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Abstract

Determining the similarity between objects is a fundamental problem in computer
vision and pattern recognition, but also in other fields of computer science. This
thesis concentrates on the matching problem, which has received a lot of attention
in Computational Geometry.

Given a class of shapes S, a set of transformations T , mapping shapes onto shapes,
and a distance measure d on S, the matching problem with respect to S, T , and d
is defined as follows: Given two shapes A, B ∈ S, compute a transformation t∗ ∈ T
that minimizes d(t∗(A), B).

We consider solid shapes, i.e., full-dimensional shapes, in arbitrary dimension and
assume that they are given by an oracle that generates uniformly distributed random
points from the shapes. This is a very rich class of shapes that contains the class
of finite unions of simplices as a subclass. We study matching under translations
and rigid motions (translation and rotation). Throughout this work, the volume
of the symmetric difference is used as distance measure for the matching problem.
Maximizing the volume of the overlap is equivalent to minimizing the volume of the
symmetric difference under translations and rigid motions.

We study a probabilistic approach to the shape matching problem. The main idea
is quite simple. Given two shapes A and B, repeat the following random experiment
very often: Select random point samples of appropriate size from each shape and
compute a transformation that maps the point sample of one shape to the sample of
the other shape. Store this transformation. In each step, we extend the collection
of random transformations by one. Clusters in the transformation space indicate
transformations that map large parts of the shapes onto each other. We determine
a densest cluster and output its center.

This thesis describes probabilistic algorithms for matching solid shapes in arbi-
trary dimension under translations and rigid motions. The algorithms are a priori
heuristics. The main focus is on analyzing them and on proving that they maximize
the volume of overlap approximately by solving the following instance of the match-
ing problem. Given two solid shapes A and B, an error tolerance ε ∈ (0, 1), and an
allowed probability of failure p ∈ (0, 1), the problem is to compute a transforma-
tion t∗ such that with probability at least 1−p, we have |t∗(A)∩B| ≥ |t(A)∩B|−ε|A|
for all transformations t, in particular for transformations maximizing the volume
of overlap. Therein | · | denotes the volume.

The approach is mainly of theoretical interest. Still, the algorithms are so simple
that they can easily be implemented, which we show by giving experimental results
of a test implementation for 2-dimensional shapes.
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Zusammenfassung

Die zentrale Frage in der Musteranpassung ist, ob zwei gegebene Objekte A und B
sich ähneln. Methoden, die diese Frage lösen, haben zahlreiche Anwendungen in
verschiedenen Gebieten der Informatik. Muster können aufgrund verschiedener
Merkmale verglichen werden, zum Beispiel aufgrund der Farbe, der Textur oder
aufgrund von ausgezeichneten Punkten. In dieser Arbeit werden Muster aufgrund
geometrischer Merkmale verglichen, wie es in der Algorithmischen Geometrie üblich
ist.

Seien eine Menge von Mustern S, eine Menge von Transformationen T , die Muster
auf Muster abbilden, und ein Abstandsmaß d gegeben. Das Musteranpassungs-
problem bezüglich S, T und d besteht darin, für gegebene Muster A,B ∈ S eine
Transformation t∗ ∈ T zu berechnen, die den Abstand d(t∗(A), B) minimiert.

Wir betrachten volldimensionale Muster in beliebiger Dimension und nehmen an,
dass die Muster durch ein Orakel gegeben sind, das gleichverteilte Zufallspunkte
aus ihnen erzeugt. Diese Klasse von Mustern ist sehr allgemein, da sie die Klasse
der endlichen Vereinigungen volldimensionaler Simplizes als Teilklasse enthält. Als
Transformationsklassen betrachten wir Translationen und starre Bewegungen. Als
Abstandsmaß verwenden wir das Volumen der symmetrischen Differenz. Für Trans-
lationen und starre Bewegungen ist das Maximieren des Volumen des Durchschnitts
äquivalent zum Minimieren des Volumens der symmetrischen Differenz.

In dieser Arbeit wird ein probabilistischer Ansatz für das Musteranpassungspro-
blem verfolgt. Die zentrale Idee ist relativ einfach. Für zwei gegebene Muster A
und B wird das folgende Zufallsexperiment sehr oft wiederholt: Aus beiden Mustern
wird eine gewisse Anzahl an Zufallspunkten erzeugt. Dann wird eine Transformation
berechnet, die die Zufallspunkte aus A auf die Zufallspunkte aus B abbildet. Diese
Transformation wird gespeichert. In jedem Schritt wird eine Zufallstransformation
zur Menge der gespeicherten Transformationen hinzugefügt. Häufungen im Trans-
formationsraum zeigen Transformationen an, die große Teile der Muster aufeinander
abbilden. Es wird die dichteste Häufung im Transformationsraum gesucht und ihr
Mittelpunkt als Ergebnis ausgegeben.

Wir beschreiben probabilistische Algorithmen zur Anpassung volldimensionaler
Muster in beliebiger Dimension unter Translationen und starren Bewegungen. A
priori sind diese Algorithmen Heuristiken. Der Schwerpunkt der Arbeit liegt darauf,
die Algorithmen zu analysieren und zu beweisen, dass sie das Volumen des Durch-
schnitts approximativ maximieren. Genauer gesagt lösen die Algorithmen folgendes
Problem: Gegeben zwei Muster A und B, eine Fehlerschranke ε ∈ (0, 1) und eine er-
laubte Fehlerwahrscheinlichkeit p ∈ (0, 1), berechne eine Transformation t∗, so dass
mit Wahrscheinlichkeit mindestens 1−p gilt, dass |t∗(A)∩B| ≥ |t(A)∩B|−ε|A| für
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Zusammenfassung

alle Transformationen t gilt. Das gilt insbesondere für Transformationen, die das
Volumen des Durchschnitts maximieren.

Unser Ansatz ist zwar hauptsächlich von theoretischem Interesse, dennoch sind die
vorgestellten Algorithmen so einfach, dass sie leicht implementiert werden können,
was wir durch experimentelle Ergebnisse einer Testimplementation für zweidimen-
sionale Muster belegen.
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1. Introduction

The main question in shape matching is: Given two objects A and B, how similar
are they? Methods for solving this question have numerous applications in various
fields of computer science. In computer vision, the problem of object recognition
is essential. A system knows a model of an object and has to find the object in
a scene. In image retrieval, a large database of images is given, and the problem
is to find images that are similar to a query image. Drug design, or more specific
molecular docking, is a shape matching problem, which occurs in computational
biology. Another example is the registration of medical images in computer-aided
surgical navigation systems.

These different applications give rise to many different problem types. Examples
of fundamental problems are the matching, simplification, morphing, and clustering
of shapes [4]. This thesis concentrates on the shape matching problem, which is
an important theoretical problem. Shapes can be compared with respect to differ-
ent properties, for example color, texture, or feature points; we are interested in
the problem of matching shapes based on their geometry. For a survey on shape
matching, as dealt with in computational geometry, see [4]. For surveys describing
a broader set of approaches that are still close to computational geometry, we refer
the reader to [38, 53].

