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Introduction

With the increasing power of high-throughput technologies and storage capacities,
more and more data-sets from real-world systems become available [12, 79, 166,
124, 105]. These data-sets represent a rich source of information that can be used
for modeling various real-world systems, such as social, technological and biolog-
ical systems. Systematical analysis and understanding of this data is of crucial
importance for uncovering the basic principles of organization and function of the
underlying system.

A common way to mathematically represent this data is by complex networks,
where nodes represent entities, for example web-pages, proteins, people; and edges
represent relations between the system entities, such as links, interactions and
friendships. However, there are different types of modeling approaches that con-
sider also attributes and features of nodes and edges when constructing networks
[96], such as functional properties of proteins in biological networks or age and
gender of individuals in friendship networks. Construction and analysis of complex
networks have become a topic of major research interest in many fields of science,
since the abstract representation of networks can be used to describe a wide range
of complex systems that span biological, physical and social sciences [6, 121, 125].
Therefore, understanding the behavior of complex systems starts with understand-
ing the topology and dynamics of the associated networks.

The beginnings of network study originate from graph theory, a field of mathematics
that has its roots in the 17*" century and is based on the famous work of Leonhard
Euler. Over the last years the area of network analysis has expanded rapidly and at-
tracted a lot of attention, creating the so called "new science of networks" [14, 125].
Networks are now widely recognized not only as outcomes of complex interactions,
but as key determinants of structure, function and dynamics in many real-world
systems. In particular, over the last years identification of the following network
structures (elements) has received a considerable amount of attention:

1. Modules (also clusters, communities) are connected subgraphs that are
highly interconnected, but have relatively few connections to nodes in other
modules.

2. Hubs are nodes that are important for inter- and intra-connection of modules.
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When analyzing real-world networks these elements are of special importance for
understanding and modeling of the underlying systems, as their identification could
yield valuable insights about the organization and functional mechanisms of these
systems. Therefore, developing methods for identification of modules and hubs will
be the main topics of interest in this thesis.

Identifying modules

Networks that describe real-world systems are often very large (several thousands
of nodes) and complex. Finding modules is one of the well-established approaches
for reducing the complexity of such networks, as it helps decomposing the complex
network structure into smaller sub-units that can be analyzed in more detail in sub-
sequent stages [70, 130, 140]. Furthermore, modules often correspond to functional
units of the underlying system, such as protein complexes in biological networks,
pages with similar topic in WWW or people with same interests in social networks.
For these reasons, many new algorithms for identification of modules in networks
have been developed [122].

Particularly, the method of random walks, as a fundamental dynamic process [85]
has been well-established for structural analysis of networks, as it can fully account
for local as well as global topological structure within the network [158, 128]. The
random walk process defines a Markov chain on the state space that is given by
the network’s nodes. Analyzing this Markov chain can provide valuable informa-
tion about the topological and dynamical properties of the network. Some of the
random-walk-based methods use properties of random walks to introduce a met-
ric on a network that would quantify the structural similarities of these nodes
[56, 132, 120, 102]. Then, modules are found in such a way that the sum of the
distances between each node and its module should be small.

Other random-walk-based methods are using the idea that in terms of the ran-
dom walk process, a module represents a set of nodes where the random walker is
trapped for a long period of time. More precisely, modules represent metastable
sets of the random walk process. There exists rich literature addressing different
variants of the problem of identifying dominant metastable sets of Markov processes
[114, 102, 22, 55, 112, 111, 40, 118, 110, 50] that can be used as possible approaches
for identifying modules. In particular, the so-called Markov State Models (MSM)
have been successfully used as low-dimensional models for metastable Markov pro-
cesses [148, 49, 149, 150, 28]. The goal of MSM is to approximate the original
Markov process by a Markov chain on a small state space, such that the longest
timescales of the dynamics of the original process are reproduced well. In most
MSM-based approaches, the state space of the obtained Markov chain consists of
sets that cover the whole original state space. In terms of Markov processes on
networks this means that we consider a full decomposition of a given network
into modules. However, in many real-world networks the assignment of nodes to
only one of the modules is not always straightforward, i.e. a node can be assigned
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to more than one module with some probability. In such cases we don’t consider
full, but fuzzy decomposition of the network into modules, also called fuzzy clus-
tering.

Different random-walk-based fuzzy clustering methods have recently been discussed
in the literature [50, 145, 106]. Many of these methods are based on spectral de-
composition ideas, where the number and choice of modules is governed by spectral
properties of the transition matrix P of the random walk process. Especially, the
number of dominant eigenvalues of P, i.e. the eigenvalues that are significantly
closer to 1 in modulus than all other eigenvalues in the spectrum, indicates the
number of modules in the network. However, it is often difficult to determine the
number of modules, since the spectrum does not always show a clear gap. In this
thesis we will addressed this problem in detail and point out usual causes of this
phenomena. Furthermore, we will introduce a new type of random walk processes,
namely time-continuous random walks, which can be used to overcome this ob-
stacle. We will use the stochastic properties of this new process in order to define
the fuzzy assignment functions, which will provide a probability of a given node
to belong to a certain module.

Identifying hubs

This problem of identifying hubs is closely related to network robustness [43, 44,
155], which measures resilience of a network to the removal of its nodes and edges.
When analyzing real-world networks, of particular interest is identification of such
"weak points" in a network, whose removal can significantly perturb and sometimes
even cause a breakdown of the entire network. Such nodes and edges are often
shown to correspond to elements and interactions that are crucial for the proper
functioning of the underlying system [160, 169, 75, 73]. As we mentioned above,
in this thesis we will focus on characterization and identification of hubs, which
represent nodes that are important for inter- and intra-connection of modules.
Hubs can correspond, for example, to computers that connect many other com-
puters in the Internet network or to lethal proteins in biological networks. Many
different measures of importance of nodes [89, 70, 92, 61] have been introduced
aiming at identifying essential functional elements of real-world systems. However,
recent results coming from various applications revealed that the currently available
methods are not always sufficient to identify all important hubs [169, 75, 73].

Most of the available approaches for module and hub identification are consider-
ing undirected networks, that is, networks where connection between nodes don’t
have a direction. Many real-world networks are of this type, such as transporta-
tion networks, where if there is a connection from a city x to a city y, then there
is a connection from y to x. However, interactions often do have a direction, for
example in citation networks where the citation between two scientific papers can
be done only in one direction. Generalizing the definition of modules and hubs
to the case of directed networks is not an easy task, especially concerning the not
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so clear interpretation of these structures in the underlying systems. From the
mathematical point of view, introducing directed edges produces asymmetries in
various matrix representations of the networks, which makes most of the currently
available methods inapplicable to directed networks. Especially, the problem of ap-
plying random-walk-based methods on directed networks is that the random walk
processes are non-reversible, that is we have to deal with non-reversible Markov
chains.

Outline of the thesis

The main goal of this thesis is to provide new random-walk-based methods for
analyzing complex networks. Networks of our interest are coming from various ap-
plications and they can describe a wide range of real-world complex systems. The
analysis of these networks is focused on finding network structures and elements
that are of special importance in the underlying system. Especially, the main focus
of this thesis is using random walker approach for developing new methods for iden-
tification of modules and hubs in a given network. Most parts of the thesis consider
undirected networks, whereas in Chapter 7 introduced approaches are generalized
to the case of directed networks.

The outline of the thesis is as follows:

In Chapter 1 we will introduce the basic graph theoretical concepts that will be
crucial for the analysis of complex networks. Then we will present the relevant net-
work models (Section 1.2) that describe properties of real-world systems. Finally,
in Section 1.3 we will highlight the importance of finding modules and hubs when
analyzing different real-world networks.

Focusing on analyzing undirected networks, in Section 2.1 we will refer to standard
random-walk-based method as a well-established approach for structural analysis
of networks. However, this method often fails to correctly detect modules that are
metastable sets of this random walk process (Section 2.2). This is because also
many other structures, such as long chains, represent metastable sets of this pro-
cess. In order to overcome this problem we will introduce a new time-continuous
random walk process (Section 2.3), defined in such a way that its only metastable
sets are the dense modular structures of the network.

Chapter 3 deals with characterizing metastable processes and metastable sets in
terms of the basic objects from the theory of Markov processes. In Section 3.3 we
will present two spectral characterizations of metastable processes, introduced in
[86, 88] and [23, 28]. We will show how spectral properties of random walk processes
are connected to the properties of the metastable processes and in particular, that
the behavior of the random walk process on its longest time-scales is encoded in
the dominant eigenvalues of P.

In Chapter 4 we will present our new approach for finding fuzzy decomposition of a
network into modules. In Section 4.1 we will introduce fuzzy assignment functions,
the so called committors [57, 58|, which will take the form of a probability that is
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essentially dynamics-based. More precisely, the assignment probability of a given
node z to a certain module M is the probability that the random walk process, if
started in x, enters M before it reaches any other module. We will use the com-
mittor functions to generalize the above mentioned MSM approach and develop a
fuzzy Markov State Models approach by defining small disjoint sets in the most
dominant metastable regions (see Sections 4.2 and 4.3). In order to ensure good
approximation quality of the resulting MSM we will consider error between the orig-
inal and reproduced dominant eigenvalues (see Theorem 9), since they capture the
long-term behavior of the two metastable processes. Based on this idea, in Section
4.4 we will present our new algorithm for identifying modules and in Section 4.5 we
will compare it with several state-of-the-art algorithms from the literature.

In Chapter 5 we will present our new method for hub finding, where as mentioned
above, we define hubs as nodes that are important for the communication in the
network. The notion of "communication" will be specified using the basic objects
from Transition Path Theory [58, 117], that will be presented in Section 5.1. Sec-
tions 5.2, 5.3 and 5.4 will introduce new types of hub nodes and algorithms for their
identification. We will end this chapter by presenting state-of-the-art approaches
for hub finding.

In Chapter 6 we will demonstrate our methods on two real-world examples: a social
and a biological undirected network. We will indicate the main problems in ana-
lyzing real-world networks, that are often caused by unreliable initial data-sets on
one hand and no general strategy for evaluating the obtained results on the other
hand. In general, these problems are not connected to the theoretical considerations
of the applied algorithms, but they certainly have a huge impact when analyzing
their quality. Therefore, when analyzing real-world networks one should keep these
issues in mind.

Chapter 7 deals with analyzing directed networks using random-walk-based ap-
proaches. In Section 7.1 we will develop a new approach for analyzing different
non-reversible processes. Then, we will adopt this approach specifically to the case
of directed networks and using the idea from [26] we will define two random walk
processes for analyzing directed networks, namely the forward and backward ran-
dom walk process. Finally, we will propose how to generalize our new methods for
module and hub identification from Chapters 4 and 5 using the same topological
definitions of these objects as in the case of undirected networks. The ideas pre-
sented in this chapter can be used as a starting point for developing methods that
could enable more detailed analysis of directed networks. Therefore, we will end
this thesis by listing some relevant open problems that will be left for the future
work.
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Analyzing complex networks

Many real-world systems such as the Internet, social groups, air transportation
systems, protein-protein interactions and metabolic pathways can be modeled by
networks. Discovering the relations between structural elements of networks and
their functions in the underlying system could yield valuable information about the
basic principles of this system. In this sense, analyzing complex networks can help
us to understand and predict the behavior of the underlying system.

This chapter deals with introducing graph theoretical concepts that are used to
describe a wide range of complex networks from real-world systems. This will
provide us with specific characterizations of different networks that will turn out to
be crucial for their complete analysis. We will start with Section 1.1, where we will
define some of the basic network topological properties; for more details on this topic
see [32, 26, 54, 20]. Then, in Section 1.2 we will introduce three different network
models that were proposed to describe properties of real-world networks, namely
random graphs, small-world networks and scale-free networks. Finally in Section
1.3, we will highlight two challenging problems in analyzing complex networks and
explain their interpretation and importance on real-world networks.

1.1 Basic properties of networks

The description of complex systems by means of complex networks is based on the
natural properties of the underlying system, as explained in the introduction. More
precisely, the elements of the system are identified as the modes of the network
and interactions between these elements are represented by the edges between the
network nodes. For example, if we want to describe friendships in a social system,
we can form a so-called network of friendships. Nodes in this network represent
individuals of the system and an edge between two individuals exists if they are
friends. In a similar way, we can also create a network for an air-transportation
system, where nodes represent cities and edges direct flights between two cities.
Mathematically, networks are known as graphs, the elementary objects of graph
theory. We will now introduce some basic concepts from graph theory that are
used to topologically characterize networks and provide their interpretation for the
underlying complex system.



8 CHAPTER 1. Analyzing complex networks

Definition 1 A network or finite graph G(V, E) is defined by
e a set of nodes (states, vertices) V, and
e a set of edges (links, connections) E CV x V between the nodes.

If for two nodes z,y € V there exists an edge that connects them, we say that x and
y are neighbors. In graph theory the number of nodes |V| = n is called the order
of a network, whereas for the underlying system n is the size of the system, as it
represents the number of elements of the system. Since the network is a description
of the system, in the following we will refer to n as the size of the network and not
to the number of edges of the network |E|, as it is usually done in graph theory.

Depending on the nature of interactions in the system, edges in the network can be
undirected or directed. Undirected edges can be used, for example to describe
social relations or interactions of proteins, as the relation between these elements
is mutual [163, 164, 75]. On the other hand in citation networks only one of the
authors can cite the other one, forming an directed edge [125, 137]. The orientation
of edges results in the following differentiation of graphs:

1. undirected graphs: all edges are undirected,
2. directed graphs (digraphs): all edges are directed, and
3. mixed graphs: edges can be directed or undirected.

Since mixed graphs are encountered rarely in the following, we will consider only
undirected and directed graphs, as special classes of the family of mixed graphs.
From the definition of graphs, both directed and undirected edges can link two
nodes, but can also connect a node to itself, forming a loop. In general, there can
also exist multiple edges connecting two nodes. Graphs that do not have loops or
multiple edges are called simple graphs. Complex networks are often represented
as simple graphs, since in many applications elements of a system can not interact
with themselves and multiple edges do not exist. For this reason, in the following,
we will refer to simple graphs.

Many real-world networks are characterized by one more parameter, namely the
weight of interactions. Weights can correspond for example to distances between
cities in transportation networks or the amount of information flow in communica-
tion networks. More formally, relations between elements of an underlying system
can be characterized by a specific function that quantifies the property of inter-
est. Obviously, this information is fundamental for a complete description of this
system.

Definition 2 An edge-weighted, in the following weighted graph, G(V,E, W) is
a graph in which each edge (x,y) is assigned a non-negative number, called edge
weight w(z,y), that satisfies w(z,y) =0 if (z,y) € E and w(z,y) > 0 if (z,y) € E.
Matric W = (w(x,y))zyev is the weight matrixz of the graph G.
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As weights can reflect some of the crucial systems properties, their appropriate
choice has been a topic of various studies [19, 71, 166]. However, there are many
examples of real-world networks, in which edge weights are not considered to be
of crucial importance for describing a system because it is often very hard, if not
impossible, to quantify relations in a system. For example, in networks of friend-
ships although there have been attempts to quantify friendships as a function of
their duration, emotional intensity and intimacy [71], these attempts have been
argued, as it is very hard to numerically compare two friendships. In such cases,
the weights have a simple, binary form, meaning that edges are either present or
absent w(z,y) = 1, V(z,y) € E. Graphs for which w has a simple form are called
unweighted graphs.

Example 1 Figures 1.1 and 1.2 show examples of an unweighted, undirected net-
work and an unweighted, directed network. Figure 1.3 shows an example of a
weighted, undirected network and its weight matriz W. In this plot, width of every
edge (x,y) is proportional to its weight w(x,y) and the green label of edges represents
their weights.

1.1.1 Adjacency matrix
A common way to represent graphs is by means of matrices, in particular

Definition 3 The adjacency matriz A = (a(z,y))zyecv of a graph G(V, E, w)
s a n X n matriz with entries

Al y) = 1, if(z,y) € E
7 0, i (z,y) € E.

Defined in this way, the adjacency matrix is unique for every graph, up to permu-
tation of its rows and columns.

From the structure of adjacency matrix we can conclude the main topological char-
acteristics of the network. For instance, null diagonal elements of A imply the
absence of loops. Furthermore, if A is symmetric, i.e. a(z,y) = a(y,z),Vx,y € V,
then its graph is undirected. In particular, the sum of off-diagonal elements of A
equals to 2N, where N is the number of non-loop edges in the graph. On the other
hand, asymmetric adjacency matrix implies that its graph is directed and the sum
of its off-diagonal elements is .

The eigenvalues of the adjacency matrix, representing the spectrum of A, can dis-
cover different structural properties of the network. Obviously, since the adjacency
matrix of every undirected graph is symmetric, its spectrum is characterized by
real eigenvalues and an orthogonal eigenvector basis, whereas the spectrum of A for
directed graphs can have complex eigenvalues. Furthermore, the adjacency matrix
spectrum enables detecting if the graph is bipartite.

Definition 4 A bipartite graph is a graph G = (V, E), such that V' can be repre-
sented as an union of two disjoint sets Vi and Vo and there are no edges connecting
nodes within each of the two sets.
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For example, bipartite graphs can be used to model a special type of social net-
works, the affiliation networks. These networks are characterized by two types of
entities, the individuals and the groups to which these individuals are affiliated. For
example, the social network of film actors consists of group of actors and the group
of movies where these actors played [166]. The adjacency matrix of bipartite graph

is of the form
0 B

where B is a pxr matrix and |Vi| = p, |Vo| = r. Furthermore, if a graph is bipartite,
then the spectrum of its adjacency matrix has specific properties, such as

Proposition 1
A graph is bipartite if and only if the spectrum of its adjacency matriz is symmetric
around zero.

This means that if A is an eigenvalue of A, then —\ is also an eigenvalue of A.
For the proof of this proposition and more details about the spectral properties of
adjacency matrix of bipartite graphs, see [37].

1.1.2 Degree and degree distribution

We will now use properties of adjacency matrices to study the connectivity of a
particular node in a given network. Later we will generalize this approach in order
to define the global connectivity of a network.

One of the basic properties of a node is its degree. To this end, we define

Definition 5 The out-degree d,,.(x) of a node x in a directed graph is the number
of edges that exit from node x

doyt(x) = Z a(z,y). (1.1)

yev

The in-degree d;,(x) of a node x in a directed graph is the number of edges that
enter node x
din(x) = Z a(y,x). (1.2)
yev
The degree d(x) of a node x in a directed graph is the total number of edges that
enter and exit node x

d(z) = din(z) + dout (). (1.3)

Therefore, the degree of a node quantifies the connectivity of a node in the network.
More precisely, if dyyi(x) = 0 then node = doesn’t have any outgoing edges and is
considered to be a sink of the network. If d;,(x) = 0, then node = doesn’t have
any incoming edges and is called a source of the network. Especially, a node x for
which d(x) = 0 is disconnected from the network.

For undirected graphs, the node degree is defined in the following way:
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Figure 1.1: The labeled undirected network and its adjacency matrix. The degrees
of network nodes are shown next to the adjacency matrix.

Definition 6 The degree d(x) of a node x in an undirected graph is the number
of connections that x has with other nodes of the network

d(z) = Z a(z,y). (1.4)

yeVv

Since the adjacency matrix of undirected graphs is symmetric, it holds that d(x) =
din(x) = dout(z),Vr € V. Then, we say that a node x is disconnected from a
network if d(x) = 0.

In undirected, weighted networks with a given weighting function w, apart from the
network degree, another special characterization of nodes can be given

Definition 7 The weighted degree or strength of a node x in an undirected,
weighted networks is

s(2) = 3 w(w,y) (1.5)

yeV

The degree of a node as a measure of node connectivity has found an important
place in complex network analysis. In particular, in certain network-types nodes
that have a high degree are shown to represent vulnerable points of these networks,
usually corresponding to essential functional points of the underlying system. Such
nodes are usually referred to as hub nodes. More details about hubs and their
identification will be given in Chapter 5.

Example 2 Let us now examine some properties of networks introduced in Example
1. The graph shown in Figure 1.1 consists of six nodes, labeled with numbers from
1 to 6. This graph is undirected, which can be observed also from the symmetry of



12 CHAPTER 1. Analyzing complex networks
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Figure 1.2: The labeled directed network and its adjacency matrix. The in- and
out-degrees of all 6 network nodes are shown next to the adjacency matrix.
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Figure 1.3: The labeled weighted network and its weight matrix. Widths of network
edges corresponds to their weights, marked in green. The strengths of nodes are
shown next to the weight matrix of the network W.

its adjacency matrix A. Furthermore, zeros on the diagonal of A indicate that there
are no loops in this network. As explained earlier, the degree of every node x can be
calculated by summing up the elements of the x-th row of the matriz A. In Figure
1.1, the degree of every node is written next to the adjacency matriz. We see that
node 1 has the highest possible degree, because it is connected to every other node
in this graph.
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The second example graph is directed and it is shown together with its adjacency
matriz A in Figure 1.2. This graph has the same number of nodes and edges as
the graph from the previous example. Moreover, the only difference to the previous
graph is that its edges are directed. From this graph we notice that the node labeled
as 4 is a sink of the network, because there aren’t any outgoing edges from this node.
There is also one source node - node 2, as no edges enter this node. These properties
of the network can also be derived from the adjacency matrix A and degrees of nodes,
marked next to A. Especially, we distinguish between in- and out-degrees of nodes
(see Definition 5) and see that doyi(4) = 0 and d;(4) = 0.

Figure 1.3 shows an example of a weighted, undirected network and its weight matriz
W. Furthermore, for every node x we calculated its strength s(x) according to
equation (1.5). Notice that this graph is just a weighted version of the unweighted
graph shown in Figure 1.1. Thus, the adjacency matrices and the degrees of nodes
of these two graphs are the same. Now, we can compare the degrees and mode
strengths in the weighted graph. We see that the ordering of nodes according to
their degrees does not coincide with the ordering according to their strength. This
1s because degree is a measure that is dependent only on the position of edges in
the network. On the other hand, the strength of a node depends additionally on the
newly introduced parameter of the network - the weight.

The node degree represents a local property of a node. In contrast to that, the
degree distribution of a graph provides a measure for global characterization of
complex networks. The degree distribution is one of the most studied statistical
properties of networks [6, 122]. For a given network, we define

P(k) = 2% (1.6)

where n(k) is the number of nodes that have a degree k. More formally, P(k)
represents the probability that a node chosen uniformly at random will have a degree
k. Many real-world networks such as the world wide web and some social networks
are shown to have similar degree distribution of a special type. These networks,
are also found to share some similar properties. In this sense, network classification
according to the degree distribution can reflect many important functional and
structural similarities between the networks in these groups. We will address this
point in Section 1.2.

1.1.3 Shortest path and betweenness centrality

As stated above, a node x is disconnected from the network if d(x) = 0. The next
natural question to ask is: How can we check if two nodes are connected?

If two nodes x and y are connected, then a sequence of nodes that are visited when
going from a node x to a node y is called a path. In particular, in directed graphs
we consider a directed path from z to y. A special type of paths are cycles, i.e.
paths that start and end in the same node. We say that two nodes are connected
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if there is a path between them. Now, we can generalize the notion of connectivity
of nodes to connectivity of graphs.

Definition 8 An undirected graph is connected if every node can be reached from
every other node, whereas a directed graph is connected if for all pairs of nodes
x,y € V there exists either a directed path from x to y or a directed path from y to
x. If for all x,y € V in a directed graph both directed paths from x to y and from y
to x exist, then this is a strongly-connected graph. A weakly-connected graph
s a directed graph whose underlying undirected graph is connected.

A graph G = (V, E) that is not connected is called a disconnected graph. When
dealing with disconnected graphs, the usual approach is to decompose this graph
into (strongly) connected components, that is maximal, (strongly) connected
subgraphs and analyze them separately. Identification of all connected components
of a graph can be done by using breadth-first search (BFS) or depth-first search
(DFS).

Paths between two nodes in a graph can serve for calculating the distance between
these nodes. More precisely, the number of edges of a path that connects two
nodes can be used as a measure of their distance. Since there can be many paths
connecting two nodes, of particular interest is the identification of

Definition 9 A shortest path between any two nodes x,y € V is a path connecting
x and y that has the minimal number of edges. The number of edges of a shortest
path between two modes is the distance between these two nodes. FEspecially, the
longest of all shortest paths in a network is called a diameter of a network.

Shortest paths are used to define a measure for topological importance of a node
or an edge, namely the betweenness centrality.

Definition 10 For any given node (or edge) of a network, its betweenness cen-
trality is calculated as a fraction of all shortest paths that go through this node

(edge).

Nodes and edges with high betweenness centrality, often called (topological) bot-
tlenecks, are shown to be essential connectors in many real-world networks, usually
representing the elements that link together different disconnected components of
a network. Because of this, betweenness centrality is often used for identifying im-
portant structural components of a network, such as communities [126] and hubs
[169]. State of the art algorithms for finding shortest paths in both undirected
and directed graphs are Dijkstra’s algorithm, the Bellman-Ford algorithm and the
Floyd-Warshall algorithm (for more details about these algorithms see [46]).

Example 3 Figure 1.4 shows how an undirected graph with five nodes and four
edges changes when we add new edges. We will observe how these changes influence
the betweenness centrality of graph nodes. The node with the highest betweenness
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centrality is node 1, as it belongs to all paths between any two nodes in this graph.
When we add three new edges to this graph (colored in blue in the middle plot
in Figure 1.4), the betweenness centrality of node 1 decreases. This is due to the
appearance of new edges that connect some of the other nodes. Now mode 1 takes
part only in the following shortest paths: 2 —+4:2—-1—-4,2—5:2—-1—-5 and
3 —>5:3—-1-5. Adding three new edges to this graph, this becomes a reqular
graph, i.e. a graph where all nodes have the same degree. Here, d(z) = 4,Vx € V,
so this is an 4-reqular graph, implying that every node is a neighbor of every other
node. Therefore, in this graph node 1 doesn’t belong to any of the shortest paths in
the network and has betweenness centrality 0.

1.1.4 Clustering coefficient

increase network connectivity

c=0 c=0.5 c=1

Figure 1.4: Changes of the clustering coefficient ¢ = ¢(1) of node 1 when adding
new edges in the network. Left: The undirected network with five nodes. Middle:
Adding three edges (colored in blue) between the neighbors of node 1. Right: By
adding three new edges (marked in blue) every node becomes a neighbor of every
other node in the network.

Another basic characterization of a node in a network can be obtained by de-
scribing the structure of its local neighborhood. In the context of social networks, it
has been observed that it is very likely that friends of an individual x are also friends
themselves. Many other real-world networks have the same property [84]. The fol-
lowing measure quantifies how densely connected the neighbors of a particular node
are [166].

Definition 11 The local clustering coefficient c(x) of a node = is the ratio
of the number of edges between its neighbors n, and the number of possible edges
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between these neighbors. For undirected graphs this is
21,

) = Gyl — 1)

whereas for directed graphs c(x) has the form

(1.7)

Ny

() = —————.
d(x)(d(x) — 1)
In particular, c(x) = 0 for all nodes that have only one neighbor, i.e. d(x) = 1.

The distinction between calculating clustering coefficient in undirected and directed
networks comes from the fact that in undirected graphs edges (z,y) and (y,z) are
considered to be identical. This implies that the number of possible edges between
the neighbors of a node z in directed networks is d(z)(d(z) — 1) and in undirected
networks d(x)(d(z) — 1)/2. Obviously, in both undirected and directed graphs,
the number of edges between neighbors of x can be calculated from the adjacency
matrix A as
Ng = Z a(z,y)a(z, z)a(y, z).
y,2€V

Now, the clustering coefficient for the whole network can be obtained as the average
of the local clustering coefficients of all nodes in the network [166],

1
C=- c(x).
2 2 )
Defined in this way, the clustering coeflicient is a measure for how nodes in a graph
tend to cluster together. In Section 1.2.2, the clustering coefficient will be of great
importance for characterization of a special class of networks called small-world
networks.

