
Water effects on the interaction and
friction between polar surfaces

im Fachbereich Physik der Freien Universität Berlin eingereichte

Dissertation

zur Erlangung des akademischen Grades eines Doktors der

Naturwissenschaften (Dr. rer. nat.)

vorgelegt von

Alexander Schlaich

Berlin, 2017





Erster Gutachter: Prof. Dr. Roland R. Netz

Freie Universität Berlin

Zweiter Gutachter: Prof. Dr. Joachim Dzubiella

Helmholtz-Zentrum Berlin für Materialien und Energie &

Humboldt-Universität zu Berlin

Tag der Disputation: 10.11.2017

i





Abstract

The effects of water on the interaction and friction between surfaces are important both

in biological and technological systems. For a quantitative description, the molecular

details require modeling of all relevant degrees of freedom. The aim of this work is to

obtain atomistic information from Molecular Dynamics simulations and incorporate them

into continuum models, which are extended where necessary. Throughout this work we

study interactions between water-separated surfaces, which requires control of the water

chemical potential.

First, we study the dielectric properties of water confined between flexible polar groups,

which reveals a highly asymmetric behavior at separations below 1 nm: while the com-

ponent of the dielectric permittivity parallel to the surface slightly increases compared to

bulk, the perpendicular one drastically decreases due to the anti-correlated polarization

of neighboring water molecules. The obtained molecular information is incorporated into

a tensorial box-model suitable for coarse-grained electrostatic modeling.

Second, we investigate the origin of the overwhelmingly repulsive hydration force that

universally acts between hydrated surfaces. We model the indirect, water–mediated forces

in terms of a Landau–Ginzburg free energy and obtain all phenomenological parameters

from the simulations. We find that polarization related order parameters quantitatively

describe the decay length of the indirect pressures, but only account for about ten percent

of the amplitude, which we attribute to effects that are not captured within the one-

dimensional mean-field model. Contributions from other order parameters are negligible.

Third, we compare the pressure as a function of separation between uncharged and

charged surfaces with neutralizing counterions. At separations larger than 0.5 nm and at

low surface charge, we find that the continuum Poisson–Boltzmann model accounts for

the additional pressures. For small separations, the ion–surface repulsion is dominating.

Our simulations at controlled chemical potential offer the possibility to investigate such

effects in explicit water for the first time.

Last, we study the shear friction between polar surfaces in the linear response regime

at low shearing velocity, which is the relevant regime for typical biological applications.

With decreasing water film thickness we find three consecutive friction regimes: For thick

films friction is governed by bulk water viscosity. At separations of about a nanometer the

highly viscous interfacial water layers dominate and increase the surface friction, while at

the transition to the dry friction limit interfacial slip sets in. We construct a confinement-

dependent friction model which accounts for the additive friction contributions from bulk-

like water, interfacial water layers and slip on arbitrary lengthscales.
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Zusammenfassung

Der Einfluss von Wasser auf die Wechselwirkung und Reibung zwischen Oberflächen ist

relevant in biologischen und technischen Systemen. Um diese quantitativ zu beschreiben,

müssen auf molekularer Ebene alle relevanten Freiheitsgrade berücksichtigt werden. Ziel

dieser Arbeit ist die Extraktion der Information auf atomarer Ebene aus Moleküldynamik-

simulationen und deren Einbindung in Kontinuumsmodelle, die wir gegebenenfalls erweit-

ern. Diese Arbeit behandelt die Wechselwirkung zwischen Oberflächen in Wasser, wobei

stets das chemische Potential von Wasser kontrolliert werden muss.

Zunächst beschäftigt sich die Arbeit mit den dielektrischen Eigenschaften von Wasser

zwischen polaren Kopfgruppen. Bei Abständen unter 1 nm ist die Komponente parallel zur

Oberfläche etwas größer als in reinem Wasser, wogegen die senkrechte Komponente durch

die anti-korrelierte Polarisierung benachbarter Wasser reduziert wird. Aus den dielek-

trischen Profilen berechnen wir ein Boxmodell, das sich zur effektiven elektrostatischen

Modellierung eignet.

Im zweiten Teil befassen wir uns mit dem Ursprung der extrem starken Hydrationsre-

pulsion, die generell zwischen hydratisierten Oberflächen wirkt. Wir beschreiben die indi-

rekten, durch Wasser vermittelten Kräfte mit einer Landau–Ginzburg Freien Energie und

leiten die phänomenologischen Parameter aus Simulationsdaten ab. Ordnungsparameter,

die auf der Polarisierung basieren, liefern quantitativ die korrekte Länge, auf welcher der

indirekte Druck abfällt, erklären jedoch nur zehn Prozent des Drucks, was wir auf Effekte

zurückführen, die sich nicht in der eindimensionalen Näherung beschreiben lassen. Andere

Ordnungsparameter liefern einen viel kleineren Beitrag.

Das dritte Kapitel befasst sich mit Druck-Abstands-Kurven für neutrale und geladene

Oberflächen, die durch Gegenionen neutralisiert werden. Bei Abständen über 0.5 nm

und kleinen Ladungsdichten beschreibt das Poisson–Boltzmann–Modell die zusätzlichen

Drücke. Für kleine Abstände dominiert die Repulsion zwischen Ionen und Oberfläche. Un-

sere Simulationen unter Berücksichtigung des chemischen Potentials von Wasser ermögli-

chen erstmals die Analyse solcher Effekte in explizitem Wasser.

Zuletzt betrachten wir die Scherkraft zwischen polaren Oberflächen im linearen Bere-

ich bei kleinen Schergeschwindigkeiten, was typischen biologischen Situationen entspricht.

Mit abnehmender Wasserschichtdicke treten drei Regimes auf: Die Viskosität von purem

Wasser beschreibt große Abstände. Unterhalb eines Nanometers dominieren die hoch-

viskosen Grenzschichten und erhöhen die Reibung. Beim Übergang zur trockenen Rei-

bung kommt es zu Schlupf. Mit einem abstandsabhängigen Modell beschreiben wir die

drei additiven Beiträge auf beliebigen Längenskalen.
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1. Introduction

Water is an essential ingredient in biological cells and comprises more than a passive con-

stituent of life in general [1]. It is also of major technical relevance, with rising significance

concerning green technology [2]. The presence of water has a major influence on the in-

teractions between solutes. For example, clays [3], surfactant films [4, 5] and uncharged

lipid bilayers [6, 7], as well as biological membranes [8–11], swell in aqueous solutions. The

molecular details in aqueous solutions determine the stability of colloidal suspensions [12].

Water as a solvent affects the structure of proteins [13] and conformational changes are

supposed to be related to neurodegenerative diseases such as Alzheimer’s or Parkinson’s

disease [14]. The resulting membrane–membrane separation is directly affected by the cell

membrane composition and its interactions across the aqueous solvent, which not only reg-

ulates the physiological function but is also strongly correlated to dysfunctions such as the

impaired neurotransmitter-triggered signal transduction appearing in age-related diseases

[15]. The inter-membrane separation is further responsible for dermal function and dys-

function in skin cells [16], and also the internal cell organization relies on the well-defined

membrane–membrane separation [17], just to name a few examples. Lubricated biological

systems such as cartilage experience low friction due to the water layers that resist high

normal loads [18]. The viscosity of nano-confined water determines the behavior of col-

loidal suspensions and is essential in industrial applications ranging from ceramics through

cement and chocolate [19]. Thus a detailed understanding of surface–surface interactions

in the aqueous environment is of utmost importance.

Often the description of biological matter and colloidal stability is separated into long-

range and short-range forces [20]. For many systems, the force between charged surfaces

interacting through a liquid medium is at large separations well described within the

classical Derjaguin–Landau–Verwey–Overbeek (DLVO) theory [12, 21–23], which combines

the van der Waals force and the electrostatic double layer repulsion, enabling a quantitative

description of the aggregation of aqueous dispersions. However, on the lengthscale of

the solvent molecules, which for water is on nanometer separations, the combination of

van der Waals forces, that summarize the interactions between permanent and induced

dipoles, and repulsive double layer forces, that occur between charged objects in aqueous

solution, often fails to describe the interaction because of the emergence of other non-

DLVO forces [24, 25]. Going beyond the pairwise additivity assumed in the van der

Waals forces, McLachlan and Lifschitz in the 1950s generalized the work of Casimir, who

studied the force between metal plates due to vacuum fluctuations [26–29]. The calculation

of the resulting Hamaker constants [30] requires knowledge of the frequency-dependent
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1. Introduction

dielectric permittivity functions of the aqueous and non-aqueous phase. The corresponding

effective pair potential accounting also for retardation effects was algebraically derived by

Podgornik et al. [31], however, at nanometer separations the resulting forces do not describe

the experimental measures pressures between biological membranes.

For biological systems, also membrane undulations [32, 33] and protrusions of single

lipid molecules have to be considered; but numerical studies have shown that their contri-

butions on the relevant lengthscales is negligible [34, 35]. The overwhelmingly repulsive,

or in the case of structured, rather hard surfaces, oscillatory forces have been summarized

as solvation forces, or, more specifically, hydration forces. As discussed below, the mech-

anisms so far lack quantitative theoretical description, which is of central relevance in the

present work. While theoretical models provide conceptual insight and scaling laws for the

mechanisms proposed [36–42], they cannot predict the contribution of each mechanism on

a quantitative level, since this depends on molecular details such as the conformational

behavior and subtle differences in the interaction enthalpy of molecular groups, demanding

rigorous modeling of all components including all relevant degrees of freedom.

Often the failure of continuum models like DLVO theory is attributed to the statement

that these descriptions become invalid at scales corresponding to the molecular size. Al-

though the statement is correct in many situations, it is typically based on the assumption

that such models need to be described by homogeneous, bulk-like and local response func-

tions. Consider, however, the dielectric response function of water, which we discuss in

detail in Chapter 2: it is well established that the bulk water response function becomes

non-local [43] and at interfaces it is non-isotropic [44]. Once the corresponding material

parameters are obtained, e.g. from computer simulations, they quantitatively describe ex-

perimental data for which the common continuum approaches previously failed, if correctly

employed in the theoretical description [45, 46]. In this work we study the effects of con-

fined water on the interaction between planar surfaces, extract the molecular information

from Molecular Dynamics (MD) simulations and extend the existing continuum models

where necessary.

1.1. Hydration and solvation forces

Whenever liquid molecules are confined between two surfaces, they are induced to form

quasi-discrete layers, giving rise to oscillatory solvation forces. These forces are related to

the density oscillations which are mainly geometric in origin and are commonly observed

for stiff surfaces both in water and non-aqueous solutions [47–49]. The hydration force

denotes a special case in which a strong short-range repulsive force which is not captured

within the DLVO forces acts between polar surfaces separated by a thin water layer of

2



1.2. Dielectric effects and electrostatic interactions

less than about 3 nm thickness [50, 51]. Pressure–distance measurements on phospho-

lipid membranes, where the oscillatory contribution to the force is absent due to the soft,

fluctuating nature of the lipid bilayers, showed that the hydration force obeys an approxi-

mately exponential decay with a characteristic length between 0.1 nm and 0.6 nm [52–55].

Later experiments revealed that the exponential decay applies to a much wider range of

bio-materials [56]. The first account of the hydration force dates back to I. Langmuir in

1938 [57], yet its mechanism is still under debate and the description is basically empirical

[58].

In Chapter 3 we discuss the repulsion due to the unfavorable overlap of ordering pro-

files of interfacial water layers which has been originally proposed by Marčelja and Radić

[41]. We identify the indirect, water-mediated forces between hydrophilic surfaces with

the contribution due to water ordering and obtain the free phenomenological parameter

using Gaussian field theory, which allows to quantitatively predict the pressure from the

corresponding water response function. The relevant order parameters follow from the

water polarization, which we show by comparing with the pressures due to other order pa-

rameters that we find to be orders of magnitude smaller. This concludes the long-standing

discussions on the appropriate choice of order parameters [20]. For the polarization-related

order parameters we find quantitative agreement between polarization profiles and the de-

cay lengths of the pressure for different surfaces.

1.2. Dielectric effects and electrostatic interactions

Most biologically or industrial relevant surfaces are charged in contact with water. Exam-

ples range from charged phospholipids in cell membranes [59–61] over monolayers of ionic

surfactants [5] to solid surfaces such as glass, silica and mica [47, 49, 50, 52]. The descrip-

tion of the interaction between charged surfaces across aqueous electrolyte solutions is one

of the fundamental problems in colloid science. Within the Derjaguin approximation [21]

the conceptional work on (infinite) planar surface can be generalized to the interaction

between curved surfaces, like e.g. colloidal suspensions.

Electrostatic interactions in aqueous solution are strongly influenced by water’s dielectric

properties. The large relative dielectric constant of bulk water of εbulk = 80 means that

Coulomb interactions in water are reduced down to roughly 1 percent compared to vacuum.

Stern’s groundbreaking analysis of experimental surface capacitance data demonstrated

that at a solid-water interface a thin interfacial layer exists with a dielectric constant

much reduced compared to the bulk water value [62]. Although this interfacial layer has a

thickness of only about a tenth of a nanometer, its effects on the surface capacitance as well

as electrokinetic transport properties such as zeta potentials and surface conductivities are

3



1. Introduction

significant [63].

In Chapter 2 we investigate the two independent components of the dielectric response

function, parallel and perpendicular to the surface. For a water slab thickness below 1

nm the dielectric response is highly asymmetric: while the parallel component slightly

increases compared to bulk, the perpendicular one decreases drastically due to the anti-

correlated polarization of neighboring water molecules. Within the work on this thesis the

author has co-supervised a Master thesis and two Bachelor theses, in the work of which

the dielectric permittivity profile has been obtained also for cylindrical nano-confinement,

which is the relevant symmetry e.g. in carbon nanotubes or many protein channels (Ref.

[xi], not discussed within this thesis). Solution of the anistropic Green’s function then

allows to compute electrostatic interactions using the dielectric profiles obtained from MD

simulations both in planar and cylindrical symmetry, and to compute ion self-energies

(Ref. [xi]).

The interaction between charged particles and surfaces across aqueous solution is com-

monly modeled by continuum theories and solvent-implicit simulations assuming constant

dielectric properties in the water slab [64–67]. To obtain the explicit contribution of elec-

trostatic interactions across an aqueous water slab, we study charged polar surfaces with

neutralizing counterions immersed in the solvent in Chapter 4. The Hamiltonian for a

system of Nion counterions of valence q and two charged walls located at z = −d/2 and

z = d/2 with a number charge density σ is in units of thermal energy kBT given by

H

kBT
=

Nion−1∑
j=1

Nion∑
k=j+1

q2`B
|rk − rk|

+ 2π`Bσ

Nion∑
j=1

(zj + d/2) + 2π`Bσ

Nion∑
j=1

(d/2− zj), (1.1)

where `B = e2/4πεε0kBT is the Bjerrum length (e is the elementary charge, ε is the relative

dielectric constant). The first term contains the Coulombic repulsion between the ions,

the other two terms account for the electrostatic attraction to the wall (which is assumed

to be infinite in lateral direction). Rescaling all lengths by the Gouy–Chapman length

µ = 1/(2πq`Bσ) according to r̃ = r/µ, the Hamiltonian Eq. (1.1) can be rewritten as

H

kBT
=

Nion−1∑
j=1

Nion∑
k=j+1

Ξ

|r̃k − r̃k|
+

Nion∑
j=1

(z̃j + d̃/2) +

Nion∑
j=1

(d̃/2− z̃j), (1.2)

such that the Hamiltonian now depends only on the coupling parameter Ξ = 2πq3`2Bσ.

From Eq. (1.2) two limiting cases can be derived: for Ξ� 1, or at large separations Ξ < d̃2,

the ion interaction with the surface is dominant in this weak coupling limit and the mean-

field approach, from which the Poisson–Boltzmann (PB) approach is derived, becomes

4



1.3. Friction in aqueous confinement

valid (see e.g. Ref. [iii]). The interaction between the walls in this limit is repulsive (see

Section 4.5.5) and has been analyzed first more than 100 years ago by Gouy and Chapman

[68, 69]. In the opposite limit Ξ → ∞ of strong coupling (SC) [70], the counterions

essentially form a flat layer with mean lateral distance ã =
√

Ξ and the non-dimensonalized

pressure

Π̃ =
Π

2π`Bσ2kBT
=

2

d̃
− 1 (1.3)

is attractive at large separations [71]. In an intuitive picture, the first term of Eq. (1.3) can

be interpreted as the entropic pressure due to an ideal gas of counter-ions and the second

term as the electrostatic attraction between the charged surfaces and the counter-ions.

We show in Chapter 4 that if the hydration pressure Πhyd is correctly accounted for,

the mean-field approach is confirmed for low surface charge σ and monovalent ions q = 1

(such that Ξ � 1) also if the atomistic details are treated explicitly. The additivity of

hydration and electrostatic interactions has been proposed to explain diffraction data of

charged and uncharged lipids [72], however the precise value of the surface charge and its

position is usually not known [73]. In the simulations we then vary the surface charge

density σ such that the values 0.5 < Ξ < 6 are in the intermediate coupling regime,

where quantitative theoretical expressions are missing, but which is relevant for typical

experimental and biological charge densities with monovalent counterions. We observe

minima in the pressure–distance curves, which also in experiments is observed by coexisting

phases [74, 75]. In Ref. [x], which is not discussed within this thesis, we investigated the

solution of the non-linear Poisson–Boltzmann equation with additive and non-additive ion-

specific surface potentials, where attraction or repulsion between the surfaces is observed

depending on surface charge and potential [76].

1.3. Friction in aqueous confinement

The viscous properties of nanoscopically confined water are important when hydrated sur-

faces in close contact are sheared against each other [18, 19, 77]. Numerous experiments

have probed the friction between atomically flat hydrated surfaces in the sub-nanometer

separation regime [78–80] and suggested an increased water viscosity, but the precise

value of the effective viscosity of ultra-confined water and the mechanism of hydration

layer friction remains unclear [80–85]. A fundamental question that is difficult to address

experimentally is how the friction between wet surfaces crosses over to the dry-friction

limit, which is obtained for high loads when all water is squeezed out from between the

surfaces. This limit, however, is of high relevance in bio-lubrication applications: For ex-

5



1. Introduction

ample, in joint lubrication, forces corresponding to the weight of a few grams are sufficient

to squeeze the water completely out if the surface area is small enough. Hydrodynamic

theory predicts the shear friction between surfaces that are separated by a fluid layer to

diverge as the fluid film thickness goes to zero, but at the same time the friction forces

between dry surfaces are expected to be finite.

To obtain a microscopic picture of water-mediated nanoscale friction at the border

between hydrodynamic friction and dry friction, we perform extensive non-equilibrium

molecular dynamics simulations in the linear-response regime at low shearing velocity,

which is the relevant regime for typical biological applications, in Chapter 5. The exper-

imental probe of this transition from wet to dry friction is challenging, because the high

pressures needed to squeeze all water out cannot be easily generated with common tech-

niques. With decreasing water film thickness we find three consecutive friction regimes:

For thick films friction is governed by bulk water viscosity. At separations of about a

nanometer the highly viscous interfacial water layers dominate and increase the surface

friction, while at the transition to the dry friction limit interfacial slip sets in. Based on

our simulation results, we construct a confinement-dependent friction model which ac-

counts for the additive friction contributions from bulk-like water, interfacial water layers

and interfacial slip and which is valid for arbitrary water film thickness. We use hydrody-

namic equations, which reflect the conservation of momentum, a condition that arguably

holds at any length scale, in conjunction with non-local linear-response theory, to define a

spatially dependent effective viscosity profile without invoking any locality or continuum

assumption. The main reason why the standard hydrodynamic description fails at the

nanoscale, is not related to the discreteness of water molecules, but rather to the finite

range of surface–fluid interactions, which we fix in terms of an effective viscosity profile.

1.4. Experimental measurements of the interaction pressure

In this section, we briefly review common experimental methods of obtaining the inter-

action between surfaces in aqueous solution and present the corresponding measurement

ensemble. This will become important in the next section, where we discuss the computer

simulations performed in this work, as also there the correct ensemble has to be taken into

account.

In experiments, one way of obtaining the interaction between surfaces across solutions

is the surface force apparatus (SFA) established by Israelachvili and co-workers. Here,

the membranes are immobilized on two crossed cylinders of radius R and brought close

together [86]. The distance d between the surfaces of both cylinders is determined by

interferometry with Ångstrom precision. The force F (d) acting between the cylinders is

6



1.4. Experimental measurements of the interaction pressure

(a)

Π
(b) (c)

Figure 1.1.: Schematics of the three methods for measuring the interaction pres-
sure between lipid bilayers. (a) In the osmotic stress method the lipid is in equilibrium
with water vapor (or liquid) of known chemical potential µ at atmospheric pressure, (b) in
the hydrostatic method the lipid is squeezed under pressure Π in a cell from which water
can escape through a semipermeable membrane, and (c) in the SFA method the lipids are
grafted on two crossed cylindrical surfaces and brought into contact under an externally
controlled force F . Modified from Ref. [iii], with permission.

determined by the cantilever deflection. The interaction free energy per area, F/A, follows

from the Derjaguin approximation [87],

F(d)/A =
2πF (d)

R
, (1.4)

and the interaction pressure Π can be evaluated by differentiation. It is also common to

measure pressure–distance curves of membrane multilayers by applying either hydrostatic

or so-called equivalent pressures and measuring the lamellar periodicity Lz via neutron

or X-ray diffraction [53]. These equivalent pressures are realized by shifting the chemical

potential µ of the surrounding water according to the Gibbs–Duhem equation, −SdT +

V dΠ = Ndµ. A shift ∆µ at constant temperature then corresponds to an equivalent

pressure ∆Π = ∆µ/vb
w, where vb

w = V/Nw denotes the volume of a single water molecule in

bulk. Equivalent pressures Π < 100 bar are typically achieved by bringing the multilayers

into osmotic contact with aqueous polymer solutions that compete for water through

semi-permeable membranes. The equivalent pressure is then identical to the osmotic

pressure exerted by the polymer solution. For higher equivalent pressures (Π > 100 bar),

the multilayers are dehydrated via vapor exchange with a water reservoir of controlled

chemical potential. Significant shifts ∆µ can be realized by changing the temperature or

the amount of salt in the water reservoir.

The membrane separation is usually quantified as the water layer thickness dw, deduced
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1. Introduction

from the measured lamellar periodicity Lz, either structurally from scattering length den-

sity profiles [88], or gravimetrically from the known volumes of lipids and water molecules

(Vl and vw) and from the number of water molecules per lipid nw = Nw/Nl [6],

dw = Lz
nwvw

nwvw + Vl
. (1.5)

As in the presented experimental approaches the membranes are subject to different

boundary conditions, the obtained pressure–distance curves are not completely equiva-

lent. In an SFA experiment, the area per lipid remains approximately constant while

varying the distance and exerting perpendicular mechanical force on membranes. In an

equivalent-pressure experiment, membranes are free to rearrange their molecular organiza-

tion upon dehydration. Finally, in an hydrostatic pressure experiment the isotropic pres-

sure compresses membranes at constant water chemical potential. These distinct method

differences must be kept in mind when analyzing experimental and simulation results, as

we discuss next.

1.5. Molecular Dynamics modeling

Computer simulations can be used to numerically handle many-body problems such as

the time evolution of complex biomolecular systems. In the very popular approach of

Molecular Dynamics (MD), the system is composed of classical particles (e.g. atoms or

molecules) and one integrates their Newton’s equation of motion to sample conformations,

calculate observables, etc. [89, 90].

