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1. Abstract (German): 
 
Blasentumore können in zwei  Phänotypen eingeteilt werden: dem muskelinvasiven 

beziehungsweise dem nicht-muskelinvasiven Blasentumor. Dernicht-muskelinvasive 

Blasentumor hat durch eine Tumorsektion und einer intravesikale Therapie gute Prognosen. 

Der muskelinvasive Blasentumor hat jedoch trotz Zystektomie und Cisplatin-basierter 

Chemotherapie weiterhin eine schlechte Therapieprognose. Für eine erfolgreiche Therapie ist 

die Identifizierung der zugrundeliegenden Stoffwechselwege des jeweiligen Phänotyps umso 

wichtiger. Um hierzu einen Beitrag zu leisten, wurden im Rahmen der vorliegenden 

Dissertation drei Studien durchgeführt. Im ersten Teil der Dissertation wurden Blasentumore 

aufgrund von verfügbaren Omics-Profilen und aufgrund von Literaturdaten charakterisiert. Im 

zweiten Teil der Arbeit wurden zur Blasentumor-Charakterisierung bioinformatische 

Datenbanken analysiert und im dritten Teil der Dissertation wurden Signalwege der 

Blasentumorgenese und –Progression anhand eines bioinformatischen Ansatzes analysiert. 

Die öffentlich zugänglichen Omics-Datenbanken und Datenbanken molekularer Merkmale 

des muskelinvasiven Blasentumors wurde mit dem Ziel analysiert, neue Zielgene der 

Erkrankung zu identifizieren. Die betreffenden Merkmale wurden in ein Protein-Protein-

Interaktionsnetz integriert, um hierdurch relevant Signalwege ausfindig zu machen. Hierzu 

wurde die Software-Werkzeuge ClueGo und ImPAla verwendet und gegenzeitig verglichen. 

Die resultierenden Signalwege wurden statistisch bewertet. Mit Hilfe dieses Ansatzes konnten 

insgesamt 14 Signalwege des Blasentumors identifiziert werden. Drei dieser 

Stoffwechselwege waren bisher noch nicht im Kontext des Blasentumors beschrieben 

worden; hierbei handelte es sich um Aktin- Zytoskeletton, den Neurotrophin-Signalweg sowie 

der Endozytose.  

Im zweiten Teil der Dissertation wurden durch die Verwendung von ClueGo 292 Signalwege 

und 471 Signalwege durch den Einsatz des ImPAla- Softwaretools extrahiert. Es zeigt sich 
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eine Übereinstimmung von 152 Signalwegen bei diesen Ansätzen. 137 der mittels ClueGo 

extrahierten Signalwege waren mit den 251 ImPAla Signalwege vergleichbar.  Im dritten Teil 

der Dissertation führte die bioinformatische Analyse von proteomischen Daten des Urins zur 

Identifizierung eines Signalweges, der für zugrunde liegende Alterungsprozesse relevant zu 

sein scheint. Insgesamt konnte im Rahmen der Dissertation gezeigt werden, dass ein Vielzahl 

sehr unterschiedlicher Signalwege in der Entwicklung des muskelinvasiven Blasentumor 

involviert sind. Die im Rahmen der Dissertation neu-identifizierten Signale sind im Rahmen 

von Folgeuntersuchungen zu validieren, um deren Bedeutung für den muskelinvasiven 

Blasentumor zu bestimmen. Das Software-Werkzeug ClueGo ist –zumindest im Kontext des 

muskelinvasiven Blasentumors- dem ImPAla-Ansatz aufgrund der geringeren Redundanz und 

des biologischen Informationsgehalts vorzuziehen. Darüber hinaus scheint die Analyse 

molekularer Signalwege anhand von peptidomischen Daten und Techniken geeignet zu sein, 

zusätzliche Informationen über Alterungsprozesse zu bieten.  

1. Abstract (English) 

BACKGROUND: Bladder Cancer (BC) has two distinct phenotypes. Non-muscle invasive 

BC has good prognosis and is treated by tumor resection and intravesical therapy, whereas 

muscle-invasive BC has poor prognosis and requires radical cystectomy combined with 

cisplatin-based chemotherapy. High-throughput sequencing technologies allow identification 

of individual molecular signatures to characterize the invasive phenotype.  

OBJECTIVE: Based on this background the objective of this thesis comprises of three parts. 

The first aim of the thesis was to characterize muscle-invasive BC on a molecular level by 

incorporating signatures from literature and omics profiles. The second aim was to evaluate 

the performance of pathway-enrichment obtained from two bioinformatics tools ImPAla and 

ClueGO. The third aim shows the use of bioinformatics in order to identify altered pathways 

relevant to ageing.    
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MATERIALS: Public domain -omics signatures and molecular features associated to muscle-

invasive BC were derived from literature mining to provide protein-coding genes. These 

features were integrated in a protein-interaction network to obtain functional pathways 

relevant to the phenotype. Pathway-enrichment was performed using ClueGO and ImPAla 

tools. The resulting pathway terms were filtered according to criterion: multiple comparison 

corrected p-value <0.05. 

RESULTS: In the first part of the thesis, the protein-interactions and pathway-enrichment 

yielded 14 significant pathway terms. Three pathway terms were not previously reported in 

muscle-invasive BC. The novel disease-associated pathways were regulation of actin-

cytoskeleton, neurotrophin-signalling pathway and endocytosis. In the second part, 292 

pathways were obtained from ClueGO and 471 pathways from ImPAla software. Comparison 

of the results obtained by the two applications yielded 152 pathway-terms with the same 

pathway name. 137 ClueGO pathway-terms were similar to 251 ImPAla pathways. In the last 

part, the results from a bioinformatics analysis of urinary-peptidomics data discovered a 

pathway-term “degradation of insulin-like growth factor-binding proteins” that was unique in 

the context of pathological ageing. 

CONCLUSIONS: The results of this thesis suggest that there is a complex interplay between 

pathways characterizing the muscle-invasive phenotype of BC. Further experimental 

validation of the three novel pathways with respect to progression and treatment response is 

indicated. In addition, the comparison of two prominent pathway enrichment tools ClueGO 

and ImPAla showed that ClueGO has better performance than ImPAla in pathway-enrichment 

analysis since the output is less redundant and contains all the biologically significant 

information. Lastly, molecular pathways enriched in normal and pathological ageing 

demonstrate that with the help of appropriate peptidomics technologies, urine could be used 

as a useful source of information in ageing research. 



 

 
1 

2. Introduction 
Urothelial bladder carcinoma is a common malignancy of the urinary tract system and 

comprises of two distinct clinical phenotypes, non muscle-invasive bladder cancer and 

muscle-invasive tumors. Muscle-invasive bladder tumors are treated with pre-operative 

(neoadjuvant) cis-platin-based chemotherapy followed by removal of the bladder, named as 

“radical cystectomy” 1. However, since a significant number of patients do not respond to 

chemotherapy treatment, a detailed investigation of the tumor molecular signature is required 

to select responsive patients for bladder cancer treatment 2. A better understanding of muscle 

invasive bladder cancer might be achieved by combining information obtained from 

individual biomarkers measured at the DNA, RNA and/or protein levels3. Along this 

background, the comprehensive characterization of altered molecular pathways provides 

significant clinical relevance in order to choose optimum diagnosis and treatment regimens 

for bladder cancer patients.  

Variable for individual bladder cancer patients, initial symptoms include hematuria 

and flank pain 4,5. Cystoscopy is the gold standard diagnostic procedure with a reported 

sensitivity of 62–84% and specificity of 43–98%. This wide variability in sensitivity and 

specificity indicates a significant inter-operator variability6. Non muscle-invasive bladder 

cancer comprises of distinct forms 7–9:  

a. Ta stage - the cancer is just in the innermost layer of the bladder lining.  

b. T1 stage - the cancer has started to grow into the connective tissue beneath the 

bladder lining 

c. carcinoma in-situ (CIS) - very early, high grade, cancer cells are only in the 

innermost layer of the bladder lining 9.  

Papillary tumors that are confined to the mucosa and that invade the lamina propria of 

the bladder are classified as stages Ta and T1 according to the Tumor-Node-Metastasis 

(TNM) classification system 10. The papillary carcinoma (Ta and T1) phenotype has a 

tendency to recur locally and it rarely invades the bladder basement membrane or 

metastasizes to adjacent organs. However, the flat carcinoma in situ (CIS) is often multifocal 

and is a dangerous lesion with a high tendency for bladder muscle invasion and metastasis11. 

Treatment of non-muscle invasive bladder carcinoma (Ta, T1 and CIS) involves endoscopic 

transurethral resection of visible tumors followed by adjuvant treatment with intravesical 

instillation therapy (Mitomycin/Epirubicin or Bacillus Calmette-Guerin (BCG)) depending on 

the estimated risk for progression. Irrespective of aggressive treatment and vigorous follow-

up, 70% of these tumors recur, and 25% of high-grade non-muscle invasive cancers (CIS) 
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progress into invasive phenotypes 12,13. 

Muscle invasive bladder cancers are advanced cancer stages and are classified as “T2 

– T4” according to the Tumor-Node-Metastasis classification system.  

a) T2 stage – is when the cancer has spread into the muscle layer of the bladder 

b) T3 stage – is when the tumor has grown through the muscle layer  

c) T4 stage – is when the cancer has spread into the prostrate, uterus or vagina, 

or into the wall of the pelvis or abdomen  

Furthermore, muscle invasive bladder tumors are also distinguished into three distinct 

molecular subtypes that have widely variable clinical outcomes and responses to conventional 

chemotherapy treatments: 

a. Basal subtypes  

b. Luminal subtypes  

c. “p53-like" tumors 14 

The basal muscle invasive bladder cancer subtypes are susceptible to have more 

invasive and metastatic disease at initial diagnosis and are associated with shorter disease-

specific and overall survival. The biomarkers for the basal muscle invasive bladder cancer 

subtype include CD44 antigen (CD44), Keratin, type II cytoskeletal 5 (KRT5), Keratin, type 

II cytoskeletal 72 (KRT72), Keratin, type I cytoskeletal 14 (KRT14) and Cadherin-3 (CDH3). 

The luminal muscle invasive bladder cancer subtypes are enriched with activating fibroblast 

growth factor receptor 3 (FGFR3) and human epidermal growth factor receptor 3 (ERBB3) 

mutations and Receptor tyrosine-protein kinase erbB-2 (ERBB2) amplifications, and the gene 

expression profiles are controlled by peroxisome proliferator activator receptor γ (PPARγ) 

and oestrogen receptor activation. The wild-type p53 is required for DNA damage induced 

apoptosis and is a central tenet in cancer biology 15. Therefore, it is interesting that the de-

novo and induced chemoresistance in muscle invasive bladder cancers was associated with 

wild-type p53 gene expression signatures. Nevertheless, TP53 mutation frequencies are 

similar in all three subtypes of muscle invasive bladder cancers (basal, luminal and p53-like), 

indicating that wild-type p53 was not responsible for the baseline and chemotherapy induced 

p53-like gene expression. Hence, it is proposed that ‘‘p53-like tumors’’ as measured by 

mRNA expression would be a more accurate predictor of de-novo and induced muscle 

invasive bladder cancers chemoresistance than would analyses of TP53 mutational status16. 

The determination of the molecular basis of these p53-like signatures is not yet defined and 

that could overcome de novo and/ or prevent acquired chemoresistance 14.   

The most important point for the planning of radical cystectomy in bladder cancer 
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tumors is the depth of invasion or muscular involvement (T category, P stage)17. Various 

treatments have proved useful for disease control in some patients with regional bladder 

cancer but the most common procedure for this situation is radical cystectomy18. A recent 

report highlights significant errors in clinical staging of patients with bladder cancer that 

underwent radical cystectomy 19. This staging error of cystectomy in the bladder tumors may 

cause very important mistakes on the decision for radical surgery treatment. Hence, obtaining 

an accurate staging diagnosis is particularly crucial in patient selection for surgical treatments 

(i.e. cystectomy) and the choice of chemotherapy. Due to the invasive procedure of 

cystoscopy and in order to improve accuracy in the phenotype detection, blood or urine 

biomarkers could support clinical assessment 20.  

High-throughput experimental platform technologies range from genomic sequencing to 

epigenomic, transcriptomic, proteomic and metabolomic profiling in order to characterize the 

molecular aspects of individual clinical phenotypes 21–28. Genomic sequencing comprises of 

applying recombinant DNA, DNA sequencing methods, and bioinformatics to sequence, 

assemble, and analyze the function and structure of "genomes" (i.e. the complete set of DNA 

within a single cell of an organism). Epigenomic sequencing is the determination of key 

functional elements that regulate gene expression in a cell – Epigenomes provide information 

about the patterns in which structures such as methyl groups tag DNA and histones (the 

proteins around which DNA is packaged to form the chromatin), and about interactions 

between distant sections of chromatin). Transcriptomics is the sequencing and quantification 

of transcripts – mRNA and microRNA or miRNA. Proteomics is the sequencing and 

quantification of the proteome and peptidome, and metabolomics is the technique of 

identifying and quantifying of metabolites. These techniques provide datasets that comprise of 

DNA-mutations, DNA-methylations, mRNAs, miRNA, proteins, peptides and metabolites. 

The advent of these approaches that generate a comprehensive view of the molecular 

landscape for a biological sample has introduced a paradigm shift in the way diseases are 

perceived 21,22,29.  

A variety of datasets for such molecular characterizations have become available that are 

stored in public databases, for e.g. in Array Express30 or Gene Expression Omnibus (GEO)31, 

which is a database that stores mRNA and miRNA datasets from transcriptomics experiments, 

Human Proteinpedia is a public repository that provides information on proteomics 

datasets32,33, Human Protein Atlas (http://www.proteinatlas.org/), which is an online portal 

that contains information on immunohistochemically validated proteins, or large data 

consolidation resources such as GeneCards34 that provides information for genomic, 
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proteomic, transcriptomic, genetic and functional information on all known and predicted 

human genes. This database aims to provide a quick overview of the current available 

biomedical information about the searched gene, including the human genes, the encoded 

proteins, and the relevant diseases.  

In regard to disease specific omics data, valuable general sources in oncology include 

The Cancer Genome Atlas (TCGA) (http://cancergenome.nih.gov/), Oncomine 35, and Online 

Mendelian Inheritance in Man (OMIM) 36. The Cancer Genome Atlas oncology portal 

currently lists single nucleotide polymorphism, methylation data, mutations, mRNAs, 

miRNAs and proteins relevant to bladder cancer. A recent report presents a systems biology 

approach for the analysis of the muscle invasive bladder cancer dataset contained in The 

Cancer Genome Atlas 37. Another database for bladder cancer that provides molecular 

features in regard to miRNAs identified in literature is also available 38,39. In addition, a user-

friendly analysis tool is also available and allows the evaluation of gene expression profiles 

determined by microarray studies across bladder cancer patients 40.  

