturen wurden nicht beobachtet. Geschlussfolgert wurde, dass sich zirkoniumdioxidbasierte vollkeramische Brücken sowohl für den Einsatz im Front- als auch im Seitenzahngebiet eignen [26, 90]. Einen längeren Beobachtungszeitraum umfasst der 2006 erschienene Artikel, der ebenfalls zu dem Schluss der Praxisreife zirkoniumdioxidbasierten Zahnersatzes kommt [92].

Zu ähnlichen Ergebnissen im Vergleich von zirkoniumdioxidbasierten Brücken mit IPS Empress und In-Ceram Alumina kamen TINSCHERT et al. bereits bei 1999 durchgeführten Untersuchungen. Zudem wurde hier der Einfluss der CAD/CAM-Bearbeitung hinsichtlich herstellungsbedingter Schädigungen an der Oberfläche der gefrästen Zirkoniumdioxid-Hartkerngerüste untersucht. Die angefertigten rasterelektronischen Aufnahmen belegen, dass die CAD/CAM-Bearbeitung von Zirkoniumdioxid bei Anpassung aller Bearbeitungsparameter (wie Fräsgeschwindigkeit, Vorschubgeschwindigkeit und Frästiefe) und bei Verwendung geeigneter Fräsinstrumente durchgeführt werden kann ohne größere Defekte einzubringen [14, 88, 91]. Ausschließlich kleinere Abplatzungen und Mikrorissbildungen an den Fräsbahnrändern traten zumeist an den okklusalen Innenflächen der Kronengerüste auf; tiefer gehende Defekte, die zu größeren Abplatzungen von Keramikschichten geführt hätten, wurden in dieser Studie hingegen nicht festgestellt [88].

Dies ist maßgeblich, da die Festigkeit keramischer Restaurationen nicht nur von der materialspezifischen Bruchzähigkeit, sondern auch von der Größe und Anzahl der bruchauslösenden Defekte abhängig ist [48, 88].

Mit der vom Hersteller empfohlenen Verblendmasse der Gerüste konnte die Bruchfestigkeit nochmals erkennbar gesteigert werden, was für einen stabilen Verbund zum Hartkerngerüst spricht [82, 88].

GRABER und BESIMO beurteilten die hohe Bruchzähigkeit, das günstige Elastizitätsmodul und die extrem hohe Dichte von Zirkonoxid-TZP-Biokeramik als ausgezeichnet. Neben den exzellenten physikalischen Eigenschaften der Hochleistungskeramik liegt der große Vorteil des computergesteuerten DCS-Hochleistungskeramik-Systems gegenüber konventionellen Techniken der Herstellung von modernen metallfreien Keramikkonstruktionen vor allem in der Zeitersparnis. Nur die schwierige Verarbeitung des Werkstoffes führte dazu, dass Zirkoniumdioxid erst seit etwa 1994 für den Dentalbereich zur Verfügung steht [3, 24].

Entscheidendes Kriterium für einen immer breiteren Einsatz teilgesinterter Keramiken wird die klinische Erfolgssicherheit sein. Um als wissenschaftlich anerkannte Metho-

de zu gelten, wird ein mindestens drei- bis fünfjähriger klinischer Beobachtungszeitraum aus unabhängigen Studien notwendig sein, die zunehmend publiziert werden [66, 69].

2.1.3 Keramiken für Fräs- beziehungsweise Schleifsysteme

In der nachfolgenden Tabelle 2.1 sind 14 Dentalkeramiken aufgeführt, die für subtraktiv trennende Verfahren an Rohlingen vorgesehen sind. Beim Fräsen kommen geometrisch bestimmte Schneiden zum Einsatz. Als Schleifen wird die Bearbeitung mit geometrisch unbestimmter Schneide bezeichnet [28].

Spanende Fertigungsverfahren mit geometrisch bestimmter Schneide sind zur Hartbearbeitung der keramischen Werkstoffe im Allgemeinen nicht geeignet [43].

Die Werkstoffe werden unter industriell kontrollierten Möglichkeiten gesintert, um innere Fehler wie Poren, Einschlüsse und Risse möglichst zu vermeiden [33].

Folgende Bearbeitungssysteme sind derzeit bekannt:

- das Kopierschleifverfahren Celay (Mirkona Technology AG, Spreitenbach, D)
- CAD/CAM-Systeme wie CEREC (Sirona, Bensheim, D), DCS (DCS Dental AG, Allschwil, CH), Digident (Girrbach, Pforzheim, D), Decim (Skelleftea, S) in Zusammenarbeit mit Ivoclar (Schaan, FL) unter dem Namen CADesthetics, Procera (Nobel Biocare, Göteborg, S), WOL-CERAM (WDT-Wolz-Dental-Technik GmbH, Ludwigshafen, D), Cicero (Cicero Dental System B.V., Hoorn, NL), Lava (Espe Dental AG, Seefeld, D), KaVoEverest (KaVo EWL Leutkirch, D) und das CAM-System Cercon (Degussa Dental, Hanau, D).

Bei Cercon wird die herzustellende zahnärztliche Restauration in Wachs modelliert. Anschließend werden sowohl das Stumpfmodell als auch die Wachsmodellation eingescannt. Eine computergestützte Designphase (CAD) fand bis 2004 nicht statt, so dass dieses System nur als CAM-System bezeichnet werden durfte [33]. Seit 2004 ist die Herstellung von Einzelkronen bei der DeguDent GmbH auch über das CAD-System möglich [9, 10, 36, 92, 98].

Darüber hinaus kann eine Öffnung der einzelnen Systeme beobachtet werden. So können unterschiedliche Digitalisiertechniken mit dem fallspezifisch am besten geeigneten Fertigungsverfahren kombiniert werden. Eine Verständigung auf einheitliche Schnittstellen könnte diese Entwicklung vereinfachen und beschleunigen [69]. Die Tabelle 2.1 stellt einen Auszug aus den aktuell erhältlichen Keramiken dar.

Produktname	Keramiktyp	Verblendkeramik	Indikation	Hersteller
CerAdapt	Al ₂ O ₃ ,dichtgesintert	AllCeram	Implantataufbau	Nobel Biocare
Cercon base	ZrO ₂ , vorgesintert	Cercon ceram	Krone, Brücke	Degussa
DC-Kristall	Leuzit-haltig	Triceram	Krone	DCS Dental AG/
				Esprident
DC-Zirkon	ZrO ₂ ,dichtgesintert,	Vitadur D Triceram	Krone, Brücke	DCS Dental AG/
	HIP			Vita/ Esprident
DC-Shrink	ZrO ₂ , vorgesintert	Vita VM9	Krone, Brücke	DCS Dental AG/
				Vita
Denzir	ZrO ₂ ,dichtgesintert,	Empress2 (vorläu-	Krone, Brücke	Decim, Ivoclar
	HIP	fig)		
Lava frame	ZrO ₂ , vorgesintert	Lava Ceram	Krone, Brücke	3M Espe
ProCad	Leuzit-haltig Maltechnik Veneer, Inlay,		Ivoclar	
			Onlay, Krone	
Procera	Al ₂ O ₃ , vorgesintert	AllCeram	Krone, Brücke	Nobel Biocare
VitaBlocks	Al ₂ O ₃ -verstärkt,	Vitadur Alpha	Krone, Brücke	Vita
Alumina	vorgesintert mit			
	Glasinfiltration			
VitaBlocks	Feldspat	Maltechnik	Veneer, Inlay,	Vita
Mark II			Onlay, Krone	
VitaBlocks	MgO- Al ₂ O ₃ -	Vitadur Alpha	Krone	Vita
Spinell	verstärkt, vorgesin-			
	tert mit Glasinfiltra-			
	tion			
VitaBlocks	AI_2O_3 / ZrO_2 , ver-	Vitadur Alpha	Krone, Brücke	Vita
Zirconia	stärkt, vorgesintert			
	mit Glasinfiltration			
Zircagon	ZrO ₂ , vorgesintert	Zircagon	Krone	Elephant

Tab. 2.1: Dentale F	räs-/ Schleifkeramiken

[modifiziert nach: 8, 33]

Die derzeit verfügbaren industriell präfabrizierten Keramikrohlinge sind qualitativ hochwertiger als die in handwerklich-konventionellen Verfahren verarbeiteten Materialien. Allerdings birgt die mechanische Nachbearbeitung immer das Risiko bearbeitungsbedingter, unkontrollierter Werkstoffschädigungen [16, 42].

Besonders schwierig zu beherrschen bei der Verarbeitung teilgesinterter Materialien ist die Sinterschwindung in allen drei Raumrichtungen im Zusammenhang mit unter-

schiedlichen Volumina, wie sie durch die verschiedenen Schichtstärken von Brückenpfeilerkronenwand und Brückenglied vorhanden ist.

Ein höherer Grad der Teilsinterung bewirkt später eine geringere Schwindung, das Material ist daher einfacher zu beherrschen. Die Bearbeitung hingegen ist durch den höheren Teilsintergrad in Richtung der dichtgesinterten Materialien erschwert.

Zur Vermeidung der in dieser Verarbeitungstechnologie beinhalteten potentiellen Störfaktoren wurde die Entwicklung direkter Formgebung (Urformen) vorangetrieben [43]. Festsitzende keramische Restaurationen können nun unter Verwendung von Nanokeramiken hergestellt werden, mit dem Ziel, den Einsatz von Hochleistungskeramiken in der prothetischen Zahnheilkunde auszuweiten [4].

Im Jahr 2005 auf dem Markt eingeführt, wird bei dem ce.novation-System (ce.novation, inocermic GmbH, Hermsdorf, D) in direkter Formgebung feindispergiertes Aluminiumdioxid und Zirkoniumdioxid zu dichtgesinterten Kronen- und Brückengerüsten verarbeitet. Eine subtraktive Bearbeitung der Gerüste mit möglichen negativen Beeinflussungen der mechanischen Eigenschaften entfällt. Die Passgenauigkeit übertrifft verfahrensbedingt die aller subtraktiven Verfahren, da Limitationen bei der Fertigung feiner Konturen im Bereich der Kroneninnenseite aufgrund der Werkzeuggeometrie vermieden werden [42, 43].

2.2 Theoretische Grundlagen, Materialeigenschaften keramischer Werkstoffe, atomare Bindungsverhältnisse und Werkstoffverhalten

Während die metallische Bindung für die typischen metallischen Eigenschaften wie elektrische und thermische Leitfähigkeit, plastische Verformbarkeit und metallischen Glanz verantwortlich sind, führt der zum Teil erhebliche ionische Bindungsanteil der Keramiken zu hoher Härte, hohem Isolationsvermögen sowie guter Beständigkeit gegen erhöhte Temperaturen und Chemikalien. Allerdings weisen keramische Werkstoffe, als Folge der Mischung aus kovalenter- und Ionenbindung, ein Sprödbruchverhalten auf. In Ermangelung ihres plastischen Verformungsvermögens brechen diese Werkstoffe bei Überschreiten der Elastizitätsgrenze [5, 6, 13, 76, 96, 99].

Vollkeramische Restaurationen unterscheiden sich zum Teil erheblich von den Eigenschaften ihrer Ausgangskomponenten. Die Ursache dafür liegt in der Bildung weiterer Phasen und Poren. Die Phasen können durch Verunreinigungen entstehen oder, gezielt in die Keramik eingebracht, der Beeinflussung der Werkstoffeigenschaften dienen. Vermehrt auftretende Porosität führt in jedem Fall zu geringeren Festigkeitswerten und unter Umständen zu verminderter Korrosionsbeständigkeit der Restauration [76].

2.2.1 Eigenschaften von Zirkoniumdioxidkeramik im Überblick

- Hohe Härte und Verschleißbeständigkeit,
- Hohe Zähigkeit,
- Geringe Porosität,
- Extreme Festigkeit,
- Niedriges spezifisches Gewicht,
- Geringe Wärmeleitfähigkeit,
- Geringe elektrische Leitfähigkeit,
- Gute Temperaturwechselbeständigkeit,
- Hoher Elastizitätsmodul,
- Korrosionsbeständigkeit,
- Günstige optische Eigenschaften (Lichtleitung, Transluzenz),
- Biologische Verträglichkeit [35, 43, 50, 58, 76, 96, 103].

Aufgrund dieser Eigenschaften scheint Zirkoniumdioxidkeramik geeignet zu sein, Metalle bzw. Metall-Keramik-Systeme in der Zahnheilkunde mittelfristig zu substituieren [55].

2.2.2 Nachteile

Der große Nachteil keramischer Werkstoffe liegt in ihrer Sprödigkeit, d.h. in ihrer Eigenschaft, ohne vorausgehende plastische Verformung zu versagen.

Ein weiterer Nachteil, der mit der Sprödigkeit zusammenhängt, ist die große Streuung der Festigkeit. Beide Eigenschaften müssen in der Dimensionierung und bei der Werkstoffauswahl berücksichtigt werden [58].

Abb. 2.2: Festigkeitsverteilung innerhalb von Chargen [96]

Nur wenn es gelingt, keramikgerecht zu konstruieren und zu dimensionieren, werden keramische Gerüstwerkstoffe ihren Platz in der Zahnheilkunde behaupten können. Schwerwiegende Nachteile in der Übersicht:

- Niedrige Raumtemperaturfestigkeit bei Zugbeanspruchung,
- Sprödigkeit,
- Große Streuung der mechanischen Eigenschaften,
- Unterkritisches Risswachstum [58, 102].

Die Sprödigkeit hat ihre Ursache in dem geringen Widerstand der Keramik gegenüber der Ausbreitung von Rissen, ausgedrückt durch die geringen Werte der Risszähigkeit. Deshalb sind kleine herstellungsbedingte Fehler Ausgangspunkte des Versagens. Da Spannungsspitzen nicht durch plastische Verformung abgebaut werden können, führen hohe lokale Spannungen, wie sie an Kerben oder bei Temperaturgradienten auftreten, zum Versagen [58].

Für das Festigkeitsverhalten ist das Zusammenwirken von Fehlstellen und belastungsabhängigen Spannungen von entscheidender Bedeutung. Das Werkstoffversagen wird von der höchsten Spannungskonzentration bestimmt. Da diese von stochastisch verteilten Fehlstellen abhängig ist, sind die Festigkeitswerte keramischer Restaurationen durch große Streuungen gekennzeichnet. Nach Angaben von RICH-TER sind dabei Standardabweichungen von 20 bis 25 % als durchaus normal anzusehen [76].

Deshalb muss bei der Dimensionierung der Zusammenhang zwischen der Versagenswahrscheinlichkeit und der vorgegebenen Belastung berücksichtigt werden.

2.2.3 Rohstoffe und Additive

Grundsätzliche Anforderungen der Produktion und des wirtschaftlichen Herstellungsprozesses bestimmen die Auswahl der Rohstoffe (nach Art, Reinheit, Korngröße und spezifischer Oberfläche sowie weiteren Hilfsstoffen).

Unterschieden werden Sinteradditive, welche das Sinterverhalten sowie die Eigenschaften der fertigen Keramik gezielt beeinflussen sollen und Hilfsstoffe, die die Formgebung erleichtern. Während die Sinteradditive in der Keramik verbleiben, werden die Hilfsstoffe, bei denen es sich hauptsächlich um leicht flüchtige, organische Verbindungen handelt, rückstandslos aus dem Formteil entfernt.

Mit ihrer Feinverteilung und Reinheit kommt den Additiven als

• (anorganischen) Sinterhilfsmitteln

und den (meist organischen) Formgebungshilfsmitteln als

- Verflüssigungsmitteln,
- Plastifizierungsmitteln oder
- Bindern

eine ähnliche Bedeutung zu wie den Rohstoffen selbst [96].

2.3 Oxidkeramik

Unter Oxidkeramik werden alle Werkstoffe verstanden, die im Wesentlichen aus einphasigen und einkomponentigen Metalloxiden (>90 %) bestehen. Die Materialien sind glasphasearm oder -frei. Die Rohstoffe werden synthetisch hergestellt und besitzen einen hohen Reinheitsgrad. Bei sehr hohen Sintertemperaturen entstehen gleichmäßige Mikrogefüge, die für die verbesserten Eigenschaften verantwortlich sind.

Einige Vertreter der Oxidkeramik als Beispiel für

- Einstoffsysteme sind: Aluminiumoxid, Magnesiumoxid und Zirkoniumdioxid.
- Mehrstoffsysteme als Dispersionskeramik: mit Zirkoniumdioxid verstärktes Aluminiumoxid (ZTA – Al₂O₃/ZrO₂).

Zirkoniumdioxid- und Aluminiumoxidkeramiken zeigen Elastizitätsmoduln zwischen 200 GPa und 300 GPa und Biegefestigkeiten zwischen 1000 MPa und 600 MPa, vergleichbar mit den Materialeigenschaften der sich auf dem Markt befindenden CoCr-Legierungen [33, 34, 66].

2.3.1 Zirkoniumdioxid – Morphologie und Zusätze

Zur Gewinnung von Zirkoniumdioxid dienen die Minerale Baddeleyit (96-99 % ZrO₂-Gehalt) oder Zirkon (Zirkonsilikat ZrSiO₄), die in der Natur in Verbindung mit anderen Gesteinen und Sand auftreten. Hochreine Materialien werden über Fällung von Zirkon-Gelen aus ZrCl₄-Lösungen durch anschließendes Kalzinieren synthetisiert [13, 76].

Die Keramik zählt zu den polykristallinen Oxidkeramiken und besteht aus einem Gefüge, das sich chemisch einphasig aus einer Vielzahl kleiner Kristallite zusammensetzt.

Zirkoniumdioxid ändert beim Erhitzen bzw. Abkühlen seine Morphologie. Es existiert in drei Kristallmodifikationen. Bei Temperaturen von Raumtemperatur bis 1170°C ist

die monokline Gitterstruktur stabil. Tetragonal liegen die Kristalle bei Temperaturen über 1170°C und kubisch bei Temperaturen über 2370°C bis zu einem Schmelzpunkt von 2680°C [68, 87].

Abb. 2.3: Phasenumwandlungsdiagramm monoklin – tetragonal – kubisch [15]

2.3.2 Phasentransformation

Von größter Bedeutung ist die Umwandlung tetragonal zu monoklin, die auch als t/m-Umwandlung bezeichnet wird. Da diese reversible t/m-Phasenumwandlung bei Abkühlung auf Zimmertemperatur mit einer ca. 3-5%igen Volumenzunahme verbunden ist, würde dies zur Zerstörung der Formkörper führen. Durch den Einbau von anderen Oxiden, auch Stabilisatoren genannt (z.B. MgO, CaO, Y₂O₃, CeO₂, Sc₂O₃), gelingt es, die tetragonale bzw. kubische Phase des Zirkoniumdioxids bei Raumtemperatur metastabil zu erhalten oder zu stabilisieren, indem die Oxide in das Kristallgitter des Zirkoniumdioxids eingebaut werden [87]. Auch zur Vorbeugung der Entstehung festigkeitsmindernder Risse wird das keramische Gefüge durch Einlagerung der metastabilen tetragonalen Kristalle verstärkt.

Durch ihre spröden Eigenschaften unterliegen Keramiken starken Indikationseinschränkungen. Werden sie über einen kritischen Schwellenwert beansprucht, kann es spontan zum Sprödbruch kommen, da Spannungen nicht durch plastische Verformung abgebaut werden können, wie dies bei Metallen möglich ist. In vivo sind allerdings die unterkritischen Belastungen, z.B. zyklische Kaubelastungen, die von kleinsten, herstellungsbedingten Gefügefehlern ausgehen und zur Entstehung von Rissen und weiterem Risswachstum führen können, von Bedeutung [71, 99].

Zunächst setzt das so genannte unterkritische Risswachstum ein. Wird bei fortbestehender äußerer Belastung die kritische Risslänge erreicht, kann es in Folge dessen zu einer instabilen Rissausbreitung kommen, die nach einer bestimmten Tragedauer der Restauration zum Versagen durch Bruch führt [66, 87].

Die Umwandlung der tetragonalen Phase in die monokline kann durch Druck gehemmt werden. Bei Druckentlastung, z. B. durch Rissspitzen oder Zugeigenspannungen, tritt dann die Umwandlung auf. Die druckgesteuerte Volumenzunahme bei der t/m-Kristallphasenumwandlung schließt Risse, verlangsamt oder verzweigt sie.

In der Literatur finden sich für den Phasentransformationseffekt auch die Begriffe "Selbstheilungsmechanismus" oder "Airbag-Effekt", weil die Volumenvergrößerung der Zirkoniumdioxidteilchen bei der Umwandlung Risswachstum im Gefüge stoppen kann [7, 27, 50, 87].

Reines ZrO₂ hat folglich keine Bedeutung.

Dem Stabilisierungsgrad und der oxidischen Verbindung entsprechend, unterscheidet man folgende Zirkoniumdioxidkeramiken:

- PSZ (partially stabilized zirconia) teilstabilisiert,
- TZP (tetragonal zirconia polycrystals) tetragonal stabilisiert,
- CSZ (cubic stabilized zirconia) kubisch vollstabilisiert [43, 58, 87, 96].

Abb. 2.4: Kubisches, tetragonales und monoklines Kristallgitter Helle Kugeln = Zr, dunkle Kugeln = O [96]

2.3.3 CSZ (cubic stabilized zirconia)

Bei vollstabilisiertem Zirkoniumdioxid, auch FSZ – fully stabilized zirconia –, bleibt durch den Einbau von Fremdoxiden in das Kristallgitter die kubische Hochtemperaturstruktur auch nach dem Abkühlen auf Raumtemperatur erhalten. Die t/m-Umwandlung wird so umgangen [87]. Weil es keine Möglichkeit der Umwandlungsverstärkung gibt, werden FSZ im Dentalbereich nicht angewandt.

2.3.4 PSZ (partially stabilized zirconia)

Das teilstabilisierte Zirkoniumdioxid hat große technische Bedeutung. Bei dieser Keramik ist gegenüber dem CSZ die Menge an Fremdoxiden so weit verringert, dass neben der kubischen Phase ein Teil von umwandlungsfähigem tetragonalen Zirkoniumdioxid vorliegt, das sich beim Abkühlen weiter in die monokline Phase umwandeln kann. PSZ bestehen letztlich aus einer Mischung von kubischen, tetragonalen und/oder monoklinen Phasen [50, 87, 96].

2.3.5 TZP (tetragonal zirconia polycrystal)

Untersuchungen an Y₂O₃-dotiertem Zirkoniumdioxid zeigten, dass die mechanischen Eigenschaften dieser Keramiken linear mit dem Gehalt an verbleibender tetragonaler Phase verbessert werden konnten. Die logische Konsequenz dieser Erkenntnis war daher die Entwicklung einer Zirkoniumdioxidkeramik mit weniger als 5 Gew.-% (\approx 3mol-%) Y₂O₃, die zu 100 % aus tetragonaler Phase besteht, so dass die Gefügeverstärkung ein Optimum erreicht [35, 87].

Abb. 2.5: Gefüge von polykristallinem tetragonalen Zirkoniumdioxid (TZP) [96]

Durch die Verwendung von extrem feinen Ausgangspulvern mit Teilchendurchmessern von durchschnittlich 0,5 µm [15, 42] und durch das Sintern bei niedrigen Temperaturen wird ein sehr feines Gefüge erreicht. Mit abnehmender Korngröße der Kristallite verbessern sich die mechanischen und biologischen Eigenschaften der Keramik. Die Transformationsverstärkung führt vor allem bei TZP (aber auch bei PSZ-Keramiken) zu sehr hohen mechanischen Festigkeiten von bis zu 1.500 MPa. Daher werden diese Zirkoniumdioxide bevorzugt für mechanisch hoch belastbare Komponenten eingesetzt [96].

2.3.6 Y-TZP (Yttria tetragonal zirconia polycrystal)

Diese Zirkoniumdioxidkeramik ist mit ca. 3 % Yttriumoxid versetzt, so dass ein tetragonales polykristallines Zirkoniumdioxid entsteht. Hafnium- und Aluminiumoxid sind als natürliche Begleiter des ZrO_2 noch in geringen Mengen enthalten (<3 %).

Aluminiumoxid, das in Konzentrationen <1 Gew.-% enthalten ist, erhöht die Korrosionsbeständigkeit des Werkstoffs im Mundmilieu [87].

Alle in der Zahnheilkunde eingesetzten Zirkoniumdioxidkeramiken weisen ein dichtes Gefüge aus sehr kleinen tetragonalen Kristalliten (≤0,4-1 µm) auf [15]. Dieses Gefüge bleibt im Werkstoff bis zur Raumtemperatur erhalten und steht so für die Umwandlungsverstärkung zur Verfügung. Ein unter Belastung wachsender Mikroriss löst also in seinem Wirkungsfeld bei diesen tetragonalen Teilchen die Umwandlung in eine stabile monokline Modifikation aus, was zu lokaler Druckspannung führt, die der äußeren Belastung entgegenwirkt [28]. Diese Energie freisetzende Umwandlung verlangsamt das Risswachstum. Darin liegt die Ursache für die hohen Endfestigkeiten der Yttriumoxid-tetragonal stabilisierten polykristallinen Zirkoniumdioxide [1, 43, 51, 64, 90].

8					
			Тур		
			PSZ	PSZ	
	Symbol	Einheit	Teilstabilisiertes	Teilstabilisiertes	ZrO ₂ (Y ₂ O ₃)
			ZrO ₂	ZrO ₂	
Dichte	ρ	[g/cm ³]	5-6	5,5-5,8	5,98
4-PktBiegefest.	σ	[MPa]	500-1000	450-800	937
Elastizitätsmodul	Е	[GPa]	200-210	180-200	210
Härte	HV	[GPa]	11-12,5		12
Spannungs-	K _{lc}	[MPam ^{1/2}]	5,8-10,5	5-15	9,42 ± 1,51
intensitätsfaktor					
Weibull-Modul	m	[]	20-25	>20	18,4
			[96]	[76]	[49,50]

Tab. 2.2: Allgemeine Kenndaten von Vollkeramikrestaurationen im Überblick

			Тур			
	Symbol	Einheit	LAVA	LAVA	LAVA ^{#)}	Cercon base
Dichte	ρ	[g/cm ³]				
4-PktBiegefest.	σ	[MPa]	1332	1200	1281	981
Elastizitätsmodul	E	[GPa]	205	210		
Härte	HV	[GPa]	13,2			
Spannungs-	K _{Ic}	[Mpam ^{1/2}]	5,47 ± 0,57	9,6		6,00 ± 0,11
intensitätsfaktor						
Weibull-Modul	m	[]	12,6		8,6	5
			[49,50]	[33]	[49,50]	[49,50]

 Tab. 2.3: Kenndaten ausgewählter Vollkeramiksysteme im Überblick

^{#)} 1 Woche in aqua demin. gelagert, bei 37°C in aqua demin. getestet.

2.4 Zirkoniumdioxid ist nicht gleich Zirkoniumdioxid

Aus chemischer Sicht sind die Zirkoniumdioxidmaterialien, die für die industrielle Rohlingsherstellung verwendet werden, alle nahezu identisch. Allerdings ergeben sich Unterschiede in Abhängigkeit vom Sinterungsgrad, der Gefügequalität und vom Zusatz weiterer Metalloxide.

Letztlich können aus diesem Grund sehr unterschiedliche mechanische Eigenschaften resultieren [82].

Bezeichnung		TZP	TZP-A	FSZ	PSZ
Bestandteile		ZrO ₂ /Y ₂ O ₃	ZrO ₂ /Y ₂ O ₃ /Al ₂ O ₃	ZrO ₂ /Y ₂ O ₃	ZrO ₂ /MgO
Zusammensetzung		95/5	95/5/0,25	90/10	96,5/3,5
Dichte	g/cm ³	6,05	6,05	5,8	5,7
Offene Porosität	%	0	0	0	0
Korngröße	μm	0,4	0,35	10	20
Härte Vickers	HV	1200	1200	1200	1500
Härte Mohs		8	8	8	>8
Druckfestigkeit	MPa	2000	2000	2000	2000
Biegefestigkeit	MPa	1000	2000	250	500
Elastizitätsmodul	GPa	200	210	150	200
Bruchzähigkeit K _{lc}	MPam ^{1/2}	8	8	k.A.	10
Max. Anwendungstem-					
peratur	°C	1000	1000	2000	1000
Wärmeausdehnung					
(20-1000°C)	10 ⁻⁶ K	10	10	10	10
Wärmeleitfähigkeit	W/mK	2,5	2,5	2,5	2

Tab. 2.4: Allgemeine Kenndaten von Zirkoniumdioxidkeramiken [nach: 15]

2.5 Dispersions- bzw. Mischoxidkeramik

Die einfachen Oxide können durch Zusätze in ihren Eigenschaften verändert werden. Ein solcher hochfester Werkstoff ist eine Dispersionskeramik aus Y-stabilisiertem Zirkoniumdioxid und Aluminiumoxid. Unter Dispersionskeramik wird insbesondere Al₂O₃ mit fein verteilten Zusätzen von ZrO₂ oder TiC verstanden. Al₂O₃–ZrO₂ wird als ZTA (zirconia-toughened-aluminium oxide) bezeichnet [58, 96].

Dieser Werkstoff erreicht nach heißisostatischem Pressen (HIP) Festigkeiten von 2000 MPa im Dreipunkt-Biegeversuch [43].

Abb. 2.6: Gefüge von ZTA mit geringem Zirkoniumoxidanteil [15]

Die Eigenschaften hängen stark vom Mischungsverhältnis und der Prozessführung ab.

Mit geringen Zirkoniumdioxidanteilen bis ca. 10 Vol.-% können gegenüber Aluminiumoxid verbesserte Werte für

- Biegefestigkeit,
- K_{lc}-Faktor und
- Elastizitätsmodul erreicht werden.

Bei Werkstoffvarianten mit höheren Konzentrationen von Zirkoniumdioxid können durch geeignete Führung des Brennprozesses im Gefüge Platelets gebildet werden, die zur Verbesserung der Werkstoffeigenschaften beitragen (ZPTA-Keramik). Dies und weitere Maßnahmen zur Eigenschaftsoptimierung machen hervorragende Eigenschaften möglich, die in Bezug auf

- Biegefestigkeit,
- Elastizitätsmodul und

thermisches Verhalten

denen von Y-TZP überlegen sind [96].

Im Vergleich zu reiner Aluminiumoxidkeramik ist Zirkoniumdioxid für die Bearbeitung durch Schleifen aufgrund reduzierter Sprödigkeit und verbesserter Bruchzähigkeit besser geeignet.

2.6 HIP

Unter HIP-Zirkoniumdioxid (Hot Isostatically Pressed) versteht man dicht gesinterte Keramikrohlinge, die durch heißisostatisches Pressen zur Verringerung der Restporosität nochmals nachverdichtet werden [45, 103]. Die Vergütung der Rohlinge sorgt für eine maximale Gefügedichte bei minimaler Fehlstellendichte und stellt eine häufig angewandte Möglichkeit dar, den Weibull-Modul m zu steigern [87, 99]. Gehiptes Zirkoniumdioxid weist gegenüber Grün- bzw. Weißkeramik um 15 % höhere Festigkeiten auf [28]. Verglichen mit anderen keramischen Materialien zeigen sich extrem hohe Biegebruch- und Frakturfestigkeiten sowie Bruchzähigkeiten.

HIP-Zirkoniumdioxid ist gegenüber grünem oder vorgesintertem weißen Zirkoniumdioxid deutlich sicherer in der Anwendung. Nach Angaben des Herstellers DCS sind großspannige vollkeramische Brückenrestaurationen von 14-gliedrigen Brücken mit bis zu drei Zwischengliedern im Seitenzahnbereich realisierbar [8, 103].

Abb. 2.7: Einteilung von Zirkoniumdioxidkeramik

Die Vorteile von HIP-Zirkoniumdioxid haben sich bereits in der Medizin u.a. in der Hüft- und Kniegelenksendoprothetik bewährt. Unter dem Namen BIOLOX-Keramik (CeramTec AG, Plochingen, D) werden in Mitteleuropa seit über 30 Jahren Kugelköpfe und Pfanneneinsätze erfolgreich implantiert. Die Verträglichkeit und Korrosionsresistenz werden als außerordentlich gut eingestuft [8, 43, 68, 87]. Weiterhin werden verlängerte Standzeiten durch reduzierten Abrieb an den Keramiken, weniger Osteolysen und damit weniger Prothesenwechsel, also eine geringere Revisionsrate positiv bemerkt [www.ceramtec.de].

2.7 Grün- und Weißkeramik

Die hochreinen Rohstoffe werden über kaltisostatische Pressverfahren zu einem so genannten Grünling aufbereitet. Der poröse, kreideähnliche Grünkörper wird bei einer intermediaten Temperatur festigkeitssteigernd auf 55–70 % Dichte vorgesintert [87] und dann Weißling genannt. Die Weißkörper können maschinell leichter gefräst werden als bereits dichtgesintertes und/oder heißgepresstes Material (HIP). Die Endfestigkeit des Weißlings wird nach der subtraktiven Fräsbearbeitung der Restauration durch Dichtsintern bei 1350–1550°C erreicht. Dabei schrumpft das Werkstück linear um 15–25 % mit einer entsprechenden Erhöhung der Dichte. Dies entspricht einem Volumenschwund von 40–50 % [13, 83].

Qualitätskriterien wie HIP scheiden für Grün- und Weißkeramiken technologiebedingt aus [8, 87].

2.7.1 Bearbeitung von Grün- und Weißkeramiken

Zur Vereinfachung der Bearbeitung wurden teilgesinterte Werkstoffe entwickelt.

Generell sind Grün- und Weißbearbeitung sowie die so genannte Hart-, End- oder Nachbearbeitung endgültig gebrannter Keramiken voneinander zu unterscheiden [76].

Die Grünbearbeitung erfolgt direkt im Anschluss an die urformenden Verfahren Gießen, plastisches Formen und Pressen, nach dem Trocknen [96]. Grünlinge enthalten neben den keramischen Pulvermischungen (einschließlich der permanenten Additive) in der Regel noch Feuchte und meist organische Verflüssigungs-, Plastifizierungs- und Bindemittel oder andere Hilfsstoffe [96]. Das Gefüge des Grünkörpers wird nach dem Trocknen lediglich durch Adhäsionskräfte zusammengehalten.

Als Weißbearbeitung ist die Bearbeitung eines thermisch vorbehandelten Grünlings definiert, dessen Brennschwindung jedoch noch nicht abgeschlossen ist [87].

Damit kann, gegenüber den nur vorgetrockneten Grünlingen, das Handhabungsrisiko reduziert werden [96]. Die so genannte Weißkeramik ist frei von organischen Hilfsstoffen und einfärbbar, indem Metalloxide in das noch poröse Gerüst diffundieren. Sie zeigt eine Mohs-Härte von eins, vergleichbar mit Kreide [2].

Mit zunehmendem Sintergrad steigt der Widerstand, der einer Bearbeitung entgegenwirkt, während die verbleibende Sinterschwindung reduziert wird [42].

Die lineare Schrumpfung muss zu Beginn, bei der Konstruktion der Restauration bzw. bei der Berechnung der Fräsbahnen berücksichtigt werden [43, 45, 87].