Example 4 Let us demonstrate how the clustering coefficient changes as the num-
ber of edges in a network change. We will show this on the example network from
Figure 1.4. We have seen in Fxample 3 that in the network on the left hand side
node 1 has the highest possible betweenness centrality, as it is part of all shortest
paths in the network. However, its clustering coefficient is c¢(1) = 0, since none of its
neighbors are connected to each other. Adding three edges between some neighbors
of 1 produces the network in the middle of the figure, where the clustering coefficient
3

changes to c(1) = . Finally, in the plot on the right hand side, the neighborhood

of 1 is fully connected and therefore ¢(1) = 1.

1.1.5 Laplacian matrix

Another matrix representation of a graph can be given using

Definition 12 The Laplacian matrix £ of an undirected graph is defined as
£:=D—-A, (1.8)

where D = diag(d(1),...,d(n)) is a diagonal matriz of node degrees.
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In the case of directed graphs, either in- or out-degree of nodes can be used to create
the matrix D. From this definition it follows that the Laplacian of a graph has the
following form
-1, if(z,y) €FE
L(x,y) =d(z), ifrx=y
0, otherwise.

The Laplacian matrix can be used to find many properties of the graph, such as the
number of spanning trees. Of special importance is its spectrum, as it can indicate
the number of connected components of the graph. However, unlike the spectrum
of the adjacency matrix, from the spectrum of £ it can not be seen whether the
graph is bipartite. In order to improve this, the normalized Laplacian is often
used [41]
S=D3¢D3,

as its spectrum can indicate both the number of connected components and the ex-
istence of bipartite structures in the graph. In particular, the number of eigenvalues
equal to zero represents the number of connected components, whereas it holds that
the graph is bipartite iff for each eigenvalue A\, 2 — X is also an eigenvalue.

AA): 0 0 0 0 0 —141 141 -223 223
Ag): 0 0 1 1 1 1 1 3 6
A8: 0 0 1 1 1 1 1 2 2

Figure 1.5: Undirected, bipartite graph with two connected components and the
spectrum of its adjacency matrix A, Laplacian matrix £ and normalized Laplacian
matrix £.

Example 5 Figure 1.5 shows an example of an undirected graph that has 9 nodes
organized in two connected components, which can be seen from the fact that both
spectra of Laplacian matriz and normalized Laplacian matriz have two eigenvalues
that are equal to zero. This graph is also bipartite, which can be seen from the
symmetric spectrum of its adjacency matriz A and also from the spectrum of its
normalized Laplacian matriz £.
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1.2 Modeling complex networks

The so called "new science of networks" [14] has introduced novel paradigms of basic
system properties, such as scale-free networks [15] and small-world structure [166].
These are shown to be correlated with specific structural properties of networks,
for example organization into modules [80] or existence of highly connected nodes
[15, 18]. In this Section we will present three main classes of modeling paradigms:
random graphs, small-world networks and scale-free networks.

1.2.1 Random graphs

Introduced by Erdos and Renyi in 1959, this is one of the most used network models
[60]. This model is based on studying the probability space of undirected graphs.
More precisely, given a fixed number of nodes n, all possible edges between these
nodes appear with the same probability p. The degree distribution of random
graphs is binomial or in the limit for large n a Poisson distribution

n— np)ke—mp
P(k) = < " 1>pk(1 —p)" (p)k!,

where k represents a degree of a node and P (k) the probability that a node chosen
uniformly at random will have a degree k. However, many of the real-world networks
are shown to have a different degree distribution than random graphs. This makes
them usually an inadequate model for describing structural features of complex
networks. Despite this, random graphs had a great influence on modeling complex
networks and are still widely used in many fields. Figure 1.6a shows an example of
a random network with n = 30 nodes, where edges are generated with p = 0.2.

1.2.2 Small-world networks

This model was motivated by the observation that nodes in many real-world net-
works are connected, on average by very short paths. For example, "a path of just
three reactions will connect almost any pair of chemicals in a cell" [17], most species
in food webs are at most three links apart from each other [167] and "in certain
portions of the Internet" Web pages are on average 19 clicks away from each other
[7].

Small-world networks are networks that have a small average shortest paths
length. The name "small-world" comes from the social science systems, where empir-
ical experiments by the psychologist Stanley Milgram in 1967 implied the existence
of the so called small-world phenomenon in human society. After these experiments
many other studies have indicated that the average path length between any two
people in the United States is six (also known as "six degrees of separation").
However, small average shortest path length is the property that can appear in
many types of networks, such as random graphs. In order to resolve this issue, a
particular category of small-world networks was introduced by Watts and Strogatz
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(a) Random graph. (b) Small world network.

(c) Scale-free network.

Figure 1.6: Three different network types, with 30 nodes each.

in 1998 [166]. Networks according to the Watts and Strogatz model have a small
average shortest path length and a large clustering coefficient. Random graphs have
a small clustering coefficient, because all edges are equally likely and there is no
tendency towards clustering. Because of this, a "large clustering coefficient" in the
Watts and Strogatz model in practice translates into "significantly higher" cluster-
ing coefficient compared to the one for random graphs. A wide range of real-world
networks have shown to posses properties of the Watts and Strogatz model such
as food webs, road networks, electric power grids, metabolic networks, networks of
brain neurons and social networks. For an extensive review of small-world networks,
we refer the reader to [165]. Figure 1.6b shows an example of a small-world network
of the Watts and Strogatz model.
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1.2.3 Scale-free networks

Many real-world networks are found to have a so called power law degree distribu-
tion [15, 16, 5, 90]
P(k) ~ k77,

where v > 0 is a constant. Intuitively, this means that there exist many nodes with
small degree and only a few nodes with very high degree. For example, a degree
distribution of a directed network that describes the Word Wide Web is found to
follow a power law with v;, &~ 2.1 and e ~ 2.45 [7]. Empirical studies have
shown that the power law degree distribution characterizes many other networks
such as the actor collaboration network v ~ 2.3, the metabolic network of E.coli
Yin, Yout = 2.2 [90], the Internet v ~ 2.2 [62] etc..

Networks that have a degree distribution which approximately follows a power
law are commonly called scale-free networks. This name was motivated by the
fact that power law degree distribution is scale invariant, that is the law of the
distribution doesn’t change when being multiplied by a constant. Many scale-
free networks are shown to have certain similar topological properties such as the
existence of highly connected node-hubs [15, 18]. These nodes are of special interest,
as they can have a great impact on the network’s robustness. Furthermore, scale-
free networks are shown to be resistant to random network failures. However, it
has been observed [43, 44] that removal of highly connected nodes can significantly
perturb and sometimes even cause a breakdown of the entire network. We will
address this matter in Chapter 5.

Figure 1.6¢c shows an example of a scale-free network, where nodes with degree
higher than average are marked in red color.

1.3 Analyzing real-world networks

Describing complex systems as abstract networks is a powerful tool [125], but even
as abstractions the constructed networks remain highly complex. Reducing the com-
plexity of networks and understanding their structure is based on the observation
that most elements of the real-world systems are naturally grouped into categories.
Books can be grouped according to their content, people can be grouped according
to their occupation, living beings are grouped into species etc.. It would be of great
importance to determine the grouping mechanisms in different complex systems,
as they could enable discovering new elements of these systems, their unknown
functions and relations between different elements.

1.3.1 Graph clustering

Natural system decomposition groups together elements with similar characteris-
tics, so that the relationships between them is strong, whereas their connection to
the elements from different groups is usually weak. This very intuitive definition
has been formulated more precisely as a clustering problem in the field of data
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mining. Clustering is the process of finding groups of data, called clusters, based
on some similarity measure between the data elements [147]. In the context of net-
works, we consider a graph clustering problem where networks are coarse-grained
into clusters of nodes, such that nodes belonging to one cluster are highly intercon-
nected, but have relatively few connections to nodes in other clusters.

The problem of graph clustering is closely related to the problem of graph parti-
tioning, where the task is to partition the network into smaller components given
certain constraints [156, 38, 65, 59]. More precisely, given a number of partitions
and their size, by minimizing a particular cost function standard graph partitioning
(also know as cut-based) algorithms find disjoint sets of approximately the same
size that form a full partitioning of the network. However, in most of the real-world
examples the number of partitions is typically unknown in advance. Furthermore,
the natural grouping of elements of the underlying system produces sets that are
often of unequal sizes.

One of the oldest graph partitioning algorithms is minimum-cut algorithm. This
algorithm is widely used in computer science in parallel and distributed comput-
ing for solving a problem of workload distribution [38]. A fixed amount of tasks
(representing nodes of a workload graph) needs to be done on a certain number
of processors (each corresponding to one graph partition), typically minimizing the
overall runtime. As mentioned above, in many real-world networks we don’t have
these parameters in advance. The problem when setting the size of partitions to be
free is that the trivial partitioning into one group provides the optimal solution of
the cost function. In order to overcome this obstacle, several new approaches have
been proposed, where the two most common are RatioCut [76] and Ncut [154].
However, both methods and their modifications need at least the approximate size
of partition in advance.

In contrast to graph partitioning algorithms, the number of clusters and their sizes
are not needed in advance when solving graph clustering problems. More precisely,
the aim of graph clustering algorithms is to find

Definition 13 Modules (also called clusters, communities) are connected sub-
graphs of the network where all the nodes belonging to a single module are highly
interconnected while having relatively sparse connections to the remaining nodes in
the network.

It has been observed that dense connections between nodes of one module imply
functional relationships between elements of the underlying system [70, 130, 140].
This discovery introduces a new way for analyzing and understanding the organiza-
tion of many real-world systems. For example, modules may correspond to protein
complexes with the same function, group of Web pages with the same subject or
ecological stepsisters etc. In this sense, finding modules can help decomposing the
complex network structure into functional sub-units that can be analyzed in more
detail in subsequent stages. Some of the common methods for module identification
will be presented in more detail in Section 4.5.
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Standard graph clustering approaches aim at full decompositions of the network
into clusters, such that every node belongs to exactly one cluster. This means that
values of assignment functions, representing the probability of a node to belong to
a cluster, can be either 0 or 1. However, many real-world systems are characterized
by existence of elements that do not clearly belong to any particular group. This
situation can be illustrated for example in a social network. In particular, let us
consider a political affiliation network, where two individuals are linked if they have
the same political opinion and groups of individuals forming clusters have the same
political affiliation. In this sense, almost everyone in one group is linked to almost
everyone in the same group, but to no one of the individuals from the other groups,
with the exception of several persons that connect groups by being linked to some
members of both groups. These persons interconnect the clusters, but belong to
neither, as they have no clear political affiliation.

Motivated by this observation, we introduce

Definition 14 A hard clustering of a graph is a partitioning in which every node
has to be assigned to exactly one cluster. Soft or fuzzy clustering of a graph allows
that nodes can be assigned to more than one cluster with some probability.

In this thesis, we will describe a new algorithm that identifies modules by means
of soft clustering. Its fuzzy or soft assignment functions represent the probability
of a node to belong to a certain cluster. Thus, they can take values between 0 and
1. Setting a certain threshold value 0, e.g. 6 = 0.9, we can distinguish between
nodes that belong to a certain cluster with a high probability, meaning higher than
6. In order to avoid confusion between the approach to be presented and standard
clustering approaches, we will here use the term "modules” instead of ”clusters”,
referring to nodes that belong to a particular set with a probability higher than 6.

Example 6 Figure 1.7 shows an example network with 50 nodes. Using our fuzzy
clustering method (see Chapter /), 45 nodes were divided into five modules, that are
represented in five different colors. The five nodes that do not "strongly” (§ = 0.9)
belong to any module are marked as black nodes. These nodes form the inter-
modular region.

Different random-walker-based soft assignments have recently been discussed in
the literature [50, 145, 106]. However, these approaches suffer from two essential
drawbacks:

1. it is often difficult to determine the number of modules in the network;

2. the underlying approaches do not lead to efficient algorithms and therefore
can not be applied to very large networks.

We will address these two problems in more detail later and propose a new approach
that resolves them.
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Figure 1.7: Network with 50 modules, 45 of them are arranged in five modules that
are marked in different colors. Nodes marked with letters A, B, C and D are the
nodes that do not "strongly" belong to any of the five modules.

1.3.2 Hubs in networks

A soft clustering approach will allow us to go beyond the above introduced problem
of identifying modules. In particular, it introduces the inter-modular structure,
consisting of nodes that do not belong to any of the network modules. Some of
these nodes will play an important role for the network connectivity and as such
will often correspond to the essential elements of the underlying system. We will
refer to these elements as inter-module hub nodes. In the same way we will
define modular hubs as nodes that belong to modules and are important for the
network connectivity. The concept of hub nodes will be introduced in more detail
in Chapter 5.

Figure 1.7 shows an example network with 50 nodes organized in five modules. Here
we highlighted four inter-module hubs of the network and labeled them with A, B,
C and D. For example, node A is important for the communication between the
blue and the yellow module, but also for their communication with the rest of the
network.

Identification of modular and inter-modular structures of the network could yield
valuable information about the global network mechanisms. Furthermore, deter-
mining these structures could be used to understand dynamical processes taking
place on the underlying system. For example, if we consider an air-transportation
network, we can use its modular structure (where modules correspond to different
continents for example) and existence of hubs (big airports having many intercon-
tinental flights) to understand and control the spread of human diseases. Similar
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processes are of importance in many other systems, such as spread of opinions and
ideas in social systems. In this sense, discovering modules in the network and lo-
cating their essential connectors could provide crucial insights for controlling these
processes.

1.3.3 Real-world networks

Many network representations of real-world systems are useful for understanding
the main mechanisms and functions of the underlying system. The question is:
how to find an appropriate network representation that would contain the essential
characterization of the original system in its structure? In order to tackle this
problem, we will now review network representations of three different real-world
systems: social, biological and World Wide Web. Many review articles provide a
more detailed overview of various real-world networks, their features and common
approaches for their analysis [122, 6].

Social Networks

Understanding social interactions was always a task of great interest, as it mirrors
the structure of a society and in particular, a position of its individuals in this
society. Later, this became a topic of research in many fields like sociology, psy-
chology, anthropology, philosophy etc.. Representing social interactions in the form
of networks allowed introducing new tools for analyzing social systems, by methods
coming from mathematics, physics and computer science [152, 163, 164, 105].
Different social networks are of interest, such as friendship networks, actor collab-
oration networks, political networks etc.. However, the strategy for creating these
networks is always the same: given a social system of interest, nodes of the network
correspond to individuals of this system and edges to the relationships between
these individuals. Depending on the system, individuals can be for example, high
school students, movie actors, researches, but also animals or fictional characters.
An example of social networks are the so called friendship networks, where nodes
of this network represent high school students and edges between them exist if they
are friends. A movie actors network is formed in such a way that the nodes cor-
respond to movie actors and the edges between two actors exist if they have been
acting in the same movie.

Understanding social networks and their participants can enable extracting impor-
tant information about the organization of the system. A natural phenomenon in
social systems is the existence of community structures, each representing a group
of individuals that are closely related in some way. This could be for instance a
group of people with the same interests or people coming from the same country
or people speaking the same language... In this sense, identification of modules
in a network can discover special roles of individuals or specific subject of groups.
Another important element of social systems are hub nodes. Hubs can correspond
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to individuals who have leader roles in the system or in a particular module, like a
person with many friends or an actor who collaborated with many of his colleagues.
Hubs can also have a role of a connector, for example a person who speaks many
languages and can therefore establish a communication between groups of people
speaking different languages.

However, the main difficulties for analyzing social networks occur due to the quality
of the initial data. Namely, the tests for collecting the relevant data are often sub-
jective, incomplete and inaccurate. Furthermore, validating the obtained results
is another critical issue, as the "correct" results are usually not known. In some
cases, like Facebook, organization of the friendship network is known although not
complete, but it is not available due to privacy policies.

Biological Networks

The analysis of biological networks is a very challenging and fascinating task, due
to the complex organization and the diverse dynamic behaviors of the underlying
systems. Of specific interest are biochemical networks, such as protein-protein in-
teraction networks and metabolic networks, which can be used to understand basic
cellular organization principals and molecular mechanisms of living organisms.
Protein-protein interaction networks (PPI) are one of the most studied types
of biological networks [89, 75, 78]. They are built according to experiments that
tested physical interactions between different proteins of an organism. The nodes
of PPI networks are proteins and an edge between proteins implies that the two
proteins can interact with each other. Protein-protein networks are commonly rep-
resented as undirected networks.

Metabolic networks reflect molecular metabolic mechanisms of a particular or-
ganism [136, 89]. The nodes represent substrates that participate in bio-chemical
reactions which are presented by directed edges oriented towards a product of the
reaction.

Another type of well studied biological networks are ecological networks [131] and
in particular food webs [119]. Food webs are commonly represented as directed
networks, in which nodes correspond to species of an ecosystem and edges represent
predator-prey relationships between them.

Biological systems are often organized in network modules [70, 126, 135, 72|, which
represent a specific function, for example a specific synthesis pathway in a metabolic
reaction network [136, 80]. A large number of biological networks, such as protein-
protein interaction networks or metabolic networks are shown to be scale-free. As
we mentioned before, this implies the existence of highly connected network hubs
[15, 18], which may serve as central distributing elements or linkage points for many
regions of a network [18, 89]. For example, in an early study by Fell and Wagner
the authors found the metabolites with the highest degree to be the core of FE.
coli metabolism [64]. Another study found that the ranking of the most connected
metabolites is largely identical for all organisms [89, 90].
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World Wide Web (WWW)

The World Wide Web is the largest currently available network, having already at
the end of 1999 close to one billion nodes. The nodes of WWW are Web pages and
directed edges are hyperlinks that point from one document to another. Complex
organization of this network, no natural ordering and its constant growth makes the
WWW be one of the most studied networks [7, 16, 35]. Its topological properties,
such as the small-world property and power-law in- and out-degree distributions,
suggested the existence of certain structural network elements that can be of in-
terest for the underlying system. For example, it has been shown that hub nodes
correspond to the most vulnerable points of the WWW, as their removal can destroy
the links towards many other Web pages and therefore, can cause the breakdown
of some parts of the network [43, 44].



CHAPTER 2

Random walks on undirected
networks

During the last years, there has been increasing interest in studying random walks,
as they can be used to model processes coming from various fields. The path of a
dust particle in a room, stock market fluctuations and surfing on the Internet are
only some of the examples that can be described using random walks.

The pioneering steps in studying the basis of random walks go back to the research
of the Scottish botanist Robert Brown in 1828. He observed the motion of the
pollen particles in water and discovered that this motion is governed by irregular
drift. However, the first formal definition of the random walk problem was published
only in 1905 by Pearson, as a part of his discussion with Lord Rayleigh:

"A man starts from a point 0 and walks | yards in a straight line; he then
turns through any angle whatever and walks another | yards in a second
straight line. He repeats this process n times. I require the probability
that after n of these stretches he is at a distance between r and r + or
from his starting point."

Following this discussion, many scientists such as Einstein, Schmoluckovski, Markoff
and others contributed to setting up what is now considered to be the basis of
stochastic processes. Since then, random-walk-based methods have been playing
an important role not only in probability theory, but also in physics, economics,
chemistry, biology, computer science, etc..

In this chapter we will refer to the method of random walks on networks, as the
method that has been well-established for structural analysis of complex networks
[128, 69]. We will first introduce the theoretical background of the standard random
walker based approach to networks in Section 2.1. Then in Section 2.2 we will es-
tablish the fundamental connections between the modular structure of the network
and kinetic properties of the random walk process. We will see that this specific
behavior of standard random walk process in modules does not always correspond
only to modular network structures in the sense of their topological definition (See
Section 1.3). This will motivate our new time-continuous random walk process,
that will be introduced in Section 2.3.
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2.1 Standard random walk

In Section 1.1, a simple, connected, undirected, unweighted graph G = (V, E, w), is
defined with: the set V' of n nodes, the set of edges between the nodes E and the
non-negative edge weights w(zx, y)

1, (z,y) ek
w(zx,y) = 2.1
(e-) {o, (z,y) & E. 21

Now we can define the standard time-discrete random walk process on a graph
G, with discrete time steps n = 1, 2, ... at which the random walker moves. Initially
the random walk process starts in a certain node ug € V. Then, at each time
step he moves from the current node to one of its neighbors that has been chosen
uniformly at random. More precisely, being in node x the walker will jump next to
one of his neighbors y, with transition probability

p(ey) = T, (22)

where d(z) is the degree of a node x (1.4).

The sequence of nodes visited by the random walk process defines a Markov chain
{X,, € V,n € N}, i.e. a time-discrete stochastic process on discrete state space,
that satisfies the Mlarkov property

]P)[XnJr]_ = SU‘Xn = Tpy--- ,XQ == SL‘Q,Xl == $1] == ]P)[XnJr]_ == ZL“Xn == fEn] (23)

That is, being at the present node, the future and past jumps are independent from
each other. Therefore, the choice of the next state depends entirely on the current
state. If the transition probability does not depend on the actual time step n, that
is

P Xni1 =yl Xy =2] =P[X,, =y X1 =2| =... =P[Xy = y| X3 = z],

then the associated Markov chain is called time-homogeneous and is character-
ized by the transition function P:V xV — [0, 1]

P(x,y) = P[Xn41 = y|Xn = 2], Va,y €V, (2.4)

that governs the transitions from one state to another. In the following, we will
consider only time-homogeneous Markov chains.

2.1.1 Properties of random walks on networks

Every Markov chain defines via its transition function P (2.4), the one-step tran-
sition matrix

P = (pay)zyev, with entries puy = p(z,y). (2.5)
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This matrix is a stochastic matrix, since

p(z,y) >0,Vo,y €V and > p(z,y) = 1.
yeVv

One important task in the theory of Markov chains is to determine the probability
that after k steps a Markov chain is in state y. First, let us calculate the k-step
transition probability from x to y for k£ > 0, that is the probability to be in state y
after k steps conditional on initially starting in state x

) =P[Xpo =yl X1 =2, if P[Xy=a]>0.

Now, using the basic properties of Markov chains, we can associate the k-step
transition probabilities to the matrix of k-step transition probabilities as

P®) = PF k>0, where PO =T. (2.6)

This implies that in order to calculate the k-step transition matrix, it is sufficient
to the have the one-step transition matrix P and raise it to the power of k. Fur-
thermore, another important relation is given by Chapman-Kolmogorov equation
(or semigroup property)

P (g y) = Z P*(z,2)P"(z,y), Vk,n >0.
zeV

A probability distribution 7 that controls the choice of an initial state

is called the initial distribution. Now, we can determine the distribution of the
Markov chain while it evolves over time. More precisely, if a Markov chain is initially
distributed according to 7, we can calculate the probability to be in node y after
one step
P Xs =y|] = Z PIX; = z]P[ X2 = y| X1 = 2]
eV

=Y 7(x)P(z,y),

zeV

(2.7)

and more general, the probability to be in node y in k-th step

PXp =yl = > P[Xip_1 = 2|P[X}, = y| Xj_1 = 7]
zeV
= Z Pk (z,y).
zeV
Many structural properties of networks influence a nature of random walks on these
networks and vice versa. In the following, we will point out some fundamental
properties. For a complete overview we refer to [107] and [129].
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e A state y is accessible from a state x via a random walk process, if
In>1, P"(z,y)>0, (2.8)

A Markov chain is irreducible if all of its states are accessible from all other
states. In terms of networks, node y is accessible from node «x if there exist a
path from node x to node y. If there exists a path from every node to every
other node, then the network is connected. The following result connects
these two properties.

Proposition 2
A Markov chain associated to a random walk (2.2) is irreducible, if and only
if, the underlying undirected network is connected.

e For a state x, we define its period as
period(z) = ged{n > 1, P"(z,z) > 0},

where gcd is the greatest common divisor. If period(x) = 1, then the state
x is said to be aperiodic. A Markov chain is aperiodic if all its states are
aperiodic. In particular, a network is said to be aperiodic if the gcd of the
lengths of all cycles in the networks is equal to 1. Undirected, aperiodic graphs
are called non-bipartite. Especially, the following holds

Proposition 3
A Markov chain associated to a random walk (2.2) is aperiodic, if and only if
the underlying graph is non-bipartite.

e A special class of problems are induced by the above introduced type of net-
works. Namely, a random walk on an undirected, connected, non-bipartite
network defines an ergodic Markov chain. Ergodic Markov chains are of
special interest in the theory of Markov processes, as they are useful from an
algorithmic perspective. This issue will be addressed in more details in the
next section.

2.1.2 Invariant measure and reversibility

For a given Markov chain (X, ),en with transition matrix P, a non-negative vector
wwith >, pu(z) =1 and
pP = p, (2.9)

is called the invariant measure or the stationary distribution of that Markov
chain. From (2.9) it follows that u is the left eigenvector of P with respect to the
eigenvalue A1 = 1. It is easy to check that the invariant measure of a random walk
process defined as (2.2) is given by

d(x)

u(x) = m (2.10)
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If the walker starts p-distributed, then it will again be p-distributed after one step,
that is

PXy =yl = > P[X1 = alp(x,y) = Y wl@)plz,y) = u(y).
zeV eV

This means that the probability to be in a certain node is proportional to the degree
of that node.

The following result states that regardless of the initial distribution, the ergodic
random walk always converges to one distribution: the stationary distribution [34].

Theorem 1 (The fundamental theorem of Markov chains)
For a finite ergodic Markov chain with transition matriz P, there exists an
unique stationary distribution u such that

lim p"(z,y) = u(y), Vo,yeV.

n—oo

Note that this limit does not depend on a starting state . That is, no matter where
the random walker starts on an undirected, connected, non-bipartite network; after
long enough time n it will end up in a state y with probability u(y). Hence, we
will assume in the following that the Markov chain is initially distributed by the
stationary distribution p. The proof of this theorem is provided in many textbooks,
for example in [34]. It is clear that for networks that are not connected this theorem
doesn’t hold, since there can exist several stationary states or even none. Let us
show on the following example, why aperiodicity is a necessary condition for this
theorem.

Example 7 Let us consider a special class of graphs, namely bipartite graphs,
introduced in Definition 4. Bipartite graphs are an example of graphs that are pe-
riodic, since their cycles have a length that is divisible by two. An example of a
bipartite graph is shown in Figure 2.1, together with the transition matriz of the
random walk defined on this graph. In every step the random walker will go from
one side of the network to another side. That is, if the walk starts on one side its
limiting distribution at time t will depend on the parity of t, so the random walk
oscillates all the time and never converges. It is easy to check that a stationary
distribution of this process is p = (0.25,0.25,0.25,0.25), which is not obtainable if
we start for example with an initial distribution = = (1,0,0,0).

Spectral properties of an ergodic Markov chain are described by the following the-
orem [153]:
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P=1"9 05 0 05
05 0 05 O
(a) Bipartite graph (b) The transition matrix

Figure 2.1: An example of a bipartite network with four nodes and its transition
matrix P.

Theorem 2 (Perron-Frobenius theorem for ergodic Markov chains)
If (X1)ten is an irreducible, aperiodic Markov chain with n X n transition matriz
P, then

1. P has a unique eigenvalue A\ = 1, with the corresponding right eigenvector
Pl =1,1 = (1,...,1) and the left eigenvector uP = pu, that has all
positive entries.

2. All other eigenvalues of P are also real valued and strictly smaller (in
modulus) than A1, i.e. 1=X1 > [ > |Ag| > ... > |\].

Example 8 At this point we will show three examples in order to illustrate spectral
properties of random walks on different types of undirected networks. Let us first
consider an undirected-unweighted network with eight nodes, shown in Figure 2.2.
This network is connected and aperiodic, so that the random walk process defined on
this network is ergodic and Theorem 2 holds. FEigenvalues of its transition matriz
are also shown in Figure 2.2.

Our second example refers to a disconnected network shown in Figure 2.3. As dis-
cussed in Proposition 2, the random walk process defined on a disconnected network
is not irreducible, so Theorem 2 doesn’t hold. Therefore, the spectrum of the transi-
tion matriz P is characterized by the multiple maximal eigenvalue A\ =1, as it can
be seen in Figure 2.3.