Though omics profiling has provided an abundance of data, technical boundaries involving 

incompleteness of the individual molecular datasets together with the static representation of 

cellular activity limit the insights on molecular processes and their interaction dynamics 41–43. 

A large number of biological pathway analysis tools are available, including KEGG 44, 

PANTHER 45, REACTOME 46 and AmiGO 47 described in PathGuide 

(http://www.pathguide.org/), and allow detection of significant metabolic and signaling 

pathways. Albeit there are several well curated and reliable pathway database resources 48, 

significant efforts have been taken to expand biological pathway coverage beyond any single 

pathway data source. This is frequently carried out by integrating different pathway sources to 

build high quality integrative pathway models. However, biological data integration from 

heterogeneous sources has been challenging due to variability at the syntactic and semantic 

level. Syntactic variability is due to heterogeneity of molecular feature and pathway data 

formats, representation schemas and retrieval methods. Semantic variability is due to 

incompatible pathway names, signaling event representations and molecular identifiers. For 

example, different pathway databases may choose to provide information on post-translation 

modifications, interacting proteins within a complex, or cellular location. Hence all these 

limitations have inhibited the growth of high quality integrative pathway models 49–51.  

Previous omics studies report biomarkers associated with bladder cancer, and 

therapeutic targets that could allow development of personalized therapies 52–56. However, the 

information gathered from these large number of omics experiments is not fully exploited, as 
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the datasets generated are either scattered in many publications and databases or held in 

supplementary data files.  

Therefore, the aim of this thesis was primarily to characterize muscle invasive bladder 

carcinoma on a molecular level by incorporating scientific literature and omics data. In 

addition, the objective was to evaluate the performance of pathway enrichment analysis 

obtained from two bioinformatics tools ImPAla and ClueGO. Thirdly, the goal was to use 

bioinformatics and systems biology approaches in order to identify significant molecular 

pathways in age-associated diseases.  
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3. Methods 

3.1 Data sources for characterizing bladder cancer pathophysiology 

In order to retrieve molecular features associated with muscle invasive bladder cancer, 

“National Center for Biotechnology Information” (NCBI) PubMed, Web of Science, 

Google Scholar and the omics repositories Gene Expression Omnibus (GEO)31 and 

ArrayExpress30 were manually queried. Since the study involved the molecular 

characterization of muscle invasive bladder cancer, the criteria for selecting keywords 

depended specifically in regard to the muscle invasive phenotype. The keywords for the 

literature search included “bladder OR urothelial OR transitional cell” AND “neoplasm 

OR tumor OR carcinoma” AND “muscle” AND “invas* OR aggress* OR progress* OR 

inflammation” (Database version of June, 2015). The list of publications relevant to 

muscle invasion in bladder cancer was isolated from the complete list of retrieved papers. 

Publications were further screened for adequacy in sample size (at least 50 samples 

included in study design), magnitude of differential abundance (>2-fold change for 

proteomics, transcriptomics, metabolomics and miRNAs), False Discovery Rate <0.1 for 

mutations, p-values<0.05 for methylation and –omics studies, in addition to the specific 

phenotypic conditions; T2a/b, T3a/b, T4a/b. The muscle invasive bladder cancer specific 

molecular features retrieved from the publications comprised of various sources such as 

DNA-mutations, DNA-methylation, mRNAs, miRNAs, proteins (immunohistochemistry 

validations and proteomics) and metabolites. The features were then combined for further 

systems biology analysis. 

3.2 Protein-protein interactions  

In order to retrieve protein-protein interaction information for the muscle invasive bladder 

cancer associated proteins, protein-protein interaction databases including IntAct57, 

BioGRID58, STRING59 and Reactome46 were queried. By downloading the protein 

interaction information contained in each database, an integrated database was developed 

in order to contain all available non-redundant human protein-protein interaction 

information. This unique human protein list along with the protein-protein interactions 

information were then downloaded into the Cytoscape60,61 software to yield the human 

interactome based on experimental evidence. The proteins relative to muscle invasive 

bladder cancer were then selected from this human interactome and were put on a separate 

list. Muscle invasive bladder cancer proteins that had at least one binding partner in the 

list of muscle invasive bladder cancer specific proteins were retained in order to generate 

the muscle invasive bladder cancer specific interactome. 
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3.3 Pathway enrichment 

To retrieve molecular pathway information for muscle invasive bladder cancer, proteins 

from the muscle invasive bladder cancer interactome were subjected to pathway 

enrichment analysis. This analysis used two additional sub-applications from Cytoscape; 

ClueGO62 and CluePedia63. The statistical criterion used in generating molecular 

pathways included a two-sided hypergeometry test. Information from pathway databases 

such as Kyoto Encyclopedia of Genes and Genomes 44 and Reactome46 databases was 

used in retrieving significant pathways associated to muscle invasive bladder cancer with 

a Bonferroni corrected p-value<0.05. In addition, the list of pathways was inspected 

manually and redundant pathway-terms were combined hereby. The filtered list of 

pathway-terms was then divided into previously known pathways and novel findings in 

the context of muscle invasive bladder carcinoma. 

3.4 Comparison of pathway enrichment tools ClueGO and ImPAla 

To evaluate the performance of pathway enrichment, ClueGO and ImPAla enrichment 

tools were compared. ClueGO provides an advantage to perform cluster comparisons for 

pathway enrichment and allows the option to separately input up and down regulated 

molecules in the software. In addition, ClueGO provides an optional redundancy 

reduction feature (“Fusion”) to assess Gene Ontology (GO) terms that share similar 

associated features in a parent–child relation. This option was selected in the ClueGO 

pathway enrichment analysis to eliminate the redundant pathway terms. In contrast, 

ImPAla does not provide an option of redundancy reduction for pathway terms. The 

pathway databases selected for enrichment were KEGG. The statistical selection criterion 

taken into account for the enrichment analysis was the corrected for multiple comparisons 

p-value<0.05. The overlap assessment between the pathway outputs was performed 

manually.  
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4. Results 
 

4.1 Publication 1: Protein Interactome for Muscle Invasive Bladder Cancer. 
Akshay Bhat, Andreas Heinzel, Bernd Mayer, Paul Perco, Irmgard Mühlberger, Holger Husi, Axel S. 

Merseburger, Joost P Schanstra, Jerome Zoidakis, Antonia Vlahou, Harald Mischak, Vera Jankowski. PLoS One. 

2015. 
 

In the present study the bioinformatics model of proteomic changes in bladder cancer 

involved integrating available public domain data sets from PubMed, Google scholar and 

Web of science in the context of bladder muscle-invasive carcinoma (Figure 1). 

 
Figure 1. Data assembly workflow. PubMed, Google Scholar and Web of Science literature analysis and 

Omics data source screening for the systems based analysis in muscle invasive bladder cancer. 
 

In the first step of this analysis, the data collected was filtered using statistical 

measurements to include fold-change values, p-values and sample size for the specific 

phenotype of muscle invasive bladder cancer. The molecular features were then incorporated 

into systems biology tools to model protein-protein interaction networks, and further mapping 

them to biological molecular pathways.  
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The results revealed fifteen pathways as being affected in the progressive disease. 

Eleven from these pathways were reported previously and four pathways were novel findings 

in the context of muscle invasive bladder cancer (Figure 2). The fact that the majority of 

pathways identified by our analysis are involved in muscle invasive bladder cancer supports 

the validity of our approach. Moreover, the four novel pathways revealed by our analysis 

could be validated experimentally and offer new targets for biomarker discovery or therapy of 

muscle invasive bladder cancer. 

 
Figure 2. Muscle Invasive Bladder carcinoma interactome. 
Nodes (circles) in orange denote pathways identified as relevant in both literature and enrichment analysis, nodes 
in blue depicts pathways of relevance according to enrichment analysis.  

 

Table 1. Abbreviations for protein coding genes described in Figure 2. 
LAMB3 – Laminin subunit beta-3 LAMA3 - Laminin subunit alpha-3 

COL6A3 – Collagen alpha-3(VI) chain COL1A2 - Collagen alpha-2(I) chain 

TNC - Tenascin LAMC2 - Laminin subunit gamma-2 

COL4A6 - Collagen alpha-6(IV) chain ITGA5 - Integrin alpha-5 

COL5A3 - Collagen alpha-3(V) chain FN1 - Fibronectin 

COL3A1 - Collagen alpha-1(III) chain ITGB4 - Integrin beta-4 

LAMC1 - Laminin subunit gamma-1 ITGA6 - Integrin alpha-6 

COL5A1 - Collagen alpha-1(V) chain MYLK - Myosin light chain kinase, smooth muscle 

THBS1 - Thrombospondin-1 ACTN1 - Alpha-actinin-1 

ACTN4 - Alpha-actinin-4 ACTB - Actin, cytoplasmic 1 

FGFR1 - Fibroblast growth factor receptor 1 FGF2 - Fibroblast growth factor 2 
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FGF1 - Fibroblast growth factor 1 VEGFA - Vascular endothelial growth factor  

BCL2 - Apoptosis regulator Bcl-2 PTEN - Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and 

dual-specificity protein phosphatase PTEN 

CCND1 - G1/S-specific cyclin-D1 BAX - Apoptosis regulator BAX 

CTNNB1 - Catenin beta-1 ERBB2 - Receptor tyrosine-protein kinase erbB-2 

PDGFA - Platelet-derived growth factor subunit A MAPK1 - Mitogen-activated protein kinase 1 

BAD - Bcl2-associated agonist of cell death CTNND1 - Catenin delta-1 

F11R - Junctional adhesion molecule A MET - Hepatocyte growth factor receptor 

KDR - Vascular endothelial growth factor receptor 2 CAV1 - Caveolin-1 

EGFR - Epidermal growth factor receptor RAF1 - RAF proto-oncogene serine/threonine-protein kinase 

JUN - Transcription factor AP-1 BDNF - Brain-derived neurotrophic factor 

GAB1 - GRB2-associated-binding protein 1 YWHAZ - 14-3-3 protein zeta/delta 

CDKN1A - Cyclin-dependent kinase inhibitor 1 CDKN2A - Cyclin-dependent kinase inhibitor 2A 

CDK2 - Cyclin-dependent kinase 2 GNAI3 - Guanine nucleotide-binding protein G(k) subunit alpha 

TGFBR2 - TGF-beta receptor type-2 FGFR3 - Fibroblast growth factor receptor 3 

PRKCA - Protein kinase C alpha type HRAS - GTPase Hras 

CDK4 - Cyclin-dependent kinase 4 FAS - Tumor necrosis factor receptor superfamily member 6 

TP53 - Cellular tumor antigen p53 ABL1 - Tyrosine-protein kinase ABL1 

CDKN1B - Cyclin-dependent kinase inhibitor 1B MDM2 - E3 ubiquitin-protein ligase Mdm2 

TGFB3 - Transforming growth factor beta-3 ERBB4 - Receptor tyrosine-protein kinase erbB-4 

ERBB3 - Receptor tyrosine-protein kinase erbB-3 CASP3 - Caspase-3 

DUSP1 - Dual specificity protein phosphatase 1 ARAF - Serine/threonine-protein kinase A-Raf 

PTGS2 - Prostaglandin G/H synthase 2 PRKCG - Protein kinase C gamma type 

TGFBR1 - TGF-beta receptor type-1 ITPR3 - Inositol 1,4,5-trisphosphate receptor type 3 

PRKCZ - Protein kinase C zeta type TGFBR2 - TGF-beta receptor type-2 

PRKCG - Protein kinase C gamma type   
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4.2 Publication 2: Comparison of ClueGO and ImPAla for integrated 

pathway enrichment analysis. Akshay Bhat, Vera Jankowski, Antonia Vlahou, Harald Mischak, 

Jerome Zoidakis. Accepted in Jacobs Journal of Bioinformatics and Proteomics –[Epub ahead of print] 
 

 In this study, the total number of Kyoto Encyclopaedia of Genes and Genomes 

(KEGG) and Reactome pathway terms obtained from ClueGO was 292. ImPAla produced 

471 pathways (Table 1).  
 

Table 2. General information for the results obtained from the pathway enrichment analysis. 
Software Availability User input p-value correction 

method 

Total pathway 

output 

ClueGO Cytoscape plugin 435 entries Bonferroni 292 

ImPAla Web-based 435 entries Benjamini Hochberg 471 

 

By comparing the pathway results, 152 pathway terms exactly overlapped in ClueGO and 

ImPAla. 137 pathway terms from ClueGO were highly similar to 251 ImPAla pathway terms. 

Therefore, the total calculated overlap of pathways between the two tools equalled to 289 

ClueGO pathways that correspond to 403 ImPAla enriched pathways. In addition, the 

software also produced unique pathway terms. There were 3 unique pathways from the total 

292 ClueGO pathway terms whereas 68 pathways were unique from ImPAla. Both the 

enrichment tools yielded redundancy in the output results, however results from ImPAla were 

characterized by higher redundancies in pathway terms (for e.g. the pathway terms “DNA 

replication”, “synthesis of DNA”). Moreover, from the unique set of 68 ImPAla pathway 

terms, 12 pathway terms were not related in the context of bladder cancer. Some of these 

pathways include alcoholism, amphetamine addiction, inflammatory bowel disease (IBD), 

malaria, viral myocarditis and prion diseases. On the contrary, the 3 unique pathways 

obtained by ClueGO were relevant to bladder cancer. It was also noted that the overlapping 

pathway terms from ImPAla and ClueGO contained pathway names that are not relevant in 

the context of bladder cancer. These common terms totalled to 34 ImPAla and 30 ClueGO 

pathway terms. The common pathway terms included oocyte meiosis, tuberculosis, type II 

diabetes mellitus, circadian clock and shigellosis. The comparison of significant overlapping 

pathways obtained from ClueGO and ImPAla is represented as a Venn diagram in (Figure 3). 
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Figure 3. Venn Diagram represents the overlap of pathway terms between ClueGO and ImPAla software. All 
pathways enriched are selected based on p-value < 0.05  
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4.3 Publication 3: Identification of urinary age-specific peptides in a healthy 

population. Esther Nkuipou-Kenfack, Akshay Bhat, Vera Jankowski, Julie Klein, William Mullen, 

Antonia Vlahou, Thomas Koeck, Mohammed Dakna, Joost P. Schanstra, Petra Zürbig, Andreas Pich, Harald 

Mischak. DOI: 10.18632/oncotarget.5896 
 

In the last section of the thesis, the bioinformatics approach used in the molecular 

characterization of bladder cancer muscle invasion was applied to a peptidomics dataset 

relevant to ageing associated disorders.  