Nachfolgend wird ein mehrstündiger Sinterbrand angeschlossen, um die notwendige Materialfestigkeit zu erreichen und die Restauration auf das richtige Maß zu schrumpfen [13].

Die Nach-, End- oder Hartbearbeitung bezieht sich auf die endgültig gebrannten Keramiken, die durch Formgebung, Grün- oder Weißbearbeitung schon so nah wie möglich an die Endabmessungen herangeführt wurden. Wegen der hohen Härte der keramischen Werkstoffe kommen hier überwiegend Diamantwerkzeuge zum Einsatz [96]. Um lokale thermische Spannungen und damit Rissinduktionen am Werkstück in Folge der schlechten Wärmeleitung des Zirkoniumdioxids zu vermeiden, ist bei der Hartbearbeitung die Wasserkühlung zwingend notwendig [67].

2.7.2 HIP versus Grün- oder Weißkeramik

Aufgrund der im Vergleich zu gehipten Keramiken geringeren Werkstoffverfestigung der Weiß- und Grünkeramikrohlinge sind bei reduziertem Werkzeugverschleiß kürzere Bearbeitungszeiten möglich [16, 37, 43, 87].

Aufwändig im gesinterten und gehipten Zustand beschliffen werden beispielsweise *DC*-Zirkon und Decim (Skelleftea, S). Zahntechnische, subtraktive CAD/CAM-Verfahren werden heute aus Gründen der Formstabilität nur noch als Weiß- oder Hartbearbeitung durchgeführt. Die in der Literatur noch immer häufig verwendeten Begriffe Grünkeramik, Grünbearbeitung etc. sind damit missverständlich gebraucht [42].

Der erhöhte Zeitbedarf und Werkzeugverschleiß lassen vermuten, dass sich die Bearbeitung teilgesinterter gegenüber dichtgesinterten Materialien durchsetzen wird. Bei der zunächst kostengünstiger erscheinenden Bearbeitungsvariante mit den teilgesinterten Materialien sind allerdings Zusatzinvestitionen in Spezialöfen zu berücksichtigen. Für die wirtschaftliche Auslastung dieser Öfen scheinen hohe Stückzahlen notwendig, die eine zentralisierte Sinterung qualitativ hochwertigen Zahnersatzes zu reduzierten Kosten sinnvoll erscheinen lassen [43, 45, 69, 88]. Eine endgültige Bewertung der Vor- und Nachteile dieser beiden Möglichkeiten im Hinblick auf die Fragestellung der Wirtschaftlichkeit und Alltagstauglichkeit ist zurzeit noch nicht möglich [33, 39, 88, 102].

2.7.3 Nachteile bei Weißkeramiken

Die Weiß- und Grünbearbeitung kann unter Umständen die Festigkeit des fertigen Bauteils beeinflussen. Eingebrachte Kerben oder sonstige Fehlstellen verschlechtern die mechanischen Eigenschaften des Endprodukts [76].

Die Anforderungen an vollkeramischen Zahnersatz bezüglich der Form-, Maßgenauigkeit und der Oberflächengüte sind hoch. Bei Weißbearbeitung und anschließendem Sintern können diese hohen Anforderungen nicht immer erfüllt werden. Beachtet man die Schrumpfungsparameter nicht exakt, kann es zu einer mangelnden Passgenauigkeit des Zahnersatzes kommen [13, 87].

Zusätzlich werden Schwindungs- und Verzugserscheinungen komplexer oder ausgedehnter Formen, die durch den nachträglichen Sinterprozess auftreten, noch nicht in dem Maße beherrscht, dass sich ausreichend präzise Teile ohne anschließende Bearbeitung erzeugen lassen.

Genau dieses manuelle Beschleifen jedoch muss, um Beschädigungen der Keramik zu vermeiden, unter Wasserkühlung erfolgen, die in den zahntechnischen Laboren nicht zur Standardausstattung gehört.

Durch den nachträglichen Sinterprozess können wichtige Eigenschaften der Werkstücke wie Dichte, Porosität und Korngröße nicht kontrolliert und auch kein nachverdichtender HIP-Prozess durchgeführt werden. Die optimierten Eigenschaften industriell dicht gesinterter und gehipter Rohlinge sind mit grün- oder weißkeramischen Zirkoniumdioxidrohlingen nicht zu erreichen [2].

2.8 CAD/CAM und das MPG

Die dabei eingesetzten, industriell präfabrizierten Rohmaterialien, die unter konstanten, reproduzierbaren Bedingungen hergestellt wurden, sind hinsichtlich Reinheit, Homogenität und Qualität des Materials immer solchen Materialien überlegen, die mit konventionellen handwerklichen Verfahrensweisen verarbeitet wurden. Folglich können deren positive Eigenschaften konstanter ausgenutzt werden [43].

Die MPG- und fertigungsrelevanten Informationen der rohen Blockmaterialien können über Barcodes in das verarbeitende System eingespeist werden [69].

2.9 Keramikgerechtes CAD/CAM-Konstruieren

Bei der Konstruktion von Restaurationen aus keramischen Werkstoffen mittels der CAD/CAM-Technik ist die werkstoffgerechte Gestaltung neben der funktionsgerechten Werkstoffauswahl von großer Bedeutung. Innerhalb dieses Herstellungsprozesses können bei Grün- bzw. Weißkeramiken auch durch ungenügende Modellation der Restauration verursachte Gefügefehler wie Risse, Poren, Lunker und Inhomogenitäten entstehen, die in einer unkontrollierten Verminderung der Bauteilfestigkeit resultieren, sofern die Schrumpfungsspannungen beim Sintern nicht bereits zur Zerstörung des Werkstückes führen [76].

Die beanspruchungsgerechte Gestaltung keramischer Bauteile muss die bei metallischen Werkstoffen geltenden Restriktionen und Richtlinien sehr viel strenger berücksichtigen, um lange Nutzungszeiten zu erzielen. Als wesentliche Ursache hierfür sind folgende typische Eigenschaften der bisher verfügbaren Keramikwerkstoffe zu nennen:

- Ausgeprägte Sprödbruchneigung, Schlag- und Stoßempfindlichkeit wegen fehlender plastischer Verformbarkeit,
- Erheblich niedrigere Werte der Zug- und Biegebruchfestigkeit im Vergleich zur Druckfestigkeit,
- Keine Dauerfestigkeit bei Zug- oder Biegebeanspruchung durch das unterkritische Risswachstum und
- Streuung der Belastbarkeitskennwerte individueller Restaurationen aufgrund von Einflüssen des Herstellungsprozesses und von Abweichungen der Zusammensetzung der Ausgangsstoffe [76].

2.9.1 Sintergerechtes Gestalten der Gerüste

Als Sintern wird per definitionem ein unter bestimmten Temperatur-, Druck-, Zeit- und atmosphärischen Bedingungen ablaufender Prozess beschrieben, der den Übergang eines Pulvers durch Bildung von Stoffbrücken in ein mechanisch festes Gebilde bewirkt. Durch Diffusions-, Verdampfungs- und Kondensationsprozesse nimmt das Porenvolumen ab. Es entsteht ein keramischer Körper mit einer etwa 98 %-igen Dichte [96].

Der Sintervorgang, durch den die endgültige, feste Bindung der Stoffpartikel erzeugt wird, ist, wie oben erwähnt, mit einer erheblichen Schwindung verbunden. Die lineare

Schwindung von Bauteilen aus Oxidkeramik beträgt etwa 20 %, es resultiert eine Volumenabnahme von knapp 50 %.

Ein sintergerecht gestaltetes Gerüst muss also insbesondere schwindungsgerecht konstruiert sein. Aus dieser Forderung lassen sich folgende Richtlinien zur Vermeidung von Rissen und Lunkern ableiten:

- Vermeiden von lokalen Massenanhäufungen im Gerüst durch möglichst gleiche Wandstärke und
- Vermeiden scharfkantiger Querschnittsänderungen durch stetige Konturübergänge.

Scharfe Kanten an der Außen- oder Innenkontur eines Gerüstes können auch bei isochorer Grün-/ Weißdichte zu Abplatzungen und Rissen führen, da diese Teilbereiche eine geringere thermische Zeitkonstante aufweisen als der massive Bauteilrest. Der Sinterprozess läuft deshalb innerhalb des Gerüstes zeitlich versetzt ab, woraus zusätzliche Schrumpfspannungen resultieren. Aus demselben Grund führen nicht verrundete Ecken zu Rissbildung [76].

2.9.2 "Intelligentes Gerüstdesign"

Den wissenschaftlichen Erkenntnissen aus klinischen Studien folgend, werden die CAD-Software und die CAM-Systeme permanent optimiert. Als interessante Neuerung kann das so genannte "intelligente Gerüstdesign" gewertet werden. Das Gerüst wird in der Designphase so verstärkt, dass ein hinreichendes Platzangebot für eine ästhetische Verblendung besteht, die Anzahl der Verblendkeramikabplatzungen jedoch verringert wird [69].

Begründet ist dies in der Gerüst-Verblendungsrelation. Die Schicht der Verblendmasse sollte 1,5–2 mm nicht überschreiten, da es sonst zu Kohäsionsfrakturen in der verblendkeramischen Schicht kommen kann [62].

2.9.3 Konnektorendimensionierung

Als kontinuierliche Qualitätssicherung werden bei der Mehrzahl der heutigen CAD/CAM-Systeme die Gerüstdaten bezüglich der Wandstärken und Konnektorenquerschnitte ständig mitberechnet, um eine notwendige materialgerechte Gerüstdimensionierung nicht zu unterschreiten [43, 66, 76]. In der Regel sind die Forderungen der Hersteller wie folgt: Mindestwandstärken für Frontzahnkronen werden mit 0,3 mm bzw. 0,4 mm angegeben [8, 9, 10, 107]. Seitenzahnkronen sollten einen Wert von 0,5 mm oder 0,6 mm [8] keinesfalls unterschreiten.

In Abhängigkeit von der Anzahl der Brückenglieder werden die Mindeststärken der Verbinder angegeben. Bei dreigliedrigen Brücken soll der Konnektorenquerschnitt je nach Hersteller mindestens 7 mm² betragen. Im Seitenzahnbereich liegen die Forderungen bei 12 mm² [9, 10, 107]. Andere Hersteller verlangen einen Querschnitt von 3 x 3 mm² bei einem Brückenglied und 4 x 4 mm² zwischen zwei Brückengliedern [8]. LÜTHY et al. wiesen in einer 2005 veröffentlichten Studie nach, dass für viergliedrige Brücken aufgrund der im Vergleich zu dreigliedrigen Brücken längeren Spanne ein Konnektorenquerschnitt von 7,3 mm² auch für Hochleistungskeramiken zu gering ist [40]. Die Dimensionierung der Konnektoren ist von besonderer Bedeutung, da die Haupt-Versagensursache, also der Bruch einer Restauration, die Fraktur im Bereich des Verbinders ist [40, 66].

2.9.4 Norm-Anforderungen für Dentalkeramik

In der 1998 veröffentlichten Norm DIN EN ISO 6872 (entspricht EN ISO 6872 = ISO 6872:1996) sind die geltenden Anforderungen für Dentalkeramiken zusammengefasst. Die Keramiken sind in Typen und Klassen eingeteilt. Je nach Indikationsgebiet und Herstellungsverfahren sollen sie unterschiedlichen Anforderungen genügen. Unter Typ I werden Produkte zusammengefasst, die in Pulverform geliefert und später mit Sinterbrand und -schrumpfung verarbeitet werden. Keramische Produkte vom Typ II sind für die Press- oder auch Schleif- beziehungsweise Frästechnik vorgesehen.

Während Typ I-Keramiken nochmals in acht Klassen unterteilt werden, sind für Typ II-Keramiken nur zwei Klassen benannt.

Klasse-1-Keramiken vom Typ I stellen Grundmassen zur Herstellung von Kronengerüsten dar. Dentin- und Schmelzverblendmassen sind in Klasse 2 beziehungsweise Klasse 3 zusammengefasst. Hals-, Transpa-, Intensiv-, Korrektur- und Glasurmassen werden in die Klassen 4 bis 8 eingestuft.

Die Klasse 1 der Typ II-Keramiken steht für Gerüste mit nachfolgender Verblendung durch Typ I, Klasse 2 bis Klasse 8 keramische Massen. Für die Herstellung von Inlays und Onlays ohne weitere Beschichtung (maximal noch Bemalung) existiert Klasse 2. Gerüstkeramiken müssen eine Mindestbiegefestigkeit von mehr als 100 MPa aufweisen. Für Verblendkeramiken werden Biegefestigkeitswerte von mindestens 50 MPa, für Typ II, Klasse 2-Keramiken von mindestens 30 MPa gefordert [12, 33, 34]. Im Vergleich dazu sind in Tabelle 2.4 die Biegefestigkeiten von Schmelz und Dentin aufgeführt.

	Dentin	Schmelz
K _{lc} [MPam ^{1/2}]	3	1
σ [MPa]	80	20

Tab. 2.5: Risszähigkeit und Biegefestigkeit von Zahnschmelz und -dentin [33]

Die oben genannten Anforderungen haben im Moment keine Gültigkeit für Zirkoniumdioxidkeramiken. Hierfür wird aktuell eine Norm entwickelt.

3. Problemstellung/ Zielsetzung

In der zahnärztlichen Prothetik wird seit längerer Zeit bioinerter, vollkeramischer Zahnersatz in immer größerem Umfang von den Patienten gewünscht und von den Zahnärzten genutzt.

Hochfestes Zirkoniumdioxid wird seit vielen Jahren erfolgreich verwendet. Dieser Werkstoff ist vielfach auf physikalische, mechanische und andere Messdaten, die für erfolgreiches Implementieren in die Mundhöhle relevant sind, getestet worden.

Diverse Studien über werkstoffkundliche Kenndaten und zunehmend klinische Langzeitstudien werden veröffentlicht.

Insbesondere die Festigkeit gegenüber Zug, meist als Biegefestigkeit angegeben, und auch die Risszähigkeit sind in dieser Hinsicht die wichtigsten mechanischen Kennwerte.

Der praktisch tätige Zahnarzt beurteilt die von ihm für eine Restauration ausgewählte Keramik meist nach der Biegefestigkeit, die durch den Hersteller in seiner Produktbeschreibung angegeben wird. Zusätzlich können noch Literaturwerte aus zahnärztlichen Zeitschriften hinzugezogen werden, um zu einem unabhängigeren Urteil zu kommen.

Die Zahl der Anbieter keramischer Materialien für den dentalen Bedarf steigt ständig. Derzeit sind über 20 Systeme auf dem Markt, so dass es zunehmend schwieriger wird, sich zu orientieren und eine Entscheidung für die eigene Nutzung zu fällen. In dieser Arbeit sind drei zirkoniumdioxid-basierte Weißkeramikmaterialien ausge-

wählt worden, um deren Verhalten und Eigenschaften unter vergleichbaren Bedingungen zu testen.

Die Aufgabe dieser Arbeit bestand darin, die im Zuge des wachsenden wirtschaftlichen Druckes auf zahntechnische Labore entwickelten, im Vergleich zu den bereits bekannten (HIP-ZrO₂) Hochleistungskeramiken effizienter zu bearbeitenden Grünund Weißkeramiken auf die oben genannten elementaren Kennwerte zu untersuchen und eine Bewertung und Einordnung diesen gegenüber vorzunehmen.

Für das Material *DC*-Shrink wurde speziell das Dimensionsverhalten in Abhängigkeit von etwaigen Bedienfehlern des Sinterofens, die durch Temperatursteigerung bzw. -senkung von je 50°C und Variation der Sinterschalenbefüllung simuliert wurden, untersucht.

Die Untersuchung der drei Keramiken beinhaltete die Ermittlung der Sinterschrumpfung, da alle Prüfkörper vergrößert hergestellt werden mussten und anschließend während des Sinterbrandes auf ihre Endgröße schrumpften.

Die Bestimmung der Biegefestigkeit erfolgte im Dreipunkt-Biegeversuch. Nachteilig für eine korrekte Einschätzung der ermittelten Werte ist deren große Streubreite.

Um eine Aussage über die Streuung der Biegefestigkeitswerte und die Defektverteilung treffen zu können, wurde zusätzlich die Weibull-Analyse als Verfahren der Schadens- und Ausfallstatistik durchgeführt. Auf diesem Weg konnte die Zuverlässigkeit der Keramiken ermittelt werden.

Die E-Moduln für die einzelnen Prüfkörper wurden aus deren Biegefestigkeitswerten bestimmt.

Die Rissanfälligkeit oder Sprödigkeit der Keramiken wurde durch die Untersuchung der kritischen Risszähigkeit K_{Ic} beurteilt, die die Fähigkeit spröder Materialien wie Keramiken widerspiegelt, Verformungsenergien zu absorbieren und so der schnellen Ausbreitung von Rissen entgegenzuwirken.

Als einer der beiden wichtigsten Kennwerte bietet die Risszähigkeit zugleich den Vorteil, gegenüber der Prüfkörperform und -qualität weniger nachteilig durch Abweichungen beeinflusst zu werden.

4. Material und Methode

4.1 Verwendete Materialien

Im Rahmen dieser Arbeit wurden drei auf Zirkoniumdioxid basierende Gerüstkeramiken verschiedener Hersteller, die für die CAD/CAM-Technik zur Verfügung stehen und der Gruppe der Weißkeramiken zugehörig sind, untersucht. In alphabetischer Reihenfolge sind dies:

4.1.1 Cercon base (DeguDent GmbH, Hanau, D)

Erstmals auf der IDS 2001 vorgestellt, handelt es sich bei dem Cercon-System um ein Kopierfräsverfahren. ZrO₂-Pulver wird isostatisch gepresst, durch maschinelle Bearbeitung in Rohlingsform gebracht und anschließend für zwei Stunden bei 850°C vorgesintert. Die Kronen- und Brückengerüste werden aus Wachs bzw. Kunststoff modelliert, per Laser abgetastet und auf den entsprechenden ZrO₂-Rohling übertragen.

Abb. 4.1: Cercon base-Rohling

Der Fräsvorgang erfolgt mit Hartmetallinstrumenten ohne Wasserkühlung.

Eine computergestützte Designphase (CAD) fand bis 2004 nicht statt. Es handelte sich bis zu diesem Zeitpunkt ausschließlich um ein CAM-System. Seit wenigen Jahren ist die Herstellung von Einzelkronen auch über das CAD-System möglich.

Eine bessere Langzeitstabilität im Mundmilieu wird durch den Zusatz von 0,25 % AI_2O_3 erwartet.

Cercon base-Rohlinge stehen in den folgenden Größen zur Verfügung:

- 12 mm für Einzelkronen,
- 30 mm für dreigliedrige Brücken,

- 38 mm für viergliedrige Brücken,
- 47 mm für bogenförmige Brücken und mehrspannige Konstruktionen.

4.1.2 DC-Shrink (DCS Dental AG, Allschwil, CH)

Mit dem DCS *PRECI*DENT-System können verschiedene Werkstoffe wie Metalle, Kunststoffe und Keramiken bearbeitet werden. Darunter auch *DC*-Shrink, das unter optimierten industriellen und MPG-konformen Bedingungen hergestellt und in Form rechteckiger Blöcke angeboten wird. Die im Vergleich zum chemisch identischen *DC*-Zirkon weniger arbeits- und zeitintensive Weißbearbeitung des *DC*-Shrink bedeutet allerdings einen Verzicht auf den Material optimierenden, Fehler reduzierenden HIP-Prozess, da nachfolgend gesintert werden muss. Bei gleicher Zusammensetzung weist *DC*-Shrink niedrigere Festigkeitseigenschaften auf als *DC*-Zirkon.

4.1.3 Lava frame (3M ESPE AG, Seefeld, D)

Seit der Markteinführung im Jahr 2001 besteht für Lava frame das Fräszentrumskonzept. Die Gerüste werden ausschließlich in diesen Fräszentren erstellt, gesintert und anschließend in das entsendende zahntechnische Labor verschickt.

Jeder Frame ist durch zwei Barcodes gekennzeichnet. Der erste Barcode verschlüsselt die Charge. Die Restauration wird exakt um die für die entsprechende Charge am Zirkoniumdioxid gemessenen Sinterparameter vergrößert gefräst, um die auftretende Sinterschrumpfung auszugleichen. Für jede Charge werden die Sinterparameter neu bestimmt, per Barcode auf dem Frame gespeichert und von der Maschine vor dem Fräsprozess eingelesen. Durch den zweiten Barcode werden die Rohlingsgrößen kenntlich gemacht. Derzeit gibt es Lava frame in drei verschiedenen Größen:

- 19 mm,
- 40 mm,
- 60 mm,

die je nach Indikation und Dimension der Restauration ausgewählt werden.

Abb. 4.2: Lava frame-Rohling

Zwischen dem Fräs- und dem Sinterprozess besteht die Möglichkeit, die Gerüste in sieben verschiedenen Farben aus den Lava frame-shade-Färbelösungen, angelehnt an das VITAPAN classical-System (VITA Zahnfabrik, Bad Säckingen, D), einzufärben.

4.2 Cercon base, DC-Shrink, Lava frame

Die in der folgenden Tabelle angegebenen klinischen und werkstoffkundlichen Informationen beruhen allesamt auf Herstellerinformationen.

	Cercon base	DC-Shrink	Lava frame
Indikation	FZ/SZ-Kronen 3-, 4-gliedrige Brücken Brücken mit max. 47 mm anatomi- scher Länge Primär- Teleskopkronen Inlaybrücken Extensionsbrücken bis zu 1 Prämolarenbreite	EZ-Kronen 3-, 4-gliedrige Brücken	FZ/SZ-Kronen 3-6-gliedr. Brücken mit max. 2 aufeinander folgen- den Brückengliedern Primärteleskope Freiendbrücken bis zum 2. Prämolaren
Kontraindikation	Bruxismus und therapieresistente Parafunktionen	Bruxismus und the- rapieresistente Pa- rafunktionen	Freiendbrücken bei Bruxismus
Präparation	90° Hohlkehlpräpa- ration; Stufe mit innen gerundeter Kante	Hohlkehlpräparation	Hohlkehlpräparation; Stufe mit abgerun- detem Innenwinkel
Provisorische Be- festigung	möglich	möglich	möglich

Tab. 4.1: Materialkenngrößen gemäß Herstellerangaben

Definitive Befestigung	konventionell oder adhäsiv	konventionell oder adhäsiv	konventionell oder adhäsiv
Digitalisierung	extraoral, Laser	extraoral, Laser	extraoral, Weißlicht
Gerüstfarbe	weiß, elfenbeinfarben	weiß	weiß, einfärbbar (7 Farben)
Zusammensetzung	ZrO ₂	ZrO ₂	ZrO ₂
	Y_2O_3	Y ₂ O ₃	Y_2O_3
	AI_2O_3	AI_2O_3	HfO ₂

Tab. 4.2: Herstellerangaben für das zahntechnische Labor

	Cercon base	DC-Shrink	Lava frame
Verblendkeramik	Cercon ceram kiss	VITAVM9	Lava ceram
	Cercon ceram		
	express		
Sinterofen	Cercon heat	VITA ZYrcomat	Lava Therm
Sintertemp. [°C]	1350	1530	1500
Ofenverweilzeit	6	7,5	11 ^{*)}
Insgesamt [h]			
Aufwärmdauer [h]	k.A.	1,5	2,5
Sinterdauer [h]	2	2	2
Abkühlphase [h]	k.A.	4	3
Sinterschrumpfung	ca. 30 %	ca. 20 %	linear, 20-25 %
Biegefestigkeit	900	1000	>1100 (PUNCH-Test)
[MPa]			
E-Modul [GPa]	210	210	>205
K _{lc} [MPam ^{1/2}]	k.A.	7	5-10
Korngröße [µm]	k.A.	k.A.	0,5
Vickershärte	k.A.	k.A.	1250
[N/mm ²]			
WAK	10,6x10 ⁻⁶ /K	10x10 ⁻⁶ /K	10x10 ⁻⁶ /K
Dichte [g/cm ³]	k.A.	6	6,08

*) zusätzlich 3,5 h Vortrockenzeit [8, 9, 10, 40, 41, 49, 50, 66, 69, 107]

4.3 Herstellung der Prüfkörper

Bei Auslieferung durch die Hersteller an die entsprechenden Fräszentren befinden sich die Zirkoniumdioxidkeramikblöcke in Metall- (*DC*-Shrink) bzw. Kunststoff-halterungen (Cercon base und Lava frame), mit deren Hilfe die getrockneten und vorgesinterten Blöcke in die jeweilige Fräsmaschine eingespannt werden.

Für die vorliegenden Untersuchungen wurden alle Keramikblöcke aus ihren Halterungen entfernt und anschließend mit Hilfe von in einer Sägevorrichtung fixierten Buehler-Diamanttrennscheiben, metallgebunden, Serie 15LC, 102 mm x 0,3 mm, grob in die vorgesehene Prüfkörperform gebracht.

Der Sägevorgang von Cercon base und Lava frame erfolgte trocken unter einer Absaugvorrichtung für die auftretenden feinen Stäube. *DC*-Shrink wurde nach den Empfehlungen des Herstellers unter kontinuierlicher, geringer Wasserzufuhr zum Sägeblatt bearbeitet, so dass keine Stäube entstanden, sondern ein feiner Schlamm. Weiterhin wurden die Prüfkörper allseitig am Schleifgerät Metasinex PT 232 (Prätech Berlin, D) auf eine Prüfkörperform von ca. 15 x 1,5 x 47 mm getrimmt. Dazu wurden Diamantscheiben mit einer Körnung von 54 und 10 µm verwendet.

Anschließend wurden die Abmessungen der Prüfkörper sowie das Vorhandensein planer Flächen kontrolliert, wie auch das Fehlen von Abplatzungen an den Prüfkörperrändern, Sägeriefen oder Fehlstellen auf den Glattflächen.

Für die weiteren Untersuchungen wurden nur solche Prüfkörper verwendet, die den oben genannten Anforderungen entsprachen, um eine Vergleichbarkeit der Ergebnisse zu erzielen und falsche Ergebnisse durch vorzeitiges Versagen der Keramiken weitgehend auszuschließen. Dies könnte ausgehend von einem Risswachstum aus den Abplatzungen resultieren.

Die *DC*-Shrink-Prüfkörper konnten aufgrund der Ofenfreigabe durch die VITA vor Ort im VITA ZYrcomaten (VITA Zahnfabrik, Bad Säckingen, D) gesintert werden.

Abb. 4.4: VITA ZYrcomat

Cercon base und Lava frame wurden für den Sinterprozess in die jeweiligen Fräszentren gesandt. Abschließend wurden alle Prüfkörper vor ihrer weiteren Verwendung mit Poliertüchern, Diamantsuspension 6 µm/ 3 µm und einem Schmiermittel hochglanzpoliert.

4.4 Weiterführende Untersuchungen mit DC-Shrink

Die vom Hersteller DCS empfohlene Sintertemperatur von 1530°C unter dem in Tabelle 4.3 aufgeführten Sinterprotokoll sollte kritisch betrachtet und durch Temperaturveränderungen von ± 50°C bei ansonsten identischem Sinterregime evaluiert werden. Die dazu notwendigen Untersuchungen erfolgten wie unten aufgeführt:

Ofenbelegung bei gleichem Sinter- regime	1480°C	1530°C	1580°C
Einzelbelegung EB	6 Prüfkörper	6 Prüfkörper	6 Prüfkörper
volle Belegung vB (3 Proben)	6 Prüfkörper	6 Prüfkörper	6 Prüfkörper

Tab. 4.3: Prüfkörperbelegung des Ofens bei entsprechender Sintertemperatur

4.5 Sinterschrumpfung

Zur Ermittlung der beim Sinterprozess der vormals kreideweichen keramischen Prüfkörper auftretenden Volumenschrumpfung wurden diese nach Kontrolle der Prüfkörpergeometrie mit der Messlehre (TSB Kommunikationstechnik, Edling, D) jeweils dreimal in Höhe, Breite und Dicke ausgemessen. Die Mittelwerte wurden gebildet und dokumentiert. Anschließend erfolgte die Ofensinterung. Nach abgeschlossenem Sinterbrand wurden die Prüfkörper aufgrund der Markierungen und ihrer Lage im VI-TA ZYrcomaten (nur *DC*-Shrink) wieder eindeutig zugeordnet und erneut nach dem oben genannten Schema vermessen. Die Zuordnung der Prüfkörper von Cercon base und Lava frame erfolgte anhand der aufgebrachten Markierungen. Die prozentuale Abweichung wurde errechnet, zur übersichtlichen Darstellung in Tabellenform fixiert und mit den Herstellerangaben verglichen.

4.6 Biegefestigkeitsbestimmung im Dreipunkt-Biegeversuch

In einer Universal-Prüfmaschine (Zwick Z010, Zwick, Ulm, D) wurden alle Prüfkörper mittig und senkrecht bis zur Fraktur belastet. Jedes der so erhaltenen zwei Bruchstücke wurde anschließend in einem weiteren Biegeversuch nochmals gebrochen.

Verwendet wurde ein Prüfstempel, ummantelt von einer Polyesterfolie. Die Folie diente der Verhinderung vorzeitiger Prüfkörperfrakturen durch Rissentstehung. Weiterhin wurde eine Druckfinne genutzt, deren Stützweite (I) 10 mm betrug.

Die Prüfkörper wurden gleichmäßig und zunehmend unter einer Vorschubgeschwindigkeit von 0,5 mm/min belastet. Der Versuchsabbruch erfolgte bei 40 % Kraftabfall. Die Bestimmung der Frakturwerte erfolgte anhand eines gleichzeitig aufgezeichneten Belastungsdiagramms (Zwick testXpert V 9.0 Software).

Der Querschnitt (Höhe h, Breite b) jedes Prüfkörperbruchstückes wurde entlang der Frakturlinie mit Hilfe eines elektronischen Messschiebers und einer Genauigkeit von ± 0,01 mm bestimmt.

Bei linearem Spannungsverlauf errechnet sich die Biegefestigkeit σ nach folgender Formel:

(1)
$$\sigma = \frac{M}{W}$$
 σ = Biegefestigkeit [N/mm² = MPa]
M = Biegemoment [N mm]
W = Widerstandsmoment [mm³]

Die Kraft wirkt auf die Mitte des Prüfkörpers. Folglich befindet sich das größte Biegemoment unter dem Angriffspunkt der Last. Das Biegemoment ergibt sich aus folgendem Zusammenhang:

(2)
$$M = \frac{l \cdot F}{4}$$
 M = Biegemoment [N mm]
I = Stützabstand [mm]
F = Bruchlast [N]

Das Widerstandsmoment hängt von der Prüfkörperbreite, der -höhe sowie der Querschnittsform des Prüfkörpers ab. Für rechtwinklige Prüfkörper wird das Widerstandsmoment aus der nachstehenden Gleichung ermittelt:

(3)

$$W = \frac{b \cdot h^2}{6}$$

 $W = Widerstandsmoment [mm3]$
 $b = Breite [mm]$
 $h = H\ddot{o}he [mm]$

Werden diese drei Gleichungen zusammengefasst, ergibt sich für die Berechnung der Biegefestigkeit folgende bekannte Formel:

(4)	$\sigma = \frac{3 \cdot l \cdot F}{1 \cdot F}$	σ	=	Biegefestigkeit	[N/mm ² = MPa]
	$2 \cdot b \cdot h^2$	I	=	Stützabstand	[mm]
		F	=	Bruchlast	[N]
		b	=	Breite	[mm]
		h	=	Höhe	[mm]

4.7 Weibull-Analyse

Die Weibull-Analyse für keramische Werkstoffe wurde für Cercon base, *DC*-Shrink und Lava frame jeweils bei den entsprechenden Sintertemperaturen durchgeführt. Zusätzlich wurden die Weibull-Moduli für *DC*-Shrink bei 1480°C und 1580°C bestimmt.

Alle Messreihen bestanden aus mindestens 20 Biegefestigkeitswerten.

Zur Ermittlung der Weibull-Verteilung wurden die Biegefestigkeitswerte erst aufsteigend angeordnet und nummeriert von 1-n (n=±28).

Für die bereits ermittelten Biegefestigkeiten wurden unter Zuhilfenahme des Programms Microcal Origin, V 7.5 die entsprechenden Versagenswahrscheinlichkeiten P errechnet.

(5)	$P = \frac{i - 0.5}{i - 0.5}$	Pi	 Versagenswahrscheinlichkeit
	n n	i	= Prüfkörpernummer
		n	= Prüfkörperanzahl

Im Weibull-Diagramm wurde In In 1/ (1-P) gegen In σ aufgetragen. Eine Ausgleichsgerade wurde gebildet, aus deren Anstieg der Weibull-Modul m bestimmt werden konnte. Eine große Streuung der Festigkeitswerte wird dabei durch einen kleinen Weibull-Modul gekennzeichnet. Zusätzlich wurde nach Gleichung (6) die Weibull-Festigkeit σ_0 ermittelt, die bei In In 1/ (1-P) = 0 bzw. P = 0,632, einer Ausfallwahrscheinlichkeit von 63,2 %, vorlag. (6)

4.8 Risszähigkeitsbestimmung mit der Indentermethode

Für die Ermittlung der Risszähigkeitswerte der Bruchstücke aus dem vorangegangenen Dreipunktbiegeversuch wurde das Härteprüfgerät "HMO 10u" der Firma Heckert (Leipzig, D) verwendet. Das Ausmessen der Vickers-Härteeindrücke erfolgte an dem verkehrten Auflichtmikroskop Metaval (Carl Zeiss, Jena, D), dessen Bilder von einer angeschlossenen Videokamera aufgenommen und in einem PC mit Hilfe des Programms WinTV gespeichert wurden.

Die Härteeindrücke nebst der von ihnen ausgehenden Risse wurden dann mit dem Bildverarbeitungsprogramm Image P2 (H&K Messsysteme, Berlin, D) ausgemessen. Die Messskala wurde mit Hilfe eines Objektmikrometers (100:1) der Firma Carl Zeiss (Jena, D) geeicht.

4.8.1 Setzen der Vickers-Härteeindrücke

Um Ausprägungen von vier Rissen, jedoch möglichst wenig Abplatzungen zu erreichen, wurden die Härteeindrücke mit einer Auflagekraft von 98 N vorgenommen. Die gewählte Haltezeit betrug 30 Sekunden.

Pro Prüfkörperbruchstück wurden jeweils drei Härteeindrücke produziert. Direkt im Anschluss daran erfolgte die lichtmikroskopische Aufnahme der Eindrücke sowie der daraus resultierenden Risse, um eventuell fortschreitendes unterkritisches Risswachstum und folglich falsche K_{lc}-Werte zu verhindern.

Abb. 4.5: Schematische Darstellung des Dreipunkt-Biegeversuches [19, 61]

Abb. 4.6: Phasen der Rissentstehung [58]

4.8.2 Ausmessen der Vickers-Härteeindrücke

Das Bild eines Härteeindruckes wurde über Auflichtmikroskop, Kamera und PC gespeichert. Die Eichung des Messfeldes erfolgte mit Hilfe eines 100:1-Objektmikrometers der Firma Carl Zeiss (Jena, D), das lichtmikroskopisch bei einer 20-fachen Vergrößerung aufgenommen wurde.