The third example studies the spectrum of an already introduced bipartite, undirected
network from Ezample 7. From Proposition 3, it follows that the random walk pro-
cess on this network is periodic and since the network is undirected, period(z) =
2, Vx € V. Moreover, the spectrum of the transition matriz of a random walk pro-
cess on a bipartite graph is always characterized by its symmetry with respect to 0
and in particular by the eigenvalue X\ = —1 [107]. In this particular example, the
spectrum s

AM=1 X=X3=0 M=-1
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o Eigenvalues of P

A 1

@‘ )\; 0.5071

3 \9\ s | 0.0754
A 0

@ e )\: —0.1319

A6 —0.3333

A7 —0.4802

@ @ As —0.6371

Figure 2.2: An example of an unweighted, undirected network with eight nodes and
the eigenvalues of its transition matrix P.

0 Eigenvalues of P

Figure 2.3: An example of a disconnected unweighted, undirected network with
eight nodes and the eigenvalues of its transition matrix P.

It is important to notice that for an undirected network, the symmetry of its adja-
cency matrix doesn’t imply the symmetry of the transition matrix P. In particular,
P is symmetric if and only if the original network is regular, i.e. if degrees of all
nodes are the same. The symmetry of the adjacency matrix of the network implies
that the random walk process is reversible in time

P[Xn =2, Xpny1 = y] = P[Xn =y, Xpnt1 = ‘T]a

i.e. the random walk process running forward in time is equivalent to the process
running backward in time. This easily follows from (2.1), (2.2) and (2.10)

dlz)  w(z,y)
Yevd(z) d(z) (2.11)
= w(y)p(y,z) = P[Xp =y, Xpp1 = z].

P[Xn = 2, Xp41 = y| = p(@)p(z,y) =

This means that the random walk (2.2) is time-reversible with respect to its sta-
tionary distribution p. Also, if a Markov chain is reversible with respect to , then
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7 is a stationary distribution
(7P)(y) = > w(x)P(x,y) = Y w(y)Ply, x) = n(y).
zeV zeV

Reversibility of the Markov chain implies that the detailed balance condition
holds

w(@)p(x,y) = u(y)ply, ). (2.12)

Remark 1 In general we can define an irreducible Markov chain with transition
matriz P and stationary distribution p and the time-reversed Markov chain with
transition matriz P?. The connection between these two processes is

u(y) P (y, ) = p(x)P(x,y).

Especially, if the Markov process is time-reversible we have that P = P®. We will
refer to this point again later in this Chapter.

An interesting interpretation of equation (2.12) can be given based on the notion of
probability flux [39]. The quantity u(x)P(z,y) is called the probability flux from
x to y, that is the amount of probability mass flowing from x to y. Then, equation
(2.12) states that for every pair of states (x,y) the flux from z to y is equal to the
flux from y to x, that is a flux is locally balanced between each pair of states. We
can also define a probability flux between two sets A, B C V, as

flux(A, B) = Y pu(z)P(z,B) = Y > w(z)P(z,y),
€A z€AyeB

and due to reversibility prove the global conservation of flux between two sets.
Therefore, when B = A€ it always holds that

flux(A4, A°) = flux(A°,A), ACV, (2.13)

hence the probability flux from A to its complement A¢ and the flux from A€ to A
are equal. Especially, when we observe only one state x € V', i.e. A = {z}, this
means that the total flux leaving a state x is the same as the total flux that goes
into state .

2.1.3 Transfer operator

As stated above, we assume that a given Markov chain is ergodic, so that u is its
unique invariant measure. Let us introduce the u-weighted Hilbert space

Ly ={f:V =R ) f(z)’pu(z) < oo},

zeV

where the scalar product, the induced 2-norm and the 1-norm are defined as follows:

(f,9)u =D f@g(@pu(),  NfIE=C0 e =D 1f@)u).
zeV zeV
(2.14)



2.1. STANDARD RANDOM WALK 35

We define the transfer operator P on Li that describes a propagation of densities
in Li
PHW) = 3 wl@)p(,y)f () (2.15)

zeV

The reason to switch to the space Li is that since the detailed balance condition
(2.12) holds, we have that

(u, Pv), = Y u(z)p(z,y)v Zp y, 2)u(x)v(y)u(y) = (Pu,v) .

z,yeVv

i.e. P is self-adjoint in LZ. Therefore, the spectrum of P is real-valued and can
be ordered as follows:
1= M >X>X32>...2 )\,

where \; are the eigenvalues,
PUj:Aj’UJj, j:]_,...,n

The associated eigenvectors u; form an orthonormal basis of Li, ie. (uj,up)y = djk-
Notice that the largest eigenvalue A\; = 1 corresponds to the eigenvector u; = 1
and is unique. Especially, u; = 1 is the invariant measure in Li.

Remark 2 Note that up to now P has the following meanings:
1. the transition function corresponding to the given Markov chain (2.4),
2. the stochastic matriz (2.5),
3. the transfer operator (2.15).

These three objects provide the equivalent expressions of the same fact. To this end,
let us observe the spectral properties of the operator P and the transition matriz P.
From 2.15, we have that

Z“Z = 3" ple,y)uly) = (P-w)al,

yev 'u yev

where for the second equality we used the detailed balance condition. Again, the
expression on the left hand side represents the action of the operator on the function
and the last expression is a matriz multiplication, where [x] refers to the 2" element
of the resulting vector. Now, it is easy to see that both objects have the same
etgenvalues and eigenvectors.

Since the eigenvectors of P form an orthonormal basis in Li, we can write for v € LI%

<'U, u])NuJ
1

n

J
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Thus, we can write the kth-power of P in the form

n

PP ="\ (uy, ). (2.16)
j=1

Since P* describes the k-step transition probabilities of the random walk process,

equation (2.16) means that the eigenvalues \; imply the timescales T; = 1/|log ;| of
all relaxation processes of the random walker on the network, starting with the triv-
ial timescale T7 = oo on which the random walker relaxes to its invariant measure,
via the slowest non-trivial scale T to shorter and shorter relaxation timescales.

If some eigenvalues, say Ai,..., A\, are particularly close to 1 (i.e. significantly
closer to 1 in modulus than all others), then the associated timescales are very
long and significantly longer than all other relaxation timescales. These eigenval-
ues are called leading or dominant eigenvalues. Moreover, right eigenvectors
corresponding to the dominant eigenvalues capture the large-scale behavior of the
random walk, whereas eigenvectors with smaller eigenvalues contain the small-scale
behavior. We see that the basic properties of the random walk process are deter-
mined by the spectrum of the transition matrix.

2.1.4 Random walks on weighted networks

Let us now extend the definition of random walk processes to weighted, undirected
networks. As explained above, in the case of undirected, unweighted networks
at each time step the random walker moves from some node z to a node chosen
uniformly at random among neighbors of . However, if a given network is weighted
this choice is not uniform, but proportional to the weight of the edge connecting
the two nodes. Then, the transition probability is defined as in (2.2)

p(ey) = 288 ) = 3 (e, y)

yev

where now d(z) is the weighted degree of node x (see Definition 7). The properties
of random walk processes on unweighted networks from the beginning of the Section
2.1 can be extended and applied also to undirected, weighted networks. Especially
important is that Perron-Frobenius theorem (see Theorem 2) holds for weighted
networks, so that for ergodic Markov chains the eigenvalues of P are real valued
and 1 = Ay > Ao > A3 > ... > \,. Furthermore, it can be easily shown that
random walk processes on weighted, undirected networks are also time-reversible.

In the following we will consider unweighed, undirected networks in order to operate
only with 0 — 1 edge weights, which provides a much clearer calculation than when
dealing with arbitrary edge weights. However, one should have in mind that our
results can be easily generalized to the case of weighted, undirected networks.
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2.2 Modules and metastable sets

In Section 1.3 we have defined modules as specific structural elements of networks.
More precisely, modules are subgraphs in which nodes are densely connected to each
other, but have only a few edges to nodes outside of that module. Identification
of modules in networks has many important advantages, especially when applying
to real-world systems. We have already mentioned their potential use in analyzing
social and biological networks (see Section 1.3.3). After defining a random walk
process on a network, the obvious questions to ask are:

e What are modules in terms of the random walk process?

e How does the existence of these structures influence the behavior of the ran-
dom walk on the network?

The answers to these questions will connect dynamical properties of the random
walk to the structural properties of the network and justify the usage of the random
walker approach in the structural analysis of complex networks.

Let us introduce the notion of the transition probability between two sets A and B

L > wl@)p(e,y),

p(A,B)=P(Xo € B|X; € A) =
[L(A) reAyeB

i.e. the probability that the walker, after having started in the set A C V distributed
according to the invariant measure u, will be found in the set B C V after one step.
Modules, being defined by the property of being connected internally more densely
than externally, can thus be described as subsets M1, ..., M,, C V of the nodes for
which:

(1) the transition probability p(M;, M;) from the module M; to some other mod-
ule Mj, j # i is significantly small, i.e. p(M;, M;) =~ 0;

(2) the residence probability in every module M;, p(M;, M;) is close to 1, that is
p(Mi, Mz) ~ 1.

The first condition describes the communication between modules, namely that
modules of a network are well separated in the sense that jumps between them
are rare. On the other hand, the second condition is connected to the behavior
of the random walk process inside a module: a random walk tends to get trapped
in a module for a very long time. In Markov chain theory these sets are called
metastable sets [49, 50]. Our main idea is that modules of a network correspond
to metastable sets of a random walk process on that network [150, 88, 53, 144].

Hence, identification of modules in a network is directly connected to the behav-
ior of the random walk process on its longest time scales. In Section 2.1 we have
shown that the longest time scales are encoded in the dominant eigenvalues of the
transition matrix P. Because of this, the number of metastable sets (modules) can
be determined from the number of dominant eigenvalues of P. Furthermore, the
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eigenvectors corresponding to the dominant eigenvalues of P can indicate how to de-
compose the network into modules, according to the change of sign of eigenvectors.
This strategy is a crucial idea of spectral clustering methods. We will explain
this idea in Chapter 4, together with the strategies for identification of modules.
Properties of metastable sets will be studied in more detail in Chapter 3.

Figure 2.4: Network with 30 nodes, where 24 nodes belong to three modules. The
transition matrix P has three dominant eigenvalues: A1 = 1, Ao = 0.98 and
A3 = 0.97. This plot shows the two eigenvectors corresponding to the dominant
eigenvalues Ao and A3, respectively.

Example 9 Let us now illustrate how to determine the number of modules in given
networks, as metastable sets of the random walk process. In Figure 2.4 we show
an example network with 30 nodes. The transition matricz P has the following
etgenvalues, sorted in the descending order

AM=1 X=098 X3=097 X\ =0.76 X5=0.41...

We see a clear spectral gap after the third eigenvalue, which implies that there are
three dominant eigenvalues, i.e. three modules. Since the eigenvector corresponding
to the first eigenvalue A1 is constant, the eigenvectors corresponding to Ay and A3
indicate which nodes belong to which network module.

However, in many cases the spectrum of the transition matrix P does not provide a
clear answer about the number of modules and their structure. The next example
will demonstrate this problem and explain the reasons why this happens.

Example 10 Figure 2.5 shows a network that has 200 nodes, of which only 80 are
in one of the two modules. This network consists of the large loosely connected
area, taking place on the left part of the network. Due to its structure, this area
is characterized by the appearance of metastability, since the random walker spends
a long time in it. As a consequence, the spectrum of P has no clear spectral gap,
which can be seen in the plot of the first 20 eigenvalues of P. This doesn’t necessarily
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Figure 2.5: Left: Network with 200 nodes, where 80 nodes belong to the two
modules colored in blue and green. Right: The first 20 eigenvalues of the transition
matrix P.

exclude the usage of spectral methods for decomposing networks into modules, but
in many cases it does decrease the quality of the obtained solutions.

Furthermore, the spectrum of P is characterized by negative eigenvalues close to
—1. This effect is caused by the existence of alternating (bipartite) structure in the
network, such as the long chain on the right part of the network, see Definition 4.
When the standard random walker enters a structure like this, it gets trapped in it
for a long time. Therefore, these type of structures can be very metastable, although
they do not correspond to modules in the topological sense, as in Definition 135.

Regarding the outlined drawbacks of the standard random walker approach, we will
introduce in the next section a new approach that overcomes these problems.

2.3 Time-continuous random walks

Let us introduce a new class of random walks on networks, as processes that
will overcome the problem of identifying non-modular substructures of networks
as metastable sets of the process.

2.3.1 Time-continuous Markov processes

Our new approach is based on employing time-continuous random walks on net-
works, i.e. time-continuous Markov processes (X;);cr+ on the finite, discrete state
space V, that satisfy the Markov property

]P)[thﬂ = 1"th = Tpy---, Xt2 = .Z'Q,th = 33'1] = P[th+1 = x]th = CCn],

where 0 <t} <ty < ... <tpy1 and xq,...,2p,x € V.
We will consider a Markov process (X¢);cr+ and its associated family of transition
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matrices {P(t) = (pe(x,y))z,y,t > 0}, with entries
pe(x,y) = PIX(t) = y[X(0) = «],
such that there are no transitions happening at time ¢ = 0

1 ifz=y;

As a necessary regularity condition, we assume that transition probabilities are
continuous at time ¢t =0

li JY) = Ogy, Ve, y € V.
Jm (@, y) = 0y, Y2,y

In other words, realizations of the process are right-continuous functions of time, i.e.
step-functions. Because of this, time-continuous Markov processes are also called
Markov jump processes, where transitions from one state to another correspond
to jumps in step functions.

Like the transition matrix of a Markov chain, also the family of transition matrices
{P(t),t > 0} of a Markov process satisfies the Chapman-Kolmogorov equation

P(s)P(t) = P(s+1), s,t >0,

with P(0) = Id. The main difference between this setting and the one for Markov
chains is that the time-discrete process (Xp)neny was fully characterized by one
transition matrix P, whereas the Markov jump process is described by a family of
transition matrices {P(t),t > 0}. The reason for this lies in the fact that Markov
chain can be seen as a sequence of snapshots of the time-continuous process, for a
certain fixed time step t.

Regarding this, the interesting questions that arise are the following

e What are the advantages of using Markov jump processes?
e How can we describe the behavior of the process at every point in time?

e How quickly does the process jump from one state to another?

Addressing these questions is connected to observing the infinitesimal changes of
transition probabilities, that can be expressed by

P(t)—1d
L=l PO-H

t—0+ t

(2.17)

where L is the rate matrix of the Markov jump process (X;)icr with entries

l(z,y) >0 Vr#y and I(z,x)=— Z l(z,y). (2.18)
yeV\z

A rate matrix is the basic object in the theory of Markov jump processes, since it
entirely characterizes the dynamics of a given process.
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More precisely,

e [(x,y),z # y represents the transition rate, i.e. the average number of
transitions from x to y per time unit;

e —[(z,x) corresponds to the rate of leaving node z, called escape rate.

Escape rates are one of the crucial novelties of Markov jump processes compared
to Markov chains, since they introduce the concept of waiting times of a process in
states [129]. This means that the time-continuous Markov process jumps between
states, but also spends some time "waiting" in states. The expected time the process
spends in a state x is m This relation motivates the introduction of our new
random walker approach and will be explored in more details in 2.3.2.

The rate matrix L is also called the infinitesimal generator of a Markov process,
since it can generate the whole family of transition matrices

P, =exp(tL),t > 0. (2.19)

For a fixed timescale ¢ this equation establishes the connection between the genera-
tor of a time-continuous process and the transition matrix of its embedded Markov
chain. Therefore, it enables us to obtain properties of a Markov jump process ob-
served at a certain time step t. In the case of Markov chains, we will often use the
so called discrete generator L,

Ly=P—1d, (2.20)

as an object that mimics some of the properties of the infinitesimal generator L,
namely (2.18). However, it is important to notice that the discrete generator clearly
does not have the same meaning as the infinitesimal generator, in the sense of
representing the underlying dynamics of a process.

In analogy to the transfer operator P defined by equation (2.15), we introduce on
L2
o
(LHWy) =Y Uz,y)f(z)n(@) (2.21)

and for the discrete case L5 = P — Id, in terms of the operator P.

Remark 3 We can observe the dynamics of the process (X;) running backward in
time. Then, L refers to the generator of the time-reversed process and especially
Ly is the discrete generator of the time-reversed process. As explained above, L
or in time-discrete setting Lg, generate the family of transition matrices (P?) with

entries

b _ k(@) T
pt(y7$) - ,u(y)pt( 7y)'

Obviously, when the process is time-reversible (2.12), we have

plt)(xvy) :pt(fﬁ,y), (222)

so the process running backward in time is equivalent to the process running forward
in time. Then, from the detailed balance condition (2.12) it follows that L = L,
that is in time-discrete case Lg = Lyg.
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2.3.2 The new random walker approach

Here, we will introduce the new random walker approach as a family of time-
continuous Markov jump processes, defined by its generator

1

Tqwr TV
Lp(.’l?, y) = k(i%@é?)pv T ?é Y, ({I:v y) S E (223)
0, else

where p € R and k(x,y) > 0 are weights such that k(x,y) = 0 if (z,y) ¢ E,
k(z,y) = k(y, =) and k(z) = 32, k(z,y).

From Section 2.3.1, it follows that a time-continuous random walk is characterized
by the waiting time in nodes of the network. In terms of a random walk process
this means that if the random walker is in node x, the expected waiting time in
this node is proportional to its degree d(z)P. That is, the more neighbors a node
has, the longer it takes the random walker on average to decide where to go next.
Defined in this way, the process becomes faster in simple regions, which are loosely
connected, and in more complicated, densely interconnected structures the process
becomes slower. The parameter p obviously refers to the level of metastability we
want to take into account, namely increasing the parameter p increases d(x)?, i.e.
the expected waiting time. For example, let us observe two random walk processes
for p =1 and p = 2 on a given modular network. In the process with the genera-
tor Lo network modules are much more metastable than for the process with the
generator Li. The choice of p, as well as the other parameters that determine the
random walk, will depend also on the topological properties of the given network.
This issue will be discussed at the end of this section.

Following the theory of Markov processes, let us now state some of the main prop-
erties of time-continuous random walk processes defined above.

Proposition 4

The invariant measure of a Markov jump process defined with (2.23) is

p(x) = L d(xPk(), (2.24)

where Z 18 a normalization constant.

Proof. We have to show that Lgﬂ(y) =0,Yy eV, so

L) = - Lyley)ine) = 5 3 Lo, y)d(a)h(z)
eV eV

_ 1 k(l‘7y) D D

= E( g;y Wd(x) k(x) 4+ Lp(y, y)d(y) k(y))
(z,y)EE

= (Y Hay) k) =0
T#y
(z,y)€EE
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Proposition 5
A Markov jump process defined with a generator L, from (2.23) is reversible.

Proof. We have to prove that the detail balance condition holds

w(@)Ly(z,y) = w(y) Ly(y, x), Y,y € V.

This follows trivially when z = y. The same applies for =,y € V, such that
(x,y) ¢ E since then L,(z,y) = 0 = Ly(y,x). Now, the only possibility is that
x #y and (z,y) € E. We now apply (2.24) and obtain

P Ly () = L)) o ROV WD) .

Time reversibility of the process X; implies that the generator L, is self-adjoint in
Li. Therefore, the spectrum of the generator is real-valued and its eigenvectors are
orthonormal. If the network is connected and non-bipartite, the largest eigenvalue
A1 = 0 has multiplicity one and the whole spectrum can be ordered as

0=A1>A>A3>...>A,.

For fixed timescale ¢, we will consider the transition matrix P = P; of the Markov
chain, where P = exp(tL) according to (2.19) and L = L,, for a particular p. The
eigenvalues of the transition matrix P are given with

Ai = exp(A;t), (2.25)
and can be ordered as as follows:
I=XM>X>A3>...>2 )\, (2.26)
with an orthonormal system of eigenvectors {u1,...,u,} in Li:

1, 1=3j

2.27
0. itj (2.27)

Pui = )\iui (ui,uj) = {

The properties of the family of random walks introduced in (2.23) depend on the
given parameters and the given network. To illustrate this, let us consider the
following cases:

(1) In the simplest case we introduce

L(:L’,y) =

(z)2° €T 7é Y, (1"7 y) €k (228)
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ie. k(z,y) = a(z,y), p =1 and k(z) = d(x). For this process the expected
waiting time in a node equals the degree of that node and the invariant mea-
sure is given as p(z) = Ld(z). Another important property is that the choice
of the node to jump to is made uniformly at random, from the set of neighbors
of a node. The embedded Markov chain of this time-continuous random walk
is exactly the standard random walk, defined in (2.2).

However, in some cases from the properties of the process defined as in (2.28)
we will not be able to discover all modular structures in the network. For
example, let us consider the network shown in Figure 2.6. Here, we high-
lighted the 8 modules in different colors. We see that between the red and
the blue module no inter-module nodes exist. Especially, since the nodes in
both modules have almost the same degree, the random walker defined as in
(2.28) doesn’t distinguish between them, i.e. "sees" them as one module. The
next choice of the random walk parameters will overcome this problem.

Figure 2.6: Example network with 200 nodes and the first 13 eigenvalues of standard
random walk (red circles) and time-continuous random walk (blue crosses), based
on (2.29).

(2) Another choice of the random walk is for p = 1 and

k(z,y) = a(z,y) - (1 + (a,, ay>>, (2.29)

where a is the zth row of the adjacency matrix and (-, -) is the usual Euclidean
scalar product. Here, a jump from z to y is not random, but depends on the
similarity of the neighborhood of two nodes. This dependence can be seen
better when using a local clustering coefficient ¢ (see Definition 11), that is
defined by

oz)= 3 a(z, y)a(w, 2)aly, )

2, d@)(d(x) - 1)



2.3.

TIME-CONTINUOUS RANDOM WALKS 45

3)

As explained in Section 1.1, the clustering coefficient measures the connect-
edness of the neighborhood of z. By choice of (2.29), we obtain

k(z) = Y alz,y) - (1+ (az,ay))

yev
= Z a(z,y) + Z a(z,y) - (az, ay)
yeVv yev

=d(x) + c(z)(d(z) — 1)

that enters the invariant measure of the random walk such that

u(z) = %d(x)2(1 +(d(x) = 1) - ofa)). (2.30)

This shows that the nodes with high degree and high clustering coefficient be-
come very attractive for the random walker. Let us demonstrate the advantage
of this process compared to the previous one by comparing the eigenvalues
corresponding to the transition matrix of the time-continuous random walk
(2.29) with the one from the standard random walker approach (2.2). The
first 13 eigenvalues of both matrices are shown in Figure 2.6. The spectrum
of the standard transition matrix does not offer a clear gap to give an idea
about the number of modules being present. On the other hand, the time-
continuous random walk shows a strong gap after 8 eigenvalues, indicating
the existence of 8 modules.

In the case of weighted networks, we can generalize the previous approaches
by choosing k(z,y) = w(x,y), where w denotes the weights of edges.

In the following chapters we will use time-continuous random walk processes for an-

alyzing complex networks and identifying important structural components of these

networks, such as modules and hubs, that can correspond to important elements of

the underlying system.






CHAPTER 3

Modules and metastability

In this chapter we will investigate metastability, an important phenomenon that
occurs in different complex systems coming from various applications [23, 101] for
example, chemical reactions, thermodynamical systems, climate systems, financial
systems or ecological systems. Nevertheless, for all these examples metastability
has the same interpretation, namely it refers to the property of the process to stay
in a certain part of the state space for a long period of time, until it goes to some
other part of state space, where it will stay again for a long period of time.

It has been observed that large bio-molecules such as proteins and enzymes exhibit
different behavior on different time scales. The short time scales, from femtoseconds
to picoseconds are characterized by fast oscillations and fluctuations of the amino
acid side chains around some metastable state. On the other hand, transitions be-
tween different metastable states occur on longer time scales, that are in the range
of microseconds to milliseconds. In the context of bio-molecules, metastable states
are called conformations and correspond to spatial structures of bio-molecules. It
is of great importance to identify conformations of a certain bio-molecule and the
transitions between these conformations, so-called conformational changes, since
they determine functions of such molecules. For example, protein folding can be
seen through different conformations from unfolded to folded state, where the tran-
sitions from one state to another are of crucial importance for the functioning of the
protein. These transitions occur on long time scales and are rare events, compared
to the fluctuations within each conformation. Therefore, the main goal is to extract
properties of the process on metastable sets, at long time scales.

In order to achieve this, we have to give rigorous answers to the following questions
e What is the formal definition of metastability?
e What are metastable sets of a given process?
e How can we identify metastable sets of a process?

To this end, in Section 3.1 we will introduce the basic objects from the theory
of Markov processes [129], which will play the fundamental role in characterizing
metastable processes and metastable sets. Based on these objects, in Section 3.2, we
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will give an interpretation of metastable sets in the context of random walker process
on modular networks. In Section 3.3 we will consider another characterization
of metastability that is oriented towards the connection between the long time
behavior of the observed Markov process, which can be described using the spectral
properties of the generator (transition matrix) of the considered process. This
approach will be used in the next chapter to provide effective means for identifying
modules of a network, as metastable sets of the random walk process defined on a
network.

3.1 Analyzing Markov processes

Until now we have discussed the importance of metastability of stochastic processes
in various applications, as well as its intuitive definition in the case of Markov
processes on networks. In this section we will provide mathematical characterization
of metastability for Markov process on discrete state space V', that will hold for both
time-continuous and time-discrete setting. In the following, we will refer to this by
(X3) for both cases.

3.1.1 Hitting times

For a given Markov process (X;) and some set B, we define

Definition 15 (First hitting time) The first hitting time T of the process (X3)
into the set B C V, is defined as

g = inf{t > 0: X; € B},

that s, the first time at which the process (X;) enters the set B.
In addition, Tp(x) is the first hitting time of the process into set B conditional on
starting in state x € V

p(x) = inf{t > 0: X; € B, X = x}.

Since we consider only irreducible processes, the first hitting time is finite for any
choice of set B. Note that 75 is a random variable and particulary, 75 is a stopping
time, since it depends only on the behavior of the process (X;) up until a time 7.
The first hitting time describes dynamical properties of the process (X;) and as
such is used as one of the crucial elements in studying metastable processes. In this
context, of practical interest is the expected value of the first hitting time, that is
defined as

Definition 16 (Mean first hitting time) For a fized set B C V, the mean first
hitting time Tp(x) of a process is defined as the expected entry time of the process
(X¢) into the set B, conditional on starting in node x

TB(a:) = ETB(:L').
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The mean first hitting time can be computed from the generator of the process,
namely from the generator L of the time continuous Markov process (Xi)ier or
from the discrete generator Ly of the underlying Markov chain (X,,),en. For a
fixed set B, T defines a function on the state space which is the minimal, non-
negative solution of the discrete Dirichlet problem [129]

LTg(x)=-1, x¢ B
Tg(xz) =0, x€B.
Since V' corresponds to the discrete state space, T solves the system of linear
equations (3.1).

Metastability of a process can also be seen via the fast jumps of a process between
metastable sets. Therefore, it is important to study the dynamical properties of a
process between given sets. To this end let us introduce the mean first passage
time between two states and more general, between two sets of the state space.
For any pair of two different states (x,y), the mean first passage time T'(z,y)
represents the expected time that the process (X;) reaches a state y for the first
time, conditional on starting in a state x. This definition can be generalized to the
case of sets.

Definition 17 (Mean first passage time) For two disjoint sets A,B C V', the
mean first passage time T(A, B) is the expected time at which the process started in
a set A reaches a set B, that is

T(4.5) = —55 3 pa)Ts(z). (3.2)
z€A

where p(A) =3 ca n(y)-

Together with (3.1), this definition represents a functional method for describing
the behavior of a process with respect to the given sets. Clearly, this will be of
great importance for characterizing metastable processes.

3.1.2 Committor functions

From a probabilistic point of view an important question is: What is the probability
that given two disjoint sets A and B, the process will enter first set A? In order
to answer this question, we will use the fundamental object of the Transition Path
Theory (TPT) [58, 117], i.e. the committor functions.