Ageing is a complex systemic process and “omics” approaches aiming at the study of 

multiple features simultaneously have been applied to unravel novel underlying molecular 

processes64. Proteomics studies confirmed that oxidative stress occurs ubiquitously during 

ageing65. However, a shortcoming in most of these studies was the use of animal models. The 

scarcity of human subjects can be largely attributed to the inability in obtaining appropriate 

tissue samples. Thus, a way forward in ageing research could be the investigation of readily 

available body fluids. 

In this study, a small-scale urinary peptidome of 324 healthy individuals was 

investigated. The patients aged between 2 to 73 years and showed the feasibility to obtain 

high-resolution molecular information readily available from body fluids such as urine66.  

Subsequently, the urinary peptidome profiles of 11,560 individuals were investigated in an 

attempt to identify specific ageing-associated alterations and to elucidate pathological 

derailment in normal ageing. The results obtained showed perturbations mainly in collagen 

homeostasis, trafficking of toll-like receptors and endosomal pathways that were significantly 

associated to the healthy ageing group. Moreover, degradation of insulin-like growth factor-

binding proteins was a unique identification deregulated in pathological ageing cohorts 

(Figure 4a and 4b). 
 

  
Legends for figure 4a and 4b 
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Figure 4a: Molecular pathways associated with pathological ageing. The network represents each pathway as 
individual octagonal node, while the circled nodes represent the predicted proteases that were targeted from the 
identified urinary peptides denoted in purple diamond nodes. The edges (links) between pathways denote an 
approximation of biological interaction between the pathways based on the cross-pathway feature overlap. 
 
 

 

 
Figure 4b: Molecular pathways associated with normal ageing. Legends for the diamond nodes with a suffix 
of “-C/N” represent the peptide’s cleavage site; i.e. “-C” for C-terminus and “-N” for the N-terminus.” 
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    Table 3. Abbreviations for protease and peptide names in figure 4a and 4b. 

Protease Peptides 
MMP2 - 72 kDa type IV collagenase COL1A2-N - Collagen alpha-2(I) chain 

MMP14 - Matrix metalloproteinase-14 COL3A1-N - Collagen alpha-1(III) chain 

MMP8 - Neutrophil collagenase COL1A2-C - Collagen alpha-2(I) chain 

ADAMTS5 - A disintegrin and metalloproteinase with thrombospondin 
motifs 5 

COL3A1-C - Collagen alpha-1(III) chain 

MMP9 - Matrix metalloproteinase-9 COL4A3-C - Collagen alpha-3(IV) chain 

CTSK - Cathepsin K COL1A1-N - Collagen alpha-1(I) chain 

MMP7 - Matrilysin COL25A1-N - Collagen alpha-1(XXV) chain 

MMP13 - Collagenase 3 COL6A1-C - Collagen alpha-1(VI) chain 

CTSL1 - Cathepsin L1 COL2A1-C - Collagen alpha-1(II) chain 

CTSS - Cathepsin S COL1A1-C - Collagen alpha-1(I) chain 

MMP12 - Macrophage metalloelastase COL9A3-N - Collagen alpha-3(IX) chain 

ADAMTS4 - A disintegrin and metalloproteinase with thrombospondin 
motifs 4 

COL4A1-C - Collagen alpha-1(IV) chain 

PLC - 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 COL25A1-C - Collagen alpha-1(XXV) chain 

F2 - Prothrombin COL16A1-C - Collagen alpha-1(XVI) chain 

MMP25 - Matrix metalloproteinase-25   

CAPN1 - Calpain-1 catalytic subunit   
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5. Discussion 
 

For an early diagnosis and successful targeted treatment, molecular characterization of 

individual disease phenotypes and prediction of novel biomarkers is essential. By the use of 

network biology approaches such as bioinformatics analysis tools, pathway databases, and 

statistical criteria, a comprehensive understanding of the complex molecular mechanisms in 

genetic disorders can be achieved. This would be advantageous in better prognosis and early 

clinical intervention of the individual phenotype. Based on this background, the aim of this 

thesis was to characterize muscle invasive bladder carcinoma on a molecular level by 

incorporating signatures from scientific literature screening and omics profiling. The 

characterization was achieved by integrating collected data to perform protein-protein 

interactions and pathway enrichment analysis.  

In first part, of this study, automated data retrieval from the literature resulted in a first 

collection of molecular features associated with muscle invasive bladder cancer, and, 

combination with omics profiling data, allowed the creation of a mechanistic (pathway) map 

linked to muscle invasive bladder cancer. By deriving bladder cancer-associated protein 

coding genes on the basis of such pathway maps provides a systematic foundation for 

experimental analysis regarding association with development of muscle-invasive disease.  

In the second part of the thesis, the performance of pathway enrichment was compared 

for significant pathway outputs yielded from ClueGO and ImPAla in the context to bladder 

cancer. Only two widely used and up-to-date pathway database resources, KEGG and 

Reactome were selected. Adding more pathway databases in the analysis would introduce 

higher redundancy in pathway outputs. In regard to manually updating database sources, the 

ClueGO application allows users to update individual pathway database source in order to 

obtain latest data whereas ImPAla is an omics-integration focusing towards metabolomics 

integration and pathway enrichment application that contains the latest update of January 

201567. In addition, ImPAla also allows the incorporation of differential expression 

information for molecules such as magnitude of differentially expressed fold changes and 

multiple comparison corrected p-values. Nevertheless, ImPAla does not offer the option to 

input separately up and down regulated genes and does not predict activation/deactivation of 

an affected pathway in contrast to ClueGO. In addition, ClueGO provides users to analyze 

different omics datasets such as genes, mRNAs, proteins, single nucleotide polymorphisms, 

metabolites and miRNAs. This gives the advantage in using one analysis and visualization 

tool for all high-throughput sequencing and profiling experiments. Furthermore, having a 
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single analysis tool also helps to prevent errors due to compatibility when transferring data 

between different software applications. Therefore, ClueGO is preferable to ImPAla for 

pathway enrichment and in the comprehensive characterization of molecular diseases. 

In the last section of the thesis, the analysis of the urinary peptidome of ageing-

associated peptides was detected. Differentially expressed age-associated peptides were 

identified using capillary electrophoresis coupled with mass spectrometry (CE-MS). The 

Proteasix software was then used in order to predict proteases that cleaved the identified 

urinary age associated peptides68. The generated data) were then subjected to systems biology 

and bioinformatics approaches such as pathway enrichment analysis in order to characterize 

molecular pathways that were associated with normal and pathological ageing. Findings 

demonstrated that with the help of appropriate peptidomics technologies, urine could be used 

as a powerful biological fluid in ageing research.  

In conclusion, it is demonstrated in this thesis that by using bioinformatics and 

systems biology methodologies a better understanding of complex molecular mechanisms 

such as tumor invasion in bladder cancer is possible. In addition, ClueGO pathway 

enrichment tool has better performance than ImPAla in pathway enrichment analysis since the 

pathway output is less redundant and contains all the biologically significant information. The 

combination of a systems biology approach and individual proteins biochemical features 

offers a thorough molecular description of muscle invasive bladder cancer.   
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Abstract
Muscle invasive bladder carcinoma is a complex, multifactorial disease caused by disrup-
tions and alterations of several molecular pathways that result in heterogeneous pheno-
types and variable disease outcome. Combining this disparate knowledge may offer
insights for deciphering relevant molecular processes regarding targeted therapeutic ap-
proaches guided by molecular signatures allowing improved phenotype profiling. The aim
of the study is to characterize muscle invasive bladder carcinoma on a molecular level by in-
corporating scientific literature screening and signatures from omics profiling. Public domain
omics signatures together with molecular features associated with muscle invasive bladder
cancer were derived from literature mining to provide 286 unique protein-coding genes.
These were integrated in a protein-interaction network to obtain a molecular functional map
of the phenotype. This feature map educated on three novel disease-associated pathways
with plausible involvement in bladder cancer, namely Regulation of actin cytoskeleton, Neu-
rotrophin signalling pathway and Endocytosis. Systematic integration approaches allow to
study the molecular context of individual features reported as associated with a clinical phe-
notype and could potentially help to improve the molecular mechanistic description of the
disorder.

Introduction
Bladder cancer (BC) presents with an estimate of 72,570 new cases diagnosed and 15,210
deaths across the United States [1] in the year 2013, clearly demonstrating a need for improved
diagnosis and therapy. Bladder cancer is the ninth most frequent malignancy with an approxi-
mate ratio of 5:1 with respect to non-muscle invasive versus muscle invasive phenotypes [2].
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Major confounders are smoking and other occupational exposures along with genetic predis-
positions, such as e.g. N-acetyltransferase 1 (NAT1), N-acetyltransferase 2 (NAT2) and gluta-
thione S-transferase µ1 (GSTM1) polymorphisms [3]. Though variable for bladder cancer
patients, initial symptoms include haematuria and flank pain, commonly represented during
advanced cancer stages caused by ureteric obstructions due to invasion of the bladder muscular
wall or ureter, together with recurrent urinary tract infections [4, 5]. Evidence suggests that ma-
lignant transformation of the bladder is multifactorial and a multitude of genes are involved in
the development of muscle invasive or non-muscle invasive phenotype [6, 7]. The major histo-
logical type is transitional cell carcinoma occurring in approximately 90% of diagnosed bladder
tumours (with the rest being mainly squamous cell carcinomas and adenocarcinomas), with
categories of non-invasive papillary (Ta) or flat (Tis), subepithelial invasive (T1), muscle inva-
sive (T2–T4) and metastatic (N+, M+) diseases, all differing in biology, progression character-
istics and hence clinical management. Majority of the cases are non-muscle invasive (Tis, Ta,
T1) and 10–15% are muscle-invasive tumours (T2–T4), with the latter associated with fast re-
currence and poorer prognosis based on progressing towards metastasis formation.

Cystoscopy is the gold standard with a reported sensitivity and specificity in the range of
62–84% and 43–98%, respectively [8]. Due to the invasive nature of the procedure, but also for
adding accuracy in the detection, biomarkers assessed in blood or urine are considered as bene-
ficial for supporting clinical assessment [9]. This is also relevant for disease prognosis as bio-
markers measured at the DNA, RNA and/or protein levels provide the potential to choose best
surveillance measures and treatment regimens for specific patient populations regarding halt-
ing the development of muscle invasive disease [10]. Treatment of papillary and non-muscle
invasive high-grade carcinoma involves endoscopic transurethral resection of visible tumours
followed by adjuvant treatment with intravesical instillation therapy (Mitomycin/Epirubicin or
Bacillus Calmette-Guerin (BCG)) depending on the estimated risk for progression. Irrespective
of aggressive treatment and vigorous follow-up, 70% of these tumours recur, and 25% of high-
grade non-muscle invasive cancers progress into invasive phenotypes [2, 11].

The comparison of the genetic characteristics of muscle-invasive and non-invasive tumours
revealed that non-invasive tumours over-express HRAS and FGFR3 or produce highly activat-
ed forms of these proteins. As a result, the Ras/MAPK pathways are up-regulated in non-
invasive tumours [12]. Muscle-invasive BC is associated with alterations of p53, retinoblastoma
protein (RB1) and tumour suppressors controlling cell cycle processes, in addition to elevated
expressions in epidermal growth factor receptor (EGFR), human epidermal growth factor re-
ceptor 2 (HER2/ErbB2), matrix metallopeptidase 2 (MMP2) and MMP9 and deletions in
p16Ink4a and P15Ink4b [3].

High-throughput experimental platform technologies ranging from genomic sequencing to
proteomic and metabolomic profiling are now being used for molecular characterization of
clinical phenotypes [13–19]. A variety of datasets have become available e.g. in Array Express/
Gene Expression Omnibus (GEO) for transcriptomics, Human Proteinpedia for proteomics, or
in large data consolidation platforms such as GeneCards [20]. In regard to disease specific
omics data, valuable general sources in oncology include TCGA (http://cancergenome.nih.gov/
), Oncomine [21], and OMIM [22]. Though omics profiling has provided an abundance of
data, technical boundaries involving incompleteness of the individual molecular catalogues to-
gether with the static representation of cellular activity limits the insights on molecular process-
es and their interaction dynamics [23–25]. Despite these challenges, omics-based profiling has
significantly advanced bladder cancer research, providing the basis for an integrative analysis
approach in delineating a more comprehensive overview of molecular processes and pathways
that characterize variations of muscle-invasive urothelial carcinoma [12].
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On the effector level, proteins interact and co-operatively form specific molecular processes
and pathways. Intermolecular interactions include various types being represented as networks
(graphs) with molecular features denoted as nodes (vertices) together with their interactions
(edges). A large number of biological pathway resources has become available, including
KEGG [26], PANTHER [27], REACTOME [28] and AmiGO [29] described in PathGuide
(http://www.pathguide.org/), all displaying well-defined human molecular metabolic and sig-
nalling pathways together with disease-specific pathways (e.g. pathways in cancer). Molecular
features being identified as associated with bladder cancer can be interpreted on the level of
such pathways, adding to a functional interpretation of molecular feature sets characterizing
the phenotype.

To add to our understanding of muscle-invasive bladder carcinoma (MIBC), we derived a
phenotype-specific network model (interactome) by integrating omics signatures characteriz-
ing MIBC, reported in scientific literature and databases. Our procedure incorporated scientific
literature screening and signatures from omics profiling, resulting in 1,054 protein-coding
genes being associated with MIBC, further consolidating to 286 genes on the interactome level.
The results display deriving a systems-level model for molecular phenotyping of bladder cancer
muscle invasion, presented as multiple affected pathways.

Materials and Methods
Data sources for characterizing bladder cancer pathophysiology
For consolidating molecular features associated with muscle invasive bladder cancer, NCBI
PubMed, Web of Science, Google Scholar and the omics repositories Gene Expression Omni-
bus (GEO) [30] and ArrayExpress [31] were queried. The keywords for the literature search in-
cluded “bladder OR urothelial OR transitional cell” AND “neoplasm OR tumor OR
carcinoma” AND “muscle” AND “invas!OR aggress!OR progress!OR inflammation” (Data-
base version of April, 2014). By construction this search query focused specifically on muscle
invasive bladder neoplasm. For extracting protein-coding genes associated with these publica-
tions gene-2-pubmed as provided by NCBI was used [32]. The list of publications relevant to
bladder cancer muscle invasion was isolated from the complete list of papers indexed in
PubMed along with the associated gene IDs (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
gene2pubmed.gz). Profiling experiments were further screened for adequacy in sample size
(at least 50 samples included in study design), magnitude of differential abundance (>2-fold
change) and the specific phenotypic conditions; T1, T2a/b, T3a/b, T4a/b (Figs. 1 and 2). In addi-
tion, only papers mentioning the keywords “molecular” and “biomarker” were retained for de-
riving the literature mined MIBC molecules and pathways.

Interaction data and induced subgraph
Protein interaction information was obtained by querying IntAct [33], BioGRID [34], and
Reactome [28] leading to a total of 233,794 interactions covering 13,907 protein-coding genes
within the human interactome (Databases in version of April, 2014). Mapping the MIBC asso-
ciated molecular features on this consolidated interaction network [13] provided an MIBC-
specific induced subgraph. MIBC associated features not connected to at least another such fea-
ture were disregarded from further analysis.