Given a class of shapes S, a set of transformations T , mapping shapes onto shapes,
and a distance measure d on S, the matching problem with respect to S, T , and d
is the following: Given two shapes A, B ∈ S, compute a transformation t∗ ∈ T that
minimizes d(t∗(A), B).

Many different notions of shapes, also called patterns, are studied in the literature.
Examples in two dimensions are finite point sets, polygonal curves, polygons, sets
of line segments and geometric graphs. In the case of polygons, shapes can be
restricted to be convex, to be simple, or polygonal regions can be allowed, which
can have holes and are not necessarily connected. Studied classes of shapes in
dimension d ≥ 3 are finite point sets, convex polyhedra, and unions of simplices. We
consider solid shapes, i.e. full-dimensional shapes, and assume that they are given
by an oracle that generates uniformly distributed random points from the shapes.
This is a very rich class of shapes that contains the class of finite unions of simplices
as a subclass.

As transformations, usually a subset of the affine transformations is considered.
The most basic, yet important, example is the set of translations. If instead rotation
is allowed, the resulting transformations are called rigid motions. Examples that in-
volve scaling are homotheties (translation and scaling) and similarities (translation,
rotation and scaling). In this thesis, we study matching under translations and rigid
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1. Introduction

motions.

There is a variety of distance measures, some are restricted to certain classes of
shapes. The simplest example is the discrete metric that equals 0 or 1, depending
on the fact if the shapes are equal or not. The matching problem with respect
to the discrete metric yields the exact congruence problem, that is the question if
there is a transformation such that the transformed shape A equals B. If instead the
transformation group is the trivial group containing only the identity transformation,
then the matching problem becomes the problem of computing the distance of A
and B.

For solid polygons, the area of the symmetric difference is a natural distance
measure. The symmetric difference of two sets is the set of points that belong
to exactly one of the sets. Throughout this work, the volume of the symmetric
difference is used as the distance measure for the matching problem. On the class
of compact sets in Rd that equal the closure of their interior, the volume of the
symmetric difference is a metric. Moreover, the volume of the symmetric difference
is a deformation, crack, blur and noise robust distance measure [31]. Chapter 3 says
more about this.

Since we consider the volume of the symmetric difference as the distance measure
for the matching problem, only the full-dimensional part of the shapes is important.
We indicate this by speaking about solid shapes, in contrast to lower-dimensional
shapes, as for example curves or finite point sets. In the literature, sets are sometimes
defined to be solid if they equal the closure of their interior.

Under volume-preserving transformations, minimizing the volume of the symmet-
ric difference is the same as maximizing the volume of overlap. When speaking about
approximations with respect to a relative error, one has to be careful because they
are not the same anymore. We present algorithms that approximately maximize
the volume of overlap. We denote the volume (Lebesgue measure) by | · | and the
symmetric difference by 4.

Since no solutions of low time complexity are known for maximizing the volume
of overlap of sets of simplices under translations and rigid motions, approximation
algorithms are interesting. We consider the following approximate versions of the
matching problem. For an absolute error approximation of the maximal volume of
overlap, two shapes A and B and an error tolerance ε ∈ (0, 1) are given as input. The
problem is to compute a transformation t∗ such that |t∗(A)∩B| ≥ |t(A)∩B| − ε|A|
for all transformations t, in particular for transformations maximizing the volume
of overlap.

We use the error term ε|A|, and not ε, for two reasons. First we want ε to lie
in the range (0, 1) for all shapes A and B in order to make it comparable. Second
the inequality should be invariant under scaling of A and B since scaling A and B
with the same factor does not change the quality of the result. Of course, there
is nothing special about |A| in comparison to |B|. One could also regard ε|B| as
the error term. Since the problem is symmetric in A and B, it is no restriction to
use the error term ε|A|. We do not use an error term involving both volumes, as

2



1.1. General idea of our approach

ε |A|+|B|2 or εmin{|A|, |B|}, since this would later complicate the interpretation of
certain bounds and eventually conceal their meaning.

If additionally an allowed probability of failure p ∈ (0, 1) is given as input, the
problem is to compute a transformation t∗ such that, with probability at least 1−p,
we have |t∗(A) ∩ B| ≥ |t(A) ∩ B| − ε|A| for all transformations t. We call this a
probabilistic absolute error approximation.

For shapes A, B and ε ∈ (0, 1), a transformation t̂ is a (1 − ε)-approximation,
or relative error approximation, if |t̂(A) ∩ B| ≥ (1 − ε)|t(A) ∩ B|, or equivalently
|t(A) ∩B| − |t̂(A) ∩B| ≤ ε|t(A) ∩B|, for all t ∈ Rd. This is a stronger requirement
than the condition for the absolute error approximation.

A probabilistic relative error approximation also obtains two shapes A,B, an error
tolerance ε ∈ (0, 1) and an allowed probability of failure p ∈ (0, 1) as input and
computes a transformation t̂ that is a (1− ε)-approximation of the maximal volume
of overlap with probability at least 1− p.

This thesis describes algorithms computing probabilistic absolute error approxi-
mations for translations and rigid motions in arbitrary dimension. If the maximal
volume of overlap is at least as large as a constant fraction of the volume of A, say
κ|A|, then a probabilistic absolute error approximation with error bound εκ yields
a probabilistic relative error approximation with error bound ε.

Maximizing the volume of overlap of two sets is an interesting mathematical prob-
lem in its own, see [23]. To successfully describe and match shapes in practice, also
the boundaries of the shapes have to be considered. As Mumford [44] says “a plane
shape S ⊂ R2 has a 1-dimensional side given by features of its boundary C = ∂S; and
a 2-dimensional side given by its interior. No successful theory of shape description
can ignore one or the other”.

We study very simple shape matching algorithms that a priori are heuristics. The
main focus of this thesis is to analyze these algorithms and prove that they maximize
the volume of overlap approximately. The approach is mainly of theoretical interest.
Still, the algorithms are so easy that they can easily be implemented and the run-
times are reasonable. In contrast to other approaches, the volume of overlap is not
computed by the algorithms, but the solution is found by a voting scheme. No com-
plicated data structures are needed. We show that our approach is implementable
by giving experimental results of our test implementation for 2-dimensional shapes.

For the analysis, we use the real RAM model, including the square root operation,
and assume that random reals that are uniformly distributed on a fixed interval can
be generated in constant time.

1.1. General idea of our approach

We study algorithms for matching solid shapes in Rd under translations and rigid
motions. The algorithms are instances of the following algorithmic scheme, or at
least are related to it.

The main idea is quite simple. Given two shapes A and B, repeat the following

3



1. Introduction

random experiment very often, say N times: Select random point samples of ap-
propriate size from each shape and compute a transformation that maps the point
sample of one shape to the sample of the other shape. Store this transformation,
called a vote. In each step, we extend the collection of votes by one. Clusters of
votes in the transformation space indicate transformations that map large parts of
the shapes onto each other. We determine a densest cluster and output its center.
We refer to this general algorithmic scheme as the probabilistic matching approach.