Zur Bestimmung der Risslängen in µm wurde ausgehend von der Spitze der Pyramide, dem tiefsten Punkt des Härteeindruckes, bis zum sichtbaren Ende des Risses gemessen. Alle vier Risslängen wurden auf diese Weise ermittelt. Zur Minimierung des Messfehlers erfolgte die Messung eines Risses jeweils dreimal und der Mittelwert wurde bestimmt.

Beide Diagonalen des Vickers-Härteeindruckes wurden in µm ausgemessen. Zur Minimierung des Messfehlers erfolgte die Messung einer Diagonale jeweils dreimal. Die Mittelwerte dieser Messungen wurden gebildet. Daraus wurde das arithmetische Mittel gebildet, so dass für die weiteren Berechnungen nur noch ein Wert vorlag.

Abb. 4.7: Vickers-Härteeindruck in 20-facher Vergrößerung

Abb. 4.8: Vickers-Härteeindruck mit den relevanten Variablen, s. Formel (8)

Zwischen dem Setzen der Eindrücke und dem Ausmessen der Risslänge sollten nur geringe zeitliche Differenzen liegen, da eine Zeitverzögerung unterkritisches Risswachstum hervorrufen könnte.

4.8.3 Ermittlung der E-Moduln

Für den zur K_{lc}-Wert-Berechnung notwendigen E-Modul wurde in der vorliegenden Arbeit nicht auf die von den Herstellern veröffentlichten Werte zurückgegriffen.

Vielmehr wurden anhand der bei der Biegefestigkeitsbestimmung im Dreipunkt-Biegeversuch erlangten Werte die Koordinaten aus den Kraft-Weg-Kurven für die einzelnen Prüfkörper bei der Berechnung zugrunde gelegt.

Zwick testXpert V 9.0 Software zeichnete im Kraft-Weg-Belastungsdiagramm für jeden Prüfkörper eine Kurve. Die einzelnen Koordinaten wurden in das Programm Microcal Origin, V 7.5 geladen und die Kurve rekonstruiert. Der lineare Teil des Anstiegs der Kurve kurz vor dem Bruch wurde markiert, eine Ausgleichsgerade konstruiert und der Anstieg errechnet. Mit diesem Wert und der Formel (7) konnte so der konkrete E-Modul E_b des Prüfkörpers ermittelt und für die weiteren K_{Ic}-Wert-Berechnungen genutzt werden.

(7)

$$E_{b} = \frac{F \cdot l^{3}}{4 \cdot f \cdot h^{3} \cdot b}$$

$$E_{b} = E-Modul$$

$$I = Stützabstand$$

$$[mm]$$

$$F = Bruchlast$$

$$[N]$$

$$b = Breite$$

$$[mm]$$

$$h = Höhe$$

$$[mm]$$

$$f = Durchbiegung$$

$$[mm]$$

4.8.4 Berechnung der K_{lc}-Werte

Nach ANSTIS in MUNZ/FETT kam bei der Berechnung der K_{Ic}-Werte die unten genannte Formel (8), die von den Autoren für die praktische Anwendung ausdrücklich empfohlen wurde, zum Einsatz:

(8)

$$K_{Ic} = 0.032H\sqrt{a} \left(\frac{E}{H}\right)^{\frac{1}{2}} \left(\frac{c}{a}\right)^{-\frac{3}{2}} K_{Ic} = \text{Risszähigkeit} \qquad [MPam^{\frac{1}{2}}]$$

$$H = \text{Härte} \qquad [N/mm^2]$$

$$a = \text{Eindruckdiagonale} \qquad [\mu m]$$

$$E = E-\text{Modul} \qquad [N/mm^2]$$

$$c = \text{Risslänge} \qquad [\mu m]$$

Der Härtewert wurde nach der Vickers-Formel aus der Belastung F und der Größe d, mit d=2a berechnet:

(9)
$$H = \frac{1,854 \cdot F}{d^2}$$

H = Härte [N/mm²]
F = Belastung [N]
d = Eindruckdiagonale [µm]

4.9 Statistische Auswertung

Die statistische Auswertung wurde mit Hilfe des Programms Microcal Origin, V 7.5 vorgenommen. Unter der Annahme, dass die ermittelten Werte der Normalverteilung unterliegen und voneinander unabhängig sind, wurde die Varianzanalyse vorgenommen.

Die Varianzanalyse erfolgte mit Hilfe des Ein-Weg-Anova-Tests.

Allen statistischen Tests wurde das Signifikanzniveau von p=0,05 zugrunde gelegt. Nach Durchführung eines Paarvergleiches resultierte bei einer Irrtumswahrscheinlichkeit von 5 % ein p-Wert, der die Nullhypothese (H_0 – beide Stichproben verhalten sich gleich) bestätigt (p > 0,05) oder im umgekehrten Fall die Nullhypothese ablehnt (p < 0,05). In diesem Fall war das Testergebnis als signifikant zu bezeichnen [70].

Zur graphischen Darstellung der ermittelten Daten wurden Box-Whisker-Plots verwendet.

Innerhalb dieser deskriptiven Statistik wurden die Quantile bestimmt. Der Wert x einer Verteilungsfunktion, der mit einer Wahrscheinlichkeit p nicht überschritten wird, heißt Quantil x_p . Das Quartil $x_{1/2}$ entspricht dem Medianwert. Der Medianwert ist der Wert, der mit einer Wahrscheinlichkeit von 0,5 nicht überschritten wird. Er ist dadurch charakterisiert, dass er die Messreihe in zwei Hälften teilt, so dass ober- und unterhalb des Medianwertes jeweils 50 % aller gemessenen Werte liegen.

Gegenüber dem Mittelwert bietet der Medianwert den Vorteil der Unempfindlichkeit gegenüber Extremwerten.

Das Quartil $x_{1/4}$ bezeichnet man als unteres Quartil, $x_{3/4}$ entspricht dem oberen Quartil [20, 29, 70].

Abb. 4.9: Graphische Darstellung der statistischen Ergebnisse im Box-Whisker-Plot

5. Ergebnisse

Im Folgenden werden die Ergebnisse der geprüften Materialien einzeln dargestellt. Für die drei zu prüfenden Weißkeramiken wurden die prozentuale Schrumpfung während des Sintervorganges, die Biegefestigkeit und anschließend die E-Moduln aus der zuvor berechneten Biegefestigkeit für die jeweiligen Prüfkörper bestimmt. Danach erfolgte die Ermittlung des Weibull-Moduls und der Weibull-Festigkeit.

Weiterhin wurde die kritische Risszähigkeit der Keramiken unter Verwendung des exakten Vickers-Härtewertes und des aus der Biegefestigkeit ermittelten E-Moduls bestimmt.

Die Aufführung der Materialien erfolgt in alphabetischer Reihenfolge.

Aufgrund der Vielzahl der einzelnen Messwerte werden diese hier nur exemplarisch aufgeführt. Sie sind im Anhang vollständig unter den in diesem Kapitel genannten Tabellen nachlesbar.

5.1 Cercon base

5.1.1 Sinterschrumpfung

Die in dieser Arbeit ermittelte durchschnittliche Schrumpfung des Materials Cercon base während des Sintervorganges lag bei 21,32 % (\pm 2,71 %). Ausgewertet wurden dazu 20 Prüfkörper, die vor und nach dem Sintern dreimal unabhängig vermessen wurden. Aus den Messungen wurde das arithmetische Mittel gebildet und in Tabellenform zusammengefasst. Die Messwerte der Keramik Cercon base können im Anhang (Tab. 9.1 – 9.4) nachgeschlagen werden.

Abb. 5.1: Box-plot Cercon base, Sinterschrumpfung

5.1.2 Biegefestigkeitsbestimmung

Im durchgeführten Dreipunkt-Biegeversuch wurden für Cercon base mittlere Biegefestigkeitswerte von 582,03 MPa (±133,08 MPa) ermittelt. Dazu wurden 23 Prüfkörper untersucht. Die in dieser Arbeit ermittelten Biegefestigkeitswerte von Cercon base erreichen damit knapp 65 % des Wertes für die Biegefestigkeit, der seitens des Herstellers angegeben wird.

Abb. 5.2: Biegefestigkeit von Cercon base im Vergleich zur Herstellerangabe

5.1.3 E-Modul-Bestimmung aus der Biegefestigkeit

Mit Hilfe der in Kapitel 4.5.3 erläuterten Methode konnte für Cercon base ein E-Modul von 158.302 MPa (±49.572 MPa) errechnet werden. Die berechneten Werte für jeden einzelnen Prüfkörper, im Anhang unter Tabelle 9.3 aufgeführt, wurden für die Ermittlung der kritischen Risszähigkeit zugrunde gelegt.

Nach mittigem Bruch der für die Biegefestigkeitsuntersuchungen gefertigten 23 Prüfkörper konnten für die K_{lc}-Wert-Bestimmung 46 Prüfkörper genutzt werden.

5.1.4 Weibull-Analyse

In der Tabelle 5.1 sind nebeneinander der Weibull-Modul, die mittlere Biegefestigkeit σ wie auch die Weibull-Festigkeit σ_o von Cercon base aufgeführt.

Weibull-Modul m	σ [MPa]	σ _o [MPa]
4,99	582,03	634,89

Tab. 5.1:Gegenüberstellung von Weibull-Modul m, Biegefestigkeit σ und Weibull-Festigkeit σ_{o}

Für die Weibull-Festigkeit σ_0 wurde ein Wert von 634,89 MPa errechnet. Sie überstieg die mittlere Biegefestigkeit des Materials um fast 53 MPa.

Die Weibull-Festigkeit weicht damit nur geringfügig von den im Dreipunkt-Biegeversuch ermittelten Biegfestigkeitswerten von 133,08 MPa ab.

In Abbildung 5.3 ist die Weibull-Analyse von Cercon base veranschaulicht. Die Prüfkörper wurden bei einer Temperatur von 1350°C gesintert. Aus dem Anstieg der Geraden ergab sich ein Weibull-Modul von 4.99.

Abb. 5.3: Weibull-Diagramm der Keramik Cercon base

5.1.5 Risszähigkeitsbestimmung

Die kritische Risszähigkeit der Probekörper von Cercon base wurde mit Hilfe der Formel (8) nach den Untersuchungen mit 3,86 MPam^{1/2} (±0,51 MPam^{1/2}) berechnet.

Abb. 5.4: Kritische Risszähigkeit von Cercon base

Ergebnisse

Untersucht werden konnten dazu 46 Prüfkörper, die mit jeweils drei Vickers-Härteeindrücken versehen wurden. Häufiger als bei den beiden anderen getesteten Keramiken *DC*-Shrink und Lava frame wurde durch die Vickers-Härteeindrücke eine Schollenbildung beobachtet. Diese Härteeindrücke wurden später nicht mit in die Berechnung der kritischen Risszähigkeit einbezogen.

Das lichtmikroskopische Bild der Abbildung 5.5 zeigt einen Vickers-Härteeindruck auf der Keramik Cercon base. Die Eindruckgrenzen und die Rissdimension waren mäßig bis gut erkennbar. In den darauf folgenden Abbildungen 5.6 und 5.7 ist der Fall der Schollenbildung dargestellt.

Abb. 5.5: Lichtmikroskopische Aufnahme eines Vickers-Härteeindruckes auf der Keramik Cercon base

Abb. 5.6, 5.7: Lichtmikroskopische Aufnahme eines Vickers-Härteeindruckes auf der Keramik Cercon base mit der dort häufiger auftretenden Schollenbildung

Die Messwerte der K_{Ic}-Wert-Bestimmung sind im Anhang (Tabelle 9.4) nachlesbar.

5.2 DC-Shrink

5.2.1 Sinterschrumpfung

Für die Beurteilung der Sinterschrumpfung wurden 15 Probekörper bei der vom Hersteller DCS vorgegebenen Sintertemperatur von 1530°C im VITA ZYrcomaten gesintert. Um die Laborbedingungen möglichst gut zu simulieren, wurde die Sinterschale jeweils mit mehreren Prüfkörpern belegt.

Die auf diese Weise ermittelte Schrumpfung lag bei 20,63 % (±1,76 %) und liegt damit im Bereich der vom Hersteller vorgegebenen ca. 20 %.

Abweichend von der empfohlenen Temperatur wurden bei $\pm 50^{\circ}$ C die Sinterschrumpfungen überprüft. Hier ergaben sich Werte von 20,8 % ($\pm 0,49$ %, 1480°C) und 20,9 % ($\pm 0,39$ %, 1580°C).

Abb. 5.8: Sinterschrumpfung der Keramik DC-Shrink bei 1530°C

5.2.2 Biegefestigkeitsbestimmung

Aufgrund der Ofenfreigabe des Herstellers VITA (Bad Säckingen, D) konnten abweichend vom Standardsinterbrand bei 1530°C und Mehrfachbelegung der Sinterschale zusätzlich noch Sinterbrände mit ±50°C durchgeführt werden.

Darüber hinaus wurde bei ansonsten identischem Sinterregime die gleiche Anzahl Probekörper mit Einzelbelegungen der Sinterschale dem Sinterbrand unterzogen.

Sintertemperatur [°C]	Biegefestigkeit σ_{3PB} [MPa]			
	Einzelbelegung (EB)volle Belegung (vB)			ig (vB)
1480	789,10	±184,28	712,57	±122,35
1530	762,66	±168,43	779,66	±277,10
1580	901,17	±385,24	824,74	±133,62

Tab. 5.2: Biegefestigkeiten der Keramik DC-Shrink

Beim Vergleich der ermittelten Biegefestigkeitswerte für die Einzelbelegung der Sinterschale mit der vollen Belegung zeigen sich für 1480°C und 1580°C höhere Festigkeitswerte bei der Einzelbelegung. Für die Standardsintertemperatur 1530°C konnten diese verbesserten Biegefestigkeitswerte nicht nachgewiesen werden. Allerdings ist die Differenz von 762,66 MPa (EB) zu 779,66 MPa (vB) nur sehr gering ausgeprägt und statistisch nicht signifikant zu unterscheiden.

Unter Einhaltung der im zahntechnischen Labor herrschenden Bedingungen und der Herstellervorgaben zur Verarbeitung wies *DC*-Shrink (1580°C, EB) die höchsten Biegefestigkeitswerte auf.

Abb. 5.9:Box-Plot der Biegefestigkeitswerte DC-Shrink (EB und vB)

	1480EB	1530EB	1580EB	1480vB	1530vB	1580vB
1480EB	-	n.s.	n.s.	n.s.	n.s.	n.s.
1530EB	0,68481	-	n.s.	n.s.	n.s.	n.s.
1580EB	0,31815	0,21248	-	n.s.	n.s.	n.s.
1480vB	0,16367	0,33066	0,05821	-	n.s.	S
1530vB	0,91640	0,84544	0,36759	0,37126	-	n.s.
1580vB	0,52485	0,24653	0,43623	0,01283	0,55508	-

Tab. 5.3: Statistische Auswertung der Biegefestigkeitswerte der Keramik DC-Shrink

5.2.3 E-Modul-Bestimmung aus der Biegefestigkeit

Analog zur Biegefestigkeitsbestimmung erfolgte die Ermittlung der E-Moduln für die verschiedenen Sintertemperaturen und Ofenbelegungen.

Tab. 5.4. E-Moduli DC-Sin lik					
Sintertemperatur [°C]	E-Modul [MPa]				
	Einzelbelegung (EB)volle Belegung (vB)				
1480	421.111	±291.857	154.868	± 43.755	
1530	321.560	±84.912	461.987	± 355.289	
1580	257.219	±106.509	353.848	±158.132	

Tab. 5.4: E-Moduln DC-Shrink

5.2.4 Weibull-Analyse

Tab. 5.5: Gegenüberstellung von Weibull-Modul m, Biegefestigkeit σ und Weibull-Festigkeit σ_0 für *DC*-Shrink in Ofeneinzelbelegung

Sintertemperatur [°C]	Weibull-Modul m	σ [MPa]	σ _o [MPa]
1480 (EB)	4,41	789,10	807,90
1530 (EB)	4,55	762,66	827,61
1580 (EB)	2,72	901,17	1040,65

In Tabelle 5.5 wurde die mittlere Biegefestigkeit σ der Keramik *DC*-Shrink der Weibull-Festigkeit σ_0 gegenübergestellt. Die Weibull-Festigkeiten können aus dem Schnittpunkt der Ausgleichsgeraden mit der x-Achse (In σ_0) ermittelt werden. Die Weibull-Festigkeiten für *DC*-Shrink in Ofeneinzelbelegung erreichten Werte von 807,90 MPa bis 1040,65 MPa und überstiegen damit den durchschnittlichen Wert der zur jeweiligen Temperatur gehörigen Biegefestigkeit um maximal 140 MPa.

Die Differenzen lagen innerhalb der im Abschnitt 5.2.2 aufgeführten Standardabweichungen für den Werkstoff *DC*-Shrink.

Abb. 5.10: Weibull-Diagramm der untersuchten Keramiken

In Tabelle 5.6 wurde die mittlere Biegefestigkeit σ der Keramik *DC*-Shrink nach Sinterung der Prüfkörper bei voller Ofenbelegung der Weibull-Festigkeit σ_0 gegenübergestellt. Ebenfalls aufgeführt ist der Weibull-Modul m.

Tab. 5.6: Gege	nüberstellung vo	n Weibull-Modul m, Biege	festigkeit $oldsymbol{\sigma}$ und Weibull	-Festigkeit σ ₀ für <i>DC</i> -
Shrink in volle	r Ofenbelegung			
\mathbf{a}	1 10 01			

Sintertemperatur [°C]	Weibull-Modul m	σ [MPa]	σ _o [MPa]
1480 (vB)	5,60	712,57	758,69
1530 (vB)	2,82	779,66	1047,18
1580 (vB)	6,53	824,74	879,18

Abb. 5.11: Weibull-Diagramm der untersuchten Keramiken

5.2.5 Risszähigkeitsbestimmung

Für die zu errechnenden K_{Ic}-Werte wurden die oben genannten, aus der Biegefestigkeitsermittlung bekannten E-Moduln zugrunde gelegt.

Tab. 5.7: Risszähigkeitswerte DC-Shrink

Sintertemperatur [°C]	K _{lc} [MPam ^{1/2}]				
	Einzelbelegung (EB) volle Belegung (vB)			ng (vB)	
1480	9,0	±2,9	5,3	±3,4	
1530	8,7	±2,6	7,5	±3,4	
1580	6,8	±1,5	7,3	±1,7	

Abb. 5.12: Box-Plot-Darstellung der K_{Ic}-Werte bei voller Ofenbelegung

Abb. 5.13: Box-Plot-Darstellung der K_{Ic}-Werte bei Ofeneinzelbelegung

	1480EB	1530EB	1580EB	1480vB	1530vB	1580vB
1480EB	-	n.s.	S	S	S	S
1530EB	0,57242	-	S	S	S	S
1580EB	0,00000	0,00001	-	S	n.s.	n.s.
1480vB	0,00000	0,00000	0,00172	-	S	S
1530vB	0,01627	0,04695	0,17510	0,00068	-	n.s.
1580vB	0,00012	0,00072	0,09722	0,00002	0,70076	-

Tab. 5.8: Statistische Auswertung der K_{Ic}-Werte der Keramik DC-Shrink

Abb. 5.14: Lichtmikroskopische Aufnahme eines Vickers-Härteeindruckes auf der Keramik *DC*-Shrink Die Messwerte der Keramik *DC*-Shrink sind im Anhang (Tab. 9.5 – 9.23) aufgeführt.

5.3 Lava frame

5.3.1 Sinterschrumpfung

Die hier ermittelte mittlere Schrumpfung der 27 Probekörper vom Material Lava frame liegt bei 22,32 % (\pm 6,03 %). Die Gerüste werden entsprechend der für die spezielle Charge bestimmten Sinterungsparameter vergrößert gefräst, um so den anschließenden Sinterschrumpf auszugleichen. Gemäß der Herstellerangaben liegt die Sinterschrumpfung zwischen 20 und 25 lin.%. Die Differenz von 5 % resultiert aus den unterschiedlichen Zirkoniumdioxid-Chargen, wobei ein Barcode jeden keramischen Grünkörper mit einer Chargennummer ausweist, die vor der Formgebung eingelesen wird. Die Messwerte der Keramik Cercon base können im Anhang (Tab. 9.24 – 9.27) nachgeschlagen werden.

Abb. 5.15: Box-Plot der Keramik Lava frame, Sinterschrumpfung

5.3.2 Biegefestigkeitsbestimmung

Im durchgeführten Dreipunkt-Biegeversuch erreichte Lava frame mittlere Biegefestigkeitswerte von 750,02 MPa (±118,19 MPa), die damit deutlich von den Herstellerangaben mit ca. 1100 MPa abwichen.

Die gemessenen Werte sind dem Anhang (Tab.9.25) zu entnehmen.

Abb. 5.16: Biegefestigkeit von Lava frame

5.3.3 E-Modul-Bestimmung aus der Biegefestigkeit

Für Lava frame konnte ein mittlerer E-Modul von 195.261 MPa (±59.380 MPa) errechnet werden. Die einzelnen Werte wurden wieder für die Ermittlung der kritischen Risszähigkeit zugrunde gelegt.

5.3.4 Weibull-Analyse

In der Tabelle 5.8 sind nacheinander der Weibull-Modul, die mittlere Biegefestigkeit σ wie auch die Weibull-Festigkeit σ_0 von Lava frame aufgeführt. Entsprechend dem Anstieg der Geraden liegt ein Weibull-Modul von m=7,26 vor.

Mit 798,12 MPa überstieg die Weibull-Festigkeit um rund 50 MPa die mittlere Biegefestigkeit und liegt damit innerhalb der Standardabweichung (±118,19 MPa) der gemessenen Biegefestigkeit.

In Abbildung 5.16 ist die Weibull-Analyse von Lava frame veranschaulicht. Die Prüfkörper wurden bei einer Temperatur von 1500°C gesintert.

Tab 50. Caganübaratallung yan V	leihull Madul m Diagofastialisit a	und Waihull Eastighait 🕿
Tab. 5.9. Gegenüberstenung von v	eibun-Modul III, biegelestigkeit O	und weibun-restigken 00

Weibull-Modul m	σ [MPa]	σ _o [MPa]
7,26	750,02	798,12

Abb. 5.17: Weibull-Diagramm der Keramik Lava frame

5.3.5 Risszähigkeitsbestimmung

Die kritische Risszähigkeit der Probekörper von Lava frame wurde nach den Untersuchungen mit 4,96 MPam^{$\frac{1}{2}$} (±0,85 MPam^{$\frac{1}{2}$}) berechnet.

Abb. 5.18: Kritische Risszähigkeit von Lava frame

Abb. 5.19: Härteeindruck auf Lava frame in der lichtmikroskopischen Aufnahme

(10)

6. Diskussion

6.1 *DC*-Shrink – Vergleich der drei untersuchten Sintertemperaturen

6.1.1 Sinterschrumpfung

Bei voller Belegung der Sinterschale wurde die Schrumpfung für die Keramik *DC*-Shrink bei der vom Hersteller vorgegebenen Temperatur von 1530°C und abweichend davon mit \pm 50°C untersucht. In Tabelle 6.1 sind die Sintertemperaturen, die zugehörigen mittleren Sinterschrumpfungen und die Ergebnisse der statistischen Auswertung bei einem Signifikanzniveau von p=0,05 dargestellt.

Sintertemperatur	Sinterschrum	pfung	ANOVA		
[°C]	[%]				
1480	20,8	(±0,49)	1480:1530	0,69611	n.s.
1530	20,6	(±1,76)	1530:1580	0,61671	n.s.
1580	20,9	(±0,39)	1480:1580	0,67282	n.s.

Tab. 6.1: Prozentuale Sinterschrumpfung von DC-Shrink bei Normtemperatur und abweichend ±50°C

Die Unterschiede in der prozentualen Sinterschrumpfung bei den drei verschiedenen Temperaturen sind statistisch nicht signifikant. Sie liegen im Fehlerbereich. Folglich hat eine Abweichung von 50°C, ausgehend von der durch die DCS Dental AG empfohlenen Sintertemperatur keine Auswirkung auf die Dimensionstreue und damit auf die Passgenauigkeit der Gerüstkeramik *DC*-Shrink.

Ausgangspunkt der Überlegungen war, dass gemäß der Formel (10) möglicherweise mehr Zeit oder ein größerer Energieeintrag notwendig sein könnten, um bei voller Ofenbelegung die Sintertemperatur von 1530°C zu erreichen bzw. dass bei voller Ofenbelegung und ausschließlich zeitdeterminierter Programmierung des Ofens für jedes einzelne Sinterobjekt unter Umständen weniger als die empfohlenen 1530°C zur Verfügung stehen.

$$Q = m * c * \Delta T$$

$$Q = Energie$$

$$[J]$$

$$m = Masse$$

$$[kg]$$

$$c = spezifische Wärme-$$

$$kapazität$$

$$[J/kg*K]$$

$$T = Temperatur$$

$$[°C]$$

Vergleicht man einen als Einzelstück bei 1530°C gesinterten Prüfkörper mit Proben, die bei voll belegter Sinterschale ebenfalls bei 1530°C gebrannt wurden, so kann bezüglich der Sinterschrumpfung kein Unterschied nachgewiesen werden, trotz der theoretisch unterschiedlichen Wärmekapazität im Ofen. Vergleichbare Ergebnisse wurden mit den um ±50°C von der Normtemperatur abweichenden Sinterbränden erzielt.

Auch eine Auswirkung der unterschiedlichen Positionierung der Werkstücke zu den drei Heizelementen des VITA ZYrcomaten hat den vorliegenden Untersuchungen zur Folge keine Auswirkungen auf das Sinterverhalten und die Dimensionstreue von *DC*-Shrink. Die Gründe dafür scheinen in dem geringen Volumen der Sinterschale und der schlechten Wärmeleitung des Aluminiumoxidgehäuses zu liegen.

Abb. 6.1: Box-Plot-Darstellung der Sinterschrumpfung von DC-Shrink

6.1.2 Biegefestigkeit

Tab. 6.2: Biegefestigkeiten der Keramik DC-Shrink

Sintertemperatur [°C]	Biegefestigkeit o _{3PB} [MPa]				
	Einzelbelegu	ng (EB)	volle Belegung (vB)		
1480	789,10	±184,28	712,57	±122,35	
1530	762,66	±168,43	779,66	±277,10	
1580	901,17	±385,24	824,74	±133,62	

Abb. 6.2: Biegefestigkeiten im Mittelwert, inkl. Standardabweichung

Aus den Messwerten wird ersichtlich, dass höhere Biegefestigkeitswerte der Keramik *DC*-Shrink mit höheren Sintertemperaturen erreicht werden können, unabhängig von der vollen Auslastung der Sinterschale oder der einzelnen Befüllung mit Prüfkörpern. Eine Ausnahme stellte in den Untersuchungen der Sintervorgang bei 1530°C (EB) dar. In diesem Fall war die ermittelte Biegefestigkeit im Vergleich zu 1480°C (EB) geringfügig kleiner. Die Unterschiede gelten jedoch auf der p=0,05-Ebene als statistisch nicht signifikant und liegen im Fehlertoleranzbereich.

	1480vB		1530vB		1580vB	
1480EB	0,16367	n.s.	-			-
1530EB	-		0,84544	n.s.		-
1580EB	-		-		0,43623	n.s.

Tab. 6.3: Ergebnisse der statistischen Auswertung der Biegefestigkeit der drei Sintertemperaturen

Die Biegefestigkeitswerte, die mit der einzelnen Belegung (EB) der Prüfkörper in der Sinterschale erzeugt wurden, sind höher als die Werte bei voll belegter Sinterschale. Allerdings sind die Unterschiede statistisch nicht signifikant. Der ermittelte Festigkeitswert von 1530°C (EB) stellt erneut die Ausnahme dar. Mit 762,66 MPa ist er entgegen der Erwartung und dem erkennbaren Trend geringfügig niedriger als der Vergleichswert von 1530°C (vB) mit 779,66 MPa.

Abb. 6.3: Biegefestigkeit der Keramik DC-Shrink in Abhängigkeit von der Sintertemperatur

Betrachtet man isoliert die Höhe der Biegefestigkeitswerte aus den vorliegenden Untersuchungen, die ein wichtiges Moment für die Stabilität der keramischen Prüfkörper darstellt, empfiehlt sich ein Sinterbrand der Keramik *DC*-Shrink mit Einzelbelegung der Sinterschale und einer Sintertemperatur von 1580°C.

6.1.3 Einflussgrößen auf die ermittelten E-Moduln aus Versuchsaufbau und Rechenroutine

Mit der Nutzung der Biege-E-Moduln besteht eine Variante, die die Möglichkeit bietet, anhand experimenteller Daten eine Bewertung der kritischen Risszähigkeit vorzunehmen.

Erwartet wurden, entsprechend den Angaben der Literatur, Elastizitätsmodulwerte um 200 GPa.

Die zur Anwendung gebrachte Methode ist Einflüssen, die aus dem Versuchsaufbau resultieren und der sich daran anschließenden Rechenroutine gegenüber sehr sensibel. Beim Anlegen der Ausgleichsgerade an die aufgezeichnete Biegefestigkeitskurve führen bereits geringgradige Abweichungen der Neigung in der Folge zu größeren Fehlern beim Errechnen der E-Modul-Werte.

Bei stark abweichenden E-Modul-Werten wurde nach den zugehörigen Biegefestigkeitswerten gesucht. Sind diese sehr gering bzw. sehr hoch gewesen, lässt dies auf eine gewisse Unwahrscheinlichkeit der daraus ermittelten E-Moduln schließen. Ein bereits vorhandener Fehler führt in der Rechenroutine dann dazu, dass sich ein Prüfkörper als weniger stabil erweist, als zu erwarten war. Zu hohe E-Modul-Werte könnten aus Messfehlern bei der Bestimmung der Prüfkörperdicke etc. entstanden sein. Werden die Messwerte in die Formeln für die späteren Berechnungen einbezogen, entsteht ein systematischer Fehler.

6.1.4 Weibull-Analyse

Sintertemperatur [°C]	Weibull-Modul m				
	Einzelbelegung (EB)	volle Belegung (vB)			
1480	4,41	5,6			
1530	4,55	2,82			
1580	2,72	6,53			

Die Diagramme in den Abbildungen 6.4 und 6.5 stellen die ermittelten Weibull-Moduln der Keramik *DC*-Shrink für die drei unterschiedlichen Sintertemperaturen dar.

Abb. 6.4: Gegenüberstellung der Weibull-Moduli m der unterschiedlichen Sintertemperaturen

Abb. 6.5: Weibull-Moduli m in Abhängigkeit von der Sintertemperatur

Der höchste Weibull-Modul wurde mit m=6,53 durch Sinterung der Keramik *DC*-Shrink bei 1580°C (vB) erzielt. Demnach trat dort eine geringe Streuung der Festigkeitswerte auf. Die geringsten Weibull-Moduln wurden mit den Sinterbränden 1580°C (EB) und 1530°C (vB) erreicht. Sie wiesen eine relativ hohe Streuung in ihren Festigkeitswerten auf.

Für die Höhe der Weibull-Moduln kann aus den ermittelten Werten keine Abhängigkeit von der Ofenbelegung oder den Sintertemperaturen festgestellt werden.

Betrachtet man das Diagramm der Abbildung 6.6, das die mittlere Biegefestigkeit σ der Weibull-Festigkeit σ_0 gegenüberstellt, wird ersichtlich, dass Biege- und Weibull-

Festigkeit mit zunehmender Sintertemperatur ansteigen. Eine Einzelbelegung der Sinterschale erscheint für die Höhe der Biege- und Weibull-Festigkeiten vorteilhaft.

Abb. 6.6: Vergleich der mittleren Biegefestigkeit σ und Weibull-Festigkeit σ₀ der Keramik DC-Shrink

6.1.5 F	lisszähigkeitsbestimmung
---------	--------------------------

Tab.	6.5:	Risszähi	gkeitswerte	der	Keramik	DC-Shrink

Sintertemperatur [°C]	K _{lc} [MPam ^½]				
	Einzelbelegu	ng (EB)	volle Belegur	ng (vB)	
1480	9,0	±2,9	5,3	±3,4	
1530	8,7	±2,6	7,5	±3,4	
1580	6,8	±1,5	7,3	±1,7	

Bei Simulation der Laborsituation (Normtemperatur 1530°C und volle Auslastung des Ofens) konnte für *DC*-Shrink ein K_{lc}-Wert von 7,5 ermittelt werden. Dies wird im Vergleich zu anderen in der Literatur genannten Werten als durchaus realistisch eingestuft [49, 50, 107], wenngleich von den Herstellern selbst K_{lc}-Werte von K_{lc}=10 angegeben werden.

Eine Steigerung der vorgegebenen Sintertemperatur um 50°C ergibt sowohl bei Einzel- als auch bei voller Ofenbelegung jeweils geringere K_{lc} -Werte.

Auffällig ist, dass die höchsten Risszähigkeitswerte mit der zu Untersuchungszwecken verringerten Sintertemperatur und als Einzelbrand erreicht wurden, gefolgt von der Normtemperatur, ebenfalls bei alleiniger Belegung der Sinterschale. In den Diagrammen der Abbildungen 6.7 und 6.8 erfolgt die graphische Darstellung der K_{Ic}-Werte von *DC*-Shrink bei voller Belegung der Sinterschale sowie bei einzelner Belegung für die jeweiligen Sintertemperaturen.

Abb. 6.7: K_{Ic} im Mittelwert, inkl. Standardabweichung

Die kritische Risszähigkeit und die Biegefestigkeit zählen zu den elementaren mechanischen Kennwerten von Keramiken.

Auf die Höhe der Biegefestigkeitswerte wirkt sich eine Steigerung der Normsintertemperatur auf 1580°C sowohl bei voller als auch bei Ofeneinzelbelegung positiv aus.

Wenn man nun betrachtet, dass die Biegefestigkeit zwar ein wesentliches Moment für die Stabilität ist, die kritische Risszähigkeit allerdings bei von der Normtemperatur gesteigerten Sintertemperaturen sinkt, ist abzuwägen, ob sich die Steigerung von 1530°C um 50°C rentiert. Insofern erscheint es ausreichend, wenn auch weiterhin mit einer Temperatur von 1530°C gesintert wird.

Insgesamt kann das System der DCS Dental AG als relativ stabil eingeschätzt werden. Unter den derzeit realisierbaren Bedingungen entstehen für alle in dieser Arbeit geprüften mechanischen Kennwerte Ergebnisse in akzeptablen Größenordnungen.

Abweichungen der Ofenbelegung oder der Sintertemperatur von den Laborbedingungen führen im Ergebnis der durchgeführten Untersuchungen nicht zu einem starken Eigenschaftsverlust.

6.2 Cercon base, DC-Shrink, Lava frame

Um eine Vergleichbarkeit der Keramik *DC*-Shrink mit den Keramiken Cercon base und Lava frame gewährleisten zu können, sind für diese Untersuchungen nur die Prüfkörper zum Einsatz gekommen, die unter den vom Hersteller DCS Dental AG angegebenen Bedingungen (1530°C, volle Ofenbelegung) gesintert wurden.