Functional analysis
Cytoscape’s plug-ins ClueGO and CluePedia was used to identify pathways that are being
over-represented in the set of features located in the induced subgraph [35, 36]. KEGG pathway
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terms served as the clustering criterion using a two-sided hypergeometry test followed by Bon-
ferroni correction (significance level of 0.05) for identifying significantly affected pathways.
General disease pathways (such as pathways in cancer, miRNA’s in cancer, bladder cancer etc.)
were discarded to obtain a set of generic pathway terms [13].

Protein coding gene selection based on literature mining
From the set of MIBC-associated protein-coding genes, each gene symbol was evaluated for
being a member of the MIBC pathway set. The evidence of identified pathways and extracted
genes involved in MIBC was assessed based on the level of annotation depth, defined as the
number of individual studies identifying such protein-coding genes as involved in MIBC. Spe-
cifically, such evidence was derived from metadata available in PubMed. Gene-2-pubmed was
used for linking the molecules contained in the induced subgraph to publications relevant to
bladder cancer muscle invasion. The quality of publications obtained for each molecule was as-
sessed based on manual reviewing. Only papers where a direct link of the molecule to bladder
cancer muscle invasion was proven were retained. For the entire pathway set, the ratio between
the number of molecules being linked to at least one urinary bladder neoplasm publication and
the number of features in the pathway was computed and used for relevance ranking. For indi-
vidual protein-coding genes identified in literature the number of linked urinary bladder neo-
plasm publications was used as relevance ranking criterion.

Results
Data Mining
Mining of published articles and omics repositories led to a collection of 285 references after
manual screening (Fig. 1). This screening was performed to discard duplicated studies retrieved

Figure 1. Data assembly workflow. PubMed, Google Scholar andWeb of Science literature analysis and Omics data source screening with focus on
transcriptomics. From the 4263 abstracts screened 3979 articles were excluded not specifically focusing on muscle-invasive bladder cancer phenotype
(stages T2–T4). 188 studies out of 285 articles were discarded, as these did not meet required study designs and 2-fold change in magnitude of differential
abundance of identified features. This restriction resulted in 1,279 protein-coding genes and was further used in the systems based analysis for MIBC.

doi:10.1371/journal.pone.0116404.g001
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from the varying repositories as well as articles not explicitly focusing on muscle-invasive blad-
der carcinoma. All molecular features were converted to their official gene symbol by using the
UniProt ID Mapping service [37]. The resulting set of references yielded in total 1,279 proteins
of which 1,054 were unique protein-coding genes associated with MIBC (S1 Table). For collect-
ing specifically proteins involved in MIBC, we further screened these 285 articles with the key-
words (“molecular and biomarker”) to retrieve 122 proteins that had a tag “biomarker”
mentioned in these articles (S2 Table). This restriction helped in discarding general articles
containing gene symbols that were not associated to the muscle-invasive phenotype. The same
set of 285 articles was used to collect all pathways connected to bladder carcinoma. Thus, 11
pathways reported in the literature to be associated with bladder cancer were obtained (S3
Table).

The largest number of features associated with MIBC resulted from transcriptomics with a
total of 716 gene symbols. Metabolites were mapped to protein coding genes using the Human
Metabolome Database (HMDB) [38] and provided 329 gene symbols. The miRNAs from the
transcriptomics studies were mapped to their respective gene targets using the service from
miRbase [39, 40]. In addition, DNA-methylation studies provided 77 gene symbols respective-
ly. DNA-mutation studies reported 35 gene symbols. Scientific literature analysis provided 178
protein-coding genes, of which 122 were further annotated as indicators of muscle-invasive
bladder cancer. The detailed information on all differentially expressed molecular features is
available in S2 and S4–S8 Tables.

Data Source Overlap
With respect to the feature set overlap, 52 gene symbols were identified in both, literature min-
ing and individual omics signatures (S1 Table). Of the 1,054 unique gene symbols, 716 protein-
coding genes were from transcriptomics studies, 13 of these were found on DNA-methylation
level, 13 on DNA-mutation level, and 19 on the metabolome level (Fig. 2a). This relatively
weak overlap on the level of individual features, however, is a frequent finding in cross-Omics
data consolidation, in part stemming from constraints of applied methods, and different sam-
ple matrices under investigation in each case [41, 42].

Induced Subgraph
To increase evidence in regard to the association of molecular features with MIBC we included
protein-interaction information as a filter mechanism, i.e. combining evidence from statistical
analysis with biological (interaction) data. For this analysis, the molecular feature set was re-
duced from 1,054 unique protein coding genes to 592 gene symbols. The reduction in the pro-
tein list was mainly caused because the protein coding genes indirectly linked from
metabolomics and miRNA profiling were not incorporated in the pathway analysis due to low
evidence linking to respective targets and enzymes. Further disregarding features not showing
interactions to other members of the MIBC set resulted in 286 protein-coding genes repre-
sented on the muscle invasive bladder cancer-specific subgraph. The list of the initial 1,054 pro-
teins, the 592 proteins disregarding metabolomics data and miRNA screens, and the list of 286
proteins that form protein-protein interactions in the MIBC subgraph is available in S9 Table.
This set of protein-coding genes with strong evidence regarding association with MIBC and
holding interactions to other such features was included in pathway analysis (Fig. 2b).

Pathway enrichment
KEGG pathway enrichment analysis of the MIBC molecular feature set represented on the in-
duced subgraph utilizing ClueGO and CluePedia resulted in 15 molecular pathways being
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significantly affected in the context of muscle invasive bladder carcinoma (Fig. 3, S3 Table). In
detail, 11 of these pathways were previously identified in literature, in addition to 4 presumably
novel pathways that resulted from the interactome analysis.

The network in Fig. 3 represents each pathway as individual node, while the edges between
pathways denote an approximation of biological interaction between the pathways based on
the cross-pathway feature overlap. This pathway map allowed evaluating the functional context
of the 122 literature-mined protein candidates in the context of MIBC.

Fig. 3 describes pathway terms enriched using the MIBC-specific induced subgraph. Catego-
rizing the pathway terms in known and novel pathways according to literature, we obtained
11 pathways that were reported in the literature, namely Focal adhesion consisting of 40 pro-
tein coding genes, MAPK signalling pathway with 26, ECM-receptor interaction and Cell cycle
with 17 features each, p53 with 16, Tight junction and Adherens junction with 15 features
each, Leukocyte transendothelial migration with 12, VEGF signalling pathway with 11, and
Gap junction containing 10 protein coding genes (see S3 Table). The novel set of pathways that
were enriched in the analysis contained 4 pathway terms of which 3 pathways were resting on
significant association with the muscle-invasive bladder cancer phenotype, namely Regulation
of actin cytoskeleton holding 18 protein coding genes, Endocytosis with 16 and Neurotrophin
signalling with 13 (Table 1). The highest overlap in gene symbols was found between regulation
of actin cytoskeleton pathway and serotonergic synapse containing ARAF, HRAS, RAF1 and
MAPK1, neurotrophin signalling pathway and regulation of actin cytoskeleton pathway, con-
taining MAPK1, RAF1 and HRAS. The overlap of gene symbols between endocytosis and regu-
lation of actin cytoskeleton pathway was FGFR3, EGFR and HRAS, while those between

Figure 2. Feature set Overlap. A. Redundant features were discarded from 1,279 protein coding genes resulting in 1,054 unique features.The overlap
between individual omics studies and literature were calculated. B. The 1,054 protein coding genes were further reduced to 592 by discarding enzymes
linked to metabolites as well as miRNA targeted gene symbols, further included for deriving the induced MIBC subgraph resting on BioGRID, IntAct and
Reactome protein interaction information.

doi:10.1371/journal.pone.0116404.g002
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Figure 3. Muscle Invasive Bladder carcinoma interactome, set of 286 protein coding genes.Nodes in orange denote pathways identified as relevant in
both literature and enrichment analysis, nodes in blue depicts pathways of relevance according to enrichment analysis. Node size scales with the number of
gene symbols encoded in each pathway term.

doi:10.1371/journal.pone.0116404.g003

Table 1. KEGG pathways significantly associated with muscle invasive bladder carcinoma utilizing the gene set embedded in the induced
subgraph.

KEGG Pathway Name Number of MIBC
features

Bonferroni
corrected p-value

Overlapping protein-coding genes

Regulation of actin
cytoskeleton

18 0.005874 PDGFA, FGF1, RAF1, EGFR, ACTN4, FGFR1, ITGB4, FGFR3, MYLK, HRAS,
ACTN1, FGF2, ITGA5, ARAF, FN1, MAPK1, ACTB, ITGA6

Endocytosis 16 0.0344 EGFR, MDM2, TGFBR2, FGFR3, HRAS, ERBB3, TGFB3, TGFBR1, ERBB4,
CAV1, MET, PRKCZ, KDR

Neurotrophin signalling
pathway

13 0.01022 BDNF, RAF1, BAD, HRAS, ABL1, GAB1, BCL2, TP53, BAX, YWHAZ, JUN,
MAPK1

Serotonergic synapse 12 0.0278 RAF1, GNAI3, PRKCG, ITPR3, HRAS, CASP3, PTGS2, DUSP1, ARAF,
MAPK1, PRKCA

Pathway terms, total number of MIBC features associated with the term, Bonferroni corrected p-value and specific gene symbols found overlapping
amongst the 4 pathway terms.

doi:10.1371/journal.pone.0116404.t001
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neurotrophin signalling pathway and serotonergic synapse were HRAS, RAF1 and MAPK1.
The least overlap of gene symbols between pathways was seen for neurotrophin signalling
pathway and endocytosis, only sharing HRAS. Subsequently, there was no protein-coding gene
overlapping for endocytosis and serotonergic synapse.

We performed an additional pathway enrichment analysis that involved an alternative set of
gene symbols. From the full set of protein coding genes (707 molecules excluding metabolite
and miRNA targetted gene symbols), we restricted to members being present in more than one
study type (e.g. ERBB2 was found in proteomics, mRNA and literature mining). This restric-
tion resulted in 72 gene symbols, again forwarded to pathway enrichment analysis. Fig. 4 de-
tails pathway terms enriched using this reduced set of protein coding genes. Seven pathway
terms were enriched in this analysis. Categorizing these pathway terms into known from litera-
ture and novel pathways, 5 pathway terms were reported in literature and 2 pathways were
novel findings. The 5 previously known pathway terms included Focal adhesion, Cell cycle,
and p53 signalling pathway, ECM-receptor interaction, and ErbB signalling (S10 Table). In re-
gard to the 2 novel pathways that were enriched from this analysis, the pathway terms were
T cell receptor signaling pathway and GnRH signaling. Table 2 details all pathways with their
overlapping gene symbols that were retrieved from this analysis. Regarding pathways with lit-
erature evidence the enrichment resting on the 72 gene symbols had a full overlap with the

Figure 4. Muscle Invasive Bladder carcinoma pathway enrichment, set of 72 protein coding genes.Nodes in orange denote pathways identified as
relevant in both literature and enrichment analysis; nodes in blue depict pathways of relevance according to enrichment analysis. The size of each node size
scales with the number of gene symbols encoded in each pathway term.

doi:10.1371/journal.pone.0116404.g004

Interactome and Muscle-Invasive Bladder Cancer

PLOS ONE | DOI:10.1371/journal.pone.0116404 January 8, 2015 8 / 16



15 pathway terms retrieved using the induced subgraph MIBC feature set. The 2 pathways not
showing an overlap were the novel pathways resting on the second gene set namely T cell re-
ceptor signalling and GnRH signalling (Fig. 4, S3 and S10 Tables).

Discussion
Understanding the molecular pathophysiology of muscle-invasive bladder carcinoma and re-
vealing the network of pathways involved in muscle invasion could lead to targeted therapy. In
addition, addressing specific dys-regulated pathways linked to progressive disease holds the
promise of supporting an improved, biomarker-based risk assessment followed by stratified
clinical intervention [2]. High throughput screening platforms have provided a wealth of infor-
mation in describing the molecular status reflecting a clinical phenotype, including bladder car-
cinoma [43, 44]. Experiments based on expression profiling using microarrays, and
fractionation techniques coupled to mass spectrometry utilizing tissue and urine as sample ma-
trix have supported molecular pathway-based discovery in bladder muscle invasive neoplasms
[12, 45]. The present study intended to characterize muscle invasive bladder carcinoma by in-
corporating scientific literature screening and signatures from omics profiling further linked in
an interaction context, resulting in a set of 286 protein-coding genes. Such analysis on the level
of networks and pathways was chosen with the expectation that miscellaneously found pheno-
typic features consolidate on a pathway level, under the assumption that they are functionally
linked and collectively affect the disease phenotype.

High-throughput DNA sequencing can yield erroneous data [46]. MS based proteomics ex-
periments generate enormous datasets that need to be carefully assessed [47].

Biological pathway databases play an essential role in annotating protein-coding genes re-
sulting from high-throughput profiling approaches. There are approximately 547 pathway da-
tabase resources available as listed in PathGuide (http://www.pathguide.org/). Albeit there are
several well curated and reliable pathway database resources as also described by our group
[48], significant efforts have been taken to expand biological pathway coverage beyond any sin-
gle pathway data source. This is frequently carried out by integrating different sources in order
to build high quality integrative pathway models without sacrificing data quality. However, bi-
ological data integration from heterogeneous sources has been challenging due to variability at
the syntactic and semantic level. Syntactic variability is due to heterogeneity of molecular fea-
ture and pathway data formats, representation schemas and retrieval methods. Semantic

Table 2. KEGG pathways significantly associated with MIBC according to gene symbols found in more than one omics study type.

KEGG Pathway Name Number of
features

Bonferroni corrected p-
value

Overlapping protein-coding genes

Focal adhesion 16 2.31E-011 COL3A1, HRAS, CCND1, COL11A1, FN1, THBS1, JUN, COL5A1,
RAF1, EGFR, COL1A2

Cell cycle 7 0.00141 CCND1, TP53, CDK4, CDKN2A, CDKN1A

p53 signaling pathway 6 4.17E-04 CCND1, THBS1, TP53, CDK4, CDKN2A, CDKN1A

ErbB signalling pathway 6 0.00172 HRAS, JUN, RAF1, CDKN1A, EGFR

ECM-receptor interaction 6 0.00151 COL3A1, COL11A1, FN1, THBS1, COL5A1, COL1A2

GnRH signalling pathway 5 0.0360 HRAS, JUN, RAF1, EGFR

T cell receptor signalling
pathway

5 0.048 HRAS, JUN, CDK4, RAF1

Pathway terms, number of molecules associated with the term, Bonferroni corrected p-value and specific gene symbols found overlapping amongst the 7
pathway terms.

doi:10.1371/journal.pone.0116404.t002
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variability is due to incompatible pathway names, signalling event representations and molecu-
lar identifiers. For example, different pathway databases may choose to provide information on
post-translation modifications, interacting proteins within a complex, or cellular location.
Hence all these limitations have inhibited the growth of high quality integrative pathway mod-
els [49–51].