Per se, this algorithmic scheme is a heuristic approach; it captures the intuitive
notion of matching. Transformations whose δ-neighborhoods contain many votes
should be “good” transformations since they map many points from A onto points
from B.

To define clusters, we choose a metric d on the transformation space. A δ-
neighborhood of a transformation t is the ball of radius δ around t with respect
to the metric d. A densest cluster of votes is defined to be a δ-neighborhood of a
vote that contains the largest number of votes for some fixed parameter δ. Thus
along with the shapes A and B we have two additional parameters: the number of
random experiments N and the clustering size δ.

Let us look at the case where in each random experiment one point in each shape
is generated, say a ∈ A and b ∈ B. This uniquely determines a translation that maps
a onto b. It turns out that in this case the algorithm provably approximates the
maximal volume of overlap if δ is small and N is large enough. Figure 1.1 illustrates
this idea for the case of translations in the plane.

B

A

a

b

tt

t(A)

T

Figure 1.1.: We compare two copies of a square under translations. The area
of overlap of t(A) and B corresponds to the “chance” of choosing a point pair
(x, y) ∈ A × B such that y − x = t. The point t is marked with a cross in the
translation space.

Hence we choose more meaningful parameters as input for our algorithms. Along
with two shapes A,B, the algorithms obtain an error tolerance ε and an allowed
probability of failure p, both in (0, 1), as input. In the algorithm, we compute N
and δ such that, with probability at least 1− p, the output has an absolute error of
at most ε|A|.
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1.2. Related work

1.2. Related work

The probabilistic matching approach has been studied before for matching curves
in the plane. Ludmila Scharf studied it in her thesis [45] for matching curves in
the plane under translations, rigid motions, similarities and further subsets of affine
transformations. Sven Scholz studied in his thesis [46] heuristics based on the algo-
rithmic scheme for the retrieval of trademark images. See also [6, 7, 8] for instances
of the algorithmic scheme applied to polygonal curves in the plane.

Our approach is related to the Hough transform and other voting schemes that
are applied to shape matching. We refer the reader to [45] for a discussion of the
relation of the probabilistic matching approach and these methods.

Dimension 2. In two dimensions, the problem of maximizing the area of overlap of
two polygons with n and m vertices, say m ≤ n, is studied for different settings. For
convex polygons, de Berg et al. [23] give a solution in O(n log n) time for translations.
Alt et al. [3] give a linear time constant factor approximation for convex polygons un-
der translations and homotheties. Ahn et al. [2] give a (1−ε)-approximation in time
O((1/ε) log n + (1/ε) log(1/ε)) for translations and O((1/ε) log n + (1/ε2) log(1/ε))
for rigid motions, again for the case of convex polygons.

For simple polygons, the function that maps a translation t to the area of overlap
of t(A) and B has combinatorial complexity O(n2m2) and can be maximized within
the same time [43]. See Section 3.1 for the definition of combinatorial complexity.

For two polygonal regions, Cheong et al. [20] give an absolute error approxima-
tion that works with high probability for matching under translations in O(m +
(n2/ε4) log2 n) and matching under rigid motions in O(m + (n3/ε8) log5 n). The
runtime for rigid motions given in the paper is smaller because of a calculation error
in the final derivation of the time bound, as was noted by Vigneron [54].

For maximizing the area of overlap of two simple polygons under rigid motions,
no exact polynomial time algorithm is known. Vigneron [54] gives an FPTAS with
relative error ε that runs in time O((n6/ε3) log4(n/ε)β(n/ε)) where β is a very slowly
growing function related to the inverse Ackermann function. He also gives an FPTAS
for minimizing the area of the symmetric difference of two polygons in the plane un-
der rigid motions that has time complexity O(n17+ε′+(n15/ε3) log4(n/ε)β(n/ε)β(n))
for any ε′ > 0.

Arbitrary dimension. Hagedoorn determines the complexity of the function that
maps a transformation t to the volume of t(A)4B for translations, rigid motions
and other subgroups of affine transformations. He shows that the combinatorial
complexity of the function is Θ((nm)r) in the worst case when A is the union of
n simplices, B is the union of m simplices, and r is the degree of freedom of the
group. For example, r = d for translations in Rd and r = d2+d

2 for rigid motions in
d dimensions.

Ahn et al. [1] minimize the volume of the symmetric difference of two convex

5



1. Introduction

polyhedra under translations in expected running time O(nd+1− 3
d logd+1 n) where n

is the total number of simplices necessary in a triangulation of the input polyhedra.

In d ≥ 3 dimensions, Vigneron [54] gives the only result for the matching of non-
convex polyhedra under rigid motions so far. He describes FPTASs for maximizing
the volume of overlap, as well as for minimizing the volume of the symmetric differ-
ence. For two polyhedra P and Q in Rd, given as the union of m and n simplices,
respectively, the algorithm for approximating the maximal volume of overlap has

time complexity O((nmε )
d2

2
+ d

2
+1(log nm

ε )
d2

2
+ d

2
+1). The time bound for approximat-

ing the minimal volume of the symmetric difference in dimension d ≥ 3 is not given
in the paper.

1.3. Overview

Chapter 2: Shape models

We introduce an oracle shape model, which defines the most general notion of solid
shape for which our probabilistic matching approach works. We show that unions
of simplices are a special case. We define the isoperimetric quotient and discuss a
new notion of fatness.

Chapter 3: The objective function

We collect known facts about the function that maps a translation or rigid motion
to the volume of overlap of two fixed shapes A and B, when A is transformed by
the translation or rigid motion.

We bound the volume of the symmetric difference of t(A) and B from above,
when t is a translation or rigid motion. We use this bound to prove an inequality
that implies that the objective function is Lipschitz continuous for many metrics
on the transformation space. We determine a lower bound on the volume of the
symmetric difference of t(A) and B for the case of translations.

Chapter 4: The probabilistic toolbox

We review notions and theorems from probability theory, in particular we cite a
theorem about the density function of transformed random vectors. We cite facts
about the empirical measure. Devroye and Lugosi’s book [25] is of great help.
We prove the main theorem that we use for analyzing the convergence rate of the
probabilistic algorithms.

Chapter 5: Probabilistic matching under translations in arbitrary
dimension

We present the simplest variant of the probabilistic matching approach for solid
shapes, which performs matching under translations in arbitrary dimension. We

6



1.3. Overview

determine the density function on the translation space and prove bounds on the
clustering size and the number of random experiments, guaranteeing that the algo-
rithm computes a probabilistic absolute error approximation of the maximal volume
of overlap. We analyze the runtime of the algorithm. We improve the bounds and
the runtime by describing an adaptive algorithm that computes a matching by first
computing a candidate region in the translation space and then searching in this
region.

Chapter 6: Probabilistic matching of planar regions under rigid motions

We explore three possibilities to apply the probabilistic matching approach to rigid
motions in the plane. First we show how to use the algorithm for matching under
translations for matching under rigid motions by discretizing the angle space. Second
we apply the probabilistic matching approach in two variants, which differ in the
generation of votes. We prove that all three algorithms compute a probabilistic
absolute error approximation of the area of overlap. For this, we give bounds on the
clustering size and the sample size that guarantee approximation.