Let (4, ..., Cy,, C V be nonempty, disjoint sets. We assume that these sets don’t form
a full partition of V' and call the region that is not assigned to any set transition
region and denote it by

T=v\lJC
k=1
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The forward committor function q;r : V. — [0,1] is defined as the probability
that a process (X;) starting in x will visit the set C; first, rather than any other set

q;L(:c) - P[Tci (‘T) < TM; (‘T)]’ M; = U;'nzl,j;éicj' (33)

One can derive that ¢;" is the solution of a linear system with boundary conditions
[117]

(Lg)(x) =0, Vxel,
g (r) =1, VzedC, (3.4)
¢ () =0, VaeCjj+#i.

Here L is the generator of the observed Markov process with entries I(z,y) and
(Lg)(z) = >y I(x,y)q; (y). In particular, when (X;) is a Markov chain, one has
to replace L by the discrete generator Lg (2.20).

In a similar way, we define the backward committor as the probability that
the process (X;) came last from the set C;, conditional on being in state x. The
backward committor solves

(Lo )@) =0, VreT,
q; (z) =1, Vz e, (3.5)
Qz_(x):O7 V!’L‘EC],j;’éZ,

where L refers to the generator of the time-reversed process with entries lb(x, Y),
see equation (2.21). As discussed in Remark 3, for the time-discrete case one has to
replace £ by L4. The two systems of equations (3.4) and (3.5) have a unique solution
under the assumption that the invariant measure is unique and not vanishing on
all of the sets [115].

We have shown in the previous chapter, that random walk processes defined on
undirected networks are time-reversible. Therefore, (3.4) and (3.5) yield the identity
of forward and backward committors, i.e.

¢ =q¢ Vi=1,...,m. (3.6)

Hence, in the following if the process is time-reversible we will use the shorthand
notation ¢; := q; = q;r and we will call this object the committor. Figure 3.1 shows
the values of the committor function ¢, when going from module C; to C5. The
color of nodes indicate the value of the committor function, such that red colors
corresponds to the values close to 1 and green for the values close to 0.

Remark 4 In this Section, we have defined two different types of committors: for-
ward and backward committors. Also, we distinguished whether the observed process
is time-discrete or time-continuous Markov process. The natural question to ask is:
What is the difference between the committor of the time-discrete process and the
committor of the time-continuous process?
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Figure 3.1: The values of the committor function ¢; on the undirected network with
two modules, red color indicates values close to 1, whereas green color indicates
values close to 0.

The main difference between these two objects lies in the nature of the underly-
ing processes. Let us observe the time-continuous process (Xi)icr+ and the time-
discrete process (Xnr)nen, obtained from the continuous process for the fixed lag
time T > 0. The difference between these two processes is that they have differ-
ent time-resolution. More precisely, in the values of the time-continuous committor
functions are encoded properties of the time-continuous process at every point in
time. On the contrary, in the values of the time-discrete committor functions are
encoded only certain, discrete snapshots of the continuous trajectory. Therefore,
these can not always provide the exact point when the process entered a set, but
only recognize points inside of a set at time steps nr.

The interpretation of committors in the sense of fuzzy network partitioning will be
given in Chapter 4. For more details on the properties of committors we refer to
Chapter 5 and [57, 117, 116, 115].
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3.2 Metastable sets of random walks

In Section 2.2 we established the connection between modules, as topological struc-
tures of a network and a random walk as a dynamical process defined on a network.
In particular, modules correspond to metastable sets of the random walk process
defined on the network, i.e. modules are sub-graphs where the random walker stays
for a long period of time and, rarely, the random walker quickly switches to another
set. Therefore, the problem of identifying modules amounts to the identification of
metastable sets of the random walk process.

Let us observe the dynamical properties of the process (X;) on the given collection
of disjoint sets C;, i = 1, ..., m, from the point of view of metastability. Metastable
processes are processes that exhibit specific behavior on different timescales with
respect to the specific sets. More precisely, metastable processes are characterized
by the long residence time in sets C; on one hand, and by quick jumps from one
set to another, on the other hand. That is, a metastable process spends long time
inside each of the sets and, compared to that, very short time outside of these sets.
Let us now express these two types of behavior in terms of the mean hitting times
and the mean first passage times:

e The return time R is the quantity that will be useful for characterizing
the existence of quick jumps between the given sets. More precisely, if the
process starts outside of sets C;,7 = 1,...,m, then the return time represents
the longest time of return to one of the sets. That is,

m
R = max T, , C= C;.
mexTe(@). €= UG
e The waiting time W; of the process in the set C;, i = 1,..., m denotes the

time the process spends within the set C;, i.e. the time between a transition
from the set C; to another set C; € C'\ C;

Wi = T(C;,C\ Cy).

The waiting time W of the process denotes the shortest time the process
spends within each of the sets C; namely, the minimal residence time in the
given sets.

W = min T(C;,C\ C}).
i=1,....,m

Now using these quantities, we provide a first formal definition of metastable pro-

cesses ([28])

Definition 18 Markov process (X;) is metastable, if there exist disjoint sets C; C
V,i=1,...,m, such that

' max To(2)

w - ) in T(Cz,C\CZ)

1=1,....m

<pKl, (3.7)
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where C = J"; C; and p is the parameter that characterizes the degree of metasta-
bility of the process (Xy), with respect to the sets C;,i = 1,...,m. Sets C; are called
metastable sets of the process (X3).

The interpretation of this definition agrees with the intuitive definition of metasta-
bility. Condition (3.7) considers the processes for which the return time R is small
and the waiting time W is large, that is, the process spends short time outside the
sets and long time inside of the sets.

It is important to notice that in general, Definition 18 has a disadvantage that it
involves quantities that are not always easy to compute, namely the mean first pas-
sage times. Therefore, in the next section we will present analogous formulations
of metastability, that employ quantities that are easier to compute. However, in
the case of networks the generator is explicitly given and as outlined above, the
calculation of the mean hitting times for given sets is easy and straightforward.

Let us now show in the following example the link between the mean first passage
time and metastability of random walk process on modular networks and how these
quantities change for different choice of modules in a network.

Example 11 We consider the example network shown in Figure 3.2a with five
and six modules. The choice of m = 5 modules consists of very densely connected
modules C1, . ..,Cs, whereas in the case of m = 6 modules we include also the light
blue module, whose nodes are not as densely connected as the nodes from the other
modules. Table 3.2b shows the values of R/W; for each of the modules C; when
m =5 and m = 6. The small values of R/W; for m =5 indicate high metastability
of the sets C',...,C5. In the case of m = 6 the metastability quotient takes a much
higher value for the newly added module Cg, expressing that this module is not as
metastable as Cq,...,Cs.

However, condition (3.7) is lacking the necessary precision, since "significantly small"
will not be sufficient for an algorithmic identification of modules. In order to over-
come this problem, in the next chapter we will develop a new approach for low-
dimensional approximation of the long-term behavior of the random walk process
on the network. This will result in an effective method for identification of modules,
since as we have already discussed (see Section 2.2), the behavior of the random
walker process on its longest time scales is directly connected to identification of
modules in the network.

3.3 Spectral characterization of metastability

Metastability has been studied as a phenomenon in many different fields in various
contexts. From the mathematical point of view several different methodologies have
been developed [23], such as: large deviation method [67], asymptotic perturbation
theory [82] and spectral methods [87]. Here we will present two approaches for
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Gs

Module Ci Cl Cz Cg C4 C5 CG
R/W, 0.0015 | 0.0006 | 0.0017 | 0.0006 | 0.0012 /
! 0.0003 | 0.0001 | 0.0004 | 0.0001 | 0.0002 | 0.18

Figure 3.2: Example network, where we marked in different colors the six modules
Ch,..., Cs. Each row in the table shows how R/W; changes for every module C;
depending on the choice of number of modules, five or six.

studying metastability that are both oriented towards the spectral properties of the
generator (transition matrix) of the considered process.

3.3.1 Complete modular partition

Here we will present a relation between spectral properties of the transition matrix
of the random walk process and full partitioning of a network into metastable
sets of this random walk process [86]. That is, we will consider m sets, such that

;N Cj =0,1#j and Uity Cj =V (3.8)

First, let us fix a timescale ¢ and consider the transition matrix P = P(t) of the
random walk X;. Furthermore, let {A1,...,\;,} be the m dominant eigenvalues
of P and {ui,...,un} the corresponding eigenvectors of P, for which (2.26) and
(2.27) hold. For the rest of the spectrum, from [88] it follows that

{Am41s At CBr(0) CC, 7<\p.
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The best possible partition of the network into modules has to maximize the joint
metastability of the sets

m

D(Cl, . ,Cm) = Zp(clv Cl)a
i=1

where p(C;, C;) is the residence probability in set C;. Markov chain theory [150],
[88], [86] provides us with the following result for the lower and upper bound of the
functional D for arbitrary partitions C1, ..., Cpy:

Theorem 3
The joint metastability of an arbitrary decomposition Ci,...,Cy, of the state
space is bounded from below and above by

MABX+ ...+ 2 An +c<DCL....,Cn) <M+ X+ ...+ A, (3.9)

where ¢ = Apy1 (1 =03 +...4+1—02%) and §; is the error of the orthogonal
projection QQ with regards to the p-weighted scalar product of the eigenvector u;
onto the space spanned by the characteristic functions

D =span{lc,,...,1¢,, } of the sets

0 =@ ull, i=2,...,m. (3.10)

This theorem establishes the relation between a given decomposition of a state space
into metastable sets and spectral properties of the transition matrix P. As outlined
above, the best decomposition is the one that maximizes the joint metastability of
the sets. According to this theorem, the metastability of an arbitrary decomposition
into m sets cannot be larger than the sum of the m dominant eigenvalues of the
transfer operator. Therefore, the maximal metastability is achieved when the lower
bound is very close to the upper bound, that is when d; ~ 1. This is achieved
whenever the dominant eigenvectors are almost constant on the metastable sets.
Using this, we can find the optimal or at least an almost optimal partition by
minimizing the projection error ¢;. Many spectral clustering methods like PCCA+
[49], [50] exploit this idea to identify the optimal clustering.

3.3.2 Metastable hitting times

In this section we will present results that further relate metastability with spectral
properties of the observed process [23, 28]. Especially, we will consider fuzzy parti-
tioning of a network into metastable sets of a random walk process X; that is given
by a generator L, defined in equation (2.23). If C;,i = 1,...,m are m metastable
sets of this process, then when starting outside of the metastable sets C;, the time
the random walk process needs to enter some metastable set is very short compared
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to the time the random walker spends in metastable states (see Section 3.2). The
hitting time of metastable sets is often referred to as metastable hitting time.
In the previous section, we introduced maximal metastable hitting time, the so-
called return time R, that was used to characterize quick jumps between the given
metastable sets. The following theorem [23] can be used to relate the return time
to C = Ui, C; to the spectral properties of the process:

Theorem 4

Let L be a generator of a random walk process (X¢) and Cq,...,Cy, an arbitrary
fuzzy decomposition of a given network. If S is an orthogonal projection on
the space D = {v|v =0 on C} and Ay the smallest eigenvalue of the projected
generator SLS, then

where C = U ;.
i=1

=
[Aa] = maxgzc Ero(x)’

Interpretation of this theorem is the following: if C;, ¢ = 1,...,m are chosen in
such a way that they represent metastable sets of the random walk process, then
the maximal mean hitting time to some of the sets C; is small. This is reflected in
the spectrum of SLS through a large absolute value of the smallest eigenvalue of
SLS.

Note that the dominant eigenvalues of the projected generator SLS endorse the
metastabilities of the process outside the set C, unlike the eigenvalues from the
approach in the previous section. Using this theorem, we can check if a given
decomposition of the network correspond to metastable sets of the random walk
process defined on this network.
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Identification of modules

Discovering network modules, as its essential structural components is a challenging
task when analyzing real-world networks, as it can provide valuable information
about the underlying system. Dense connections between nodes within the same
module could reflect their functional similarities. For example in protein-protein
interaction networks modules can correspond to groups of proteins having the same
biological function [80, 136]. Therefore, extracting information about the modular
organization of the network provides valuable insights for decomposing the system
into functional units. Furthermore, similarities between nodes that belong to the
same module could reveal unknown properties and functions of the system elements
corresponding to these nodes. In this sense, module identification could deepen
our understanding of the structural organization and complex mechanisms of the
underlying system.

When looking into the relevant literature, most articles are concerned with complete
partitioning of networks, that is, hard clusterings in which the modules form a full
partition of the network and every node belongs to exactly one module. However,
in many real-world networks there are nodes which cannot be assigned only to a
particular module, but rather have an affiliation to several modules. In Chapter 1,
we referred to this type of clustering as fuzzy or soft clustering and introduced its
characterization by the affiliation functions that take the form of a probability that
a node belongs to one of the modules.

In this chapter we will present our novel techniques for fuzzy decomposition of
a network into modules, where modules represent metastable sets of the random
walk process defined on the network (see Chapter 3). We start by introducing
fuzzy affiliation functions that will provide a probability to assign a node to some
module (see Section 4.1). In order to find these modules in Section 4.2 we will
adopt our recent results regarding coarse graining of Markov processes [53, 141].
In Section 4.3 we will develop these ideas further for the case of reversible Markov
processes, such as random walks on undirected networks. Based on these results,
in Section 4.4 we will present our new algorithm for identifying modules, discuss its
computational aspects and suggest an extension of this method that can be applied
also to very large real-world networks. Finally, in Section 4.5 we will present several
state-of-the-art algorithms for identifying modules.
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4.1 Fuzzy affiliation functions

As outlined above, we are aiming at finding a soft decomposition of a network in m
modules C4,...,C,,. Moreover, we are a interested in obtaining a fuzzy affiliation
of the nodes to these modules, that is for every node x we specify its affiliation f;(z)
to module ¢ such that

fi(z) € 0,1] and ifz(a;) =1. (4.1)

If we assume that we have already identified the modules C;,7 = 1,...,m, then
there is a natural way to define this affiliation by learning from the random walk.
To do this, we simply start the random walk in node x and see which module it will
enter next. Then, we set the affiliation f;(z) to be the probability that the next
module to be entered is Cj, i.e.

filw) = Plre,(v) < mag(0)],  Mi=UjLy 0, (4.2)

where 74 (z) is the first hitting time of the set A C V by the process (X;), if started
in z. These functions were introduced in Section 3.1.2 as the forward committor
functions ¢;". The committor functions ¢, ..., q}, satisfy ¢ (z) € [0,1] and form
the partition of unity,

Zq;“(x) =1, VxeV
i=1

We can interpret ¢;' () as the natural walker-based probability of assignment of
a node z to a module C;. Especially, when the process is time-reversible, as the
random walk process on undirected networks, we will use ¢; := qf . One can compute
these affiliation functions very efficiently by solving sparse, symmetric and positive
definite linear system (3.4).

Example 12 Figure 4.1 shows a network with four modules C1,Ca,Cs and Cy. For
every choice of C;, i =1,...,4 and set M; = C'\ C;, we can compute the associated
forward committor function qj with respect to the random walk process defined on
this network. Nodes are colored according to the values of the committor functions,
where red color represents values close to one and green color values close to zero.
These values provide at the same time the affiliation of nodes to the appropriate
module.

Special case: Complete partition

When the modules are chosen such that they form a complete partition of the
network (3.8), the definition of the committors directly yields

gi(x) = 1¢,(z). (4.3)

That is, in the case of complete partition the committors are given by the character-
istic functions on the modules. In the following, we will always refer to committors
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Figure 4.1: Example network with 100 nodes that are grouped in four modules. For
every choice of C;, i =1,...,4 and M;, colors of nodes correspond to the values of
the associated committor function ql-+ .

as affiliation functions and consider complete partition a special case of fuzzy par-
tition.

Fuzzy decomposition can be well interpreted in the sense of a coarse graining of our
random walk by Markov State Modeling [51, 151, 53, 52, 49, 141]. This approach
will be presented in more details in the following sections.

4.2 Fuzzy modular partition

In this section we will present a novel approach for identifying metastable sets of
a random walk process defined on a network. We will follow the approach from
[151] that uses Markov State Models (MSM) for finding low-dimensional structure-
preserving approximations of metastable processes in the sense that the longest
timescales of the dynamics of the this process are reproduced well [148, 49, 149,
150, 28]. While most standard MSMs approaches are based on a full decomposition
of a state space and restricted to reversible processes, we will present here a gen-
eral framework that considers fuzzy decomposition of state space and furthermore,
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can be applied also to non-reversible processes, such as random walks on directed
networks (see Chapter 7 for more details).

4.2.1 Milestoning process

For a given network, we can define a random walk as described in Chapter 2. We will
differentiate later between time-continuous and time-discrete random walks. Let us
now assume that the network is decomposed into m modules Cy, ..., C,, C V, that
are disjoint and do not form a full partition

L Ci#V = T=V\ULC #0. (4.4)

Then, this partition induces a coarse-grained random walk on the state space
{1,...,m} that jumps from module to module. For analyzing the jump dynamics
of the coarse-grained random walk process, we introduce the milestoning process
(X¢) [63]

X, =i X, € C;,with o(t) = sup {XS Sy ck} . (4.5)
st k=1

Equation (4.5) states that the milestoning process is in state ¢, if the original process
came last from module C;. That is, if the last module visited was C;, we assign the
walker to a module C; as long as it has not entered another module. The transition
behavior of the milestoning process is illustrated in Figure 4.2.

Remark 5 Note that the backward committor defined in Section 3.1.2, is the
probability that the process (X;) came last from set C;, conditional on being in state
x. In terms of milestoning process that means

q; (z) = P[X; = i| X; = 2,
i.e. the probability that the milestoning process is in state i, conditional that the
original process started in state x.

4.2.2 Jump statistics of milestoning process

We will now study the transition behavior of the milestoning process for time-
discrete and time-continuous random walk processes, respectively. Again, we will
not restrict the underlying process to be time-reversible.

Time-discrete case: Transition probabilities

When observing a time-discrete process (X, )nen on the state space {1,...,m}, we
can define the transition matrix P of the milestoning process (X, )nen, with entries

ﬁ(%]) = Pu(XnJrl = ]|Xn = Z)

In general, the milestoning process will not be a Markov process. Therefore, we
cannot assume that it is essentially characterized by its transition matrix P. This
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starting
point

Figure 4.2: Illustration of a milestoning process on a network with 200 nodes, where
106 nodes are grouped into eight modules marked in different colors.

also holds for the discrete generator Ly (2.20). We will see that it is not crucial
whether the dynamics of the milestoning process is governed by P or not.

Based on the introduced quantities we have
Pu(Xp =i, X = x) = P, (X, = i|X,, = 2)P,(X,, = 2) = ¢; (z)u(z).

Therefore, the total probability that the milestoning process is assigned to state 1,
i.e. the invariant measure of the milestoning process, is

i) =Py Xy =i) =Y Pu(Xpn=i,Xp=2)= > ¢ (2)u(z) = | |1
zeV zeV

The following theorem gives us the entries of the discrete generator Lq (2.20).
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Theorem 5
For a time-discrete process (X,,), the entries of the discrete generator Lg of the

milestoning process (X'n) are given by

1

(qj7 Laq; ). (4.6)

=

Proof. Using that

Pu(Xni1 =y, Xn =0, Xn=2) = Pu(Xnt1=ylXn=14,X, =2)Pu(X, =i, X =

= plx,y)q; (z)u(x),
we can calculate

PM(XR+1 = j7 Xn+1 =Y, Xn = 'L'aXn = l’) =
= P”(X”‘f‘l = j‘Xn-‘rl =y, Xpn=1,X,= x)PM(Xn-i-l =y, Xpn=1X, = -T)
Lo (y)p(z,y)g; (z)p(z), if § £
Lour()p(z, y)g; (x)p(z),  ifi=j.

Therefore, the one-step transition probability p(i, j) from ¢ to j # i is given by
- . o Pu(Xn =4, X, =)
(i,5) = P (Xps1 =j| X, =1i) =L D
p(i, 4) w( X1 = 7| Xn ) Pu(Xn =)

= Z P n+1:j7Xn+1:ann:i7Xn:'r)
P ( n ) z,yev

= > Lo y)p(a,y)e; (@)p(z) =

||qz Hl myEV ”qz Hl

<qu 7]]-C>

In addition, when ¢ = j

A A

Pu(Xpny1 =14, Xy =1)

ﬁ(l,l) = P,LL(Xn-‘rl = Z‘Xn = Z) =

P (X, =)
1 , . .
= — Z Pu(Xnt1 =4, Xnp1 =9, Xn =1, X, =)
P (X = )a:yGV
= > deur@p(@,y)a; (@)u(z)
qu [P

= W(PQ;aRC¢UT>-

Using the properties of committors on sets for ¢ # j, we get that

(Pg;  1c;) = (Pgi,q) = (Pgi,qi 1) = (Pg; ,qf) — (g; »qj 1)
= (P—Id)q; ,qf) = (Lag; ,q} ),
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which yields

Ao o 1
la(i,5) = p(i,§) = ———(a}, Lag; ), 1 # J.
i Il
Similarly, for i = j we get
<Pq;7]lciUT> = <Pq;7]lcz> + <PQZa]1T>

(Pq;,q) — (a7, ¢ 17) + (g7, 17)
= (P—1Id)q;,qf) + llg; h = (Lag; ;") + llg; 1.

and

A~

la(i,1) = p(i,j) — (g Lagi ) + g ) — (a4, Lag; ).

1
llg;" [l g _H

Time-continuous case: Transition rates

We will now show that all the above identities are still valid in a time-continuous
case.

Theorem 6
For a time-continuous process (X), the entries of a generator of the milestoning
process (X;) are given by

i(i.§) = ——(Lq; .q)- (4.7)

1
llg;" [l

Proof. In order to prove this theorem, we will use objects of the Transition Path
Theory, that will be introduced in more details in Chapter 5.
For a given infinitely long trajectory and i # j, we define a (i, j)-reactive trajectory
as a piece of this infinite long trajectory in a time interval R}} such that for any
t € R} we have that the next first entry into a set is in Cj, while the last first
entry into a set happened in C;. Then, at a certain time ¢ we are on a (i, j)-reactive
trajectory if

te Ry =Up,

m=—0Q

R}
The probability current from x to y generated by (i, j)-reactive trajectories is then

given by

fij(z,y) = hI(I)l—i- SIP’ (Xt =x,Xiys =y, t € Rjj,t+s¢ Rij).
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In order to compute this quantity we use that for M; = U Ci, Py[rc;, < 7as,] is
K

the probability to start at y and enter the set C; next rather than any other set.
Therefore

IP’H<Xt =2, Xips =yt € Rij,t+s€ Rij) =
= Pu(Xeps =yt +5 € By|Xy = 2t € Ry )P (Xy = 2,1 € Ryj)
= Pu(Xips = ylXs = 2)Py(r0, < 7ag, By (X0 = 2, X, =)
= ps(z,9)q5 (v)g; (@)p(x).

Since i # j we have [(z,y) = limgs_04 %ps(:c, y) and thus

fij(x,y) = Uz, y)af (W)a; () p(x).
Now we can compute the rate k;; of transitions from 7 to j, which is defined as the
average number of (i, j)-reactive trajectories per unit time. This quantity is given
by the total probability current through a dividing surface between C; and Cj, i.e.
by the total probability current generated by (i, j)-reactive trajectories through the
boundary of C;:

kij = > fij(my)

z€Cy,yeV\C;

= > 4 Wi,y (2)p(x)

x€C;,yeV\C;

= > ¢ Wl.y)e @),
zeCy,yeV
where the last identity results from qj(y) =0 for all y € C;. Since additionally
q; (z) =1 for z € C; we find

Therefore, the off-diagonal entries 1 (i,7) of the generator for the milestoning process

X, are .
1, 5) = W(ﬁﬂCivq]—"—>a (4.8)

such that the diagonal entries have to be

AL 1 1
ji 14 11 4 1h i
1
= T = <£]1C'z‘7]1 _Q;_)> T <£]lci7q;_>.
lg; [ lg; 1

Since (L1¢,, ql+) = (Lq; , qlﬂ, we can use the same arguments as above to end up
with

which proves the theorem. O
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4.3 Reversible Markov processes

Since random walk processes on undirected networks are reversible, in this section
we will focus on reversible Markov processes and milestoning processes that are
induced by reversible Markov processes. First we note that the milestoning process
defined in 4.5 and associated to the time-reversible Markov process is also time-
reversible.

Proposition 6
Let (X;) be a reversible Markov process with unique invariant measure . Then the

milestoning generator L has the invariant measure

pG) =Y qi@)u(e)

zeV

and the according operator in L*(fi)
(Lo)(DAG) = D10, o))
i=1

is self-adjoint. Therefore it also defines a reversible jump process.

Proof. We have

S0, 5)al) =D {ai, Laz) = (1, Lg;) = 0.
i=1 i=1
Moreover, A
1(i, 3) (i) = (g, Lq;)
= (Lai, qj) = 10, 1)(7),
which implies reversibility and self-adjointness. O

4.3.1 Generalized eigenvalue problem

Following the idea of MSM, we want to approximate the dynamics of (X;) by its
projection to some low-dimensional subspace D C Lz. Here we consider subspace
D = span{qi, ..., qn} with 1 € D, i.e. the invariant measure with density 1 in Li is
still contained in D. The basis functions ¢; are assumed to be linearly independent,
non-negative functions, which need not to be orthogonal w.r.t. (-,-), and are not
necessarily identical with the committor functions discussed in Section 4.1. The
orthogonal projection ) onto D can be written as

m
Qu= > S;"(v,a)qj, (4.9)
i,j=1
with Si; = (¢, ¢;). Now, we want to compare the operator P and its projection on
D, namely QPQ. The following theorem tells us more about the structure of the
operator QPQ [53, 141]:
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Theorem 7

Let P be the transfer operator of the random walk process and Q) the orthogonal
projection onto the space spanned by committors D = {qi, ..., ¢m} with respect
to m modules. Then, PM~' is a matriz representation of QPQ, where

(Pdgi,qj)
fi(7)

—~

qi’(,]j> and (i) = qi(x (4.10)

P L

» M=

Proof. Since the vectors ¢; are linearly independent the symmetric matrix

Sij = (4 q5) (4.11)
is invertible and we can write the orthogonal projection ) onto subspace D as
Qu = Z S (v,qi)q (4.12)
,j=1

For the matrix M from (4.10) we have

M;; = Sij = Mt = p(j)S;" (4.13)

1
fi()
Now, take the basis {1, ..., ¥} of D, ¢; = ﬁql Then,

Qu = Z M v, i) (4.14)

1,j=1

This implies

QPQYr = QP = Z M Py, qi)

i,j=1
1 (P,
= Z Qk qz Z M 1sz% (4.15)
i,j=1 ) i,5=1
m A
=Y (PM™)j0;.
j=1

That is, PM ! is a matrix representation of Q PQ with respect to the basis {1, .y U}

From this theorem it immediately follows that we can compute the eigenvalues of
the projected transfer operator QQ PQ) by solving the generalized eigenvalue problem

Pr = AMr. (4.16)
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Note that in the proof of this theorem we did not use the fact that D is spanned by
committors, so this result is also valid for any other subspace D which is spanned by
a basis {q1, ..., gm }. Especially, if we have the fuzzy decomposition into m modules
C4,...,C,, and choose the basis functions ¢; to be the committor functions, then
the entries of M;; have a stochastic interpretation [52, 141], given by the following
Theorem.

Theorem 8
Let Q be the orthogonal projection onto the space spanned by the committor

functions D = {q1,...,qm} and as before, let M; = kg'Ck. Then,
J

M;; =P[X, € T,7¢, < ;| Xn = i),

that is, the probability to be outside of the modules and enter the module C; next
rather than any other module, under the condition, that the last visited module
was Cj.

The proof of this theorem can be found in [52] and [141].