In modeling biological system, water plays a very important role and different water

models have been developed in the last several decades. We here use the Simple Point

Charge / Extended (SPC/E) model [91], where a water molecule is represented by three

interaction sites, corresponding to the three atoms of a water molecule. The two hydrogen

sites possess positive electric charges, which are exactly balanced by the negative charge

on the oxygen. These partial charges give rise to the water dipole moment and mimic the

formation of hydrogen bonds. Additionally, the oxygen atoms in water molecules interact

between each other via Lennard-Jones (LJ) interaction, accounting for both dispersion

attraction and Pauli repulsion. Formally, the interaction between two water molecules a

and b is defined as

Wab =

on a∑
i

on b∑
j

qiqj
4πε0rij

+
C12

r12
OO

− C6

r6
OO

, (1.6)

where the two sums run over all three sites in a molecule, qi and qj are partial charges, rij

8



1.5. Molecular Dynamics modeling

the corresponding distance between the interacting sites, and C12 as well as C6 the LJ co-

efficients that act between two oxygen atoms rOO apart. Also other, more complex, water

models have been developed, like TIP4P and TIP5P, which use four and five interaction

sites, respectively. Computationally more demanding water models account also for its

polarizability, which in principle can yield a more accurate description of water properties,

but often doesn’t.

In our MD simulations, we will analyze a model bilayer membrane consisting of De-

canol (CH3(CH2)9OH) molecules, for which force-field parameters are based on GRO-

MOS53A6 [92]. This set of parameters is basically optimized to reproduce experimen-

tal solvation energies of alkanes. In another set of simulations we focus on experimen-

tally well-studied bilayers consisting of dipalmitoyl-phosphatidyl-choline (DPPC). Like

Decanol, they are represented via bonded, point-electrostatic, and LJ interactions. We

use the united-atom Berger force field for DPPC, which defines effective interactions be-

tween lipids and water molecules. The parameters were determined by a combination of

ab initio calculations and empirical optimization in such a way as to reproduce correct

lipid densities from experiments [93], however we have recently shown that the surface

interactions are quite robust with respect to the force field employed [94].

Simulations at controlled chemical potential

Simulations can be performed in various ensembles, which enables comparison with ex-

perimental data obtained under different boundary conditions. Typically the temperature

T and the number of particles N are fixed in simulations. In addition, either the volume

V (NV T ensemble) or the pressure Π (NΠT ensemble) are kept constant. In the lat-

ter case, the constant pressure is maintained by continuous adjustments of the box size.

However, as discussed above, experimental setups that investigate membrane interactions

usually fix or control the water chemical potential. Explicit simulation of a water reser-

voir with bulk chemical potential is possible [95], but realizing realistic representations

of interacting lipid membranes has been hampered by the exceedingly large associated

numerical expenses [96]. There are, however, alternative approaches to account for the

chemical potential of water, for example, through stochastic deletions and insertions of

water molecules. Such a Grand Canonical Monte Carlo (GCMC) approach was established

by Grunze, Pertsin, and co-workers [97] but so far only at moderate pressure resolution.

In this work we follow an alternative approach based on the Thermodynamic Extrapo-

lation method [98]. To this end for the simulations in the NwALzT ensemble, which we

perform in analogy to SFA measurements at fixed lateral area A for different box heights

Lz, we measure the chemical potential µ at different water numbers Nw with a precision as

9



1. Introduction

high as 0.01kBT (Appendix A). The water number Nw(µb) and interaction pressure Π(µb)

are then extrapolated linearly, where µb denotes the chemical potential of bulk water and

which is explained in detail in Appendix A. Similarly, for the simulations in the NΠT

ensemble we measure the chemical potential at ambient pressure Π0 and determine the

interaction pressure using a Gibbs–Duhem relation, see Appendix A.
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2. Water dielectric effects in planar

confinement

Bibliographic information: Parts of this chapter and of Appendix A have previously been

published. Reprinted with permission from Ref. [i]. Copyright 2016 American Physical

Society.

2.1. Introduction

The water structure at surfaces has a profound influence on wetting properties, adhesion

between surfaces and adsorption of ions, molecular solutes and macromolecules [25, 36, 99,

100]. The understanding of hydration and hydrophobic interactions between surfaces has

been possible by groundbreaking experimental techniques [52, 101, 102] and more recently

been advanced by computer simulations that include explicit water [95, 98, 103–105].

Most biologically or technologically relevant surfaces such as lipid membranes [106], min-

eral surfaces and colloids [107] bear surface charges. Electrostatic interactions in aqueous

solution are strongly influenced by water’s dielectric properties. The large relative dielec-

tric constant of bulk water of εbulk = 80 means that Coulomb interactions in water are

reduced down to roughly 1 percent compared to vacuum. Stern’s groundbreaking analysis

of experimental surface capacitance data demonstrated that at a solid-water interface a

thin interfacial layer exists with a dielectric constant much reduced compared to the bulk

water value [62]. Although this interfacial layer has a thickness of only about a tenth

of a nanometer, its effects on the surface capacitance as well as electrokinetic transport

properties such as zeta potentials and surface conductivities are significant [63].

The interaction between charged particles and surfaces across aqueous solution is stan-

dardly modeled by continuum theories and solvent-implicit simulations assuming constant

dielectric properties in the water slab [64–67]. Clearly, any modification of the water dielec-

tric constant as the surfaces approach would strongly modify the electrostatic inter-surface

interactions.

Whereas the bulk dielectric response of polar fluids is well understood [43, 108–110],

atomistic simulations as well as analytic theories confirmed that it is strongly modified at

interfaces [44, 111–113]. For a planar interface, the dielectric response becomes anisotropic

and can be described by two local profiles ε‖(z) and ε⊥(z). The perpendicular component

is particularly relevant and has been used to predict the surface zeta potential and capaci-

tance in quantitative agreement with experimental data [45]. The effect of confinement on
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2. Water dielectric effects in planar confinement

the dielectric constant, however, is highly relevant but far from settled [25]. Previous sim-

ulation studies suggested a reduced dielectric constant in confinement [114–117], however,

some of these studies were debated because of ill-defined boundary conditions [118, 119].

In this chapter we extract the water dielectric properties between two soft polar model

surfaces using extensive molecular dynamics (MD) simulations. Both parallel and per-

pendicular dielectric components reach the bulk value for water slab thickness larger than

about 1 nm, for smaller thickness the parallel dielectric component is enhanced while the

perpendicular component is drastically reduced. This symmetry breaking is solely due to

collective polarization effects: The parallel polarization correlations between neighboring

water molecules is slightly enhanced, while the perpendicular dipoles of neighboring water

molecules are predominantly anti-correlated, leading to a negative collective contribution.

We also show that the orientational freedom of polar headgroups adds significantly to the

local dielectric constant. We cast our results in the form of a tensorial dielectric box model

which can be straightforwardly implemented in future coarse-grained modeling of the in-

teraction between charged surfaces and electrokinetic effects in confinement [120, 121].

2.2. Linear response theory

We write the change of the dielectric displacement field ∆D(r) at position r due to the

local change of the electric field ∆E(r) as an integral over the non-local dielectric response

tensor
↔
εnl,

∆D(r) = ε0

∫
↔
εnl(r, r

′) ·∆E(r′)dr′. (2.1)

For planar symmetry in the xy-directions, all fields and response functions only depend

on the z-coordinate. Furthermore, the static Maxwell relation ∇×∆E(z) = 0 shows that

the parallel electric field ∆E‖ is constant and thus Eq. (2.1) simplifies to

∆D‖(z) = ε0ε‖(z)∆E‖, (2.2)

where we define the local parallel response as ε‖(z) =
∫
ε
‖
nl(z, z

′)dz′. Similarly, the Maxwell

relation in the absence of free charges ∇ · ∆D(z) = 0 shows that the perpendicular dis-

placement field ∆D⊥ is constant which leads to the perpendicular local response relation

∆E⊥(z) = ε−1
0 ε−1
⊥ (z)∆D⊥. (2.3)
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2.3. MD simulations

We define parallel and perpendicular polarization correlation functions as

cα(z) = 〈mα(z)Mα〉 − 〈mα(z)〉 〈Mα〉 , (2.4)

with mα(z) being the laterally averaged polarization density at position z and α =⊥, ‖.
The total polarization follows by an integral over the entire simulation box height, Mα =

A
∫ Lz/2
−Lz/2

dz mα(z), where the lateral simulation box area is A = LxLy.

Using the fluctuation-dissipation theorem, ε‖(z) is related to polarization correlations

via [44, 111]

ε‖(z) = 1 +
c‖(z)

ε0kBT
, (2.5)

where kBT is the thermal energy and ε0 denotes the vacuum permittivity. In contrast,

the inverse perpendicular dielectric profile for a periodic system follows as [122]

ε−1
⊥ (z) = 1− c⊥(z)

ε0kBT + C⊥/V
, (2.6)

where V = ALz is the simulation box volume and the variance of the total polarization

is denoted as Cα = A
∫ Lz/2
−Lz/2

dz cα(z). Note that for a homogeneous system we have

c⊥(z) = C⊥/V and thus ε⊥ = 1+c⊥/ (ε0kBT ), in full analogy to the parallel component in

Eq. (2.5) and Ref. [123]. However, in the general interfacial scenario, where c⊥(z) depends

on the coordinate z, the parallel and perpendicular expressions Eqs. (2.5) and (2.6) are

intrinsically different, as we will discuss in detail.

2.3. MD simulations

The slab between two planar surfaces consisting of 100 polar Decanol molecules each

is filled with Nw = 170 up to 19 752 SPC/E water molecules [91] (see Fig. 2.1 for a

snapshot). The SPC/E model represents bulk water dielectric properties quite well [124].

Force-field parameters are based on GROMOS53A6 [92], Decanol hydroxyl groups are

represented in atomistic detail, CH2 and CH3 groups as united atoms. The repulsion

between headgroup oxygens is increased to reduce intra-surface hydrogen bonding [125].

To avoid slow reorientation events, we restrain all Decanols on the second CH2 group

counting from the OH headgroup with force constants kx = ky = 500 kJ/(mol nm2) and

kz = 10 kJ/(mol nm2) and the terminal CH3 group with kx = ky = 5 kJ/(mol nm2) on a

centered rectangular lattice with a lateral area per headgroup of A/100 = 0.234 nm2. This

corresponds to the tensionless state in vacuum with a Decanol tilt angle of 30◦. Simulations
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2. Water dielectric effects in planar confinement

CH2

CH2

-0.734
O

H

dw

CH2

CH2

0.286

0.020

0.020

0.000

0.408

Lz

Figure 2.1.: Simulation snapshot for a water layer thickness dw = 1.5 nm. Selected
molecules are shown using van-der-Waals spheres. Each monolayer consists of 100 Decanol
molecules. The inset on the right shows the distribution of partial charges on the flexible
polar headgroups.
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2.4. Dielectric profiles

are performed using version 5.0 of the GROMACS simulation package [126] at T = 300 K

with periodic boundary conditions and analyzed using the MDAnalysis package [127].

In analogy to experiments [53], we define the water layer thickness dw using the bulk

molecular water volume vb
w = 0.0304 nm3 and the number of water molecules Nw as dw =

Nwv
b
w/A. For small separations dw < 3 nm, simulations are done in the NwALzT ensemble

at constant volume V = ALz and the number of water molecules Nw is adjusted via

thermodynamic extrapolation to yield a constant chemical potential [98], see Section 2.6.1

and Appendix A. For dw > 3 nm, the interaction pressure is negligible and we use the

NwAΠ0T ensemble at fixed vertical pressure Π0 = 1 bar. Lennard Jones interactions

are truncated at rc = 0.9 nm, for the electrostatic interactions the Particle Mesh Ewald

method [128] is employed with a real-space cut-off rc = 0.9 nm. Simulations for dw < 8 nm

have a length of 1µs, trajectories at larger separations are obtained for at least 100 ns.

2.4. Dielectric profiles

We analyze the water and Decanol polarization contributions separately according to

mα(z) = mw
α (z) +mdec

α (z). (2.7)

The perpendicular polarization profile is calculated via integration of the charge density

ρ(z) according to m⊥(z) = −
∫ z
−Lz/2

ρ(z′)dz′, the parallel polarization profile is calculated

from the boundary polarization charge distribution [129], see Section 2.7 for details. Figure

2.2 (a) shows the water, Decanol and the total mass density profiles ρm(z) for dw = 1.5 nm

and demonstrates that water density oscillations (blue line) are absent as expected for

our relatively soft surfaces [125, 130, 131]. The total mass density (black line) is rather

uniform throughout the system. The vertical gray lines denote the Gibbs dividing surface

positions, zGDS, which thermodynamically define the surface positions and follow from

our definition of the water slab thickness as zGDS = ±dw/2. The charge density profile in

Fig. 2.2 (b) reveals that the main contribution comes from the Decanols (red line) which is

due to the pronounced orientation of the headgroups with respect to the surface normal.

The parallel dielectric data in Fig. 2.2 (c) demonstrate that the headgroups (red line)

significantly contribute and produce a maximum in the total dielectric profile (black line) of

ε‖ = 75 close to the interface position, slightly larger than the bulk value εbulk = 70.0±0.2

(denoted by a horizontal broken line, determined independently from bulk simulations and

consistent with literature values for SPC/E water [124, 132]).

In Figure 2.2 (d) we show 1 − ε−1
⊥ (z) which according to Eq. (2.6) is proportional to

the perpendicular polarization correlations c⊥(z) and thus can be decomposed into the
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Figure 2.2.: MD results for a water slab thickness dw = 1.5 nm. Profiles for (a)
mass density, (b) charge density, (c) parallel dielectric response, (d) inverse perpendicular
dielectric response and (e) perpendicular dielectric response are shown, contributions of
water and Decanol are indicated by blue and red lines, respectively. The horizontal broken
lines denote the bulk value of SPC/E water. The inset in (d) zooms into the slab central
region where bulk water behavior is obtained. The vertical gray lines indicate the Gibbs
dividing surface positions.
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2.4. Dielectric profiles

water and Decanol contributions. We see that headgroups (red line) contribute even more

than in the parallel direction and that 1 − ε−1
⊥ (z) > 1 inside the headgroup region. This

means that the perpendicular dielectric profile ε⊥(z), shown in Fig. 2.2 (e), exhibit poles

close to the surface and is negative in a finite region. We will further below see that

these divergencies are unproblematic for coarse-grained modeling applications. The inset

in Fig. 2.2 (d) demonstrates that 1 − ε−1
⊥ (z) in the slab center approaches the expected

bulk value 1 − 1/70 = 0.986 with high precision. Not surprisingly, the data for ε⊥(z) in

Fig. 2.2 (e) show significant numerical noise (error bars larger than figure height) but are

consistent with the expected bulk value εbulk = 70 (denoted by a horizontal broken line) in

the slab middle. As this shows, the inverse relation between c⊥(z) and ε⊥(z) in Eq. (2.6)

makes the estimation of the perpendicular dielectric profile in thin slabs numerically highly

demanding.

2.4.1. Self and collective polarizations

Using that the total polarization can be written as Mα =
∑

i pi,α, where pi is the dipole

moment of molecule i, we split the polarization variance Cα = Cself
α + Ccoll

α into self and

collective contributions defined as

Cself
α =

∑
i

〈
p2
i,α

〉
− 〈pi,α〉2 and (2.8)

Ccoll
α =

∑
i

∑
j 6=i
〈pi,αpj,α〉 − 〈pi,α〉 〈pj,α〉 . (2.9)

The parallel total variance C‖/(Adwε0kBT ) in Fig. 2.3 approaches the bulk value εbulk−
1 = 69 (solid line) already for dw > 2 nm, i.e., the parallel polarization fluctuations exhibit

bulk-like behavior even in thin slabs. In contrast, the perpendicular variance is far from the

bulk limit, and based on Eq. (2.6) is expected to approach the limit C⊥/(Adwε0kBT ) =

69 only at separations larger than hundreds of nanometers, reflecting that electrostatic

boundary effects have long-range consequences.

Interestingly, both self contributions, Cself
‖ and Cself

⊥ approach the value for an isolated

water molecule in the Langevin model εself
bulk − 1 = 19 for dw & 1 nm, see Section 2.8. This

shows that the single water response is weakly perturbed by correlation effects both in

parallel and perpendicular directions. In fact, the slow crossover of C⊥ is entirely due

to the collective contribution Ccoll
⊥ , which turns out to be negative for all separations

considered by us (red open diamonds in Fig. 2.3). This means that the perpendicular

water polarizations of neighboring water molecules are anti-correlated.
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Figure 2.3.: Self and collective contributions to the polarization variances. Total
(solid triangles) as well as self (open circles) and collective (open diamonds) polarization
variances as a function of water slab thickness dw. The solid horizontal line represents the
expected bulk limit Cα/(Adwε0kBT ) = 70− 1 = 69, the dashed horizontal line shows the
Langevin model prediction for an isolated water molecule Cself

α /(Adwε0kBT ) = 19.
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Figure 2.4.: Dielectric profiles at various water slab thicknesses (a) Parallel and
(b) inverse perpendicular dielectric profiles. The vertical broken lines indicate the corre-
sponding water slab thickness dw.
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2.4.2. Dielectric box model

Figure 2.4 shows the parallel and inverse perpendicular dielectric profiles for a few different

separations. At the smallest separations, ε‖(z) is enhanced in the slab center while ε−1
⊥ (z)

is negative over an extended range. To cast these features into a description suitable

for coarse-grained modeling and analytical approaches, we derive a simple dielectric box

model based on effective medium theory concepts [133].

Since in the parallel direction ∆E‖ is constant, we demand that an effective dielectric

box model reproduces the integral over the parallel displacement field,
∫ Lz/2
−Lz/2

dz∆D‖(z).

Assuming an effective dielectric constant εeff
‖ in a box of width deff , Eq. (2.2) leads to

deff
‖
(
εeff
‖ − 1

)
+ Lz =

∫ Lz/2

−Lz/2
ε‖(z)dz. (2.10)

In the perpendicular direction ∆D⊥ is constant, thus we demand the effective box model

to reproduce the integral over the electric field,
∫ Lz/2
−Lz/2

dz∆E⊥(z), which is nothing but

the electrostatic potential difference at the system boundaries. Using Eq. (2.3), we obtain

∫ Lz/2

−Lz/2
dz ε−1

⊥ (z) = deff
⊥

(
1

εeff
⊥
− 1

)
+ Lz. (2.11)

Obviously, Eqs. (2.10) and (2.11) depend on two unknowns each, the box width deff
α and

the effective dielectric constant εeff
α . In Figure 2.5 (a) we show deff

α − dw as a function of

the water slab thickness dw when assuming εeff
α = εbulk. For both components we observe

deff
α − dw > 0, meaning that water slabs at polar surfaces possess a dielectric interfacial

excess that we associate with contributions from polar orientable headgroups. For the

parallel component, the effective box width increases at small separations, indicating that

confined water becomes a more efficient parallel dielectric. In contrast, Leff
⊥ decreases for

small dw, thus the perpendicular dielectric efficiency of confined water decreases. The

shifts deff
α − dw saturate for large dw at deff

‖ − dw ≡ δ‖ = 0.4 nm and Leff
⊥ − dw ≡ δ⊥ =

0.7 nm, indicated by dashed lines in Fig. 2.5 (a). Using now for the effective box widths

the asymptotic results for large surface separation deff
α = dw + δα, Fig. 2.5 (b) shows the

resulting effective dielectric constants. εeff
‖ increases for small separations and reaches a

value of about εeff
‖ = 85 at the smallest separation. In contrast, εeff

⊥ drastically decreases

for dw < 1 nm and saturates at about εeff
⊥ = 10 at the smallest separation. We thus predict

that electrostatic interactions between surfaces, which are described by the perpendicular

dielectric component, will be strongly enhanced at small separations.
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Figure 2.5.: Dielectric shifts and effective dielectric constant for a box model. (a)
Shifts of the effective dielectric box widths deff

α −dw assuming effective dielectric constants
corresponding to the bulk value as defined by Eqs. (2.10) and (2.11). The horizontal
dashed lines denote the asymptotic shifts δα = deff

α − dw for large separation. (b) Effective
dielectric constants εeff

α when assuming effective box widths given by deff
α = dw + δα.

2.5. Conclusion

While we expect details of the dielectric profiles to depend on the surface stiffness and the

specific surface chemistry, preliminary simulation results for different surface types suggest

the decrease of the perpendicular dielectric component for small separations to be a rather

universal feature. Since sub-nanometer water layers are typical for strongly compressed

surfaces in technological and biological applications, our results have consequences for a

number of applications. In particular, we suggest that part of the deviations of experimen-

tally measured interactions between charged surfaces from standard Poisson-Boltzmann

predictions, that are typically ascribed to hydration interactions [73], might in fact be due

to a decreasing perpendicular dielectric constant at strong confinement.
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2.6. Supplemental material

2.6. Supplemental material

2.6.1. Simulations at prescribed chemical potential

For small separations dw < 3 nm, we adjust the number of water molecules in the NwALzT

ensemble, such that the water chemical potential equals the bulk value. The water chem-

ical potential and the resulting interaction pressure are therefore state functions of the

independent quantities, Π(Nw, A, Lz, T ) and µ(Nw, A, Lz, T ). The simulation pressure

can be measured directly in MD simulations, however precisely measuring the chemical

potential is challenging and discussed in detail in Appendix A.

2.6.2. Interaction pressure between the polar Decanol surfaces
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dw [nm]

100
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Π
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ar
]

0.5 1.0 2.0 5.0 8.0

−20
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Figure 2.6.: Interaction pressure between Decanol surfaces across water. Sim-
ulation data was obtained using thermodynamic extrapolation via Nw adjustment
(Eq. (A.12), squares) as well as via volume adjustment at larger separations (Eq. (A.17),
diamonds). The solid line denotes an exponential fit to the logarithmic data. In the inset
the data at larger separations is shown.

Soft hydrophilic surfaces, as used in our study, typically exhibit an exponentially de-

caying repulsive interaction across water [51, 53, 54, 86]. The hydration repulsion univer-

sally acts between sufficiently polar hydrated surfaces with a characteristic decay length

of a fraction of a nanometer [47, 53, 86]. Figure 2.6 shows the interaction pressure for

our simulation system as described in the main text, yielding a characteristic length of

λ = 0.86 Å(represented by the solid line in Fig. 2.6).
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2. Water dielectric effects in planar confinement

Figure 2.6 shows data for the NwALzT simulations used in the main text, where the

number of waters Nw is adjusted such that µ ≈ µ0 (full squares). At separations dw >

3 nm, the interaction pressure is zero within our measurement resolution of about 10 bars,

which we confirm by thermodynamic extrapolation via Lz-adjustment in the NwAΠT

ensemble (diamonds in Fig. 2.6)), where the pressure in normal direction is set to Π0 =

1 bar using semi-isotropic Berendsen pressure coupling [134].

2.7. Calculation of the parallel polarization density

To calculate the parallel polarization density, we introduce a virtual cut perpendicular to

the x-axis at an arbitrary position inside the simulation box. This cut splits some water

molecules as shown in Fig. 2.7, creating virtual charge densities ±P0(x, z) on both sides of

the cut, which corresponds to a surface charge density σ. In the y-direction, the system

is spatially invariant. Note that the cut leaves intact molecules that cross the periodic

boundaries of the simulation system, i.e., the virtual surface charge density is nonzero only

at the position of the cut.