Another issue that arises when aiming to integrate data from different omics platforms is
that conflicting results can be obtained. For example in some muscle invasive tumours pre-
sented in [52], transcriptomics analysis proved that the mRNA level of EGFR is up-regulated,
whereas proteomic analysis did not show differential expression at the protein level. One expla-
nation for such discrepancy may be translational regulation.

In KEGG, biological pathway categorization is currently available for several human key cel-
lular processes [13]. Mapping MIBC-specific features (corrected on the level of the induced
subgraph utilizing protein interaction information) to KEGG and performing enrichment
analysis provided a total of 15 pathways (4 novel and 11 cited in published studies). 68 of 122
literature-mined protein candidates of relevance in muscle-invasive bladder cancer were
identified as members of the identified pathways. This enabled to comprehensively rank path-
ways allowing the shortlisting of terms being individually discussed in the specific context of
MIBC.

We focused on expanding our knowledge on muscle invasive urothelial neoplasm affected
at the molecular level by comprehensively mapping available molecular datasets to pathways to
build an interactome network utilizing public domain data sources. By differentiating the path-
ways based on previously described pathways and novel ones we obtained 11 modules that
were known in context of bladder cancer muscle-invasion and 4 novel pathways. In respect to
the previously known urothelial bladder muscle-invasive carcinoma pathways, our analysis re-
trieved pathways such as MAPK signalling pathway, ErbB signalling pathway, cell-cycle path-
ways and VEGF signalling pathway, hence confirming the systems-level approach for the
particular phenotype [3, 12, 53, 54].

On the other hand, the interactome results also retrieved significant pathways comprising
of signalling pathways, cytoskeleton remodelling pathways and neuromuscular junctions.
Three molecular pathways were highly significant from the analysis, namely regulation of actin
cytoskeleton, neurotrophin signalling pathway and endocytosis.

Neurotrophins are a class of closely related proteins that control the function, survival and
development of neurons and have the potential to activate tropomyosin-related kinase (Trk)
family of receptors and down regulate tumour necrosis factor superfamily (p75NTR) through
which PI3K/Akt, Ras/Raf/MAP kinase, NF-kappa B and Jun kinase signalling pathways are
triggered. Trk-receptors with neurotrophin ligands have been identified as initiating tumour
progression, and the signalling pathway neurotrophins-Trk has been reported as a target for
therapeutic intervention in hormone-refractory prostate cancer (HRPC) and in human astro-
cytomas, and potentially could play a role in urothelial carcinoma [55–58]. Endocytic pathways
represent multiple aberrations in human neoplasms by being tightly and bi-directionally con-
nected to signalling pathways that could indicate malignant transformations of the tumours.
One of its regulators, DAB2, has also been reported to be prominent in advanced stages of
urothelial cancers, where a decreased expression of the molecule could be observed in metastat-
ic stages, and has been associated with high probabilities of recurrence and bladder carcinoma
mortality [59–61]. Deregulation of actin bound proteins, namely p38β, ATF3 and Rho family
of small GTPases which are involved in cytoskeletal remodelling, causes aberrant cell motility
that leads to the muscle-invasive and metastatic phenotypes in cancer [62–65]. Our analysis
highlights the role of the cytoskeletal remodelling pathway that contains integrins, cadherins
and adhesion proteins. The respective molecular pathways discussed above open new avenues

Interactome and Muscle-Invasive Bladder Cancer

PLOS ONE | DOI:10.1371/journal.pone.0116404 January 8, 2015 10 / 16



for further investigation of urothelial muscle-invasive carcinoma. One enriched pathway that
did not show any direct relation to bladder cancer was serotonergic synapse that contained
12 protein molecules (S3 Table).

The bioinformatics approach reported here involved integrating available public domain
data sets in context of bladder muscle-invasive carcinoma on an interaction network, and fur-
ther mapping them to biological pathway sources to reveal 15 pathways as being affected in
progressive disease. Eleven from these pathways were discussed previously in the context of
MIBC. It should be taken into account that while using such computational techniques to inte-
grate molecular signatures from varying resources, certain technical issues regarding the use of
appropriate global identifier need to be considered. In our approach, we discarded metabolite
and micro-RNA targets for the pathway enrichment analysis (i.e. gene symbols mapped from
metabolomics and miRNA data, service provided by HMDB and miRBase), resulting in 592
features from the total of 1,054 protein coding genes. This is mainly driven by hampered trans-
lation of metabolite and microRNA profiles to the level of involved protein coding genes, be it
on the target or enzyme level. In regard to genomics and epigenetics, we only incorporated
those gene symbols that contained epigenetic information on the protein/mRNA abundance
levels for the interactome analysis.

On the other hand, the two pathway terms GnHR receptor and T cell receptor signalling
pathways found as enriched on the basis of the 72 gene symbols being multiply identified
in, were not retrieved from the analysis resting on the full set of 286 features being derived
from the induced subgraph. Data evidence and selection biases clearly affect results of such
integrated analysis demanding strict quality control of input data sets as followed in our
study.

Apparently, each individual functional context highlights specific aspects of bladder cancer
pathophysiology, but only providing limited characterization of clinical outcome on the cohort
level.

In summary, automated data retrieval from the literature resulted in a first collection of mo-
lecular features associated with MIBC, and, complementing with omics profiling data, allowed
augmenting a mechanistic (pathway) map linked to MIBC. From the cross-sectional nature of
the underlying molecular feature collection no direct conclusion can be drawn regarding the
prognostic relevance of individual pathways. However, deriving bladder cancer-associated pro-
tein coding genes on the basis of such pathway maps provides a systematic foundation for ex-
perimental analysis regarding association with development of muscle-invasive disease. We are
confident that this approach can form the basis to rational selection of biomarkers for enabling
targeted analysis of potentially relevant key molecules.

Conclusions
Our results suggest that there is a complex interplay between interacting pathways that charac-
terizes the muscle invasive phenotype of invasive bladder cancer. We developed an integrated
molecular model of muscle invasive bladder cancer to allow selecting protein-coding genes on
the pathway level aimed at capturing a set of pathways of potential relevance in tumour pro-
gression. Further experimental validation of Neurotrophin signalling pathway, Regulation of
actin cytoskeleton and Endocytosis with respect to disease progression and treatment response
in muscle-invasive bladder carcinoma is indicated.

Supporting Information
S1 Table. Overlap Analysis, molecular feature sets from literature mining and omics
screening. Sheet one lists protein coding genes retrieved from DNAmutation, methylation,
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transcriptomics, metabolomics and literature screening. Redundant entries were ranked based
on the frequency of occurence. Combing all protein coding genes resulted in 1,054 unique pro-
tein coding genes.
(XLS)

S2 Table. Data Inclusion for Muscle Invasive Bladder Carcinoma—Non-Redundant Fea-
tures from Literature Mining. Provided are gene symbols pertaining to the muscle-invasive
phenotype (T2–T4) of bladder carcinoma identified in scientific literature, together with ex-
pression levels and PubMed identifiers.
(XLS)

S3 Table. Enriched Pathways in context of Urothelial Muscle-Invasive Carcinoma using the
286 molecular features from the induced subgraph. Provided are KEGG pathways together
with the number of MIBC-associated features, overlapping literature-mined gene symbols and
Bonferonni corrected p-values. The supporting table is divided into two sheets namely Novel
pathways and Literature-known pathways.
(XLS)

S4 Table. Data Inclusion for Muscle-Invasive Bladder Carcinoma—DNA-Methylation. Pro-
vided are gene symbols pertaining to the muscle-invasive phenotype (T2–T4) of bladder carci-
noma identified from methylation studies, together with expression and methylation levels in
addition to their PubMed identifiers.
(XLSX)

S5 Table. Data Inclusion for Muscle-Invasive Bladder Carcinoma—mRNA. Provided are
gene symbols pertaining to the muscle-invasive phenotype (T2–T4) of bladder carcinoma re-
sulting from transcriptomics studies (inculsion criteria of>50 molecules in the study), together
with expression levels and PubMed identifiers. Protein coding genes that only hold differential
expression information are provided with links from available studies.
(XLS)

S6 Table. Data Inclusion for Muscle-Invasive Bladder Carcinoma—miRNA. Provided are
miRNA targets pertaining to the muscle-invasive phenotype (T2–T4) of bladder carcinoma
from transcriptomics studies (inculsion criteria of>50 molecules in the study), together with
expression levels and PubMed identifiers.
(XLS)

S7 Table. Data Inclusion for Muscle-Invasive Bladder Carcinoma—Metabolites. Provided
are underlying enzymes for metabolites pertaining to the muscle-invasive phenotype (T2–T4)
of bladder carcinoma from metabolomics studies (inculsion criteria of>50 molecules in the
study), together with expression levels and PubMed identifiers. Protein coding genes that only
hold differential expression information are provided with links to the data retrieved from
available studies.
(XLS)

S8 Table. Data Inclusion for Muscle-Invasive Bladder Carcinoma—DNAMutation. Provid-
ed are protein coding genes with significant levels of mutations pertaining to muscle-invasive
phenotype (T2–T4) of bladder carcinoma and PubMed identifiers.
(XLS)

S9 Table. Protein coding genes involved in the induced Subgraph. Provided are the MIBC-
asociated gene symbols in three different columns; a. 1,054 unique gene symbols from initial
consolidation, b. 592 gene symbols excluding enzymes from metabolite signatures as well as
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miRNA targets c. 286 gene symbols that formed the induced subgraph, and d. interaction in-
formation among the 286 gene symbols.
(XLS)

S10 Table. Enriched Pathways in context of Urothelial Muscle-Invasive Carcinoma using
the 72 molecules that were found in more than one omics study. 7 pathway terms were en-
riched. The set of protein coding genes included is listed in sheet 2. Sheet 3 and 4 list known
and novel pathways together with the number of protein coding genes assigned and Bonferroni
corrected p-values. Sheet 5 and 6 list the overlapping gene symbols for all identified pathways.
(XLS)
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Abstract	
	
Background:	High-throughput	experimental	technologies	ranging	from	genomic	

sequencing	and	gene/protein	profiling	are	now	commonly	being	used	for	the	molecular	

characterization	of	diseases.	These	techniques	produce	large	datasets	of	differentially	

expressed	features	that	include	genes,	mRNAs,	proteins	and	metabolites.	The	abundant	

data	defy	straightforward	intuitive	interpretation.	Hence	the	correlation	of	molecular	

features	to	biological	pathways	may	ultimately	help	in	understanding	the	patho-

physiology	of	a	disease.	Many	available	computational	tools	allow	annotating	such	

integrated	datasets	at	the	pathway	level.	Two	prominent	tools	are	ClueGO	(Cytoscape	

plug-in)	and	ImPAla	(web	based	application).	Both	tools	provide	advantages	in	

integrating	different	pathway	databases.	However,	each	tool	abides	by	specific	statistical	

and	mathematical	algorithms	in	enriching	molecular	features	onto	pathway-centric	

networks.	

Materials	and	Methods:	Bladder	cancer	(BC)	specific	molecular	features	were	

retrieved	from	literature	and	omics	profiles.	The	data	comprise	of	differentially	

expressed	DNA-mutations,	DNA-methylation,	mRNAs,	miRNAs,	proteins	and	

metabolites.	These	features	were	combined	and	subjected	to	protein-protein	

interactions	to	yield	the	BC	interactome.	The	features	from	this	interactome	were	used	

as	the	input-list	for	the	pathway	enrichment	analysis.		

Results:	292	pathways	were	obtained	from	ClueGO	and	471	pathways	from	ImPAla.	The	

resulting	pathways	were	selected	according	to	the	following	significance	criterion:	

multiple	comparison	corrected	p-value	<0.05.	Comparison	of	the	results	obtained	by	the	

two	applications	yielded	152	pathway	terms	with	exactly	the	same	name.	Moreover,	137	

ClueGO	pathway	terms	were	similar	to	251	ImPAla	pathways.	Thus,	the	overall	overlap	

between	the	two	datasets	is	289	ClueGO	pathways	corresponding	to	403	ImPAla	

pathways.	ClueGO	yielded	3	unique	pathway	terms	whereas	in	the	case	of	ImPAla	68	

unique	pathways	were	obtained.	Both	datasets	contain	redundant	terms	but	the	ImPAla	

results	are	characterized	by	higher	redundancy.	In	addition,	ImPAla	yields	12	unique	

pathways	that	are	not	related	to	BC.		

Conclusion:	Cytoscape-ClueGO	has	better	performance	than	ImPAla	in	pathway	

enrichment	analysis	since	the	output	is	less	redundant	and	contains	all	the	biologically	

significant	information.	
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Introduction	
	

Next-generation	sequencing	and	profiling	techniques	ranging	from	genomics	to	

transcriptomics,	proteomics	and	metabolomics	have	transformed	biological	

research	by	allowing	a	comprehensive	monitoring	of	biological	systems	[1].	

These	technologies	yield	a	vast	amount	of	data,	typically	as	a	list	of	differentially	

expressed	proteins,	genes,	transcripts,	miRNA	and	metabolites	that	may	have	

specific	roles	in	a	given	clinical	phenotype	[2].	However,	these	lists	of	individual	

features	fail	in	providing	a	mechanistic	insight	for	the	molecular	characterization	

of	a	disease	[3].	Hence,	these	challenges	have	led	to	an	advent	of	new	functional	

annotation	approaches	in	which	individual	features	are	grouped	together	into	

pathways	by	statistical	or	mathematical	algorithms	[2].		An	important	advantage	

of	working	with	molecular	pathways	rather	than	individual	proteins	or	genes	is	

the	fact	that	it	is	often	easier	and	more	relevant	to	predict	the	function	of	a	

module	than	a	function	of	an	individual	protein/gene	[3].	Prediction	of	a	

functional	module	is	possible	only	if	the	pathway	contains	a	sufficient	number	of	

features	known	to	be	associated	to	that	pathway.	Such	functional	module	

prediction	is	also	known	as	enrichment	analysis;	as	it	builds	on	the	assumption	

that	features	could	be	assigned	to	a	particular	pathway	or	process,	grouped	and	

organized	in	Gene	Ontologies	(GO)	[4].	GO	are	sub-categorized	into	cellular	

component,	biological	process	and	molecular	pathway.	Enrichment	analysis	

determines	whether	the	number	of	features	attributed	to	a	specific	pathway	is	

higher	than	expected	by	chance.	This	can	be	calculated	using	statistical	methods	

such	as	χ2,	hypergeometric	tests	and	Fisher's	exact	tests	and	have	been	

implemented	in	many	software	packages,	like	R-Project	(http://www.r-

project.org/).	Some	of	the	frequently	used	software	packages	and	applications	

for	performing	enrichment	analysis	are	publically	available.	Some	of	the	

packages	include	ClueGO	[5],	BinGO	[6],	Gorilla	[7],	Enrichment	Map	[8],	

Metscape	[9],	InCroMap	[10],	3Omics	[11],	iPEAP	[12]	and	ImPAla	[13].	The	aim	

of	this	short	communication	is	to	evaluate	the	performance	of	pathway	

enrichment	analysis	obtained	from	two	bioinformatics	tools	ImPAla	and	ClueGO.	