Special case: Full partition

When the basis functions are chosen such that ¢;(z) = 1¢;(z), the sets C; have to
form a full subdivision of state space. In particular, the transition matrix of the
coarse-grained process can be written in the form QPQ, where @ is the orthogonal
projection onto the finite-dimensional space D of all step-functions that are constant
on the sets C;. Moreover, because of orthogonality of the step-functions we then
have

o lag) )L =g
M;; = a0 —{Q it (4.17)

4.3.2 Approximation of Dominant Eigenvalues

Now we want to find sets C4,...,Cy, such that the longest relaxation timescales
of the random walk, being encoded by the m dominant eigenvalues A1, ..., A, of
P, are optimally reproduced by the timescales of the coarse-grained random walk,
encoded by the eigenvalues M, ...; Am of P. Therefore, our question is:

How well do the eigenvalues of the projected transfer operator approximate the
original eigenvalues of P?

Because of self-adjointness of the transfer operator we can use the results from
[100](Theorem 2.2) to prove the following theorem [52, 141].
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Theorem 9
Let 1= X1 > Ao > ... > Ay be the m dominant eigenvalues of P, ui,us, ..., Un
the corresponding normalized eigenvectors and D C Li a linear subspace with

1eD dim(D) =:m (4.18)

and Q the orthogonal projection onto D.
Moreover, let 1 = Ay > Ao > ... > Ay be the dominant eigenvalues of the
projected operator QPQ. Then,

E(Cy,...,Cp) = max |\ — X\| < Ao(m—1)062 (4.19)

i=1,...

where
0= max [|Q"u
i

=1,..

1s the maximal projection error of the eigenvectors onto the space D.

Proof. The eigenvector of P w.r.t. the trivial eigenvalue Ay = 1 is known: u; = 1.
Therefore

ur € D = Qui = uq. (4.20)

This implies that u; is also eigenvector of QPQ w.r.t. its largest eigenvalue A= 1.
Now define

IMyv = (v, up)uy, (4.21)

set again Il = Id — Iy, and consider the operator PIl = P — IIy. Since P is
self-adjoint, its eigenvectors w1, us, ... are orthogonal, which implies that

PHé‘uj:Puj—Houj:Puj:)\juj Vi>1

and PIgu; = 0. That is, the operator PIIg has the same eigenvalues with the
same corresponding eigenvectors as P, just the eigenvalue A\; = 1 changed to a zero
eigenvalue. Moreover,

IHPIl; =0, and therefore PIIy = ITy PIl;,

which implies self-adjointness of the operator PIIg .

Now set U = span{uy,...,u,,} and let II be the orthogonal projection onto U.
Then, the operator HPH&H has exactly the eigenvalues Ao, ..., A;;, and an additional
eigenvalue zero, that corresponds to the eigenvector u; = 1.

From (4.20) it follows that QIIpQ = Il and hence

QPIlyQ = QPQ — .
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The same argument as above shows that the operator QPH&Q has the same spec-
trum as QPQ, just the corresponding eigenvalue of v changed from A\; = 1 to zero.
Using the results from [100](Theorem 2.2), we find for the error (4.19)

E(0) = pax IAi = M) < (X2 = Aminw+0)) max sin®(6;(U, D)), (4.22)
with © = ©(U, D) = {01, ..., 0}, a vector of principal angles between the subspaces
Uand D. Ayinw+p) is the smallest eigenvalue of the operator ZPZ, where Z is an
orthogonal projection on the space U + D. In our case this means Ayin@4p) = 0.
Let 0;(A) and A;(B) denote the i-th singular value of the operator A and the
i-th eigenvalue of operator B, respectively. The principal angles are defined as
cos(0;) = o;(QII). Moreover, the definition of leading singular values yields

o2(QI) = A;((QI*QT) = A,(TIQTL), i=2,...,m, (4.23)

where (QII)* denotes the adjoint of (QII) in Li, in which sense also Q*Q = @ holds.
We get

sin?(6;) = 1 — cos?(6;) = 1 — Ay(TIQII) = Ay(II — TIQII) = A;(IIQII).  (4.24)

As in (4.23),
A(QHT) = o2 (QT) < [| QI (4.25)
Now let us choose an arbitrary v such that ||v| = 1. If we define © € R™~! as
05 = (v,u5),j = 2,...,m,
and denote the usual 1-, and 2-norms on R™~! by || - ||; and || - ||, respectively, we

find immediately that

- . 1/2
> (o) = ol < Vi =Tl = vin =1 <Z<v,uj>2) < Vm—1. (426
j=2 j=2
Since Qtug =0,
||QLHU|| = Z U, Uy Q Uj Z U, Uy |||Q |
jf =2 (4.27)
Z v, uj)| m—1-9.
Combining (4.24), (4.25) and (4.27) yields
sin?(6;) < [|Q*|? < (m — 1) 6% (4.28)

Putting everything together gives (4.19). O
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This theorem tells that the dominant eigenvalues of P are well approximated by the
eigenvalues of the projected matrix P, if the projection error of the corresponding
eigenvectors is small enough.

Inserting (2.25) into (4.19), we get the lag time dependent eigenvalue estimate

E(7,6)=_ _max |\~ Ail < eMT(m—1) 6%, (4.29)

i=1,....m—

where (\;) are the dominant eigenvalues of the transfer operator P, and (\;) the
dominant eigenvalues of the projection QP-Q.
Since A1 < 0,

E(1,8) — 0, for 7 — oo, (4.30)

which results from the asymptotic convergence to the invariant measure. Further-
more, for the relative eigenvalue error of the first non-trivial eigenvalue we have

=] (m—1)62, (4.31)

from which we see that by decreasing the maximal projection error we will have
control even over the relative eigenvalue error.

The result of Theorem 9 does not require any specific assumptions about spectral
gaps or comparable quantities. Let us explain this aspect in more details. First,
there is a variety of results for metastable processes that show that the existence of
a spectral gap leads to small projection error §, for example for diffusion processes
in multi-well potentials, see [67, 29, 30]. Second, there are also cases with small
0 for original dynamics with wide spectrum without any significant spectral gaps
[127]. Let us illustrate this point by the following example.

Example 13 Let us consider a 3—state Markov chain with the transition matriz
l—-a «o 0
P= 1/2 0 1/2 ,
0 a 1l—«
where o € (0,1). The eigenvalues of P are A = 1,1 — o, —a with a clear spectral
gap for a close to 0 and no gap for a closer to 1. We have p = 1/3-(1,1,1) and

ur = v/3/2-(1,0,—1). With sets C1 = {1} and Cy = {3} we can easily compute
that Qui = uy such that § = 0 for m = 2 independent of a. In fact, QPQ has a

matriz representation
1—a/2  «f2
a/2 1—a/2 )’

with eigenvalues A=1,1-a.
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4.4 Algorithm for identification of modules

The main question of this chapter is how to identify modules C1,...,C), in a net-
work. Here we adopt the perspective that we have introduced above: The optimal
modules C1, . .., Cy, are such sets of nodes that minimize the eigenvalue error (4.19)
i.e.,

C1,...,Cp = argminies o1 E(CT,...,CFy). (4.32)

Identification of such sets in network is based on optimizing the eigenvalue error
function over all possible partitions. Therefore, this is an NP-hard combinatorial
optimization problem which is furthermore, characterized by the existence of many
local minima. In order to obtain a global minima of 4.32, we will use the standard
Simulated Annealing (SA) algorithm [98]. The SA is a probabilistic heuristic
that has a goal to find the global minima of an objective function, starting from
an arbitrary initial solution. Motivation for this approach came from the annealing
process in metallurgy, which involves the process of heating of a solid in order
to move the atoms from the local minima, followed by a controlled cooling that
is done in such a way, that the "freezing" point happens at the minimum energy
configuration of the solid. The "heating process" in the SA algorithm can be seen in
occasional moves that usually lead to an increase of the cost function, but they also
help escape the local minima. This is the main difference between the simulated
annealing and local search algorithms, that tend to get stuck in local minima. The
cooling process on the other hand decreases the number of hops as we approach the
global minimum value. Here we will use the standard SA algorithm and for more
details, we refer to [98].

There are two important issues that have to be addressed when using the simulated
annealing algorithm. First, the SA requires an initial solution of the minimization
problem, where it should be noted that as for every other heuristic, the convergence
time of SA is highly dependant on the choice of this initial solution. Second, the
convergence time increases with the size of the network, which makes this approach
usually very costly for large real-world networks. In order to provide one possible
solution to these problems, we will now introduce an heuristic approach [142] that
will help us to efficiently find a "good" initial solution and provide valuable insights
for finding optimal modules that can decrease the computational effort.

4.4.1 New heuristic for finding modules

Let us return to the approximation error of the dominant eigenvalues, given in

(4.19) as
E(Cy,...,Cp) = max |A\— A\ < Ao(m —1)6%

i=1,....m

An upper bound on ¢ for Markov processes on networks, but also for more general
situations was given in [144]. More precisely, for any eigenvalue \; of P and the
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corresponding normalized eigenvector u; it holds

0 < p(u) + 20(T)pmax (wi) +7(T)(1 = Ni) <Z ui(fﬂ)%(?«“)) 2 (4.33)
xzeT
where -

r(T)= sup L
=t ET(v(fv) — (Pv)(2))*u(z)

p(ui) = lleill  Pmax(ui) = |l€illoo (4.34)
0, ifxel,

ei(z) = T yezcj ui(z) — ui(y)uly), ifz € Cj.

From this inequality we deduce that in order to ensure small projection errors
|Q+u;|| for the dominant eigenvectors, modules should be chosen in such a way
that the following two conditions are satisfied. First, from the transition region
T the random walker should always enter some module quickly enough such that
r(T)(1 — ;) is "small enough". More precisely, the more eigenvalues of P we want
to approximate, the faster the random walker should leave the transition region 7.
Second, the dominant eigenvectors should be almost constant on modules in order
to guarantee small values of p(u;) and pmeq(u;). It will be particularly useful that
the error bound decomposes into these two parts. Namely, the factor r(7°)(1 — \;)
depends only on the choice of the transition region T', whereas the errors p(u;) and
Pmaz(u;) depend only on the partitioning of C' = V \ T into modules. Following
this idea, we will divide our approach for finding modules into two separate steps
[142]:

1. identifying the transition region T7;

2. partitioning the remaining nodes of the network C' = V \ T into modules
Ci,...,Cnp.

Step 1

In this step we will choose such T that will ensure a small factor »(T")(1 — A;) in
the error bound (4.33) for the dominant eigenvalues. If we fix a specific choice of
T and let an ensemble of infinitely many random walk processes to start only in
this region, then r(7") measures how many of these processes will leave the transi-
tion region. That is, the higher the probability that the random walker will leave
T quickly, the smaller the factor r(7) will be. Next, this factor is compared to
(1 — ;) for the dominant eigenvalues. This yields the following interdependency:
For eigenvalues close to one, (1 — \;) will be rather small, which gives us more
flexibility in choosing 7' that influences 7(7'). Remember that the closer to one
the eigenvalues are, the stronger they indicate the presence of metastability in the
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Figure 4.3: Example network with 200 nodes. After applying step 1 of our heuristic
the resulting transition region 7" (gray) and union of modules M® (black) is shown
for o = 1000 (top right) and o = 150 (bottom left). Bottom right: the first 13
eigenvalues of P,, for a = 1000 (red crosses) and o = 150 (blue circles).

system. Therefore, if we also want to consider modules, which are less metastable,
we will have to approximate eigenvalues, which are less close to one and therefore,
the region T has to be left more quickly.

Algorithmically this leads to the following idea: We take the invariant measure p* of
the random walk process using the generator L, as defined in (2.23) and parameter
p = 0. That is, we turn off the effect of waiting times, which made the modules in
the network more metastable. Then, we consider the random walk for p = 1 and
choose a lag time a > 0 at which we want the random walker to leave the transition
region. We will choose a rather large « if we are interested in finding only the most
metastable set of modules and decrease « if we also want to identify modules with
less metastability. Because of this, we refer to a as the metastability parameter.
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Now, we choose
M = {z € V|(PLu") (@) > p*(z)} (4.35)

to be the set containing modules with respect to a. Connecting to the ensemble
point of view, the set M% is exactly the region, which rather attracts random
walkers in the ensemble than let random walkers leave within the time step a.

At this point, the natural question to ask is: how can we choose the appropriate
value for the metastability parameter a? Since « is connected to the timescale
at which the random walk leaves the transition region, it is possible to get an
idea about reasonable values for « from the spectrum of the generator L. That
is, if the dominant eigenvalues of L are denoted by 0 = Ay > A1 > Ay > ... the
implied timescales of the random walk, which are given by 1/|A1| > 1/|As] > ...,
provide estimates for possible choices of «. If there is a cluster of eigenvalues
0=Ag> A1 >... >> A around 0 separated by a spectral gap from the smaller
eigenvalues, then a good choice of a would be 1/[Agx| > o > 1/|Ag41]. Several
spectral gaps therefore would give us a list of proposals for good values of a. Let
us now illustrate this effect on the following example.

x107°

X X x % ]
X x X X
gk % i
-10- X 1
X
_15— -
* ¥
20 3 5 7 9 11 13

Figure 4.4: This plot shows the 13 largest eigenvalues of the generator L for the
example network.

Example 14 Figure 4.3 shows an example network with 200 nodes and the result-
ing transition region T (marked in gray) together with the region M% (marked in
black). In order to demonstrate the effect of choosing a parameter «, the first step
of our heuristic is done for two different choices of «a, namely o = 1000 (top right)
and o = 150 (bottom left). These values of a have been selected according to the
spectrum of L shown in Figure 4.4, which exhibits gaps after the eighth and the tenth
eigenvalue, such that 1/|As| = 1254 and 1/|A19| = 104. Therefore, for a = 1000 the
set M contains only the most metastable parts of the network. When decreasing
a to 150, sets of nodes that correspond to less metastable parts of networks are also
added to M*®.
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Step 2

Having identified the set M“ we now have to find its full partition into modules.
For this purpose, we consider the random walk only on the nodes belonging to M®
with the transition matrix

Pa(a:,y) = Z P(z,2)qy(2), z,y€ M, (4.36)

zeV
where g, (2) is the probability that y will be the next node from M® that is hit by the
random walk starting in z. That is, Pa(ac, y) describes the transition probabilities
between the nodes of M®, ignoring the waiting times and the transition region.
Note that P, describes the dynamics only between the nodes of modules. Now

we can use some hard spectral clustering method to split M% into the modules
Ci,.eey Cpy.

Let us now apply this step onto the result from the previous example. Figure 4.3
shows the first 13 eigenvalues of P,, for a = 1000 (marked as red crosses) and
a = 150 (marked as blue circles). Note that now that we have erased the transition
region the spectrum of the random walk clearly indicates the number of modules
corresponding to the chosen level of metastability. For @ = 1000 there is a clear
gap after 8 eigenvalues, whereas for a = 150 there are two additional eigenvalues
indicating less pronounced metastability.

Computational effort

Step 1: For example in [4] it is shown that the computational effort is dominated
by matrix multiplications. For a large, sparse matrix L this effort is O(n).

Step 2: First, we have to compute the committor functions, i.e. solve a symmetric,
positive definite linear system for k = |M®| right hand sides. Since the matrix L
is large and sparse, conjugate gradient methods allow to compute the solution in
O(kn) point operations. Then, we have to compute a hard clustering with respect
to the coarse grained random walk with k& x k transition matrix P,. For this task,
a lot of algorithms exist, for example, [49, 56]. The fastest combinatorial methods
perform in O(k?logk).

The whole algorithm:This shows that the overall effort is dominated by step 2,
where we have to compute a hard clustering for the & nodes belonging to M<. The
total effort scales like O(k?log k) + O(kn). If k < n, that is, if the number of nodes
in modules is much smaller than the number of nodes not assigned to modules, then
the effort scales linearly with the total number of nodes. In general, this algorithmic
strategy reduces the computational effort to calculate a fuzzy decomposition of a
network with n nodes to the effort of computing a hard clustering for k£ nodes.

4.4.2 Finding optimal modules

The method presented in Section 4.4.1 is an heuristic, that is there is no proof
that it finds modules that minimize the upper bound given in 4.33. Because of its
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computational efficiency and "good", near optimal solutions, we will use it to obtain
an initial solution of our problem. Then, we can apply the simulated annealing
algorithm on the whole network in order to find modules which minimize 4.32.
However, for very large networks performing the SA algorithm can still be costly.

We propose now a way to reduce this problem using the fuzzy assignment functions

(a) 8 modules (b) 10 modules

Figure 4.5: This figure shows the optimal modules for o = 1000 (left) and o = 150
(right).

obtained in Section 4.4.1. Namely, if node x € T is such that ¢;(x) > 6 > 0.5 for
some threshold value 6 that is close to 1, e.g. 8 = 0.9, then this node is committed
to the module C; with a high probability. We will consider that all nodes z € V/
for which ¢;(x) > 0, i.e. elements of C; together with nodes committed to C; belong
to this module

Ciu{zeV: g¢z)>06}.

This means that the transition region 7" is dependant on the parameter 8 in the
following sense

T(@):{$€V\Gci|qi(x)<9, Vi=1,...,m}.

=1

Obviously, decreasing a value of 6, increases the number of elements in modules,
i.e. decreases the number of elements in the transition region 1. Therefore, for
some fixed value of § we can search for the optimal solution in the space V' \ T'(0).
Depending on the choice of 6, the state space can be made considerably small in
order to make the simulated annealing feasible for huge networks. This approach
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is of course also a heuristic solution, but with an advantage that as # decreases it
converges to the state space of original minimization problem.

Example 15 Let us consider again the network shown in Figure 4.3. In order to
identify initial solution for the SA algorithm, we use the heuristic introduced in
Section 4.4.1. As we have discussed above, for different choices of parameter «,
namely a = 1000 and o = 150, we have 8 and 10 initial sets. Optimal modules for
both values of o are shown in Figure 4.5.

4.5 Related work

In the last years, finding modules in complex networks has attracted a lot of at-
tention of diverse group of scientists. Most of the state-of-the-art approaches are
inspired by concepts from graph theory, statistical physics, dynamical systems the-
ory and computer science. Since the results of these methods are supposed to have
an adequate interpretation in the underlying complex system, many of these ideas
are affected by the concepts coming from the particular application area, such as
social and biological sciences.

Two current challenges regarding modules in network are

e the ability to quantify to what extent a given network is "modular" [121, 126,
56];

e the ability to identify the modules of a given network.

A range of techniques for identifying modules are summarized in a review article
[121]. Here, we present four approaches addressing the two challenges:

Girvan-Newman algorithm is a widely used method [70] based on iteratively
removing edges from the network that have a high betweenness centrality, see Def-
inition 10. The edges with high betweenness centrality are interpreted as the edges
between modules and therefore their removal from the network leaves just the mod-
ules themselves. Identified modules form a full partition of a given network. This
method has been shown to produce good results and is often used as a benchmark
for for newly developed algorithms. However, the method is very slow, namely
O(M?n) where M is the number of edges in the network. For this reason Girvan-
Newman algorithm is unpractical for applying to large networks.

Modularity maximization approach is of a particular interest, as it optimizes
modularity of the network, a widely used measure for the quality of proposed
modules [126]. Modularity measure is based on the intuitive concept of "good
modules", that are modules with large number of edges between nodes in the same
module and only a few edges with nodes outside of module. Here "large number
of edges" refers to a larger number than it would be expected purely by chance.
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Following this idea, modularity of a network with m modules C1, ..., C,, represents
the difference between the number of edges within modules and the expected number
of such edges in a random network with the same degree distribution. It can be

= — — = 4.
Q=% ( - (o) ) (437)
where [j is the number of edges in module Cy, M is the total number of edges in

the network and d, = Y d(7).

1€Cl
Larger values of modularity indicate existence of strongly connected modules and
vice versa. Also this approach identifies modules that form a full partitioning of a

given network. However, this method is based on optimizing a modularity function

expressed as

over all possible partitions of the network, which has a high computational cost.
Finding optimal modules that maximize modularity is shown to be a NP-hard
problem [31]. In order to improve this, different heuristic algorithms have been
used such as greedy algorithm [123] and simulated annealing [74]. Recently, the
effectiveness of this method has been put to the question, as it has been observed
that modularity optimization can fail to identify modules smaller than a certain
scale [66].

Markov clustering algorithm (MCL) is a random walk based algorithm, de-
veloped in [161]. Given a transition matrix of a random walk process P, this al-
gorithm iteratively finds the modules of the given network. Each iteration consists
of two steps: expansion and inflation. First, expanding the random walk on the
network by one steps produces the matrix P2. Inflation consists of raising every
entry of P? to the power of a, a € R, where typically a ~ 1.2 —2 and renormalizing
these values, such that the resulting matrix is again stochastic. In this step high
values in each row of P? are increased, which results in increasing the difference
between the intra-modular and inter-modular jump probabilities.

Eventually this method should converge to a 0 — 1 matrix that is invariant to the
two operations. However, the convergence of MCL has not been proved. Number
of non-zero rows of the obtained matrix represent the number of clusters and non-
zero entries of these rows indicate which nodes belong to the same cluster. MCL
produces clusters that form a full partitioning of a given network, but there can
exist clusters with only one node. The choice of the parameter « influences the
number, size and elements of the resulting modules. Namely, for smaller values of
a MCL produces a few big modules, whereas for larger values of a MCL results in
identifying smaller modules. The complexity of this method is O(n?), for a network
with n nodes.

Robust Perron Cluster Analysis (PCCA+) is a spectral clustering algorithm
that results in a fuzzy clustering of data, i.e., all states are assigned to clusters within
certain assignment probabilities [49, 50]. Assuming that we want to identify m clus-
ters, then for every state x € V and every cluster i € {1,...,m} PCCA+ calculates
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the probability x;(z) that state = belongs to cluster i. Functions x;,i = 1,...,m,
called membership functions, give the clustering information of the network in the
sense that they decompose the complete state space into m metastable sets. There-
fore, they are assumed to form a non-negative partition of unity Y i, xi(z) = 1,
x € V, and to be almost invariant under P. The goal of PCCA+ is to find a linear
transformation matrix X that transforms U = [uq, ..., uy], the first m dominant
eigenvectors of P, into the membership functions x = [x1,..., Xm], i.e., x = XU.
In order to get the optimal clustering, X is chosen such that it maximizes the
metastability functional

“ X’La PXZ
I(X;U, ) Z
i—1 Xu
under the constraint that x = XU forms a non-negative partition of unity.
Notice that PCCA+ does not automatically provide us with an estimate for the
number of clusters. There are several techniques that can suggest the optimal
choice mpcca, e.g., by running the algorithm for different cluster numbers m of
clusters and determine
mpccA = argmax,,, — I,
m

where I, the maximum of the functional for a given m; or by determining mpcca
via the minimal overlap between the assignment functions y;. For more details
about PCCA+ algorithm see [50].

4.5.1 Contrasting different graph clustering approaches

Having mentioned above some of the methods for module identification, the natural
questions to ask are:

e What is a good graph clustering method?
e How can we measure the quality of resulting modules in a network?

e What is the measure of quality of some clustering method?

Finding answers to these questions has been a widely studied task [33, 93, 147].
Up until now, several clustering quality measures have been introduced, such as
(already introduced) modularity [126], conductance and expansion [93]. However,
these measures are usually biased towards methods that optimize their functional.
Up to now, there has been no generally established measure for clustering quality.
One reason is that it is not always clear what are the "right" modules in a given
network. Furthermore, often the quality of chosen modules is dependant on the
application, i.e. their interpretation in the underlying system. Therefore, we will not
discuss the quality of the above mentioned approaches and our approach based on
some established measure, but present the resulting clusterings of these approaches
on one example network. The example network is chosen in such a way that the
resulting modules do not coincide for all methods.
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Example 16 In this example we will apply five clustering algorithms introduced
above, on an undirected, unweighted network with 200 nodes. Figure 4.6 shows
the resulting optimal modules found by: Girvan-Newman algorithm in Figure 4.6a,
modularity mazimization algorithm in Figure 4.6b and MCL algorithm in Figure
4.6¢. The results for the MCL algorithm are obtained for the choice of « = 1.2. All
three algorithms find modules that form full partitioning of the network. We find
that in all three methods almost all densely connected regions are clustered in differ-
ent modules. The except is that Girvan-Newman algorithm and MCL algorithm put
together the two modules (dark blue in Figure 4.6a) in the upper left corner, whereas
the modularity mazimization algorithm identifies them as two different modules.

Figure 4.7 shows optimal modules of two fuzzy clustering algorithms, namely PCCA+
in Figure 4.7a and our approach (in Figure 4.7b) that uses the time-continuous
random walk process defined in (2.29). Fuzzy clustering results obtained by both
approaches are presented in the plot in such a way that nodes that are affiliated to
some module with the probability higher than 0.85 belong to that module. Both meth-
ods find 8 modules, where again the "problematic modules" from above are clustered
together via PCCA+ approach (orange module in Figure 4.7a) and by our approach
they represent two different modules (orange and pink modules in Figure 4.7b). We
see that most of the transition region coincide in results of both fuzzy clustering
methods. Remark that when using the standard random walk process for analyzing
this network we encounter the problems stated in Section 2.2, i.e. the spectrum of
the transition matriz does not have a clear gap to indicate the number of modules.
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(a) 8 modules found by Girvan-Newman al- (b) 13 modules modularity maximization ap-
gorithm proach

(c) 8 modules found by MCL algorithm

Figure 4.6: This figure shows the optimal modules found by different clustering
methods. These methods find full partitioning of the network.
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(a) 8 modules found by PCCA+ (b) 8 modules found by our approach

Figure 4.7: This figure shows the 8 optimal modules found by PCCA+ algorithm
and our algorithm using time-continuous random walk process. Both algorithms
find fuzzy clustering of the network.



CHAPTER 5

Identification of hubs

When analyzing complex, modular networks, one of the main issues is how to
identify nodes that have a special importance in the underlying system, such as
leading scientists who collaborate with many scientists, airports which are essential
connectors of some regions, proteins that are responsible for a certain function etc.

It has been observed that many of the real world networks exhibit scale-free behavior
(Section 1.2.3) [6], for example World-Wide Web [7], social networks, biological
networks [5, 90], transportation networks [73] etc. Such networks are shown to be
resistant to random node attacks and failures [43, 8, 6]. This means, if randomly
chosen nodes are removed from the network, that doesn’t lead to the global loss of
connectivity in the network. On the other hand, scale-free networks are shown to
be vulnerable to the systematic removal of particular nodes [44]. More precisely,
removal of certain nodes can cause disconnection of some modules from the rest of
the network. In that sense these nodes represent the critical points of the network
and their identification is of special importance.

Many different measures of importance of nodes have been introduced and tested
on various real world examples aiming at identifying nodes of special importance
[160, 169, 75, 73], such as: essential proteins, major airports, disease-related genes
etc. Most of these methods are based on the topological properties of networks,
such as degree distributions [89], betweenness centrality [70, 92] and network motifs
[61]. However, recent results coming from various applications revealed that these
methods are not always sufficient to identify special functional elements of the
underlying system [169, 75, 73].

In this chapter, we will define new measures of node importance based on the idea
that such nodes are essential for the communication in the network. Using the
framework of Transition Path Theory that will be introduced in Section 5.1, we will
specify the notion of communication in the network taking into account dynamical
properties of the random walk process taking place on the network. Sections 5.2,
5.3 and 5.4 will provide precise definitions for different types of hub nodes and
algorithms for their identification, that will be demonstrated on an example network
in Section 5.5. We will end this chapter by presenting state of the art approaches
for defining hubs and compare them to our approach.
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5.1 Transition Path Theory for Markov Jump Processes

In this section, we will study the transition behavior of the random walk process,
using the framework of Transition Path Theory (TPT) that has been introduced
in [58] for specific continuous state spaces and in [117] for discrete setting needed
here. More specifically, we will use TPT objects in order to describe communication
between modules and to identify hubs, which are nodes that are essential for the
communication between modules.

We start by observing transitions from a module C; to the union of all other modules
M; = C\ C;. In particular, we take into account only these parts of trajectories
(realizations of the random walk), where the random walker transits directly from
C; to M;. These are defined as

Definition 19 The n'* reactive trajectory from a module C; to the union of all
other modules M; = C'\ C; is the sequence of states
Py =[S xk, . ak aM o 2Cieq;, ol eT, Mioe My, (5.1)

that is the n' transition path starting in C; and ending in M;. The union of all
such trajectories is called the set of reactive trajectories.