Figure 2.7.: Schematic illustration of the calculation of the parallel polariza-
tion density. The volume V used for calculating the parallel polarization density in
Eq. (2.13) is shown in blue. On the left boundary, the volume has been chosen such that
water molecules are not split across the periodic boundary, whereas on the right boundary
molecules are cut. The central simulation box is denoted by a black rectangle.

The integral over the volume V (blue shaded region in Fig. 2.7), equals the projection

of the polarization density onto the surface normal n̂ of the cut,∫
P0(x, z)dx = −m(z) · n̂. (2.12)

Since the virtual cut is perpendicular to the x-axis, it follows that m(z) · n̂ = ±mx(z) and
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2.8. Langevin model for the water dipole

with Eq. (2.12), we find

mx(z) = ∓
∫
P0(x, z) dx, (2.13)

where the different signs refer to the two possible directions of the surface normal, thus

integrating P0(x, z) over the volume V on the different sides of the cut. To obtain my(z)

the same procedure is applied.

2.8. Langevin model for the water dipole

We consider water as an ideal dipole in an external field. Then the interaction energy of

a single dipole P in an electric field E is given as

W = −P ·E = −PEcos(ϑ). (2.14)

For a freely rotating dipole the probability distribution is given by the Boltzmann factor,

exp

(
− W

kBT

)
= exp

(
PE cosϑ

kBT

)
, (2.15)

which for a constant electric field in z-direction yields

〈Pz〉 = P 〈cosϑ〉 = P

∫ π
0 cosϑ ePE cosϑ/kBT sinϑ dϑ∫ π

0 ePE cosϑ/kBT sinϑ dϑ

= P

[
coth

(
PE

kBT

)
− kBT

PE

]
=: PL(P, T ), (2.16)

where we have defined the temperature-dependent Langevin function L. Expansion up to

the third order yields

L(x) = coth(x)− 1

x
=
x

3
− x3

45
+O(x5), (2.17)

where we used the abbreviation x = PE/kBT . For the dipole moment of the SPC/E

water model, P0 = 2.35 D = 0.49 eÅ, and assuming only moderate field strengths of about

E = 107 V/m, at 300 K the expansion is perfectly valid as x ≈ 0.019.

For linear dielectric response the polarization per volume m = 〈P〉 /v is proportional to

the applied field,

m = ε0 (ε− 1) E. (2.18)
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2. Water dielectric effects in planar confinement

Combining Eqs. (2.16) (2.17) and (2.18) we obtain for the SPC/E water model

ε = 1 +
P 2

3vb
wε0kT

= 19.65, (2.19)

with vb
w = V/N = 0.0304 nm3 being the bulk volume of a single water molecule.
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3. Landau–Ginzburg theory for

membrane–membrane interactions

Bibliographic information: The content of this chapter is in preparation to be submitted

to a peer-reviewed journal (Ref. [iv]) and builds upon prior research that was conducted

within this thesis (Refs. [ii] and [iii]).

3.1. Introduction

The hydration force denotes a strong short-range repulsive force that acts between polar

surfaces separated by a thin water layer (< 3 nm). Its first account goes back to I.

Langmuir in 1938 [57] and it also applies to some other polar solvents [135–137]. The

hydration force determines the behavior of many industrial and biological systems, such as

the stability of colloidal dispersions [75] and soap films [4, 138], the swelling of clays [139],

and the interactions of biological membranes [34] and macromolecules [56]. Pressure–

distance measurements in the late 1970s and ’80s on phospholipid membranes, which

constitute a typical model for biomembranes, showed that the hydration repulsion obeys

an approximately exponential decay with a characteristic length between 0.1 nm and 0.6

nm [52–55].

Later studies on phospholipid membranes [140–143] revealed that the decay lengths

agree with a wide class of interacting macromolecular systems in aqueous solution such

as DNA double helices, stiff polysaccharides, and proteins [56], however the repulsion

mechanisms still elude quantitative theoretical description [58]. Three fundamentally dif-

ferent mechanisms have been proposed: (i) repulsion due to the enforced release of water

molecules that are strongly bound to the membrane surface [36, 37], (ii) repulsion due to

the reduction in configurational entropy of membrane lipids [38, 39] and (iii) repulsion due

to the unfavorable overlap of ordering profiles of interfacial water layers [41].

A first attempt to rationalize the hydration repulsion based on water structuring charac-

terized in terms of suitably defined order parameter profiles has been proposed by Marčelja

and Radić in the 1970s [41]. The basic concept was further refined [42] and frequently

discussed in terms of the water molecules’ dipole orientation and its non-local dielectric

response function [144–146]. Whereas the theoretical models provide conceptual insight

and scaling laws for the proposed mechanisms, they are not analyzed quantitatively be-

cause of the dependence on molecular details and the presence of unknown parameters.

Moreover, the interactions based on water ordering in a Marčelja–Radić model consider
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3. Landau–Ginzburg theory for membrane–membrane interactions

the solvent contribution to the interaction only, which experimentally is not accessible due

to the presence of direct membrane–membrane interactions and hence necessitates sim-

ulations. For a quantitative description of the hydration repulsion between membranes

thus a rigorous atomistic modeling of all relevant degrees of freedom is necessary, which is

continuously improved since the early days of lipid molecular dynamics (MD) simulations

[147, 148]. Only recently we have developed a method to perform such simulations at

controlled water chemical potential µ [98], which is the experimentally relevant ensemble,

and which allows to quantitatively compare interaction pressures between MD simulations

and experiments [94, 149].

By performing simulations at bulk water chemical potential µb we study a model sys-

tem of Decanol (CH3(CH2)9OH) bilayers and the experimentally well studied system of

Dipalmitoylphosphatidylcholine (DPPC) bilayers in the ordered Lβ and disordered Lα

state. In this setup, the simulation pressure is entirely due to the interaction between the

surfaces and the water, thus different order parameters can be evaluated explicitly [105]

and be compared with the indirect, water-mediated interaction pressures. To this end we

first review the Marčelja–Radić result including a surface field [42], which is the relevant

boundary condition for repulsion [105]. We then obtain the free parameters for predict-

ing the interaction pressures from an analysis of the order parameter profiles and their

fluctuations. The Marčelja–Radić model has been criticized amongst others by Ninham

[20], since the order parameter is often associated with polarization, whereas it could also

be, e.g. , the water tetrahedrality accounting for the hydrogen bond network. Of all possi-

ble order parameters some yield attractive, some repulsive pressures. In Section 3.5.7 we

exemplarily analyze the repulsive pressure due to the antisymmetric octupole orientation

profile and the attractive pressure due to the symmetric quadrupole orientation profile

and find both to be negligible compared to the pressures from the polarization profiles.

Our observations reveal that a single order parameter cannot explain the repulsion alone;

for all considered order parameters the profiles agree with the prediction of the Marčelja–

Radić model. Choosing the polarization as order parameter, the remaining free parameter

in the Landau–Ginzburg model, which is the amplitude of the repulsive pressures, in bulk is

related to the dielectric permittivity. The water polarization density profiles m⊥ projected

onto the membrane normal and the polarization contributions in a multipole expansion

predict the correct decay length of the water-mediated repulsion and yield significant

pressures which are not additive. The total indirect pressures are about ten times larger

than expected from the contributions in the Landau–Ginzburg model. However, the shape

of the indirect pressures is well described by the Landau–Ginzburg theory; we conclude

that this difference might arise due to the fact that in a one-dimensional mean-field analysis

the lateral correlations are neglected as well as the discrete nature of the surface [150, 151].
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3.2. Landau–Ginzburg free energy

Moreover, the surface polarity profile (which here enters via a delta-shaped surface field)

contributes significantly to the resulting pressure [152].

3.2. Landau–Ginzburg free energy

In their pioneering work, Marčelja and Radić predicted for separations that are larger

than the order parameter correlation length an exponential decay of the hydration re-

pulsion based on a continuum order-parameter accounting for the structural properties

of water confined between the membrane surfaces. The solvent perturbation due to the

lipid head groups is described within a general scalar mean-field theory and the water

structure is expressed in terms of a spatially-dependent order parameter; the effects of the

membranes enter via surface boundary conditions. In this work we focus on the perpen-

dicular polarization density m⊥ and its contributions in a multipole expansion as order

parameters. Due to rotational symmetry around the membrane normal and translational

invariance in the direction parallel to the membrane, the perpendicular component is the

only non-vanishing contribution of the polarization in a one-dimensional mean-field model.

We expand the free energy of the water slab in terms of the scalar order parameter ac-

cording to Landau theory [22]. Considering only the lowest-order terms [41] and including

the surface effects via surface fields h± that couple linearly to the order parameter m⊥ at

the interfaces located at z = d/2 and z = −d/2, the free energy F per area A and reduced

temperature β = 1/kBT , as was first introduced by Cevc et al. [42], can be written as

βF [η(·)]
A

=

∫ d/2

−d/2

[
am2
⊥(z) + b (∇m⊥(z))2

]
dz + h+m⊥(d/2) + h−m⊥(−d/2). (3.1)

Here, a and b are positive phenomenological parameters, which measure the stiffness of

the order parameter and the spatial range of interactions, respectively. In Section 3.5.4

we show that Eq. (3.1) is obtained from a general expansion of the free energy density

including a term that couples quadratically to the surface field. Podgornik and Žekš [153]

showed that the expression of a constant surface field as proposed by Cevc et al. [42],

corresponding to Eq. (3.1), can then be obtained as limiting case when the stiffness of the

surface coupling dominates over the water stiffness a

The order parameter profiles can be derived from Eq. (3.1) by variational minimization,
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3. Landau–Ginzburg theory for membrane–membrane interactions

yielding

am⊥(z)− b∇2m⊥(z) = 0, (3.2)

h+ + 2b∇m⊥(d/2) = 0, (3.3)

h− − 2b∇m⊥(−d/2) = 0. (3.4)

Near the membrane surface, water molecules have a preferred orientation due to interac-

tions with the membrane head groups [154]. In this case the order parameter profile is

an odd function with respect to the symmetry plane in the middle of the water slab at

z = 0, and for symmetric surfaces we obtain m⊥(−z) = −m⊥(z) and h+ = −h− ≡ h. Us-

ing m⊥(±d/2) = ±m⊥0, the antisymmetric solution of the linear second-order differential

equation (3.2) is given by

m⊥(z) = m⊥0
sinh (z/λ)

sinh (d/2λ)
, (3.5)

where we have defined the correlation length λ = (b/a)1/2. Combining Eqs. (3.3) to (3.5)

we obtain the polarization at the surface,

m⊥0 = − h

2a

1

λ
tanh(d/2λ). (3.6)

The free energy Eq. (3.1) then follows as [42]

βF
A

= − h2

2aλ
tanh (d/2λ) , (3.7)

from which the normal pressure is obtained via derivative with respect to the separation,

βΠind = −∂βF/A
∂d

=

(
h

a

)2 a

4λ cosh2 (d/2λ)
≈ βΠ?

inde−d/λ. (3.8)

The last result is valid for large distances d� λ and shows that the pressure is repulsive

and decays exponentially with an amplitude βΠ?
ind = (h/a)2 a/λ. The subscript ”ind” in

Eq. (3.8) denotes the fact that the free energy Eq. (3.1) does not include direct, membrane–

membrane interactions, and thus only refers to the indirect, water–mediated, part.

3.2.1. Field theory

The phenomenological parameters in the Landau–Ginzburg model Eq. (3.1) are related to

the polarization fluctuations of water. To obtain explicit expressions for these parameters
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3.2. Landau–Ginzburg free energy

we introduce the Landau–Ginzburg Hamiltonian of bulk water,

βH[m] =

∫ [
a (m(r))2 + b(∇ ·m(r))2

]
dr, (3.9)

with m the vectorial polarization density at position r. For simplicity we consider the

α-component of the polarization only in the following, with α ∈ {x, y, z}. The Fourier

transform m̃α(q) =
∫
e−iq·rmα(r) dr of the α-component of Eq. (3.9) yields

βHα[m̃α] =

∫
dq

(2π)3
m̃α(−q)

(
a+ bq2

)
m̃α(q). (3.10)

The correlation function 〈mα(r)mα(r′)〉 can be obtained from the partition function in

path integral representation,

Z [h] =

∫
Dmα exp

{
−βH [mα] +

∫
drh(r)mα(r)

}
, (3.11)

by functional derivatives,

δ

δh(r)

δ

δh(r′)
logZ[h]

∣∣∣∣∣
h=0

=
〈
mα(r)mα(r′)

〉
− 〈mα(r)〉

〈
mα(r′)

〉
≡ G(r, r′). (3.12)

To calculate the functional derivative in Eq. (3.12), we introduce the kernel

G(q) ≡ 1

2 (a+ bq2)
, (3.13)

to obtain

Z [h] =

∫
Dm̃α exp

{
−
∫

dq

(2π)3
m̃α(−q)

1

2G(q)
m̃α(q) +

∫
dq

(2π)3
h̃(−q)m̃α(q)

}
= Z[h = 0] exp

{∫
dq

(2π)3
h̃(−q)

1

2
G(q)h̃(q)

}
. (3.14)

Using equation Eq. (3.12) we obtain for the correlation

G(r, r′) =

∫
dq

(2π)3

1

2 (a+ bq2)
e−iq·(r−r

′), (3.15)

where we have back-transformed to real space. Making use of the rotational symmetry

we perform the integral in spherical coordinates, and use 〈mα(0)〉 〈mα(r)〉 = 〈mα(0)〉2 to
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3. Landau–Ginzburg theory for membrane–membrane interactions

obtain

G(r) =

∫
dq

(2π)3

1

2 (a+ bq2)
e−iq·r =

1

(2π)2

∫ ∞
0

dq
sin(qr)

r

q

(a+ bq2)
. (3.16)

Using residual calculus we can further evaluate this integral,

G(r) =
1

8π

exp−r/λ

br
, (3.17)

where we have used λ =
√
b/a. Equation (3.17) reveals a monotonic decay of the correla-

tion function. However, due to the finite size of a water molecule it is unreasonable to go

to wavelengths 2π/q smaller than the molecular size. We thus introduce a cutoff qmax,

G(r) =
1

(2π)2

∫ qmax

0
dq

sin(qr)

r

q

a (1 + λ2q2)
, (3.18)

where qmax is an additional free parameter. We discuss the bulk water correlation function

in Section 3.5.6 and only by introducing the cutoff oscillations are introduced to Eq. (3.18),

which are also present in the bulk water correlation function. We obtain in Section 3.5.6

a value of 2π/qmax ≈ 0.2 nm, roughly corresponding to the size of a water molecule.

3.2.2. Relation to the dielectric permittivity in bulk

A direct relation to the bulk dielectric permittivity can be obtained by performing the

volume integral

Cα =

∫
drdr′

〈
mα(r)mα(r′)

〉
− 〈mα(r)〉

〈
mα(r′)

〉
=

∫
drG(r)V = V

∫
dr4πr2G(r)

= V

∫
dr

r

2b
e−r/λ = V

λ2

2b
=
V

2a
, (3.19)

where we have used Eq. (3.17) in the last line.

Using the total polarization of the system, M =
∫

dr m(r), Eq. (3.19) can be identified

with the dielectric constant of an isotropic system [155],

εbulk = 1 +
〈M ·M〉
3V ε0kBT

= 1 +
Cα

V ε0kBT
. (3.20)

Combining Eqs. (3.19) and (3.20) we obtain a = [2(εbulk − 1)ε0kBT ]−1 ≈ 5 nm/e2, where

we used εbulk = 70 for SPC/E water at 300 K. Note, however, that Eq. (3.20) only holds in
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3.3. Results

bulk, whereas the boundary conditions in confinement lead to different fluctuation formu-

lae and the dielectric constant becomes both anisotropic and depending on the confinement

[44, 156]. Also note that the above argument holds only if an isotropic, three-dimensional

system is considered.

3.2.3. Elimination of the free parameters

We perform a step-wise elimination of the parameters in Eq. (3.1): First, we analyze the

polarization profiles m⊥(z) and their contributions from the multipole expansion for differ-

ent separations d by fitting Eq. (3.5) to the simulation data, where we enforce λ =
√

(b/a)

for each system to be independent of d. From these fits, the value at the surface m⊥ 0 is

obtained, thus by fitting Eq. (3.6) we obtain the ratio h/a. Then, a = V/2C⊥ following

from Eq. (3.19) gives the last free parameter (which is proportional to the amplitude of

the pressure, see Eq. (3.8)) and allows quantitative comparison of the pressure predicted

by Eq. (3.8) with the simulation data Πind.

Before turning to the polarization profiles, we discuss the definition of the separation d

in the following section. Then we show that our simulations are capable of reproducing

experimental pressure–distance curves and decompose the total interaction pressure Πtot =

Πdir + Πind into direct membrane–membrane and indirect, water-mediated contributions.

3.3. Results

3.3.1. Definition of the separation

The proper definition of the membrane separation is crucial but not unique. We define

the surface separation d for the analysis of the order parameter profiles based on the

structural separation ds, which is defined as the mean distance between the oxygen atoms

of the opposing layers for Decanol and the mean distance between the phosphorus atoms

of the opposing DPPC layers, respectively (see Fig. 3.1 (c)). From ds we subtract the

equilibrium separation at zero water content, d = ds − d0
s , see Fig. 3.1 (b). We obtain

values d0
s = 0.27 nm for the Decanol system and d0

s ≈ 0.46 nm for the phosphorus atoms

in DPPC.

This definition of the effective surface separation describes the profiles and their surface

values better when compared with Eqs. (3.5) and (3.6) than the water slab thickness dw,

defined in analogy to experiments [53] as dw = Nwv
b
w/A, with the bulk molecular water

volume vb
w = 0.0304 nm3 and Nw the number of water molecules confined between the sur-

faces of lateral area A. Note that though this is the unambiguous thermodynamic surface

position, in the Landau–Ginzburg description d is given by the position where the surface
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3. Landau–Ginzburg theory for membrane–membrane interactions
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Figure 3.1.: Definition of the separation d. (a) Mass density ρm of water (blue line) and
the headgroup (green line) for the Decanol system at a water slab thickness dw = 1.5 nm.
Horizontal blue lines indicate the Gibbs Dividing surface positions, which define dw, the
light blue shaded area denotes the distance d, which follows from the difference between
the headgroup separation ds and the value at zero water content Nw = 0, shown in (b).
(c) Chemical structure of a Decanol a molecule and a DPPC lipid molecule.
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coupling field h± enters the boundary condition in Eqs. (3.3) and (3.4). This boundary

condition adds ambiguity to the definition of the surface separation. A comparison of both

definitions is given in Section 3.5.2

3.3.2. Interaction Pressures

We now turn to the analysis of the interaction pressures. In Figure 3.3 (a) we show the

interaction pressure for DPPC in the osmotic stress ensemble where the pressure is fixed

to its bulk value, Π0 = 1 bar. In our simulations we measure the chemical potential µ(Nw)

and analogous to experiments convert this to equivalent osmotic pressures,

Π(Nw) = Π0 +
µb − µ
vb

w

, (3.21)

where vb
w = 0.0304 nm denotes the simulated molecular volume of water in bulk at 1 bar

pressure. Equation (3.21) follows from the formally exact thermodynamic Gibbs–Duhem

equation as shown in Appendix A.

Comparison of the simulations (triangles in Fig. 3.2) with experimental data in gel and

fluid states of the membranes taken from Refs. [7, 88, 140, 157, 158] shows excellent

agreement among experimental and simulated pressure curves. The experimental decay

length in the gel state is λ̃gel
Π (exp) = 0.21± 0.01 nm, in the fluid state we obtain λ̃fluid

Π (exp) =

0.38±0.02 nm. The tilde indicates that the decay lengths are measured with respect to the

water slab thickness dw, which we plot in Fig. 3.3 (a) in order to compare our simulations

to experimental data. Our simulations yield excellent agreement with λ̃gel
Π = 0.22 nm and

λ̃fluid
Π = 0.36 nm. In Figure 3.2 we also include simulation results for Decanol bilayers as

black circles, which are performed at constant box volume V = ALz and the chemical

potential is measured at a fixed value of Lz for different water numbers Nw, which allows

extrapolating the pressures linearly from Π(µ) to Π(µb). Also for this system we observe

an exponential decay with a length of λ̃Decanol
Π = 0.08 nm, indicated by the black line in

Fig. 3.3 (a).

Using MD simulations at controlled water chemical potential via the Thermodynamic

Extrapolation Method (TEM) to model hydrated bilayers in atomistic detail allows not

only to quantitatively compare experimental and simulated interaction pressures but also

to gain further insights into the interaction mechanisms (see Refs. [94, 98] and Ap-

pendix A). In the following analysis we perform simulations of DPPC in the hydrostatic

ensemble, i.e., at bulk water chemical potential µb using the pressures extrapolated via

Eq. (3.21), which allows to split the total interaction pressure Πtot measured in this en-

semble into direct membrane–membrane interactions Πdir and an indirect, water mediated

part Πind according to Πtot = Πdir + Πind. For the simulations of Decanol the water num-
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Figure 3.2.: Interaction pressures between DPPC membranes and Decanol bilay-
ers as a function of the water slab thickness dw. Experimental and simulation data
for DPPC in the Lα and Lβ phase, with exponential fits yielding λ̃fluid

Π = 0.36 nm (blue

line) and λ̃gel
Π = 0.22 nm (orange line). Simulation data for the Decanol bilayers are shown

as black circles with an exponential decay λ̃Decanol
Π = 0.08 nm. For comparison with exper-

iments we show the pressure as a function of the water slab thickness dw, denoted by the
tilde in the decay lengths. Experimental data are taken from Refs. [7, 88, 140, 157, 158].
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ber Nw correspondingly is adjusted such that the chemical potential equals the bulk value,

µ = µb, which allows to perform the latter analysis in this case.
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Figure 3.3.: Interaction pressures decomposition. (a) Decomposition of the total
pressure Πtot (circles) for the simulated systems into negative direct, membrane-membrane
interactions −Πdir(diamonds) and indirect, water mediated contributions Πind (squares).
(b) Indirect pressures and fits to the Landau–Ginzburg pressure Eq. (3.8). The corre-
sponding decay lengths λΠind

are given in Table 3.1.

The pressure decomposition in Fig. 3.3 (a) shows that for all systems the direct membrane–

membrane interaction is strongly attractive, whereas the water-mediated forces are repul-

sive and slightly overcompensate the direct attraction, giving rise to the observed exponen-

tial decay of the total interaction. The attractive behavior between the surfaces directly

rules out the membrane–membrane interactions as explanation for the hydration repulsion

[98]. The near-cancellation of the two nearly exponential contributions at larger separa-

tions has been discussed recently [94] and is expected from electrostatic considerations:

The direct attraction is mainly electrostatic in nature [98] and due to the electrostatic

interaction of the polar headgroups across vacuum. The polarization of water reduces this

energy to about 1/ε ≈ 0.01 of its value in vacuum, thus this simple electrostatic consid-

eration, where εbulk = 70 independent of the confinement is assumed, already shows that

the two contributions compensate to a large degree; yet the electrostatic interactions alone

result in attraction according to this viewpoint.