6.2.1 Sinterschrumpfung

In der nachstehenden Tabelle 6.6 sind die ermittelten durchschnittlichen Sinterschrumpfungen der drei untersuchten Gerüstkeramiken aufgeführt, wie auch die Sintertemperaturen und die vollständigen Ofenverweilzeiten.

Material	Sinterschru	mpfung [%]	Sintertemperatur [°C]	Ofenverweilzeit gesamt [h]
Cercon base	21,3	(±2,71)	1350	6
DC-Shrink	20,6	(±1,76)	1530	7,5
Lava frame	22,3	(±6,03)	1500	11

Tab. 6.6: Gegenüberstellung der prozentualen Sinterschrumpfungen der untersuchten Keramiken

Die Schrumpfungswerte entsprechen damit der Größenordnung der Herstellerangaben mit je ca. 20 % lin. Schrumpfung. Die graphische Darstellung der ermittelten Ergebnisse erfolgt mit Hilfe der Abbildung 6.9.

Abb. 6.9: Sinterschrumpfungen im Mittelwert, inkl. Standardabweichung

Die Weißkeramik *DC*-Shrink zeigte in den Untersuchungen die geringsten Sinterschrumpfungen bei mittlerer Ofenverweildauer, gefolgt von Cercon base mit der niedrigsten Sintertemperatur und gleichzeitig der kürzesten Ofenverweilzeit.

Lava frame wird mit 11 Stunden vergleichsweise am längsten thermisch behandelt und zeigte bei den vorliegenden Untersuchungen die höchste Sinterschwindung sowie die größten Schwankungen in den gemessenen Schrumpfungswerten. Allerdings konnte bei der Werkstoffprüfung von Lava frame aufgrund des langen Untersuchungszeitraums keine Chargenreinheit gewährleistet werden, so dass die augenscheinlich großen Schwankungen der Ergebnisse auch in den unterschiedlichen Materialchargen begründet sein können.

Die Unterschiede im Schrumpfungsverhalten zwischen den drei verschiedenen Materialien können aus einem unterschiedlichen Grad an Vorsinterung erklärt werden, wobei mit höherem Vorsintergrad später eine geringere Sinterschrumpfung einhergeht.

Abb. 6.10: Box-Plot-Darstellung der Sinterschrumpfung

Die statistische Auswertung erfolgt mit Hilfe einfaktorieller ANOVA (Microcal Origin, V 7.5), siehe Tabelle 6.7. Im Ergebnis dieser statistischen Auswertung sind die Unterschiede in der Sinterschrumpfung der drei Keramiken bei einem Signifikanzniveau von p=0,05 als nicht signifikant zu bezeichnen.

	Cercon base	DC-Shrink	Lava frame
Cercon base	-	n.s.	n.s.
DC-Shrink	0,36	-	n.s.
Lava frame	0,34	0,29	-

Tab. 6.7: Ergebnisse der statistischen Auswertung der Sinterschrumpfung der drei Keramiken

6.2.2 Biegefestigkeit

Die im Dreipunkt-Biegeversuch ermittelten Biegefestigkeiten der drei untersuchten Keramiken sind in der folgenden Tabelle aufgelistet. Zum Vergleich sind auch die von den jeweiligen Herstellern veröffentlichten Biegefestigkeitswerte aufgeführt.

 Tab. 6.8: Gegenüberstellung der Biegefestigkeiten (experimentell ermittelt; nach Herstellerangaben)

	Cercon base		DC-Shrink		Lava frame	
Sintertemp.[°C]	1350		1530		1500	
Biegefest. [MPa]	582,03	(±133,07)	779,66	(±277,09)	750,02	(±118,19)
Biegefest. It. Her-	900		1000		1100	
steller [MPa]						

Abb. 6.11: Biegefestigkeit in Abhängigkeit von der Sintertemperatur

Die Ergebnisse der drei untersuchten Keramiken verdeutlichen, dass die Sintertemperatur einen Einfluss auf die Biegefestigkeit ausübt. Höhere Sintertemperaturen erzeugten in den vorliegenden Untersuchungen höhere Biegefestigkeiten. Eine Abhängigkeit der Biegefestigkeit von der Ofenverweilzeit kann nicht festgestellt werden.

Abb. 6.12: Box-Plot-Darstellung der Biegefestigkeiten

	Cercon base	DC-Shrink	Lava frame
Cercon base	-	S	S
DC-Shrink	0,00712	-	n.s.
Lava frame	1,4055E-5	0,63028	-

Tab. 6.9: Ergebnisse der statistischen Auswertung der Biegefestigkeiten der drei Keramiken

Die Biegefestigkeit von Cercon base unterscheidet sich signifikant von den ermittelten Biegefestigkeiten der Materialien *DC*-Shrink und Lava frame. Sie ist niedriger. Die Biegefestigkeiten der anderen beiden Materialien wiederum unterscheiden sich nicht signifikant voneinander.

6.2.1.1 Potentielle Fehlerquellen bei der Biegefestigkeitsbestimmung

Eine mögliche Fehlerquelle stellt die beim Polieren unvollständige Entfernung oberflächlicher Defekte der Keramik dar. Ebenso können Ausrisse der Kanten, die bei der Prüfkörperherstellung entstanden sind und später nicht entgratet wurden, als Riss wirken. Sind solche Schleifdefekte vorhanden, reduzieren sie den Wert der Biegefestigkeit, da bereits vorhandene Oberflächendefekte einen katastrophalen Bruch früher eintreten lassen. In der Literatur finden sich Werte lokaler Festigkeitsabfälle der ursprünglichen Biegefestigkeit durch bearbeitungsinduzierte Minirisse von bis zu 21% [18]. Negativ auf die gemessenen Festigkeitswerte wirken sowohl die Defekttiefe als auch eine höhere Defektanzahl. Um eine Verringerung der Risstiefe zu erreichen, ist das Polieren der Proben bzw. der keramischen Restaurationen dringend zu empfehlen [18, 23, 105].

Als potentielle Fehlerquelle, die eine Abweichung der gemessenen von der realen Festigkeit hervorruft, sind Verwindungen und Verdrehungen durch nicht planparallele Probenoberflächen bekannt [76].

Weiterhin stellt das Einwirken einer Druckbelastung durch den Prüfstempel außerhalb der Prüfkörpermitte einen möglichen Fehler dar. Bei Durchsicht der Literatur fanden sich Biegefestigkeitswerte, die nahezu um ein Drittel geringer waren als die mittig belasteter Proben [105].

Alle Proben der vorliegenden Untersuchung wurden einer identischen Prozedur unterzogen, ein eventuell dadurch entstandener Fehler schränkt daher die Vergleichbarkeit der gemessenen Werte untereinander nicht ein.

Generell müssen die ermittelten Festigkeitswerte kritisch betrachtet werden, da zahnärztliche Restaurationen täglich bis zu 14.000 antagonistischen Kontakten ausgesetzt sein können [22]. Daraus resultieren komplexe Spannungsverteilungen in den prothetischen Versorgungen. Durch die im Mundmilieu zusätzlich vorhandene Feuchtigkeit tritt beschleunigt subkritisches Risswachstum auf, was zum früheren Versagen der keramischen Materialien führt. Insofern gewinnen Untersuchungen mit künstlich gealterten Proben an Wichtigkeit, da sie realistischere Ergebnisse liefern als isolierte Tests der initialen Festigkeit [14].

LÜTHY et al. veröffentlichten 2005 eine Studie, der zu Folge mit starr gelagerten Brückenpfeilern grundsätzlich zu hohe Festigkeitswerte erhalten werden. Dadurch würde das Potential des geprüften Materials überschätzt, denn natürliche Pfeilerzähne weisen im Gegensatz zu den starr gelagerten Pfeilern eine geringe Mobilität auf [40].

6.2.2.1 Vergleich der Messergebnisse mit veröffentlichten Biegefestigkeitswerten

Vergleicht man die erzielten Biegefestigkeitswerte mit bereits publizierten Ergebnissen, so werden Abweichungen mit den veröffentlichten Daten festgestellt. Die vorliegenden Festigkeitswerte sind niedriger als die anderer Autoren.

Biegefest.	Eigene	It. Hersteller			
[MPa]					
Cercon	582,03	900	1320 [14]	980 gealtert	981 [49,50]
base				[14]	
DC-Shrink	779,66	1000			
Lava frame	750,02	1100	1332	1200 [33]	1281 _{aqua}
			[49,50]		demin. [49,50]

Tab. 6.10: Vergleich der ermittelten mit publizierten Biegefestigkeitswerten

Grundsätzlich kann festgestellt werden, dass die Biegefestigkeitswerte nach den simulierten Alterungsprozessen niedriger sind als die initial gemessenen Werte.

Nach simulierter 5-jähriger Tragedauer sinken die Biegefestigkeitswerte um mehr als ein Viertel der ehemals ermittelten Ausgangswerte ab [14, 22]. Zusätzlich werden Unterschiede zwischen weißen und herstellergefärbten oder anderweitig gefärbten Weißkeramiken ersichtlich, wobei der Einfluss der Einfärbung nach Alterung der Cercon base-Proben partiell als sehr positiv für die Biegefestigkeitswerte angesehen werden kann. Die Autoren bevorzugen daher aus ästhetischen und stabilitätstechnischen Gründen als Ergebnis ihrer Studie werksseitig eingefärbtes Zirkoniumdioxid [14].

Für das in der gleichen Studie untersuchte Material Everest (KaVo, Leutkirch, D) konnte dagegen keine Verbesserung der Biegefestigkeitswerte nachgewiesen werden. Eine grundsätzliche Empfehlung, aus Gründen der gesteigerten Festigkeit auf eingefärbtes keramisches Rohmaterial zurückzugreifen, kann daher nicht gelten.

Bei Durchsicht der Literatur ergab sich zunehmend das Problem der mangelnden Vergleichbarkeit der eigenen, von den Herstellern publizierten und anderer veröffentlichter Werte wegen der unterschiedlichen zur Anwendung gebrachten Untersuchungsmethoden, beispielsweise Dreipunkt-, Vierpunkt-Biegetest oder biaxialer Bruchtest, die zudem häufig nicht exakt ausgewiesen waren [104].

Weiterhin erfolgt seitens der Hersteller selten eine Angabe, ob es sich um Dauerfestigkeitswerte nach Alterung oder um die initiale Festigkeit handelt [14].

6.2.3 Weibull-Festigkeit

Die graphische Darstellung der Weibull-Analyse stellt sowohl im Anstieg des Weibullplots als auch in seinem Niveau (σ_0) das natürliche Rissspektrum der entspre-
chenden Keramik dar [48, 49, 59]. Während m ein echter Werkstoffkennwert ist, hängt σ von der Bauteilgröße und vom Spannungsverlauf im Bauteil ab [76, 99].

Da mit dem Weibull-Modul m die Streuungen in der Verteilung der Festigkeitswerte erfasst werden, ermöglicht die Größe m eine Beurteilung der Zuverlässigkeit der Keramik. Je höher der Weibull-Modul m liegt, desto homogener ist der Werkstoff, d.h. die Defekte sind gleichmäßig über das gesamte Prüfkörpervolumen verteilt und die Verteilungskurve der Festigkeitsstreuung ist umso enger. Betrachtet man die Verteilung der ermittelten Festigkeitswerte von Keramiken mit kleinem Weibull-Modul, so treten dort gehäuft "Ausreißer" auf, wodurch die Zuverlässigkeit der entsprechenden Keramik als kritisch einzuschätzen ist. Bei der Anwendung vollkeramischer Restaurationen mit niedrigem Weibull-Modul besteht das Risiko des vorzeitigen Versagens aufgrund der Wahrscheinlichkeit unterer "Ausreißer-Werte".

	Cercon base	DC-Shrink	Lava frame
Sintertemp.[°C]	1350	1530	1500
Weibull-Modul m	4,99	2,82	7,26
Weibull-Festigkeit σ_0	634,89	1047,18	798,12
Biegefest. σ [MPa]	582,03	779,66	750,02

Tab. 6.11: Weibull-Analysedaten mit Biegefestigkeitswerten

Abb. 6.14: Vergleich von mittlerer Biegefestigkeit σ und Weibull-Festigkeit σ_0

Für die Keramik Lava frame wurde mit m=7,26 der höchste Weibull-Modul der drei untersuchten Keramiken erzielt. Demnach tritt bei Lava frame eine geringe Streuung

der Festigkeitswerte auf. Der geringste Weibull-Modul wurde für *DC*-Shrink ermittelt. Hier trat eine relativ hohe Streuung der Festigkeitswerte auf.

Die Wahrscheinlichkeit des Auftretens von Fehlern scheint bei den Gerüstkeramiken aus dezentraler Fertigung größer als bei der Variante der zentralen Fertigung.

Abb. 6.15: Weibull-Diagramm der untersuchten Keramiken

Die vorgenommenen Weibull-Analysen der drei Keramiken sollten kritisch betrachtet werden, da jeweils eine nur geringe Prüfkörperzahl vorlag (n=28). Für die Keramik *DC*-Shrink lagen für die Weibull-Analyse lediglich 19 Probekörper vor.

Daher zeigen sie lediglich eine Tendenz des Festigkeitsverhaltens der Keramiken. Für die Bestimmung der Weibull-Festigkeit σ_0 wird eine Prüfkörperzahl von mindestens 20 empfohlen [49]. Für die Ermittlung des Weibull-Moduls m halten manche Autoren bereits 10 Proben für aussagekräftig [2, 40], andere plädieren für mindestens 30 Proben [49].

ERDELT et al. veröffentlichten 2004 eine Studie, nach der durch das Einfärben aller von ihnen untersuchten keramischen Rohlinge eine Erhöhung des Weibull-Moduls und folglich eine bessere Vorhersagbarkeit des mechanischen Versagens festgestellt werden konnte [14].

6.2.4 Einsatz des E-Moduls

Der Elastizitätsmodul ist ein materialspezifischer Wert, der den Widerstand eines Werkstoffes gegen eine elastische Deformation beschreibt [99].

Es besteht eine direkte Abhängigkeit des E-Moduls von der Dichte und eine indirekt proportionale Abhängigkeit von der Porosität des charakterisierten Materials [105].

Daher kann auch mit Hilfe des E-Moduls das Festigkeitsverhalten einer Keramik beschrieben werden. Um eine möglichst große Aussagekraft der Risszähigkeit als materialspezifischen Kennwert zu erhalten, muss der E-Modul in die Berechnungen integriert werden.

Die Verwendung eines pauschalen, veröffentlichten E-Moduls ist als bedenklich einzuschätzen. Die Verlässlichkeit dieser Werte sollte kritisch hinterfragt werden, da sie mehrheitlich von den Herstellern selbst publiziert werden. Hinzu kommt, dass die für Keramiken in der Literatur aufgeführten E-Modul-Werte mäßig bis stark differieren, weswegen folglich auch eine Vergleichbarkeit der K_{Ic}-Werte in der Folge nicht mehr gegeben ist, wenn für die Berechnung unterschiedliche E-Modul-Werte angewandt wurden.

Aus diesem Grund ist in der vorliegenden Arbeit auf die Verwendung solcher E-Moduln verzichtet worden. Stattdessen sind für eine realitätsnahe K_{Ic}-Wert-Bestimmung die E-Moduln für die Prüfkörper einzeln, basierend auf der Biegefestigkeit, bestimmt und für die weitere Berechnung genutzt worden.

Aus der Verwendung der eigenen Biege-E-Modul-Werte wird eine Verlässlichkeit der Endergebnisse eher erwartet als beim Zurückgreifen auf Tabellenwerte. Mit dieser Herangehensweise könnte eine Vergleichbarkeit der Risszähigkeitswerte ermöglicht werden.

Mit den geringsten Abweichungen vom Mittelwert des E-Moduls stellt sich Lava frame beispielsweise relativ fehlerfrei dar. Darin kann auch eine Erklärung für den höchsten (m=7,26) der hier ermittelten Weibull-Moduli gesehen werden.

Insgesamt kann man anhand der ermittelten Ergebnisse einen Versuch der Qualitätssicherung erkennen. Die Streuung der ermittelten Werte bei zentraler Fertigung (Lava frame) durch spezialisierte Labore ist geringer, wohingegen bei den anderen Materialien die Streuung der Messwerte größer ist.

6.2.5 Risszähigkeit

In der Literatur wird immer wieder auf die besondere Abhängigkeit der gemessenen Biegefestigkeit keramischer Proben von der sorgsamen Präparation, also von Porenund Lunkerfreiheit und hinreichender Oberflächengüte, hingewiesen [48]. Die kritische Risszähigkeit K_{Ic} beschreibt die Widerstandsfähigkeit keramischer Materialien gegen Sprödbrüche. Sie charakterisiert das Einsetzen der instabilen Rissausbreitung [52, 53, 66, 76, 99].

Sie kann durch verschiedene Methoden ermittelt werden. Im Rahmen dieser Arbeit ist die Indenter-Methode gewählt worden. Der Aufwand dieser Methode ist im Vergleich zu anderen derzeit verwendeten Methoden relativ gering. Werden die K_{Ic}-Werte mit Hilfe von Vickers-Härteeindrücken bestimmt, so kann diese Methode in jedem Labor angewandt werden und ist damit gut reproduzierbar.

Neben der großen Anzahl bekannter zur Verfügung stehender Prüfmethoden existieren auch für die anschließende Berechnung der Risszähigkeit diverse Ansätze. Sowohl die unterschiedlichen Prüfmethoden als auch die verschiedenen Rechenansätze führen letztlich zu Differenzen in der Höhe der resultierenden K_{Ic}-Werte. Damit ist eine Vergleichbarkeit der publizierten Werte nicht mehr gegeben. Dies trifft auch auf Abweichungen in der Härtewertberechnung und auf die Verwendung von standardisierten oder (wie in der vorliegenden Arbeit) einzeln berechneten E-Modul-Werten zu.

Der K_{Ic}-Wert wurde nach ANSTIS entsprechend der Formel (8) berechnet. MUNZ/ FETT geben an, dass der Proportionalitätsfaktor nach ANSTIS et al. die beste Übereinstimmung mit auf andere Weise ermittelten K_{Ic}-Werten ergab, die beste theoretische Grundlage besitzt und das umfangreichste Datenmaterial beschreibt [58]. Daher wird diese Berechnung für die praktische Anwendung ausdrücklich empfohlen.

(8)

$$K_{Ic} = 0.032H\sqrt{a} \left(\frac{E}{H}\right)^{\frac{1}{2}} \left(\frac{c}{a}\right)^{-\frac{3}{2}} K_{Ic} = \text{Risszähigkeit} \qquad [MPam^{\frac{1}{2}}]$$

$$H = \text{Härte} \qquad [N/mm^{2}]$$

$$a = \text{Eindruckdiagonale} \qquad [\mu m]$$

$$E = E-\text{Modul} \qquad [N/mm^{2}]$$

$$c = \text{Risslänge} \qquad [\mu m]$$

Für die Ermittlung der Härte H fanden sich in der Fachliteratur ebenfalls verschiedene Rechenansätze. Die von ANSTIS zu der oben genannten Formel (8) genutzte Härtegleichung lautet: H = $F/2a^2$. Diese Formel weicht von der zur Berechnung des Härtewertes nach Vickers (HV) bekannten Formel ab, wobei sich die Härte hier aus der Belastung F und der Größe d berechnet, mit d=2a. Der Härtewert wurde dem Härteprüfverfahren nach Vickers aus der Formel (9) ermittelt:

(9)
$$H = \frac{1,854 \cdot F}{d^2}$$

H = Härte [N/mm²]
F = Belastung [N]
d = Eindruckdiagonale [µm]

Die Rissausbreitung nimmt den Weg des geringsten Widerstandes, wodurch das Risswachstum zur Oberfläche hin erfolgt. In einigen Fällen verlaufen die Risse nicht durch die äußeren Eckpunkte der Vickerspyramide.

Tab. 6.12: Gegenüberstellung der Risszähigkeiten

	Cercon bas	se	DC-Shrink		Lava fr	rame
Sintertemp.[°C]	1350		1530		1500	
K _{lc} [MPam ^{1/2}]	3,86	(±0,51)	7,51	(±3,4)	4,96	(±0,85)

Abb. 6.16: Box-Plot-Darstellung der Risszähigkeiten

|--|

	Cercon base	DC-Shrink	Lava frame
Cercon base	-	S	S
DC-Shrink	2,99013E-11	-	S
Lava frame	2,7498E-12	4,69386E-7	-

Abb. 6.17: Härteeindruck auf Lava frame mit drei ausgeprägten Rissen

6.2.5.1 Fehler bei der Risszähigkeitsbestimmung

Eine Fehlerquelle der Indentermethode zur Ermittlung der Risszähigkeit von Keramiken stellt das Vermessen der erzeugten Härteeindrücke nebst der von ihnen ausgehenden Risse dar. Zum Teil ist das Erkennen der Rissenden nicht exakt möglich, so dass die Dimension der erzeugten Risse schwer zu beurteilen ist. Im Fall von unzureichend polierten Proben sind die Risse nicht zweifelsfrei von etwaigen Schleifspuren zu unterscheiden.

Fraglich erschien der Umgang mit Eindrücken durch den Vickers-Indenter bei Ausprägung von weniger als vier Rissen. Als mögliche Ursache für die Ausprägung von weniger als vier Rissen wird eine nicht planparallele Oberfläche der Prüfkörper angesehen. Der Indenter trifft in Folge dessen auf eine schiefe Ebene. Die größte Belastung wird durch die Diamantpyramide am Ort des Erstkontaktes mit dem Prüfkörper erzeugt. Von dieser Stelle geht dann aufgrund der größeren Krafteinwirkung eine größere Risszahl oder möglicherweise ein längerer Riss aus, während weniger belastete Prüfkörperteile eventuell keine oder verkürzte Risse aufweisen.

Daraus folgt die Empfehlung von SCHERRER, ausschließlich solche Härteeindrücke zu verwenden, von denen genau vier Risse ausgehen [72].

Abplatzungen oder Rissteilungen sollten ebenfalls nicht vorliegen. Diese Empfehlung ist bei den durchgeführten Messreihen umgesetzt worden. Als nachteilig erwies sich allerdings die relativ hohe Ausschlussrate an den gesetzten Härteeindrücken.

Für die Berechnung des K_{lc} -Wertes mit Hilfe der Formel (8) wurde die Risslänge c aus dem arithmetischen Mittel der erzeugten vier Risse gebildet.

6.2.5.2 Verwendung des Lichtmikroskops

Die lichtmikroskopische Auswertung von Eindrücken und entstandenen Rissen auf den drei Zirkoniumdioxidkeramiken durch die Vickers-Diamantpyramide liefert verlässliche Werte. Eine zusätzlich durchgeführte Kontrolle der Messergebnisse unter dem Elektronenmikroskop erbrachte Differenzen, die im Fehlerbereich lagen.

Der Vorteil der lichtmikroskopischen Auswertung liegt im verhältnismäßig geringen Aufwand im Vergleich zu dem technischen und zeitlichen Aufwand, der für die elektronenmikroskopische Auswertung notwendig ist [47]. Wenngleich die Genauigkeit der Indentermethode die einer Fraktographie nicht erreichen wird, so ist sie einfacher in der Handhabung und für den routinemäßigen Einsatz der Risszähigkeitsermittlung durchaus geeignet [38, 85].

6.3 Zusammenhang mechanischer Kennwerte

Hohe Biegefestigkeitswerte einer Keramik bewirken, dass sie absolut mehr Last auszuhalten vermag als Keramiken mit niedrigeren Biegefestigkeitswerten. Qualitativ sind Keramiken mit hohen Biegefestigkeitswerten als hochwertig einzuschätzen. Ein auftretender Defekt, der kritisch werden kann, liegt durch die größere Biegefestigkeit bei einem höheren Niveau als bei den Keramiken, die allein eine höhere kritische Risszähigkeit aufweisen.

Bei niedrigen Werten der kritischen Risszähigkeit sollten aus Sicherheitsgründen die Indikationen zum Einsatz der Keramik überdacht und möglicherweise eingeschränkt werden, um dem Einsetzen einer instabilen Rissausbreitung vorzubeugen.

Zur graphischen Darstellung des Zusammenhangs zwischen kritischer Risszähigkeit und Biegefestigkeit sind die in dieser Arbeit ermittelten Werte der drei Gerüstkeramiken in Abbildung 6.18 aufgetragen.

Abschließend kann festgehalten werden, dass die Keramik (Cercon base), deren Sintertemperatur im Vergleich zu den anderen beiden geringer ist, zugleich mit der kürzesten Sinterdauer korreliert. Im Ergebnis sind die mechanischen Kennwerte, die in dieser Arbeit ermittelt wurden, im direkten Vergleich geringer.

Abb. 6.18: Mechanische Eigenschaften der geprüften keramischer Materialien

Bei einer Ausweitung des Einsatzes der aus ökonomischen Gesichtspunkten auf dem Markt eingeführten weißen Gerüstkeramiken für die CAD/CAM-Technik auf die Einsatzbreite hochfester, gehipter Keramiken, muss konstatiert werden, dass deren herausragende mechanische Eigenschaften noch nicht erreicht werden. Eine Erweiterung der Indikation vollkeramischen Zahnersatzes sollte immer nach den Anforderungen im späteren Einsatzgebiet beurteilt werden [41].

Aus diesem Grund erscheint es nach den vorliegenden Ergebnissen sicherer, für weitspannige und andere schwierige, umfangreiche Restaurationen nicht auf weißkörperverarbeitete, sondern auf gehipte Keramiken für die CAD/CAM-Technik zurückzugreifen. Für den Einsatz als Einzelzahnkronen und als Brücken mit maximal zwei Zwischengliedern könnten auch die Weißkeramiken genutzt werden.

Da derzeit jedoch noch keine DIN-Normen für Biegefestigkeit und kritische Risszähigkeit für die getestete Keramikart zur Verfügung stehen, kann keine verallgemeinerbare Empfehlung ausgesprochen werden.

7. Zusammenfassung

Können CAD/CAM-bearbeitete Gerüste aus Weißkeramik die Einsatzbreite hochfester, gehipter Keramiken erfüllen?

In den vorliegenden Untersuchungen wurden drei handelsübliche Weißkeramiken (Cercon base, DeguDent GmbH, Hanau, D; *DC*-Shrink, DCS Dental AG, Allschwil, CH; Lava frame, 3M ESPE AG, Seefeld, D) für den Einsatz in der CAD/CAM-Technik auf ihre mechanischen Festigkeitswerte überprüft, da die Biegefestigkeit und der K_{Ic}-Wert keramischer Materialien zur Festlegung bzw. zur kritischen Überprüfung ihres Indikationsbereiches herangezogen werden können.

Die drei untersuchten Keramiken entsprechen chemisch den HIP-ZrO₂-Keramiken. Im Zuge der Effizienzsteigerung sind diese Keramiken entwickelt worden, um die maschinellen Bearbeitungszeiten und den Werkzeugverschleiß während des CAM-Prozesses zu reduzieren. Durch die Verwendung präfabrizierter Blockmaterialien ist eine MPG-konforme Dokumentation möglich, hinsichtlich der Reinheit, Homogenität und reproduzierbarer Qualität sind die Keramikblöcke für die Verarbeitung mit Hilfe der CAD/CAM-Technik den konventionell handwerklich verarbeiteten Materialien überlegen.

Die drei Gerüstmaterialien werden trotz chemisch identischer Basis laborseitig unterschiedlich behandelt, was grundsätzlich die Frage aufwirft, ob daraus Auswirkungen auf die mechanischen Kennwerte entstehen. Zur Klärung dieses Sachverhaltes sind in-vitro-Untersuchungen durchgeführt worden. Den Nachweis für die klinische Bewährung der Weißkeramiken müssen Langzeitstudien von mindestens drei- bis fünfjähriger Dauer erbringen.

Das Ziel der Untersuchungen war es, die elementaren mechanischen Kennwerte Biegefestigkeit und kritische Risszähigkeit zu überprüfen, wie auch eine Weibull-Analyse vorzunehmen. Abweichend davon wurden für das Material *DC*-Shrink das Dimensionsverhalten und die möglichen Folgen für die Festigkeitswerte bei Änderung der Sintertemperatur um ±50°C von der empfohlenen Temperatur von 1530°C überprüft.

Die geringste Sinterschrumpfung der drei Gerüstkeramiken weist die Keramik *DC*-Shrink 20,6 % (\pm 1,76 %) auf, die zugleich am stärksten vorgesintert war. Cercon base 21,3 % (\pm 2,71 %) und Lava frame 22,3 % (\pm 6,03 %) weisen höhere Schrump-

fungswerte auf. Für die Höhe der Biegefestigkeitswerte konnte eine Korrelation mit der Sintertemperatur festgestellt werden, wobei mit der höchsten Sintertemperatur (*DC*-Shrink, 1530°C) die höchste Biegefestigkeit von 779,66 MPa (±277,09 MPa) einhergeht. Das Material Cercon base wird mit der vergleichsweise geringsten Temperatur (1300°C) gesintert und zeigt die niedrigste Biegefestigkeit (582,03 MPa (±133,07 MPa)). Lava frame erreichte Biegefestigkeitswerte von 750,02 MPa (±118,19 MPa) bei einer Sintertemperatur von 1500°C. Eine Abhängigkeit der Festigkeitswerte von den unterschiedlichen Verweilzeiten in den jeweiligen Sinteröfen kann nicht festgestellt werden.

Die Weibull-Festigkeit der Keramiken lag für Cercon base (634,89 MPa, m=4,99) und Lava frame (798,12 MPa) ca. 50 MPa höher als die im Dreipunkt-Biegeversuch gemessenen Biegefestigkeiten. Eine Ausnahme bildet diesbezüglich das Material *DC*-Shrink, dessen Weibull-Festigkeit mit 1047,18 MPa viel höher ist als die Biegefestigkeit, was auf den sehr geringen Weibull-Modul (m=2,82) zurückzuführen ist. Mit einem Weibull-Modul von m=7,26 weist Lava frame die geringste Streuung der Festigkeitswerte auf.

Für die K_{Ic}-Wert-Ermittlung wurde auf den Rechenansatz nach ANSTIS in MUNZ/FETT zurückgegriffen, unter Verwendung des exakten Vickers-Härtewertes und des aus der Biegefestigkeit ermittelten E-Moduls.

Als kritische Risszähigkeit konnten für die Gerüstkeramiken Cercon base und Lava frame die folgenden Werte ermittelt werden: 3,86 MPam^{1/2} (±0,51 MPam^{1/2}) und 4,96 MPam^{1/2} (±0,85 MPam^{1/2}). Den höchsten K_{lc}-Wert erzielte *DC*-Shrink mit 7,51 MPam^{1/2} (±3,4 MPam^{1/2}).

Im Rahmen der Voruntersuchungen wurde der Einfluss der Prüfkörperlage zu den Heizelementen des VITA ZYrcomaten getestet. Eine Abhängigkeit der mechanischen Kennwerte der Probekörper von der Entfernung zu den Heizelementen konnte nicht festgestellt werden.

Bedingt durch unterschiedliche Befüllung der Sinterschale mit Prüfkörpern sind Differenzen in der Wärmekapazität des Hochtemperaturofens vermutet worden. Um etwaige Folgen für die zu sinternden Keramiken zu prüfen, wurden Sinterbrände des Materials *DC*-Shrink mit ±50°C von der empfohlenen Sintertemperatur durchgeführt. Die isolierten Untersuchungen ergaben im Bereich der Sintertemperaturen von 1480°C bis 1580°C keine signifikanten Unterschiede im Dimensionsverhalten der Keramik. Unabhängig von der Auslastung der Sinterschale kann auch für *DC*-Shrink eine Korrelation der Höhe der Biegefestigkeitswerte und der Sintertemperatur gefunden werden. Zwar sind die mit einzelner Prüfkörperbelegung der Sinterschale erzeugten Biegefestigkeits- und Weibull-Festigkeitswerte höher als bei vielfacher Belegung, die Unterschiede sind statistisch jedoch nicht signifikant.

Das Spektrum der ermittelten K_{lc}-Werte reicht von 5,3 bis 9,0 MPam^{$\frac{1}{2}$}. Tendenziell sind auch hier die höheren Werte im Einzelbrand erreicht worden.

Mit der Festlegung des Indikationsbereiches wird der unterschiedlichen Belastung der Materialien im Front- und Seitenzahnbereich sowie den unterschiedlichen Anforderungen durch die Grundkonstruktion des Zahnersatzes Rechnung getragen. Aufgrund der derzeit noch ausstehenden DIN-Normen für Biegefestigkeit und kritische Risszähigkeit für die getestete Keramikart, kann keine konkrete Empfehlung für deren Einsatz ausgesprochen werden. Die Untersuchungen zeigen aber, dass auf Basis der experimentell ermittelten Biegefestigkeit im Dreipunkt-Biegetest, des daraus berechneten E-Moduls, des Härtewertes nach Vickers und den dabei entstandenen Rissen eine verlässliche Bewertung von Biegefestigkeit, kritischer Risszähigkeit, Weibull-Modul und -Festigkeit gegeben ist. Diese Kennwerte könnten Bestandteil einer zukünftigen Norm sein. Empfehlungen für die Indikation sind sicher mit klinischen Untersuchungsergebnissen abzugleichen, können aber dennoch aus den ermittelten Werten in Anlehnung an FILSER [16] abgeleitet werden.

In jedem Fall sind für den Einsatz keramischer Restaurationen die jeweiligen Dimensionen der zahnärztlichen Konstruktion wie auch die Antagonistensituation und die physische Konstitution des zu Versorgenden mit in die Betrachtung einzubeziehen.

8. Literaturverzeichnis

- 1. ARDLIN, B. I.: Transformation-toughened zirconia for dental inlays, crowns and bridges: chemical stability and effect of low-temperature aging on flexural strength and surface structure. Dent Mater 18, 590-595 (2002).
- BEUER, F.; ERDELT, K. J.; SCHWEIGER, J.; EICHBERGER, M.; GERNET, W.: Biegefestigkeit von unterschiedlich bearbeitetem Zirkonoxid. Dtsch Zahnärztl Z 61, 155-157 (2006).
- BIENIEK, K. W.; MARX, R.: Die mechanische Belastbarkeit neuer vollkeramischer Kronen- und Brückenmaterialien. Schweiz Monatsschr Zahnmed 104, 284-288 (1994).
- 4. BRICK, E.-M.; RUDOLPH, H.; SANDKUHL, O.; JOHANNES, M.; LUTHARDT, R. G.: Einsatz von Nanokeramik für Kronengerüste. ZWR 112, 93-96 (2003).
- 5. **BROSTOW, W.**: Einstieg in die moderne Werkstoffwissenschaft. Hanser-Verlag, München (1984).
- 6. CLAUS, H.: Werkstoffkundliche Grundlagen der Dentalkeramik. Dental labor 78, 1743-1750 (1980).
- CURTIS, A. R.; WRIGHT, A. J.; FLEMING, G. J.: The influence of surface modification techniques on the performance of a Y-TZP dental ceramic. J Dent 34,195-206 (2006).
- 8. DCS DENTALSYSTEME GMBH: DCS Produktinformation: *DC*-Shrink, *DC*-Zirkon (2005).
- 9. **DEGUDENT GMBH:** Cercon® die Perfektion im Auge (2006).
- 10. DEGUDENT GMBH: www.cercon-smart-ceramics.de
- 11. Dgzмк; Dgzpw: Sind vollkeramische Kronen- und Brücken wissenschaftlich anerkannt? Dtsch Zahnärztl Z 56, 575 (2001).
- 12. **DIN EN ISO 6872** (entspricht EN ISO 6872 = ISO 6872:1996): Dentalkeramik, Beuth-Verlag, Berlin (1996).
- 13. EICHNER, K.; KAPPERT, H. F. (HRSG.): Zahnärztliche Werkstoffe und ihre Verarbeitung. Thieme, Stuttgart (2000).
- ERDELT, K.; BEUER, F.; SCHWEIGER, J.; EICHBERGER, M.; GERNET, W.: Die Biegefestigkeit von weißkörpergefrästem Zirkoniumdioxid. Quintessenz Zahntech 30, 942-954 (2004).
- 15. FILSER,F.; GAUCKLER, L. J.: Keramische Werkstoffe: 4 Beispiele für strukturkeramische Werkstoffe. ETH Zürich (2007).