Statistical properties of these trajectories will provide us information about global,
as well as local transition behavior of the system.

5.1.1 Global transition behavior: Reactive flows

Let us observe the set of reactive trajectories from a module C; to the union of all
other modules M;. We will introduce the first object of interest in order to calculate
the rate at which the flow goes from one state to the next one. To this end, let us

consider

Definition 20 The discrete probability current of reactive trajectories fCiMi =
iM;

(f
state x to y, per time unit, i.e.

)zyev s defined as the average flow of reactive trajectories when going from

oM, _ { w(x) g (), y) (L—q (), ifx#y (5.2)

10, otherwise

The following proposition will provide an important property of the discrete prob-
ability current [115].

Proposition 7
The discrete probability current is conserved in every node outside the two sets

SOFGME =N M e T (5.3)

yeVvV yeV
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Proof.  Using the properties of committor functions (3.4) and (3.5), namely that
>oyev Uz, y)g; (y) = 0 and > oyev 1°(z,9)q; (y) = 0 for z € T, we have that

> S

yev

2) Y Uz y) (1 - ¢ (y) — (1 - ¢ (x) D uly) )

yF#T y#x
= —p(z)q; (2)l(z,2)(1 = g (2)) — p(z)(1 - g (2)) D 4; (
y#T

= —p(z)g; ()l(z,2)(1 — g (2)) Uz, 2) = I"(2, x))
=0.

O

Additional to the local conservation of the probability current in every node x € T,
the more general result holds. More precisely, using that f:g}Ml =0forxeV,ye A
and x € B,y € V one can easily prove that the total conservation of the probability

DR S N (5.4)

zeCy,yeV yeV,xeM;

current also holds

Our main goal is to study the intensity of communication between the two sets. Let
us start by introducing a measure of communication between two states along the
reactive trajectories, i.e. the net amount of probability current between two states.
For this purpose, we define

Definition 21 The effective current f;‘y is defined by

;ry = max (fa% fC WMi ). (5.5)

In other words, the effective current calculates the net average number of reactive
trajectories per time unit, that make transitions from x to y when going from Cj
to M;. Again, one can show that the effective current is conserved in each node
outside the two sets.

Proposition 8
For every x € T it holds

S =0 b (5.6)

yev yev

Proof. This is a consequence of Proposition 7. Let us fix y € T and define

I,={zecV: %Mi >fz%Mi},
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and its complement I, =V \ I,. Then,

OFELED WIS Wk

z€ly zel] zeV
CiM;
= ny; '
zeV
Ci M; CiM;
- nyrl Z+nyxl E
zely zely

This can be re-arranged into

S (M — My = N7 (fCaMe — pCiMiy

z€ly zel]

where the summands are all non-negative and identical to the respective effective
flow since I, = {x € V.= ff, > 0}. Therefore

2 iy =2 e

zely zel]

Filling these sums up with zeros yields the assertion. U

Furthermore, the net amount of reactive trajectories that flow out of C; is the same
as the amount that flows into M;

R S 6.7)

z€Cy,yeV x€V,yeM;

Using this we can describe the global transition behavior between two sets and
measure how good the communication between them is. More formally, we consider

Definition 22 The transition rate kc,);, between sets C; and M; is defined as

kem; = Z ;;/v (5.8)
zeCi,yeV

that is the average number of transitions from C; to M; per time unit.

At this point a natural question to ask is:
How many of these transitions are going through a specific node y € T7

The answer to this question will provide us with the importance of a particular
node for the global communication between modules in the network. However, in
order to answer this question we will introduce new objects that will characterize
local transition behavior in the network.



5.1. TRANSITION PATH THEORY FOR MARKOV JUMP
PROCESSES 87

5.1.2 Reaction pathways

Every single transition from set C; to M; can be characterized by the path the
random walker takes from C; to M;. This path can be represented in a weighted,
directed graph G* = (V, E, f*), where the effective current f+ = (f,),Vz,y € V
is the weight function of the edges. Defined in this way, the weights of directed
edges determine how much flow can go through a particular edge in a particular
direction. Now, we can represent a transition from C; to M; by a directed path in
the graph G* in the following way

Definition 23 A reaction path (pathway) is a sequence w = (ig,...,i,) with
n > 0 of states such that ig € C;, i, € M,

ineT, Vk=1,...,n—1

and

+ — _

it 0, Vk=0,...,n—1.
Obviously, the total flow of a specific reaction path is bounded by the minimal
effective current of all edges involved in that path. In particular, the effective
current that confines the flow is of special importance.

Figure 5.1: The four most important reaction pathways from the red set to the
green set. The pathways are colored according to the values of the minimal current
that they transport, from dark brown for the most important reaction pathway to
yellow for the fourth most important pathway.

Definition 24 The capacity of the reaction path w = (ig,...,i,) is defined as

c(w) = _min {ff . .} (5.9)

.....

The edge with the minimal effective current is called the dynamical bottleneck of
the path.
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Now, we can characterize every reaction path by its dynamical bottleneck and using
this we can distinguish between different transition paths. In practical applications,
reaction paths that have the maximal minimal current are of particular interest,
since they can transport the most flow. We will refer to these as the most im-
portant reaction pathways. We can also determine the second most important
paths and so on.

The problem of finding these paths is known as the mazimum capacity augmenting
path problem in the context of solving the maximal flow problem in a network [3].
For an algorithmic realization of how to find the important reaction paths see [117].
Figure 5.1 shows the top four reaction pathways from the red set to the green set.
These paths are colored according to their importance, i.e. the darker the color of
a pathway is, the more current it conducts. In particular, the most important path
transports 53% of the total current, the second most important path 25%, the third
one 9%, the fourth one 5% and so on.

5.1.3 Local transition behavior

Here we will address the question of how many of the transitions from set C; to
set M;, are going through a specific node y € T'. For each state y € T outside the
given sets let us define the predecessor and successor sets that contain the states
directly before and after y on a transition path

Py={zeV: ff >0}, S,={zeV: [ >0}
and in particular

Definition 25 The reactive flow through a node y € T is given with

EGMe = N b =3 fE, (5.10)

TEPy TESy

as the average number of reactive trajectories going through a node y when going
from C; to M;.

An important property of this quantity is

Proposition 9
For every node y € T it holds that

kM < ke, (5.11)

Proof. In order to show this, let us fix y € T" and consider the set W, of all reaction
paths that go through node y. Let wq,wo,...,w, be a complete enumeration of
W;. These paths contain no cycles, so there have to be finitely many of them. Let
us define r; to be part of the reactive path w; that starts with y and ends in set
M;. Now let G1 be the sub-graph of the entire network that contains only edges
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and nodes that are contained in at least one of the r;, [ = 1,..., h. Specifically, G1
is a tree with root y and leaves b in M;, for which we define

ky=>_ > fh

z€b zeG1\b

Since b C M; and G1 C V we have ky < k¢;n,. Because of the local conservation
of the flow (5.6) and G1\ b C C; we additionally have that kyCiMi =ky < kc,n,. O

5.2 Hubs in undirected networks

In the previous section, using TPT we have introduced several quantities for measur-
ing communication in the network on different levels. In particular, the transition
rate (5.8) describes the global communication between modules in the network. On
the other hand, the effective current (5.5) can be used to measure the local commu-
nication between nodes of the network, whereas the reactive flow (5.10) calculates
the amount of global flow through a particular node.

Now, we can define

Definition 26 A hub is a node that is important for the communication in the
network.

Here "important for the communication" should be understood in the following
sense: if an important hub is removed, communication between modules or between
a module and the rest of the network will be considerably perturbed or broken. It
has been observed that nodes with this property can have a special meaning for the
underlying system, such as being essential proteins that are directly correlated with
the viability of cells [89] or cities that connect different communities representing the
source for spreading of infections [73]. Therefore, hubs as the nodes that "control"
most of the communication in the network, represent at the same time the most
vulnerable points of the network. For this reason, identification of such nodes is
crucial for the understanding the underlying system.

Example 17 Figure 5.2 shows an example network with 100 nodes, where 70 nodes
are clustered in four modules. This figure also shows examples of hubs in this net-
work. For the sake of simplicity, we highlighted only some of hub nodes, namely the
ten labeled nodes for which we will discuss their importance for the communication
in this network. Node M 1is the only node of the pink module that connects this
module with the rest of the network. Therefore, it is a node that is a key connector
of the pink module. From the nodes in the transition region, node X is the only
node that connects pink and green module. The green module is connected with the
rest of the network by nodes Q@ and R that belong to this module and by X and Z
that belong to the transition region. On the other hand, blue module is connected
with the rest of the network by nodes S and T that belong to this module. The
connection of the pink, green and blue modules with the rest of the network, namely
the red module is established through nodes X and Y .
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Figure 5.2: Example network with 100 nodes and four modules that contain 70
nodes in total. This figure shows ten network hubs, five of which are module hubs
(colored according to the module they belong to) and five are inter-module hubs
XY, Z, U and V.

However, not all nodes are of same importance for communication in the network.
For example, suppose that if node A is deleted from an unweighted, undirected
network, it causes disconnection of five modules from the rest of the network. On
the other hand, removing node B causes disconnection of three modules from the
rest of the network. In this case, we could say that a node A is more important than
anode B. However, if in the first case the network breaks into two disconnected sub-
graphs while deletion of a node B causes the separation of three modules, making
the whole network fall apart into four disconnected groups, then the question about
which node is more important becomes much harder to answer.

At this point, the natural questions to ask are:

e Can we differentiate between vulnerable nodes in the network, in the sense of
their influence on the network robustness?

e Can we develop an importance measure for nodes in the network?
e What should be the main parameter on which such a measure should depend?
e How important should a node be to become a hub?

Determining the importance of a node for the communication between modules is
not an easy task and a solution to this problem depends on different factors. These
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can be divided into three groups: (1) the topological properties of the network, (2)
the dynamical properties of the process defined on the network, and naturally (3)
characteristics of the particular real-world system. Considering these factors, in the
following we will distinguish between the two main classes of hubs: inter-module
hubs and module hubs. This classification is made depending on whether the
node belongs to some module or not. In Figure 5.2 five modular nodes are shown,
that are colored according to the module to which they belong to. Inter-module
hubs in this figure are X,Y, Z, U and V.

Following the ideas presented above, we will introduce different definitions of hubs,
point out the differences between them, present algorithmic approaches for their
identification and demonstrate their validity on several examples.

5.3 Inter-module hubs

Here we will study two different natural concepts for declaring a node to be a hub,
developed in [51]. Both concepts are based on the same idea

Definition 27 Inter-module hubs are nodes © € T that are essential for the
communication between modules of the network.

Obviously, the first step in identifying inter-module hubs is to determine modules in
the network C4,...,C,,. Then, as discussed in Section 4.4, for a certain threshold
0 the transition region is given with

Tz{xEV\UC’i|qi($)<9, Vi=1,...,m}.
i=1

Now, we consider the candidates for the inter-module hubs to be all x € T. From
these nodes we will declare as hubs only the ones that are important for the commu-
nication between the modules. This communication is established by the random
walker making transitions between the modules. However, as we discussed earlier,
not all nodes x € T are of the same importance for the communication between
the modules in the same way. To explore this concept further, we will examine two
different measures for declaring a node to be an inter-module hub, by presenting
two different characterizations of the communication between the modules.

In both approaches, we will consider all m possible choices for the set A from the
m given modules C, ..., Cy,. For a particular choice of A = C;, we will observe the
communication between A and the union of all other modules B = M;. Specifically,
we will introduce two measures for the amount of the important communication
between A and B, that goes through a particular node x € T. Using this we
can discover which nodes are the most important for the communication between
module A and the rest of the network, i.e. these nodes that form the essential
connections of this module. The removal of such nodes could considerably perturb
or even destroy the function of the particularly chosen module in some real-world
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networks. In this way, we would be able to control specific functions of many com-
plex systems, such as biological systems, which may lead for example to discovering
new drug targets for treating human diseases. Merging the results for all possible
choices of the set A, we will be able to obtain a more general quantity that will
reflect the importance of a node for the global communication in the network.

5.3.1 Inter-module hubs and reactive flows

First, let us concentrate on transitions from module C; to the union of all other
modules M;. The global communication properties between these sets are described
by the transition rate kc,ns, (5.8), representing the average number of transitions
from C; to M; per time unit. In particular, the number of these transitions that
are going through a node = € T is given by the reactive flow k(i (5.10). Now,
we can calculate the amount of flow that is going through this particular node x
compared to the global flow from C; to M;. This will provide us with the measure
of importance of a node for the communication in the network. More precisely,

Definition 28 The importance of the node x € T when going from C; to M; is
defined as

k.CiMi
x

, 5.12
Fon (5.12)

that s, the percentage of reactive trajectories going through x, out of all reactive
trajectories going from C; to M;. The importance of the node x € T in the network
communication is given with

o= > pgM (5.13)

i=1,....m

In this sense, a node is said to be an inter-module hub if most of the flow between
modules goes through this node. We can now differentiate between potential inter-
module hub nodes x € T in the network according to their importance rate p,.
Moreover, defining a threshold 8 we can consider all such potential hubs x € T that
have importance rate p, higher than this threshold to be very important. We will
call such nodes the inter-module hub nodes.

Remark 6 In this thesis, we will not develop new strategies for choosing the thresh-
old B. There are two main reasons for this. First, our aim is to determine the con-
nection between the topological and dynamical properties of a network on the one
hand and essential elements and functions of the underlying system on the other
hand. In particular, we are focused on understanding the link between the network
hubs and important elements of the system. Therefore, observing the whole spec-
trum of potential hub nodes is helpful in order to point out their similarities and
differences that can be of importance for further method development. Second, the
choice of the threshold 5 is dependent on the properties of the underlying system.
Namely, the importance of hub nodes in real-world networks is that they are sup-
posed to correspond to the functional elements of the system. These elements differ
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from system to system, hence their properties differ also. Therefore, we propose
here a general methodology for identifying hubs as nodes that are important for the
communication in the network. For more examples of different criteria and thresh-
olds used to define hubs, we refer to the following references coming from biological
systems [78, 21, 10, 91].

Algorithmic realization for identifying inter-module hubs consists of calculating
TPT objects, namely committor functions, which satisfy a linear system of equa-
tions (3.4); then, computing the transition rate and the reaction flow through a
specific node that can be done following Section 5.1.

Node = p,

43 3.00
44 0.6987
45 0.6987
46 1.9444
47 1.6303
48 1.6303
49 0.9316
50 0.2329

Figure 5.3: The network shows the modules along with the hub candidates marked
with their labels. The table shows the importance rates p, for all hub candidate
nodes.

Node » piB
43 1.00
44 0.4286
45 0.4286
46 0.3333
47 1.00
48 1.00
49 0.5714
50 0.1429

Figure 5.4: The table shows the importance rates pA? when going from A to B, for
all inter-module nodes.

Example 18 Let us now apply our method for identifying inter-module hubs using
reactive flows on the example network shown in Figure 5.3. This network consists
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of 50 nodes, 42 of them are arranged in three modules, while being committed to
some of the modules with probability of more than 8 = 0.9. The remaining 8 nodes
belonging to the transition region serve as the possible inter-module hubs. For these
nodes, we can calculate importance rates given by equation (5.13).

Let us first observe the transition behavior of the random walk process when going
from the module A (blue module) to B (red), Figure 5.4a. The importance rates piB
of inter-module nodes, calculated as in (5.12), are shown in Table 5.4b. Nodes 43, 47
and 48 have the importance rate 1, since when going from A to B all communication
goes through these mnodes. Then from node 47, 42.86% of reactive trajectories go
through node 44 and then node 45, whereas the rest, that is 57.14%, goes through
node 49.

In the same way, we can calculate the importance rates for other choice of C;.
Since the network consists of three modules, the highest possible importance rate is
Dy = Zizlw.’gpgiMi = 3. The results are shown in the table of Figure 5.3. Node
43 is the only node that connects all three modules. More precisely, if we would
remove this node, all three modules would be disconnected from each other and the
network would break into three disjoint subgraphs. Therefore, node 43 is crucial
for the communication in the network and this is reflected by the highest possible
importance rate py3 = 3. Node 46 is also shown to be important, since it is the
only node that connects the green module with the two other modules. Howewver,
regarding the global communication in the network, node 46 is less important than
node 43 that connects all three modules. This effect is reflected in their importance
rates. Similarly, nodes 47 and 48 are the only connectors of the blue module to
the rest of the metwork organized as a short chain. Due to the nature of their
mutual connection, these nodes transport the same amount of reactive flow and have
therefore exactly the same importance rate. Their slightly smaller rate compared to
the rate of node 46 suggests that the communication between the green and red
module is fairly preferred. This can be justified by the fact that the blue module
is separated from the other two by several nodes organized as a chain, whereas the
red and blue module are divided by only two nodes. This means that the reactive
trajectories by which the random walk process transits between the red and blue
module need to include just this shorter chain and are therefore preferred.

5.3.2 Inter-module hubs and important paths

We will now present another novel approach for defining hub nodes. The main idea
of this approach is to characterize the communication flow between modules in such
a way that we can distinguish between transitions according to their importance.
For this, we will use the effective current (5.5) and follow the strategy introduced
in Section 5.1.2.

Let us again observe transitions from module C; to the union of all other modules
M;. In particular, every single transition from C; to M; can be characterized by the
path the random walker takes from C; to M; and we can assign weights to these
paths in a sense of how "important' they are. Now, an obvious question to ask is:
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what are important paths?

We define important paths as the paths that have the maximal minimal effective
current. The reason for this is that the paths with the maximal minimal current can
transport the most flow between the modules, representing the crucial connectors
of modules. Following this strategy, we can distinguish between important and less
important transition paths. Then, we say that a node z € T is an inter-module
hub if most of the important transition paths between C; and M; go through this
node.

Definition 29 For every node x € T, we introduce its C; M; path importance as

NCiMi
GiMs = 2 (5.14)

~ Neo,
where N, n, is the number of most important reaction paths that go from C; to M;,
and NxCiMi is the number of these paths passing through node x. The importance of
a node x € T in the network is

Sy = Z sCiMi, (5.15)

i=1,....m

The quantity s, represents the global importance of the node, namely the percent-
age of the total network communication going through node x. Again, defining a
threshold 3 yields highlighting the most important inter-module hub nodes, i.e. the
nodes that are taking part in the most intensive communications in the network.
For the same reasons that we discussed in Remark 6, we will not discuss strategies
for choosing the threshold £.

Remark 7 It is important to point out that in the following we will not distinguish
between the most important reaction paths once they have been obtained. More
precisely, after we identify the top N most important reactive paths, we will consider
them to be of equal importance. Clearly, there are numerous ways to associate
weights to these paths according to their importance. The main difficulty in doing
so is that we would have to develop a new strategy for sorting the paths that have
been obtained from the communication between all modules in the network. That
s, we would have to compare paths going from C; to M; for all different choices
of the modules Cj,i = 1,...,m. Furthermore, this distinction should correspond
to the appropriate role of modules and their importance coming from a particular
application. Because of these reason, we will not develop this point further, but refer
the interested reader to the literature about ranking algorithms [45, 68, 47, 2].

Algorithmic realization of this approach consist of calculating committor functions
and the effective flux as in the first approach, and additionally, of identifying the
transition pathways and their dynamical bottlenecks [117]. This can be done ef-
ficiently by using graph algorithms [3]. In particular, the computational cost for
calculating the bottlenecks is given by [115]



96 CHAPTER 5. Identification of hubs

Proposition 10

The computational cost for calculating dynamical bottlenecks is in the worst case
O(aloga) where a denotes the number of edges of the directed, weighted graph G* =
(V.E, ).

Another important point to note is that the importance s, of a node x highly
depends on a particular choice of the number of most important reaction paths
Nc, ;- This could be seen as an obvious disadvantage of the approach, especially
for the algorithmic realization. However, we will see that this dependance allows
introducing specific node rankings that correspond to our definition of hubs. We
will demonstrate this property in the following example.

Figure 5.5: This figure shows the first most reactive path when going from A to B,
where A corresponds to the blue, green and red module respectively.

Example 19 Let us now apply our method for identifying inter-module hubs using
important paths to the network that was discussed in Example 18. We will show
how importance rates change for different choices of the number of important paths,
namely for N := Nc,u, = 1,2,3 and compare the obtained results with the ones
from the previous approach. The network consists of three modules that are shown
in Figure 5.8 as red, blue and green modules. There are 8 nodes that belong to the
transition region and are candidates for being inter-module hub nodes. For these
nodes we will calculate the importance rates s, given by the equation (5.15). The
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Figure 5.6: This figure shows the Nap = 2 most reactive paths when going from A
to B, where A corresponds to the blue, green and red module, respectively.

results are shown in Figure (5.8).

In this example we can make three different choices for the set A = C;: the blue,
green and red modules. For fixed A, a set B will denote the union of the other
two modules. As mentioned above, we will distinguish between different settings in
which we consider one, two or three most important reactive paths going from A to
B. The paths corresponding to these settings are shown in Figures 5.5, 5.6 and 5.7
respectively. They are colored in the following way: dark brown represents the most
important path conducting the most current from A to B, light brown the second
most important path and yellow the third most important path.

The node 43 is a node that takes part in all reaction paths, since it connects all
modules. Therefore, it has the highest possible importance rate sqg3 = 3 for all
choices of N. Let us observe how the importance rates of nodes 46, 47 and 48
change for different choices of N. The most important reactive paths N = 1 for
different choices of A are shown in Figure 5.5, where we see that

IR
T
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1 1
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Figure 5.7: This figure shows N4p = 3 most reactive paths, respectively when going
from A to B, where A corresponds to the blue, green and red module respectively.

Sg
Node x =1 | N=2 | N=3
43 3 3 3
44 0 0.5 1.33
45 0 0.5 1.33
46 2 2 1.67
47 1 2 2.33
48 1 2 2.33

49 1 1.5 1
50 0 0 0.33

Figure 5.8: This table shows the importance rates s, for all hub candidate nodes
and different choices of numbers of important reactive paths.

Thus, node 46 has a higher importance rate than nodes 47 and 48 since most of the
first most important paths go through this node. However, if we observe now the
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two most important reactive paths from Figure 5.6 we see that

\V)

12l
546—2 9 =

\V)

and

= ot iti=2
547—848_2 2 2_ ;

i.e. nodes 46, 47 and 48 are of the same importance. Furthermore, considering the
top three most important paths shown in Figure 5.7, it follows that

1 3 1
=—+ -4+ - =167
6 =3 313
and
3 2 2
= =—- 4+ -4+ - =233.
S47 548 3+3+3 33

That is, if we observe the first three most important paths then nodes 47 and 48
have higher importance rates than node 46.

In the previous example we have demonstrated that for different choice of the pa-
rameter N we can obtain different node rankings. Exactly this is the advantage of
the approach in applications, because it allows pinpointing the paths of importance
and obtaining only their essential elements. This is why our definition of hub nodes
states: a node x € T is an inter-module hub if most of the important transition
paths go through this node.

Unlike the first approach, here the most important nodes are not always the ones
that are crucial for the connection of a certain module to the rest of the network,
unless they are involved in the most important transitions in the network. Obvi-
ously, if we consider only one most important path, i.e. N = 1, the two approaches
are equivalent. This is because the most important path is the one that transports
most of the current. In our example, the most important paths shown in Figure
5.5 conduct 60%, 57% and 75% of the transition rate, respectively. Because of
this, node 46 has a higher importance rate than nodes 47 and 48 like in the first
approach.

5.4 Module hubs

A closer look at the network structure discovers that not only the inter-module
nodes play an essential role in the global network communication. Nodes inside
modules can also be crucial for the global network communication. To this end, we
define

Definition 30 Module hubs are nodes x € C' that are essential for the commu-
nication in the network.
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Different experimental studies have indicated that in many real-world networks
that exhibit a scale-free structure, module hubs are usually of great importance for
proper functioning of a particular module, but also of the whole system. This is be-
cause module hubs often correspond to the structural key elements of modules that
are connecting them to the rest of the network. This role has for example a major
bridge or a tunnel on a highway located on the entrance of some city. Although
belonging to the elements of the city, these objects are the crucial connectors of
this city to other cities. Additionally module nodes that are highly connected to
other module nodes are important for the communication within the module itself.
They correspond for example to the main crossroad in some city. If this crossroad is
closed, this will at least cause substantial disturbance in the transportation system
of the city, such as huge traffic jams, changed bus routes etc..

Now, we can express Definition 30 more precisely in the following way:

A module hub is a node x € C; C C that is either essential for the communication
of module C; with the rest of the network or a node that is important for communi-
cation among the nodes of the module C;.

In order to explore this categorization further, we will distinguish between two types
of module hubs: bottleneck hubs and central hubs. More precisely, bottleneck
hubs will denote nodes that are the essential connectors of the module to the rest
of the network, whereas central hubs will be considered important for the internal
module communication, corresponding to nodes that are well connected to other
nodes in that module.

In the following sections, we will develop precise definitions for these objects and
explain their importance for the global functioning of the underlying system.

5.4.1 Module bottleneck hubs

Motivated by the topological structure of modular networks and in particular of
their modules, we will introduce a new class of module hubs. Let us remember
that modules are defined as densely interconnected subgraphs of a network that
are characterized by having only a few connecting edges to the rest of the network.
Thus, these edges and especially the nodes on these edges control the communication
of the module with the rest of the network. We will call these nodes the module
bottlenecks of the network.

Identification of such modules can be easily done by observing the dominant reaction
paths in the network, as described in Section 5.3.2. Recall the definition of reaction
paths, presented in Section 5.1.2, where a reaction path from a set A to set B is
defined as a sequence of states w = (ig,...,iy),n > 0 such that ig € A, i, € B
and i € T, Vk =1,...,n — 1. In particular, paths of our interest that conduct the
most of the current, i.e. dominant reaction paths, are of the same form. This is
why module nodes taking part in reaction paths are the nodes that are crucial for
connection to other modules in the network.
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Figure 5.9: This figure shows module bottleneck hubs for each of the three modules
in the network.

Figure 5.9 shows the module bottleneck hubs of the network from Example 18,
namely node 11 that belongs to the red module, node 33 from the blue module
and node 17 from the green module. These nodes belong to the dominant reaction
paths illustrated in Figure 5.7. As such, they are the key connectors between the
modules they belong to and the rest of the network.

5.4.2 Module central hubs

Using random walk process defined on network, we have already defined several
classes of hub nodes that are essential for the communication between modules
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in the network. Now we will introduce another class of hub nodes, namely the
module nodes that are important for the communication in that module. We will
call these nodes module central hubs, since they will represent the central points
of communication in a particular module.

To this end, let us consider the invariant measure p of the random walk process, see
Section 2.1.2. For a node x € V, the value u(x) represents the probability that the
random walk process is in a node z. From the definition of i, we see that u(x) is
proportional to the degree of a node x. This means that the more neighbors a node
x has, the higher the value u(x) is. Modular nodes in which the invariant measure
has high values will be called module central hubs. Here "high values" refers to
values that are high compared to the values of p that have other nodes belonging
to the same module. In terms of the random walk process, this means that the
probability that a random walker is in a module central hub z is high, what can be
interpreted as a high probability that while being in this module the random walker
often returns to z. For this reason, we say that module central hubs are important
for the communication within the module they belong to.

Figure 5.10 shows the values of invariant measure p in each of the nodes of the

0.05

0.0335

1 0.0265

1 0.0103

Figure 5.10: This figure shows the values of i in each node of the example network,
where red color indicates high values p, that is module central hubs.

network from Example 18. Red color indicates higher values of u, that is module
central hubs, whereas green color corresponds to the nodes for which the probability
that they are visited by the random walker is low. At this point we should note that
sometimes module central hubs may coincide with module bottleneck hubs. The
reason for this lies in the fact that the two measures reflect two different properties
of the network, as introduced above. For example, in Figure 5.9 node 33 is at the
same time the bottleneck hub and the central hub of the blue module. This is
because it takes part in all most important reactive pathways of the blue module
and has high value of u (indicated with red color in Figure 5.10), which is influenced
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by the fact that it has 10 connections with the other 14 nodes in this module. In the
next section we will present an already established and accepted measure of node
importance based od node degree. We will see that this measure is closely related
to our definition of module central nodes.