The indirect pressures are shown in Fig. 3.3 (b) on a logarithmic scale and indeed show

the shape predicted by the Landau–Ginzburg theory, Eq. (3.8), which is shown as solid

lines in Fig. 3.3 (b). The resulting values λΠind
from fits to the indirect pressures in Fig. 3.3

(b) are given in Table 3.1. The amplitudes Π?
ind obtained are about 4 kbar for Decanol

and 9 and 12 kbar for DPPC in the fluid and gel phase, respectively and compared to the

results from analysis of the polarization in Table 3.3.
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Decanol DPPC Lα DPPC Lβ
λΠind

[nm] 0.11 0.22 0.21

λm⊥ [nm] 0.14 0.28 0.25

λ
m

(1)
⊥

[nm] 0.13 0.27 0.24

λ
m

(2)
⊥

[nm] 0.14 0.25 0.21

Table 3.1.: Decay lengths of the indirect pressure. The values λΠind
are obtained

from fitting Eq. (3.8) to the data in Fig. 3.3 (b), and λm⊥from the polarization, λ
m

(1)
⊥

from

its dipole contribution λ
m

(2)
⊥

from the quadrupole contribution, shown in Fig. 3.4 via fits

to Eq. (3.5).

3.3.3. Polarization profiles

We identify the membrane normal with the z-axis, ⊥= z, and expand the perpendicular

polarization density in terms of multipoles,

m⊥(z) =m
(1)
⊥ (z) +m

(2)
⊥ (z) +m

(3)
⊥ (z) + . . .

≡ 1

A

∫
dxdy

[
pz(x, y, z)−

1

2

d

dz
qzz (x, y, z) +

1

6

d2

dz2
ozzz (x, y, z) + . . .

]
, (3.22)

which comprises contributions to the laterally averaged perpendicular polarization m
(1)
⊥

from the dipole moment per volume pz = Pz/V , m
(2)
⊥ from the quadrupole moment

per volume qzz = Qzz/V , m
(3)
⊥ from the octupole moment per volume ozzz = Ozzz/V ,

and contributions from all higher moments. We have also employed the lateral average

m⊥(z) = 1/A
∫

dxdym⊥(x, y, z) with A the lateral area of the simulation box. For water,

we calculate the dipole moment Pi =
∑

l rilql where the index l runs over the water hy-

drogens with charge ql at position rl, measured with respect to the position of the oxygen

atom of the considered water molecule, which is an arbitrarily chosen reference coordinate.

Correspondingly, the quadrupole tensor can be defined as Qij =
∑

l qlrilrjl and the oc-

tupole tensor as Oijk =
∑

l qlrilrjlrkl . To obtain the perpendicular component m⊥ we set

i, j, k = z. The bulk quadrupole term Qbulk = 1.411 ·10−3 e nm2, which depends on the ar-

bitrarily chosen reference coordinate and has been determined independently [105, 129], is

nonzero. However, order parameters describe the differences to bulk and we thus subtract

Qbulk whenever we discuss values of q⊥ in the following.

We limit our analysis to the polarization profiles and their contributions up to the

quadrupole moment as higher order terms cannot be evaluated sufficiently from our simu-

lations due to statistical noise in the derivatives appearing in Eq. (3.22), see Section 3.5.5.

In Figure 3.4 we show the polarization profiles for the three systems considered in this work

at different separations d. All profiles agree excellently with the functional dependence
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Figure 3.4.: Polarization density profiles. (a)-(c) Decanol bilayers, (d)-(e) DPPC in the disordered Lα phase and (g)-(h)

DPPC in the ordered Lβ phase. First column shows the polarization m⊥, second column the dipolar contribution m
(1)
⊥ and

third column the quadrupole contribution m
(2)
⊥ . The dashed vertical lines indicate the surface position at ±d/2, solid lines are

fits according to Eq. (3.5) with the parameters λ summarized in Table 3.1 and the surface value m⊥ 0 shown in Fig. 3.6. The
corresponding values of d are given in the legends.
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3. Landau–Ginzburg theory for membrane–membrane interactions

expected from Eq. (3.5). Figures 3.4 (a)-(c) show the profiles for the Decanol bilayer

system. Strikingly, one observes a near-cancellation of the dipole term in (b) with the

quadrupole term in (c), leading to relatively small values of the polarization in (a) and

which is dominated by the quadrupolar term. This picture is very different for the lipids

shown in Figs. 3.4 (d)-(i), where the polarization m⊥ and the dipole contribution m
(1)
⊥ are

very similar. In this case one observes the quadrupole contribution in Figs. 3.4 (f) and (i)

to contribute only about 10% to the polarization m⊥.

P

a b

P0

0
Qzz

z c

P0

Qzz
Qzz

Qzz

P0

Qzz

Qzz

Figure 3.5.: Illustration of the water orientation at an interface. (a) Maximal
dipole contribution P0 in z-direction. In this case P0 ‖ Qzz . (b) The water dipole moment
is perpendicular to the surface, thus Pz = 0, but the zz -component of the quadrupole Qzz

is larger than in (a). (c) Configurations with maximal quadrupole contribution Qzz in
z-direction. In this case the z-component of the dipole is ≈ 1/3P0.

This qualitatively different behavior suggests a different water orientation at the inter-

face, as illustrated in Fig. 3.5: If the perpendicular electric field due to the headgroups is

very strong, the water molecules orient with their dipole moment parallel to the membrane

normal (see Fig. 3.5 (a)). Using the SPC/E dipole moment P0 = 4.893 · 10−2 e nm, full

orientation corresponds to m
(1)
⊥ = P0/vw = 1.61 e/nm2 and the zz -component quadrupole

moment in this case is Qzz = 2.8·10−3 e nm2. Contrary, if lateral electric fields are (locally)

larger than the perpendicular one, the water dipole preferably orients in-plane with the

surface, Fig. 3.5 (b). Such a situation might arise due to the lipid charge distribution and

the hydrogen bond network. An intermediate situation is shown in Fig. 3.5 (c), where the

dipole moment in z-direction is about 1/3P0, but the quadrupole moment is maximal with

Qzz = 7 · 10−3 e nm2 as follows from geometric calculation using the HOH-angle of SPC/E

water of 109.47◦. Corresponding values for q⊥ = Qzz/vw are 0.23 e/nm for the orientation

in Fig. 3.5 (c), and q⊥ = 0.18 e/nm for (b), which can be compared to the profiles q⊥(z)

shown in Section 3.5.7. Considering the surface values m
(1)
⊥ in Fig. 3.4 (e) and (h) the

configuration shown on the right of Fig. 3.5 (c) well describes the dipole orientation at

DPPC membranes as m
(1)
⊥ /3 ≈ 0.54 e/nm2. For Decanol the values of the quadrupole con-

tribution m
(2)
⊥ are very similar to the DPPC membranes, but the dipole contribution m

(1)
⊥

is smaller and has the opposite sign; whereas for the phospholipids the dipole orientation
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3.3. Results

clearly overrules the quadrupole contribution, the opposite is the case for Decanol. This

can only be explained by a linear combination of different configurations, some of which

are exemplary shown in Fig. 3.5.

In Figure 3.6 we show the surface values m⊥ 0 for the three different systems. The

polarization density for DPPC at the interface is well described by Eq. (3.6), indicated

by solid lines in Fig. 3.6, revealing that the field h is the physically relevant boundary

condition, as has been observed in prior studies [105]. The same observation applies for

the contributions to the polarization from the dipole and quadrupole moments shown in

Fig. 3.6 (b) and (c). For the Decanol system a more complex picture emerges, as at the

surface the water dipoles point in the opposite direction compared to the DPPC lipid

system, see Fig. 3.4 (b) and Fig. 3.6 (b). This is in line with the fact that the partial

charge distribution of the simulation model employed for Decanol corresponds to a surface

dipole which is pointing inwards the membrane; correspondingly, the dipole contribution

m
(1)
⊥ for Decanol (green data in Fig. 3.6 (b)) is negative. In Figure 3.6 (c) one observes that

for Decanol the quadrupole contribution is larger than for DPPC. However, the surface

value of the polarization shown in Fig. 3.6 (a) for Decanol is small, as expected from the

near-cancellation of the dipole and quadrupole contributions, see 3.5.5. At small distances

the surface value for DPPC in Fig. 3.6 (a) deviates from the profile predicted by Eq. (3.6).

Via the fits to Eq. (3.6) presented in Fig. 3.6 we now have determined the prefactors

h/a in Eq. (3.8), which are given for the polarization and its contributions in Table 3.2.

We next turn to the analysis of the stiffness a, which is the only remaining free parameter,

using Eq. (3.19). We have recently shown that the perpendicular polarization fluctuations

in confinement differ drastically from bulk and in fact depend strongly on the confinement

[156]. To estimate the free parameter according to Eq. (3.19), we compute a = Adw/(2C⊥),

where we have used the bulk water volume V = Adw for the normalization. Note that the

integrals C⊥ over m⊥ and C
(1)
⊥ over m

(1)
⊥ are exactly equal,

M⊥ = A

d/2∫
−d/2

m⊥(z)dz = A

d/2∫
−d/2

∂

∂z
(zm⊥(z)) dz

= A

zm(z)

∣∣∣∣d/2
−d/2

+

d/2∫
−d/2

zρ(z)dz

 = P⊥ = M
(1)
⊥ , (3.23)

where the surface values at ±d/2 exactly cancel and the second term is the definition of

the dipole moment along the z-axis with ρ the charge density.

The modification of the perpendicular fluctuations is a collective effect of water in con-
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Figure 3.6.: Polarization order parameter at the interface. The values m⊥0 are
obtained from the fits of the polarization profiles, Fig. 3.4 to Eq. (3.5). (a) Polarization

m⊥ 0, (b) dipole contribution m
(1)
⊥ 0 and (c) quadrupole contribution m

(1)
⊥ 0. Solid lines

denote fits of the amplitude h/a in Eq. (3.6) to the simulation data, with the corresponding
correlation lengths λ taken from the fits in Fig. 3.4 (see Table 3.1).
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Figure 3.7.: Free parameter for the pressure amplitude obtained from polariza-
tion fluctuations. (a) Polarization fluctuations converted using Eq. (3.19) and the bulk
water volume V = Adw. The horizontal dashed line indicates the bulk value a ≈ 5 nm/e2.
(b) Stiffness for the quadrupole contribution to the polarization from the surface value of
the quadrupole density, Eq. (3.24).

Decanol DPPC Lα DPPC Lβ
h/a [e/nm] 0.005 0.136 0.165

h(1)/a(1) [e/nm] 0.013 0.114 0.143

h(2)/a(2) [e/nm] 0.020 0.018 0.018

a [nm/e2] 212.5 19.5 28.2

a(2) [nm/e2] 66.0 92.5 107.5

Table 3.2.: Fitting parameters for the surface field and stiffness parameters. The
corresponding values have been obtained from the fits in Fig. 3.6 and from the distance-
averaged values for a obtained from the data presented in Fig. 3.7.

finement and they do not converge to their bulk value even at the largest separations

accessible in atomistic simulations of about 25 nm [156]. Figure 3.7 (a) shows the result-

ing values of a. The obtained distance-dependent values a(d) from an analysis of the

fluctuations in confinement are about four (for DPPC in the fluid Lα phase) up to fifty

times larger (for Decanol) than in bulk, where a ≈ 5 nm/e2, obtained from the bulk dielec-

tric constant via Eqs. (3.19) and (3.20) and indicated by the dashed black line in Fig. 3.7

(a). To obtain estimates for the indirect hydration pressure via Eq. (3.8) we take the mean

value of a for the different separations, which are given in Table 3.2.

The stiffness a(2) for the quadrupole contribution follows from Eq. (3.19) as the surface

value of the quadrupole density,

C
(2)
⊥ =

〈∫
dr∇q⊥(r)

∫
dr′∇q⊥(r′)

〉
= 2A2q2

⊥ 0, (3.24)
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3. Landau–Ginzburg theory for membrane–membrane interactions

Decanol DPPC Lα DPPC Lβ
Π?

ind [kbar] 4 9 12

Π?m
ind [kbar] 0.15 0.11 0.39

Π?m(1)

ind [kbar] 0.02 0.20 0.57

Π?m(2)

ind [kbar] 0.05 0.02 0.04

Table 3.3.: Amplitudes of the indirect pressures. The amplitudes Π?
ind are obtained

from the fits in Fig. 3.3 (b) and estimated values from analysis of the polarization density

Π?m
ind and its contributions from the dipole Π?m(1)

ind and the quadrupole Π?m(2)

ind , for which
the parameter a is averaged over the different separations.

where we have used Gauß’ law which also directly cancels the expectation value
〈∫

dr∇q⊥(r)
〉

in Eq. (3.19) for symmetric order parameters. The corresponding values a(2)(d) = V/2C
(2)
⊥ (d)

are shown in Fig. 3.7 (c), where we again used the bulk water volume V = Adw and the

average over the separations is given in Table 3.2.

Combining the values (h/a) and a which are summarized in Table 3.2 with the decay

lengths that follow from the polarization profiles, we can now estimate the amplitudes

that the different terms of Eq. (3.22) contribute as

Π?
ind = Πind(d = 0) = kBTa

(
h

a

)2 1

λ2
(3.25)

and which we summarize in Table 3.3 together with the value obtained from fitting the

simulation data in Fig. 3.3 (b). The striking difference in the dipole and quadrupole

contributions between Decanol and DPPC also manifests in the pressure amplitudes: for

Decanol the pressure is dominated by the quadrupole term Πm(2)

ind , with a nearly negligible

contribution due to the dipole term Πm(1)

ind . The pressure due to the polarization Πm
ind is

slightly larger than the sum of the pressures due to the dipole and quadrupole terms.

This is completely opposite for the DPPC systems, where the highest pressure is due

to the dipole orientation, Πm(1)

ind , and the values Πm(2)

ind are rather small. The pressures

Πm
ind 6= Πm(1)

ind + Πm(1)

ind are non-additive, although the polarization is additive in Eq. (3.22)!

The elimination of all free parameters now allows to quantitatively compare the Landau–

Ginzburg pressure in Eq. (3.8) with the indirect pressures Πind obtained from the simula-

tions in Fig. 3.8. As observed in Table 3.3 our analysis reveals a multitude of contributions

to the pressure. For the Decanol system (green data in Fig. 3.8) the polarization pressure

Πm
ind (dashed green line) is about five (at smallest separations) up to ten (at larger sepa-

rations) percent of Πind. The pressures for the DPPC membranes are very similar in the

liquid and gel phase and our analysis identifies the dipole contribution Πm(1)

ind (dash-dotted

blue and orange lines in Fig. 3.8) as largest pressure contribution, however for DPPC the
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Figure 3.8.: Indirect interaction pressures and Landau–Ginzburg prediction
without free parameters. Dashed lines show the pressure following from the polar-
ization, Πm

ind, dash-dotted lines the corresponding pressures if only the dipole term is con-

sidered, Πm(1)

ind , and dotted lines the pressure from the quadrupole term, Πm(2)

ind . Distance-
dependent values for a and a(2) are directly taken from Fig. 3.7 (a) and (c).

polarization pressures Πm
ind (dashed blue and orange lines) also are significant with about

50% of Πm(1)

ind . Contrary, the quadrupole polarization Πm(2)

ind , shown as dotted orange and

blue lines in Fig. 3.8, is about an order of magnitude smaller. In total the different contri-

butions from analysis of the polarization density in the Landau Ginzburg model account

for about ten percent of the indirect pressure (data shown as squares in Fig. 3.8).

3.4. Conclusion

Relating the phenomenological parameter in the Landau–Ginzburg free energy to the order

parameter fluctuations we have determined all free parameters of this model, which allows

to quantitatively compare the pressures due to water polarization with the simulation

data of the water-mediated, indirect pressures. We observe a striking difference between

Decanol surfaces and DPPC bilayers in the pressure contributions due to different order

parameters, which reveals that a single order parameter, such as the polarization or the

components of a multipole expansion of the latter, is not sufficient to model the repulsive

hydration force. We find that rather a multitude of the different contributions has to be

considered.

The fact that the repulsion in the Marčelja–Radić model under the surface field bound-
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3. Landau–Ginzburg theory for membrane–membrane interactions

ary condition is only obtained for antisymmetric order parameters crucially limits the pos-

sible candidates. Further candidates are the antisymmetric terms of the water multipole

itself, i.e., the octupole orientation, fifth moment, seventh moment and so on. However we

find that already the octupole orientation contributes negligibly to the repulsion (shown

in Section 3.5.7). Thus we conclude that the amplification of the repulsion is due to effects

that are neglected in a mean-field analysis, like lateral correlations due to (local) parallel

polarization of the headgroups. Further contributions could stem from the finite width of

the surface coupling field [152, 159] and lateral inhomogeneities [150, 151], of which both

essentially modify the prefactor of the pressure. However, insights to the molecular nature

of the hydration force follow from the analysis of the dipolar and quadrupolar contribu-

tions, and reveal a significant influence of the surface chemistry via the local field and the

tendency to form hydrogen bonds [149]; our results suggests that the water orientation

indeed gives rise to a significant repulsive pressure between lipid membranes.

3.5. Supplemental material

3.5.1. Simulation details

All simulations are performed using the GROMACS package version 5.0 [126] for Decanol

and version 4.6 [160] for DPPC with periodic boundary conditions and analyzed using

the MDAnalysis package [127]. All simulations are performed with periodic boundary

conditions and a time step of 2 fs. Lennard–Jones interactions are truncated at rc =

0.9 nm, for the electrostatic interactions the Particle Mesh Ewald method [128] is employed

with a real-space cut-off rc = 0.9 nm.

Decanol bilayer

For the Decanol bilayer we simulate a slab between two planar surfaces consisting of

Nl = 100 polar Decanol CH3(CH2)9OH molecules filled with Nw = 170 up to 1 160 SPC/E

water molecules [91] in between. Force-field parameters are based on GROMOS53A6 [92],

Decanol hydroxyl groups are represented in atomistic detail, CH2 and CH3 groups as united

atoms. The repulsion between headgroup oxygens is increased to reduce intra-surface

hydrogen bonding [125]. To avoid slow reorientation events, we restrain all Decanols

on the second CH2 group counting from the OH headgroup with force constants kx =

ky = 500 kJ/(mol nm2) and kz = 10 kJ/(mol nm2) and the terminal CH3 group with kx =

ky = 5 kJ/(mol nm2) on a centered rectangular lattice with a lateral area per headgroup of

A/Nl = 0.234 nm2. This corresponds to the tensionless state in vacuum with a Decanol tilt

angle of 30◦. Simulations are performed in the NwALzT ensemble at constant volume V =
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ALz and the number of water molecules Nw is adjusted via thermodynamic extrapolation

to yield a constant chemical potential [98]. The extrapolation thus employs at least three

sets of simulations at fixed Lz with different numbers Nw. We use 18 simulations along

the free energy perturbation reaction coordinate to obtain the chemical potential µ(Nw)

using the MBAR method [161]. Each individual trajectory has a length of 100 ns, thus

the total sampling time per data point in the pressure–distance curve for Decanol is about

6 µs.

Simulation of DPPC in the gel and fluid phase

For DPPC simulations we use the Berger lipid force field [93, 162, 163] and the SPC/E

water model [91]. The assisted freezing method [164] is used for the construction of fully

hydrated membranes in the Lβ (gel) phase at a temperature of T = 270 K, controlled by

the v–rescale thermostat [165]. This fully hydrated membrane consists of 2 × 36 DPPC

lipids hydrated by 40 water molecules per lipid. The structure is equilibrated at T = 300 K

and afterwards gradually dehydrated by one molecule per lipid and each time equilibrated

for 5 ns down to a hydration level of 3 waters per lipid molecule. All equilibrations are

performed in the NΠ0T ensemble. To improve sampling, we use four different starting

configurations, which are independently dehydrated five times with different random seeds,

giving 20 different systems per hydration level. For production runs in the Lα fluid phase

the temperature in the gel state is increased to 330 K, above the melting temperature of

DPPC membranes in experiment and in simulations [166–169].

An anisotropic pressure coupling is employed using the Berendsen barostat [93] with a

time constant of τP = 2 ps. Each system is simulated for 5 ns, so the total simulation time

is 100 ns per hydration level. In the osmotic ensemble, the pressure is set to Π = 1 bar and

the chemical potential µ is measured. From the 20 different systems per hydration level

the error of the chemical potential and thus the osmotic pressure is estimated, for which

we perform 18 simulations along the free energy perturbation reaction coordinate. Prior

to the production run, fluid and gel membranes at all hydration levels are equilibrated

for at least 5 ns and production runs are performed over another 5 ns, thus the total

simulation time for the pressure–distance curves of DPPC exceeds 60 µs. The hydrostatic

simulations, used to decompose the pressure into direct and indirect parts, employ the

predicted osmotic pressure, and we explicitly verified that the resulting chemical potential

equals the bulk water chemical potential.
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3. Landau–Ginzburg theory for membrane–membrane interactions

3.5.2. Distance definition

Figure 3.9 shows a comparison of the effective distance d versus the water slab thickness dw

for the three systems considered. By definition of d = ds−d0
s the intercept with the y-axis is

zero, i.e., the first water layer per lipid does not increase the structural separation ds. The

inset of Fig. 3.9 shows d as a function of the number of waters per lipid molecule, Nw/Nl.

The different slopes correspond to the area per lipid molecule via Nw/Nl = Adw/(vwNl).

Also in this case the intercept with the y-axis is zero by definition. Correspondingly, the

first water layer upon hydration gets bound inside the bilayer and the water partial volume

is smaller than in bulk, a behavior that is also found e.g. in glycolipid membranes [149].
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Figure 3.9.: Structural separation based on the oxygen (Decanol) and phosphorus dis-
tance (DPPC) as a function of the water slab thickness dw. The inset shows d as a function
of the number of waters per headgroup, Nw/Nl.

The corresponding area per surface molecule is shown in Fig. 3.10. Whereas for sim-

ulations of DPPC the lateral area adjusts such that the lateral pressure is 1 bar, which

corresponds to the experimental situation in the osmotic stress ensemble [170], we fix the

area in the simulations of Decanol independently of the hydration to A/Nl = 0.234 nm2,

which corresponds to the tensionless state in vacuum. The change of the area per lipid of

DPPC at different water slab thickness dw is the origin of the nonlinear behavior observed

for d(dw) in Fig. 3.9.
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Figure 3.10.: Area per lipid molecule. For simulations of DPPC the lateral area adjusts
such that the lateral pressure is 1 bar, whereas for the simulations of Decanol the area is
fixed independent of the hydration.

3.5.3. Decomposition of the interaction pressure

As membrane–membrane interactions are not treated within a continuum model of the

water orientation, in order to relate the interaction pressure to the Landau–Ginzburg

model, we decompose the pressure into direct, membrane–membrane contributions and

an indirect part, which is mediated by water. To this end we re-evaluate the simulation

trajectories where the simulation box is expanded in z-direction such that on each side

of the water slab, which is in the center of the box, there is only one leaflet of the mem-

brane, see Fig. 3.11 (a). This way interactions with periodic images in z-direction are

minimized as Lennard-Jones interactions are zero behind the cut-off rc and the electro-

static attraction, which is mainly due to dipolar interactions, decays as d−4. Note that

pseudo-2D summation of the electrostatic forces [171] does not change this decomposition

as we sum over the net neutral membrane leaflet. To measure the direct contributions,

also the water slab is removed, thus only the opposing membrane leaflets, which interact

with each other across the free space (Fig. 3.11 (b)), are left. The force acting on one of

the leaflets divided by the area gives the direct contribution to the hydration pressure. In

order to obtain the indirect contribution, one leaflet is removed instead of the water, and

again the force acting on the remaining leaflet is measured (Fig. 3.11 (c)). The obtained

total pressures Πtot (circles in Fig. 3.3 (b)) agree perfectly with the interaction pressures

obtained from the virial, revealing that the interaction with the periodic neighbors has a
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(a) (b) (c)

Figure 3.11.: Simulation setup for pressure splitting. (a) The total force acting on
the upper membrane leaflet is measured in a box that is expanded such that periodic
replica can be neglected. (b) For direct, membrane–membrane interactions the water is
removed and the force on the upper leaflet is measured. (c) To obtain the forces of the
water acting on the surface, the lower leaflet is removed.
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negligible contribution to the hydration force and validating our method.