- FILSER, F.; KOCHER, P.; WEIBEL, F.; LUTHY, H.; SCHARER, P.; GAUCKLER L. J.: Reliability and strength of all-ceramic dental restorations fabricated by direct ceramic machining (DCM). Int J Comput Dent 4, 89-106, (2001).
- FILSER, F.; LÜTHY, H.; KOCHER, P.; SCHÄRER, P.; GAUCKLER L. J.: Vollkeramischer Zahnersatz im Seitenzahnbereich. Quintessenz Zahntech 28, 48-60 (2002).
- 18. FISCHER, H.; EDELHOFF, D.; MARX, R.: Mechanische Beanspruchung von Zirkonoxid-Wurzelstiften. Dtsch Zahnärztl Z 53, 12-18 (1998).
- FREISBERG, κ.: Der Einfluss von Feuchtigkeit auf den Elastizitätsmodul und die Biegefestigkeit verschiedener metallkeramischer Massen. Dissertation, Köln (1985).
- 20. FUCHS, G.: Mathematik für Mediziner und Biologen. Springer-Verlag, Berlin (1969).
- 21. GAMPERT, P.: Und sie leuchten doch ... Individuelle Zirkonabutments selbst herstellen. Zahntech Mag 10, 748-754 (2006).
- GEIS-GERSTORFER, J.; FÄSSLER, P.: Untersuchungen zum Ermüdungsverhalten der Dentalkeramiken Zirkonoxid-TZP und In-Ceram. Dtsch Zahnärztl Z 54, 11-14 (1999).
- GEIS-GERSTORFER, J.; KANJANTRA, P.; PRÖBSTER, L.; WEBER, H.: Untersuchung der Bruchzähigkeit und des Risswachstums zweier vollkeramischer Kronenund Brückensysteme. Dtsch Zahnärztl Z 48, 685-691 (1993).
- 24. GRABER, G; BESIMO, CH.: Das DCS-Hochleistungssystem. Ein neuer Weg zur computergestützten Herstellung von metallfreien Zirkonoxid-Kronen und -Brücken. Quintessenz Zahntech 20, 57-64 (1994).
- 25. GRELLNER, F.; HOSCHELER, S.; GREIL, P.; SINDEL, J.; PETSCHELT, A.: Residual stress measurements of computer aided design/computer aided manufacturing (CAD/CAM) machined dental ceramics. J Mater Sci 32, 6235-6242 (1997).
- 26. GUAZZATO, M.; ALBAKRY, M.; RINGER, S. P.; SWAIN, M. V.: Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent Mater 20, 449-456 (2004).
- 27. GUAZZATO, M.; QUACH, L.; ALBAKRY, M.; SWAIN, M. V.: Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic. J Dent 33, 9-18 (2005).
- 28. HOHMANN, A.; HIELSCHER, W.: Lehrbuch der Zahntechnik, Bd. III. Quintessenz Verlag, Berlin (2003).
- 29. INSTITUT FÜR MEDIZINISCHE BIOMETRIE. KLINIKUM CHARITÉ DER HUMBOLDT-UNIVERSITÄT ZU BERLIN (HRSG.): Medizinische Biometrie. Planung und Auswer-

tung medizinischer Studien. Scriptum zur Vorlesung "Biomathematik/Biometrie" für Humanmediziner, Berlin (2001).

- 30. **INTERNATIONAL ORGANIZATION FOR STANDARDISATION:** International Standard ISO 6872:1995 Dental ceramics, Genève, Switzerland.
- 31. **Каррект, н. ғ. (Hrsg.):** Vollkeramik: Werkstoffkunde Zahntechnik klinische Erfahrung. Quintessenz Verlag, Berlin (1996).
- 32. **КАРРЕRT, н. ғ.:** Keramik als zahnärztlicher Werkstoff. Curriculum Prothetik, 631-661, Quintessenz-Verlag, Berlin (1999).
- 33. **KAPPERT, H. F.; KRAH, M.:** Keramiken eine Übersicht. Quintessenz Zahntech 27, 668-704 (2001).
- 34. KAPPERT, H. F.: Zur Festigkeit von Dentalkeramiken. ZM 93, 42-46 (2003).
- 35. KASUGA, T.; NAKAJIMA, K.; UNO, T.; YOSHIDA, M.: Bioactive glass-ceramic composite toughened by tetragonal zirconia. CRC-Handbook of bioactive ceramics, Vol. I. CRC-Press, Florida (1990).
- 36. KERN, M.; MEHL, A. S.: Neue Perspektiven für CAD/CAM in der Zahnheilkunde? Quintessenz Zahntech 28, 1244-1248 (2002).
- KOSMAC, T.; OBLAK, C.; JEVNIKAR, P.; FUNDUK, N; MARION, L.: Strength and reliability of surface treated Y-TZP dental ceramics. J Biomed Mater Res 53, 304-313 (2000).
- KVAM, κ.; HERO, H.; OILO, G.: Fracture toughness measurements of some dental core ceramics: a methodologic study. Scand J Dent Res 99, 527-532 (1991).
- 39. LAUER, H.-C.: Vollkeramische Restauration in der Hand des Generalisten. ZM 93, 40-45 (2003).
- 40. LÜTHY, H.; FILSER, F.; LOEFFEL, O.; SCHUMACHER, M.; GAUCKLER, L. J.; HAM-MERLE, C. H. F.: Strength and reliability of four-unit all-ceramic posterior bridges. Dent Mater 21, 930-937 (2005).
- 41. LÜTHY, H.; FILSER, F.; LOEFFEL, O.; SCHUMACHER, M.; GAUCKLER, L. J.; SCHÄRER,
 P.: Reliability of Empress-2 and in-ceram zirconia. Comparison with zirconia-TZP. J Dent Res 80, 640 (2001).
- 42. LUTHARDT, R. G.: Neue Materialien und Technologien. In: Tinschert, J.; Natt, G. (Hrsg.): Oxidkeramiken und CAD/CAM-Technologien. Atlas für Klinik, Labortechnik und Werkstoffkunde, Deutscher Zahnärzte Verlag, Köln (2007).
- 43. LUTHARDT, R. G.; RUDOLPH, H.; QUAAS, S.; HEROLD, V.; HARONSKA, P.; JOHAN-NES, M; VOIGTSBERGER, B.: Individueller festsitzender Zahnersatz aus Hochleistungskeramik – Entwicklung eines Verfahrens zum Präzisionsurformen. Hermsdorf (2005).

- 44. LUTHARDT, R. G.; HEROLD, V.; SANDKUHL, O.; REITZ, B.; KNAAK, J. P.; LENZ, E.: Kronen aus Hochleistungskeramik. Zirkonoxid-Keramik, ein neuer Werkstoff in der Kronenprothetik. Dtsch Zahnärztl Z 53, 280 (1998).
- 45. LUTHARDT, R. G.; QUAAS, S.; RUDOLPH, H.: Maschinelle Herstellung von Zahnersatz. In: Tinschert, J.; Natt, G. (Hrsg.): Oxidkeramiken und CAD/CAM-Technologien. Atlas für Klinik, Labortechnik und Werkstoffkunde, Deutscher Zahnärzte Verlag (2007).
- LUTHARDT, R. G.; HOLZHÜTER, M.; SANDKUHL, O.; HEROLD, V.; SCHNAPP; J. P.; KUHLISCH, E.; WALTER, M.: Reliability and properties of ground Y-TZP-Zirconia Ceramics. J Dent Res 81, 487-491 (2002).
- MAEHARA, S.; FUJISHIMA, A.; HOTTA, Y.; MIYAZAKI, T.: Fracture toughness measurement of dental ceramics using the indentation fracture method with different formulas. Dent Mater 24, 328-334 (2005).
- 48. **MARX, R.:** Moderne keramische Werkstoffe für ästhetische Restaurationen Verstärkung und Bruchzähigkeit. Dtsch Zahnärztl Z 47, 610 (1993).
- 49. MARX, R.; FISCHER, H.; WEBER, M.; JUNGWIRTH, F.: Rissparameter und Weibullmodule: Unterkritisches Risswachstum und Langzeitfestigkeit vollkeramischer Materialien. Dtsch Zahnärztl Z 56, 90-98 (2001).
- MARX, R.; WEBER, M.; JUNGWIRTH, F.: Vollkeramische Kronen- und Brückenmaterialien, Restaurationsmaterialien. 7., überarbeitete und wesentlich ergänzte Auflage; Eichenbach (2003).
- 51. **Мазакі, т.:** Mechanical properties of toughened ZrO2-Y2O3 ceramics. J Am Ceram Soc 69, 638-640 (1986).
- 52. **MECHOLSKY, J. J.:** Fraktography: Determining the sites of fracture initiation. Dent Mater 11, 113-116 (1995).
- 53. **MECHOLSKY, J. J.:** Fracture mechanics principles. Dent Mater 11, 111-112 (1995).
- 54. **MERKEL, M.; THOMAS, K.-H.:** Taschenbuch der Werkstoffe. Fachbuchverlag Leipzig Köln (1994).
- 55. MÜLLER, W.-D.; PAUL, T.: Gießen versus Fräsen. Zahntech Mag 10, 590-595 (2006).
- MÜLLER, W.-D.; PAUL, T.; MEYER, L.; SCHÖPF, C.; KÖNIG, J.; ABERT, C.: Eine werkstoffkundliche Betrachtung zu Grünkernkeramik. Quintessenz Zahntech 32, 148-155 (2006).
- 57. MÜLLER, w.-D.; WIRTHWEIN, C.; LANGE, K.-P.; MEYER, L.: K_{lc}-Wert-Bestimmung mit Hilfe der Indenter-Methode Möglichkeiten und Grenzen. DZZ 57, 608-612 (2002).

- 58. **MUNZ, D.; FETT, T.:** Mechanisches Verhalten keramischer Werkstoffe. Springer-Verlag, Berlin, Heidelberg (1989).
- 59. PAPANAGIOTOU, H. P.; MORGANO, S. M.; GIORDANO, R. A.; POBER, R.: In vitro evaluation of low-temperature aging effects and finishing procedures on the flexural strength and structural stability of Y-TZP dental ceramics. J Prosth Dent 96, 154-164 (2006).
- 60. PFEIFFER, P.; SCHWICKERATH, H.: Löslichkeit von Dentallegierungen im Speichel. Dtsch Zahnärztl Z 44, 751-753 (1989).
- 61. PFEIFFER, P.; SCHWICKERATH, H.; SOMMER, M. C.: Festigkeit dentalkeramischer Massen. ZWR 100, 938-942 (1991).
- POSPIECH, P.; BELLMANN, H.-J.: Lava-System. In: Tinschert, J.; Natt, G. (Hrsg.): Oxidkeramiken und CAD/CAM-Technologien. Atlas für Klinik, Labortechnik und Werkstoffkunde, Deutscher Zahnärzte Verlag (2007).
- 63. **PRÖBSTER, L.:** Innovative Verfahren in der Zahnheilkunde. Springer-Verlag, Berlin, Heidelberg, New York (1992).
- RAIGRODSKI, A. J.: Contemporary materials and technologies for all-ceramic fixed partial dentures: a review of the literature. J Prosthet Dent 92, 557-562 (2004).
- 65. **Rechmann, p.:** Nachweis metallischer Restaurationsmaterialien in klinisch unauffälliger Gingiva. Dtsch Zahnärztl Z 48, 270-275 (1993).
- 66. **REICH, s.; WICHMANN, M.; LOHBAUER, U.:** Vollkeramische Restauration Eine Übersicht. Zahn Prax 8, 370-373 (2005).
- RINKE, S.: Cercon-System. In: Tinschert, J.; Natt, G. (Hrsg.): Oxidkeramiken und CAD/CAM-Technologien. Atlas f
 ür Klinik, Labortechnik und Werkstoffkunde, Deutscher Zahn
 ärzte Verlag (2007).
- ROTHBRUST, F.: IPS e.max ZirCAD. Werkstoff Zirkoniumdioxid "Das weiße Gold". Report 17. Aus Forschung und Entwicklung der Ivoclar Vivadent AG (2006).
- 69. **Rudolph, н.; Quaas, s.; Luthardt R. g.:** CAD/CAM Neue Technologien und Entwicklungen in Zahnmedizin und Zahntechnik . Dtsch Zahnärztl Z 58, 559-568 (2003).
- 70. SACHS, L.: Statistische Methoden. Springer-Verlag Berlin, Heidelberg, New York (1982).
- SATO, T.; SHIMADA, M.: Control of the tetragonal-to-monoclinic phase transformation of yttria partially stabilized zirconia in hot water. J Mater Sci 20, 3988-3992 (1985).

- 72. SCHERRER, S. S.; DENDRY, I. L.; WISKOTT, H. W. A.: Comparison of three fracture toughness testing techniques using a dental glass and dental ceramic. Dent Mater 14, 246-255 (1998).
- SCHIMMANG, A.: Experimentelle Untersuchungen zur Lebensdaueranalyse von Zirkoniumoxid-verstärkter In-Ceram-Keramik. med. Dissertation, Aachen (1998).
- 74. Schwickerath, н.: Dauerfestigkeit von Keramik. Dtsch Zahnärztl Z 41, 264-266 (1986).
- 75. SEGHI, R. R.; SÖRENSEN, J. A.: Relative Flexural Strength of six New Ceramic Materials. Int J Prosthodont 8, 239-246 (1995).
- 76. Spur, G. (HRSG.): Keramikbearbeitung. Hanser-Verlag München, Wien (1989).
- 77. STAMOULI, K.; SMEEKENS, S.; ATT, W.; STRUB, J. R.: Bruchfestigkeit von dreigliedrigen Zirkoniumdioxid-Seitenzahnbrücken. Dtsch Zahnärztl Z 61, 621-626 (2006).
- 78. **STANDARD, O. C.; SORRELL, C. C.:** Densification of zirconia conventional methods. Key engineering materials Vols. 153-154 pp 251-300 (1998).
- 79. **STEYERN, P. v. v.:** All ceramic fixed partial dentures designed according to the DC-Zircon-Technique. A 2-year clinical study. J Oral Rehabil 32 (2005).
- STINGL, P.; ROGOWSKI, D.; KUNTZ, M.: Hochfeste Oxidkeramiken f
 ür medizinische Anwendungen. Fortschrittsberichte der Deutschen Keramischen Gesellschaft, Band 20, Heft 1, S. 194-205 (2006).
- STURZENEGGER, B.; FEHÉR, A.; LÜTHY, H., ET AL.: Klinische Studie von Zirkonoxidbrücken im Seitenzahngebiet hergestellt mit dem DCM-System. Acta Med Dent Helv 5, 131-139 (2000).
- SUNDH, A.; SJÖGREN, G.: Fracture resistance of all-ceramic zirconia bridges with differing phase stabilizers and quality of sintering. Dent Mater 22, 778-784 (2006).
- 83. SUTTOR, D.; KERN, M.: Ist das "weiße Gold" eine Alternative? ZWL 02, 40-43 (2006).
- 84. **SUTTOR, D.; HOESCHELER, S.; HAUPTMANN, G.; HERTLEIN, G.; BUNKE, K.:** LAVA das neue System von 3M ESPE für vollkeramische ZrO2-Kronen- und Brückengerüste, Quintessenz 52, 8, 805-808 (2001).
- 85. TAIRA, M.; NOMURA, Y.; WASAKA, K.; YAMAKI, M.; MATSUI, A.: Studies on fracture toughness of dental ceramics. J Oral Rehabil 17, 551-563 (1990).
- TINSCHERT, J.; DICKS, C.; FÄRBER, H.; MARX, R.: Bruchwahrscheinlichkeit von verschiedenen Materialien für vollkeramische Restaurationen. Dtsch Zahnärztl Z 51, 406-409 (1996).

- 87. **TINSCHERT, J.; GÖTZEN, N.; NATT, G.:** Oxidkeramiken. In: Tinschert, J.; Natt, G. (Hrsg.): Oxidkeramiken und CAD/CAM-Technologien. Atlas für Klinik, Labortechnik und Werkstoffkunde, Deutscher Zahnärzte Verlag, Köln (2007).
- 88. TINSCHERT, J.; NATT, G.; DOOSE, B.; FISCHER, H.; MARX, R.: Seitenzahnbrücken aus hochfester Strukturkeramik. Dtsch Zahnärztl Z 54, 545-550 (1999).
- 89. TINSCHERT, J.; NATT, G.; JOREWITZ, A.; FISCHER, H.; SPIEKERMANN H.; MARX, R.: Belastbarkeit vollkeramischer Seitenzahnbrücken aus neuen Hartkernmaterialien. Dtsch Zahnärztl Z 55, 610-616 (2000).
- 90. TINSCHERT, J.; NATT, G.; LATZKE, P.; SCHULZE, K.; HEUSSEN, N.; SPIEKERMANN, H.: Vollkeramische Brücken aus DC-Zirkon – Ein klinisches Konzept mit Erfolg? Dtsch Zahnärztl Z 60, 435-445 (2005).
- 91. TINSCHERT, J.; NATT, G.; MAUTSCH, W.; AUGTHUN, M.; SPIEKERMANN, H.: Fracture strength of lithium disilicate-, alumina- and zirconia-based three-unit fixed partial dentures. Int J Prosthodont 14, 231-238 (2001).
- 92. **TINSCHERT, J.; NATT, G.; ON, H.-S.; SPIEKERMANN, H.:** Vollkeramische Brücken Ein aktueller Überblick zur klinischen Anwendung und Bewährung. Ästhet Zahnmed 3, 32-41 (2006).
- 93. TINSCHERT, J.; ON, H.-S.; NATT, G.: DCS PRECIDENT-System. In: Tinschert, J.; Natt, G. (Hrsg.): Oxidkeramiken und CAD/CAM-Technologien. Atlas für Klinik, Labortechnik und Werkstoffkunde, Deutscher Zahnärzte Verlag, Köln (2007).
- 94. **TINSCHERT, J.; ZWEZ, D.; MARX, R.; ANUSAVICE, K. J.:** Struktural reliability of alumina-, feldspar-, leucite-, mica- and zirconia-based ceramics. J Dent 28, 529-535 (2000).
- 95. TREDWAY, w. κ.: Toughened ceramics. Science 282, 1275 (1998).
- 96. VERBAND DER KERAMISCHEN INDUSTRIE E.V. (HRSG.): Brevier Technische Keramik. Fahner Verlag, Lauf (2003).
- 97. VÖLKL, L.: Cercon das CAM-Vollkeramiksystem von Degussa Dental. Quintessenz 52, 811-814 (2001).
- 98. VÖLKL, L.: Cercon das CAM-Vollkeramiksystem von Degussa Dental. Quintessenz Zahntech 27, 1004-1008 (2001).
- 99. **VOLLERTSEN, F.; VOGLER, S.:** Werkstoffeigenschaften und Mikrostruktur. Hanser-Verlag, München (1989).
- 100. WAGNER, w. c.; CHU, т. м.: Biaxial flexural strength and indentation fracture toughness of three new dental ceramics. J Prosthet Dent 76, 140-144 (1996).
 - 101. WANG, H.; PALLAR, P.; ISGRÒ, G.; FEILZER, A. J.: Fracture toughness comparison of three test methods with four dental porcelains. Dent mater (2006).

- 102. WEBER, A.; RUDOLPH, H.; QUAAS, S.; THÖNE, A.; LUTHARDT, R.: Eine aktuelle Standortbestimmung aus Sicht der Zahnärzte. zm 96, 52-55 (2006).
- 103. WEBER, w.; RIEGER, w.: ZrO₂-TZP in dentistry Material, properties and applications. Key engineering materials 192-1, 929-932 (2000).
- 104. WEISS, T.: Festigkeit von keramischen Probekörpern im biachsialen Biegeversuch. Dissertation, Berlin (1997).
- 105. **WIRTHWEIN, C.:** Vergleichende Bewertung der kritischen Festigkeitseigenschaften dentaler Feldspatkeramiken der Firma DCS. Dissertation, Berlin (2006).
- 106. **Wiткowsкi, s.:** Computer-aided design and fabrication of dental restorations. Current systems and future possibilities. J Am Dent Assoc 137, 1289-1296 (2006).
- 107. 3M ESPE AG: Lava technical product profile. Seefeld (2006).

9. Anhang

Sinterschrumpfung	x [%]	S [%]			
22 53	22.34	19.62	21 7	21 32	2 71
22,00	21.25	24 07	18 25	21,02	2,71
21.3	22.22	22.91	23.04		
21.87	21.5	21.87	22.16		
21.89	22.2	21.24	22.73		
20,52	22,18	21,97	21.63		
23,4	21,19	20,97	22,15		
20,09	21,74	22,03	18		
20,36	20,57	22,35	22,44		
22,34	21,22	21,86	20,49		
22,15	22,14	21,5	20,28		
21,37	22,02	21,47	21,58		
21,83	22,44	21,83	21,77		
22,34	22,1	21,16	20,17		
21,39	21,94	21,95			

Tab. 9.1: Messwerte der Keramik Cercon base bzgl. der Sinterschrumpfung

Tab. 9.2: Biegefestigkeitswerte von Cercon base aus dem Dreipunkt-Biegetest

Probe	a [mm]	h [mm]	W [mm³]	F [N]	l [mm]	Mb [Nmm]	σ [N/mm²]
_1.1	9,32	1,81	5,09	1296,3	10	3240,75	636,83
_2.1	10,79	1,8	5,83	1032,9	10	2582,25	443,18
_3.1	7,45	1,97	4,82	1149,2	10	2873,00	596,21
_4.1	9,51	1,82	5,25	1007,9	10	2519,75	479,94
_5.1	7,89	1,68	3,71	489,9	10	1224,75	329,99
_6.1	8,52	1,89	5,07	720,1	10	1800,25	354,91
_7.1	7,58	2,07	5,41	1783,5	10	4458,75	823,67
_8.1	7,37	2,53	7,86	2080,8	10	5202,00	661,63
_9.1	7,78	2,09	5,66	1331	10	3327,50	587,49
_10.1	9,31	1,86	5,37	1201,4	10	3003,50	559,50
_11.1	7,64	1,35	2,32	402,2	10	1005,50	433,28
_12.1	6,7	2,35	6,17	1428,4	10	3571,00	579,07
_12.2	6,99	2,43	6,88	2136,7	10	5341,75	776,51
_13.1	7,44	2,23	6,17	1335,7	10	3339,25	541,52
_14.1	7,44	2,14	5,68	1603,6	10	4009,00	705,97
_15.1	7,38	2,67	8,77	2123,2	10	5308,00	605,35
_15.2	7,59	2,67	9,02	2222,7	10	5556,75	616,18
_16.1	7,03	2,18	5,57	1271,8	10	3179,50	571,01
_17.1	8,41	2,43	8,28	2425,3	10	6063,25	732,57
_17.2	8,48	2,35	7,81	2267,2	10	5668,00	726,19
_18.1	10,75	2,28	9,31	2036,8	10	5092,00	546,72
_19.1	8,34	1,65	3,78	579,2	10	1448,00	382,64
_20.1	7,99	1,82	4,41	1228,8	10	3072,00	696,44
x							582,03
S							133,08

Probe	Auflage	Breite a	Dicke h	F [N/mm]	E [N/mm ²]	a*h[mm²]	Faktor	E korrig.
	l [mm]	[mm]	[mm]					
_1.1	10	9,32	1,81	4249,44	19222,95	16,9	8,7	167240
_2.1	10	10,79	1,8	4739,76	18830,31	19,4	10,3	193952
_3.1	10	7,45	1,97	4585,94	20128,59	14,7	7,4	148952
_4.1	10	9,51	1,82	5824,78	25399,48	17,3	9	228595
_5.1	10	7,89	1,68	4538,9	30330,93	13,3	6,6	200184
_6.1	10	8,52	1,89	5888,64	25593,52	16,1	8,2	209867
_7.1	10	7,58	2,07	4432,13	16480,57	15,7	8,1	133493
_8.1	10	7,37	2,53	4814,21	10084,07	18,6	9,6	96807
_9.1	10	7,78	2,09	5688,59	20022,86	16,3	8,4	168192
_10.1	10	9,31	1,86	5729,74	23910,38	17,3	9	215193
_11.1	10	7,64	1,35	3754,67	49936,39	10,3	4,7	234701
_12.1	10	6,7	2,35	5036,09	14479,55	15,7	8,1	117284
_12.2	10	6,99	2,43	4968,67	12384,66	17,0	8,7	107747
_13.1	10	7,44	2,23	4984,75	15104,14	16,6	8,5	128385
_14.1	10	7,44	2,14	5152,62	17666,64	15,9	8,1	143100
_15.1	10	7,38	2,67	5103,84	9083,37	19,7	10,4	94467
_15.2	10	7,59	2,67	5246,9	9079,61	20,3	10,6	96244
_16.1	10	7,03	2,18	4628,83	15888,63	15,3	7,8	123931
_17.1	10	8,41	2,43	5284,69	10948,25	20,4	10,7	117146
_17.2	10	8,48	2,35	5183,57	11775,23	19,9	10,4	122462
_18.1	10	10,75	2,28	4815,5	9448,62	24,5	13,5	127556
_19.1	10	8,34	1,65	5364,09	35794,66	13,8	6,8	243404
_20.1	10	7,99	1,82	5860,57	30417,18	14,5	7,3	222045
x				•			-	158302
S								49572

Tab. 9.3: E-Modul-Werte Cercon base aus dem Dreipunkt-Biegetest

Tab. 9.4: Messwerte der Keramik Cercon base bzgl. der K_{Ic}-Wert-Berechnung F [N] 98

Zeit[s] 30											
Probe	c [µm]	d [µm] =2a	Härte [N/mm ²]	c/a	(c/a) ³	[(c/a) ³] ^{1/2}	1/[(c/a) ^{1/2}] ³	a ^{1/2}	E-Modul[MPa]	(E/H) ^{1/2}	K _{lc} [MPam ^{1/2}]
~1	118,2	107,9	15606,0	2,19	10,52	3,24	0,31	0,007345	167240	3,27	3,70
~2	113,9	113,7	14054,5	2,00	8,04	2,84	0,35	0,007540	167240	3,45	4,12
~3	111,2	105,2	16417,4	2,11	9,45	3,07	0,33	0,007253	167240	3,19	3,96
~4	116,8	108	15577,2	2,16	10,12	3,18	0,31	0,007348	193952	3,53	4,06
~5	126,5	113	14229,1	2,24	11,22	3,35	0,30	0,007517	193952	3,69	3,77
~6	115,8	108,7	15377,2	2,13	9,67	3,11	0,32	0,007372	193952	3,55	4,14
~7	124,7	106,1	16140,1	2,35	12,99	3,60	0,28	0,007284	148952	3,04	3,17
~8	124,6	118,7	12895,4	2,10	9,25	3,04	0,33	0,007704	148952	3,40	3,55
~9	116,5	105,7	16262,4	2,20	10,71	3,27	0,31	0,007270	148952	3,03	3,50
~10	121,9	107,8	15635,0	2,26	11,57	3,40	0,29	0,007342	228595	3,82	4,13
~11	121,4	113,6	14079,2	2,14	9,76	3,12	0,32	0,007537	228595	4,03	4,38
~12	114,4	107,4	15751,7	2,13	9,67	3,11	0,32	0,007328	228595	3,81	4,53
~13	118,5	111,9	14510,3	2,12	9,50	3,08	0,32	0,007480	200184	3,71	4,19
~14	121,6	115,7	13572,8	2,10	9,29	3,05	0,33	0,007606	200184	3,84	4,16
~15	122,6	119	12830,4	2,06	8,75	2,96	0,34	0,007714	200184	3,95	4,23
~16	121,6	117,9	13071,0	2,06	8,78	2,96	0,34	0,007678	209867	4,01	4,34
~17	113,7	104,8	16543,0	2,17	10,22	3,20	0,31	0,007239	209867	3,56	4,27
~18	109,1	117,5	13160,1	1,86	6,40	2,53	0,40	0,007665	209867	3,99	5,09
~19	123	111,2	14693,5	2,21	10,83	3,29	0,30	0,007457	133493	3,01	3,21
~20	132,1	120	12617,5	2,20	10,67	3,27	0,31	0,007746	133493	3,25	3,11
~22	115,7	121,9	12227,2	1,90	6,84	2,62	0,38	0,007807	133493	3,30	3,86
~23	116,8	107,3	15781,1	2,18	10,32	3,21	0,31	0,007325	127556	2,84	3,27
~24	117,6	110,5	14880,3	2,13	9,64	3,11	0,32	0,007433	127556	2,93	3,34
~25	125,2	108,1	15548,4	2,32	12,43	3,53	0,28	0,007352	127556	2,86	2,97
~26	120,8	108	15577,2	2,24	11,19	3,35	0,30	0,007348	168192	3,29	3,60
~27	107,3	112,8	14279,7	1,90	6,89	2,62	0,38	0,007510	168192	3,43	4,49
~28	107,1	104,6	16606,3	2,05	8,59	2,93	0,34	0,007232	168192	3,18	4,17
~29	134,5	119,4	12744,6	2,25	11,44	3,38	0,30	0,007727	215193	4,11	3,83
~30	131,8	115,9	13526,0	2,27	11,76	3,43	0,29	0,007612	215193	3,99	3,83
~31	117,4	108,4	15462,4	2,17	10,16	3,19	0,31	0,007362	215193	3,73	4,26
~33	121	108,4	15462,4	2,23	11,13	3,34	0,30	0,007362	234701	3,90	4,25

Anhang

~34	111.8	107	15869.7	2.09	9.13	3.02	0.33	0.007314	234701	3.85	4.73
~35	105,5	105,7	16262,4	2,00	7,95	2,82	0,35	0,007270	117284	2,69	3,60
~36	114,2	108,5	15433,9	2,11	9,33	3,05	0,33	0,007365	117284	2,76	3,28
~37	106	109,8	15070,6	1,93	7,20	2,68	0,37	0,007409	117284	2,79	3,72
~38	112	107,3	15781,1	2,09	9,10	3,02	0,33	0,007325	107747	2,61	3,20
~39	106,9	107,4	15751,7	1,99	7,89	2,81	0,36	0,007328	107747	2,62	3,44
~40	125,4	120,1	12596,5	2,09	9,11	3,02	0,33	0,007749	107747	2,92	3,03
~41	113,9	110,6	14853,4	2,06	8,74	2,96	0,34	0,007436	128385	2,94	3,52
~42	112,7	108,9	15320,8	2,07	8,87	2,98	0,34	0,007379	128385	2,89	3,52
~44	134,4	117,1	13250,2	2,30	12,10	3,48	0,29	0,007652	128385	3,11	2,90
~45	113,3	112,1	14458,5	2,02	8,26	2,87	0,35	0,007487	143100	3,15	3,79
~47	117,8	107,9	15606,0	2,18	10,41	3,23	0,31	0,007345	143100	3,03	3,44
~49	113,7	110,4	14907,3	2,06	8,74	2,96	0,34	0,007430	123931	2,88	3,46
~52	122,6	114,6	13834,6	2,14	9,80	3,13	0,32	0,007570	243404	4,19	4,49
~55	128,7	109,9	15043,2	2,34	12,85	3,58	0,28	0,007413	243404	4,02	4,00
~57	117,3	110,3	14934,3	2,13	9,62	3,10	0,32	0,007426	243404	4,04	4,62
~58	116,1	109,7	15098,1	2,12	9,48	3,08	0,32	0,007406	222045	3,83	4,46
~60	123,6	114,1	13956,1	2,17	10,17	3,19	0,31	0,007553	222045	3,99	4,22
~61	124,9	117,6	13137,8	2,12	9,58	3,10	0,32	0,007668	222045	4,11	4,28
x											3,86
S											0,51

Sinterschrumptung [%]									
	DC-Shrink 1480 vB	DC-Shrink 1530 vB	DC-Shrink 1580 vB						
	20,81	23,77	21,3						
	20,12	19,58	20,47						
	21,4	19,05	20,53						
	21,14	19,68	21,18						
	20,23	20,41	20,11						
	21,04	22,22	21,1						
	21,17	21,46	21,17						
	20,3	15,93	20,57						
	21,62	20,06	21,37						
	20,68	19,38	21,39						
	20,21	21,94	20,41						
	21,33	21,71	21,12						
	20,95	21,69	20,9						
	20,12	21,15	20,83						
	21,04	21,49	20,73						
	20,95								
	20,2								
	21,29								
x	20,81	20,63	20,90						
S	0,49	1,76	0,39						

Tab. 9.5: Messwerte der Keramik *DC*-Shrink bzgl. der Sinterschrumpfung

Tab. 9.6: Biegefestigkeitswerte von DC-Shrink 1480 EB aus dem Dreipunkt-Biegetest

Probe	a [mm]	h [mm]	W [mm³]	F [N]	l [mm]	Mb [Nmm]	σ [N/mm²]
_1.1	12,09	0,96	1,86	494	10	1235	665,04
_1.2	12,06	0,94	1,78	533,2	10	1333	750,55
_1.3	12,01	0,84	1,41	574,2	10	1435,50	1016,37
_2.1	11,99	1,07	2,29	652,5	10	1631,25	712,99
_2.2	12	1,04	2,16	688,5	10	1721,25	795,70
_2.3	11,81	1	1,97	573,6	10	1434,00	728,54
_3.1	12,03	1,5	4,51	1792,9	10	4482,25	993,57
_3.2	12,05	1,48	4,40	1866,7	10	4666,75	1060,85
_3.3	12,05	1,54	4,76	1835,2	10	4588,00	963,27
_4.1	11,99	1,58	4,99	1799,2	10	4498,00	901,65
_4.2	11,96	1,58	4,98	1673,3	10	4183,25	840,66
_4.3	11,39	1,65	5,17	1243,9	10	3109,75	601,71
_5.1	12,09	1,06	2,26	322	10	805,00	355,56
_5.2	12,01	1,03	2,12	574,3	10	1435,75	676,10
_5.3	12,08	1,22	3,00	927,7	10	2319,25	773,95
x							789,10
S							184,28