The	two	applications	were	selected	because	ClueGO	has	more	than	120	citations	



	

	

(compared	to	other	programs)	whereas	18	articles	cited	ImPAla	(a	significantly	

higher	number	of	citations	compared	to	other	web-based	enrichment	tools.		

	

	

	

Materials	and	Methods	

The	list	of	bladder	cancer	associated	features	that	were	subjected	to	protein-

protein	interactions	(PPIs)	was	obtained	from	the	BcCluster	database	

(www.bccluster.org)	[14].	Protein	interaction	information	was	acquired	by	

querying	PPI	databases	such	as	IntAct	[15],	BioGRID	[16],	String	[17]	and	

Reactome	[18].	First,	all	available	PPIs	for	the	human	proteome	were	

downloaded	into	Cytoscape	[19]	to	form	the	human	interactome.	The	PPIs	

relevant	to	the	BC-associated	proteins	were	retrieved	from	this	human	

interactome.	Only	proteins	that	had	at	least	one	binding	partner	were	retained.	

This	step	yielded	435	entries	(in	official	gene-ids)	that	correspond	to	proteins	

from	the	BC	PPI.	The	list	of	435	entries	with	information	regarding	the	official	

gene	id	and	gene	name,	in	addition	to	the	differential	expression	of	the	feature	is	

provided	in	Supplementary	Table	S1.	This	list	was	then	subjected	to	pathway	

enrichment	using	ClueGO	and	ImPAla.		ClueGO	provides	an	advantage	to	perform	

cluster	comparisons	for	pathway	enrichment	and	allows	the	option	to	separately	

input	up	and	down	regulated	molecules	in	the	software.	In	addition,	ClueGO	

provides	an	optional	redundancy	reduction	feature	(Fusion)	to	assess	GO	terms	

that	share	similar	associated	features	in	a	parent–child	relation.	This	option	was	

selected	in	our	ClueGO	pathway	enrichment	analysis	to	eliminate	the	redundant	

pathway	terms.	In	contrast,	ImPAla	does	not	provide	an	option	of	redundancy	

reduction	for	pathway	terms.	The	pathway	databases	selected	for	enrichment	

were	KEGG	[20]	and	Reactome.	The	statistical	selection	criterion	taken	into	

account	for	the	enrichment	analysis	was	the	corrected	for	multiple	comparisons	

p-value	<	0.05.	The	overlap	assessment	between	the	pathway	outputs	was	

performed	manually.		



	

	

	

Results	and	Discussion	

The	overview	of	the	pathway	analysis	performed	by	ClueGO	and	ImPAla	is	

illustrated	in	Table	1.	The	total	number	of	KEGG	and	Reactome	pathway	terms	

obtained	from	ClueGO	was	292.	ImPAla	produced	471	pathways.	Additional	

information	for	the	raw	enriched	pathway	results	is	also	provided	in	

Supplementary	Table	S2.	This	information	includes	number	of	input	genes,	

corrected	p-value	scores,	Gene	Ontology	source	and	the	number	of	genes	held	in	

each	pathway.	By	comparing	the	pathway	results,	152	pathway	terms	exactly	

overlapped	in	ClueGO	and	ImPAla.	137	pathway	terms	from	ClueGO	were	highly	

similar	to	251	ImPAla	pathway	terms.	Therefore,	the	total	calculated	overlap	of	

pathways	between	the	two	tools	equalled	to	289	ClueGO	pathways	that	

correspond	to	403	ImPAla	enriched	pathways.	In	addition,	the	software	

programs	also	produced	unique	pathway	terms.	There	were	3	unique	pathways	

from	the	total	292	ClueGO	pathway	terms	whereas	68	pathways	were	unique	

from	ImPAla.	Both	the	enrichment	tools	yielded	redundancy	in	the	output	

results,	however	results	from	ImPAla	were	characterized	by	higher	

redundancies	in	pathway	terms	(for	e.g.	the	pathway	terms	“DNA	replication”,	

“synthesis	of	DNA”).	Moreover,	from	the	unique	set	of	68	ImPAla	pathway	terms,	

12	pathway	terms	were	not	related	in	the	context	of	BC.	Some	of	these	pathways	

include	alcoholism,	amphetamine	addiction,	inflammatory	bowel	disease	(IBD),	

malaria,	viral	myocarditis	and	prion	diseases.	On	the	contrary,	the	3	unique	

pathways	obtained	by	ClueGO	were	relevant	to	BC.	It	was	also	noted	that	the	

overlapping	pathway	terms	from	ImPAla	and	ClueGO	contained	pathway	names	

that	are	not	relevant	in	the	context	of	BC.	These	common	terms	totalled	to	34	

ImPAla	and	30	ClueGO	pathway	terms.	The	common	pathway	terms	included	

oocyte	meiosis,	tuberculosis,	type	II	diabetes	mellitus,	circadian	clock	and	

shigellosis.	In	addition,	there	were	some	common	terms	that	were	very	general	

in	the	description,	for	e.g.	“Disease	and	Developmental	biology”.	The	resulting	

raw	pathway	outputs,	exactly	overlapping	pathways,	highly	similar	pathways,	

unique	pathways	and	unrelated	pathways	retrieved	from	the	two	programs	are	

provided	in	Supplementary	Table	S2.	In	addition,	the	comparison	of	significant	



	

	

overlapping	pathways	obtained	from	ClueGO	and	ImPAla	is	represented	as	a	

Venn	diagram	in	Figure	1.	

	

	

	
Software	 Availability	 User	

input	

p-value	

correction	

method	

Total	

pathway	

output	

Reference	

ClueGO	 Cytoscape	

plugin	

435	

entries	

Bonferroni	 292	 [5]	

ImPAla	 Web-based	 435	

entries	

Benjamini	

Hochberg	

471	 [13]	

Table	1.	General	information	for	the	results	obtained	from	the	pathway	enrichment	analysis.	

	

In	conclusion,	output	by	both	software	tools	provided	a	significant	set	of	

pathways	for	the	enrichment	analysis.	However,	ImPAla	produced	a	significantly	

higher	number	of	pathways	than	ClueGO.	This	is	due	to	the	fact	that	ImPAla	does	

not	have	a	pathway	term	redundancy	reduction	feature.	Hence	this	could	be	the	

reason	for	the	high	redundancy	observed	in	the	ImPAla	pathway	term	list	(many	

common	pathways	with	different	names).	For	e.g.	the	pathway	term	Chagas	

disease	(American	trypanosomiasis)	was	retrieved	from	ClueGO,	whereas	

Chagas	disease	(American	trypanosomiasis)	and	African	trypanosomiasis,	were	

retrieved	from	ImPAla.	In	our	previous	publication	[14],	we	had	filtered	292	

ClueGO	pathways	to	make	them	non-redundant	for	the	database	storage.	This	

non-redundant	pathway	list	equals	90	BC	specific	pathways.	ImPAla	retrieves	

more	redundant	pathways	than	ClueGO.	Thus,	the	effort	to	manually	eliminate	

redundant	terms	from	the	471	ImPAla	derived	pathways	is	significantly	higher.	

In	addition,	the	68	unique	pathways	retrieved	by	ImPAla	contain	12	pathways	

not	related	to	BC.	Both	pathway	enrichment	tools	allow	the	input	of	regulation	

information	as	numerical	values	(fold	change)	and	p-values.	However,	ClueGO	

has	the	additional	feature	of	allowing	text	input	for	regulation.	Since	our	data	set	

contained	regulation	information	in	the	form	of	text	(up/down)	(Table	S1),	

ClueGO	was	able	to	incorporate	this	feature	in	the	pathway	enrichment	analysis.	

It	should	be	noted	that	if	the	user	in	ImPAla	does	not	provide	numerical	



	

	

regulation	values,	the	tool	considers	the	protein/gene	as	differentially	expressed	

but	does	not	assign	a	specific	trend	(up	or	down).	ClueGO	provides	additional	

options	that	allow	the	user	to	define	the	stringency	of	pathway	selection.	The	

options	include:	Kappa	statistics	in	order	to	generate	pathway	network	

visualizations,	mid-p-values	and	doubling	p-values	in	order	to	retrieve	

significant	pathways	based	on	user-defined	threshold	p-values,	setting	specific	

limits	for	ratios	of	differentially	expressed	genes	relative	to	the	total	number	of	

genes	present	in	a	pathway	in	order	to	consider	a	pathway	as	significant.	In	

contrast,	ImPAla	does	not	provide	these	features.	Moreover,	ClueGO	provides	a	

more	descriptive	data	output	that	contains	significant	additional	information	

when	compared	to	ImPAla	data	output.	The	common	columns	shared	among	the	

two	enrichment	tools	include	pathway	name,	pathway	source,	number	of	input	

genes	present	in	the	pathway,	total	number	of	genes	present	in	the	pathway	and	

corrected	p-values.	Additional	columns	provided	by	ClueGO	were	genes	down-

regulated	in	input	set,	genes	up-regulated	in	input	set,	Gene	Ontology	ID,	and	

percentage	input	Genes	present	in	pathway.	In	addition,	ClueGO	is	more	user-

friendly	when	compared	to	ImPAla	since	it	offers	better	help	options.	

	

In	the	study	by	Jaakkola	MK	et	al.	the	performance	of	six	enrichment	tools	were	

tested	on	experimental	datasets	from	six	renal-cell	carcinoma	and	four	type-1	

diabetes	samples.	The	software	programs	tested	included,	SPIA,	CePa,	DAVID,	

NetGSA,	GSEA	and	Pathifier.	From	the	resulting	enrichment	outputs,	the	authors	

noted	that	significant	pathways	were	different	according	to	different	enrichment	

methods,	and	the	number	of	significant	findings	depended	on	the	enrichment	

method.	Hence,	they	conclude	that	the	selection	of	the	enrichment	method	had	a	

large	impact	on	the	pathway	output	results	[21].	Our	attempt	was	to	compare	

the	performance	for	significant	pathway	outputs	yielded	from	ClueGO	and	

ImPAla	in	the	context	to	bladder	cancer.	It	could	be	stated	that	ImPAla	can	

provide	advantages	over	ClueGO	by	integrating	many	more	pathway	database	

resources	for	the	comprehensiveness	in	pathway	information.	However,	we	only	

selected	two	widely	used	and	up-to-date	pathway	database	resources,	KEGG	and	

Reactome.	Adding	more	databases	in	our	analysis	would	introduce	higher	

redundancy	in	pathway	outputs.	In	regard	to	manually	updating	database	



	

	

sources,	the	ClueGO	application	allows	users	to	update	individual	pathway	

database	source	within	Cytoscape	in	order	to	obtain	latest	data	whereas	ImPAla	

is	an	omics-integration	(with	a	focus	towards	metabolomics	integration)	and	

pathway	enrichment	application	that	contains	the	latest	update	of	January	2015.	

In	addition,	ImPAla	also	allows	the	incorporation	of	differential	expression	

information	for	molecules	such	as	fold	change	and	p-values.	Nevertheless,	

ImPAla	does	not	offer	the	option	to	input	separately	up	and	down	regulated	

genes	and	does	not	make	predictions	on	the	activation/deactivation	of	an	

affected	pathway	in	contrast	to	ClueGO.	In	addition,	Cytoscape	provides	various	

plug-ins	for	analysing	different	omics	datasets	such	as	genes,	mRNAs,	proteins,	

SNPs,	metabolites	and	miRNAs.	This	gives	the	advantage	in	using	one	analysis	

and	visualization	tool	for	all	high-throughput	sequencing	and	profiling	

experiments.	Furthermore,	having	a	single	analysis	tool	also	helps	to	prevent	

errors	due	to	compatibility	when	transferring	data	between	different	software	

applications.	Therefore,	we	conclude	that	Cytoscape-ClueGO	is	preferable	to	

ImPAla	for	pathway	enrichment	and	in	the	comprehensive	characterization	of	

molecular	diseases.	

	

	
Figure	1.	Venn	Diagram	represents	the	overlap	of	pathway	terms	between	ClueGO	and	ImPAla.	

All	pathways	are	selected	based	on	p-value	<	0.05	
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ABSTRACT

To assess normal and pathological peptidomic changes that may lead to an 
improved understanding of molecular mechanisms underlying ageing, urinary 
peptidomes of 1227 healthy and 10333 diseased individuals between 20 and 86 years 
of age were investigated. The diseases thereby comprised diabetes mellitus, renal 
and cardiovascular diseases. Using age as a continuous variable, 116 peptides were 
identified that significantly (p < 0.05; |ρ|≥0.2) correlated with age in the healthy 
cohort. The same approach was applied to the diseased cohort. Upon comparison of 
the peptide patterns of the two cohorts 112 common age-correlated peptides were 
identified. These 112 peptides predominantly originated from collagen, uromodulin 
and fibrinogen. While most fibrillar and basement membrane collagen fragments 
showed a decreased age-related excretion, uromodulin, beta-2-microglobulin and 
fibrinogen fragments showed an increase. Peptide-based in silico protease analysis 
was performed and 32 proteases, including matrix metalloproteinases and cathepsins, 
were predicted to be involved in ageing. Identified peptides, predicted proteases 
and patient information were combined in a systems biology pathway analysis to 
identify molecular pathways associated with normal and/or pathological ageing. 
While perturbations in collagen homeostasis, trafficking of toll-like receptors and 
endosomal pathways were commonly identified, degradation of insulin-like growth 
factor-binding proteins was uniquely identified in pathological ageing.
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INTRODUCTION

Normal physiological ageing is a complex, multi-
mechanistic systemic process that is influenced by genetic 
and environmental factors. It leads to a gradual decline in 
biological functions. Key molecular mechanisms identified 
in ageing include genomic instability, telomere attrition, 
loss of proteostasis and mitochondrial dysfunction 
[1]. However, information on normal physiological 
ageing may be blurred by alterations associated with 
pathologies (acute and chronic) developing in parallel with 
ageing and it is still often unclear whether an observed 
molecular change is due to ageing, or is (partially) due 
to concomitant diseases. It is thus obvious that more 
efforts should be invested into understanding molecular 
pathways underlying ageing in both healthy and 
diseased individuals. These may lead to strategies for the 
management of pathological complications during ageing.