3.5.4. Landau expansion with generalized boundary conditions

We briefly summarize the Landau expansion of the free energy F in terms of an arbitrary

scalar order parameter η(z), for which we make use of the slab symmetry and define the

laterally averaged order parameter as η(z) = 1/A
∫

dxdy η(x, y, z). The derivation also

holds for vectorial order parameters [153]. Bulk water is not structured, thus no odd terms

appear in the expansion. Including surface fields h that couple linearly to η and g that

couple quadratically [172], the free energy expansion up to the quadratic term is given as

βF [η(·)]
A

=

∫ d/2

−d/2

[
aη2(z) + b (∇η(z))2

]
dz+h+η(

d

2
) + h−η(−d

2
)+g+η

2(
d

2
) + g−η2(−d

2
).

(3.26)

Performing the variation yields

βδF [η(·)]/A
δη(z̃)

= 2aη(z̃)− 2b∇2η(z̃) + δ(
d

2
− z̃)

[
h+ + 2b∇η(

d

2
) + 2g+∇η(

d

2
)

]
+ δ(

d

2
+ z̃)

[
h− − 2b∇(−d

2
) + 2g−∇η(−d

2
)

]
.

(3.27)

The antisymmetric solution, h+ = −h− ≡ h, of Eq. (3.27) is given by [153]

η(z) = − h
2b

sinh (z/λ)

cosh(d/2λ) + χ sinh (d/2λ)
, (3.28)

where we have used λ = (b/a)1/2 and χ = gλ/b = g(ab)−1/2. Thus, χ essentially is the

ratio between the stiffness at the surface g and the (square root) of its value far away from

the surface a times the parameter b determining the range of interaction. The free energy

then follows from Eq. (3.26) as

βF
A

=
h2λ

2b

1

χ+ coth(d/2λ)
. (3.29)

For χ→ 0, Eq. (3.5) is recovered and the surface value η0 = ±η(±d/2) follows the field

h,

η0 =
h

2aλ
tanh(d/2λ), (3.30)
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and the free energy simplifies to

βF
A

=
h2λ

2b

1

coth(d/2λ)
, (3.31)

which is the expression obtained by Cevc et al. [42]. We used this expression for our

analysis in favor of Eq. (3.28) as one free parameter less is employed and the simulation

results can be modeled excellently using Eq. (3.30). The resulting pressure is repulsive

and follows from the derivative of Eq. (3.31),

Πind = − ∂

∂d

βF
A

=
h2

4b

1

cosh2(d/2λ)
, (3.32)

where the subscript ”ind” denotes the fact that the Landau–Ginzburg model does not

account for direct membrane–membrane interactions.

In the opposite limit, χ→∞, the surface stiffness g dominates and thus η0 is expected

to be independent of the confinement. Expanding Eq. (3.26) to leading order, this results

in

βF
A

= − h2λ

2bχ2
coth

(
d

2λ

)
, (3.33)

and the corresponding pressure follows as

Πind = − ∂

∂d

βF

A
= −aη2

0

1

sinh2(d/2λ)
, (3.34)

which reveals attraction. Note that for d � λ both expressions Eqs. (3.32) and (3.34)

show an exponential decay,

Πind(d� λ) ≈ ±Π?
inde−d/λ, (3.35)

however, the behavior at small separations is very different [173]: Whereas for χ→ 0 the

pressure saturates, it diverges for the constant value of η0 at χ→∞.

Similarly, the solution for symmetric order parameters h+ = h− ≡ h follows as

η(z) = − h
2b

cosh (z/λ)

cosh(d/2λ) + χ sinh (d/2λ)
, (3.36)

with the free energy

βF
A

= −h
2λ

2b

1

χ+ tanh(d/2λ)
. (3.37)
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In the limit χ→ 0 the profile simplifies to

η(z) = η0
cosh (z/λ)

cosh(d/2λ)
, (3.38)

where the surface value of the order parameter then is given by [173]

η0 =
h

2aλ
coth(d/2λ), (3.39)

and the resulting interaction pressure,

Πind = − ∂

∂d

βF
A

= −h
2

4b

1

sinh2(d/2λ)
, (3.40)

is attractive.

Performing the expansion as above in the limit χ→∞, the free energy follows as

βF
A

=
h2λ

2bχ2
tanh

(
d

2λ

)
, (3.41)

thus in this case where η(d) = η0 is constant, the pressure is repulsive,

Πind = − ∂

∂d

βF
A

= aη2
0

1

cosh2(d/2λ)
. (3.42)

3.5.5. Multipole moments of the polarization density and relation to the

dipole orientation

In Figure 3.12 we exemplary show the contributions to the polarization density up to the

octupole moment according to Eq. (3.22) for the Decanol bilayers at d = 1.35 nm and

in Fig. 3.12 (b) for DPPC in the liquid state at d = 1.7 nm. In both cases the octupole

term (red line in Fig. 3.12 (a) and (b)) is zero within the numerical noise. Smoothing

the data via a gliding window average before taking the derivative, shown in the inset of

Fig. 3.12, does not yield profiles that agree well with the sinh-shape expected from the

Landau–Ginzburg theory. As discussed in the main text, the quadrupole contribution for

Decanol over-compensates the dipole term, giving rise to the different sign between m
(1)
⊥

and m⊥. Contrary, for DPPC in Fig. 3.12 the quadrupole term adds up with the dipole

term and contributes roughly 10% in this case.

When analyzing the water dipole orientation via the cosine with the membrane nor-

mal, the question of the influence of the water density naturally arises. To quantify this

difference we plot in Fig. 3.12 (c) the dipolar polarization density profile m(1)(z). In our

analysis this is computed as m(1)(z) = P0 〈ρ(z) cos Θ(z)〉, with P0 = 4.893 · 10−2 e nm,
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Figure 3.12.: Multipole expansion of the polarization density. (a) Polarization
density of Decanol at dw = 1.5 nm. The total polarization (blue) is split into contributions
stemming from dipoles (orange) and quadrupoles (green), whereas we find the octupole
term (red) to be zero within numerical noise. Vertical black lines indicate the position
of the Gibbs Dividing surface, equivalent to dw. The inset shows the smoothed second
derivative of the octupole moment. (b) Same as in (a) but for DPPC in the liquid state at
dw = 1.73 nm. (c) Average polarization density and density weighted dipole orientation
for Decanol at dw = 1.5 nm. The vertical black line denotes the position of the GDS, the
dashed green line denotes the interface position using the structural distance d.

52



3.5. Supplemental material

the dipole moment of SPC/E water. On the other hand, a density weighted orientation

follows as P0 〈ρ(z)〉 〈cos Θ(z)〉. As observed from the data in Fig. 3.12, polarization and

density are correlated, resulting in the different profiles for both averages. The product

P0 〈ρ(z)〉 〈cos Θ(z)〉 (blue line in Fig. 3.12 (c)) has a maximum incidentally at the position

of the surface defined by the structural distance, indicated as vertical dashed green line in

Fig. 3.12 (c).

3.5.6. Bulk water polarization fluctuations
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Figure 3.13.: Correlation of the water dipole polarization. Data in blue presents the
scalar product Eq. (3.43), shown on the right side axis is the pair distribution function.

To exclude finite size effects we perform simulations of bulk water in cubic simulation

boxes consisting of Nw = 1477, 4074 and 17021 water molecules, corresponding to box

lengths of L = 3, 5 and 8 nm at ambient pressure. In Fig. 3.13 we show the scalar product

of the water dipole density,

G(r) =
〈
m(1)(0) ·m(1)(r)

〉
(3.43)

as blue symbols. For comparison we also include the pair distribution function g(r) =

1/(4πr2) dN(r)/dr, where N(r) is the number of water molecules in a sphere of radius

r, measured with respect to the water oxygen atom, as black line in Fig. 3.13. Fits of

the data to the expressions Eqs. (3.17) and (3.18) are subtle as water molecules have a

finite size, thus the cut-off qmax has to be included. Additionally, the correlation decays

quickly with separation r , thus making a numerical comparison challenging. Performing
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the integral as proposed by Eq. (3.19),

2

∫
dr4πr2G(r) = a−1, (3.44)

yields the parameter a, however comparison with Eq. (3.20) is subtle due to the combina-

tion of finite size effects and numerical artifacts shown in Fig. 3.14.
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Figure 3.14.: Running integral over the polarization fluctuations. Simulation re-
sults for box sizes L = 3 nm, L = 5 nm and L = 8 nm are shown. The horizontal dashed
line shows the bulk value obtained from the bulk dielectric permittivity via Eq. (3.20).

We show in Figure 3.14 the running integral Eq. (3.44), where the bulk value a =

5.01 nm/e2, indicated by the dashed black line in Fig. 3.14, is obtained only for the largest

box we simulated, L = 8 nm (green line). The obtained values match the bulk value in

this case between 1 nm < r < 2 nm. The deviations at larger r might be due to numerical

artifacts in the evaluation of G(r), or due to finite size effects as we observe that G(r)

does not decay to zero.

3.5.7. Quadrupole and octupole moment as order parameters

The identification of the order parameter with the polarization density is not unique.

However, the candidates for possible order parameters that are antisymmetric with respect

to the symmetry plane is quite limited. Possible candidates are the odd terms appearing in

the multipole expansion, Eq. (3.22). We therefore now discuss the next antisymmetric term

after the dipole, namely the zzz -component of the octupole density, o⊥ = 〈Ozzz (z)ρ(z)〉.
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The octupole moment of water is defined in the main text as Ozzz =
∑

l ql∆z
3
l , where

the sum is over the water hydrogens, with ∆z being their distance to the corresponding

oxygen. Figure 3.15 shows the profiles o⊥(z) for Decanol and DPPC in the liquid and

gel phase, together with the fits to Eq. (3.5). The resulting values are λo = 0.15 nm for

Decanol and 0.30 and 0.28 nm for DPPC in the liquid and gel phase, respectively, which

is close to the values observed in Table 3.1.

The surface values shown in Fig. 3.16 are also nicely described by the expression using

a surface field boundary condition, Eq. (3.6). As discussed in the main text we obtain the

ratio (h/a) from these fits and the remaining free parameter a from fluctuations of the

octupole density, Eq. (3.19). Correspondingly, we can now predict the pressure due to the

octupole orientation in a Landau–Ginzburg model, which is shown in Fig. 3.17. By all

practical means the pressure due to octupole orientation is negligible and we expect also

higher order terms not to contribute significantly.

Exemplary for symmetric order parameters we now discuss the water quadrupole ori-

entation. In analogy to the main text and the analysis of the octupole density discussed

above, we show the quadrupole density q⊥(z) = 〈(Qzz −Qbulk)(z)ρ(z)〉 in Figure 3.18,

where again we subtract the bulk value Qbulk = 1.411 · 10−3 e nm2. The quadrupole den-

sity is symmetric with respect to the z = 0 plane as Qzz =
∑

l ql∆z
2
l . The profiles shown in

Fig. 3.18 can excellently be fitted to the symmetric expression Eq. (3.38), where we already

used the fact that also in this case the surface field is the relevant boundary condition.

The resulting surface value q⊥ 0 is shown in Fig. 3.19 and is well described by Eq. (3.39)

up to a constant, thus confirming the surface field boundary condition. Again we obtain the

last free parameter from the integrated fluctuations of the quadrupole density, Eq. (3.19),

which allows to quantitatively evaluate the pressure due to the quadrupole orientation in

Fig. 3.20 via Eq. (3.40). The attractive pressure is at least 2-3 orders of magnitude smaller

than the repulsive contributions due to polarization that we identified in Fig. 3.8 of the

main text. Following our observations for the octupole moment we expect that higher

order terms also do not contribute significantly.

Although there exists a variety of symmetric order parameters, the most intuitive can-

didates such as the second Legendre polynomial of the water orientation or the water

tetrahedrality also obey the surface field boundary condition [105] and thus lead to at-

traction; the amplitude remains to be determined in future studies.
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3.5.8. Technical notes

Units

We measure all length scales in nanometers and all energies in units of the thermal energy

kBT . The unit of the polarization density m⊥ is [m⊥] = e/nm2 and from Eq. (3.1) we

then obtain [a] = nm/e2, [b] = nm3/e2 and [h] = 1/e. Finally, the pressure in Eq. (3.8)

follows as [Π] = kBT/nm3(= 41.42 bar at 300 K).

Binning

We can use the water oxygen as position of the dipole (default choice in GROMACS)

as well as e.g. the center of mass (COM) or the center of charge (COC), leading to only

slight differences in the obtained profiles m⊥(z) inside the polar headgroup region. For

consistency with the standard analysis in GROMACS we use the oxygen position in the

present analysis. The different values at the surface m⊥ 0 obtained from the different

binning methods would lead to pressures which are not more than 1.5-2 times different

(nearly negligible in the log scale).
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Figure 3.15.: Octupole density profiles. (a) Decanol, (b) DPPC in the liquid state, (c)
DPPC in the gel phase.
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Figure 3.16.: Octupole orientation at the surface. for Decanol (green), DPPC in the
liquid state (blue), DPPC in the gel phase (orange). Lines denote fits to Eq. (3.6).
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Figure 3.17.: Landau–Ginzburg pressure due to water octupole orientation. The
distance-dependent prefactor a has been obtained from the fluctuations of the octupole
density via Eq. (3.19).
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Figure 3.18.: Quadrupole density profiles. (a) Decanol, (b) DPPC in the liquid state,
(c) DPPC in the gel phase.
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Figure 3.19.: Quadrupole orientation at the surface. for Decanol (green), DPPC in
the liquid state (blue), DPPC in the gel phase (orange). Lines denote fits to Eq. (3.6).
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Figure 3.20.: Negative Landau–Ginzburg pressure due to water quadrupole ori-
entation. The distance-dependent prefactor a has been obtained from the fluctuations of
the quadrupole density via Eq. (3.19)
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confinement: Simulations and

electrostatic continuum models

Bibliographic information: The content of this chapter is in preparation to be submitted

to a peer-reviewed journal (Ref. [v]).

4.1. Introduction

Most biologically or industrial relevant surfaces become effectively charged in contact

with water, where prominent examples range from charged phospholipids in cell mem-

branes [59–61] over monolayers of ionic surfactants [5] to solid surfaces such as glass, silica

and mica [47, 49, 50, 52]. The description of the interaction between charged surfaces

across aqueous electrolyte solutions is one of the fundamental problems in colloid science.

Within the weak-coupling limit, the ion distribution at charged interfaces results in the

Poisson–Boltzmann (PB) theory [174] and has been analyzed more than 100 years ago

[68, 69]. Within the validity of the PB theory, i.e., when the surface charge as well as

the ion valency are low, correlations between the ions can be neglected and the resulting

interaction pressure for similarly charged walls is always repulsive. On the other hand,

if the correlations between ions dominate, similarly charged walls can attract within the

strong-coupling (SC) regime [71, 175], i.e., in the case of high surface charge or high ion

valency, in strong contrast to the mean-field prediction of the PB theory.

If the interaction between surfaces in aqueous solution is considered at nanometer sepa-

rations, the atomistic structure of water needs to be considered explicitly. Correspondingly,

the water–surface interaction, which can be quantified in terms of the contact angle, is

crucial for the total interaction [176]. Soft hydrophilic surfaces, as used in our study, typ-

ically exhibit an exponentially decaying repulsive interaction across water [51, 53, 54, 86].

The hydration repulsion universally acts between sufficiently polar hydrated surfaces with

a characteristic decay length of a fraction of a nanometer [47, 53, 86]. The interplay of

repulsive hydration forces and attractive/repulsive electrostatic forces is also found ex-

perimentally in the swelling of lamellar systems [74, 177, 178] and line with simulations

on a dielectric continuum level [179]. The additivity of hydration and electrostatic in-

teractions has been proposed in experiments from analysis of diffraction data of charged

and uncharged lipids [72], however, the interpretation of experimental results is subtle
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models

as fits to theory are ambiguous because neither the exact surface charge nor its location

are known [73]. Simulations can be designed to sidestep these pitfalls, as surface charge

and its location can straightforwardly be imposed. On a nanometer scale the atomistic

structure of water needs to be considered explicitly [96] as dielectric effects at the surface

and in confinement become important [44, 156].

Here we study a model system composed of Decanol (CH3(CH2)9OH) bilayers on which

we impose a smeared out partial charge density. To experimentally study double layer

forces, self-assembled monolayers (SAMs) provide a well defined model system [180]. For

example,, alkyl chains with different headgroups can be attached on a gold substrate

serving as cathode, which allows simultaneous measurement of the double layer force

using an AFM tip and the double layer capacitance via the tip serving as anode [180, 181].

Inspired by experimental setups, we use a realistic model surface consisting of Decanol

molecules which are fixed on a centered rectangular lattice with an angle of 30◦, similar

to experiments on gold substrates. The corresponding simulation setup is well studied

[125, 156, 176, 182] and we have investigated its dielectric properties in Chapter 2 and in

Chapter 3 we have discussed the hydration interactions between such surfaces.

In this work, for the first time we study the interaction between charged surfaces in the

presence of neutralizing counterions in water-explicit simulations. To facilitate analysis

on a Poisson–Boltzmann level, we do not rely on an accurate chemical description of the

surface, but instead artificially put a homogeneous negative partial charge δ on the head-

group atoms of the bilayers, see Fig. 4.1 (b). The electric field in the water slab due to

the partial charges thus corresponds to the effect of the gold anode in experimental setups

as explained above. Further, by smearing out a surface charge homogeneously over the

surface we reduce effects that are due to a discrete charge distribution. The advantage of

the explicit surface charge over an applied electric field is that the headgroup structure,

which would orient in a field due to its dipole moment, is less affected. In our simula-

tions we neutralize the system by model sodium ions. A promising way to obtain ion

parameters for MD simulations is optimization with respect to experimentally accessible

thermodynamic quantities such as the solvation free energy and activity coefficients [183],

however the ion–surface interaction needs to be determined separately, e.g. via optimiza-

tion of the surface tension. To avoid specific effects, we use the well established sodium

parameters by Smith and Dang [184] for ion–water and ion–ion interactions, which repro-

duce experimental values for the solvation energy and activity coefficient quite well, and

use a repulsive potential for the ion–surface interaction, such that for thick water films a

density profile agrees well with the PB expression. The detailed choice of parameters is

justified in Section 4.5.1.

By adjusting the water number Nw such that the water chemical potential equals its
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bulk value, µ = µb, the interaction pressures can be compared for neutral and charged

surfaces. Whereas for the lowest surface charge density the PB pressure is reproduced

reasonably well, we observe deviations at higher surface charges that are not captured

within the weak nor the strong coupling limits. Ionic density profiles are extracted from the

simulations that deviate from the PB model due to the repulsive ion–surface interaction.

Considering this, the agreement between the simulated density profiles and the weak and

strong coupling expressions, where applicable, down to about 0.6 - 0.7 nm is plausible.

This is in line with our analysis in Chapter 2, where a box model for the dielectric profiles

shows that the effective water dielectric constant is bulk-like down to about 0.7 nm. Yet,

this argument does not include dielectric interfacial effects [185], however, also the effective

repulsive potential between ions and surface needs to be considered, as we discuss below.

4.2. Atomistic model

The atomistic simulation of two charged planar interfaces with explicit water is subtle due

to two characteristic lengthscales which need to be considered:

i) The Bjerrum length `B = q2e2/(4πε0εkBT ):

`B is the characteristic lengthscale at which the interaction between two ions of

valency q equals the thermal energy kBT . ε0 is the vacuum dielectric permittivity

and ε the relative permittivity of water, for which we use the value of the SPC/E

water model, εbulk = 70 [156], and thus `B = 0.8 nm, close to the experimental value

εbulk = 80 resulting in `B = 0.7 nm.

ii) The Gouy–Chapman length b = 1
2π`Bσq

:

b measures the distance from the wall with surface charge density σ at which the

potential energy of an isolated ion equals thermal energy kBT . At low surface charge,

or equivalently at small separations d� b, the PB pressure essentially is due to the

entropy of an ideal gas of counterions needed to neutralize the system.

iii) The coupling constant Ξ = q2`B/b:

The ratio of the latter lengthscales determines the range of applicability of the PB

equation. The PB theory is roughly valid for coupling parameters Ξ < 1 [175]. Cor-

respondingly, for comparing the simulation results for monovalent counterions with

the PB theory, small values b < 1 nm are problematic. Note that this corresponds

to surface charge densities σ > 0.2 nm, which is easily exceeded both in experiments

and simulations.
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Figure 4.1.: System setup: (a) Simulation snapshot of the charged bilayer system with
counter-ions. Water molecules are not shown in the central simulation box for clarity.
(b) Atomistic model of Decanol with distribution of the partial charges on the polar
headgroups (in units of elementary charges). To charge the surface a fractional charge δ
is distributed over the headgroup.

Another issue worth mentioning is the finite number of counter-ions in the simulation

box, leading to problematic sampling especially at low surface charge densities. Increasing

the lateral area improves sampling but slows down the simulations. Our strategy therefore

is as follows: First, we determine the pressure versus distance curve for the neutral but

polar Decanol bilayers across water for two different lateral areas, namely AA = 4.83 ×
4.83 nm2 and AB = 6.77 × 6.77 nm2. To obtain reasonable values for the interaction

pressure in simulations, the water chemical potential µ must be controlled upon bringing

the surfaces together. We thus perform simulations in the NwALzT ensemble at constant

temperature T = 300 K, where we adjust the water number Nw for a given box length Lz

such that the chemical potential µ of water equals the value in bulk µb. Using the two

different lateral box sizes we also make sure that our simulations are not subject to finite
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size effects. The extrapolation of the chemical potential employs at least three sets of

simulations at fixed box height Lz with different water numbers numbers Nw. We use 18

simulations along the free energy perturbation reaction coordinate to obtain the chemical

potential µ(Nw) using the MBAR method [161]. Each individual trajectory has a length

of 100 ns, thus the total sampling time per data point in the pressure–distance curve for

Decanol is about 6 µs.

4.2.1. Simulation details

In Figure 4.1 (a) we show a snapshot of a simulation system consisting of Nl = 10 × 10

Decanol molecules (referred to as system A). Force-field parameters are based on GRO-

MOS53A6 [92] where the Decanol hydroxyl groups are represented in atomistic detail,

CH2 and CH3 groups as united atoms. The repulsion between headgroup oxygens is in-

creased to reduce intra-surface hydrogen bonding [125] and for water the SPC/E model

is employed [91]. To avoid slow reorientation events, we restrain all Decanol molecules

on the second CH2 group counting from the OH headgroup with force constants kx =

ky = 500 kJ/(mol nm2) and kz = 10 kJ/(mol nm2) and the terminal CH3 group with

kx = ky = 5 kJ/(mol nm2) on a centered rectangular lattice with a lateral area per head-

group of A/Nl = 0.234 nm2. This corresponds to the tensionless state in vacuum of the

uncharged surface with a Decanol tilt angle of 30◦. To ensure an integer number of counter-

ions and in order to exclude finite size effects some simulations are also performed at larger

lateral area using Nl = 14× 14 molecules (System B).