Chapter 7: Evaluating the probabilistic matching approach in 2D

We evaluate the probabilistic matching in the plane. We introduce a simple de-
terministic algorithm, related to the probabilistic approach, for matching under
translations and rigid motions in the plane. We compare the probabilistic with
the deterministic approach. We study whether the probabilistic matching approach
can be used for matching solid shapes under similarities. We show experimental
results of a preliminary implementation for matching 2-dimensional shapes under
translations, rigid motions and similarities.

Chapter 8: Probabilistic matching under rigid motions in arbitrary
dimension

We study probabilistic matching under rigid motions in arbitrary dimension by
generalizing two of the algorithms from Chapter 6 to arbitrary dimension. We prove
that both algorithms compute a probabilistic absolute error approximation of the
maximal volume of overlap. We have to have a closer look at the rotation group
SO(d) to be able to do so. We improve the results in three dimensions by using a
different representation of rotations.

Appendix A: The volume of small balls in the rotation group

We supply the proof of a theorem that we use in Chapter 8. The theorem describes
the volume of balls in the rotation group asymptotically, as the radius tends to 0. For
the proof, we introduce a number of definitions and results from measure theory.
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2. Shape models

In the literature, a variety of shape models are studied, including finite (weighted)
point sets, polygonal chains, (convex) polyhedra, unions of simplices, unions of (pair-
wise disjoint) balls, and plane geometric graphs. In this chapter, we describe the
shape models for which we present matching algorithms in the next chapters. In
Section 2.2, we introduce the oracle model, which is a very general shape model.
In Section 2.3, we describe an important subclass, the class of finite unions of pair-
wise disjoint simplices. We review existing definitions of fatness and introduce yet
another definition of fatness and compare it to existing definitions in Section 2.4.

Before presenting the shape models, we introduce some notions and results from
measure theory, most importantly the definition of the Hausdorff measure.

2.1. The Hausdorff measure and related results

We assign a volume to measurable subsets A of Rd by the usual Lebesgue measure
and denote it by Ld(A). Denote by ωd the volume of the Euclidean unit ball in Rd.
For a set A ⊂ Rd, the boundary ∂A is defined as the set of points that are in its
closure cl(A), but not in its interior int(A). We want to measure not only the volume
of sets, but also the surface area, or (d−1)-dimensional volume, of their boundaries.

We define the Hausdorff measure, which generalizes the Lebesgue measure. More-
over, with the Hausdorff measure lower-dimensional sets can be measured. We use it
mainly because it allows us to measure boundaries smartly. The following definitions
of the Hausdorff measure, the spherical measure, their properties, and rectifiability
can be found in [28].

For A ⊂ Rd, 0 ≤ k ≤ d and δ > 0, let Hkδ (A) be the size δ approximating
k-dimensional Hausdorff measure of A that is defined as follows

Hkδ (A) = ωk 2−k inf


∞∑
j=0

(diamBj)
k

∣∣∣∣∀j ∈ N : Bj ⊂ Rd, diamBj ≤ δ, A ⊆
∞⋃
j=0

Bj

 .

We abbreviate δ → 0 and δ > 0 by δ → +0. The k-dimensional Hausdorff measure
of A is then defined as

Hk(A) = lim
δ→+0

Hkδ (A).

The limit exists and equals the supremum because Hkδ (A) ≤ Hkη(A) for η ≤ δ, but
it might equal +∞.

A set A ⊂ Rd is called Hk-measurable if it satisfies the Carathéodory property,
meaning that for all sets B ⊂ Rd, we have Hk(A) = Hk(A ∩ B) +Hk(A \ B). The

9



2. Shape models

Hausdorff measure Hk is defined for all A ⊂ Rd, but, of course, it is more meaningful
for Hk-measurable sets.

The 0-dimensional Hausdorff measure equals the counting measure that gives
the number of elements for finite sets and +∞ for infinite sets. The (d − 1)-
dimensional Hausdorff measure of sufficiently nice (d − 1)-dimensional sets, for
example smooth manifolds, equals the surface area. In this context, “sufficiently
nice” means (Hd−1, d − 1)-rectifiable, a notion which we define below. We mea-
sure the boundaries of sets in Rd by the (d − 1)-dimensional Hausdorff measure.
For Lebesgue measurable sets in Rd, the d-dimensional Hausdorff measure coincides
with the Lebesgue measure. Recall that the Lebesgue measure is invariant under
rotation and translation, and note that the Hausdorff measure is invariant under
rotation and translation, too.

The sets Bj in the definition of the approximating Hausdorff measure can be
assumed to be convex because taking the convex hull does not increase the diameter
of a set. Since convex sets are Lebesgue measurable [37], the sets Bj can also be
assumed to be Lebesgue measurable.

If we restrict the coverings {Bj}j≥0 in the definition of the approximating Haus-
dorff measure to be families of balls, then the resulting measure is called spherical
measure. For A ⊂ Rd, we denote the k-dimensional spherical measure of A by Sk(A).
Since the choice of coverings is restricted, we have Hk(A) ≤ Sk(A).

Jung’s theorem, which we cite from [28], gives a sharp bound on the radius of
the smallest enclosing ball of a set of a fixed diameter. For regular, full-dimensional
simplices, equality holds.

Theorem 2.1 (Jung’s theorem). If S ⊂ Rd and diam(S) ∈ (0,+∞), then S
is contained in a unique closed ball with minimal radius, which does not exceed√

d
2d+2 diam(S).

From this, it follows that we have Sk(A) ≤
(

2d
d+1

)k/2Hk(A) for all A ⊂ Rd. In
general, the Hausdorff measure and the spherical measure are not equal, but for
(Hk, k)-rectifiable subsets of Rd they agree [28, Theorem 3.2.26]. We define the
notion of rectifiability now.

A subset E of a metric space X is called k-rectifiable if there exists a Lipschitz
continuous function that maps some bounded subset of Rk onto E. A union of count-
ably many k-rectifiable sets is called countably k-rectifiable. E is called countably
(µ, k)-rectifiable if µ is a measure defined on E and there is a countably k-rectifiable
set that contains µ-almost all of E. If, additionally, µ(E) < +∞, then E is called
(µ, k)-rectifiable.

To close this paragraph, we cite two inequalities [28]. The isodiametric inequality
says that, among the Lebesgue measurable sets of a fixed diameter, Euclidean balls
have the largest volume.

Theorem 2.2 (Isodiametric Inequality). If ∅ 6= S ⊂ Rd is Lebesgue measurable,
then Ld(S) ≤ ωd2−d diam(S)d.

10



2.2. The oracle model

It can be also read as: The quotient diam(S)d

Ld(S)
is at least as large as 2d/ωd, and

equality holds for Euclidean balls. Therefore the quotient diam(S)d

Ld(S)
is a way to mea-

sure how similar S is to ball. A different way to do so is provided by the isoperimetric
inequality, which we will use in Section 2.4 for a new definition of fatness.