Probe	a [mm]	h [mm]	W [mm³]	F [N]	l [mm]	Mb [Nmm]	σ [N/mm²]
_1.1	11,98	1,51	4,55	1660,5	10	4151,25	911,84
_1.2	11,95	1,53	4,66	941,1	10	2352,75	504,63
_1.3	12,01	1,49	4,44	1608,9	10	4022,25	905,12
_2.1	11,95	1,75	6,10	1246	10	3115,00	510,70
_2.2	11,94	1,8	6,45	1369	10	3422,50	530,82
_2.3	11,91	1,66	5,47	1771,8	10	4429,50	809,80
_3.1	11,91	1,17	2,72	1125,4	10	2813,50	1035,42
_3.2	11,94	1,18	2,77	943,6	10	2359,00	851,36
_3.3	12,03	1,18	2,79	1104,6	10	2761,50	989,16
_4.1	11,98	1,62	5,24	1350,3	10	3375,75	644,22
_4.2	12,01	1,64	5,38	1735,2	10	4338,00	805,77
_4.3	11,95	1,42	4,02	1201,3	10	3003,25	747,82
_5.1	11,99	1,24	3,07	914,5	10	2286,25	744,07
_5.2	12,04	1,2	2,89	735,2	10	1838,00	636,07
_5.3	11,98	1,3	3,37	1097,5	10	2743,75	813,12
x							762,66
S							168,43

Tab. 9.7: Biegefestigkeitswerte von DC-Shrink 1530 EB aus dem Dreipunkt-Biegetest

Tah	98.	Riegefestigkeitswerte von	DC-Shrink	1580 EB aus d	em Dreinunkt-Riegetest
1 av.	1.0.	Dicgenestighentswerte von	DC-SIII IIIK	1300 ED aus u	CIII DI CIPUIIKI-DICZCICSI

Probe	a [mm]	h [mm]	W [mm³]	F [N]	l [mm]	Mb [Nmm]	σ [N/mm²]
_1.1	12,01	1,5	4,50	346	10	865	192,06
_1.2	12,01	1,34	3,59	379,1	10	947,75	263,69
_1.3	11,99	1,35	3,64	1032,1	10	2580,25	708,48
_2.1	11,95	1,2	2,87	1634,7	10	4086,75	1424,95
_2.2	11,95	1,39	3,85	1692,9	10	4232,25	1099,83
_2.3	11,89	1,07	2,27	1256,7	10	3141,75	1384,76
_3.1	12	1,7	5,78	2008,6	10	5021,50	868,77
_3.2	11,99	1,55	4,80	1127,3	10	2818,25	587,01
_3.3	12	2	8,00	2322,2	10	5805,50	725,69
_4.1	12,03	1,56	4,88	2035,7	10	5089,25	1043,01
_4.2	12,07	1,62	5,28	2076,9	10	5192,25	983,49
_4.3	12,03	1,55	4,82	1143,7	10	2859,25	593,57
_5.1	12,03	1,67	5,59	2600,8	10	6502	1162,79
_5.2	12,03	1,66	5,52	2451,8	10	6129,50	1109,42
_5.3	12,02	1,83	6,71	3676,6	10	9191,50	1370,03
x							901,17
S							385,24

Tab. 9.9: Biegefestigkeitswerte von DC-Shrink 1480 vB aus dem Dreipunkt-Biegetest

	8						
Probe	a [mm]	h [mm]	W [mm ³]	F [N]	l [mm]	Mb [Nmm]	σ [N/mm²]
_1.1	11,99	2,27	10,30	2669,5	10	6673,75	648,11
_1.2	12,03	2,31	10,70	2642,5	10	6606,25	617,47
_1.3	12	2,25	10,13	3603,1	10	9007,75	889,65
_2.1	11,78	2,45	11,78	4017,4	10	10043,50	852,23
_2.2	11,77	2,33	10,65	3775,2	10	9438,00	886,22
_2.3	11,82	2,49	12,21	4242,3	10	10605,75	868,31
_3.1	12	2,69	14,47	4065,4	10	10163,50	702,28
_3.2	12,02	2,77	15,37	3428,7	10	8571,75	557,64
_3.3	11,99	2,79	15,56	3436,7	10	8591,75	552,34
_4.1	11,91	2,06	8,42	2102,7	10	5256,75	624,05
_4.2	11,78	1,92	7,24	2557,7	10	6394,25	883,47

Anhang

_4.3	11,8	1,8	6,37	1592,6	10	3981,50	624,84
_5.1	11,9	2,55	12,90	4056,2	10	10140,50	786,29
_5.2	11,86	2,72	14,62	3196,9	10	7992,25	546,51
_5.3	11,87	2,79	15,40	4700,9	10	11752,25	763,16
_6.1	11,73	2,42	11,45	3198,2	10	7995,50	698,34
_6.2	11,65	2,51	12,23	3336,3	10	8340,75	681,84
_6.3	11,85	2,39	11,28	2903,6	10	7259,00	643,45
x							712,57
S							122,35

Tab. 9.10: Biegefestigkeitswerte von DC-Shrink 1530 vB aus dem Dreipunkt-Biegetest

Probe	a [mm]	h [mm]	W [mm³]	F [N]	l [mm]	Mb [Nmm]	σ [N/mm²]
_1.1	11,67	0,93	1,68	595,6	10	1489	885,13
_1.2	11,72	0,97	1,84	808,8	10	2022	1100,17
_1.3	11,65	0,91	1,61	743,7	10	1859,25	1156,33
_2.1	11,62	0,76	1,12	372,7	10	931,75	832,95
_2.2	11,64	0,68	0,90	70,6	10	176,50	196,75
_2.3	11,71	0,76	1,13	285,6	10	714	633,38
_3.1	11,77	1,18	2,73	1053	10	2632,50	963,78
_3.2	11,81	1,16	2,65	1117,6	10	2794	1054,90
_4.1	11,61	1,04	2,09	445,2	10	1113	531,80
_4.2	11,62	1,11	2,39	545,4	10	1363,50	571,42
_4.3	11,62	1,12	2,43	725	10	1812,50	746,08
_5.1	11,71	0,79	1,22	332,9	10	832,25	683,27
x							779,66
S							277,10

Tab. 9.11: Biegefestigkeitswerte von DC-Shrink 1580 vB aus dem Dreipunkt-Biegetest

Probe	a [mm]	h [mm]	W [mm³]	F [N]	l [mm]	Mb [Nmm]	σ [N/mm²]
_1.1	11,7	1,51	4,45	1563,5	10	3908,75	879,12
_1.2	11,72	1,42	3,94	1642,5	10	4106,25	1042,54
_1.3	11,72	1,55	4,69	1761,9	10	4404,75	938,60
_2.1	11,76	1,59	4,96	1802,5	10	4506,25	909,42
_2.2	11,75	1,57	4,83	1730	10	4325,00	895,98
_2.3	11,79	1,57	4,84	1865,6	10	4664,00	962,93
_3.1	11,82	2,1	8,69	2531,7	10	6329,25	728,53
_3.2	11,78	2,04	8,17	1956,8	10	4892,00	598,73
_3.3	11,8	2,09	8,59	2815,6	10	7039,00	819,38
_4.1	11,69	1,68	5,50	1765,2	10	4413,00	802,51
_4.2	11,68	1,67	5,43	1489,6	10	3724,00	685,94
_4.3	11,69	1,59	4,93	1534,3	10	3835,75	778,74
_5.1	11,71	1,4	3,83	1383,5	10	3458,75	904,19
_5.2	11,72	1,38	3,72	1145,8	10	2864,50	770,04
_5.3	11,7	1,38	3,71	1301	10	3252,50	875,84
_6.1	11,51	1,12	2,41	615,3	10	1538,25	639,24
_6.2	11,56	1,12	2,42	587,1	10	1467,75	607,31
_6.3	11,38	1,14	2,46	992,2	10	2480,50	1006,33
x							824,74
S							133,62

Probe	Auflage I	Breite a	Dicke h	F [N/mm]	E [N/mm²]	a*h[mm ²]	Faktor	E korrig.
	[mm]	[mm]	[mm]					
_1.1	10	12,09	0,96	2689,45	62858,46	11,6	5,8	364579
_1.2	10	12,06	0,94	4852,921	121119,03	11,3	5,6	678267
_1.3	10	12,01	0,84	7063,87	248086,06	10,1	5	1240430
_2.1	10	11,99	1,07	6402,53	108973,63	12,8	6,4	697431
_2.2	10	12	1,04	2215,57	41034,10	12,5	6,2	254411
_2.3	10	11,81	1	2977,83	63036,36	11,8	5,9	371915
_3.1	10	12,03	1,5	4175,95	25713,20	18,0	8,9	228848
_3.2	10	12,05	1,48	3712,23	23757,61	17,8	8,8	209067
_3.3	10	12,05	1,54	3386,39	19236,59	18,6	9,2	176977
_4.1	10	11,99	1,58	3663,07	19363,99	18,9	9,4	182022
_4.2	10	11,96	1,58	4444,46	23553,57	18,9	9,4	221404
_4.3	10	11,39	1,65	3708,59	18120,67	18,8	9,4	170334
_5.1	10	12,09	1,06	4955,73	86040,79	12,8	6,4	550661
_5.2	10	12,01	1,03	4930,91	93931,86	12,4	6,2	582378
_5.3	10	12,08	1,22	4662,89	53143,43	14,7	7,3	387947
x			•					421111
S								291857

Tab. 9.12: E-Modul-Werte DC-Shrink 1480 EB aus dem Dreipunkt-Biegetest

Tab. 9.13: E-Modul-Werte DC-Shrink 1530 EB aus dem Dreipunkt-Biegetest

Probe	Auflage I	Breite a	Dicke h	F [N/mm]	E [N/mm ²]	a*h[mm ²]	Faktor	E korrig.
	[mm]	[mm]	[mm]					_
_1.1	10	11,98	1,51	3800,49	23035,25	18,1	9,4	216531
_1.2	10	11,95	1,53	5405,40	31573,76	18,3	9,5	299951
_1.3	10	12,01	1,49	4887,28	30754,29	17,9	9,4	289090
_2.1	10	11,95	1,75	5738,07	22398,78	20,9	11	246387
_2.2	10	11,94	1,8	5934,86	21307,34	21,5	11,4	242904
_2.3	10	11,91	1,66	5224,68	23975,32	19,8	9,8	234958
_3.1	10	11,91	1,17	4717,35	61825,72	13,9	6,9	426597
_3.2	10	11,94	1,18	5130,67	65382,89	14,1	7	457680
_3.3	10	12,03	1,18	4912,31	62131,94	14,2	7,1	441137
_4.1	10	11,98	1,62	5218,18	25612,85	19,4	9,7	248445
_4.2	10	12,01	1,64	5033,85	23755,62	19,7	9,8	232805
_4.3	10	11,95	1,42	5515,71	40300,34	17,0	8,4	338523
_5.1	10	11,99	1,24	4557,27	49838,07	14,9	7,4	368802
_5.2	10	12,04	1,2	4600,22	55277,57	14,4	7,2	397999
_5.3	10	11,98	1,3	5150,56	48922,46	15,6	7,8	381595
x								321560
S								84912

Tab. 9.14: E-Modul-Werte DC-Shrink 1580 EB aus dem Dreipunkt-Biegetest

Probe	Auflage I	Breite a	Dicke h	F [N/mm]	E [N/mm²]	a*h[mm²]	Faktor	E korrig.
	[mm]	[mm]	[mm]					_
_1.1	10	12,01	1,5	608,53	3753,28	18,0	9,4	35281
_1.2	10	12,01	1,34	1259,56	10896,91	16,1	8,2	89355
_1.3	10	11,99	1,35	4206,51	35648,54	16,2	8,2	292318
_2.1	10	11,95	1,2	3735,25	45221,87	14,3	7,2	325597
_2.2	10	11,95	1,39	5073,26	39519,84	16,6	8,5	335919
_2.3	10	11,89	1,07	4624,83	79378,56	12,7	6,2	492147
_3.1	10	12	1,7	4888,23	20728,32	20,4	10,8	223866

_3.2	10	11,99	1,55	5519,02	30902,12	18,6	9,6	296660
_3.3	10	12	2	4888,31	12729,98	24,0	13,2	168036
_4.1	10	12,03	1,56	4632,50	25358,08	18,8	10	253581
_4.2	10	12,07	1,62	4695,21	22874,04	19,6	10,4	237890
_4.3	10	12,03	1,55	5724,92	31948,42	18,6	9,6	306705
_5.1	10	12,03	1,67	5329,26	23778,93	20,1	10,6	252057
_5.2	10	12,03	1,66	5695,96	25877,22	20,0	10,5	271711
_5.3	10	12,02	1,83	6694,09	22718,22	22,0	12,2	277162
x								257219
S								106509

Tab. 9.15: E-Modul-Werte DC-Shrink 1480 vB aus dem Dreipunkt-Biegetest

Probe	Auflage I	Breite a	Dicke h	F [N/mm]	E [N/mm²]	a*h[mm²]	Faktor	E korrig.
	[mm]	[mm]	[mm]					
_1.1	10	11,99	2,27			27,2		
_1.2	10	12,03	2,31			27,8		
_1.3	10	12	2,25	6522,47	11929,54	27,0	13,4	159856
_2.1	10	11,78	2,45	7232,90	10437,80	28,9	14,4	150304
_2.2	10	11,77	2,33	5610,80	9421,52	27,4	13,6	128133
_2.3	10	11,82	2,49	7736,03	10598,47	29,4	14,7	155797
_3.1	10	12	2,69	6185,54	6620,33	32,3	16,1	106587
_3.2	10	12,02	2,77	8966,88	8774,81	33,3	16,6	145662
_3.3	10	11,99	2,79	9795,31	9404,31	33,5	16,7	157052
_4.1	10	11,91	2,06	9305,23	22343,65	24,5	12,2	272593
_4.2	10	11,78	1,92	5656,53	16960,62	22,6	11,3	191655
_4.3	10	11,8	1,8	5001,07	18167,88	21,2	10,6	192580
_5.1	10	11,9	2,55	6032,90	7643,62	30,3	15,1	115419
_5.2	10	11,86	2,72	6512,97	6822,26	32,3	16,1	109838
_5.3	10	11,87	2,79	6490,61	6294,52	33,1	16,5	103860
_6.1	10	11,73	2,42	6935,11	10429,16	28,4	14,2	148094
_6.2	10	11,65	2,51	10265,18	13930,28	29,2	14,6	203382
_6.3	10	11,85	2,39	6291,21	9722,15	28,3	14,1	137082
x				•		•		154868
S								43755

Tab.	9.16: E-Modul	-Werte DC-S	Shrink 1530 y	vB aus dem	Dreip	unkt-Biegetest

Probe	Auflage	a [mm]	Dicke h	F [N/mm]	E [N/mm²]	a*h[mm²]	Faktor	E korrig.
	l [mm]		[mm]					
_1.1	10	11,67	0,93	1516,94	40400,85	10,9	5,4	218165
_1.2	10	11,72	0,97	2762,46	64564,53	11,4	5,7	368018
_1.3	10	11,65	0,91	4002,13	113967,62	10,6	5,3	604028
_2.1	10	11,62	0,76	4544,47	222728,93	8,8	4,4	980007
_2.2	10	11,64	0,68	1671,88	114200,45	7,9	3,9	445382
_2.3	10	11,71	0,76	3861,61	187806,73	8,9	4,4	826350
_3.1	10	11,77	1,18	4205,99	54373,38	13,9	6,9	375176
_3.2	10	11,81	1,16	2468,60	33478,60	13,7	6,8	227654
_4.1	10	11,61	1,04	613,19	11738,26	12,1	6	70430
_4.2	10	11,62	1,11	720,34	11331,93	12,9	6,4	72524
_4.3	10	11,62	1,12	2111,19	32330,17	13,0	6,5	210146
_5.1	10	11,71	0,79	5753,23	249123,09	9,3	4,6	1145966
x								461987
S								355289

Probe	Auflage	a [mm]	Dicke h	F [N/mm]	E [N/mm ²]	a*h[mm ²]	Faktor	E korrig.
	l [mm]		[mm]					
_1.1	10	11,7	1,51	6681,14	41464,29	17,7	8,8	364886
_1.2	10	11,72	1,42	6463,57	48152,67	16,6	8,3	399667
_1.3	10	11,72	1,55	6125,39	35087,41	18,2	9,1	319295
_2.1	10	11,76	1,59	6980,99	36919,74	18,7	9,3	343354
_2.2	10	11,75	1,57	4557,43	25056,67	18,4	9,2	230521
_2.3	10	11,79	1,57	4552,63	24945,40	18,5	9,2	229498
_3.1	10	11,82	2,1	4953,25	11312,43	24,8	12,3	139143
_3.2	10	11,78	2,04	5091,62	12728,02	24,0	11,9	151463
_3.3	10	11,8	2,09	5359,55	12437,93	24,7	12,3	152987
_4.1	10	11,69	1,68	9469,09	42707,68	19,6	9,8	418535
_4.2	10	11,68	1,67	5669,39	26054,62	19,5	9,7	252730
_4.3	10	11,69	1,59	6898,02	36699,41	18,6	9,3	341304
_5.1	10	11,71	1,4	6077,89	47288,10	16,4	8,2	387762
_5.2	10	11,72	1,38	5308,95	43090,79	16,2	8,1	349035
_5.3	10	11,7	1,38	6035,18	49069,03	16,1	8	392552
_6.1	10	11,51	1,12	6807,63	105246,32	12,9	6,4	673576
_6.2	10	11,56	1,12	5444,41	83806,78	12,9	6,4	536363
_6.3	10	11,38	1,14	7123,70	105630,48	13,0	6,5	686598
x								353848
S								158132

Tab. 9.17: E-Modul-Werte DC-Shrink 1580 vB aus dem Dreipunkt-Biegetest

1 a	10. 1010	swerte ut		Shi lik 1400 ED i	JEgn uti		-Dei cennung	5				
F [N]	98											
Zeit[s] 30											
Probe	;	c [µm]	d [µm] =2a	Härte[N/mm ²]	c/a	(c/a) ³	[(c/a) ³] ^{1/2}	1/[(c/a) ^{1/2]3}	a ^{1/2}	E-Modul[MPa]	(E/H) ^{1/2}	K _{lc} [MPam ^{1/2}]
1_1_1	1	53,8	57,6	54763	1,87	6,52	2,55	0,39	0,00537	364579	2,580	9,5
1_1_2	2	56,2	56,3	57322	2,00	7,96	2,82	0,35	0,00531	364579	2,522	8,7
1_1_:	3	48,1	56,1	57731	1,71	5,04	2,25	0,45	0,00530	364579	2,513	10,9
1_2_*	1	53,8	57,7	54574	1,86	6,48	2,55	0,39	0,00537	678267	3,525	13,0
1_2_2	2	54,5	57,6	54763	1,89	6,78	2,60	0,38	0,00537	678267	3,519	12,7
1_2_3	3	55,1	58,2	53640	1,89	6,79	2,61	0,38	0,00539	678267	3,556	12,6
1_3_*	1	58,5	56,8	56317	2,06	8,74	2,96	0,34	0,00533	678267	3,470	11,3
1_3_2	2	61,7	57,4	55146	2,15	9,94	3,15	0,32	0,00536	678267	3,507	10,5
1_3_3	3	59,9	56,1	57731	2,14	9,74	3,12	0,32	0,00530	678267	3,428	10,7
1_4_*	1	63,6	60,8	49151	2,09	9,16	3,03	0,33	0,00551	1240430	5,024	14,4
1_4_2	2	57,4	54,4	61396	2,11	9,40	3,07	0,33	0,00522	1240430	4,495	15,0
1_4_3	3	54,3	65,5	42350	1,66	4,56	2,13	0,47	0,00572	1240430	5,412	19,7
2_1_	1	65,5	58,3	53456	2,25	11,35	3,37	0,30	0,00540	697431	3,612	9,9
2_1_2	2	58,7	58	54011	2,02	8,29	2,88	0,35	0,00539	697431	3,593	11,6
2_1_3	3	57,6	56,8	56317	2,03	8,34	2,89	0,35	0,00533	697431	3,519	11,7
2_2_^	1	57,5	59,5	51322	1,93	7,22	2,69	0,37	0,00545	254411	2,226	7,4
2_2_2	2	50,1	58,4	53273	1,72	5,05	2,25	0,44	0,00540	254411	2,185	9,0
2_2_3	3	50,1	56,6	56716	1,77	5,55	2,36	0,42	0,00532	254411	2,118	8,7
2_3_	1	46,7	57,1	55727	1,64	4,38	2,09	0,48	0,00534	254411	2,137	9,7
2_3_2	2	64	57	55922	2,25	11,32	3,37	0,30	0,00534	254411	2,133	6,1
2_3_3	3	46,3	57,5	54954	1,61	4,18	2,04	0,49	0,00536	254411	2,152	9,9
2_4_*	1	55,6	57,2	55532	1,94	7,35	2,71	0,37	0,00535	371915	2,588	9,1
2_4_2	2	62,5	57,8	54385	2,16	10,11	3,18	0,31	0,00538	371915	2,615	7,7
2_4_3	3	64,5	57,7	54574	2,24	11,17	3,34	0,30	0,00537	371915	2,611	7,3
3_1_	1	55,4	57	55922	1,94	7,35	2,71	0,37	0,00534	228848	2,023	7,1
3_1_2	2	65,8	60,1	50302	2,19	10,50	3,24	0,31	0,00548	228848	2,133	5,8
3_1_3	3	56,4	57,3	55338	1,97	7,63	2,76	0,36	0,00535	228848	2,034	7,0
3_2_^	1	49,1	58,7	52730	1,67	4,68	2,16	0,46	0,00542	209067	1,991	8,4
3_2_2	2	50,1	57,2	55532	1,75	5,38	2,32	0,43	0,00535	209067	1,940	8,0
3_2_3	3	62,2	55,2	59629	2,25	11,45	3,38	0,30	0,00525	209067	1,872	5,5
3_3_^	1	60,2	55,3	59414	2,18	10,32	3,21	0,31	0,00526	209067	1,876	5,8

Tab. 9.18: Messwerte der Keramik DC-Shrink 1480 EB bzgl. der K_{Ie}-Wert-Berechnung