All simulations are performed using version 5.0 of the GROMACS simulation package

[126] at T = 300 K with periodic boundary conditions. Lennard–Jones (LJ) interactions

are truncated at rc = 0.9 nm, for the electrostatic interactions the Particle Mesh Ewald

method [128] is employed with a real-space cut-off rc = 0.9 nm. Figure 4.1 (b) shows the

united atom representation of a Decanol and the corresponding charge distribution of the

COH-headgroup. In order to charge the surfaces homogeneously we add a partial charge

δ to the three COH headgroup atoms as indicated in Fig. 4.1 (b). Table 4.1 summarizes

the simulation parameters for the systems considered in this study, where we use the bulk

dielectric constant εbulk = 70 of the SPC/E water model [156], which enters linearly in

the Gouy–Chapman length b and inverse quadratically into the coupling parameter Ξ.

4.2.2. Location of the surface charge in continuum model

When comparing ion- and water-explicit simulations with a continuum model the question

of where the surface charge is located naturally arises. The unambiguous thermodynamic

surface position is given by the Gibbs Dividing Surface (GDS), which we define in analogy
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A [nm2] σ [e/nm2] q Nion b [nm] Ξ δ [e]

A0-0 4.83× 4.83 0 0 0 - 0 0

B0-0 6.77× 6.77 0 0 0 - 0 0

A1-1 4.83× 4.83 -0.096 0.25 18 8.31 0.01 0.0225

A1-2 4.83× 4.83 -0.096 0.5 9 4.15 0.05 0.0225

B1-3 6.77× 6.77 -0.109 1.0 10 1.83 0.43 0.0255

A3-3 4.83× 4.83 -0.385 1.0 18 0.52 1.53 0.09

A4-3 4.83× 4.83 -0.770 1.0 36 0.25 3.06 0.18

A5-3 4.83× 4.83 -1.541 1.0 72 0.06 6.13 0.36

Table 4.1.: Simulation parameters for the neutral and charged surfaces. A and
B denotes the systems with different lateral areas. The corresponding values have been
calculated using the SPC/E bulk dielectric constant εbulk = 70.

to experiments [53] via the water layer thickness dw using the bulk molecular water volume

vb
w = 0.0304 nm3 and the number of water molecules Nw as dw = Nwv

b
w/A. However, in a

continuum-model of electrostatic interactions it is the location of the surface charge that

enters. In analogy to our previous work [125] (also see Chapter 3), to compare with the

continuum models we define the surface separation d = ds − d0
s based on the structural

separation ds, which is defined as the mean distance between the oxygen atoms of the

opposing layers for Decanol, illustrated in Fig. 4.2 (a). This definition of ds is equal to

the mean distance of the excess surface charge δ that we distribute on the headgroup

atoms, see Fig. 4.2 (d). As at zero water content the surfaces are in contact, which in a

continuum model corresponds to zero separation, we subtract the equilibrium separation

at zero water content to obtain the effective surface separation d = ds − d0
s , see Fig. 4.2

(b).

In Figure 4.2 (c) we show the Decanol charge density profile (black line), which reveals

a pronounced orientation of the headgroups with respect to the surface normal. Upon

bringing the excess charge δ to the headgroup atoms, the resulting charge density profile

is only slightly affected for low values δ = 0.03 (blue line in Fig. 4.2 (c)), but becomes

highly asymmetric for high surfaces charges δ = 0.18, shown as red line in Fig. 4.2 (c).

Figure 4.2 (d) shows the profiles of the excess charge δ for the δ = 0.03 (blue line) and

δ = 0.18 (red line). The shape and position of the maxima follow the oxygen mass density

profiles shown in Fig. 4.2 (a), as indicated by the dashed vertical lines, thus justifying the

identification of d with the position of the charged wall in an electrostatic model.
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Figure 4.2.: Location of the surface charge and definition of the separation d.
(a) Mass density ρm of water (blue line) and oxygen (green line) for the Decanol system
at a water slab thickness dw = 1.5 nm. Horizontal blue lines indicate the Gibbs Dividing
surface positions, which define dw, the light blue shaded area denotes the distance d, which
follows from the difference between the headgroup separation ds and the value at zero water
content Nw = 0, shown in (b). (c) Decanol charge density of the neutral system (black
line) and at low (δ = 0.03, blue line) and high (δ = 0.18, red line) surface charge. Solid
vertical line indicates the surface position d, dashed green line the structural separation
ds. In (d) the excess charge distribution δ on the three headgroup atoms is shown.
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4.3. Results

4.3.1. Neutral surfaces
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Figure 4.3.: Interaction pressure of the neutral but polar Decanol surfaces. Data
is shown for lateral dimensions of 4.83 nm×4.83 nm (squares, A0-0) and 6.77 nm×6.77 nm
(circles, B0-0). Diamonds denote simulations in the NwAΠ0T ensemble at Π0 = 1 bar,
where we show the equivalent osmotic pressure, Eq. (4.2). The inset zooms into the large
distance regime where the pressures are zero within numerical accuracy, the dashed line
denotes an logarithmic fit of Eq. (4.1) to all positive simulation data yielding a decay
length λ = 0.10 nm.

In Figure 4.3 we show the interaction pressure of the neutral but polar Decanol surfaces

at bulk water chemical potential for the two lateral areas considered in this study, AA =

4.83 nm× 4.83 nm (shown as squares in Fig. 4.3) and AB = 6.77 nm× 6.77 nm (shown as

circles in Fig. 4.3), corresponding to 10×10 and 14×14 Decanol molecules per monolayer.

The repulsive pressure decays exponentially with increasing separation,

Πhyd = Π?e−d/λ, (4.1)

with a characteristic length of λ = 0.10 nm obtained from a logarithmic fit to all positive

simulation data, shown as dashed line in Fig. 4.3. The subscript ”hyd” indicates that

we will refer to this as hydration pressure in the following. The extrapolated pressure at
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contact is Π? ≈ 2.5 kbar. At distances larger than about 0.5 nm the interaction is zero

within our measurement accuracy, as seen in the inset of Fig. 4.3. The simulation data

suggest that there might be a slight minimum around 1 nm which can not be explained

by vdW forces, see Section 4.5.2, and which deviates from the exponential behavior. As

the obtained pressures for d > 0.5 nm scatter around 0 ± 20 bar, which is in the order of

the pressure resolution we can achieve, we do not discuss this further. In addition to these

simulations, which are performed in the NwALzT ensemble with the water number Nw

determined such that the chemical potential of water equals bulk, µ = µb, we include data

at large separations from simulations using the NwAΠ0T ensemble at normal pressures

of Π0 = 1 bar. In that case we measure the chemical potential µ(Nw) and analogous to

experiments convert this to equivalent osmotic pressures,

Π(Nw) = Π0 +
µb − µ
vb

w

, (4.2)

where vb
w = 0.0304 nm denotes the simulated molecular volume of water in bulk at 1 bar

pressure. Equation (4.2) follows from the formally exact thermodynamic Gibbs–Duhem

equation as shown in Appendix A.1. Note that for the simulations in the NwALzT ensem-

ble we subtract the internal stress that acts on the hydrated surface at large separations

due to the positional constraints (as the restraint energy is included in the virial). This

value has been determined by rerunning simulation trajectories at large d with the restraint

potentials turned off, resulting in a pressure difference of ∆Π = +16 bar, see Appendix A.4.

For simulations in the NwAΠ0T ensemble the barostat adjusts the box length correspond-

ingly, such that the interaction pressure equals the one obtained from the virial. The

obtained interaction pressures agree quantitatively, which justifies our method.

4.3.2. Ion density profiles

Having assessed the interaction of the neutral Decanol surfaces across water, which reveals

an exponential repulsion that dominates at small separations, we now turn to the analysis

of the charged surfaces with the corresponding amount of counterions added to neutralize

the system, see Fig. 4.1.

In Figure 4.4 (a) we show the charge density profile at large separations d = 4.09 nm for

surface charge σ = −0.11 e/nm2 and d = 5.68 nm for the higher surface charges. In order

to compare the data for different surface charges simultaneously in Fig. 4.4 (a), we rescale

the densities according to ρ̃ = ρ/2π`Bσ
2. In the slab center, the density profiles agree well

with the PB predictions, shown as dashed lines in Fig. 4.4 (a), for σ < 0.7 e/nm2. Close

to the interface the density drops compared to the PB prediction, which is due repulsive

ion–surface interactions. For values σ > 0.7 e/nm2, the profiles deviate significantly, which
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Figure 4.4.: Ion densities at large separation. (a) Rescaled ion densities ρ̃ for increas-
ing surface charge density σ, indicated by the black arrow. Dashed lines show the expected
density profile from PB theory, solid lines denote simulation results. Vertical black lines
denote the surface separation, which is d = 4.09 nm for σ = −0.11 e/nm2 and d = 5.68 nm
for the other systems. (b) Ion density for σ = −0.11 e/nm2 at d = 4.09 nm (solid red line,
right axis) and the corresponding PB density (dashed black line). Green line denotes the
effective ion–surface potential according to Eq. (4.3) (left scale).

is expected as the corresponding coupling parameters Ξ = 3 (red line in Fig. 4.4 (a)) and

Ξ = 6 (lilac line Fig. 4.4 (a)) are significantly larger than 1.

To quantify the the difference between the observed density ρ in the simulation and the

PB density ρPB, we compute the effective potential Ueff according to

Ueff = − log

(
ρ

ρPB

)
. (4.3)

Note that in order to predict ion profiles from a potential of mean force (PMF), one follows

the opposite approach and incorporates the PMF into the PB equation [76, 186]. The

additivity assumption on the surface potentials has significant influence on the resulting

interaction at small separations (Ref. [x]), thus we analyze the lowest surface charge

density σ = −0.11 e/nm2 considered in this work at separation d = 4.09 nm in Fig. 4.4 (b).

The simulated density profile (red line in Fig. 4.4 (b), right scale) indicates that the

employed simulation time of 100 ns is not sufficient to obtain converged density profiles.

The effective potential can be converted into a box profile, which enables to solve the

PB equation for counterions in a similar approach as in [76] and Ref. [x]. The use of

box profiles has been proven to be successful for modeling interfacial capacitance effects

including the dielectric profile [185]. This modeling approach is work in collaboration with

Dr. Yuki Uematsu and shall be completed after submission of this thesis.
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Figure 4.5.: Ion and headgroup density profiles. (a) Weak confinement d ≈ 1.5 nm,
(b) intermediate confinement d ≈ 0.8 nm and (c) strong confinement d ≈ 0.4 nm. Colors
decode the different surface charge densities, solid lines denote simulation results for the
ion density. Shaded areas denote the density of the Decanol oxygen. Broken lines show
the corresponding continuum predictions where applicable, see Table 4.2: PB Eq. (4.32)
as dashed line in (a), the sum of two single charged plates in the SC limit Eq. (4.4) as
dotted lines (a) and (b) and the SC expression up to next leading order in Ξ, Eq. (4.6),
as dash-dotted lines.
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To elaborate the effects of confinement, we show exemplary ion and headgroup density

profiles for different surface charge densities in Fig. 4.5, including weak confinement (d ≈
1.5 nm, corresponding to Nw/Nl ≈ 6 waters per Decanol) in Fig. 4.5 (a), at intermediate

values (d ≈ 0.8 nm, Nw/Nl ≈ 3) in Fig. 4.5 (b), and in strong confinement (d ≈ 0.4 nm,

Nw/Nl ≈ 1.7) in Fig. 4.5 (c). The weak coupling limit of the PB theory is expected to

hold in the range a⊥ < b < d, where a⊥ = b
√

Ξ denotes the lateral distance between the

counter-ions [70]. For the three monovalent systems considered in this work, this only

holds for B1-3 with σ = −0.11 e/nm2 and d > 1.8 nm.

For b < a⊥ < d, neither the PB nor the SC descriptions hold. In a rough approach, the

counterion layers decouple and the density profiles of each layer are well described by the

exponential SC profiles for a single charged plate [70],

ρ̃SC(z) = e(d/2−z)/b + e(z−d/2)/b. (4.4)

This approximation is included in Fig. 4.5 (a) and (b) as dotted line, as the validity of

Eq. (4.4) corresponds to d > 0.8 nm for σ = −0.39 e/nm2 (A3-3) and d > 0.6 nm for

σ = −0.77 e/nm2 (A4-3), respectively.

Within the strong coupling limit Ξ→∞ the density profile between the charged walls

is constant and follows in reduced units ρ̃ = ρ/(2π`Bσ
2) as

ρ̃SC(z̃) =
2

d̃
. (4.5)

The leading correction to the SC limit follows from a virial expansion of the partition sum

and can be approximated in closed form [70], such that the density profile follows as

ρ̃
(1)
SC(z̃) =

2

d̃

1 +
1

Ξ

(
z̃ − d̃

2

)2

− d̃2

12

+O(Ξ−2), (4.6)

where z̃ = z/b and d̃ = d/b denote the dimensionless position and distance, respectively.

The corresponding density profiles from Eq. (4.6) are included in Fig. 4.5 (b) and (c) as

dash-dotted lines. We have used the theoretical expression that we expect to describe the

data at the given parameters best in Fig. 4.5, merely the system with σ = −0.39 e/nm2 at

d ≈ 0.8 nm is exactly in between the validity of Eq. (4.4) and Eq. (4.6). We thus include

both expressions as dotted and dash-dotted green lines in Fig. 4.5.

For 1.52 nm < d < 1.83 nm at the lowest surface charge σ = −0.11 e/nm2, the ions form

a three-dimensional gas of counterions, in which case the Poisson–Boltzmann description

is expected to work on leading level [70]. We therefore include the PB density profile in
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a⊥ [nm] b [nm]

PB for d > 1.83 nm
B1-3 1.52 1.83 1.52 nm < d < 1.83 nm: counter-ion gas

SC (two plates) for d < 1.52 nm

A3-3 0.81 0.52 SC (decoupled plates) for d > 0.81 nm
SC (two plates) for d < 0.81 nm

A4-3 0.57 0.26 SC (decoupled plates) for d > 0.57 nm
SC (two plates) for d < 0.57 nm

Table 4.2.: Expected range of validity of the PB and SC expressions.

this case as dashed line in Fig. 4.5 (a) . The expected range of validity of the strong and

weak coupling limits is summarized in Table 4.2.

Considering the fact that the effect of a surface potential is not included in any of

the models discussed here, the disagreement between the simulations and the calculated

density profiles is plausible. At larger separations in Fig. 4.5 (a), the repulsion between

the ions and the smeared out headgroups at the interfaces leads to deviations from the

models. This effect of finite ion size becomes more pronounced at stronger confinement

Fig. 4.5 (b), and leads to an inverted density profile at even smaller separations, Fig. 4.5

(c), which is dominated by the exclusion of ions from the headgroups. To strengthen this

statement we show as shaded areas in Fig. 4.5 the headgroup oxygen number density ρOA

(right scale). Whereas for d ≈ 1.5 nm the oxygen density profiles do not overlap in the

slab center, the oxygen densities are finite at z = 0 for d ≈ 0.8 nm and show a strong

overlap in strong confinement, d ≈ 0.4 nm.

4.3.3. Interaction pressures

In Figure 4.6 we show the interaction pressures obtained from our water-explicit simula-

tions at bulk water chemical potential. The pressure versus distance curve for the system

with the smallest coupling parameter Ξ = 0.43 (σ = −0.11 e/nm2) is show in Fig. 4.6 (a)

and compared to the data for the interaction between the uncharged surface without ions,

Fig. 4.3. We also include the sum of the hydration and PB pressures, Πhyd + ΠPB as

solid lines in Fig. 4.6. For small separations, the simulation data for the charged and un-

charged system are very similar and both show an exponential decay with approximately

the same decay length. At separations d ≈ 0.5 nm, the pressure between the uncharged

surfaces is essentially zero (black data in Fig. 4.6), but the blue data in Fig. 4.6 (a) remains

significantly positive even at large separation. Remarkably, the data in this case agrees

quantitatively with the PB pressure (solid blue line in Fig. 4.6 (a)).

With increasing charge density, σ = −0.39 e/nm2 (Ξ = 1.53, shown in green in Fig. 4.6
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Figure 4.6.: Interaction pressures between charged surfaces (colored data). (a)
Small coupling parameter Ξ = 0.43, corresponding to a surface charge density σ =
−0.11 e/nm2. (b) Intermediate coupling parameter Ξ = 1.53, corresponding to a sur-
face charge density σ = −0.385 e/nm2. (c) Results for Ξ = 3.06, corresponding to
σ = −0.77 e/nm2. Black data shows the pressure between the neutral surfaces, dashed
line the exponential fit as in Fig. 4.3. Solid lines are sums of the exponential and the PB
pressure. Insets show the data on a linear scale.
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(b)), the short-range decay is basically indistinguishable from the neutral system (black

data). The repulsion at large separations is similar to the lower surface charge density

shown in Fig. 4.6 (a), but about a factor two less than expected from adding the expo-

nential hydration and the PB pressure. This trend holds also for the system with the

highest surface charge, σ = −0.77 e/nm2 (Ξ = 3.06, red data in Fig. 4.6 (c)). In that case,

the decay on short lengthscale is still perfectly on top of the neutral data, but at about

d = 0.6 nm a minimum in the pressure–distance curve appears. At large separations, the

pressure again is about 10 bar, as also observed in Fig. 4.6 (a) and (b), and thus 2-3 times

less than expected from PB theory.

Note that PB theory is not necessarily expected to work in these systems, as a num-

ber of effects come into play: The water structure at charged surfaces is known to be

different from uncharged ones [187], the ion–surface repulsion is not considered, interfa-

cial dielectric effects [129, 185] are not treated on this level and the dielectric constant

in charged systems is unknown, just to name a few. Note that an analysis like in Chap-

ter 2 can straightforwardly be conducted for the parallel component by subtracting the

monopoles. However, the analysis of the perpendicular profile in a charged system, which

is the relevant component for the surface interaction, is technically more involved as it

follows in the static limit of the frequency-dependent dielectric permittivity, where ionic

currents need to be correctly subtracted [188], and remains subject to future studies. For

the neutral surface, the effective perpendicular dielectric constant decreases only for val-

ues d < 0.5 nm, thus deviations to PB can not be explained using this information, as

we observe the pressure to be different from that expectation also at large separations.

Last, the theoretical models assume counterions confined in a slab, where the walls are

treated as semi-infinite half-spaces. Whereas this approximation might be good for certain

experimental situations, there are other situations where this is definitely not the case, as

for example in a stack of lipid bilayers also the interactions with neighboring slabs needs

to be considered. This also goes beyond established methods to treat image charges in

continuum models (see e.g. Refs. [189, 190]).

To conclude this section, we subtract the interaction Πneut between the neutral surfaces

from the ones charged systems in Fig. 4.7, considering also the apparent minimum in

Fig. 4.3, which we fit by a third order polynomial. At the separations which we consider

here, the simulated systems are at the edge of validity of the classical PB description,

in between PB and SC, and within validity of SC (see Table 4.2 and the corresponding

density profiles in Fig. 4.5). We thus employ also Monte Carlo simulations performed with

the corresponding continuum model parameters in Table 4.1, and show the corresponding

pressures as crosses in Fig. 4.7, see Section 4.5.4 for details on the MC simulations.

In the strong coupling limit, Ξ → ∞, the pressure follows from the contact density in
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Eq. (4.5),

Π̃SC =
ΠSC

2π`Bσ2
= kBT

[
2

d̃
− 1

]
, (4.7)

which actually differs by a constant 2/3 in reduced units from the asymptotic PB solution

in the limit d� b, Eq. (4.36),

Π̃PB =
ΠPB

2π`Bσ2
= kBT

[
2

d̃
− 1

3

]
. (4.8)

However, we observe that the density profiles in Fig. 4.5 are not constant, as expected

in the SC limit, but rather can be approximated by the SC expression if the finite-coupling

corrections are taken into account (dash-dotted lines in Fig. 4.5). Using a virial-expansion

scheme, which is obtained as a series expansion in powers of 1/Ξ about the asymptotic

SC solution Ξ→∞ [70], the pressure corresponding to Eq. (4.6) then follows as

Π̃
(1)
SC =

ΠSC

2π`Bσ2
= kBT

[
2

d̃
− 1 +

d̃

3Ξ

]
+O(Ξ−2). (4.9)

The virial expansion is expected to break down when the second-leading contribution

becomes of the same magnitude as the leading contribution to the density at the plate.

Comparing the first two with the last term in Eq. (4.9) reveals that Eq. (4.9) should be

roughly valid d̃ < 1/2(
√

3
√

3Ξ2 + 8Ξ−3Ξ), which yields d < 2 nm for Ξ = 0.43, d < 0.8 nm

for Ξ = 1.53 and d < 0.4 nm for Ξ = 3.06. We thus include the pressure Eq. (4.9) in the

range of its validity in Fig. 4.7 as dash-dotted lines.

From Eq. (4.9) we can also estimate the range of validity of the SC theory by comparing

the first and last terms with each other, which corresponds to the case when the second-

leading order of the density at the plate becomes comparable to the leading order. Thus,

the strong-coupling theory should be valid only for d̃ <
√

6Ξ, which yields d < 1.6 nm, 3

nm and 4.3 nm for Ξ = 0.43, 1.53 and 3.06, respectively. The corresponding SC expressions

Eq. (4.7) are included as dotted lines in Fig. 4.6.

For Ξ = 0.43, shown in Fig. 4.6 (a) the next-leading order of SC, Eq. (4.9), and the

PB pressure, Eq. (4.34) both quantitatively agree with the results from MC simulations,

included as crosses in Fig. 4.6 (a), as is expected in that case as d < b, where both limits

are dominated by the entropy of an ideal gas of ions. The MD simulations in that case

are subject to large statistical uncertainties and agree on separations d > 0.5 nm, but

deviate significantly at smaller separations. In the case of Ξ = 1.53, shown in Fig. 4.6

(b), the PB pressures (shown as dotted lines) deviate already significantly from the MC
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Figure 4.7.: Excess pressures between charged surfaces compared to the un-
charged system. (a) Small coupling parameter Ξ = 0.43, corresponding to a surface
charge density σ = −0.11 e/nm2. (b) Intermediate coupling parameter Ξ = 1.53, corre-
sponding to a surface charge density σ = −0.385 e/nm2. The inset zooms into the region
where SC yields negative pressures on a linear scale. (c) Results for Ξ = 3.06, corre-
sponding to σ = −0.77 e/nm2. Dashed lines denote the pressure from solution of the PB
equation, Eq. (4.34), dotted lines show the SC pressure Eq. (4.7), and dash-dotted lines
the next-leading correction to SC, Eq. (4.9). Crosses denote results from MC simulations.
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simulations (shown as crosses). The MC pressures are right in between the PB expression

Eq. (4.34) and the next-leading SC pressure, Eq. (4.9), shown as dash-dotted lines in

Fig. 4.6. The inset of Fig. 4.6 (b) reveals that the SC expression Eq. (4.7), shown as

dotted line, becomes negative at the expected SC equilibrium separation d̃ = 2, which

is at d = 1 nm for Ξ = 1.53. The MD data in explicit water for d > 0.5 are between

the weak and strong coupling expressions, and deviate significantly at smaller separations.