Theorem 2.3 (Isoperimetric Inequality [28, Theorem 3.2.43 and 4.5.9(31)]). Let
A ⊂ Rd be a Lebesgue measurable set such that Ld(cl(A)) < +∞. Then

ddωd ≤
(Hd−1(∂A))d

(Ld(A))d−1
,

and equality holds if and only if A is a d-dimensional Euclidean ball.

For giving definitions precisely and for being able to cite theorems from measure
theory correctly, it has been necessary to explicitly indicate the dimensions of the
measures, as in Hk and Ld. From now on, we always have sets A ⊂ Rd and want to
denote their volume (Lebesgue measure) and their surface area. For the shortness
and clearness of the presentation, we return to denoting the volume by the slightly
sloppy notation |A|. The surface area of A, which we measure by the (d − 1)-
dimensional Hausdorff measure of the boundary of A, will be denoted by |∂A|. We
will only use the notations Hk and Ld if the dimension of the measure is important.

The isoperimetric quotient (Hd−1(∂A))d

(Ld(A))d−1 from the isoperimetric inequality thus is

written as |∂A|d
|A|d−1 . It plays an important role in the analysis of our algorithms.

2.2. The oracle model

We always assume shapes to be Lebesgue measurable subsets of Rd that have positive
finite volume, and whose boundary isHd−1-measurable and has positive finite (d−1)-
dimensional volume. Furthermore, we assume the boundary to be (Hd−1, d − 1)-
rectifiable. W.l.o.g. we assume that the shapes contain the origin. The dimension d
is regarded to be constant.

Since sets of Lebesgue measure 0 do not make any difference for the volume of
overlap, for some proofs, we assume the shapes to be Borel sets. Being a Borel
set is a stronger requirement than being Lebesgue measurable, but every Lebesgue
measurable set differs from some Borel set only by a measure 0 set.

The most general shapes we consider additionally satisfy the following assump-
tions:

• First and most importantly, we assume that A is given by an oracle. By this
we mean that we can generate N points uniformly distributed from shape A in
time T (N,A). For the shortness of presentation, we will write T (N) although
the time may depend on the shape.

11



2. Shape models

• For one of the two input shapes of our matching problem, say A, we know

an upper bound KA on the isoperimetric quotient |∂A|d
|A|d−1 . We will study the

meaning of this parameter and its properties in Section 2.4.

• We are given lower bounds mA and mB on |A| and |B|. Furthermore we are
given an upper bound MB on |B|.

• For matching under rigid motions, we assume to have an upper bound ∆A on
the diameter of A. Because of the lower bound on |A|, this gives us also an

upper bound DA on the quotient diam(A)d

|A| . In Section 5.3, we also use an upper
bound ∆B on the diameter of B.

We design and analyze our algorithms under these assumptions. A common rep-
resentation of shapes is as finite unions of simplices, which we introduce in the next
section. We show that finite unions of simplices are given by an oracle and fulfill
the above assumptions.

For the algorithms in Sections 5.3 and 6.3, we not only assume that we can
generate N uniformly distributed random points from B in time Tq(N), but also
can answer N membership queries of the type “b ∈ B?”.

2.3. Unions of simplices

A d-dimensional simplex is defined as the convex hull of d+ 1 affinely independent
points in Rk for some k ≥ d. A common representation of shapes are finite unions
of d-dimensional simplices in Rd. The simplices of a shape are assumed to have
pairwise disjoint interiors. Hence, in two dimensions, a shape is a polygonal region,
which can have holes and is not necessarily connected. An example is depicted in
Figure 2.1. A shape is given as a set of n simplices, but it is understood as the union
of these simplices. This class of shapes is very rich; it contains the homogeneous
geometric simplicial complexes as a subclass. Keep in mind that shapes do not need
to be connected.

Next we check that this shape model satisfies our requirements, described in the
previous section. So, let A be a finite set of d-dimensional simplices in Rd that have
pairwise disjoint interiors. Let n be the number of simplices of A. First, we show
how to compute bounds ∆A and KA in time O(n).

The volume of a simplex ∆ with vertices v0, v1, . . . , vd in Rd equals

|∆| = 1
d! |det(v1 − v0, v2 − v0, . . . , vd − v0)|,

so computing the volume is essentially computing the determinant of a d-dimensional
matrix. This can be done in O(d3) time, or, by more intricate methods, in the time
needed for matrix multiplication. Since we regard d as constant, we do not go into
details here. As the simplices of A have pairwise disjoint interiors, we simply sum
up the volumes of the simplices to compute |A| in time O(n).

12



2.3. Unions of simplices

Figure 2.1.: An example shape in the plane given as the union of triangles that
have pairwise disjoint interiors.

In linear time, the maximal distance D of a vertex from the origin can be com-
puted. W.l.o.g. the shape contains the origin. Then 1

2 diam(A) ≤ D ≤ diam(A),
and we take ∆A = 2D as upper bound on the diameter of A.

We do not know how to compute |∂A| in time linear in n since A is given as a
set of simplices. But we can compute an upper bound on the size of the boundary
in linear time by adding all (d − 1)-dimensional volumes of the boundaries of the
simplices. The boundary of a simplex is a collection of lower-dimensional simplices,
its facets. Obviously, this bound can be bad as many of the facets may lie in the
interior of the shape, but it can be sharp as it is matched for collections of pairwise
disjoint simplices.

In Section 2.4, we will show that the isoperimetric quotient of a shape A is at
most a constant multiple of n if A is the union of perimeter-fat simplices ∆1, . . . ,∆n

and max1≤i,j≤n
|∆j |
|∆i| is bounded by a constant. Definition 2.5 introduces the notion

of perimeter-fatness.

To generate uniformly distributed random points from A, first draw a simplex
from A with probability proportional to the volume of the simplex. Then we draw
a point from this simplex uniformly at random (u.a.r.).

For drawing a simplex, we use the alias method [55]. Let A be the union of the

simplices ∆1, . . . ,∆n that have pairwise disjoint interiors. Let pi := |∆i|
|A| . The vec-

tor (p1, . . . , pn) describes the discrete probability distribution according to which
we have to pick a random point from simplex ∆i. The alias method can be imple-
mented such that after O(n) preprocessing time, we can sample random points from
(p1, . . . , pn) in time O(1) [48].

Generating a point from a d-dimensional simplex u.a.r. can be done in O(d log d)
time by generating d numbers in [0, 1] u.a.r., sorting them 0 ≤ x1 < · · · < xd ≤ 1
and taking the spacings x1, x2− x1, . . . , xd− xd−1, 1− xd as barycentric coordinates
of the point in the simplex. This method generates a point in the simplex u.a.r. [24].
Thus generating N random points in A and B takes T (N) = O(n + N) time, and
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2. Shape models

we can generate the points one at a time.