As ageing is a complex systemic process, “omics” 
approaches aiming at studying multiple features at 
once, have been applied with the aim to unravel novel 
underlying molecular processes. Proteomic studies 
confirmed that oxidative stress occurs ubiquitously during 
ageing while other events were shown to be more tissue-
specific (reviewed in [2]). However, a shortcoming in most 
of these studies was the use of animal models [2]. The 
scarcity of human studies can be largely attributed to the 
inability in obtaining appropriate tissue samples. Thus, a 
way forward could be the investigation of readily available 
body fluids.

In a first small scale study, we investigated the 
urinary proteome in a cohort of 324 healthy individuals 
between 2 to 73 years of age showing the feasibility to 
obtain high resolution molecular information from readily 
available body fluids such as urine [3]. Meanwhile, 
we have accumulated multiple high-resolution urine 
peptidomics datasets that enable the investigation of 
ageing-associated changes in a large cohort [4]. In the 
present study, we therefore investigated the unique 
urinary proteome profiles of 11560 individuals in an 
attempt to identify specific ageing-associated alterations 
and investigate pathological derailment of normal ageing. 
This showed that perturbations in collagen homeostasis, 
trafficking of toll-like receptors and endosomal pathways 
were associated to healthy ageing, while degradation of 
insulin-like growth factor-binding proteins was uniquely 
identified in pathological ageing

RESULTS

Age-correlation analysis in the healthy group

Among the 11560 individual urinary peptidomes, 
1227 originated from individuals without disease and were 

thus considered healthy (age 20-86). Correlation analysis 
of 2223 individual sequenced peptides with age performed 
in the healthy peptidomes identified 116 significantly 
ageing-associated peptides (p ≤ 0.05) (Supplemental Table 
1). These peptides predominantly included fragments of 
collagen, fibrinogen, and uromodulin. Collagen fragments 
comprised 83 (72%) out of the 116 peptides identified. 
Amongst collagen fragments, most peptides originated 
from fibrillar collagens (89%) including type I collagen 
(47%) and type III collagen (11%) while basement 
membrane type IV collagens alpha-1and -3 showed a low 
abundance (2%). 

The majority of peptides (65%) showed a negative 
correlation with age (Supplemental Table 1). The two 
most negatively age-correlated peptides were two type I 
collagen alpha-1 fragments (ρ = -0.324, p < 0.0001 and 
ρ = -0.315, p < 0.0001, Supplemental Table 1) and 93% 
of the type I collagen fragments decreased during ageing. 
Other negatively age-correlated peptides originated 
from 5-AMP-activated protein kinase subunit gamma-3 
(PRKAG3), AMP/ATP-binding subunit of AMP-
activated protein kinase (AMPK) and blood-derived 
proteins (beta-2-microglobulin, fibrinogen alpha and beta 
chains). Contrarily, the two most positively age-correlated 
peptides were type IV collagen alpha-3 and type II 
collagen alpha-1 fragments (ρ = 0.504, p < 0.0001 and ρ 
= 0.451, p < 0.0001 respectively, Supplemental Table 1). 
Additionally an age-dependent increase in almost 50% of 
type III collagen and 83% in type II collagen fragments 
was observed. Other positively age-correlated peptides 
originated from clusterin, haptoglogin, cystatin-B, retinol-
binding protein 4, CD99 antigen, and the kidney-specific 
peptide uromodulin.

Interestingly, several peptides that were negatively 
correlated with age became positively correlated upon 
methionine oxidation. This observation was consistent 
for two fragments of type I collagen alpha-1 as well as 
fragments of type IX collagen alpha-3, type XXV collagen 
alpha-1, sodium/potassium-transporting ATPase subunit 
gamma and retinol-binding protein 4 (Supplemental Table 
1).

Age-correlation analysis in the diseased group

Next we studied the correlation of urinary peptides 
with ageing in the 10333 peptidomes of diseased 
individuals to determine potential discrepant and 
concerted correlations compared to healthy individuals. 
Individuals with pathological conditions were more 
likely to be older compared to healthy individuals (Table 
1). Out of the 116 age-correlated peptides in healthy 
individuals, 112 were also found to correlate in diseased 
individuals. However, lower correlation coefficients were 
observed in the diseased compared to the healthy group 
(Supplemental Table 1). This observation was expected, 
given the assumed increased heterogeneity as a result 
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Figure 1: Urinary peptide marker pattern for the differentiation between healthy and diseased individuals. A. Healthy 
young between 20-29 years of age. B. Diseased young between 20-29 years of age. C. Healthy old from 60 years old of age and above. D. 
Diseased old from 60 years old of age and above. Only the mean intensity for each peptide was represented.

Figure 2: Correlation analysis of individual urinary peptides in healthy and diseased groups with age. A. Disease-
unaffected peptides, collagen alpha-1(II) chain (ρHealthy = 0.451, p < 0.0001 and ρDiseased = 0.439, p < 0.0001) and collagen alpha-1(I) chain 
(ρHealthy = -0.224, p < 0.0001 and ρDiseased = -0.251, p < 0.0001). B. Disease-affected peptides, retinol-binding protein 4 (ρHealthy = 0.311, p < 
0.0001 and ρDiseased = 0.149, p < 0.0001) and collagen alpha-1(I) chain (ρHealthy = -0.308, p < 0.0001 and ρDiseased = -0.045, p < 0.0001).
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of various underlying pathologies. The 4 peptides not 
confirmed in the diseased group comprised three collagen 
fragments and a fibrinogen alpha chain fragment and were 
not considered for further investigations.

To determine if the 112 peptides were able to 
distinguish between young and old individuals in both 
healthy and diseased groups, the abundance of these 
peptides was studied in a dichotomous analysis in 
subpopulations of young versus old (Figure 1). Proteome 
profiles of young compared to old healthy individuals 
presented more visual differences than the profiles of 
young compared to old diseased individuals. However, the 
112 age-correlated peptides were still able to distinguish 
between young and old individuals in healthy and diseased 
individuals. Interestingly, some peptides showed similar 
mean amplitudes in the healthy and diseased groups 
including for instance collagen alpha-1 (XXV) chain 
(Figure 1, green arrows) whereas other peptides such 
as collagen alpha-1 (III) chain (Figure 1, red arrows) 
depicted different amplitude profiles. Differences in 
age-correlated peptides were further investigated by 
comparing the correlation coefficients of the 112 peptides 
in both groups. As a result, peptides could be arranged 
into two groups: disease-unaffected and disease-affected 
peptides. These were defined by a non-significant (disease-
unaffected) and a significant (disease-affected) p-value 

in the comparison of correlation coefficients between 
healthy and diseased groups (Supplemental Table 1, 
column “healthy vs diseased”). For instance among the 
best correlated peptides, the correlation coefficients for 
collagen alpha-1 (II) chain in healthy (rho = 0.451, p < 
0.0001) and diseased (rho = 0.439, p < 0.0001) individuals 
did not differ significantly (p = 6.21E-01) (Supplemental 
Table 1). An example for a disease-affected peptide is a 
fragment of collagen alpha-3(IV) chain with correlation 
coefficients in healthy (rho = 0.504, p < 0.0001) and 
diseased (rho = 0.420, p < 0.0001) individuals that differed 
significantly (p < 0.0001) (Supplemental Table 1). Further 
disease-unaffected peptides comprised fragments of type 
II alpha-1 and type III alpha-1 collagen (Figure 2A), while 
fragments of retinol-binding protein 4 and type I collagen 
alpha-1 were further disease-affected peptides (Figure 
2B). Overall, 27 peptides widely represented by collagen 
fragments (89%) were disease-unaffected, while disease-
affected peptides totalled with 85 and only included 66% 
of collagen fragments (Figure 3).

Table 1: Patient characteristics
Healthy Diseased

N (number of individuals) 1227 10333
Age (years)* 38.6 ± 12.4 54.4 ± 15.3

Sex (Male/Female) 623/604 6237/4096

* p-value <0.0001 

Table 2: Different pathological conditions represented in the diseased group.

Diseases N (number of individuals)

Alzheimer’s 134
Bladder cancer 286

Cardiovascular diseases 1681
Diabetes mellitus 1715

Virus-triggered diseases (e.g. hepatitis, HIV) 332
Hepatocellular carcinoma 40

Kidney diseases 2154
Kidney diseases (transplanted) 430

Leukaemia 1622
Obesity 218

Pancreatic cancer 51
Polycystic ovary syndrome 73

Pheochromocytoma 11
Pregnancy 278

Pathologies related to the prostate 1217
Renal carcinoma 91

Total 10333
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Figure 3: Comparison of age-correlated peptides identified in the healthy and diseased groups. A. Disease-unaffected 
peptides. B. Disease-affected peptides.

Figure 4: Comparison of age-correlated proteases between healthy individuals and disease subgroups. A. Cardiovascular 
diseases (CVD). B. Diabetes Mellitus (DM). C. Chronic kidney diseases (CKD). Arrows underscore the main changes in predicted 
protease activity between age-correlated disease-affected peptides in the healthy and the disease subgroups. ADAMTS4: A disintegrin and 
metalloproteinase with thrombospondin motifs 4; CTSB: cathepsin B; CTSK: cathepsin K; CTSL1: cathepsin L1; F2: thrombin; GZMB: 
granzyme B; MEP1A: meprin A subunit alpha; MEP1B: meprin A subunit beta; MME: neprilysin; PREP: prolyl endopeptidase.
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Pathology-specific investigation of age-correlated 
peptides in different subgroups

As the diseased group of 10333 individuals 
included heterogeneous pathologies (Table 2), the 
pathology-specific age-association of the 112 peptides 
was investigated in three different more homogenous 
disease subgroups selected from the 10333 diseased 
individuals and then compared to the healthy group. 
The cardiovascular diseases (CVD, n = 1681) subgroup 
included individuals with heart failure, coronary artery 
disease and acute coronary syndrome. The chronic kidney 
diseases (CKD, n = 2154) subgroup included individuals 
with several kidney disorders such as vasculitis and 
glomerulopathies, whereas the diabetes mellitus (DM, 
n = 1560) subgroup consisted of type 1 and type 2 DM 
individuals with no detectable kidney disease.

The comparison of correlation analyses in all 
disease subgroups and the healthy group based on the 
112 identified peptides provided an assessment of the 
distribution of age-correlated peptides. Sixty-six, 100 and 
54 of the 112 age-correlated peptides were significantly 
correlated to age in individuals with CVD, CKD and 
DM, respectively (Supplemental Table 2). Thereby the 
number of disease-unaffected age-correlated peptides in 
the disease subgroups was reduced in CVD (n = 10) and 
DM (n = 6) compared to CKD (n = 35) (Supplemental 
Table 2). There was no overlap among these disease-
unaffected peptides. As seen in the full diseased cohort 
of 10333 individuals, disease-affected non-collagen 
peptides were also almost two times as abundant as 
disease-unaffected ones in the three disease subgroups 
(Figure S1). In regard of collagen fragments, in the CVD 
subgroup 60% of disease-unaffected peptides originated 
from type I collagen compared to 46% of the disease-
affected peptides. In comparison, type III collagen 
fragments comprised 30% of disease-unaffected peptides 
but only 12.5% disease-affected peptides. Type I collagen 
fragments in the CKD subgroup represented 60% of 
diseased-unaffected peptides compared to 43% in the 
disease-affected peptides (Supplemental Figure 1).

Prediction of protease activities

Based on the N- and C-terminal sequences of 
naturally occurring peptides, protease activity responsible 
for their generation can be predicted [5]. The in silico 
prediction of ageing-related changes in the activity of 
proteases potentially involved in the generation of the 
112 peptides was based on the cleavage site consensus 
sequences of proteases and mean peptide intensities in 
individual healthy study subjects (n = 1227). The analysis 
resulted in 674 protease/cleavage associations related 
to 37 unique proteases. Amongst those, 32 proteases 
showed a significant correlation of their predicted activity 

with age in the healthy group (Supplemental Table 3). 
This comprised positive age-correlated activities e.g. of 
meprin A beta subunit, kallikrein 5, and thrombin as well 
as negative age-correlated activities e.g. of neprilysin, 
cathepsin L1, and matrix metalloproteinase-14 (MMP-14). 
We next compared predicted protease activities targeting 
disease-affected peptides between the healthy group and 
the disease subgroups (Figure 4). However, while we did 
not observe any significant differences between healthy 
individuals and individuals with CVD or DM, differences 
in age-related activities of A disintegrin metalloproteinase 
with thrombospondin motifs 4 (Adamts4) and MMPs 
appeared to be present in individuals with CKD (Figure 
4, arrows).

Pathway enrichment analysis

Reactome pathway analysis for the identified 
disease-unaffected or disease-affected age-correlated 
peptides combined with the predicted proteases (in gene 
symbols) using ClueGO and CluePedia software resulted 
in several molecular pathways being significantly affected 
in the context of ageing (Figure 5, Supplemental Table 
4). For disease-unaffected pathway analysis, the 27 
peptides were combined with 19 predicted proteases that 
generated these peptide sequences. The same approach 
was performed for the 85 disease-affected peptides 
with the 32 corresponding predicted proteases. The 
network illustrates each pathway as individual nodes, 
while edges between pathways denote an approximation 
of biological interaction between the pathways based 
on the cross-pathway feature overlap. The analysis 
using disease-unaffected peptides revealed 6 molecular 
pathways associated with ageing including degradation 
of the extracellular matrix (ECM), activation of matrix 
metalloproteinases, collagen degradation, assembly of 
collagen fibrils, trafficking and processing of endosomal 
Toll-like receptors (TLRs) and endosomal/vacuolar 
pathway being enriched. However the analysis using 
disease-affected peptides, these six pathways were 
confirmed, and, in addition, degradation of IGF binding 
proteins was enriched in addition to the other 6 pathways 
(Figure 5).

DISCUSSION

The urinary proteome profiles of a unique cohort 
of 11560 individuals with an age ranging from 20 to 86 
years were analysed with the aim of detecting specific 
ageing-associated urinary peptides and thus expand the 
current knowledge on the protein level and investigate the 
proteomic transition from normal ageing to age-related 
pathological complications.