Figure 4.6 (c) shows the results for Ξ = 3.06. In this case the pressures obtained from

MC simulations (crosses in Fig. 4.6 (c)) deviate by nearly a factor 2 from the PB pressure

(crosses vs dash-dotted line in Fig. 4.7 (c)). Strikingly, the pressure from the atomistic

MD simulations shows a minimum at about 0.5 nm. The appearance of this minimum can

not be explained within SC theory, shown as dotted line in Fig. 4.7 (c).

4.4. Discussion and Conclusion

In this work, using explicit water, we have shown show that the interaction between

charged surfaces in aqueous solution can be analyzed via additive contributions stemming

from the interaction between neutral surfaces (which is governed by the hydration in case

of polar surfaces and at small separations) and a contribution due to the surface charge

and the ions. In the case of low surface charge σ and for separations d > 0.5 nm, the

interaction can be modeled by additive contributions from the hydration repulsion and

the PB pressure, Π = Πhyd + ΠPB. In that description, the dielectric constant is assumed

to be homogeneous and equal to its bulk value εbulk = 70 for SPC/E water independent of

the confinement. For small charge densities the repulsive PB pressure is mainly due to the

ion entropy and thus indeed independent of the solvent dielectric constant, see Eq. (4.36).

To the best of our knowledge this is the first atomistic simulation with explicit water

confirming the mean-field pressures!

We have shown that the ionic density profiles, if the surface repulsion is neglected,

at larger separations, d > 1 nm can be described by the Poisson–Boltzmann expressions

for small surface charge, see Fig. 4.2 (a). In stronger confinement our simulation results

suggest that the density profiles as can be modeled by taking into account the leading

correction to SC already for the small coupling parameters Ξ = 1.5 and 3.

Ionic density profiles between homogeneously charged planar walls have been obtained

in the presence of dielectric discontinuities, where corrections to the PB limit are found to

be small for small values of the coupling parameter Ξ [190], but with increasing Ξ the image

charge repulsion strongly pushes the ions into the slab center [189]. An opposing effect is,

however, observed for discrete surface charges, in which case the ion density close to the

surface is increased in absence of dielectric contrast. Including image charge effects results
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in a competition between dielectric repulsion from the surface and the adsorption due to

discrete charges [191]. Within the Poisson–Boltzmann description of salt solutions, the

tendency of the counter-ions to adsorb on the surface or be repelled can be incorporated via

effective potentials. The resulting pressures then are attractive or repulsive, respectively

[76, 192, 193]. In the SC regime the effect of charge discreteness sensitively depends on

the surface charge pattern and can result in stable minima of the free energy, attraction or

repulsion [194, 195]. Our results suggest that dielectric inhomogeneities, which we neglect

in our analysis, are of minor importance. For atomistic modeled water also the image

charge contributions of the water partial charges contribute, which around a solvated ion

will give a compensating contribution.

Summarizing, we have established a method using simulations at controlled water chem-

ical potential, which allow to analyze the hydration force and compare the interaction

between uncharged and charged surfaces in the presence of neutralizing counterions. The

combined effects become important at the nanometer separation. Thus the findings open

a rich field of studies for the atomistic effects when aqueous electrolyte solutions are con-

fined, which is the case both in biological as well as in industrial applications. From the

atomistic analysis we find that continuum modeling is successful even at lengthscales where

the water structure needs to be considered explicitly, yet our analysis leaves many points

for future work, like dielectric effects in the charged systems, or the inclusion of repulsive

ion–surface potentials within the PB framework in the case where only counterions are

present.

4.5. Supplemental material

4.5.1. Ion force-field parameters

In Fig. 4.8 we show the cation density profiles for σ = −0.109 e/nm2 (B1-3) (colored lines)

and the PB density (dashed black line). The corresponding coupling parameter is Ξ = 0.43,

thus PB is expected to be perfectly valid and the PB pressure at d = 4.09 nm is less than

1.5 bar. The interaction between the neutral but polar surfaces is zero within numerical

accuracy at such large separations, thus we perform the corresponding simulations in the

NwAΠ0T ensemble with a barostat ensuring that the normal pressure Π0 is 1 bar. The

simulations for evaluating the density profiles have a length of 100 ns each. We analyze

the interaction parameters of the sodium ion with the Decanol oxygen and compare the

obtained density profiles to PB in Fig. 4.8. The LJ potential is defined as

ULJ(r) = 4ε

[( ς
r

)12
−
( ς
r

)6
]

=
C12

r12
− C6

r6
, (4.10)
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ς(iw) ε(iw) ς(ii) ε(ii) ς(io) ε(io) ς(ic) ε(ic)

[Å] [kJ/mol] [Å] [kJ/mol] [Å] [kJ/mol] [Å] [kJ/mol]

GROMOS 2.86 0.20 2.58 0.06 2.76 0.23 3.23 0.16

Dang 2.88 0.52 2.58 0.42 - - - -

Comb. rule - - - - 2.76 0.92 3.24 0.64

Table 4.3.: Ion forcefield parameters. Ion-water (iw) and ion-ion (ii) Lennard–Jones
parameters for taken from GROMOS and from Dang et al. , Ref. [184]. The interactions
between the ions and the headgroup oxygen (io) and the carboxyl methylene group (ic)
are taken from the GROMOS forcefield and by using the combination rule Eq. (4.11).

which has a minimum at 21/6ς. The headgroup hydrogen does not have any LJ interactions,

thus the main contribution to the ion–surface interaction stems from the headgroup oxygen

and the methylene groups, for which the corresponding parameters are listed in 4.3

For our analysis in the main text we use ion–ion and ion–water interactions taken from

Ref. [184], however the ion–surface interactions need to be determined. A standard

approach is using the combination rule

C
(ij)
6 =

√
C

(i)
6 C

(j)
6 and C

(ij)
12 =

√
C

(i)
12C

(j)
12 , (4.11)

for which the corresponding parameters are listed in the last row of Table 4.3.

The resulting density profile is shown as blue line in Fig. 4.8, yielding good agreement

between the expected PB density profile and the simulation result. Using the GROMOS

values for sodium, given in the first line of Table 4.3, results in the green density profile

shown in Fig. 4.8, which within the statistical noise is indistinguishable from the profiles

using the combination rule (shown in blue). However, combining the ion parameters

from Dang et al. , second line in Table 4.3, with the GROMOS values for the ion–surface

interaction, first line in Table 4.3, leads to the density profiles shown as orange line in

Fig. 4.8, where the ions adsorb strongly. Considering the similar values in Table 4.3, the

reason for this adsorption remains unclear

In our main analysis, we use a purely repulsive ion–headgroup oxygen interaction,

C
(io)
6 = 0, and set C

(io)
12 = 2.5 · 10−7 kJ/mol nm12 (see Eq. (4.10)), with ion–methylene

interactions taken from GROMOS (first line in Table 4.3). The resulting density profile

is shown as red line in Fig. 4.8 and yields good agreement with the PB profile. Obviously

great care has to be taken when adjusting the ion–surface interactions with respect to the

correct combination rule, whereas then the obtained profiles for the ion parameters from

Dang et al. [184] and GROMOS yield similar results. In order to minimize ion-specific

effects that might appear in strong confinement or at higher surface charges, we take the

combination of sodium-sodium and sodium-water parameters from Ref. [184] stick with
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Figure 4.8.: Ion density profiles for different ion–surface interactions. Charge
density for system B1-3 at d = 4.09 nm and surface charge density σ = −0.109 e/nm2 with
different ion-surface interactions. Black dashed line shows the PB density profile, green
the ion density obtained from the GROMOS forcefield. In yellow the combination of ion
parameters by Dang et al. [184] and the GROMOS ion–surface parameters is shown, blue
line shows the resulting profile using the geometric mean. The repulsive potential using
C12 = 2.5 · 10−7 kJ/mol nm12 and C6 = 0 employed for further analysis is shown as red
line.

repulsive ion–surface interaction (red line in Fig. 4.8) for our analysis.

4.5.2. Van der Waals Interaction

Here, we investigate whether the slight minimum apparent in Fig. 4.3 at separations of

about 1 nm in the interaction of the neutral surfaces can be ascribed to van der Waals

(vdW) interactions. In our model, all particles interact via 12–6 Lennard-Jones (LJ) po-

tentials, which mimic the Pauli exclusion and dispersion attractions. Pairwise summation

of all parts of the LJ interaction u(r) = C12/r
12 − C6/r

6 leads to the vdW-like attrac-

tion between two interacting semi-infinite half-spaces with parameter C6 and the repulsive

term with C12 is a phenomenological model to mimic the Pauli principle; i.e.,

ΠLJ =
H12

45πd9
− H6

6πd3
, (4.12)

where H6 is the well-known Hamaker constant and H12 its counterpart for the repulsive

interactions. From the known atomic densities in our simulations, they can be evaluated
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as [28]

Hα = π2Cα,sn
2
s − 2π2Cα,swnsnw + π2Cα,wn

2
w, (4.13)

where α = {6, 12} and ns = 38 nm−3 and nw = 33 nm−3 are the number densities of

the Decanol carbon tails and bulk water, respectively. The LJ coefficients in our force

fields are C6,s = 7.47, C6,sw = 4.42 and C6,w = 2.62 in units of 10−3 kJ mol−1 nm6 for the

attractive surface–surface, surface–water, and water–water atom interactions, respectively,

and C12,s = 3.40, C12,sw = 0.95 and C12,w = 0.26 in units of 10−5 kJ mol−1 nm12 for the

corresponding repulsive interactions. This gives an estimate for the Hamaker constant for

the Decanol surfaces across water of H6 ≈ 10 kBT and for the repulsive counterpart we

obtain H12 ≈ 0.11 kBT .

However, the LJ interactions are cut off in our simulations at a radius of rc = 0.9 nm,

the actual values for the dispersion attraction and Pauli repulsion are smaller. In the

following, we derive the expression for the normal pressure between the surfaces, including

a finite cutoff for the LJ interactions. Two infinitely small volume elements dV1 and dV2

of hydrocarbons in water interact with the energy of

dW =

(
H12

π2s12
− H6

π2s6

)
, (4.14)

where s is their distance. The force acting in the z direction is obtained as Fz = (dW/ds)×
(h/s), where h is the projection of the distance s on the z axis. The interaction cutoff at

distance rc can be included via a Heaviside step function θ(rc − s), which is 1 for s < rc

and 0 otherwise. Thus, the LJ force in the z direction acting between the two volume

elements reads

dFz =

(
12H12

π2

h

s14
− 6H6

π2

h

s8

)
θ(rc − s) dV1 dV2. (4.15)

We now use cylindrical coordinates to integrate over the two half-spaces separated by a

distance d with the volume elements dV1 = 2πr1dr1db1 and dV2 = 2πr2dr2db2. We can

directly perform one integral,
∫

2πr2dr2 = A yielding the lateral area A. Using that b1

and b2 denote the distance from the two interfaces, we can express h = d + b1 + b2 and

thus s =
(
h2 + r2

)1/2
, such that from Eq. (4.15) the pressure follows as

ΠLJ =
Fz
A

=

∞∫
0

db1

∞∫
0

db2

∞∫
0

dr
12hr

π

(
2H12

s14
− H6

s8

)
· θ(rc − s), (4.16)

which for rc →∞ recovers Eq. (4.12) and which we solve numerically for finite rc.
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Besides dispersion interactions, which are in our model implicitly included via LJ poten-

tials, the permanent water dipoles additionally contribute to the zero-frequency (Keesom)

part of the vdW interactions. These contributions are implicitly included in our simula-

tions as well via the electrostatic dipole interactions. The corresponding Hamaker constant

for a dielectric mismatch ∆ = (ε1 − ε2) / (ε1 + ε2), where ε1 = 80 is the (bulk) water di-

electric constant and ε2 = 1 inside the Decanol bilayers, is H0 ≈ 3/4kBT [87] and because

there is no cutoff, it follows Eq. (4.12). Note that for a full analysis of the Lifshitz interac-

tions the frequency-dependent dielectric permittivity in confinement is required, making

such an analysis highly involved. However, estimates based on water hydrocarbon systems

indicate that these corrections amount to a contribution . 1 kBT in the relevant distance

regime, see e.g. Refs. [31, 196], in conjunction with experiments [7, 197].

The derived equations for the vdW pressure assume a continuum model of hard inter-

acting walls. On the contrary, the surfaces in our simulations are flexible and the definition

of the separation d needs to be accounted for. In our analysis we define d = ds − d0
s as

the oxygen separation minus the measured separation at zero water content. To compare

the MD simulation results with the continuum model, we reduce the surface separation

in Eqs. (4.12) and (4.16) by d0
s , which ensures that the LJ repulsion does not diverge at

ds = 0, but at d = −d0
s , corresponding to the case of overlapping densities of the Decanol

oxygens.

Fig. 4.9 shows the simulation normal pressure for the neutral, polar Decanol surfaces

across water together with the LJ interaction without cutoff Eq. (4.12) (dashed red line)

and the corresponding pressure including the cutoff at rc = 0.9 nm (solid blue line). In-

cidentally, the full LJ expression, red dashed line in Fig. 4.9 seems to describe the data

reasonable well, however, the resulting attractive minimum is at too small separations

and can not be balanced by an exponential, i.e., the minimum will always be at smaller

separations than in the simulations. This becomes even more obvious when comparing the

data with the LJ including the cutoff, which is zero for d > rc − 2d0
s = 0.7 nm, the same

separation at which the simulation data evidently get positive, see inset of Fig. 4.9. The

dash-dotted yellow line in Fig. 4.9 represents the Keesom interactions, which are negligi-

ble in the scale of our simulations. We conclude that vdW interactions cannot explain a

possible minimum of the interaction pressure around d = 1 nm.

4.5.3. Water uptake of the charged system

In Figure 4.10 (a) we show the number of waters per Decanol headgroup, Nw/Ns vs.

box length Lz for the uncharged surfaces and charge densities between σ = −0.11 and

−0.77 e/nm2. With increasing surface charge the system at bulk water chemical potential
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Figure 4.9.: Comparison of the vdW contributions with the simulated pressure.
The total normal interaction pressure from MD simulations between the neutral surfaces is
shown as black symbols, the different vdW contributions are shown by the different lines:
for full-range LJ contribution (Eq. (4.12), red dashed line) and for cutoff LJ contribution
(Eq. (4.16), blue solid line), both with H6 = 10kBT and H12 = 0.11kBT , and for the
Keesom contribution from the water dipoles with H0 = 3/4kBT (orange dashed-dotted
line).
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Figure 4.10.: Water uptake in the charged system. (a) Water number Nw per
Decanol molecule as a function of the box length for different surface charge densities
σ = 0,−01.1,−0.39 and −0.77 e/nm2 (black, blue, green and red data, respectively). The
inset shows the headgroup separation vs. box length. (b) Interaction pressure as a function
of the water slab thickness dw. Symbols refer to the same data as in (a). The inset shows
the data on a linear scale. (c) Partial water volume vµ at bulk water chemical potential.
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takes up more water at the same box length. As is seen from the inset of Fig. 4.10 (a),

which shows the surface separation d as defined in the main text, this additional water

uptake can not be attributed to a compression of the surface as the data are nearly on top

of each other.

The water partial volume follows from our simulations at controlled chemical potential

µ in two ways: From the derivative of the box length with respect to the water number,

(the lateral area A is constant in our simulations),

vw =

(
∂Lz
∂Nw

)
A,µ

A, (4.17)

shown in Fig. 4.10 (c), or via the change of the chemical potential µ at different pressures

Π (which we adjust via Nw),

vw =

(
∂µ

∂Π

)
A,Lz

. (4.18)

The resulting data from Eq. (4.18) is shown in the inset of Fig. 4.10 (c). The general

observation from Fig. 4.10 (c) is that for separations dw < 0.75 nm the water volume

significantly increases, and is about twice its bulk value vµ = 0.0304 nm3 (determined

independently from bulk simulations) in strongest confinement. Although the data is

subject to large numerical noise, it suggests that the water partial volume at higher charge

densities and for monovalent counter-ions is slightly smaller than for water between the

uncharged surfaces (black data in Fig. 4.10 (c)).

The corresponding pressure Π vs. water slab thickness dw is shown in Fig. 4.10 (b).

Whereas the short-range repulsion when plotted as a function of d in Fig. 4.6 for the differ-

ent surface charges nearly perfectly converge onto the exponential hydration contribution,

the result for dw in Fig. 4.10 (b) shows a much stronger repulsion, which is results from a

shift on the x-axis due to water uptake.

4.5.4. Monte Carlo simulations

We perform NV T Monte Carlo simulations of Nion = 50 point-like counterions in a box of

lateral size L, which is determined by electro-neutrality, L =
√
Nion/(2σ). The counterions

are confined between two surfaces located at z = 0 and z = d. The electrostatic energy

is obtained using a generalized efficient 3D Ewald summation method with correction for

slab geometry [198]. In this method an empty layer which is 3 times larger than the

wall separation [171] is considered in region d < z < 3d. After 1 × 106 MC steps for

equilibration we save 1× 106 uncorrelated configurations each 1000 MC steps for further
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Figure 4.11.: Sketch of the system of counterions confined between charged walls.
For modeling a solid surface at the head-group oxygen position is assumed which bears
a surface charge density σ. For the solution of the PB equation we treat the slab as
homogeneous dielectric medium without contrast to the semi-infinite walls.

analysis.

4.5.5. Nonlinear Poisson–Boltzmann equation for counterions

We consider the nonlinear Poisson–Boltzmann equation for two charged surfaces with

neutralizing counterions, see Fig. 4.11. In SI-units the one-dimensional Poisson-Boltzmann

equation reads as [87]

εε0
d2φ

dz2
= −ρ = −qec0e

−qeφ/kBT , (4.19)

with the counterion charge density ρ, q is the ion valency and c0 is given by electro-

neutrality. We make use of the symmetry and solve Eq. (4.19) for z ∈ [0, d/2] with the

boundary conditions

dφ

dz

∣∣∣∣
z=0

= 0 (4.20)

and
dφ

dz

∣∣∣∣
z=d/2

=
σ

εε0
= −E(z)|z=d/2 . (4.21)
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In the following we assume the surfaces to bear a negative surface charge, σ < 0. From

differentiating Eq. (4.19) one obtains

dρ

dz
= qec0

d

dz
e−qeφ/kBT = −qec0

kBT
e−qeφ/kBT

dφ

dz

=
εε0

kBT

dφ

dz

(
d2φ

dz2

)
=

εε0

2kBT

d

dz

(
dφ

dz

)2

(4.22)

where in the last step chain rule was applied. We now choose an integration path from a

reference point z = 0 to an arbitrary point in the system, z = z0,∫ z0

0

d

dz

(
dφ

dz

)2

dz =

∫ z0

0

2qec0kBT

εε0

d

dz
e−qeφ/kBTdz, (4.23)

and after performing the integral this yields the first derivative,

dφ

dz
= ±

√
2q2e2c0

εε0kBT

(
eqeφ/kBT − 1

)1/2
, (4.24)

where we have eliminated the integration constant by choosing φ(z = 0) = 0 without loss

of generality and set z0 = z again. The sign of the root corresponds to taking the derivative

at the left or the right boundary, see Fig. 4.11, and as here we consider 0 ≤ z ≤ d/2 the

positive root has to be taken. Integration in φ from 0 to φ0 results in∫ φ0

0
dφ

dz

dφ
=

√
2qec0kBT

εε0

∫ φ0

0
dφ
(
eqeφ/kBT − 1

)−1/2
(4.25)

⇔ z =

√
εε0

2qec0kBT

(
−2kBT

qe
×

arctan

[(
eqeφ/kBT − 1

)1/2
])

. (4.26)

Introducing the inverse length κ2 = 2π`Bc
0 with the Bjerrum length `B = q2e2/4πεε0kBT ,

this simplifies to

z = −1

κ
arctan

[(
eqeφ/kBT − 1

)1/2
]
, (4.27)

which can be inverted and solved for the electrostatic potential:

e−qeφ/kBT = tan2(κz) + 1 (4.28)

⇒ φ(z) = 2
kBT

qe
ln (cos(κz)) . (4.29)
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Applying the boundary condition from Eq, (4.21) gives

σ

εε0
=

dφ

dz

∣∣∣∣
z=d/2

= −2kBT

qe
κ tan(κd/2). (4.30)

The solution for the electrostatic potential, Eq. (4.29), is then obtained from the solution

of the transcendental equation [199]

κ tan (κd/2) = b−1. (4.31)

where we introduced the Gouy–Chapman length (using the definition that σ < 0), b =

−qe/2π`Bσ.

According to Eq. (4.29) the physical solution must fulfill cos (κz) > 0, i.e.,−π/2 <

κd/2 < π/2 and considering the fact that lengths should be positive the solution is unique

in the interval 0 < κ < π/d. Correspondingly, the cation (as σ < 0) density is obtained

from the Boltzmann equation as

ρ(z) = c0e
−qeφ/kBT =

κ2bσ

cos2(κz)
. (4.32)

The interaction pressure can now be obtained via the contact value theorem as the

excess osmotic pressure at the midplane, where the field is zero according to Eq. (4.21)

[200]

ΠPB = kBTc(z = 0), (4.33)

which considering the dependence of κ on d yields

ΠPB = kBT
[
κ2(d)bσ

]
=

kBT

2π`Bq
κ2(d). (4.34)

For the analysis of our simulations, we express all length-scales in nanometers, such that

the prefactor of the latter expression reads as kBT/nm3 = 41.42 bar.

We will now discuss two limiting cases, which we obtain by multiplying Eq (4.31) with

d. In the first limit, d/b� 1, the resulting interaction pressure is mainly entropic as ions

get sucked into the slab, thus we refer to it as ideal gas regime. Expanding Eq (4.31) to

third order [70] one obtains

κ2 =
2

db
− 1

3b2
. (4.35)
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The resulting pressure,

Πid/kBT ≈
2σ

qed
+

2π`B
3e2

σ2, (4.36)

consists of two terms, the first of which is the entropic pressure N/V due to the counter-

ion confinement, the second term is due to electrostatic interactions between the charged

plates. Note that if the expansion is performed to linear order only, the resulting pressure

is simply N/V , thus the same as an ideal gas.

On the other hand, if d/b� 1, electrostatic interactions dominate in this so-called Gouy–

Chapman regime and the tangens in Eq (4.31) gets maximal as its argument approaches

π/2, thus here we obtain

κ = π/d. (4.37)

Note that the Poisson–Boltzmann pressure is always repulsive and for d� b it decays as

d−1, whereas at larger separations d� b it goes like d−2,

ΠGC ≈
π

2`Bq

1

d2
, (4.38)

and is independent of the surface charge.

In Figure 4.12 we show the Poisson-Boltzmann interaction pressure using the solution

of the transcendental equation (4.31) as well as the limiting cases. Clearly, the osmotic

pressure dominates for small separations and as long as the interaction between the ions

and the charged walls is small. In our simulations systems, however, we cover roughly

values 0.1 < d/b < 10, which makes the exact solution of the transcendental equation

necessary.
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Figure 4.12.: Electrostatic pressures in PB theory obtained from the nonlinear PB
equation Eq. (4.34) (empty symbols), from Gouy–Chapman approximation Eq. (4.38) (or-
ange dashed line) and in the limit d � b Eq. (4.36) (green dashed line). The red dashed
line is only the osmotic contribution from Eq. (4.36).
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5. Hydration friction in nano-confinement:

from bulk via interfacial to dry friction
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Summary & Outlook

The water molecular details are of utmost importance for a in-depth understanding of

the interaction between surfaces in the aqueous environment. This not only applies to

biological systems, but also for many industrial applications. For example, physiological

function and dysfunction is strongly related to the surface separation between membranes,

and friction between solvated surfaces on the nano-scale appears in every-day life, where

cartilage is a prominent example. The work presented in the preceding chapters aims

at extracting information about the water atomistic details obtained from Molecular Dy-

namics (MD) simulations and incorporating them into complementing continuum models

for the surface–surface interactions. It is important to stress that the fact that common

continuum models fail on molecular lengthscales is not necessarily because the employed

approaches become invalid, but rather because the material parameters, or say response

functions, differ from the ones that are macroscopically accessible and can be measured

in bulk-like systems. Rigorous modeling of all relevant degrees of freedom in computer

simulations makes the relevant observables directly accessible and offers the possibility to

test theoretical models to and gain new insight into the molecular details of experimental

observations.