	Α	n	h	а	n	g
--	---	---	---	---	---	---

3_3_3 56,1 56,4 57119 1,99 7,87 2,81 0,36 0,00531 209067 1,913 6,6 3.4_1 60,4 56,7 56616 2,13 9,67 3,11 0,022 0,00532 176977 1,770 5,5 3.4_3 61,8 55,7 58663 2,22 10,93 3,31 0,30 0,00548 176977 1,738 5,2 4_1_1 54,8 59,6 51150 1,84 6,22 2,49 0,40 0,00542 182022 1,886 6,6 4_1_2 47,7 56,6 56716 1,69 4,79 2,19 0,46 0,00542 182022 1,886 6,6 4_2_2 61 59,7 50979 2,04 8,53 2,92 0,34 0,00542 221404 2,048 6,4 4_3_1 58,5 57,7 54574 2,03 8,34 2,89 0,35 0,00537 221404 2,048 6,4 4_3_3 58,4 57,1 55777 54574 2,03 8,34 2,89 <th>332</th> <th>55</th> <th>55,9</th> <th>58145</th> <th>1,97</th> <th>7,62</th> <th>2,76</th> <th>0,36</th> <th>0,00529</th> <th>209067</th> <th>1,896</th> <th>6,8</th>	332	55	55,9	58145	1,97	7,62	2,76	0,36	0,00529	209067	1,896	6,8
3.4_1 60,4 56,7 56516 2,13 9,67 3,11 0,32 0,00532 176977 1,763 5,5 3.4_2 62,3 56,5 56917 2,21 10,73 3,27 0,31 0,00532 176977 1,738 5,2 4.1_1 54,8 59,6 51150 1,84 6,22 2,49 0,40 0,00546 182022 1,886 6,8 4.1_2 47,7 56,6 56716 1,69 4,79 2,19 0,46 0,00532 182022 1,791 7,9 4.1_3 58 56,8 52551 1,97 7,68 2,77 0,36 0,00542 182022 1,861 6,1 4.2_2 61 59,7 50979 2,04 8,53 2,92 0,34 0,00546 221404 2,049 6,0 4.2_3 62,6 56,5 56917 2,22 10,88 3,30 0,30 0,00532 221404 1,972 5,8 4.3_1 58,5 57,7 54574 2,03 8,34 2,89 0,35 0,00537 221404 2,014 6,5 4.3_2 60,6 59,2 51843 2,05 8,58 2,93 0,34 0,00544 221404 2,014 6,5 4.4_1 60,4 57,1 55727 2,12 9,47 3,08 0,32 0,00542 221404 2,014 6,5 4.4_2 59 57,4 55464 2,00 8,58 2,93 0,34 0,00538 221404 2,018 6,6 4.4_1 60,4 57,1 55727 2,12 9,47 3,08 0,32 0,00536 170334 1,767 5,6 4.4_3 51,5 58,4 53273 1,76 5,49 2,34 0,43 0,00544 170334 1,778 5,6 4.4_4 2 59 57,4 55146 2,06 8,69 2,95 0,34 0,00540 170334 1,778 5,6 4.4_3 51,5 58,4 53273 1,76 5,49 2,34 0,43 0,00540 170334 1,778 5,6 4.4_4 3 51,5 58,4 53273 1,76 5,49 2,34 0,43 0,00540 170334 1,778 5,6 5.1_1 52,3 54,6 60947 1,92 7,03 2,65 0,38 0,00532 550661 3,206 11,6 5.1_2 65,3 58,8 52551 2,22 10,96 3,31 0,30 0,00542 550661 3,206 11,6 5.1_2 65,3 58,4 53273 1,76 5,32 2,31 0,43 0,00544 582378 3,346 10,4 5.2_2 60,3 59,1 52019 2,04 8,50 2,92 0,34 0,00544 582378 3,346 10,4 5.2_2 60,3 59,1 52019 2,04 8,50 2,92 0,34 0,00544 582378 3,346 10,4 5.2_1 65,3 58,4 52551 2,22 10,96 3,31 0,30 0,00542 550661 3,248 12,8 5.1_3 51,5 59 52195 1,75 5,32 2,31 0,43 0,00543 550661 3,248 12,8 5.2_1 57,5 55,3 59414 2,08 8,99 3,00 0,33 0,00524 582378 3,119 9,6 5.3_1 51,1 56,5 56917 2,18 10,42 3,23 0,41 0,00532 582378 3,199 9,6 5.3_1 57,5 55,3 59414 2,08 8,99 3,00 0,33 0,00524 582378 3,108 11,4 5.3_3 59 56,1 57731 2,10 9,31 3,05 0,43 0,00534 582378 3,108 11,4 5.3_3 59 56,1 57731 2,10 9,31 3,05 0,43 0,00536 387947 2,567 8,4 5.4_1 50,8 56,1 57731 2,10 9,31 3,05 0,40 0,00530 387947 2,567 8,4 5.4_2 59,5 57,5 54954 2,07 8,66 2,98 0,34 0,40 0,00531 387947 2,567 8	3 3 3	56,1	56,4	57119	1,99	7,87	2,81	0,36	0,00531	209067	1,913	6,6
3.4_2 3.4_3 3.4_3 61,8 55,7 56563 4.1_1 54,8 55,7 5666 56716 1,69 4.1_2 4.1_2 4.7,7 56,6 5676 5676 5677 56,6 56716 1,69 4.7,9 4.1_3 58 58,8 52551 1,97 56,6 5677 56,6 5677 56,6 5677 56,6 56917 2,22 10,88 3,30 0,0052 182022 1,86 6,8 182022 1,86 6,8 182022 1,86 6,8 1,1 0,30 0,00542 182022 1,86 6,0 1,22 4,29 4,21 62,5 58,7 50979 2,04 8,53 2,92 0,34 0,00542 182042 2,1404 2,044 2,044 2,044 2,049 6,0 4,22 1,86 6,1 4,22 62,6 56,5 56917 2,22 10,88 3,30 0,00 3,31 0,00 50,00542 182022 1,86 6,0 4,22 1,86 6,1 4,21 4,21 62,5 58,7 54,77 54,57 54,57 54,57 54,57 54,57 54,57 54,57 54,57 54,57 1,22 10,88 3,30 0,03 0,00542 2,21404 2,044 2,044 4,04 1,972 5,8 4,31 1,22 1,24 4,21 4,214 4,214 4,214 4,214 4,214 4,214 4,214 4,214 4,214 4,214 4,21 58,5 57,7 54,57 54,57 4,22 1,22 1,88 3,30 0,30 0,00542 2,21404 2,044 4,04 4,00553 1,7034 1,748 5,4 4,4_1 6,6 4,4_1 6,6 4,4_1 6,6 4,4_1 6,6 4,4_1 6,6 4,4_1 6,6 4,4_1 6,6 4,4_1 6,6 4,4_1 6,6 4,4_1 6,6 4,4_1 6,6 4,4_1 6,6 4,4_1 6,6 4,4_1 6,6 4,4_1 6,6 4,4_1 1,6 5,1 5,7,7 5,6 1,77 3,4 1,78 5,14 4,4_2 59 5,7,4 5,14 2,22 10,88 3,31 0,30 0,00544 2,21404 2,014 6,6 4,4 4,4_1 6,6 4,4 4,4_1 6,6 4,4 4,4_1 6,6 4,4 4,4_1 6,6 4,4 4,4_1 6,6 4,4 4,4_1 6,6 4,4 4,4 1,6 4,4 1,78 7,0 5,12 1,22 1,29 1,76 5,32 2,31 0,33 0,00543 1,7034 1,748 5,4 4,4 1,78 7,0 5,12 5,06 1,324 1,75 5,6 1,6 1,6 4 4,4 1,75 5,6 1,77 5,6 1,22 1,22 1,22 1,24 1,28 1,48 1,	3_4_1	60,4	56,7	56516	2,13	9,67	3,11	0,32	0,00532	176977	1,770	5,5
3_4_3 61.8 55.7 58563 2.22 10.93 3.31 0.30 0.00528 176977 1.738 5.2 4_1_1 54.8 59.6 51150 1.84 6.22 2.49 0.40 0.00546 182022 1.886 6.8 4_1_3 58 58.8 52551 1.97 7.68 2.77 0.36 0.00542 182022 1.861 6.1 4_2_2 61 59.7 50.979 2.04 8.53 2.92 0.34 0.00542 221404 2.084 6.4 4_2_3 62.6 56.5 56917 2.22 10.88 3.30 0.30 0.00532 221404 2.084 6.4 4_3_1 58.5 57.7 54574 2.03 8.34 2.89 0.35 0.00537 221404 2.067 6.4 4_3_3 58.4 57.7 54574 2.03 8.34 2.89 0.35 0.00538 221404 2.067 6.4 4_3_3 51.5 58.4 53273 1.76 5.64 2.42 0.00536 <td>3_4_2</td> <td>62,3</td> <td>56,5</td> <td>56917</td> <td>2,21</td> <td>10,73</td> <td>3,27</td> <td>0,31</td> <td>0,00532</td> <td>176977</td> <td>1,763</td> <td>5,2</td>	3_4_2	62,3	56,5	56917	2,21	10,73	3,27	0,31	0,00532	176977	1,763	5,2
4_1_1 54.8 59.6 51150 1.84 6.22 2.49 0.40 0.00546 182022 1.886 6.8 4_1_2 47.7 56.6 56716 1.69 4.79 2.19 0.46 0.00532 182022 1.791 7.9 4_1_3 58 58.8 52551 1.97 7.68 2.77 0.36 0.00542 182022 1.861 6.1 4_2_1 62.5 58.7 52730 2.13 9.66 3.11 0.32 0.00542 221404 2.049 6.0 4_2_3 62.6 56.5 56917 2.22 10.88 3.30 0.30 0.00537 221404 2.014 6.5 4_3_1 58.5 57.7 54574 2.03 8.58 2.93 0.34 0.00534 221404 2.014 6.5 4_3_2 60.6 59.2 51843 2.02 8.25 2.87 0.35 0.00538 221404 2.014 6.6 4_4_1 60.4 57.1 55727 2.12 9.47 3.08 0.32	3_4_3	61,8	55,7	58563	2,22	10,93	3,31	0,30	0,00528	176977	1,738	5,2
4_1_2 47,7 56,6 56716 1,69 4,79 2,19 0,46 0,00532 182022 1,791 7,9 4_1_3 58 58,8 52551 1,97 7,68 2,77 0,36 0,00542 182022 1,861 6,1 4_2_1 62,5 58,7 52730 2,13 9,66 3,11 0,32 0,00542 221404 2,049 6,0 4_2_2 61 59,7 50979 2,04 8,53 2,92 0,34 0,00546 221404 2,084 6,4 4_3_1 58,5 57,7 54574 2,03 8,34 2,89 0,35 0,00537 221404 2,014 6,5 4_3_3 58,4 57,8 54385 2,02 8,25 2,87 0,35 0,00538 221404 2,018 6,6 4_4_1 60,4 57,1 5577 2,12 9,47 3,08 0,32 0,00538 170334 1,748 5,6 4_4_2 59 57,4 55146 2,06 8,69 2,34 0,43 <	4_1_1	54,8	59,6	51150	1,84	6,22	2,49	0,40	0,00546	182022	1,886	6,8
4_1_3 58 58,8 52551 1,97 7,68 2,77 0,36 0,00542 182022 1,861 6,1 4_2_1 62,5 58,7 52730 2,13 9,66 3,11 0,32 0,00542 221404 2,049 6,0 4_2_2 61 59,7 50979 2,04 8,53 2,92 0,34 0,00542 221404 2,084 6,4 4_3_3 62,6 56,5 56917 2,22 10,88 3,30 0,30 0,00542 221404 2,084 6,4 4_3_3 58,4 57,7 54574 2,03 8,34 2,89 0,35 0,00537 221404 2,014 6,5 4_3_3 58,4 57,7 54577 2,12 9,47 3,08 0,32 0,00534 170334 1,748 5,4 4_4_2 59 57,4 55146 2,06 8,69 2,95 0,34 0,00540 170334 1,757 5,6 5_1_1 52,3 54,4 53273 1,76 5,49 2,34 0,43	4_1_2	47,7	56,6	56716	1,69	4,79	2,19	0,46	0,00532	182022	1,791	7,9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4_1_3	58	58,8	52551	1,97	7,68	2,77	0,36	0,00542	182022	1,861	6,1
4_2_2 61 59,7 50979 2,04 8,53 2,92 0,34 0,00546 221404 2,084 6,4 4_2_3 62,6 56,5 56917 2,22 10,88 3,30 0,30 0,00532 221404 1,972 5,8 4_3_1 58,5 57,7 54574 2,03 8,34 2,89 0,35 0,00537 221404 2,014 6,6 4_3_3 58,4 57,8 54385 2,02 8,25 2,87 0,35 0,00538 221404 2,018 6,6 4_4_1 60,4 57,1 55727 2,12 9,47 3,08 0,32 0,00534 170334 1,748 5,4 4_4_2 59 57,4 55146 2,06 8,69 2,95 0,34 0,00536 170334 1,757 5,6 4_4_2 59 57,4 55146 2,06 8,69 2,34 0,43 0,00541 170334 1,788 7,0 5_12 65,3 58,8 52551 2,22 10,96 3,31 0,30	4_2_1	62,5	58,7	52730	2,13	9,66	3,11	0,32	0,00542	221404	2,049	6,0
4_2_3 62,6 56,5 56917 2,22 10,88 3,30 0,30 0,00532 221404 1,972 5,8 4_3_1 58,5 57,7 54574 2,03 8,34 2,89 0,35 0,00537 221404 2,014 6,5 4_3_3 58,4 57,8 54335 2,02 8,25 2,87 0,35 0,00534 221404 2,016 6,6 4_4_1 60,4 57,1 55727 2,12 9,47 3,08 0,32 0,00534 170334 1,748 5,4 4_4_2 59 57,4 55146 2,06 8,69 2,95 0,34 0,00536 170334 1,757 5,6 4_4_3 51,5 58,4 53273 1,76 5,49 2,34 0,43 0,00540 170334 1,758 7,0 5_1_1 52,3 54,6 60947 1,92 7,03 2,65 0,38 0,00542 550661 3,237 8,9 5_1_2 65,3 58,8 52515 2,22 1,06 3,31 0,30	4_2_2	61	59,7	50979	2,04	8,53	2,92	0,34	0,00546	221404	2,084	6,4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4_2_3	62,6	56,5	56917	2,22	10,88	3,30	0,30	0,00532	221404	1,972	5,8
4_3_2 60,6 59,2 51843 2,05 8,58 2,93 0,34 0,00544 221404 2,067 6,4 4_3_3 58,4 57,8 54385 2,02 8,25 2,87 0,35 0,00538 221404 2,067 6,4 4_4_1 60,4 57,1 55727 2,12 9,47 3,08 0,32 0,00534 170334 1,748 5,4 4_4_2 59 57,4 55146 2,06 8,69 2,95 0,34 0,00536 170334 1,748 5,6 4_4,3 51,5 58,4 5273 1,76 5,49 2,34 0,43 0,00540 170334 1,788 7,0 5_1_1 52,3 54,6 60947 1,92 7,03 2,65 0,38 0,00522 550661 3,237 8,9 9 5_1_3 51,5 59 52195 1,75 5,32 2,31 0,43 0,00543 550661 3,248 12,8 16,4 1,4 3,237 8,9 3,11 10,4 3,23 0,33 0,00544	4_3_1	58,5	57,7	54574	2,03	8,34	2,89	0,35	0,00537	221404	2,014	6,5
4_3_3 58,4 57,8 54385 2,02 8,25 2,87 0,35 0,00538 221404 2,018 6,6 4_4_1 60,4 57,1 55727 2,12 9,47 3,08 0,32 0,00534 170334 1,748 5,4 4_4_2 59 57,4 55146 2,06 8,69 2,95 0,34 0,00536 170334 1,757 5,6 4_4_3 51,5 58,4 53273 1,76 5,49 2,34 0,43 0,00540 170334 1,788 7,0 5_1_1 52,3 54,6 60947 1,92 7,03 2,65 0,38 0,00542 550661 3,006 11,6 5_1_3 51,5 59 52195 1,75 5,32 2,31 0,43 0,00543 550661 3,248 12,8 5_2_1 57,5 55,3 59414 2,08 8,99 3,00 0,33 0,00544 582378 3,131 10,4 5_2_3 61,7 56,5 56917 2,18 10,42 3,23 0,31	4_3_2	60,6	59,2	51843	2,05	8,58	2,93	0,34	0,00544	221404	2,067	6,4
4-4_1 60,4 57,1 55727 2,12 9,47 3,08 0,32 0,00534 170334 1,748 5,4 4_4_2 59 57,4 55146 2,06 8,69 2,95 0,34 0,00536 170334 1,757 5,6 4_4_3 51,5 58,4 53273 1,76 5,49 2,34 0,43 0,00540 170334 1,788 7,0 5_1_1 52,3 54,6 60947 1,92 7,03 2,65 0,38 0,00540 170334 1,788 7,0 5_1_2 65,3 58,8 52551 2,22 10,96 3,31 0,30 0,00542 550661 3,237 8,9 5_1_3 51,5 59 52195 1,75 5,32 2,31 0,43 0,00543 550661 3,248 12,8 5_2_2 60,3 59,1 52019 2,04 8,50 2,92 0,34 0,00544 582378 3,131 10,4 5_2_3 61,7 56,5 56917 2,18 10,42 3,23 0,31	4_3_3	58,4	57,8	54385	2,02	8,25	2,87	0,35	0,00538	221404	2,018	6,6
4_4_2 59 57,4 55146 2,06 8,69 2,95 0,34 0,00536 170334 1,757 5,6 4_4_3 51,5 58,4 53273 1,76 5,49 2,34 0,43 0,00540 170334 1,788 7,0 5_1_1 52,3 54,6 60947 1,92 7,03 2,65 0,38 0,00522 550661 3,006 11,6 5_1_2 65,3 58,8 52551 2,22 10,96 3,31 0,30 0,00542 550661 3,237 8,9 5_1_3 51,5 59 52195 1,75 5,32 2,31 0,43 0,00543 550661 3,248 12,8 5_2_1 57,5 55,3 59414 2,08 8,99 3,00 0,33 0,00544 582378 3,131 10,4 5_2_2 60,3 59,1 52019 2,04 8,50 2,92 0,34 0,00544 582378 3,146 10,42 5_3_3 59,1 52019 2,18 10,42 3,23 0,31 0,00532<	4_4_1	60,4	57,1	55727	2,12	9,47	3,08	0,32	0,00534	170334	1,748	5,4
4_4_3 51,5 58,4 53273 1,76 5,49 2,34 0,43 0,00540 170334 1,788 7,0 5_1_1 52,3 54,6 60947 1,92 7,03 2,65 0,38 0,00522 550661 3,006 11,6 5_1_2 65,3 58,8 52551 2,22 10,96 3,31 0,30 0,00542 550661 3,237 8,9 5_1_3 51,5 59 52195 1,75 5,32 2,31 0,43 0,00543 550661 3,248 12,8 5_2_1 57,5 55,3 59414 2,08 8,99 3,00 0,33 0,00544 582378 3,131 10,4 5_2_2 60,3 59,1 52019 2,04 8,50 2,92 0,34 0,00544 582378 3,131 10,4 5_2_3 61,7 56,5 56917 2,18 10,42 3,23 0,31 0,00532 582378 3,199 12,7 5_3_3 51,1 56,5 56917 1,81 5,92 2,43 0,41 </td <td>4_4_2</td> <td>59</td> <td>57,4</td> <td>55146</td> <td>2,06</td> <td>8,69</td> <td>2,95</td> <td>0,34</td> <td>0,00536</td> <td>170334</td> <td>1,757</td> <td>5,6</td>	4_4_2	59	57,4	55146	2,06	8,69	2,95	0,34	0,00536	170334	1,757	5,6
5_1_1 52,3 54,6 60947 1,92 7,03 2,65 0,38 0,00522 550661 3,006 11,6 5_1_2 65,3 58,8 52551 2,22 10,96 3,31 0,30 0,00542 550661 3,237 8,9 5_1_3 51,5 59 52195 1,75 5,32 2,31 0,43 0,00543 550661 3,248 12,8 5_2_1 57,5 55,3 59414 2,08 8,99 3,00 0,33 0,00544 582378 3,131 10,4 5_2_2 60,3 59,1 52019 2,04 8,50 2,92 0,34 0,00544 582378 3,346 10,4 5_2_3 61,7 56,5 56917 2,18 10,42 3,23 0,31 0,00532 582378 3,199 9,6 5_3_3 59 56,1 57731 2,18 10,42 3,23 0,31 0,00532 582378 3,199 12,7 5_3_3 59 56,1 57731 2,10 9,31 3,05 0,33	4_4_3	51,5	58,4	53273	1,76	5,49	2,34	0,43	0,00540	170334	1,788	7,0
5_1_2 65,3 58,8 52551 2,22 10,96 3,31 0,30 0,00542 550661 3,237 8,9 5_1_3 51,5 59 52195 1,75 5,32 2,31 0,43 0,00543 550661 3,248 12,8 5_2_1 57,5 55,3 59414 2,08 8,99 3,00 0,33 0,00526 582378 3,131 10,4 5_2_2 60,3 59,1 52019 2,04 8,50 2,92 0,34 0,00544 582378 3,346 10,4 5_2_3 61,7 56,5 56917 2,18 10,42 3,23 0,31 0,00532 582378 3,199 9,6 5_3_1 51,1 56,5 56917 1,81 5,92 2,43 0,41 0,00532 582378 3,108 11,4 5_3_3 59 56,1 57731 2,10 9,31 3,05 0,33 0,00530 582378 3,108 11,4 5_3_3 59 56,1 57731 2,10 9,31 3,05 0,33	5_1_1	52,3	54,6	60947	1,92	7,03	2,65	0,38	0,00522	550661	3,006	11,6
5_1_351,559521951,755,322,310,430,005435506613,24812,85_2_157,555,3594142,088,993,000,330,005265823783,13110,45_2_260,359,1520192,048,502,920,340,005445823783,34610,45_2_361,756,5569172,1810,423,230,310,005325823783,1999,65_3_151,156,5569171,815,922,430,410,005325823783,19912,75_3_254,154,9602821,977,662,770,360,005245823783,10811,45_3_35956,1577312,109,313,050,330,005305823783,17610,25_4_150,856,1577311,815,942,440,410,005303879472,59210,45_4_259,557,5549542,078,862,980,340,005363879472,6578,45_4_351,756,4571191,836,162,480,400,005313879472,60610,2\$	5_1_2	65,3	58,8	52551	2,22	10,96	3,31	0,30	0,00542	550661	3,237	8,9
5_2_1 57,5 55,3 59414 2,08 8,99 3,00 0,33 0,00526 582378 3,131 10,4 5_2_2 60,3 59,1 52019 2,04 8,50 2,92 0,34 0,00544 582378 3,346 10,4 5_2_3 61,7 56,5 56917 2,18 10,42 3,23 0,31 0,00532 582378 3,199 9,6 5_3_1 51,1 56,5 56917 1,81 5,92 2,43 0,41 0,00532 582378 3,199 12,7 5_3_2 54,1 54,9 60282 1,97 7,66 2,77 0,36 0,00530 582378 3,108 11,4 5_3_3 59 56,1 57731 2,10 9,31 3,05 0,33 0,00530 582378 3,176 10,2 5_4_1 50,8 56,1 57731 1,81 5,94 2,44 0,41 0,00530 387947 2,592 10,4 5_4_2 59,5 57,5 54954 2,07 8,86 2,98 0,34 </td <td>5_1_3</td> <td>51,5</td> <td>59</td> <td>52195</td> <td>1,75</td> <td>5,32</td> <td>2,31</td> <td>0,43</td> <td>0,00543</td> <td>550661</td> <td>3,248</td> <td>12,8</td>	5_1_3	51,5	59	52195	1,75	5,32	2,31	0,43	0,00543	550661	3,248	12,8
5_2_260,359,1520192,048,502,920,340,005445823783,34610,45_2_361,756,5569172,1810,423,230,310,005325823783,1999,65_3_151,156,5569171,815,922,430,410,005325823783,19912,75_3_254,154,9602821,977,662,770,360,005245823783,10811,45_3_35956,1577312,109,313,050,330,005305823783,17610,25_4_150,856,1577311,815,942,440,410,005303879472,59210,45_4_259,557,5549542,078,862,980,340,005363879472,6578,45_4_351,756,4571191,836,162,480,400,005313879472,60610,2xx2,9 9,0	5_2_1	57,5	55,3	59414	2,08	8,99	3,00	0,33	0,00526	582378	3,131	10,4
5_2_3 61,7 56,5 56917 2,18 10,42 3,23 0,31 0,00532 582378 3,199 9,6 5_3_1 51,1 56,5 56917 1,81 5,92 2,43 0,41 0,00532 582378 3,199 12,7 5_3_2 54,1 54,9 60282 1,97 7,66 2,77 0,36 0,00524 582378 3,108 11,4 5_3_3 59 56,1 57731 2,10 9,31 3,05 0,33 0,00530 582378 3,108 11,4 5_3_3 59 56,1 57731 2,10 9,31 3,05 0,33 0,00530 582378 3,176 10,2 5_4_1 50,8 56,1 57731 1,81 5,94 2,44 0,41 0,00530 387947 2,592 10,4 5_4_2 59,5 57,5 54954 2,07 8,86 2,98 0,34 0,00536 387947 2,657 8,4 5_4_3 51,7 56,4 57119 1,83 6,16 2,48 0,40	5_2_2	60,3	59,1	52019	2,04	8,50	2,92	0,34	0,00544	582378	3,346	10,4
5_3_1 51,1 56,5 56917 1,81 5,92 2,43 0,41 0,00532 582378 3,199 12,7 5_3_2 54,1 54,9 60282 1,97 7,66 2,77 0,36 0,00524 582378 3,108 11,4 5_3_3 59 56,1 57731 2,10 9,31 3,05 0,33 0,00530 582378 3,176 10,2 5_4_1 50,8 56,1 57731 1,81 5,94 2,44 0,41 0,00530 582378 3,176 10,2 5_4_1 50,8 56,1 57731 1,81 5,94 2,44 0,41 0,00530 387947 2,592 10,4 5_4_2 59,5 57,5 54954 2,07 8,86 2,98 0,34 0,00536 387947 2,657 8,4 5_4_3 51,7 56,4 57119 1,83 6,16 2,48 0,40 0,00531 387947 2,606 10,2 x x x x x x x x 5,9	5_2_3	61,7	56,5	56917	2,18	10,42	3,23	0,31	0,00532	582378	3,199	9,6
5_3_2 54,1 54,9 60282 1,97 7,66 2,77 0,36 0,00524 582378 3,108 11,4 5_3_3 59 56,1 57731 2,10 9,31 3,05 0,33 0,00530 582378 3,176 10,2 5_4_1 50,8 56,1 57731 1,81 5,94 2,44 0,41 0,00530 387947 2,592 10,4 5_4_2 59,5 57,5 54954 2,07 8,86 2,98 0,34 0,00536 387947 2,657 8,4 5_4_3 51,7 56,4 57119 1,83 6,16 2,48 0,40 0,00531 387947 2,606 10,2 x y x y x y y y y y y y y y y y y y y y y y <td>5_3_1</td> <td>51,1</td> <td>56,5</td> <td>56917</td> <td>1,81</td> <td>5,92</td> <td>2,43</td> <td>0,41</td> <td>0,00532</td> <td>582378</td> <td>3,199</td> <td>12,7</td>	5_3_1	51,1	56,5	56917	1,81	5,92	2,43	0,41	0,00532	582378	3,199	12,7
5_3_3 59 56,1 57731 2,10 9,31 3,05 0,33 0,00530 582378 3,176 10,2 5_4_1 50,8 56,1 57731 1,81 5,94 2,44 0,41 0,00530 387947 2,592 10,4 5_4_2 59,5 57,5 54954 2,07 8,86 2,98 0,34 0,00536 387947 2,657 8,4 5_4_3 51,7 56,4 57119 1,83 6,16 2,48 0,40 0,00531 387947 2,606 10,2 x s 5 s	5_3_2	54,1	54,9	60282	1,97	7,66	2,77	0,36	0,00524	582378	3,108	11,4
5_4_1 50,8 56,1 57731 1,81 5,94 2,44 0,41 0,00530 387947 2,592 10,4 5_4_2 59,5 57,5 54954 2,07 8,86 2,98 0,34 0,00536 387947 2,657 8,4 5_4_3 51,7 56,4 57119 1,83 6,16 2,48 0,40 0,00531 387947 2,606 10,2 x s s s	5_3_3	59	56,1	57731	2,10	9,31	3,05	0,33	0,00530	582378	3,176	10,2
5_4_2 59,5 57,5 54954 2,07 8,86 2,98 0,34 0,00536 387947 2,657 8,4 5_4_3 51,7 56,4 57119 1,83 6,16 2,48 0,40 0,00531 387947 2,606 10,2 x s s s	5_4_1	50,8	56,1	57731	1,81	5,94	2,44	0,41	0,00530	387947	2,592	10,4
5_4_3 51,7 56,4 57119 1,83 6,16 2,48 0,40 0,00531 387947 2,606 10,2 x 9,0 s 2,9	5_4_2	59,5	57,5	54954	2,07	8,86	2,98	0,34	0,00536	387947	2,657	8,4
x 9,0 s 2,9	5_4_3	51,7	56,4	57119	1,83	6,16	2,48	0,40	0,00531	387947	2,606	10,2
S 2,9	x											9,0
	S											2,9

F [N]	98				0			8				
Zeit[s]	30											
Probe		c [µm]	d [µm] =2a	Härte[N/mm ²]	c/a	(c/a) ³	$[(c/a)^3]^{1/2}$	1/[(c/a) ^{1/2]3}	a ^{1/2}	E-Modul[MPa]	(E/H) ^{1/2}	K _{lc} [MPam ^{1/2}]
1_1_1		90,6	79,8	28532	2,27	11,71	3,42	0,29	0,00632	216531	2,755	4,6
1_1_2		71,7	74,4	32824	1,93	7,16	2,68	0,37	0,00610	216531	2,568	6,1
1_1_3		72,9	72,1	34951	2,02	8,27	2,88	0,35	0,00600	216531	2,489	5,8
1_2_1		63,2	69,9	37186	1,81	5,91	2,43	0,41	0,00591	299951	2,840	8,2
1_2_2		92,9	75,6	31790	2,46	14,84	3,85	0,26	0,00615	299951	3,072	5,0
1_2_3		75,1	72,9	34189	2,06	8,75	2,96	0,34	0,00604	299951	2,962	6,6
1_4_1		64,4	72	35049	1,79	5,72	2,39	0,42	0,00600	289090	2,872	8,1
1_4_2		80,3	73,9	33270	2,17	10,26	3,20	0,31	0,00608	289090	2,948	6,0
1_4_3		78,2	76,4	31128	2,05	8,58	2,93	0,34	0,00618	289090	3,047	6,4
2_1_1		80,9	101,9	17498	1,59	4,00	2,00	0,50	0,00714	246387	3,752	7,5
2_1_2		79,2	90,9	21989	1,74	5,29	2,30	0,43	0,00674	246387	3,347	6,9
2_1_3		88,6	105,1	16449	1,69	4,79	2,19	0,46	0,00725	246387	3,870	6,7
2_2_1		80,6	94,7	20260	1,70	4,93	2,22	0,45	0,00688	242904	3,463	7,0
2_2_2		50,5	59,5	51322	1,70	4,89	2,21	0,45	0,00545	242904	2,176	8,8
2_2_3		81,3	104	16798	1,56	3,82	1,95	0,51	0,00721	242904	3,803	7,5
2_3_1		91,1	89,7	22581	2,03	8,38	2,89	0,35	0,00670	242904	3,280	5,5
2_3_2		62,4	55,8	58354	2,24	11,19	3,34	0,30	0,00528	242904	2,040	6,0
2_3_3		86,9	95,9	19756	1,81	5,95	2,44	0,41	0,00692	242904	3,506	6,3
2_4_1		60,6	80,3	28178	1,51	3,44	1,85	0,54	0,00634	234958	2,888	8,9
2_4_2		80,6	74,1	33090	2,18	10,30	3,21	0,31	0,00609	234958	2,665	5,4
2_4_3		61,4	82	27021	1,50	3,36	1,83	0,55	0,00640	234958	2,949	8,9
3_1_1		58,2	56,6	56716	2,06	8,70	2,95	0,34	0,00532	426597	2,743	9,0
3_1_2		54,9	57	55922	1,93	7,15	2,67	0,37	0,00534	426597	2,762	9,9
3_1_3		79,9	82,5	26695	1,94	7,27	2,70	0,37	0,00642	426597	3,998	8,1
3_2_1		80	88,2	23356	1,81	5,97	2,44	0,41	0,00664	457680	4,274	8,7
3_2_2		65,3	76,8	30804	1,70	4,92	2,22	0,45	0,00620	457680	3,721	10,3
3_2_3		73,9	87,4	23786	1,69	4,84	2,20	0,45	0,00661	457680	4,235	9,7
3_3_1		50	61,6	47882	1,62	4,28	2,07	0,48	0,00555	457680	3,092	12,7
3_3_2		74,8	91,3	21797	1,64	4,40	2,10	0,48	0,00676	457680	4,582	10,3
3_3_3		61,2	55,3	59414	2,21	10,84	3,29	0,30	0,00526	457680	2,775	8,4

Tab. 9.19: Messwerte der Keramik DC-Shrink 1530 EB bzgl. der K_{Ic}-Wert-Berechnung

Α	n	ha	n	q

3 4 1	53.5	75.4	31959	1.42	2.86	1.69	0.59	0.00614	441137	3,715	13.8
3 4 2	64	74.6	32648	1.72	5.05	2.25	0.44	0.00611	441137	3.676	10,4
3 4 3	65.8	73	34095	1.80	5.86	2.42	0.41	0.00604	441137	3.597	9.8
4 1 1	57,1	58,3	53456	1,96	7,52	2,74	0,36	0,00540	248445	2,156	7,3
4 1 2	53,7	57,8	54385	1,86	6,42	2,53	0,39	0,00538	248445	2,137	7,9
4 1 3	50,9	56,3	57322	1,81	5,91	2,43	0,41	0,00531	248445	2,082	8,3
4_2_1	62,7	57,5	54954	2,18	10,37	3,22	0,31	0,00536	232805	2,058	6,0
4_2_2	53,3	57,4	55146	1,86	6,41	2,53	0,40	0,00536	232805	2,055	7,7
4_2_3	59,1	59,9	50639	1,97	7,68	2,77	0,36	0,00547	232805	2,144	6,9
4_3_1	57,3	56,9	56119	2,01	8,17	2,86	0,35	0,00533	232805	2,037	6,8
4_3_2	54,7	56,2	57526	1,95	7,38	2,72	0,37	0,00530	232805	2,012	7,2
4_3_3	59,1	58,8	52551	2,01	8,12	2,85	0,35	0,00542	232805	2,105	6,7
4_4_1	52,5	59,1	52019	1,78	5,61	2,37	0,42	0,00544	338523	2,551	9,7
4_4_2	48,8	63,8	44637	1,53	3,58	1,89	0,53	0,00565	338523	2,754	11,7
4_4_3	60,2	60	50470	2,01	8,08	2,84	0,35	0,00548	338523	2,590	8,1
5_1_1	64,3	55,9	58145	2,30	12,18	3,49	0,29	0,00529	368802	2,518	7,1
5_1_2	61,3	56,1	57731	2,19	10,44	3,23	0,31	0,00530	368802	2,528	7,7
5_1_3	65,5	59,3	51669	2,21	10,78	3,28	0,30	0,00545	368802	2,672	7,3
5_2_1	54,5	72,1	34951	1,51	3,46	1,86	0,54	0,00600	397999	3,374	12,2
5_2_2	48,8	74	33180	1,32	2,29	1,51	0,66	0,00608	397999	3,463	14,8
5_2_3	49,5	77,6	30173	1,28	2,08	1,44	0,69	0,00623	397999	3,632	15,2
5_3_1	55,9	75,1	32215	1,49	3,30	1,82	0,55	0,00613	397999	3,515	12,2
5_3_2	54,9	80,6	27968	1,36	2,53	1,59	0,63	0,00635	397999	3,772	13,5
5_3_3	46	68,4	38835	1,35	2,43	1,56	0,64	0,00585	397999	3,201	14,9
5_4_1	55,6	69,5	37615	1,60	4,10	2,02	0,49	0,00589	381595	3,185	11,2
5_4_2	57,4	70,9	36145	1,62	4,25	2,06	0,49	0,00595	381595	3,249	10,9
5_4_3	63,6	72	35049	1,77	5,51	2,35	0,43	0,00600	381595	3,300	9,5
x											8,7
S											2,6

1 40. 7.20	• 1,103	swerte uer	Ker annik De	Shimk 1500 ED			t Der cennu	"5				
F [N]	98											
∠eit[s]	30				<u> </u>		1/2	1/212	1/2	i	·	1/2_
Probe		c [µm]	d [µm]	Härte[N/mm ²]	c/a	(c/a) ³	[(c/a) ³] ^{1/2}	1/[(c/a) ^{//2]3}	a "2	E-	(E/H)" ²	K _{lc} [MPam" ²]
1 1 1		47.0	=2a	52004	1.04	4.00	0.40	0.40	0.00544	Modul[MPa]	0.045	2.0
1_1_1		47,9	58,5	53091	1,64	4,39	2,10	0,48	0,00541	35281	0,815	3,6
1_1_2		49	57,3	55338	1,71	5,00	2,24	0,45	0,00535	35281	0,798	3,4
1_1_3		50,6	58,3	53456	1,74	5,23	2,29	0,44	0,00540	35281	0,812	3,3
1_2_1		49	57,1	55727	1,72	5,06	2,25	0,44	0,00534	89355	1,266	5,4
1_2_2		60,9	58,3	53456	2,09	9,12	3,02	0,33	0,00540	89355	1,293	4,0
1_2_3		49	57,3	55338	1,71	5,00	2,24	0,45	0,00535	89355	1,271	5,4
1_3_1		54,5	58,5	53091	1,86	6,47	2,54	0,39	0,00541	89355	1,297	4,7
1_3_2		50,1	56,8	56317	1,76	5,49	2,34	0,43	0,00533	89355	1,260	5,2
1_3_3		47,6	57,9	54197	1,64	4,45	2,11	0,47	0,00538	89355	1,284	5,7
1_4_1		61,3	56,2	57526	2,18	10,38	3,22	0,31	0,00530	292318	2,254	6,8
1_4_2		57,9	59,9	50639	1,93	7,23	2,69	0,37	0,00547	292318	2,403	7,9
1_4_3		54,4	57,9	54197	1,88	6,64	2,58	0,39	0,00538	292318	2,322	8,4
2_1_1		91	124,5	11722	1,46	3,12	1,77	0,57	0,00789	325597	5,270	8,8
2_1_2		90,5	118	13049	1,53	3,61	1,90	0,53	0,00768	325597	4,995	8,4
2_1_3		76,1	71,1	35942	2,14	9,81	3,13	0,32	0,00596	325597	3,010	6,6
2_2_1		87,2	113	14229	1,54	3,68	1,92	0,52	0,00752	335919	4,859	8,7
2_2_2		98,2	119,1	12809	1,65	4,48	2,12	0,47	0,00772	335919	5,121	7,6
2_2_3		49,1	54,7	60724	1,80	5,79	2,41	0,42	0,00523	335919	2,352	9,9
2_3_1		90,2	94,6	20303	1,91	6,93	2,63	0,38	0,00688	335919	4,068	6,9
2_3_2		92,9	77,6	30173	2,39	13,73	3,70	0,27	0,00623	335919	3,337	5,4
2_3_3		90,4	89,3	22784	2,02	8,30	2,88	0,35	0,00668	335919	3,840	6,5
2_4_1		80,6	78,3	29636	2,06	8,73	2,95	0,34	0,00626	492147	4,075	8,2
2_4_2		74	101,1	17776	1,46	3,14	1,77	0,56	0,00711	492147	5,262	12,0
2_4_3		81,9	104,9	16511	1,56	3,81	1,95	0,51	0,00724	492147	5,460	10,7
3_1_1		61,9	54,8	60503	2,26	11,53	3,40	0,29	0,00523	223866	1,924	5,7
3_1_2		66,3	55,2	59629	2,40	13,86	3,72	0,27	0,00525	223866	1,938	5,2
3_1_3		59,4	57	55922	2,08	9,05	3,01	0,33	0,00534	223866	2,001	6,4
3_2_1		61,1	56,6	56716	2,16	10,06	3,17	0,32	0,00532	296660	2,287	7,0
3_2_2		58,1	57,7	54574	2,01	8,17	2,86	0,35	0,00537	296660	2,332	7,7
3_2_3		58,4	59,1	52019	1,98	7,72	2,78	0,36	0,00544	296660	2,388	7,8

Tab. 9.20: Messwerte der Keramik DC-Shrink 1580 EB bzgl. der K_{Ic}-Wert-Berechnung

Α	n	h	а	n	q	
					_	

3 3 1	91,1	95	20132	1,92	7,05	2,66	0,38	0,00689	296660	3,839	6,4
3 3 2	89,2	88	23462	2,03	8,33	2,89	0,35	0,00663	296660	3,556	6,1
3_3_3	90,9	88,9	22990	2,04	8,55	2,92	0,34	0,00667	296660	3,592	6,0
3_4_1	57,2	57,7	54574	1,98	7,79	2,79	0,36	0,00537	168036	1,755	5,9
3_4_2	49,9	56,1	57731	1,78	5,63	2,37	0,42	0,00530	168036	1,706	7,0
3_4_3	55,1	58,8	52551	1,87	6,58	2,57	0,39	0,00542	168036	1,788	6,4
4_1_1	59,3	59,9	50639	1,98	7,76	2,79	0,36	0,00547	253581	2,238	7,1
4_1_2	55,3	56,9	56119	1,94	7,34	2,71	0,37	0,00533	253581	2,126	7,5
4_1_3	51,1	55,8	58354	1,83	6,14	2,48	0,40	0,00528	253581	2,085	8,3
4_2_1	53,9	57,2	55532	1,88	6,69	2,59	0,39	0,00535	237890	2,070	7,6
4_2_2	58,9	56,9	56119	2,07	8,87	2,98	0,34	0,00533	237890	2,059	6,6
4_2_3	53,4	57,4	55146	1,86	6,44	2,54	0,39	0,00536	237890	2,077	7,7
4_3_1	58	58,3	53456	1,99	7,88	2,81	0,36	0,00540	237890	2,110	6,9
4_3_2	58,9	57,4	55146	2,05	8,64	2,94	0,34	0,00536	237890	2,077	6,7
4_3_3	59,2	56,1	57731	2,11	9,40	3,07	0,33	0,00530	237890	2,030	6,5
4_4_1	59,9	56,8	56317	2,11	9,38	3,06	0,33	0,00533	306705	2,334	7,3
4_4_2	64,9	58,4	53273	2,22	10,98	3,31	0,30	0,00540	306705	2,399	6,7
4_4_3	58	58	54011	2,00	8,00	2,83	0,35	0,00539	306705	2,383	7,8
5_1_1	63,6	57,8	54385	2,20	10,66	3,26	0,31	0,00538	252057	2,153	6,2
5_1_2	60,5	53,3	63956	2,27	11,70	3,42	0,29	0,00516	252057	1,985	6,1
5_1_3	62,1	57,1	55727	2,18	10,29	3,21	0,31	0,00534	252057	2,127	6,3
5_2_1	59,6	56,2	57526	2,12	9,54	3,09	0,32	0,00530	271711	2,173	6,9
5_2_2	57,4	58,3	53456	1,97	7,64	2,76	0,36	0,00540	271711	2,255	7,5
5_2_3	60,4	60,9	48989	1,98	7,80	2,79	0,36	0,00552	271711	2,355	7,3
5_3_1	59	57,5	54954	2,05	8,64	2,94	0,34	0,00536	271711	2,224	7,1
5_3_2	58	57,2	55532	2,03	8,34	2,89	0,35	0,00535	271711	2,212	7,3
5_3_3	55,7	58,1	53825	1,92	7,05	2,65	0,38	0,00539	271711	2,247	7,9
5_4_1	62,4	56,1	57731	2,22	11,01	3,32	0,30	0,00530	277162	2,191	6,5
5_4_2	59,1	56,1	57731	2,11	9,35	3,06	0,33	0,00530	277162	2,191	7,0
5_4_3	61,2	56,8	56317	2,15	10,01	3,16	0,32	0,00533	277162	2,218	6,7
x											6,8
S											1,5

Tab. 9.21: Messwerte der Keramik DC-Shrink 1480 vB bzgl, der K ₁₄ -Wert-Berechnung	

F [N]	98											
Zeit[s]	30											
Probe		c [µm]	d [µm] =2a	Härte[N/mm ²]	c/a	(c/a) ³	$[(c/a)^3]^{1/2}$	1/[(c/a) ^{1/2}] ³	a ^{1/2}	E-	(E/H) ^{1/2}	K _{lc} [MPam ^{1/2}]
										Modul[MPa]		
1_4_1		74,6	97,4	19152	1,53	3,59	1,90	0,53	0,00698	159856	2,889	6,5
1_4_3		69,5	90,1	22381	1,54	3,67	1,92	0,52	0,00671	159856	2,673	6,7
2_1_1		64,9	62	47266	2,09	9,18	3,03	0,33	0,00557	150304	1,783	5,0
2_1_2		44,5	62,2	46963	1,43	2,93	1,71	0,58	0,00558	150304	1,789	8,8
2_1_3		0	62,7	46217	0,00	0,00	0,00		0,00560	150304	1,803	0,0
2_2_1		92,5	106,4	16049	1,74	5,26	2,29	0,44	0,00729	128133	2,826	4,6
2_2_2		80,3	99,7	18279	1,61	4,18	2,04	0,49	0,00706	128133	2,648	5,3
2_2_3		80,7	93,2	20917	1,73	5,19	2,28	0,44	0,00683	128133	2,475	5,0
2_3_1		100,1	88,1	23409	2,27	11,73	3,43	0,29	0,00664	128133	2,340	3,4
2_3_2		71,4	92,8	21098	1,54	3,64	1,91	0,52	0,00681	128133	2,464	5,9
2_3_3		83,7	86,9	24060	1,93	7,15	2,67	0,37	0,00659	128133	2,308	4,4
2_4_1		76,2	95,4	19964	1,60	4,08	2,02	0,50	0,00691	155797	2,794	6,1
2_4_2		0	87,9	23516	0,00	0,00	0,00		0,00663	155797	2,574	0,0
2_4_3		83,7	95,8	19797	1,75	5,34	2,31	0,43	0,00692	155797	2,805	5,3
3_1_1		42,8	62,6	46365	1,37	2,56	1,60	0,63	0,00559	106587	1,516	7,9
3_1_2		53,2	63	45778	1,69	4,82	2,19	0,46	0,00561	106587	1,526	5,7
3_1_3		48,7	63,7	44777	1,53	3,57	1,89	0,53	0,00564	106587	1,543	6,6
3_2_1		89,7	94,9	20175	1,89	6,76	2,60	0,38	0,00689	145662	2,687	4,6
3_2_2		85,7	91,3	21797	1,88	6,62	2,57	0,39	0,00676	145662	2,585	4,7
3_2_3		54,7	96,2	19633	1,14	1,47	1,21	0,82	0,00694	145662	2,724	9,8
3_3_1		0	98,2	18841	0,00	0,00	0,00		0,00701	145662	2,780	0,0
3_3_2		61,5	101	17811	1,22	1,81	1,34	0,74	0,00711	145662	2,860	8,6
3_3_3		0	92,9	21053	0,00	0,00	0,00		0,00682	145662	2,630	0,0
3_4_1		0	94,3	20432	0,00	0,00	0,00		0,00687	157052	2,772	0,0
3_4_2		39	63,2	45489	1,23	1,88	1,37	0,73	0,00562	157052	1,858	11,1
3_4_3		99,3	61,2	48510	3,25	34,17	5,85	0,17	0,00553	157052	1,799	2,6
4_1_1		63	65,7	42093	1,92	7,05	2,66	0,38	0,00573	272593	2,545	7,4
4_1_2		53,6	63,3	45345	1,69	4,86	2,20	0,45	0,00563	272593	2,452	9,1
4_1_3		59,7	63,3	45345	1,89	6,71	2,59	0,39	0,00563	272593	2,452	7,7
4_2_1		66,3	62,3	46812	2,13	9,64	3,11	0,32	0,00558	191655	2,023	5,4
Annang	Α	n	h	а	n	q						
--------	---	---	---	---	---	---						
--------	---	---	---	---	---	---						