The most prominent finding of the study was that 
increased age is associated with a decrease in the urinary 
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excretion of fragments from collagens forming the fibrillar 
structure of the ECM, including type I, II, III and V [6]. 
This finding is consistent with a study reported by Zürbig 
et al. (2009) [3]. While 49 fragments of mainly type I and 
type III collagen fragments were found to be significantly 
age-associated, only 15 of these peptides including 
fibrinogen chain and several collagen fragments of the 
Zürbig et al. study were sequenced and fulfilled the quality 
criteria of the current study. A decrease in type I and type 
III collagens was also observed in a study evaluating the 
effect of ageing on skin in a Caucasian female population 
[7]. Although the study cohort comprised only 218 healthy 
women between 33 and 77 years of age, findings may 
well be extrapolated to a male population. A decrease in 
fibrillar collagens observed in this study may result from 
several processes including but not limited to impaired 
collagen synthesis and/or impaired degradation causing 
aberrant ECM remodelling [8]. However, while the urinary 
excretion of the majority of fibrillar collagen fragments 

identified in the current study decreased with age, we 
also observed an age-associated increase in the urinary 
excretion of a few specific fibrillar collagen fragments 
with increasing age, especially of type II and III. In 
regards to type II collagen, these findings may indicate 
on one hand tissue and organ-dependent differences in 
homeostasis since type II collagen is mainly present in 
cartilage [9] and on the other hand the increased likelihood 
to develop osteoarthritis with advanced age as it has been 
shown that urinary levels of type II collagen fragments 
increased with osteoarthritis [10]. The increased excretion 
of some type III collagen fragments could be attributed to 
homeostasis as type III collagen plays an important role 
in type I fibrillogenesis and cardiovascular development 
[11]. Furthermore, all collagen fragments containing 
oxidised methionine were positively correlated with age. 
This is a novel finding that indicates an accumulation of 
oxidative modifications associated with age, which may 
lead to increased degradation. Of note: the corresponding 

Figure 5: Molecular pathways associated with ageing. The network represents each pathway as individual octagonal node, while 
the circled nodes represent the predicted proteases that were targeted from the identified urinary peptides denoted in purple diamond nodes. 
The edges (links) between pathways denote an approximation of biological interaction between the pathways based on the cross-pathway 
feature overlap. Legends for the diamond nodes with a suffix of “-C/N” represent the peptide’s cleavage site; i.e. “-C” for C-terminus and 
“-N” for the N-terminus.”
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unmodified peptide showed a decrease in urinary 
abundance with age. These findings may potentially also 
reflect progressive loss of control of oxidative stress 
during advancing ageing [12].

In addition to fibrillar collagens, the excretion of 
peptides from basement membrane collagens including 
type IV collagen alpha-1 (COL4A1) and alpha-3 
(COL4A3) chains was also found to be altered. The 
excretion of a COL4A1-derived peptide was decreased 
and that of a peptide derived from COL4A3 was increased 
in advanced age. These findings are in agreement with 
the literature since COL4A1 was commonly found in the 
glomerular basement membrane of younger individuals 
whereas COL4A3 appears to be more common in adult 
individuals [13]. Increased urinary excretion of type 
IV collagen has furthermore been associated with renal 
dysfunction in patients with type 2 diabetes mellitus [14]. 
Hence, alterations of the basement membrane, readily 
observed in urine, are an important molecular event 
observed in ageing and renal impairment.

Of the non-collagenous peptides associated to 
ageing, fragments of uromodulin, beta-2-microglobulin 
and fibrinogen alpha and beta chains were most prevalent. 
The urinary excretion of most of these peptides showed a 
positive correlation with age. Fibrinogen, a glycoprotein 
involved in inflammation, and uromodulin, a kidney-
specific protein, were shown to participate in renal 
fibrosis [15, 16]. The protein beta-2-microglobulin (B2M) 
is expressed in all nucleated cells and part of the light 
chain subunit of the major histocompatibility complex 
class I molecules [17]. Plasma and serum elevations 
of B2M were found to be associated with a plethora of 
pathological conditions including renal diseases [18] and 
cardiovascular diseases [19]. These peptides, that are in 
many cases also significantly associated with CKD [20], 
may reflect the reduction in kidney function observed in 
ageing [21].

The comparison of age correlation coefficients 
between healthy and diseased individuals enabled us to 
distinguish between disease-unaffected peptides reflecting 
processes of normal or healthy ageing and disease-affected 
peptides indicating events of pathological ageing. A 
correlation analysis in the diseased subgroups revealed 
greater similarity in age-correlated peptide excretions 
in urine between normal ageing and CKD compared to 
CVD and DM. This may indicate that urine does reflect 
the “status” of the kidney to a large degree [22]. Potential 
similarities in molecular alterations were suggested by 
decreases in excreted fibrillar collagen fragments, which 
is often indicative of alterations in the ECM turnover in 
the diseased kidney eventually resulting in fibrosis [23]. 
Furthermore, the protease analysis revealed a greater 
influence of CKD on age compared to CVD and DM. Our 
findings show that fibrosis developing in advanced age and 
CKD are similar whereas the similarity is less pronounced 
with fibrosis developing in CVD and DM.

A pathway enrichment analysis incorporating 
the 112 identified peptides and 32 predicted proteases 
suggested molecular pathways that are affected in 
normal and pathological ageing. Processes affected in 
normal ageing included perturbations in the collagen 
homeostasis, trafficking of toll-like receptors (TLRs) and 
endosomal pathways. As expected based on the abundance 
of collagen fragments, most of the molecular pathways 
found to be affected during ageing were involved in 
collagen homeostasis. Findings suggested accumulation 
of ECM or formation of fibrosis during ageing caused by 
a decrease in ECM degradation and an increase formation 
of collagen fibrils. These events result in a decrease of 
collagen fragments in the urine. Fibrosis is observed in 
renal ageing progressively degrading kidney function 
which potentially results in CKD [23]. Fibrosis in the 
heart can cause ventricular stiffening and impairment of 
heart function leading to cardiovascular diseases [24]. The 
enrichment analysis also indicated an impaired processing 
and trafficking of TLRs based-on the predicted negative 
age-correlation of the activities of cathepsin K, L1 and 
S. TLRs recognise molecular patterns that are broadly 
shared by pathogens and are essential for innate immune 
response by releasing cytokines and chemokines [25]. 
It was reported that cleavage of TLRs by cathepsins 
is crucial for the activation of TLRs signalling [26]. 
Therefore, attenuated cleavage of TLRs can contribute to 
perturbations in immunity in advanced age. Furthermore, 
cathepsins are endosomal proteases participating in 
diverse cellular processes including apoptosis, autophagy 
and necrosis [27]. Hence perturbations of the endosomal 
pathway should be more investigated in ageing.

Besides, the pathway analysis also enabled the 
identification of processes affected in pathological ageing. 
In addition to the molecular mechanisms affected in 
normal ageing, pathway enrichment analysis suggested an 
elevated degradation of insulin-like growth factor (IGF)-
binding proteins (IGFBPs). The increased degradation of 
IGFBPs was predicted based on the activities of plasmin, 
thrombin and matrix metalloproteinase-12. Interactions 
between IGFBPs and IGFs generally have inhibitory 
effects on IGF-dependent signalling pathways potentially 
leading to augmented oxidative stress and inhibition of 
cellular proliferation, cellular differentiation and apoptosis 
[28, 29]. Interactions observed between ECM proteins, 
proteases including plasmin and thrombin [30] and 
IGFBPs contribute to the regulation of the bioavailability 
of IGFs [28]. Furthermore, increase in IGFBPs have 
been reported in patients with severe kidney failure 
[31] suggesting the involvement of the IGF pathway in 
pathology. IGF-1 has indeed been showed to decrease 
during ageing [32]. Thus, the activation of IGFBPs may 
be an important molecular event in ageing and further 
investigations are well justified to elucidate interactions 
between IGFBPs, plamin, thrombin and the ECM.

In conclusion, urinary proteome analysis enabled the 
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detection of ageing-associated peptides thereby generating 
considerable information about molecular pathways 
associated with normal ageing and pathological ageing. 
Perturbations in collagen homeostasis and trafficking of 
TLRs and endosomal pathways were generally observed in 
both normal and pathological ageing. However, increased 
degradation of the IGFBPs was additionally identified for 
the first time in ageing using urine samples. Besides, the 
comparison of urinary proteome profiles between healthy 
individuals and several diseased individuals revealed 
that protein fragments excreted in urine better depict 
similarities between normal ageing and CKD than CVD 
and DM. Findings demonstrated that with the help of 
appropriate technologies, urine can be used as a powerful 
biological fluid in ageing research.

MATERIALS AND METHODS

Ethics statement

The study was designed and conducted fulfilling 
all of the requisites of the laws on the protection of 
individuals collaborating in medical research and was 
in accordance with the principles of the Declaration of 
Helsinki.

Patient characteristics and CE-MS analysis

Patient data were retrieved from the “Human urinary 
database” dedicated to naturally occurring urinary proteins 
and peptides [4, 33]. All datasets included in the study 
were from previous studies, and all data were anonymised. 
The approach, employing anonymised proteomics data 
from previous studies, was approved by the local ethics 
committee. Datasets from 11560 individuals between 20 
and 86 years of age were extracted (Table 1). The present 
cohort was divided into two groups: healthy and diseased. 
The healthy group included 1227 individuals and the 
diseased group 10333 individuals predominantly suffering 
from diabetes, cardiovascular and renal diseases (Table 2). 

Sample preparation and capillary electrophoresis 
coupled to mass spectrometry analysis

For proteomic analysis, a 0.7 mL aliquot of urine 
was thawed immediately before use and diluted with 
0.7 mL of 2 M urea, 10 mM NH4OH containing 0.02% 
SDS. To remove higher molecular mass proteins, such as 
albumin and immunoglobulin G, the sample was ultra-
filtered using Centrisart ultracentrifugation filter devices 
(20 kDa MWCO; Sartorius, Goettingen, Germany) at 
3,000 rcf until 1.1 ml of filtrate was obtained. This filtrate 
was then applied onto a PD-10 desalting column (GE 

Healthcare, Uppsala, Sweden) equilibrated in 0.01% 
NH4OH in HPLC-grade in H2O (Roth, Germany) to 
decrease matrix effects by removing urea, electrolytes, 
salts, and to enrich polypeptides present. Finally, all 
samples were lyophilised, stored at 4°C, and suspended in 
HPLC-grade H2O shortly before capillary electrophoresis 
coupled to mass spectrometry (CE-MS) analyses, as 
described [34].

CE-MS analyses were performed using a P/
ACE MDQ capillary electrophoresis system (Beckman 
Coulter, Fullerton, USA) on-line coupled to a microTOF 
MS (Bruker Daltonics, Bremen, Germany) as described 
previously [34, 35]. The ESI sprayer (Agilent 
Technologies, Palo Alto, CA, USA) was grounded, and 
the ion spray interface potential was set between -4 and 
-4.5 kV. Data acquisition and MS acquisition methods 
were automatically controlled by the CE via contact-
close-relays. Spectra were accumulated every 3 s, over a 
range of m/z 350 to 3000. Accuracy, precision, selectivity, 
sensitivity, reproducibility, and stability of the CE-MS 
measurements were demonstrated elsewhere [34].

Data processing

Mass spectral peaks representing identical molecules 
at different charge states were deconvoluted into single 
masses using MosaiquesVisu software. Only signals with 
z>1 observed in a minimum of 3 consecutive spectra 
with a signal-to-noise ratio of at least 4 were considered. 
Reference signals of 1770 urinary polypeptides were used 
for CE-time calibration by locally weighted regression. 
For normalisation of analytical and urine dilution 
variances, signal intensities were normalised relative 
to 29 ‘‘housekeeping’’ peptides [36]. The obtained peak 
lists characterise each polypeptide by its molecular mass 
[Da], normalised CE migration time [min] and normalised 
signal intensity. All detected peptides were deposited, 
matched, and annotated in a Microsoft SQL database 
allowing further statistical analysis [37]. For clustering, 
peptides in different samples were considered identical 
if mass deviation was < 50 ppm. CE migration time was 
controlled to be below 0.35 minutes after calibration.

Peptide sequencing

For sequencing of peptides the urine samples 
were analysed on a Dionex Ultimate 3000 RSLC nano 
flow system (Dionex, Camberly, UK) coupled to an 
Orbitrap Velos MS instrument (Thermo Fisher Scientific) 
as described in [38]. Data files were analysed using 
Proteome Discoverer 1.2 (activation type: HCD; min-max 
precursor mass: 790-6,000; precursor mass tolerance: 10 
ppm; fragment mass tolerance: 0.05 Da; S/N threshold: 
1) and were searched against the Uniprot human non-
redundant database without enzyme specificity. No fixed 
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modifications were selected, oxidation of methionine, 
lysine and proline were selected as variable modifications. 
The peptide data were extracted using high confidence 
peptides, defined by an Xcorr ≥ 1.9, a delta mass between 
experimental and theoretical mass ± 5 ppm, absence 
of cysteines in the sequence (since cysteines without 
reduction and alkylation form disulphide bonds), absence 
of oxidised proline in protein precursors other than 
collagens or elastin, and top one peptide rank filters. For 
further validation of obtained peptide identifications, the 
strict correlation between peptide charge at the working 
pH of 2 and CE-migration time was used to prevent false 
identifications [39]. Only the sequenced peptides were 
further considered. 

Correlation and statistical analyses

As peptide profiles across the samples were 
not normally distributed, we used the non-parametric 
Spearman’s rank correlation coefficient for estimating 
the correlation of individual peptides using age as a 
continuous variable. All peptides present in the whole 
population were included in the correlation analysis 
since a frequency threshold was not set. The statistical 
significance was assumed at p < 0.05. The p-value was 
adjusted by applying Benjamini-Hochberg [40, 41]. A 
cut-off value was set for the correlation analysis and the 
coefficient of ≥ 0.2 or ≤ -0.2 (|ρ|≥0.2) was considered 
for further analysis. The analysis was performed using 
proprietary software (R-based statistic software, version 
2.15.3) and verified with MedCalc version 8.2.1.0 
(MedCalc Software, Mariakerke, Belgium). Graphs 
were generated using MedCalc. To discriminate between 
peptides affected by a diseased and those unaffected, 
the Spearman’s rank correlation coefficient of a peptide 
was compared using MedCalc in healthy and diseased 
individuals.

In silico protease prediction

In order to link urinary fragments to the proteases 
involved, in silico protease mapping to urinary peptides 
was generated using Proteasix software as previously 
described [5]. Briefly, for each of the peptides, associated-
proteases were predicted for both N and C-terminal 
cleavage sites. In parallel, a list of >6000 random 
octapeptide sequences was mapped using the same 
protocol in order to determine the specificity of the 
prediction. Only protease/cleavage site associations with 
higher prediction score than associations with random 
sequences were kept for further analysis. For each 
protease, predicted activity in each patient was calculated 
based on the mean of associated peptide intensities. 
A parametric Pearson correlation analysis between a 
predicted protease and the age was performed based on 

the mean intensities of cleaved peptides with the age of 
each individual.

Pathway enrichment analysis

For elucidating molecular pathways being 
associated to ageing, the age-correlated peptides and the 
significant proteases predicted by Proteasix were subjected 
to the Cytoscape’s plug-ins ClueGo and CluePedia [42, 
43]. Reactome pathway [44] served as the clustering 
criterion using a two-sided hypegeometry test followed 
by Bonferroni correction (significance level of 0.05) for 
identifying significantly affected pathways [45].
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