When B is the finite union of at most n triangles in the plane that have pair-
wise disjoint interiors, we can answer N membership queries in time Tq(N) =
O
(
(n+N) log n

)
by preprocessing B in time O(n log n) to obtain a standard point

location data structure and then answering membership queries in time O(log n).
In dimension d ≥ 3, we do not know how to answer membership queries for unions
of at most n simplices faster than linear, so we have Tq(N) = O(nN).

We summarize these properties in a lemma.

Lemma 2.4. Let A be the union of n d-dimensional simplices in Rd that have
pairwise disjoint interiors. After O(n) preprocessing time, we can generate a point
from A u.a.r. in time O(1).

We can answer a membership query in time O(n). If d = 2, after O(n log n)
preprocessing time, we can answer membership queries in time O(log n).

Higher-dimensional boxes behave similarly, and can be used instead of simplices;
the computations are even easier for rectangles.

Unions of unit balls

A related shape model is given by finite unions of Euclidean unit balls that have
pairwise disjoint interiors. This model is more restricted since the isoperimetric
quotient of a Euclidean ball equals ddωd by Theorem 2.3, implying that balls are
fat. Fatness will be discussed in the next section. The isoperimetric quotient of the
union of n balls of a fixed radius equals nddωd by Proposition 2.7.

A bound on the diameter can be computed in linear time. A random point can be
computed in constant time if the centers of the balls are stored in an array, which
gives T (N,A) = N .

Instead of the union of unit balls, we can take the union of congruent copies of
any fixed convex set for which we can generate a random point in constant time and
compute the volume and an upper bound on the (d− 1)-dimensional volume of the
boundary, for example a cube or a fixed simplex.

2.4. Fatness and the isoperimetric quotient

Many algorithms for geometric problems have better bounds on the time complexity
if the input objects are not too “skinny”. In many applications, “realistic” input
objects are not “skinny”, so it makes sense to analyze algorithms for these problems
under this assumption. In order to capture not being too “skinny”, the notion of
fatness has been proposed.

In our case, the bounds on the time complexity of our algorithms depend on

the isoperimetric quotient |∂A|d
|A|d−1 . Demanding that this parameter is bounded from

above by a constant is a fatness condition, which we take as definition of fatness.
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2.4. Fatness and the isoperimetric quotient

Definition 2.5 (perimeter-fatness). A shape A ⊂ Rd is called perimeter-fat with

parameter κ if |∂A|
d

|A|d−1 ≤ κ.

This definition of fatness restricts the ratio of “skin” to volume. To make this ratio
invariant under scaling, it is “homogenized” by taking the (d−1)-dimensional volume
of the boundary to the d-th power and the volume to the (d − 1)-th power. The
isoperimetric inequality (Theorem 2.3) gives a lower bound on this ratio. Before
discussing further properties of this notion, we review some important notions of
fatness, which have been studied in the literature.

A convex object is defined to be ball-fat with parameter C if the ratio of the radius
of the smallest enclosing and the radius of the largest inscribed ball is at most C.
Most of the many different definitions of fatness that are present in the literature
are equivalent to this definition for convex shapes, but differ for non-convex objects.

The notions of fatness depend on one (or two) parameters. By saying that one
notion of fatness with parameter p1 is stronger than another notion of fatness or
implies another notion of fatness, we mean that there is a parameter p2 for the latter
notion that only depends on p1 such that each object that is fat with respect to the
first definition with parameter p1 is fat with respect to the other definition with
parameter p2.

Fat shapes in the plane. Efrat [27] introduced (α, β)-covered objects, which are a
generalization of convex ball-fat objects to the class of simply connected sets in the
plane. He showed that the combinatorial complexity of the union of (α, β)-covered
objects is better than quadratic. An object A ⊆ R2 is (α, β)-covered if it is simply
connected and, for every point p on the boundary of A, there is a triangle that (1)
is contained in A, (2) has p as a vertex, (3) each of its angles is at least as large as
α, and (4) each of its side lengths is at least as large as β diam(A).

The most common definition of fatness is probably by van der Stappen, Halperin
and Overmars [51]. A shape A is called classically fat with parameter γ if for all
disks D whose center is contained in A and that do not fully contain A, the area
|A ∩D| ≥ γ|D|. In [51], this notion of fatness is called γ-fatness.

De Berg [21] invented locally fat objects as a relaxation of being (α, β)-covered
while still having better than quadratic union complexity. A shape is locally fat
with parameter γ if the intersection A ∩D in the previous definition is replaced by
the connected component of A ∩D that contains the center of D. Obviously, being
locally fat with parameter γ implies being classically fat with parameter γ, and the
converse is not true.

A weak notion of fatness for sets in the plane is used by Mitchell [42] and many
others. A set A ⊂ R2 is called diameter-fat if its area is at least as large as some
constant fraction of the squared diameter. This generalizes immediately to higher di-
mensions: a set A ⊂ Rd is called diameter-fat with parameter C if |A| ≥ C diam(A)d.

According to our definition, a shape A ⊂ R2 is perimeter-fat if the area of A
is at least as large as a constant fraction of the squared length of the boundary.
We compare this notion of fatness with the other mentioned notions of fatness.
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2. Shape models

Figure 2.2 summarizes the relations between the different definitions for the case of
simply connected sets in the plane.

For connected shapes in the plane, perimeter-fatness is stronger than diameter-
fatness since the length of ∂A is at least as large as 2 diam(A). Bose et al. [18] show
that, for (α, β)-covered objects, the length of the boundary is linear in the diameter,
which means that perimeter-fatness is weaker than being (α, β)-covered.

They also prove that locally fat shapes can have an arbitrarily long perimeter,
which implies that perimeter-fatness is not weaker than local-fatness. The exam-
ple of a square with a short spike attached shows that perimeter-fatness is also
not stronger than local-fatness. For classically fat shapes, the ratio of the squared
diameter and the area can be bounded by a constant by Theorem 2.1.

-covered

diameter-fat

perimeter-fat

classically fat

locally fat

Figure 2.2.: Each region represents the class of simply connected sets in the plane
that are fat with respect to one of the definitions. For example, the thick curve
represents the class of perimeter-fat objects.

Observe that the condition diam(A)2

|A| ≤ C is weaker than |∂A|2
|A| ≤ κ only for con-

nected shapes. If A is allowed to have several components as in our case, the two
conditions are incomparable.

Fat shapes in arbitrary dimension. From dimension 3 on, the conditions diam(A)d

|A| ≤

C and |∂A|d
|A|d−1 ≤ κ are incomparable, even for connected shapes, which we show by

giving examples. The volume and the surface area of a cube with an attached long,
skinny spike can be bounded from above by a constant, but the diameter can be
arbitrarily large. Hence such a shape is perimeter-fat, but not diameter-fat. On
the other hand, the comb-like shape A that consists of the union of the rectangles
[0, 1]d−1×[ 2i

2n ,
2i+1
2n ] for i = 0, . . . , n−1 and {0}×[0, 1]d−1 has volume 1

2 and diameter

roughly
√
d. Therefore diam(A)d

|A| is constant, while |∂A|d
|A|d−1 ≥ 2nd since |∂A| ≥ 2n+ 2.
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2.4. Fatness and the isoperimetric quotient

Figure 2.3.: A connected shape in dimension 3, which is diameter-fat, but not
perimeter-fat.