5.5 Example: Finding hubs

Figure 5.11: This figure shows the result of our hub analysis for a network with
200 nodes. Using our module identification algorithm (see Chapter 4) we find 8
modules marked with letters A, ..., H and colored with different colors. We find:
inter-module hubs (marked with light blue color and red border), module bottleneck
hubs (marked in yellow) and module central hubs (marked as the largest nodes of
each module).

In this section we will conduct complete hub analysis using our approach presented
in this chapter on example network that has 200 nodes and shown in Figure 5.11.
Using our algorithm for identification of modules (for 6 = 0.8, see Chapter 4) we
find that 111 nodes belong to 8 modules shown in Figure 5.11, where they are
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marked with letters A, ..., H. Furthermore, every module is colored differently.

Let us start by finding module hubs for each of the eight modules. Using the
approach from Section 5.4.1 we find 18 module bottleneck hubs, marked in yellow
in the figure. Three of these bottleneck hubs are at the same time module central
hubs of modules B, D and H (see Section 5.4.2). Module central hubs are colored
according to the module they belong to and are marked as the largest nodes of
these modules.

Now we will analyze the transition region in order to find inter-module hubs. First,
for all nodes that belong to the transition region we calculate importance rates given
by equations (5.13) and (5.15), using N¢;a, = 3. For the sake of simplicity, we
highlight only some of these nodes, namely the top 15 with the highest importance
rates. These nodes correspond to inter-module hubs and are marked with light
blue color having red border. Out of these nodes we picked eight nodes (marked
with numbers in Figure 5.11) to provide the interpretation of their importance in
this network. For example, nodes 1, 2, 3, 4, 5 and 7 are nodes that form a direct
connection between two modules, i.e. node 1 connects modules A and G, 2 connects
B and C, 3 connects C and D etc.. At this point we should remark that there are
also other nodes that take part in the shortest paths between these modules, but
these are not marked as hubs. For example, node a directly connects modules C and
D, but is not a hub node unlike node 3. This is because most of the communication
flow between C and D goes through node 3. Compared to node 1, node 6 has
higher importance rate, since it is a node that connects module G to module C
and furthermore, transports large amount of communication flow between modules
H, E , A and B. Node 8 has the highest importance rate, as the most of the flow
between three modules B, H and D go through 8.

5.6 Related work

There have been many attempts to characterize "special" nodes in graphs that have
important functional features in the underlying system. Most of these consider dif-
ferent topological properties of graphs in order to provide a quantitative measure
of node importance. Here we will present some of the state-of-the-art approaches
for identifying such nodes that are "important" in the sense of their interpretation
in the underlying system.

A large number of real-world networks have been shown to be scale-free (see Section
1.2.2), i.e. to have a power-law degree distribution. Many types of social networks,
biological networks, transportation networks and computer networks are only some
examples of scale-free networks. This class of networks is characterized by the exis-
tence of highly connected nodes, called hubs. Most graph theoretic approaches
focus on identifying such nodes, since they may serve as central structural elements
of modules, as well as key connectors of different modules and therefore, represent
the most vulnerable points in a network [15, 18, 18, 89, 8, 43, 44]. Different stud-
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ies have confirmed this assumption, for example, it has been observed that highly
connected nodes are related to essential genes in regulatory networks [168].

However, node degree is not always a sufficient measure for characterizing the es-
sential points of scale-free networks [73, 81, 169]. Recent studies have shown that
topological bottleneck nodes, defined as nodes that have high betweenness cen-
trality, can correspond to important functional elements of the underlying system.
More precisely, bottleneck nodes are the nodes that take part in a large number
of shortest paths between two nodes of a graph. Since one considers all pairs of
nodes in the network, bottlenecks can be understood as those nodes that take part
in most of communication in a network. Obviously, bottleneck nodes do not need
to be highly connected. Different experimental results have shown that bottleneck
hubs often have different interpretation than highly connected nodes. For example,
in protein-protein interaction networks, bottlenecks are more likely to correspond
to essential proteins [92]. Therefore, bottleneck centrality is often used as a measure
for identifying potential hub nodes, especially in biological networks.

A new way of classifying hub nodes in protein-protein interaction networks resulted
from including temporal information of a system [78]. In particular, proteins that
interact with other proteins at the same time are called party hubs, whereas pro-
teins that interact with other proteins at different times are called date hubs.
Party hubs are assumed to have a central modular role in the network, as being
connected to many other proteins with the same function. Although the removal of
party hubs results "only" in a local decomposition of a network, namely the decom-
position of some functional module, party hubs are observed to be essential proteins.
On the other hand, date hubs have more global role, since they are shown to be
the nodes that connect different functional modules. Date hubs are also observed
to be essential, since their removal can have a very harmful effect on the network
such as breaking the network into disconnected subunits. Despite many recent de-
bates about the evaluation of experimental results and their interpretation [1], this
approach has introduced an important novelty in studying biological networks that
includes merging statical and dynamical components of the observed system.

Many studies consider combining different topological properties of a network in or-
der to find essential network elements that would unite many important properties
of hubs. For example, a combination of node degree, motif distribution, betweenness
centrality and closeness centrality is shown to be useful for reliable identification of
hub regions in macaque and cat brain networks [157].

Apart from the state-of-the-art paradigms presented here, many other approaches
have been developed with the same purpose. These can be seen in different review
papers. An extensive report about the most relevant paradigms used for identifying
hubs in protein-protein interaction networks has been presented in [75].

Compared to other paradigms, the main novelty of our approach is that it is based
on defining a dynamical process on a network that reflects the main properties of



106 CHAPTER 5. Identification of hubs

that network. Our algorithm for identification of hubs is based on features of this
process and is crucially dependent on network modules, as they represent the es-
sential functional elements of the network. One more advantage of our approach
lies in the fact that it is in general application-independent, but at the same time
flexible for adjusting to a particular application. In Chapter 6 we will verify our
algorithm on some real-world examples.



CHAPTER 6

Analyzing real-world networks

Analyzing networks that describe real-world complex systems is an important task,
as it could could yield valuable information about the basic principles of the un-
derlying system. Identifying network modules could lead to revealing previously
unknown functional similarities between the elements of the system [80, 136]. On
the other hand, finding hubs could help uncovering system elements that have a
special importance for the functioning of the whole system. All this information re-
sulting from analysis of real-world networks could deepen our understanding of the
structural organization and complex mechanisms of different real-world systems.

Analyzing real-world networks is a very challenging task, since interpretation of
the obtained results in terms of the real-world system is not always clear. In par-
ticular, drawing conclusions that relate structures in complex networks, such as
modules and hubs, to functional elements of the underlying system is not explicitly
theoretically justified. Furthermore, when dealing with real-world data one often
encounters a few typical problems, such as:

e Due to often incomplete and biased experimental strategies, resulting real-
world data-sets are usually noisy and not reliable. This of course, strongly
influences inferring the meaningful conclusions from networks [9, 133].

e Determining the quality of obtained results is often a very difficult task, since
complete and correct relations between the elements of the underlying system
are not always known [77].

e Evaluation of obtained results should be done in comparison with putative
information about the system. However, it is important to note that these
sources should consider the same characteristics of the system as the informa-
tion the network is based on (see Section 6.1 for more details).

In this chapter we will analyze two examples of real-world networks that were
already considered in different studies. In Section 6.1 we will show an example of
a social network and in Section 6.2 an example of a biological network. We will
apply our algorithms for finding modules and hubs using the random walk process
and compare the obtained results to the results that are considered to be well-
accepted according to different studies. In the evaluation of our results we will see
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that network modules do not necessarily correspond to functional modules of the
underlying system that were determined by specific experiments. It is a topic for
future research whether dealing with reliable data would provide results that are
functionally relevant in terms of the underlying system.

6.1 Analyzing US political books network

In this section we will demonstrate our new method for finding modules by analyzing
a network of US political books, which was introduced in [124] (see Figure 6.1). This
network contains 105 nodes, each representing a book about US politics sold by the
online retailer Amazon. An edge between nodes (books) A and B exists if customers
frequently bought books A and B together!.

In [124], these books have been classified into three categories of political alignment:

The Price of Loyalty

Against all Big Lies

Enemies

Deriliction of
Duty

Deliver Us from Evil

Figure 6.1: The political books network. (Taken from [124])

conservative, liberal, and neutral. This classification has been done according to
the author’s personal judgment that was based on the descriptions of the books on
Amazon. This manual, hard clustering is illustrated in Figure 6.2.

Now we will apply our approach to identify modules in this network (see Chapter
4) and compare the obtained results with the one presented in [124]. In order to do
this, we will first apply our heuristic algorithm to obtain the initial guess for the
modules (see Section 4.4.1). After performing step 1 for a = 100, we identify the

! According to the Amazon’s "Customers who bought this book also bought..." feature
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useraL [

CONSERVATIVE

Figure 6.2: The assignment of the books to three categories: conservative (green),
liberal (blue) and neutral (without coloring), according to Newman’s personal judg-
ment as in [124].

Figure 6.3: Left: Black nodes have been identified by the algorithm to belong to
modules. Right: Clustering the nodes within modules using PCCA+.

region of modules M, which is colored black in left plot of Figure 6.3. Setting aside
the transition region we can then compute eigenvalues of Pa(x, y). The five largest
eigenvalues are: 1.00,0.97,0.31,0.25,0.18. As we noted previously, the resulting
spectrum is convenient to interpret: It is easy to see that there is a clear gap after
the first two eigenvalues, indicating that clustering into two modules is the natural
choice for this example. Next, we perform hard clustering (step 2) to assign nodes



110 CHAPTER 6. Analyzing real-world networks

to these two modules. Right plot of Figure 6.3 shows the final modules computed
in this step.

Finally, by minimizing the eigenvalue error (4.19), we find the optimal modules,
shown in Figure 6.4. For two different choices of a threshold #, namely 8 = 0.9 and
0 = 0.8, this figure shows the resulting modules, each consisting of nodes that have
the affiliation to one of the modules higher than 6.

We find that most books that have been classified in [124] as belonging to the

userAL [ userAL [

CONSERVATIVE CONSERVATIVE

Figure 6.4: Left: Nodes with affiliation higher than § = 0.9. Right: Nodes with
affiliation higher than 6 = 0.8

conservative or liberal group, also have a rather high affiliation to one of these
modules found by our algorithm. On the other hand, for most of the neutral books
we find an affiliation which is less specific. Moreover, if we form hard clustering
by assigning every book to a module to which it has the highest affiliation, then
all liberal books will be in the same cluster and only two books that have been
classified as conservative will be merged into the liberal cluster.

It is important to note that interpretation and comparison of these results has to
be done very carefully. First, we cannot expect any clustering algorithm applied
to this network to uncover the hard assignment that was based on much more
background information than what is used for making this network. Furthermore,
the information this network is based on is very different from what the modules in
[124] represent. Namely, for constructing the network we have only used the selling
statistics of Amazon. In this sense, the result of our method is that there are two
strongly interconnected groups of books that have been purchased frequently by
the same customers. Now, one could formulate the hypothesis that people having a
particular political disposition would rather buy corresponding books. The results
above would support this idea, but such a simplification cannot hold for every single
book.
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Furthermore, a hard assignment to the three categories (conservative, liberal and
neutral) that has been done in [124] may not completely correspond to the natural
clustering, since not all books have a clear affiliation to one category, but rather
a stronger affiliation to one class than others. Therefore, one should not always
expect that a full partitioning of a network like this will match the background
information fully. Our approach for identifying modules in the network has the
advantage that we cluster only these books for which an interpretation really seems
to exist, in terms of strong affiliation of books to some group. For the remaining
books we then compute their tendencies to belong to some group. We have seen that
using this algorithmic strategy we are able to uncover very accurate and interesting
connections, which are also interpretable.

6.2 Analyzing yeast PPI network

In this section we will demonstrate the performance of our methods introduced
in previous chapters, on a real biological network, the Filtered Yeast Interactome
(FYT) network from [78]. This is a protein-protein interaction (PPI) network of Sac-
charomyces cerevisiae that was created manualy by intersecting data from several
large-scale experiments. The resulting network consists of 1379 nodes, representing
proteins and 2493 edges, where an edge between two nodes exists if the interac-
tion between the corresponding proteins has been verified by multiple experiments.
Here, we will analyze the largest connected component of the FYI network that
contains 778 nodes. This network is shown in Figure 6.6.

Let us first apply our algorithm for module finding (see Chapter 4), using the
lre0000000000,

0.95r oo

0.9r
0.85f

0.8F o

0'750 5 10 15 20 25

Figure 6.5: The first 25 eigenvalues of P,, for o = 1000.

heuristic approach introduced in Section 4.4.1, to obtain the initial solution of the
optimization problem given by (4.32). For o = 1000 the eigenvalues of P, are
shown in Figure 6.5. A clear gap after the 215 eigenvalue indicates that there exist
21 modules in this network. For 6 = 0.9, the resulting 21 modules found by our
approach consist of 498 nodes. These modules are shown in Figure 6.6, where each
modules is colored with a different color. The transition region consists of 280 nodes
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that are colored in light gray.

In the study of PPI networks a common approach for evaluating the obtained net-
work modules is to compare them with conjectured proteins complexes [36]. The
main idea is that proteins that are grouped together share similar properties or func-
tions. This means that the modules we have identified should display functional
coherence. In order to check whether our results confirm this, we will compare the
identified modules to the protein complexes listed in the CYC2008 [134] data-set.
For this comparison we projected 139 complexes on the network, including very
small complexes with only two proteins.

Figure 6.6 shows the CYC2008 protein complexes together with the optimal mod-
ules obtained by our algorithm. We find that most of the larger complexes coincide
almost completely. For example:

o the cytoplasmic ribosomal small subunit complex consisting of 23 proteins
(module A in Figure 6.6) is completely identified;

e the 19/22S regulator compler (module E) having 17 proteins is completely
identified;

e for the nuclear exasome complex (module B) having 9 proetins, our method
correctly identified 8 proteins;

e for the Arp 2/3 protein complexr (module D), our method correctly found 6
out of 7 proteins;

e for the Cytoplasmic ribosomal large subunit complex (module C),
we have identified 37 out of 41 proteins;

e for the 208 proteasome subunit (module F),
with 14 proteins our method correctly identified 13 proteins.

However, our method was not able to identify very small complexes of size 2 — 3, as
they do not form network modules in the sense of their topological definition (see
Section 13).

A more detailed biological evaluation of our results could be done using annotations
from the Gene Ontology (GO) database [12]. This database provides attributes for
describing genes and gene product (RNA and protein) across all species using a
defined set of annotation terms. Using this, functional coherence of modules can be
interpreted such that proteins that belong to the same module are annotated with
similar GO annotation terms. GO Term analysis of the modules obtained by our
approach can be found in [95].

The second part of our network analysis focuses on finding hub nodes using the
methods from Chapter 5. For the sake of simplicity, we highlight only some of
these nodes, namely one central hub node per module with the highest importance
rate and for non-central hubs we highlight nodes with importance rates higher than
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0.4. Figure 6.7a shows inter-module hubs marked as light blue nodes, module bot-
tleneck hubs as yellow nodes and module central hubs as pink nodes. All other
module nodes are colored in black and nodes belonging to transition region in light
grey.

Many of the identified hub nodes show high correspondence with the essential pro-
teins identified in [78]. In Figure 6.7a we have labeled some of these nodes with
the names of the underlying proteins. In order to further support the biological
importance of identified hubs, we will use the GO Term analysis. Summarized,
we find that many of the identified inter-module hubs share the same annotation
terms, representing large percentage of proteins which are important for some spe-
cific process, such as mRNA processing. We have highlighted the following three
groups of hubs according to their GO annotation terms that they share:

e group A - red: consists of five hub nodes that all take part in polarized growth
and cell division process;

e group B - blue: consists of three hubs nodes which are all involved in mRNA
processing;

e group C - green: consists of five hub nodes which are all involved in nuclear
transport process.

For more detailed analysis of biological interpretation of these nodes see [95].

Finally, let us refer to the importance rates of identified inter-module hubs. Figure
6.7b shows six inter-module hub nodes four of which, i.e. nodes 1, 2, 3 and 4 have
the highest importance rates, with values between 2 and 2.3 calculated according
to the formula (5.15). Nodes 5 and 6 have both the importance rate 1, coming
from the fact that they are the key connectors for each of modules D and E to
the rest of the network. From Figure 6.7b we see that nodes 1, 2, 3 and 4 are
important for the communication between several modules. For example, node
2 with importance rate 2, is a key connector of module A with the rest of the
network. On the other hand, from its importance rate we conclude that this node
is also important for the communication between modules A, B and C, i.e. most
of the communication between these modules goes through node 2. As we have
seen from the functional evaluation of identified modules, module A corresponds to
the cytoplasmic ribosomal small subunit complex. This implies that inhibiting the
protein corresponding to node 2 could have a huge impact on the functioning of the
cytoplasmic ribosomal small subunit complex. However, only reliable experimental
techniques could reveal whether importance of such nodes in terms of networks can
mirror the appropriate functional importance of associated proteins.
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(b) 21 modules found by our algorithm.

Figure 6.6: The largest connected component of the yeast protein-protein interac-
tion network containing 778 nodes. Top figure shows the protein complexes listed
in the CYC2008 data-set. Bottom figure shows the 21 modules that were identified
by our algorithm. Each module is colored with a different color. Large complexes
that were identified as modules in both figures are marked with letters and colored
with the same color in both figures.
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(b) This figure highlights in red color six inter-module hub nodes of FYI network that
have high importance rate, i.e. higher than 1.

Figure 6.7: Hub nodes of FYI network, where light blue colored nodes are inter-
module hubs, yellow nodes are module bottleneck hubs and pink nodes are module
central hubs.






CHAPTER 7

Analyzing directed networks

In this chapter we will present a novel method for analyzing directed networks us-
ing the random walker approach. Properties of random walks on directed networks
are significantly different than in the case of undirected networks due to the fact
that adjacency matrices of directed networks are in general not symmetric. As
a result, the existing algorithms for analyzing undirected networks are inapplicable
for directed networks.

There have been many attempts to generalize methods for analyzing undirected
networks to the case of directed networks. The most common approaches con-
sider forming undirected networks from the directed networks by ignoring direc-
tions of edges [42] or perform different types of symmetrization of relevant matrices
[113, 146]. However, these assumptions can produce very different results from the
original information coming from the underlying system.

Only a few methods have been extended to the case of directed networks [65, 104,
139, 97]. One example is the modularity maximization method (Section 4.5), for
which several definitions of directed modularity have been proposed over the last
years [11, 104, 97]. The main difference between these methods lies in the fact
that they use different definitions for modules in directed networks, as there is no
generally accepted definition yet.

In terms of random-walk-based approaches, the asymmetry of the adjacency matrix
causes the non-reversibility of the random walk process. Therefore, the algorithms
that we have developed in the previous chapters of this thesis have to be adopted to
the case of directed networks. In Section 7.1 we will present a new general approach
for analyzing non-reversible processes, that can be defined also on continuous state
spaces. In particular, we will propose a generalization of our spectral-based ap-
proach for finding metastable sets to the case of non-reversible processes. Then,
specifically for the case of directed networks we will define two non-reversible ran-
dom walk processes [26], namely the forward and the backward random walk process
(see Section 7.2). In Section 7.2.1 we will address the problem of finding modules
and hubs in directed networks using two random walk processes. However, since it
is not yet clear how metastable sets of random walk processes are related to modules
in directed networks, we will not present here an algorithmic approach for module
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identification in directed networks, as we did for the case of undirected networks.
But we will show how the ideas presented in this chapter could be used as a starting
point for developing methods that could enable more detailed analysis of directed
networks. We will end this chapter by pointing out some relevant open problems
connected to defining modules and hubs in directed networks (Section 7.2.2).

7.1 Analyzing non-reversible Markov processes

In Section 2.1.2 we pointed out fundamental properties of time-reversible Markov
processes. These processes are characterized by the property that their behavior is
invariant under the reversal of time. Furthermore, the following proposition holds
[129]

Proposition 11
A stationary Markov process (Xy) is time-reversible if and only if the detailed
balance condition is fulfilled

w(@)p(z,y) = u(y)p(y, ), (7.1)

where p is a stationary distribution of the process and p(x,y) is a transition prob-
ability from a state x to a state y.

However, many observed processes are not time-reversible. Such processes will be
studied in this section.

7.1.1 Transfer operators of non-reversible processes

We consider two non-reversible Markov processes (X;) and (Y;) on a continuous
state space S, its two associated transition functions p; : V x V — [0,1], i = 1,2
and two positive measures u;, ¢ = 1,2 such that

pay) = [ mew@)da (72)

m(y) = /p2(337 y) po(x)d. (7.3)
Let us introduce two scalar products
(F.gh = [ @g@m()de, i =1,2

in Hilbert spaces H; = Lii and two associated transfer operators

(T2f)(Yp2(y) = / p1(z,y) f(w)p(z)dx (7.4)
(T /)y (y) = / p2(x,y) f () p2(z)dz. (7.5)
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We can connect the two weighted spaces H; with the unweighted space L? by means
of the linear transformations (multiplication operators)

1
1i()

These two transformations have the nice property that the respective norms are

i L = H;, gi=Jig, (Jig)(x) =

g(x). (7.6)

preserved
Igll> = (9.9) = (J; " gi I i)
= [ sz = (g0 i = il

where (-, -) denotes the standard scalar product in L2
Operators 112 : Hy — Hy and T : Ho — Hj have the property Ti21 = 1 and
Ty 1 = 1. Furthermore, for arbitrary f,¢g € L? with f; = J;f € H; and ¢; = J;g €
H;, it holds that
1
o Tafeh = [ [ o) —=paa.)S (@) ale)dody
1 (y)
= (g’PZLf)a (77)

where Py is the representation of Th; in L? and

(Puf) i) = [ pale.)f @) ma(w)da.

Then, the typical kernel form of the operator Ps; is

(Puhw) = [ marla,)f @)da, (739)

with the kernel .

11 (y)
From (7.7), using linear transformations J; and J» we calculate that
(9, Parf) = (g1, Tofo)r = (Jy g1, Jy o fo)
= (9,7 "1 Jaf),

mo1(z,y) = p2(z, )4/ p2(2).

so that
Py = J Ty Jo. (7.9)
In analogy we have
(Th2g1, f2)2 = (Pi2g, f),
with
(Paf)) = [l n)f@ds,  maley) = ——

p2(y)

pi(z,y)\/pma(z) (7.10)

and
Piy = Jy ' Tha 1. (7.11)
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7.1.2 Extended detailed balance condition

Having defined two transfer operators Tio and T5; and their representations in L2
given in (7.8), (7.10), we can prove the following theorem:

Theorem 10
Operators Pio and Py are adjoint in L? with standard scalar product, i.e.
P3, = Pia if and only if the extended detailed balance condition

p1(z)pr(w,y) = pa(y)p2(y, ) (7.12)

is satisfied.

Proof.  We have Pj; = P2 in L? if and only if ma(x,y) = m21(y, ) which is
equivalent to the extended detailed balance condition. O

In the following examples, we will show that the extended detailed balance condition
(7.12) is satisfied for time-reversible processes and Langevin dynamics.

Example 20 (Time-reversible Markov process)

In this example, we will consider a time-reversible Markov process (Xy), such as
standard random walk process on undirected networks. If p1 = ps = p and p; =
Wa = p, then the extended detailed balance condition (7.12) is identical to the stan-
dard detailed balance condition (2.12). In this case Theorem 10 is the typical state-
ment about reversibility of the process and self-adjointness of the associated transfer
operator.

Example 21 (Langevin dynamics)
Let us consider non-reversible Langevin dynamics [27, 138] given with the following
equation

Mg=p, p=—-DgV(q)—p+oW,

where v > 0 s the friction coefficient, V is a potential energy function and W is a
Wiener process or Brownian motion. For the state space S, with states © = (q,p),
where q,p € R™, the Hamiltonian is

H(z) = 3" Mp+ V().

Under certain reqularity conditions on U [27] the process is geometrically ergodic
with respect to an unique invariant measure p(zr) = e_BH(x)/Z, where parameter
B > 0 refers to the inverse temperature. For a reqular linear transformation A :

S =S
Id 0
A‘(o —Id)’
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with A=t = A, we find that H(Ax) = H(z),Yz € S and
p(x)p(z,y) = p(Ay)p(Ay, Az), Y,y € S. (7.13)

Ifpi(z,y) = pla,y), pa(,y) = p(Az, Ay), m(x) = p(x) and ps(z) = p(Az), then
we see that the extended detailed balance condition (7.12) is satisfied.

In the following, we will suppose that the extended detailed balance condition holds.
Then, it is easy to check that

(Ti2f1,92)2 = (1, T2192)1 (7.14)

and
(To1f2, 1)1 = (f2, Th291)2, (7.15)

that is T2 and T5; are adjoint operators in the sense of operators acting between
different Hilbert spaces H; and Ha [159].

Let us now consider T = Ty 1o : Hy — Hy, where

EaTem) = [ [ Ene) dd
= [plaf@m@da

with
p(&i’,y) = /pl(.%',Z)pQ(Z,y)dZ,

such that 7 has the kernel p(x,y). Then,

Theorem 11
The operator T = To1T1o : Hi — Hy is self-adjoint on H.

Proof. For f,g € L? with fi = Jif € H; and g1 = J1g € Hi, we have that
Tiof1 € Hy and Ti2g1 € Ho. Using 7.14 and 7.15, we can prove that

(91, To1Th2f1)1 = (Ti2g1, Tha f1)2 = (To1Th291, fi)1, (7.16)

that is T = T51T12 is a self-adjoint operator. O

In analogy B = T1915%1 : Hy — Hs is a self-adjoint operator on Hs.
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7.1.3 Singular value decomposition of transfer operators

In this section we will restrict our considerations to discrete state spaces for sim-
plicity of presentation; all statements made in the following can be generalized to
continuous state spaces as well. The self-adjoint operator 7 = T5;T12 on H; can be
written [94] as

T =TaTia =Y Al or)10ks
k

where {¢}} are orthonormal eigenvectors of T, i.e. (pg, 1)1 = ki, corresponding
to eigenvalues )\z

Tor = TorTi2pr = /\%@k-

Let us now introduce 9, = A,;lTlggok, such that

(r, Y1Ya = AN (Thapr, Thawr)e
= A\ 'N Nk, T T
= )\1;1/\l<§0k7901>1 = Okt,

i.e. vectors {1y} are orthonormal wrt. (,)s. Furthermore, vectors {1} are eigen-
vectors of B = 119751 that correspond to eigenvalues )\i

TioTor1tn = A, " TiaTo1Tiapr = A A2 Thak
= M T2k = NeAetbe = Apty.

Now, we can write the so called dispersion relations for transfer operators 179
and T21
Thopr = Ak

To1vYr = Ak,

where as pointed out above, {1x} and {¢x} solve the following eigenvalue prob-
lem for self-adjoint operators 7 and B

(7.17)

TorThopr = M\

’ (7.18)
T1oTo1% = ANtbg.

The singular value decomposition of the two transfer operators is given with
[13, 94, 162]
Tio =Y Al r)1t%
k

and

Tor =D Al k) 20k

k

Let us introduce the following vectors {4} and {¢}} from L2, such that

G = J hor and iy = J5 . (7.19)
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Now using (7.11) and (7.17)

Tiopr = JoPra i ipr = J2Prage = ApJotln, (7.20)
that is Pla@r = Apty. Similarly, it holds that

Torthy, = J1 PorJy Jothy = J1 Porihy = A J1 g
Therefore, {@;} and {4}, } satisfy the dispersion relations for Po and P

Piogr, = My

A A (7.21)
Po14p, = AP,

where {1} } and {@} solve the following eigenvalue problem

Py Piogy, = N
Pio Py, = Aaaly.