Before summarizing the results of this work, it is important to emphasize that - like

in experimental setups - the use of the correct ensemble crucially matters in simulations.

One typical way of experimentally determining the surface–surface interactions, is the

method of osmotic stress, discussed in Chapter 1 and Appendix A, and the same approach

can be employed in computer simulations. However, the precise knowledge of the water

chemical potential is required, which numerically is still challenging. Controlling the water

chemical potential, which we discuss in Appendix A, then allows to analyze the underlying

interaction mechanisms. The constant chemical potential ensemble is implemented in

MD simulations by adjusting either the water number, or the simulation volume. The

corresponding computational methods and simulation setups were improved in the context

of this work

Performing simulations of surface–surface interactions in explicit water at controlled

water chemical potential, we extract the water dielectric response in planar confinement

between soft, hydrophilic surfaces in Chapter 2. For a water slab thickness below 1 nm

the dielectric response is highly asymmetric: while the component parallel to the inter-

face slightly increases compared to bulk, the perpendicular one decreases drastically due

to anti-correlated polarization of neighboring water molecules. The flexible polar head-

groups contribute significantly to the dielectric profile and we present an effective dielectric
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tensorial box model suitable for coarse-grained electrostatic modeling.

We quantify the interaction pressures between membranes in terms of a Landau–Ginzburg

theory, as proposed in the 1970s by Marčelja and Radić, in Chapter 3. The essential idea

in this model is that the water contribution to the surface interaction is due to water

ordering, however there are many possible choices for order parameters, some of which are

attractive, some repulsive. We investigate an experimentally well studied model membrane

system consisting of Dipalmitoylphosphatidylcholine (DPPC) bilayers in the ordered and

disordered state and show that the relevant order parameters follow from the water po-

larization, for which we find quantitative agreement between the polarization profiles and

the decay lengths of the indirect, water-mediated pressure. To study the effects of surface

structure and chemistry more deeply, we also include a Decanol bilayer in our analysis. Us-

ing Gaussian field theory, the free parameter in the Landau model is determined from the

order parameter fluctuation, which allows to quantitatively predict the pressures within

the one-dimensional mean-field model. The water polarization constitutes about 10% of

the indirect repulsion between the membranes and we find other order parameters to be

negligible for the total repulsion. Considering that the shape of the indirect pressures as

well as the order parameter profiles are well described by the expressions resulting from the

Landau–Ginzburg model, we attribute the different prefactor to contributions stemming

from lateral correlation effects and the extended surface polarity distribution

The electrostatic interactions between surfaces across an aqueous solution is of funda-

mental importance, as most biological or industrial surfaces become effectively charged in

contact with water. We study the interplay of hydration and electrostatic forces (Chap-

ter 4) by comparing a Decanol model system, where we artificially put surface charges

on the headgroups, in the presence of counter-ions with the uncharged surface. Such a

procedure is inspired by atomic force microscope (AFM) measurements of self-assembled

monolayers with the same headgroup chemistry, which are attached to a gold cathode.

Using the AFM tip as the anode, the interaction at different electric fields, similar to a

variation of the surface charge in our setup, can then be studied. At separations d > 0.5 nm

the exponential hydration repulsion has decayed to zero and the simulations pressures at

low charge density are consistent with solution of the Poisson–Boltzmann equation. With

increasing surface charge density we observe a qualitative change in the pressure–distance

curves, which is not captured within the classical continuum electrostatic models. The

behavior at small separations d < 0.5 nm is strongly influenced by repulsive ion–surface in-

teractions, however the exponential repulsion dominates the total pressure in this regime.

Our results reveal that the interaction can be thought of as a combination of hydration

and electrostatic repulsion only at the lowest surface charges, which is important for the

interpretation of experimental data.
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Nanoscopic confinement also has dramatic effects on the viscous properties of water,

which is relevant when hydrated surfaces in close contact are sheared against each other, for

example in bio-lubrication applications. Experiments suggest an increased water viscosity,

but interpretation of the experimental data is often difficult due to the fact that it remains

unclear whether the linear regime with respect to the shear velocity is reached. Further,

the mechanism of hydration layer friction is unclear. We study the shear friction between

polar surfaces by extensive non-equilibrium molecular dynamics simulations in the linear-

response regime at low shearing velocity, which is the relevant regime for typical biological

applications. We show that an effective viscosity profile can be derived from momentum

balance taking into account the fact that the local stress varies on lengthscales comparable

to the variation of the local velocity, which enables the employment of the continuum

expressions down to the molecular lengthscales. Decreasing the water film then reveals

three distinct friction regimes, where in thick water slabs friction is governed by the bulk

water viscosity. At separations of about a nanometer the highly viscous interfacial water

layers dominate and increase the surface friction, while at the transition to the dry friction

limit interfacial slip sets in. We finally construct a confinement-dependent friction model

which accounts for the additive friction contributions from bulk-like water, interfacial

water layers and interfacial slip and which is valid for arbitrary water film thickness.

In conclusion, we have established molecular simulations at controlled water chemical

potential as a tool to extract microscopic information, which can be incorporated into

standard continuum theoretical models. Non-local effects are correctly included in such

models in terms of a suitably defined effective observable, as we have shown for the dielec-

tric and viscous response functions. The interactions between surfaces in aqueous solution

can then be analyzed step by step in terms of hydration, electrostatics, or frictional effects,

where simulations allow us to study the contribution of each contribution separately. Thus

this work contributes a significant step in understanding the interplay of different effects

involved in surface–surface interactions across aqueous solutions.

Future work could be aimed at combining the interplay of ions in between charged

surfaces and friction: Recent experiments show an extreme reduction of friction that is

attributed to the hydration shells that surround charges in water [227]. We observe that

the presence of surface charge and ions leads to an increase in the water slab width at

a given load (Chapter 4). Simulations could lead to insights into the mechanism of the

reduced friction that is observed in such systems and which is of high relevance in bio-

logically lubricated systems. Further systems that could be analyzed using the employed

simulation methods are charged surfactants and lipid systems, for which a multitude of

experimental data is available. Controlling water chemical potentials is an elementary key

in obtaining the surface–surface interactions in nano-confinement. A logical next step in
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this direction is to include salt at given chemical potential. In an ideal binary mixture the

chemical potentials of water and salt are related via a Gibbs–Duhem relation, thus measur-

ing the chemical potentials explicitly in bulk yields insights into the salt solution behavior.

The interactions at controlled salt chemical potential then yield the possibility to study

e.g. lipid systems in contact with a salt solution reservoir, which is the relevant physio-

logical condition. A further point that builds upon the research conducted in this work

include dielectric profiles in the presence of mobile ions. The parallel dielectric compo-

nent can be obtained rather straightforwardly by subtracting the monopole contributions.

However, for the perpendicular component the technical procedure is more involved as the

static permittivity needs to be calculated from the frequency dependent dielectric response

function, where the ionic currents need to be subtracted. For further progress in quan-

titative modeling of the hydration repulsion, lateral correlations might need to be taken

into account, as proposed in Chapter 3. From atomistic simulations the lateral structure

factor can be obtained and employed into the corresponding theoretical expressions. To

conclude, this work constitutes a starting point for rich future work in different directions

and the obtained molecular information will drastically improve quantitative modeling of

experimental data.
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A. Simulations at prescribed chemical

potential

The computer simulation of interacting surfaces nowadays still is a challenging task, as

the chemical potential of water needs to be considered explicitly [95–97]. In this appendix

we first derive the equivalent osmotic pressure that is commonly used in experiments [53]

and can also be evaluated in simulations once the water chemical potential is known.

The precise measurement of a water chemical potential is numerically very demanding

due to the molecular interactions that need to be considered and which we discuss in

Appendix A.3. Simulations at controlled chemical potential can then be performed using

the thermodynamic extrapolation method (TEM) [98], where either the box size Lz or the

water number Nw can be adjusted. Finally, we discuss the pressure contribution due to

internal stress, which needs to be considered when performing simulations with molecular

restraints.

A.1. The Gibbs–Duhem relation for equivalent osmotic pressures

The Gibbs–Duhem equation for bulk water, Nw dµ = −SdT +V dΠ, evaluated at constant

temperature yields(
∂µ

∂Π

)
T

=
V

Nw
= vw(Π). (A.1)

From Eq. (A.1) the chemical potential difference between a bulk water reservoir at chemical

potential µb and pressure Π0 and water confined between two surfaces at interaction

pressure Π follows as

∆µ = µ− µb =

∫ Π0

Π
vw(Π′) dΠ′. (A.2)

In osmotic stress experiments, as well as in the corresponding simulations, the pressure

is fixed by atmospheric conditions Π0. Using that water is incompressible up to several

kilobars [98] allows to define an equivalent osmotic pressure using the bulk water volume

v0
w as

∆Π = Π−Π0 = −∆µ

v0
w

. (A.3)
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While the bulk water volume can be measured directly in simulations, the accurate deter-

mination of chemical potentials is more involved and discussed in the next section.

A.2. Measurement of the chemical potential

In order to measure the chemical potential of water, µ, with an accuracy as high as δµ ≈
0.02 kBT , which, using Eq. (A.3) and the bulk water molecular volume v0

w = 0.0304 nm3,

corresponds to a pressure resolution of δΠ ≈ 10 bar at T = 300 K, we decompose µ into

three contributions,

µ(z) = kBT log ρ(z) + µLJ(z) + µC(z). (A.4)

The first term is the ideal gas contribution, where ρ(z) is the water mass density at

position z. The other two terms correspond to the excess Lennard-Jones (LJ) and Coulomb

contributions, respectively. In thermodynamic equilibrium, the total chemical potential

µ is independent of the position z, therefore it can be evaluated at an arbitrary position,

which we chose in the center of the water slab between the surfaces.

A SPC/E water molecule consists of a single LJ interaction site only, therefore it is

convenient to evaluate µLJ via the Widom Test Particle Insertion method (TPI) [228].

Most simulation packages provide corresponding routines to perform these insertions con-

veniently, or can be easily adapted [229]. Including the water partial charges, however,

leads to drastic convergence problems, see Ref. [xiii]. The density can directly be obtained

from the trajectory and is basically free of statistical errors for sufficient sampling. Con-

fidence intervals δµLJ are determined from the trajectory using bayesian estimators for

the standard error [230]. For the three Coulomb interaction sites of a water molecule we

evaluate the free energy difference between a neutral water molecule without any partial

charges and a fully charged water molecule using a modified Hamiltonian approach [89, 90].

The electrostatic chemical potential µC is then estimated using the MBAR method [161],

yielding results consistent with thermodynamic integration, but contrary to this method,

where reliable error estimates are hard to obtain, it naturally provides the lowest vari-

ance estimator. To obtain estimates for µC with an accuracy in the order of 0.01kBT we

perform 18 simulations at different values of the coulomb coupling parameter λ, in steps

of 0.075 for 0 ≤ λ ≤ 0.45 and then in steps of 0.05 for 0.45 ≤ λ ≤ 1. Each λ-value

is typically sampled for 100 ns, thus including the TPI the total sampling time per data

point accumulates to about 2µs.
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A.3. Adjustment of the chemical potential in simulations

A.3.1. Adjustment of the particle number

We ajdust the chemical potential µ in our simulations at fixed box volume V = ALz via

changing the number of water molecules Nw. At fixed temperature T , lateral area A and

box height Lz and upon change of Nw, the normal pressure Π and the chemical potential

µ vary as

dΠ =

(
∂Π

∂Nw

)
A,Lz

dNw and dµ =

(
∂µ

∂Nw

)
A,Lz

dNw, (A.5)

where we dropped the temperature dependence. Eliminating dNw from the latter relations

yields

dΠ =

(
∂Π

∂Nw

)
A,Lz

(
∂Nw

∂µ

)
A,Lz

dµ =

(
∂Π

∂µ

)
A,Lz

dµ (A.6)

revealing a relationship between the change of the normal pressure and the change in the

chemical potential. The proportionality factor is the inverse partial water volume vw,(
∂Π

∂µ

)
A,Lz

≡ v−1
w . (A.7)

The partial water volume at given box length Lz can correspondingly be determined from

the slope ∂µ/∂Π at a fixed height of the simulation box Lz by varying the water number

Nw. An alternative way to evaluate vw can be derived from a Maxwell relation considering

the total differential of the grand-canonical potential Ω at fixed A and T ,

dΩ = −ΠAdLz −Nwdµ. (A.8)

We obtain

∂2Ω

∂Lz∂µ
=

(
−∂Π

∂µ

)
Lz

A, (A.9)

where we used that the lateral area A is constant. Alternatively, we can write

∂2Ω

∂µ∂Lz
=

(
−∂Nw

∂Lz

)
µ

. (A.10)
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From Eqs. (A.9), (A.10) and (A.7) we thus obtain

vw =

(
∂Lz
∂Nw

)
A,µ

A, (A.11)

which we evaluate from the simulation data for a given value of Lz by varying Nw and

interpolation. Figure A.1 compares the partial water volume obtained from Eqs. (A.7)

and (A.11). The values of vw for dw > 0.5 nm agree nicely among each other and also

with the SPC/E bulk value v0
w = V/Nw = 0.0304 nm3, which has been determined inde-

pendently from bulk water simulations. At smaller separations the partial water volume

vw increases significantly and satisfactory agreement is obtained for the both methods,

Eqs. (A.7) and (A.11).
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Figure A.1.: Partial water volume. The partial volumes are determined via Eq. (A.7)
(red squares) and Eq. (A.11) (green circles), respectively. The inset shows exemplary
data at dw = 1.47 nm and the fit used for determination of the water partial volume via
Eq. (A.7) (solid line). The dashed line indicates the slope according to the bulk water
partial volume, the horizontal blue line in the inset shows the corresponding bulk chemical
potential.

As follows from Eq. (A.7), the pressure Π(µ0) at the desired chemical potential µ0 can

be evaluated from the measured Π(µ) and µ via linear extrapolation,

Π(µ0) = Π(µ) +
µ0 − µ
vw

, (A.12)

which is equivalent to direct extrapolation of the pressure Π(Nw) as a function of the

water number Nw, where Nw is extrapolated itself such that µ = µb.

In general, the value vw is not a priori known, therefore, in order to evaluate the in-

teraction pressure at given surface separation from Eq. (A.12), at least two simulations
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with different Nw at fixed Lz have to be performed. The inset of Fig. A.1 shows an ex-

ample for µ as a function of the pressure Π at dw = 1.47 nm. In our simulation protocol,

for production runs the number of water molecules Nw(µ0) at bulk chemical potential is

obtained by linear extrapolation from the measured chemical potentials.

A.3.2. Adjustment of the box volume

It is also possible to adjust the chemical potential by changing the volume ALz of the sim-

ulation box and leaving the number of water molecules unchanged, which is often quicker

than adjusting Nw. However, when positional restraints are present in the simulations,

as in the case for Decanol in this work, care has to be taken in order to correctly scale

the reference coordinates: For the positional restraints as employed in Chapter 5, there is

no unique way of scaling the restraint positions without imposing an additional internal

stress. In Sections 2.6.2 and 4.3.1 we compare both approaches for the Decanol surfaces

and find numerical equivalence.

When the lateral area A is kept fixed and only the length in normal direction Lz is

changed, the dependent quantities are

dΠ =

(
∂Π

∂Lz

)
A,Nw

dLz and dµ =

(
∂µ

∂Lz

)
A,Nw

dLz (A.13)

Eliminating Lz from both relations this yields

dµ =

(
∂µ

∂Lz

)
A,Nw

(
∂Lz
∂Π

)
A,Nw

dΠ (A.14)

=

(
∂µ

∂Π

)
A,Nw

dΠ = vwdΠ, (A.15)

In this case we obtain a relationship between the changes in Π and µ, but this time the

proportionality factor is the partial water volume at given pressure Π, and if the reservoir

is at atmospheric conditions Π0 Eq. (A.3) is recovered,(
∂µ

∂Π

)
A,Nw

=

(
∂Lz
∂Nw

)
A,Π0

≡ v0
w. (A.16)

The water volume at constant pressure is technically simple to evaluate from MD simu-

lations and at ambient pressure Π0 = 1 bar is v0
w = 0.0304 nm in bulk. The interaction

pressure can thus be extrapolated linearly as

Π(µ0) = Π0 +
µ0 − µ
v0

w

. (A.17)
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This procedure is computationally advantageous since the water volume v0
w is constant for

all separations and does not need to be determined separately.

A.4. Interaction pressure with internal stress due to restraints

When imposing position restraints to molecules as done in our simulations, we impose an

internal stress. In order to see this more clearly, we consider the Hamiltonian in which we

introduce a harmonic position restraint acting on particle i at reference position z0,

H =
∑
i

(
q2
i

2m
+ Vi(r1, . . . , rN ) +

1

2
k(zi − z0)2

)
, (A.18)

where ri and qi are the position and momentum of particle i, respectively. The virial is

computed from the simulation trajectory according to

↔

ξ = −
N∑
i<j

1

2
rij ⊗ Fij , (A.19)

where Fij denotes the force acting between particles i and j at distance rij . The pressure

in z-direction follows from

Π =

〈
2

3V
(Ekin,z − ξzz)

〉
, (A.20)

where Ekin,z =
∑

imv
2
i,z/2 is the kinetic energy in z-direction. If the restrained par-

ticle i has no further interactions with other particles, the corresponding contribution

of the restraint potential to the pressure follows from Eqs. (A.18) to (A.20) and using

Fi0 = −k(zi − z0) and ri0 = (zi − z0) as −k (zi − z0)2 /2. This allows us to compute

the expectation value of the pressure due to the restraint using the equipartition theorem
1
2kBT =

〈
1
2k (zi − z0)2

〉
as

∆Π = −kBT

3V
. (A.21)

At 300 K in a typical simulation box of (5 nm)3 this corresponds to a contribution of about

0.1 bar per restraint in one direction. The expected pressure shift due to the positional

restraints for the Decanol system as employed in Chapters 2 to 4, where one restraint per

molecule acts in z-direction, thus is ∆Π ≈ −20 bar. In our simulation setup employed in

Chapter 5, where stronger restraints are necessary to stabilize the system under shear, we

impose 4 restraints per Decanol in z-direction. Accordingly for 200 molecules this predicts
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a pressure contribution of ∆Π ≈ −80 bar in the ideal limit.

However, the result in Eq. (A.21) only holds if the particle i is decoupled from all other

particles. Due to intramolecular interactions and the influence of neighboring molecules,

we expect deviations from this situation. Therefore we perform reruns of the trajectories

with restraints present, where now we turn off the restraining potential to determine ∆Π.

At large separations, where the surfaces do not interact, the difference in the pressure

corresponds to the contribution of the restraint potentials. Figure A.2 shows the corre-

sponding pressure shift, which for large separations follows as ∆Π = +16 ± 1 bar for the

system used in Chapters 2 to 4, shown as green line in Fig. A.2. For the setup employed

in Chapter 5 we obtain ∆Π = −74± 2 bar, shown as solid red line, and which is in good

agreement with our simple estimate in Eq. (A.21). In all reported pressures Π we sub-

tract the constant pressure at large separations, ∆Π, which is shown to be due to the

combination of the virial pressure calculation with constraint potentials.

0.0 0.5 1.0 1.5 2.0
dw [nm]

−100

−50

0

50

∆
Π

[b
ar

]

Decanol system Chaps. 2-4
Decanol system Chap. 5

Figure A.2.: Pressure shift due to internal stress caused by restraints. Data
shows the pressure difference between simulations with restraints and reruns of the same
trajectories but with restraints turned off. The solid line denotes the pressure shift at
large separations.
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Bruno Demé, Roland R. Netz, and Emanuel Schneck, “Tight cohesion between

glycolipid membranes results from balanced water–headgroup interactions,” Nature

Communications, vol. 8, p. 14899, 2017. DOI: 10.1038/ncomms14899
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R. Netz, “Simulation Techniques for Solvation-Induced Surface-Interactions at Pre-

scribed Water Chemical Potential,” in Computational Trends in Solvation and Trans-

port in Liquids, vol. 28, Godehard Sutmann, Johannes Grotendorst, Gerhard Gomp-
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between apparent viscosity and wettability in nanoconfined water,” Nature Commu-

nications, vol. 4, p. 2482, 2013. DOI: 10.1038/ncomms3482

[82] Y. Zhu and S. Granick, “Viscosity of Interfacial Water,” Physical Review Letters,

vol. 87, no. 9, p. 096104, 2001. DOI: 10.1103/PhysRevLett.87.096104

[83] M. Antognozzi, A. D. L. Humphris, and M. J. Miles, “Observation of molecular

layering in a confined water film and study of the layers viscoelastic properties,”

Applied Physics Letters, vol. 78, no. 3, pp. 300–302, 2001. DOI: 10.1063/1.1339997

146



Bibliography

[84] B. Pittenger, S. C. Fain, M. J. Cochran, J. M. K. Donev, B. E. Robertson, A. Szuch-

macher, and R. M. Overney, “Premelting at ice-solid interfaces studied via velocity-

dependent indentation with force microscope tips,” Physical Review B, vol. 63,

no. 13, p. 134102, 2001. DOI: 10.1103/PhysRevB.63.134102

[85] H. I. Kim, J. G. Kushmerick, J. E. Houston, and B. C. Bunker, “Viscous “Inter-

phase” Water Adjacent to Oligo(ethylene glycol)-Terminated Monolayers,” Lang-

muir, vol. 19, no. 22, pp. 9271–9275, 2003. DOI: 10.1021/la034585x

[86] J. Marra and J. N. Israelachvili, “Direct measurements of forces between

phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous elec-

trolyte solutions,” Biochemistry, vol. 24, no. 17, pp. 4608–4618, 1985. DOI:

10.1021/bi00338a020

[87] J. N. Israelachvili, Intermolecular and Surface Forces. London: Academic, 1992.

[88] T. J. McIntosh, A. D. Magid, and S. A. Simon, “Steric repulsion between phos-

phatidylcholine bilayers,” Biochemistry, vol. 26, no. 23, pp. 7325–7332, 1987. DOI:

10.1021/bi00397a020

[89] D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to

Applications. Academic Press, 2001.

[90] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids. Oxford University

Press, 1989.

[91] H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, “The missing term in

effective pair potentials,” The Journal of Physical Chemistry, vol. 91, no. 24, pp.

6269–6271, 1987. DOI: 10.1021/j100308a038

[92] C. Oostenbrink, A. Villa, A. E. Mark, and W. F. Van Gunsteren, “A biomolecular

force field based on the free enthalpy of hydration and solvation: The GROMOS

force-field parameter sets 53A5 and 53A6,” Journal of Computational Chemistry,

vol. 25, no. 13, pp. 1656–1676, 2004. DOI: 10.1002/jcc.20090
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