1 2 2	58	62.8	46070	1.85	6 30	2.51	0.40	0.00560	101655	2.040	67
4_2_2	83.5	63.8	40070	2.62	17.03	2,31 1/23	0,40	0,00565	191055	2,040	3.9
+_2_3 4 3 1	57 1	66 7	40840	1 71	5.02	7,20	0,24	0,00503	101655	2,072	3,3 7 3
4_3_1	56.0	63.3	40040	1.71	5,02	2,24	0,43	0,00577	191055	2,100	7,5
+_3_2 4_3_3	68.8	64.7	43343	2 13	0.62	2,41	0,41	0,00569	191055	2,030	7,0 5.4
4_3_3	101 /	64.3	43404	2,15	31.37	5,10	0,52	0,00503	191055	2,101	3,4 3,0
4_4_1	101,4	62.9	43945	1.29	21,37	5,00	0,10	0,00560	192580	2,095	3,0 11.6
4_4_2	40,3	64.6	40070	1,20	2,11	1,40	0,09	0,00500	192500	2,045	11,0
4_4_3 5 1 1	40,0	61 5	43030	1,20	1,99	1,41	0,71	0,00508	192360	2,103	11,0 6.4
5_1_1 5_1_2	49,7	60.2	40030	1,02	4,22	2,05	0,49	0,00555	115419	1,550	0,4
5_1_2	62,7	60,3	49969	2,08	8,99	3,00	0,33	0,00549	115419	1,520	4,4
5_1_3	43,1	62,7	40217	1,37	2,60	1,01	0,62	0,00560	115419	1,580	8, I
5_2_1	59,4	60,5	49639	1,96	7,57	2,75	0,36	0,00550	109838	1,488	4,7
5_2_2	44,7	61,9	47419	1,44	3,01	1,74	0,58	0,00556	109838	1,522	7,4
5_2_3	0	65,2	42741	0,00	0,00	0,00		0,00571	109838	1,603	0,0
5_3_1	42,8	62,1	4/114	1,38	2,62	1,62	0,62	0,00557	109838	1,527	7,9
5_3_2	44,3	63	45778	1,41	2,78	1,67	0,60	0,00561	109838	1,549	7,6
5_3_3	43,1	62,3	46812	1,38	2,65	1,63	0,61	0,00558	109838	1,532	7,9
5_4_1	64,3	62,4	46662	2,06	8,75	2,96	0,34	0,00559	103860	1,492	4,2
5_4_2	60,4	61,8	47573	1,95	7,47	2,73	0,37	0,00556	103860	1,478	4,6
5_4_3	60,6	62,3	46812	1,95	7,36	2,71	0,37	0,00558	103860	1,490	4,6
6_1_1	0	64,1	44220	0,00	0,00	0,00		0,00566	148094	1,830	0,0
6_1_2	70,4	61,9	47419	2,27	11,77	3,43	0,29	0,00556	148094	1,767	4,3
6_1_3	0	63,8	44637	0,00	0,00	0,00		0,00565	148094	1,821	0,0
6_2_1	0	64,3	43945	0,00	0,00	0,00		0,00567	203382	2,151	0,0
6_2_2	33,6	62,1	47114	1,08	1,27	1,13	0,89	0,00557	203382	2,078	15,5
6_2_3	0	61,5	48038	0,00	0,00	0,00		0,00555	203382	2,058	0,0
6_3_1	0	62,3	46812	0,00	0,00	0,00		0,00558	203382	2,084	0,0
6_3_2	61,7	64,1	44220	1,93	7,13	2,67	0,37	0,00566	203382	2,145	6,4
6_3_3	64,6	66,7	40840	1,94	7,27	2,70	0,37	0,00577	203382	2,232	6,2
6_4_1	51,8	64,5	43673	1,61	4,14	2,04	0,49	0,00568	137082	1,772	6,9
6_4_2	53	65,6	42221	1,62	4,22	2,05	0,49	0,00573	137082	1,802	6,8
6_4_3	60,2	65	43004	1,85	6,36	2,52	0,40	0,00570	137082	1,785	5,6
x											5,3
S											3,4

Tab. 9.22: Messwerte der Keramik DC-Shrink 1530	vB bzgl. der K _{Ic} -Wert-Berechnung
---	---

F [N]	98 20											
Probe	30	c [um]	d [um] =2a	Härte[N/mm²]	c/a	$(c/a)^{3}$	$[(c/a)^{3}]^{1/2}$	$1/[(c/a)^{1/2]3}$	a ^{1/2}	F-	(E/H) ^{1/2}	K. [MPam ^{1/2}]
11000		o[huu]			0/4	(0/4)	[(0,0)]	1/[(0/0/)	u	Modul[MPa]	(=/11)	
1_1_1		100,7	102,5	17294	1,96	7,59	2,75	0,36	0,0072	218165	3,55	5,1
1_1_2		83,5	107,8	15635	1,55	3,72	1,93	0,52	0,0073	218165	3,74	7,1
1_1_3		88,4	118,9	12852	1,49	3,29	1,81	0,55	0,0077	218165	4,12	7,2
1_2_1		107,2	90,5	22184	2,37	13,30	3,65	0,27	0,0067	368018	4,07	5,3
1_2_2		60,7	62,5	46513	1,94	7,33	2,71	0,37	0,0056	368018	2,81	8,6
1_2_3		57,7	63,8	44637	1,81	5,92	2,43	0,41	0,0056	368018	2,87	9,5
1_3_1		166,3	152,3	7833	2,18	10,42	3,23	0,31	0,0087	368018	6,85	4,6
1_3_2		111,5	110,8	14800	2,01	8,15	2,86	0,35	0,0074	368018	4,99	6,2
1_3_3		122,2	142,5	8948	1,72	5,04	2,25	0,45	0,0084	368018	6,41	6,9
1_4_1		113,8	96,9	19350	2,35	12,96	3,60	0,28	0,0070	604028	5,59	6,7
1_4_2		116,8	103	17126	2,27	11,67	3,42	0,29	0,0072	604028	5,94	6,8
1_4_3		0	106,9	15899	0,00	0,00	0,00		0,0073	604028	6,16	0,0
2_1_1		113,6	115,2	13691	1,97	7,67	2,77	0,36	0,0076	980007	8,46	10,2
2_1_2		97	112,8	14280	1,72	5,09	2,26	0,44	0,0075	980007	8,28	12,6
2_1_3		124,8	119,1	12809	2,10	9,20	3,03	0,33	0,0077	980007	8,75	9,1
2_2_1		106,2	106,6	15989	1,99	7,91	2,81	0,36	0,0073	445382	5,28	7,0
2_2_2		90,9	107,8	15635	1,69	4,80	2,19	0,46	0,0073	445382	5,34	9,0
2_2_3		99,9	114,7	13810	1,74	5,29	2,30	0,43	0,0076	445382	5,68	8,3
2_3_1		123,7	110,2	14961	2,25	11,31	3,36	0,30	0,0074	445382	5,46	5,8
2_3_2		73,7	104,7	16575	1,41	2,79	1,67	0,60	0,0072	445382	5,18	11,9
2_3_3		82,6	111,8	14536	1,48	3,23	1,80	0,56	0,0075	445382	5,54	10,7
2_4_1		103,4	110,1	14989	1,88	6,63	2,57	0,39	0,0074	826350	7,43	10,3
2_4_2		95,4	111,9	14510	1,71	4,96	2,23	0,45	0,0075	826350	7,55	11,8
2_4_3		121,9	107	15870	2,28	11,83	3,44	0,29	0,0073	826350	7,22	7,8
3_1_1		102,9	107,3	15781	1,92	7,06	2,66	0,38	0,0073	375176	4,88	6,8
3_1_2		94,6	109,1	15265	1,73	5,22	2,28	0,44	0,0074	375176	4,96	7,8
3_1_3		99,2	109,8	15071	1,81	5,90	2,43	0,41	0,0074	375176	4,99	7,3
3_2_1		106,7	111,5	14615	1,91	7,01	2,65	0,38	0,0075	375176	5,07	6,7
3_2_2		95,6	114,2	13932	1,67	4,69	2,17	0,46	0,0076	375176	5,19	8,1
3_2_3		115,2	112,1	14459	2,06	8,68	2,95	0,34	0,0075	375176	5,09	6,0

Α	n	h	а	n	a
					-

											i i
3_3_1	111,3	108,8	15349	2,05	8,56	2,93	0,34	0,0074	227654	3,85	4,8
3_3_2	115,9	109	15293	2,13	9,62	3,10	0,32	0,0074	227654	3,86	4,5
3_3_3	107,3	115	13739	1,87	6,50	2,55	0,39	0,0076	227654	4,07	5,3
4_1_1	55,9	63,7	44777	1,76	5,41	2,33	0,43	0,0056	70430	1,25	4,4
4_1_2	60,9	70,3	36764	1,73	5,20	2,28	0,44	0,0059	70430	1,38	4,2
4_1_3	70,4	63,6	44918	2,21	10,85	3,29	0,30	0,0056	70430	1,25	3,1
4_2_1	109,5	113,9	14005	1,92	7,11	2,67	0,38	0,0075	72524	2,28	2,9
4_2_2	106,3	116,6	13364	1,82	6,06	2,46	0,41	0,0076	72524	2,33	3,1
4_2_3	91,1	115,4	13643	1,58	3,94	1,98	0,50	0,0076	72524	2,31	3,9
4_3_1	105,2	107,5	15722	1,96	7,50	2,74	0,37	0,0073	72524	2,15	2,9
4_3_2	123,8	116,5	13387	2,13	9,60	3,10	0,32	0,0076	72524	2,33	2,5
4_3_3	121,3	113,5	14104	2,14	9,77	3,12	0,32	0,0075	72524	2,27	2,5
4_4_1	94,8	106,6	15989	1,78	5,63	2,37	0,42	0,0073	210146	3,63	5,7
4_4_2	89,7	106	16171	1,69	4,85	2,20	0,45	0,0073	210146	3,60	6,2
4_4_3	94,2	108,8	15349	1,73	5,19	2,28	0,44	0,0074	210146	3,70	5,9
5_1_1	94,1	107,3	15781	1,75	5,40	2,32	0,43	0,0073	1145966	8,52	13,6
5_1_2	95,6	108,9	15321	1,76	5,41	2,33	0,43	0,0074	1145966	8,65	13,4
5_1_3	96,8	105,6	16293	1,83	6,16	2,48	0,40	0,0073	1145966	8,39	12,8
5_2_1	108,8	109,9	15043	1,98	7,76	2,79	0,36	0,0074	1145966	8,73	11,2
5_2_2	104,1	114	13981	1,83	6,09	2,47	0,41	0,0075	1145966	9,05	12,4
5_2_3	125	118,1	13027	2,12	9,49	3,08	0,32	0,0077	1145966	9,38	9,8
5_3_1	66,2	62,1	47114	2,13	9,69	3,11	0,32	0,0056	1145966	4,93	13,3
5_3_2	73,3	62,3	46812	2,35	13,03	3,61	0,28	0,0056	1145966	4,95	11,5
5_3_3	62,4	62,1	47114	2,01	8,12	2,85	0,35	0,0056	1145966	4,93	14,5
x				•			•	•			7,5
S											3,4

Tab. 9.2	23: Messwerte der 1	Keramik DC-Shrink	1580 vB bzg	gl. der K _{Ic} -We	rt-Berechnung
	00				

F [N]	98											
Zeit[s]	30											
Probe		c [µm]	d [µm] =2a	Härte[N/mm ²]	c/a	(c/a) ³	[(c/a) ³] ^{1/2}	1/[(c/a) ^{1/2}] ³	a ^{1/2}	E-Modul[MPa]	(E/H) ^{1/2}	K _{lc} [MPam ^{1/2}]
1_1_1		99,03	103,8	16863	1,91	6,95	2,64	0,38	0,00720	364886	4,652	6,9
1_1_2		83,1	104,8	16543	1,59	3,99	2,00	0,50	0,00724	364886	4,696	9,0
1_1_3		109,5	111,7	14562	1,96	7,54	2,75	0,36	0,00747	364886	5,006	6,3
1_2_1		101,9	118,4	12961	1,72	5,10	2,26	0,44	0,00769	399667	5,553	7,8
1_2_2		101,3	119	12830	1,70	4,93	2,22	0,45	0,00771	399667	5,581	8,0
1_2_3		110,5	106,3	16079	2,08	8,99	3,00	0,33	0,00729	399667	4,986	6,2
1_3_1		87	111,7	14562	1,56	3,78	1,94	0,51	0,00747	399667	5,239	9,4
1_3_2		76,1	106,6	15989	1,43	2,91	1,71	0,59	0,00730	399667	5,000	10,9
1_3_3		103	114,3	13907	1,80	5,85	2,42	0,41	0,00756	399667	5,361	7,5
1_4_1		91	111,2	14694	1,64	4,38	2,09	0,48	0,00746	319295	4,662	7,8
1_4_2		83,8	103,8	16863	1,61	4,21	2,05	0,49	0,00720	319295	4,351	8,2
1_4_3		109,7	106,1	16140	2,07	8,84	2,97	0,34	0,00728	319295	4,448	5,6
2_1_1		94,6	106,4	16049	1,78	5,62	2,37	0,42	0,00729	343354	4,625	7,3
2_1_2		96,9	115	13739	1,69	4,79	2,19	0,46	0,00758	343354	4,999	7,6
2_1_3		118,9	122,8	12049	1,94	7,26	2,69	0,37	0,00784	343354	5,338	6,0
2_2_1		111	110,4	14907	2,01	8,13	2,85	0,35	0,00743	230521	3,932	4,9
2_2_2		125,4	123,8	11855	2,03	8,31	2,88	0,35	0,00787	230521	4,410	4,6
2_2_3		93,7	111,4	14641	1,68	4,76	2,18	0,46	0,00746	230521	3,968	6,4
2_3_1		83,2	108,8	15349	1,53	3,58	1,89	0,53	0,00738	230521	3,875	7,4
2_3_2		99,3	105,7	16262	1,88	6,63	2,58	0,39	0,00727	230521	3,765	5,5
2_3_3		99,7	105,8	16232	1,88	6,69	2,59	0,39	0,00727	230521	3,769	5,5
2_4_1		57,2	62,7	46217	1,82	6,07	2,46	0,41	0,00560	229498	2,228	7,5
2_4_2		62,4	62,7	46217	1,99	7,89	2,81	0,36	0,00560	229498	2,228	6,6
2_4_3		62,2	63,6	44918	1,96	7,48	2,74	0,37	0,00564	229498	2,260	6,7
3_1_1		100,5	107,1	15840	1,88	6,61	2,57	0,39	0,00732	139143	2,964	4,3
3_1_2		83,2	107,7	15664	1,55	3,69	1,92	0,52	0,00734	139143	2,980	5,7
3_1_3		105,2	106,7	15959	1,97	7,67	2,77	0,36	0,00730	139143	2,953	4,0
3_2_1		82,2	81,3	27489	2,02	8,27	2,88	0,35	0,00638	151463	2,347	4,6
3_2_2		55,3	79,2	28966	1,40	2,72	1,65	0,61	0,00629	151463	2,287	8,1
3_2_3		76,1	82,3	26825	1,85	6,32	2,51	0,40	0,00641	151463	2,376	5,2
3_3_1		71,6	76,3	31209	1,88	6,61	2,57	0,39	0,00618	151463	2,203	5,3

0 0 0	00.0	70.4	00000	4 50	0.00	4.00	0.50	0.00000	454400	0.000	07
3_3_2	62,8	79,4	28820	1,58	3,96	1,99	0,50	0,00630	151463	2,292	6,7
3_3_3	88,8	79,8	28532	2,23	11,02	3,32	0,30	0,00632	151463	2,304	4,0
3_4_1	50,5	67,1	40354	1,51	3,41	1,85	0,54	0,00579	152987	1,947	7,9
3_4_2	50	63,2	45489	1,58	3,96	1,99	0,50	0,00562	152987	1,834	7,5
3_4_3	41,1	65,5	42350	1,25	1,98	1,41	0,71	0,00572	152987	1,901	10,5
4_1_1	97,8	99,1	18501	1,97	7,69	2,77	0,36	0,00704	418535	4,756	7,1
4_1_2	92,2	93,2	20917	1,98	7,75	2,78	0,36	0,00683	418535	4,473	7,3
4_1_3	98,4	111,8	14536	1,76	5,45	2,34	0,43	0,00748	418535	5,366	8,0
4_2_1	90,7	95	20132	1,91	6,96	2,64	0,38	0,00689	252730	3,543	6,0
4_2_2	96,2	110,1	14989	1,75	5,34	2,31	0,43	0,00742	252730	4,106	6,3
4_2_3	92,9	99,3	18426	1,87	6,55	2,56	0,39	0,00705	252730	3,703	6,0
4_3_1	97,8	99,8	18242	1,96	7,53	2,74	0,36	0,00706	252730	3,722	5,6
4_3_2	100,4	98,4	18765	2,04	8,50	2,92	0,34	0,00701	252730	3,670	5,3
4_3_3	97,4	100,1	18133	1,95	7,37	2,71	0,37	0,00707	252730	3,733	5,6
4_4_1	52,7	54,6	60947	1,93	7,19	2,68	0,37	0,00522	341304	2,366	9,0
4_4_2	62,7	64,1	44220	1,96	7,49	2,74	0,37	0,00566	341304	2,778	8,1
4_4_3	62,2	64,5	43673	1,93	7,17	2,68	0,37	0,00568	341304	2,796	8,3
5_1_1	103,7	107,7	15664	1,93	7,14	2,67	0,37	0,00734	387762	4,975	6,8
5_1_2	100,1	95,6	19880	2,09	9,18	3,03	0,33	0,00691	387762	4,416	6,4
5_1_3	81,7	106,8	15929	1,53	3,58	1,89	0,53	0,00731	387762	4,934	9,7
5_2_1	81,7	89,6	22632	1,82	6,07	2,46	0,41	0,00669	349035	3,927	7,7
5_2_2	95,7	95	20132	2,01	8,18	2,86	0,35	0,00689	349035	4,164	6,5
5_2_3	77,4	92,6	21189	1,67	4,67	2,16	0,46	0,00680	349035	4,059	8,7
5 3 1	80,8	121,2	12369	1,33	2,37	1,54	0,65	0,00778	349035	5,312	10,6
5_3_2	88,2	94,8	20217	1,86	6,44	2,54	0,39	0,00688	349035	4,155	7,3
5_3_3	104,9	103,4	16994	2,03	8,35	2,89	0,35	0,00719	349035	4,532	6,1
5_4_1	100,2	105,4	16355	1,90	6,87	2,62	0,38	0,00726	392552	4,899	7,1
5_4_2	93,8	95,4	19964	1,97	7,60	2,76	0,36	0,00691	392552	4,434	7,1
5_4_3	90	96,3	19592	1,87	6,53	2,56	0,39	0,00694	392552	4,476	7,6
6_1_1	98,6	105,3	16386	1,87	6,57	2,56	0,39	0,00726	673576	6,411	9,5
6_1_2	99,6	102,6	17260	1,94	7,32	2,71	0,37	0,00716	673576	6,247	9,1
6_1_3	91,2	93,9	20607	1,94	7,33	2,71	0,37	0,00685	673576	5,717	9,5
6_2_1	96,4	100,1	18133	1,93	7,15	2,67	0,37	0,00707	536363	5,439	8,4
6_2_2	83,7	93,3	20872	1,79	5,78	2,40	0,42	0,00683	536363	5,069	9,6
6_2_3	87,8	51,6	68240	3,40	39,41	6,28	0,16	0,00508	536363	2,804	5,0

6_3_1	94,2	98,3	18803	1,92	7,04	2,65	0,38	0,00701	536363	5,341	8,5
6_3_2	87,7	97,9	18957	1,79	5,75	2,40	0,42	0,00700	536363	5,319	9,4
6_3_3	83,4	97,3	19192	1,71	5,04	2,24	0,45	0,00697	536363	5,287	10,1
6_4_1	81,8	92	21466	1,78	5,62	2,37	0,42	0,00678	686598	5,656	11,1
6_4_2	91,6	92,8	21098	1,97	7,69	2,77	0,36	0,00681	686598	5,705	9,5
6_4_3	84,4	91	21941	1,85	6,38	2,53	0,40	0,00675	686598	5,594	10,5
x										·	7,3
S											1,7

Sinterschrumpfung	[%]		x [%]	S [%]
21,5 21	36,2 27,67	20,57 21,07	22,32	6,03
25,3	14,57	25,17		
15,8	24,7	21,56		
20,9	21,06	20,73		
31,3	19,73	23,19		
9,1	20,36	20,08		
20,9	21,08	20,32		
39,4	20	19,48		

Tab. 9.24: Messwerte der Keramik Lava frame bzgl. der Sinterschrumpfung

Tab. 9.25: Biegefestigkeitswerte von Lava frame aus dem Dreipunkt-Biegetest Probe a [mm] h [mm] W [mm³] F [N] I [mm] Mb [Nmm] σ [N/mm²]

	a[iiiii]	[]		ן און א	i [iiiiii]		
1	8,33	2,36	7,73	2607,9	10	6519,75	843,17
2	8,51	2,16	6,62	1667,9	10	4169,75	630,12
3	7,97	2,24	6,67	1753,9	10	4384,75	657,87
4	7,38	1,76	3,81	942,7	10	2356,75	618,56
5	7,78	2,53	8,30	2178,8	10	5447,00	656,28
6	7,71	1,65	3,50	1030,7	10	2576,75	736,55
7	8,05	2,49	8,32	2274,9	10	5687,25	683,69
8	8,09	2,46	8,16	2786	10	6965,00	853,60
9	8,01	1,71	3,90	1105,1	10	2762,75	707,73
10	7,77	2,01	5,23	1079,2	10	2698,00	515,68
11	7,69	2,45	7,69	1955,4	10	4888,50	635,43
12	8,82	2,9	12,36	3371,2	10	8428,00	681,73
13	7,85	3,01	11,85	2869,3	10	7173,25	605,15
14	8,08	2,46	8,15	2617,7	10	6544,25	803,03
15	8,33	2,31	7,41	2348	10	5870,00	792,36
16	8,22	2,07	5,87	1644,2	10	4110,50	700,22
17	7,96	2,53	8,49	2206,1	10	5515,25	649,47
18	7,98	1,98	5,21	1393	10	3482,50	667,90
19	7,61	1,99	5,02	1606,4	10	4016,00	799,57
20	7,95	1,9	4,78	1665,9	10	4164,75	870,69
21	7,86	2,44	7,80	2521,9	10	6304,75	808,38
22	8,26	2,43	8,13	2515,4	10	6288,50	773,58
23	7,91	2,49	8,17	3346,1	10	8365,25	1023,42
24	7,13	1,79	3,81	1124,7	10	2811,75	738,47
25	7,97	1,62	3,49	1185,6	10	2964,00	850,24
26	8,01	2,08	5,78	1852,3	10	4630,75	801,76
27	7,79	2,03	5,35	1874,3	10	4685,75	875,79
28	8,04	1,88	4,74	1415,8	10	3539,50	747,35
29	7,75	2,36	7,19	2943,2	10	7358,00	1022,79
x				_	_		750,02
s							118,19

Probe	Auflage	Breite a	Dicke h	F [N/mm]	E [N/mm²]	a*h[mm²]	Faktor	E korrig.
	l [mm]	[mm]	[mm]					_
1	10	8,33	2,36	4994,06	11403	19,7	10,4	118589
2	10	8,51	2,16	8401,46	24491	18,4	9,6	235112
3	10	7,97	2,24	7599,55	21209	17,9	9,4	199367
4	10	7,38	1,76	6055,38	37626	13,0	6	237043
5	10	7,78	2,53	8309,35	16488	19,7	10,4	171474
6	10	7,71	1,65	5930,88	42811	12,7	6,2	265427
7	10	8,05	2,49	8535,24	17170	20,0	10,6	181998
8	10	8,09	2,46	7314,42	15183	19,9	10,5	159425
9	10	8,01	1,71	5297,73	33068	13,7	6,7	221556
10	10	7,77	2,01	5876,86	23285	15,6	7,9	183951
11	10	7,69	2,45	5111,45	11300	18,8	10,0	112995
12	10	8,82	2,9	6570,63	7636	25,6	14,0	106909
13	10	7,85	3,01	7795,11	9103	23,6	13,0	118341
14	10	8,08	2,46	5284,27	10983	19,9	10,6	116416
15	10	8,33	2,31	8309,67	20232	19,2	10,2	206368
16	10	8,22	2,07	5409,66	18549	17,0	8,8	163234
17	10	7,96	2,53	5264,38	10210	20,1	10,6	108223
18	10	7,98	1,98	7459,21	30105	15,8	8,2	246859
19	10	7,61	1,99	7654,84	31910	15,1	7,6	242519
20	10	7,95	1,9	7390,89	33885	15,1	7,6	257527
21	10	7,86	2,44	6136,93	13437	19,2	10,2	137056
22	10	8,26	2,43	7459,45	15734	20,1	10,6	166784
23	10	7,91	2,49	7084,63	14504	19,7	10,4	150840
24	10	7,13	1,79	6702,62	40977	12,8	6,2	254055
25	10	7,97	1,62	6968,27	51412	12,9	6,3	323893
26	10	8,01	2,08	7372,67	25571	16,7	8,7	222465
27	10	7,79	2,03	8394,65	32205	15,8	8,0	257636
28	10	8,04	1,88	7640,76	35756	15,1	7,6	271744
29	10	7,75	2,36	9639,94	23658	18,3	9,5	224750
x								195261
S								59380

Tab. 9.26: E-Modul-Werte Lava frame aus dem Dreipunkt-Biegetest

Tab.	9.27:	: Messwerte der	Keramik Lava	ı frame bzgl.	der K _{Ic} -W	Vert-Berechnu	ing
	17	00					

F [N] 98											
Zeit[s] 30					(()2	r() 22 ^{1/2}	1/2-3	1/2		r = 4 + 1/2	1/2
Probe	c [µm]	d [µm] =2a	Härte[N/mm ²]	c/a	(c/a)°	[(c/a) ^s] ^{**=}	1/[(c/a)]°	a	E- Madul[MDa]	(E/H) ^{~-}	K _{lc} [MPam ^{~-}]
1 1	96.2	02.0	25072.1	2.06	0 74	2.06	0.24	0.006472		2.14	2 00
1_1 1_2	00,3	03,0	25075,1	2,00	0,74	2,90	0,34	0,000473	110009	2,14	3,00
1_2	00,0	00,1	23000,0	2,02	0,20 11.10	2,00	0,35	0,006523	110009	2,17	3,90
2_1	91,6	81,9	27087,4	2,24	11,19	3,35	0,30	0,006399	235112	2,95	4,88
2_2	98,1	88,7	23093,4	2,21	10,82	3,29	0,30	0,006660	235112	3,19	4,77
2_2_2	76,9	79,4	28820,1	1,94	7,27	2,70	0,37	0,006301	235112	2,86	6,16
3_1	92,9	84,8	25266,4	2,19	10,52	3,24	0,31	0,006512	199367	2,81	4,56
3_2	87,1	82,3	26824,8	2,12	9,48	3,08	0,32	0,006415	199367	2,73	4,87
4_1_2	97,9	89,9	22481,0	2,18	10,33	3,21	0,31	0,006704	237043	3,25	4,87
4_2_2	88,6	85,4	24912,7	2,07	8,93	2,99	0,33	0,006535	237043	3,08	5,38
5_1	92,8	85,4	24912,7	2,17	10,27	3,20	0,31	0,006535	171474	2,62	4,27
5_2	95,8	87,4	23785,5	2,19	10,54	3,25	0,31	0,006611	171474	2,68	4,16
6_2_2	90,3	86,9	24060,0	2,08	8,98	3,00	0,33	0,006592	265427	3,32	5,63
7_1_2	92,8	81,2	27556,5	2,29	11,94	3,46	0,29	0,006372	181998	2,57	4,18
7_2_2	83,4	80,3	28177,6	2,08	8,96	2,99	0,33	0,006336	181998	2,54	4,85
10_1	67,9	80,6	27968,3	1,68	4,78	2,19	0,46	0,006348	183951	2,56	6,66
10_2_2	83	82,2	26890,1	2,02	8,24	2,87	0,35	0,006411	183951	2,62	5,03
11_1_2	83,5	83,4	26121,8	2,00	8,03	2,83	0,35	0,006458	112995	2,08	3,96
11_2	83,5	81,8	27153,7	2,04	8,51	2,92	0,34	0,006395	112995	2,04	3,89
12_1	76,5	87	24004,8	1,76	5,44	2,33	0,43	0,006595	106909	2,11	4,58
12_2_2	75,7	84,8	25266,4	1,79	5,69	2,39	0,42	0,006512	106909	2,06	4,54
12_2_4	63,6	82,4	26759,7	1,54	3,68	1,92	0,52	0,006419	106909	2,00	5,73
13_1	83,6	82,7	26565,9	2,02	8,26	2,87	0,35	0,006430	118341	2,11	4,01
13 2	85,9	81,8	27153,7	2,10	9,26	3,04	0,33	0,006395	118341	2,09	3,81
13 2 2	77,1	80,5	28037,8	1,92	7,03	2,65	0,38	0,006344	118341	2,05	4,41
14 1	86,5	85,8	24680,9	2,02	8,20	2,86	0.35	0,006550	116416	2,17	3,92
14 2	82,1	82,8	26501,8	1,98	7,80	2,79	0.36	0,006434	116416	2,10	4,10
15 1	84,4	83,4	26121,8	2,02	8,29	2,88	0,35	0,006458	206368	2,81	5,27
15 2	77.5	81.3	27488.7	1,91	6,93	2,63	0,38	0,006376	206368	2,74	5,84
16 1	86.5	84	25750.0	2.06	8.74	2.96	0.34	0.006481	163234	2.52	4.55
16 2	79	80,6	27968,3	1,96	7,53	2,74	0.36	0.006348	163234	2,42	5,00
· · ·		00,0	_::::;:	.,	.,	_,· ·	-,	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_,	0,00

|--|

17 1	89.3	89 7	22581.4	1 99	7 89	2 81	0.36	0.006697	108223	2 19	3 77
17 2	88.4	88.3	23303 1	2 00	8.03	2.83	0.35	0.006645	108223	2 16	3 77
18_1	80.3	79.9	28460 5	2 01	8 12	2,85	0.35	0.006321	246859	2.95	5 95
18 1 2	67 1	79.8	28531.9	1.68	4 76	2 18	0.46	0.006317	246859	2 94	7 78
19 1	97.5	82.3	26824.8	2.37	13.30	3.65	0.27	0.006415	242519	3.01	4.54
19 2	85.9	77 4	30328 7	2 22	10,94	3 31	0.30	0.006221	242519	2 83	5 16
20 1	87.3	82.9	26437.9	2.11	9.34	3.06	0.33	0.006438	257527	3.12	5.56
20 2	82	84.2	25627.8	1.95	7.39	2.72	0.37	0.006488	257527	3.17	6.21
21 1	83.4	81.3	27488.7	2.05	8.64	2.94	0.34	0.006376	137056	2.23	4.26
21 2	80.2	83.2	26247.6	1.93	7.17	2.68	0.37	0.006450	137056	2.29	4.62
22 1	82.5	88	23462.3	1.88	6.59	2.57	0.39	0.006633	166784	2.67	5.17
22 1 2	87.2	86.6	24227.0	2.01	8.17	2.86	0.35	0.006580	166784	2.62	4.68
22 2	88,8	81,4	27421,2	2,18	10,39	3,22	0,31	0,006380	166784	2,47	4,28
23 1	78,2	80,9	27761,2	1,93	7,23	2,69	0,37	0,006360	150840	2,33	4,90
23 2	89,6	85,3	24971,1	2,10	9,27	3,04	0,33	0,006531	150840	2,46	4,21
24 1	84,1	80,9	27761,2	2,08	8,99	3,00	0,33	0,006360	254055	3,03	5,70
25_2	90,3	86,5	24283,1	2,09	9,10	3,02	0,33	0,006576	323893	3,65	6,19
26_1	84,5	83	26374,2	2,04	8,44	2,91	0,34	0,006442	222465	2,90	5,43
26_2	79,8	79,8	28531,9	2,00	8,00	2,83	0,35	0,006317	222465	2,79	5,69
27_1	88	82,2	26890,1	2,14	9,82	3,13	0,32	0,006411	257636	3,10	5,45
27_2	89,2	84,1	25688,8	2,12	9,55	3,09	0,32	0,006485	257636	3,17	5,46
28_1	83,3	82,7	26565,9	2,01	8,18	2,86	0,35	0,006430	271744	3,20	6,11
28_2_2	86,3	82,1	26955,6	2,10	9,29	3,05	0,33	0,006407	271744	3,18	5,76
29_1	84	81,7	27220,2	2,06	8,69	2,95	0,34	0,006391	224750	2,87	5,43
29_2	91,1	84,2	25627,8	2,16	10,13	3,18	0,31	0,006488	224750	2,96	4,95
x											4,96
S											0,85

Erklärung

Ich, Juliane König, erkläre, dass ich die vorgelegte Dissertationsschrift mit dem Thema "Vergleichende Untersuchungen ausgewählter mechanischer Kennwerte dreier Weißkeramiken in der CAD/CAM-Technik" selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt, ohne die (unzulässige) Hilfe Dritter verfasst und auch in Teilen keine Kopien anderer Arbeiten dargestellt habe.

Berlin, 06. 06. 2008

J. König

Lebenslauf

Mein Lebenslauf wird aus Datenschutzgründen in der elektronischen Version meiner Arbeit nicht mit veröffentlicht.

Danksagung

Ich danke Herrn Prof. Dr. Klaus-Peter Lange für die freundliche Überlassung des Dissertationsthemas und die Möglichkeit der Durchführung der Promotion im Zentrum für Zahnmedizin der Charité.

Mein besonderer Dank gilt Herrn Dr. Wolf-Dieter Müller für die kontinuierliche Betreuung und Unterstützung bei der Durchführung der Arbeit sowie für die Vermittlung zahlreicher Anregungen für die theoretische und praktische Umsetzung.

Großer Dank gebührt Frau Christiane Schöpf, die mir Hilfestellung und Anleitung bei allen technischen Arbeiten gab.

Frau Gabriele Bölling danke ich für die Unterstützung bei den diversen Biegebruchuntersuchungen an der Zwick 010.

Weiterhin danke ich Ingmar Dittmann für seine professionelle Hilfe beim Erstellen des Layouts.

Nicht zuletzt gilt mein großer Dank meinen Eltern, die mich immer motivierend unterstützt und mir diesen beruflichen Werdegang ermöglicht haben, insbesondere auch für ihre kompetente Beratung bei der sprachlichen Gestaltung dieser Arbeit.

Abschließend bedanke ich mich bei den Firmen Bien-Air DCS Solutions SA, Degu-Dent GmbH und 3M ESPE AG für die Bereitstellung des Studienmaterials.