Furthermore, {¢),} and {1},} are sets of orthonormal vectors in L2, since

St = (w001 = (J1 " or I 1) = (Brs 1)
O = (s )2 = (Jo "r, Jo ') = (g, ).

For arbitrary f,g € L? with f; = J;f € H; and g; = J;g € H;, we can provide a
biorthogonal decomposition of the operator Py in L?

Piof = Jy'Tedif =3 Mooy
k

= DT o)k = Y A )k
k k

and analogously P19 = Y1 Ak(g, 1/;k)g5k.

Using the spectral properties of Pjs and P»1, we can write the matrix representation
of these operators in the following way. From (7.21) and Pjy = P4, it follows that
P2T1</5k = /\mﬁk, k=1,...,n, such that

OEPY 6k = M.
Thus, for ¢ = 1 ...$n] and ¢ = [¢)1 ... 1y,], it holds that
YT Py =D, D =diag(\),

where ¢ and 1/; are invertible matrices, due to the orthogonality of their columns.
Using that (1/;k, 7,@1) = 0k = (P, @1) it follows that the matrix representation of Pjo
is

Py = (1) tDp7 L (7.22)

Similarly, we can calculate the matrix representation of Pa;.
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7.1.4 Coarse graining of non-reversible processes

Let us now focus on one of the two the non-reversible process we have discussed
above, for example (X;) and assume that this process has an unique invariant

measure p. Then, we introduce the transfer operator T : Li — Li, with

(THWY) =D pla,y)f(@)u(),

€S

For a linear transformation
1

V()

arbitrary f,ge L? and f=Jf,g=Jg € LZ, it follows that

J:L? = Li, (J)(x) = f(2) = f(2),

1 ]
(f.Tg) = %:gf(y)(Tg)(y)u(y) = gezs mf(y)p(w, y)§(z)

= (f,Pg),
where P is the representation of 7" in L?
(PHW)uly) =D pla,y) f(x)y/ ul@),
zeS
which can be written in the typical kernel form

1

(PNy) = n(zy)f(z), =(w,y)=

zeSs

p(x,y)y/p(z)

=
&

Furthermore, from

(f.Tg) = (J'f,J 'Tg)
= (f,J7'TJg),

we see that
P=J'TJ

p(

)

(7.23)

(7.24)

(7.25)

We will now follow the approach from Section 4.2 based on MSM and use it in order
to find dominant metastable sets of the observed process (X;). Let us assume that

the state space S is decomposed into m disjoint sets Cy,...,C,, C S

Then, for the process (X;) with the transfer operator 7', we can define the mile-

stoning process (X;) by equation (4.5) [63]

Xt =i X, € Cy, with o(t) = sup {XS € U Ck}.

st k=1
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Let q;r and ¢; , 7 =1,...,m denote forward and backward committors related to T
(see Section 3.1.2), defined as in equations (3.4) and (3.5).

For backward committors ¢; , let us introduce ¢; € L? with g =J _lq; , such that
for x ¢ UL, C;

(Tq; )(z) = (JPJ g )(x) = (JPG )(x) = q; (x) = (JG; )(2),

where we used that (T'q; )(z) = ¢; (z), for all z ¢ UL, C; (see (3.5)). Therefore,
functions ¢; are representation of ¢; in L? fori=1,....,m

(Pg; )(x) = q; (z), Vo gUL,Ci

Similarly, we define the set of (jf € L? with cjf =J *1qi+ that are representation of
qj' in L2.

The transition behavior of the milestoning process can be expressed using the results
from Section 4.2.2, that hold also for non-reversible processes. To this end, let us
restrict our attention to time-discrete Markov processes for simplicity. However,
all statements made in the following can be generalized to time-continuous Markov
processes. Then, the equivalent of Theorem 5 in L? space is the following

Theorem 12
For a time-discrete process (X,,), the entries of the discrete generator Ly of the

A

milestoning process (X,) are given by
- 1
ld(Z,]) = =~
(i)

where [i(i) = Y ev G; (x)v/p(x), Lg = P —Id and P is the representation of T
in L?.

(. Lad;),

Proof.  The proof follows directly from the Theorem 5. The entries Zd(i, j) from
equation (4.6) are

A 1
la(i,5) = == {af s Ladi ) s
( ) M(Z)< J >M
where using (7.24) it follows that
(0 Lag; ) = (af ,(T —Id)g; )y

= (¢, Pg)— (G ,q4) = (G, (P~ 1d)g; ).
The invariant measure of the milestoning process /i is

/}('L) - ]P;L(Xn - 2) = Z PM(XR =1, Xp = l’) = Z qz_(x)ﬂ(x> = Z (L_(a:) \/ M($)

€S z€S TES
|
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Let us introduce the following subspaces D1, Dy C L?, where Dy = span{q ,...,q%}

and Dy = span{q, ,...,q,,} with 1 € Dy, Dy. Then the orthogonal projection @1
onto D7 and the orthogonal projection Q2 onto Dy can be written as
Qv = Z S (v q]
i,j=1
Q2U - Z R U QJ qu 9
5,j=1

with Si; = (g ,cj;»r) and R;j = (¢; ,q; ). Now, we can generalize Theorem 7 for
non-reversible process (X;) in order to compare the operator P and its projection

Q1PQ>.

Theorem 13

Let P be the L? representation of the transfer operator T of the non-reversible
process (X¢), Q1 the orthogonal projection onto the space spanned by forward
committors Dy = span{q; ,...,G,} and Qa the orthogonal projection onto the

space spanned by backward committors Dy = span{qy , ..., q,,} with respect to
m disjoint sets C1,...,Cy, C S. Then, PM~' is a matriz representation of
Q1PQ2, where
. (3, Pg;) (@ q7)
= ety ) (7.26)
(i) (i)
Proof. For the matrix M from (7.26) we have
1 _ PN
Mij = —=Sij = Mj;' = p(5)85" (7.27)
fi()
NOW7 take the basis {1,[11, . 7¢m} of Dla T;Z)’L - “(1 qu and {8017 ,me} of DQ, wi =
ﬁ(j{. Then,
Qv = Z M (v ,q;h) (7.28)
i,7=1
This implies
Q1PQap = Q1 Py, = Z M (Peoy, ¢ )0
t,j=1
- (P, G
Z _1 k2% % Z M lpkzwj (729)
t,j=1 k) i,j=1

= > (PM )05
j=1

That is, PM~1 is a matrix representation of Q1 PQ2 with respect to the basis
{1,y om} O
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7.1.5 Approximation quality of Markov state models for
non-reversible processes

In this section we will consider Markov state models (MSM) for non-reversible pro-
cesses, following the ideas from above. Especially, we will present some fundamental
issues about generalizing one approach for determining the approximation quality
of MSM for reversible processes presented in [143]. This approach deals with pro-
viding a quality measure of MSM, in terms of the error bound for the difference
in propagation of probability densities between the original and the coarse grained
process on long time scales [143].

For a given choice of sets C,...,C,, Theorem 13 provided a representation of
coarse grained process in terms of the projected transfer operator Q1 PQs. Follow-
ing this idea, we conclude that if Xy and X, are initially equally distributed, then
the maximal possible error between X and X, distributions after k steps is given
by

E(k) = [|Q1P"Q2 — (Q1PQ2)"|. (7.30)

Thus, a natural question to ask is: Under which assumptions is the error E(k)
small? In [143] this question was answered for reversible Markov processes. Here
we show how this result could be generalized for non-reversible processes. However,
providing strict theoretical statements for general non-reversible processes exceeds
the scope of this thesis. This will be the topic of future interest.

Following the result of Theorem 13 that provides a matrix representation of the
projected transfer operator Q1 PQ2, we will present now a matrix representation of
P* k> 1 that is needed for estimating the error E(k).

Proposition 12
For Jy'Jy ~ 1d, A= J~'Jy and B = Jy 'J it holds that

P*~ APLB, k>1.

Proof. From (7.10) and (7.23), using the matrix representation of Ji, Jo and J,
we can write the matrix form of the transfer operator P in the following way

P=J Y0 Pady b, (7.31)

where the matrix representation of Pjp is given in (7.22). From Jy L =~ Id, it
easily follows that P* ~ J~'J, Pl J; 1 Tk > 1. O

From Proposition 12 we can deduce the form of E(k). The assumption Jy '.J; ~ Id is
connected to the two measures p; and g in the sense that g (z) = pa(x),Ve € V. In
particular, when dealing with reversible processes (see Example 20), such as random
walk processes on undirected networks, we have that pi(x) = uq(z),Ve € V and
therefore Jy LJ, = Id. Similarly, we can see that Jy LJi = Id holds also in the case
of Langevin dynamics (see Example 21). However, it is important to notice that
this assumption doesn’t hold in general.
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Remark 8 We remark that in the above computation it is assumed that p;(x) #
0,V € V, since the entries of Jifl,z’ = 1,2 are ——4—.VYz € S. In terms of

Vi)

the observed process this means that we assume that none of the states is neither
absorbing nor transient. We will see later that in the case of directed networks this
assumption means that we do not consider networks that have sinks and sources.

Remark 9 In [143] the upper bound for the error E(k) is provided. This bound
resulted from certain spectral properties of ergodic, reversible processes. These prop-
erties hold also for some non-reversible processes that have special properties [86],
for example, for processes that are sufficiently ergodic [86, 150] and have a domi-
nant part of T that is nearly self-adjoint. This is the case for second-order Langevin
dynamics with not too large friction [83] or for thermostated Hamiltonian molecu-
lar dynamics or stochastically perturbed Hamiltonian systems [150, 48]. Howewver,
in general little is known about which processes satisfy the above mentioned condi-
tions. Numerical results for some processes, such as some cases of Langevin dynam-
ics, imply the existence of wanted spectral properties of T [86], but the theoretical
justification of these results is the topic of future research.

7.2 Random walks on directed networks

We will apply now the strategy introduced in the previous section in order to
analyze directed networks using random walk processes. For the simplicity, we
will focus on unweighted, directed networks, but we can generalize this approach
in a fairly straightforward way to the case of random walks on weighted, directed
networks. Furthermore, here we will follow the ideas from standard random-walk-
based approach (Section 2.1), that can be easily extended to the case of time-
continuous random walk processes (see Section 2.3).

Let us define the time-forward random walk [42] as a time-discrete process,
where at each time step the random walker jumps from a node x to a node y
that has been chosen uniformly at random from all the nodes, for which there is
a directed edge from z to y, i.e. (x,y) € E. A sequence of visited nodes form a
Markov chain, with transition probabilities

1

—, (z,y) €F

p*(x,y) = { Gl (@) (7.32)
0, (z,y) ¢ E

where dyyi () is the out-degree of the node z, as defined in (1.1). The transition

matrix Pt = (p*(z,y))syev is a well defined stochastic matrix only if there are no

sinks in the network, i.e. doy(z) > 1,Vz € V.

In the similar way, we can define the backward-time random walk, that describes
random walk going backward in time and it’s associated Markov chain is given by
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the transition matrix

1
—, ,x) € E
p(x,y) = { %nlo) v,2) (7.33)
0, (y,2) ¢ E
where d;y, () is the in-degree of the node z, as in (1.2). Again, the transition matrix
P~ = (p™(2,y))ayecv is a well defined stochastic matrix if there are no sources in

the network, i.e. dip(z) > 1,Vx € V.

Note that for undirected networks, (7.32) and (7.33) correspond to the forward and
backward random walks, where due to dyy:(z) = din(z) and w(z,y) = w(y, x) these
processes are identical. However, some properties of random walk processes on
directed networks are similar to the ones mentioned in Section 2.1.1. As introduced
in Definition 8, network is strongly connected if for every pair of nodes (z,y) there
exist a directed path from x to y and a directed path from y to x.

Proposition 13

Markov chains associated to a random walks (7.32) and (7.33) are irreducible, if
and only if, the underlying directed network is strongly connected.

Another important property is given by the following property [108, 42, 24, 25]

Proposition 14
If G is a strongly connected and aperiodic network, the random walk converges to a
unique stationary distribution.

Spectral properties are described in the following extended version of Perron-Frobenius
theorem:

Theorem 14 (Perron-Frobenius theorem for irreducible Markov chains)
If (Xi)ien is an irreducible Markov chain with period k > 1 and n x n the
transition matrix P, then

1. P has an eigenvalue A\ = 1, with the corresponding right eigenvector P1 =
1, 1 = (1,...,1) and the left eigenvector mP = m, that has all positive
entries w > 0.

2. For all other eigenvalues of P it holds 1 = X1 > |X2| > A3 > ... > |\l

3. There are exactly k eigenvalues of modulus 1. These eigenvalues are of
21T
the form e & and they are invariant under the rotation by 2?” around the

oTigin.

The Theorem 14 reveals that structural properties of directed networks are reflected
in the spectrum of the transition matrix of the associated Markov chain. For ex-
ample, the existence of cycles in the network results in appearance of complex
conjugated pairs of eigenvalues of P™ and P~, with a module equal to one as it will
be shown in the following example.
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Example 22 First, let us define the forward and backward random walk processes
on a directed, unweighted network shown in Figure 7.1 and observe the spectral
properties of the associated Markov chains. Since this network is strongly connected,
it follows from Proposition 13 that the associated Markov chains are irreducible
and we can apply the Perron-Frobenius theorem. The spectrum of both transition
matrices are shown in Figure 7.1.

The second example considers an unweighted, bipartite directed network shown in

)

Eigenvalues of PT | Eigenvalues of P~
A 1 1
A2 | —0.3923 +0.6782¢ | —0.4153 + 0.7303:¢
e Az | —0.3923 —0.6782¢ | —0.4153 — 0.7303:¢
Ag 0.6721 0.5164
As —0.4323 —0.2133 + 0.31867
A6 | —0.2276 + 0.2550¢ | —0.2133 — 0.31864¢
A7 | —0.2276 — 0.2550¢ —0.2592
(8) As 0 0

Figure 7.1: A Figure shows an example of an unweighted-directed network with 8
nodes and eigenvalues of transition matrices P™ and P~.

Figure 7.2. The period of this network is k = 6. From Theorem 14 we know that
the spectrum of transition matrices consists of exactly 6 eigenvalues with module 1.
Since the graph is bipartite, the eigenvalues of the two transition matrices P™ and
P~ are the same, they are symmetric with respect to 0 and they have an eigenvalue

A=—1.
Figure 7.2: A Figure shows an example of an unweighted, bipartite, periodic di-

rected network that consists of 8 nodes. A table shows the eigenvalues of transition
matrix P.

Eigenvalues of P+, P~
(D - !

Ao 0.5000 + 0.8660z
A3

0.5000 — 0.86601

VI 0
@ /\5 0
As | —0.5000 4+ 0.866017

A7 | —0.5000 — 0.86601¢
As -1




7.2. RANDOM WALKS ON DIRECTED NETWORKS 131

Since the adjacency matrices of directed networks are not symmetric, we loose
many nice properties from before, such as time-reversibility that would make the
time-forward random walk process and the backward-time random walk process
to be equal. For these reasons, we continue by utilizing the objects introduced in
Section 7.1, where p* and p~ correspond to p; and ps respectively. Let us define
the following probability measures

dout ($) dl'ﬂ(w)
ZyEV dout (y) ’ ZyEV dzn (y) 7

as two measures that correspond to invariant measures defined in (7.2). As shown
in Example 20, for random walk processes on undirected networks we have that
pt = p~ = p, where p is defined as in (2.10). Using that vol(G) := Y-, cy dout(y) =

> oyev din(y), it is easy to see that

ph(z) = po(r) = (7.34)

ptPt=p" and pTPT =pt,
i.e. u™ and = are not the invariant measures wrt. P™ nor P~.

We can prove that the extended detailed balance condition (7.12) is satisfied

dowt(x) 1
+ + _ out
pr (@)™ (2,y) = (@) dom ()
dm(:v) 1 _ _
wol(G) dm(@) " (Wp~ (y,z), Vr,ye
Then, like in the previous section, we can define two transfer operators, namely 7175
(Th2f)(y = > ut Pt (z,y) (7.35)
zeV
and T21
(To1 f)(y = > w (@) f(@)p (2,y). (7.36)
zeV

Furthermore, we can show that these two operators are adjoint in the sense of (7.14)
and (7.15). More precisely,

(Taf,9) - = > 1~ )g(y)(Toaf)(y)
yev
= > 9ut@)p*(e,y)f(z),
z,yeV
and
(f:Torghe = > p* y)(T219)(y)
yeVv
= Y f@u (@)p (z,9)9(z),
z,yeV
so that

(Ti2f, 9) - = {f, T219) it » (7.37)
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where we used it (2)p* (2, ) = i~ (y)p~ (3, 7).
Again, the operator T = T T1s is self-adjoint, where the kernel p of 7 has the form

w(z, x)

1 w(z, r)w(z,
§ vtz )

1
@ Y T @ 2 dol2)

p(z,y) = dmj(z)

Analogously, B = T157151 is a self-adjoint operator. Following our general approach
from above, we can define operators Pjo and P»q, that are representations of opera-
tors Tho and Th; in L? and calculate their matrix representations using eigenvectors
of self-adjoint operators 7 and B as in (7.22). In order to find metastable sets of
two random walk processes, we can again define a milestoning process and use fuzzy
MSM approach to identify dominant metastable regions of the original process (see
Section 7.1.4 and Section 7.1.5). We will address this issue in the following section
in more detail.

7.2.1 Identification of modules and hubs using random walks on
directed networks

As we discussed above, analyzing directed networks is not an easy task. However,
many real-world networks are directed, such as World Wide Web (WWW), see Sec-
tion 1.3.3. In particular, modules and hubs in WWW could be of great importance
for understanding the structure and organizational principles of this network. For
example, finding web pages that belong to the same module could help identify their
common topics, which could further help developing and improving search engine
techniques. On the side, it has been shown that hub nodes correspond to the very
important linking points of the WWW whose removal could cause seriously perturb
or even cause breakdown of some parts of the network [43, 44].

Describing complex systems by directed networks provides more detailed and pre-
cise information about the underlying system. However, it also makes their analysis
much more complex. Enriching edges with their directions causes asymmetry in the
associated adjacency matrix, resulting in non-reversibility of the random walk pro-
cess and non-self-adjointness of P. Then, the spectrum of P loses some of the nice
properties that we had in the case of reversible processes (see Theorem 14), such as
real-valued spectrum and uniqueness of the eigenvalue with module 1. This makes
the spectral analysis approach much more complicated, as we have seen in Section
7.1. However, current experimental results show that the dominant part of the spec-
trum P is characterized by the real-valued eigenvalues and that their corresponding
eigenvectors endorse the metastabilities of the random walk process. Theoretical
justification of such results for certain classes of directed networks, would be a huge
step forward in generalizing our method for module finding from Section 4.3.2 using
the results presented in Section 7.1.5.

Applying our approach for finding hubs (Chapter 5) on directed networks is fairly
straightforward, since the TPT objects that we are using and their properties hold
also for non-reversible processes. However, it is important to note that our method
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can encounter problems when identifying dominant reaction pathways when there
are loops in the network. This can be seen in Proposition 9, where it is assumed that
no loops (cycles) exist. Resolving this issue and providing an efficient algorithmic
approach for finding the dominant pathways is the topic of future research.

7.2.2 Open questions and perspectives

Up to now, only a few methods for analyzing directed networks have been intro-
duced. However, when considering these methods we can already see that general-
izing definitions of modules and hubs to the case of directed networks is not easy
and straightforward. Some of the fundamental questions concerning this topic are
the following:

e How should modules in directed networks be defined, such that
they correspond to the functional subunits of the underlying sys-
tem? How do edge directions influence the definition of modules?
Recently, these questions became a topic of scientific interest [104, 139, 97],
which resulted in different definitions of modules. Some ideas are based on
generalizing already existing definition from the case of undirected networks
[104], whereas other are oriented towards developing information-theory-based
approach [139]. In order to find a common definition of modules in directed
networks, determining properties of optimal modules is certainly of great im-
portance, especially for introducing new techniques for their identification.

e What are hubs in directed networks? How does definition of "node
importance" change when introducing directed edges?
The so-called link-based model for analyzing edge structure in the WWW
[99], introduced two types of important nodes, namely authority and hub
nodes. Authority nodes correspond to Web-pages to which many hubs point,
whereas hub nodes correspond to Web-pages that point to many authority
nodes. Similar ideas could be considered for developing a common definition
of hub nodes.

Especially, in terms of the random-walk-based approach presented in this chapter,
addressing the following questions is the topic of future research:

e How can we resolve the problem of existing sources and sinks in
the network?
Many real-world networks are characterized by the existence of sources and
sinks. For example, in citation networks all papers that have not been cited
yet represent sinks of this network. However, our definitions of forward and
backward random walk processes given by (7.32) and (7.33), assume that the
network doesn’t have sinks nor sources. In order to overcome this problem,
some methods [103, 109] introduce an additional random restart condition,
that allows optional jumps of the random walk to some node of the network
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(not necessarily a neighbor of a current node) with a certain restart prob-
ability. Certainly the most famous algorithm that is based on this idea is
PageRank, used by the Google Internet search engine [103].

e How can spectral properties of the forward and the backward ran-
dom walk process be used in order to find network modules? How
are metastable sets of two random walk processes related to mod-
ules in directed networks? Is there a difference between "forward"
and "backward" modules and hubs?

Future research should provide answers to these questions.



Summary

Real-world systems are often modeled as networks. Many algorithms for analyz-
ing such complex networks are oriented towards finding modules that are densely
inter-connected substructures having sparse connections to the rest of the network,
and finding hub nodes that are key connectors of modules. In many cases these
modules and hubs correspond to relevant structures in the original system. For ex-
ample in biological systems, modules often correspond to functional units and hubs
to essential parts of this system. In this thesis we developed a new mathematical
framework that can be effectively applied for analyzing complex networks. This
framework is based on defining a new type of random walk processes on networks
and using spectral methods for finding modules and hubs.

When considering random walk processes on networks, modules represent meta-
stable sets of this process. There are two crucial differences in the approach pre-
sented in this thesis compared to standard random-walk-based methods for module
finding. Firstly, we have defined a new time-continuous random walk process char-
acterized by waiting times in each node which results in increased metastability of
the process in densely connected areas of the network-modules. In this way we have
overcome the problem of most standard random walk processes for which also non-
modular structures (for example long chains) represent metastable sets. The second
difference results from the fact that most of the state-of-the-art approaches for mod-
ule finding focus on finding a full partition of a network. The method introduced in
this thesis finds a fuzzy decomposition of a network into modules, where nodes can
be assigned to more than one module with a certain probability. In order to find
such modules we used Markov State Models (MSM) as low-dimensional models for
metastable Markov processes. We generalized the standard MSM approach that is
based on full partitioning of the state space and developed a fuzzy MSM, where
nodes that are assigned to some module with probability almost 1 correspond to
dominant metastable regions. For determining the optimal modules, we used the
approximation quality measure of the resulting MSM, based on the error between
the original and reproduced dominant eigenvalues.

This thesis provides a new methodological approach for finding network hubs. We
defined hubs as nodes that are important for the communication between network
modules, that is determined by the associated random walk process. For measuring
the amount of communication flow between modules in the network, we presented
a method that is based on the framework of Transition Path Theory (TPT).

Finally, we proposed a generalization of our methods for analyzing undirected net-
works to the case of directed networks. The main difficulty is that random walk
processes on directed networks are non-reversible. To this end, we adapted our
methods to analyzing non-reversible processes by introducing two transfer operators
whose spectral properties provide information that is needed for finding metastable
sets of this process. In this way, we have provided a spectral approach for find-
ing metastable sets of non-reversible processes. However, it is not yet clear how
metastable sets are related to modules in directed networks. This will be the topic
of future research.






Zusammenfassung

Technische oder natiirliche Systeme werden oft als Netzwerke modelliert. Viele der vorhandenen
Methoden zur Analyse solcher komplexer Netzwerke wurden dazu entwickelt, sogenannte Modu-
le und Hubs zu finden. Ein Modul ist eine Menge von Knoten, zwischen denen die Vernetzung
untereinander stérker ist als zum Rest des Netzwerkes. Wichtige Knoten, die zur Verbindung
von Modulen essentiell sind, werden als Hubs bezeichnet. Module und Hubs in einem Netzwerk
entsprechen oft wichtigen Strukturen in dem durch dieses Netzwerk modellierten System. In biolo-
gischen Systemen entsprechen Module beispielsweise organisatorischen Einheiten und Hubs wich-
tigen Botenstoffen. In dieser Arbeit haben wir ein neues mathematisches Framework zur Analyse
von komplexen Netzwerken entwickelt. Es basiert auf der spektralen Analyse neuartiger Random-
Walk Prozesse auf Netzwerken.

Bei der Netzwerkanalyse mittels Random-Walk Prozessen entsprechen Module im Allgemeinen
den metastabilen Mengen des Prozesses. Im Vergleich zu Standardmethoden zur Modulidentifika-
tion unterscheidet sich unser neuer Ansatz durch zwei wichtige Merkmale: Erstens benutzen wir
einen neuen zeitkontinuierlichen Random-Walk Prozess, der durch Wartezeiten in jedem Knoten
charakterisiert ist. Dies fiihrt zu einer erhéhten Metastabilitdt des Prozesses in den dicht ver-
netzten Bereichen der Netzwerkmodule und einer reduzierten Metastabilitdt in nicht-modularen
Strukturen wie z.B. langen “Ketten”, die von den Standardmethoden wegen der hohen Metasta-
bilitédt als Module erkannt werden. Der zweite grundlegende Unterschied unseres Ansatzes besteht
darin, ein Netzwerk nicht vollstdndig in Module zu unterteilen und jeden Knoten zu genau einem
Modul zuzuordnen (sog. full-partitioning), sondern einen Knoten einem oder mehreren Modulen
mit einer bestimmten Wahrscheinlichkeit zuzuordnen (fuzzy- decomposition). Zur Identifikation
dieser Module benutzen wir Markov-State-Models (MSM) als niedrig-dimensionale Représentation
von metastabilen Markov Prozessen. Da das Standard-MSM Framework auf einer vollstdndigen
Partition des Zustandsraumes basiert, haben wir dieses in der vorliegenden Arbeit verallgemeinert
und eine fuzzy-MSM Variante entwickelt. In dieser Variante entsprechen Knoten, die einem Modul
mit einer Wahrscheinlichkeit nahe Eins zugeordnet sind, den dominanten metastabilen Bereichen.
Um die optimalen Module zu bestimmen, benutzen wir die Approximationsgiite des resultierenden
MSM, welche auf dem Fehler zwischen den originalen und reproduzierten dominanten Eigenwerten
basiert.

Neben dem Finden von Modulen wird in dieser Dissertation auch eine neue Methode zur Identi-
fikation von sog. Hubs vorgestellt. Wir definieren Hubs als Knoten, die fiir die Kommunikation
zwischen Modulen wichtig sind. Um den Kommunikationsfluss zwischen Modulen zu bestimmen,
beschreiben wir eine neue Methode, die auf dem Transition Path Theory Framework basiert.

Im letzten Teil der Arbeit verallgemeinern wir die vorgestellten Konzepte, die bisher nur fiir un-
gerichtete Netzwerke entwickelt wurden, auf die Klassen der gerichteten Netzwerke. Das Haupt-
problem hierbei ist, dass Random-Walk Prozesse auf gerichteten Netzwerken nicht reversibel sind.
Um nicht-reversible Prozesse analysieren zu kénnen, fithren wir zwei Transferoperatoren ein, deren
spektrale Eigenschaften die benétigten Informationen zur Identifikation von metastabilen Mengen
liefern. Dadurch haben wir einen neuen, spektralen Ansatz zur Identifikation von metastabilen
Mengen in nicht-reversiblen Prozessen entwickelt. Die Verbindung von diesen metastabilen Mengen
zu Modulen in gerichteten Netzwerken ist noch nicht abschlieBend geklart und wird Gegenstand
weiterer Forschung sein.
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