Figure 2.3 shows a sketch of such a shape in dimension 3.
The isoperimetric quotient measures how similar a shape is to a ball; it is large

for “skinny” shapes and shapes that are composed of many connected components.
Next we show that, for convex sets, perimeter-fatness is equivalent to the standard
definition of ball-fatness and also to diameter-fatness.

Lemma 2.6. Let K ⊂ Rd be a convex set. Then the following three conditions are
equivalent.

1. K is perimeter-fat.

2. K is ball-fat.

3. K is diameter-fat.

Proof. 1. =⇒ 2.
We first show that it is sufficient to prove the claim for ellipsoids whose centroid is
the origin and whose symmetry axes are parallel to the coordinate axes.

Every ellipsoid is the affine image ABd + t of the d-dimensional Euclidean unit
ball Bd where A is a (d× d)-matrix with det(A) 6= 0, and t ∈ Rd. For each convex
set K ⊂ Rd, there is an ellipsoid E such that E ⊆ K ⊆ dE [35]. It is called the
John ellipsoid. Therefore the volume, surface area of the boundary, and the radii of
the smallest enclosed and largest inscribed ball of K and E only differ by constant
factors. To see this for the surface area of the boundary, note that, for convex sets
K1 and K2, K1 ⊆ K2 implies |∂K1| ≤ |∂K2|; see [17, Section 31, Property (5)].

Let ins(K) be the largest inscribed ball of K, and let enc(K) be the smallest
enclosing ball of K. Since the isoperimetric quotient, as well as the ratio of the
radii of enc(K) and ins(K), are invariant under rigid motions, we can assume that
E has the origin as centroid and its symmetry axes are the coordinate axes. Then
E = ABd, and A is a diagonal matrix with positive entries λ1, . . . , λd on the diagonal.
W.l.o.g. the value λ1 is the maximal λi, the value λd is the minimal λi, and λd = 1.
The volume |E| = |ABd| = | det(A)||Bd| = λ1 · . . . · λd · ωd.
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2. Shape models

Next we estimate |∂E| from below by the boundary of the cross polytope Q =
conv(±λ1e1, . . . ,±λded), which is contained in E. The surface area |∂Q| is the sum
of 2d equal summands. Each summand is the (d− 1)-dimensional volume of one of
the congruent simplices conv(±λ1e1, . . . ,±λded). By the Pythagorean theorem we
have

| conv(λ1e1, . . . , λded)|2 =

d∑
j=1

| conv(0, λ1e1, . . . , λ̂jej , . . . , λded)|2.

The hat ̂ means that the labeled element is left out in the list. The (d − 1)-

dimensional volume | conv(0, λ1e1, . . . , λ̂jej , . . . , λded)| = 1
(d−1)!λ1 · . . . λ̂j · . . . λd.

Observe that by assumption the radius of enc(E) equals λ1 and the radius of
ins(E) equals 1. Putting things together, we get the following inequalities. For the
second of the inequalities note that, because of the Cauchy-Schwarz inequality, we
have |x| ≥ 1√

d
||x||1 for all x ∈ Rd.

|∂E|d

|E|d−1
≥

2d
(∑d

j=1(λ1 · . . . · λ̂j · . . . · λd)2
)d/2

(d− 1)!(ωdλ1 · . . . · λd)d−1

≥
2d
(∑d

j=1 λ1 · . . . · λ̂j · . . . · λd
)d

√
d(d− 1)!(ωdλ1 · . . . · λd)d−1

≥ 2d√
d (d− 1)!ωd−1

d

· (λ1 · . . . · λd−1)d

(λ1 · . . . · λd)d−1

= C · λ1 · . . . · λd−1 ≥ C · λ1.

We have shown that |∂E|d
|E|d−1 ≥ C · Rr where R is the radius of enc(E) and r is the

radius of ins(E).

2. =⇒ 3.
Let r be the radius of ins(K), and let R be the radius of enc(K). The claim follows
from

diam(K)d

|K|
2−dωd ≤

| enc(K)|
| ins(K)|

=
(R
r

)d
.

3. =⇒ 1.
By Jung’s Theorem (Theorem 2.1), A is contained in a ball of radius

√
d

2d+2 diam(A).

This implies |∂A| ≤ |∂ enc(A)| ≤ dωd
(

d
2d+2

)(d−1)/2
diam(A)d−1, which implies the

claim.

The next proposition says that the isoperimetric quotient of the union of perimeter-
fat sets is linear in the number of the sets, if the sets have roughly the same volume.
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2.4. Fatness and the isoperimetric quotient

Proposition 2.7. 1. Let A ⊂ Rd be the union of n interior-disjoint congruent

copies of a set B ⊂ Rd. Then |∂A|d
|A|d−1 ≤ n

|∂B|d
|B|d−1 , and equality holds if the copies

of B are pairwise disjoint.

2. Let A be the union of sets B1, B2, . . . , Bn of Rd that have pairwise disjoint

interiors and that are perimeter-fat with parameter κ such that
max1≤i≤n |Bi|
min1≤i≤n |Bi| ≤

η for some positive constant η. Then |∂A|d
|A|d−1 ≤ nκηd−1.

Proof. The first claim follows from the fact that |A| = n|B| and |∂A| ≤ n|∂B|.
We prove the second claim. Let j ∈ {1, . . . , n} be such that |∂Bj | = maxi |∂Bi|.

|∂A|d

|A|d−1
≤ (|∂B1|+ |∂B2|+ · · ·+ |∂Bn|)d

(|B1|+ |B2|+ · · ·+ |Bn|)d−1

≤ (nmaxi |∂Bi|)d

(nmini |Bi|)d−1

=
(n|∂Bj |)d

(n|Bj |)d−1

(n|Bj |)d−1

(nmini |Bi|)d−1

≤ nκηd−1
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3. The objective function

For two shapes A,B ⊂ Rd and a class of transformations, the matching problem
asks for a transformation t such that t(A) and B match optimally. The quality
of the match is measured by some distance measure, for instance the volume of
the symmetric difference. Our matching problem can be formulated as finding a
value that (approximately) minimizes the function F̄ that maps a transformation t
to the volume of the symmetric difference of t(A) and B. Recall that we consider
translations and rigid motions as transformations.

It is slightly sloppy to always denote the objective function with the same symbol
since sometimes we consider rigid motions as transformations and sometimes we
restrict our attention to translations, but surely no confusion will arise from this
notation. The main goal of this chapter is to prove that the objective function is
Lipschitz continuous for many metrics on the transformation space because we need
this for the analysis of our algorithms in Chapters 5 to 8.

Let us mention an equivalent formulation of the matching problem. Under volume-
preserving transformations, like translations and rigid motions, minimizing the vol-
ume of the symmetric difference is the same as maximizing the volume of overlap.
When it comes to relative error approximation, this is no longer the case. For per-
fectly matching shapes there is a transformation t such that |t(A) 4 B| = 0 and
therefore a (1+ε)-approximation algorithm for minimizing the symmetric difference
has to compute the exact optimum for any ε > 0, while a (1− ε)-approximation of
the maximal volume of overlap does not have to be an exact match.

We denote the function that maps a translation or rigid motion t to the volume
of overlap of t(A) and B by F . The functions F and F̄ are related through the
following simple equation F̄ (t) = |A|+ |B| − 2F (t). This implies that both problem
formulations are essentially the same for absolute error approximation, which we
make precise in the next proposition. We allow ourselves to switch between both
formulations and to speak of F̄ , as well as of F , as the objective function.

Proposition 3.1. If A,B ⊂ Rd and r∗, r are rigid motions, then |r∗(A) ∩ B| ≥
|r(A) ∩B| − ε|A| if and only if |r∗(A)4B| ≤ |r(A)4B|+ 2ε|A|.

3.1. Known results

We discuss definitions and properties of the objective function. We start by summa-
rizing some results about the volume of the symmetric difference from Hagedoorn’s
thesis [30]. The volume of the symmetric difference is obviously symmetric, and it
fulfills the triangle inequality. Measured by the volume of the symmetric difference,
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3. The objective function

each set clearly has distance 0 from itself. A distance measure with these three
properties is usually called a pseudometric.

On the set of all subsets of Rd, the volume of the symmetric difference is not a
metric because sets that only differ by a measure-zero set have distance 0 although
they are not equal. For the same reason, it is not a metric on the set of compact
sets. It is a metric on the class of sets that equal the closure of their interior.

Denote the volume of the symmetric difference by σ(A,B) = |A4B|. A pseudo-
metric pattern space is a triple of a base space, a collection of subsets of the base
space, called the patterns, and a pseudometric on the collection. Let K(Rd) be the
set of compact subsets of Rd. Then (Rd,K(Rd), σ) is a pseudometric pattern space.

In applications, patterns are often obtained by the following process. Real world
data is measured by some device, for example a camera, an MRT or CT scanner.
Then some features are extracted and a pattern is computed by geometric modeling.
In this process, errors can occur such that the result is not exact.

It is important that the distance measure that is used to compare the patterns
is not too sensitive to inaccurate pattern modeling. For example, it is likely to
happen that a pattern that is extracted from a pixel image contains outliers that
are isolated black pixels that do not belong to the “real” pattern. A naive approach
that compares this pattern without further processing by the Hausdorff distance
would clearly fail.

How sensitive the matching to inexact pattern modeling is, depends on the used
distance measure. Hagedoorn defines four types of robustness for pseudometric pat-
tern spaces, and shows that (Rd,K(Rd), σ) satisfies these four axioms of robustness,
namely deformation, blur, crack and noise robustness.

All four properties have a form that is analogous to the definition of continuity.
If the “difference” between two patterns is sufficiently small, then also the distance
measured by the pseudometric is arbitrarily small. Each of the four definitions
captures a distinct type of “difference”. Here, we only explain the intuitive meaning;
we refer the reader to [30] for the precise definitions.

Deformation robustness means that the distance does not change much if the
pattern is transformed by a homeomorphism that is close enough to the identity.
A pseudometric pattern space is blur robust if adding boundary to a pattern in a
sufficiently small neighborhood of its boundary does not increase the distance much.
Noise robustness means that patterns that are equal outside a sufficiently small
neighborhood of some point have a small distance.

A crack C is a subset of the boundary B of a pattern such that the closure of
B \C equals B, and C is homeomorphic to a closed ball in some finite-dimensional
Euclidean space. A line segment contained in a plane disk in R3 is an example of
a crack. In a crack robust pseudometric pattern space, two patterns have a small
distance if they are equal outside a small neighborhood of a crack.

After having discussed some properties of the distance measure, we summarize
results about the combinatorial complexity of the objective function F̄ from [30]. Let
A,B ⊂ Rd be finite unions of d-dimensional simplices such that the intersection of
two simplices is empty or a lower-dimensional simplex that is a face of both simplices.
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3.1. Known results

In other words, A and B are homogeneous geometric simplicial complexes.
The combinatorial complexity of F̄ is the number of “pieces” that F̄ consists

of. More precisely, two transformations s and t are combinatorially equivalent if the
incidence relations between the simplices of s(A) and t(A) with B are the same. The
number of connected components in the arrangement of combinatorially equivalent
cells is the combinatorial complexity of F̄ .

In the worst case, the combinatorial complexity of F̄ is Θ((nm)k) where n and
m are the numbers of simplices of A and B, respectively, and k is the dimension of
the transformation group. Intuitively, the dimension of a transformation group is
the number of degrees of freedom. The dimension of the group of translations in Rd
is d, and the dimension of the group of rigid motions is

(
d+1

2

)
, as we will explain in

Chapter 8. In two dimensions, the worst case combinatorial complexity is obtained
already for connected polygons.

Mount, Silverman, and Wu [43] proved that in the case of translations in the
plane, the function F that maps a translation t to the area of overlap of t(A) and
B is a piecewise polynomial of degree 2. The two variables represent the transla-
tion. Together with the bound O((nm)2) on the complexity of F , this implies an
algorithm that maximizes the area of overlap of two simple polygons with n and m
vertices. Ahn et al. [1] claim that this generalizes to an O((nm)d) algorithm for sets
of simplices in Rd. For further references on maximizing the volume of overlap of
two shapes, we refer the reader to Chapter 5 for translations and Chapters 6 and 8
for rigid motions.

In two dimensions, Hagedoorn describes the function that maps an affine trans-
formation t to the volume of overlap of t(A) and B. Here, A and B are finite unions
of n and m triangles in the plane that have pairwise disjoint interiors. An affine
map is represented by the vector that contains the entries of the matrix, which is the
linear part, and the entries of the translation vector. This function from R6 to R is
piecewise rational, and the rationals are quotients of a polynomial and a monomial,
both having degree O(nm).

A restriction of F arises in other contexts. For A ⊂ Rd, the function gA that maps
a translation vector t ∈ Rd to the volume of (A + t) ∩ A is called the covariogram
of A, sometimes also the set covariance, and was introduced by Matheron [39] for
compact sets.

We bound |(A + t) \ A| in Section 3.2. Since gA(0) − gA(t) = |(A + t) \ A|, this
volume is related to estimating the directional derivatives of gA at 0. For convex,
compact sets A, these are determined in [39]. For u ∈ Sd−1, consider the function
λ 7→ gA(λu) for λ ∈ R; it has a continuous derivative that equals −Ld−1(A|u⊥)
where A|u⊥ denotes the orthogonal projection of A to the orthogonal space of u.

Galerne [29] studies gA for measurable sets A of finite Lebesgue measure. He
computes the directional derivatives at the origin and proves that the perimeter of
A can be computed from these derivatives. In this context, the perimeter of a set
A is at most as large as Hd−1(∂A). See [29] for the definition of perimeter. He
also computes the Lipschitz constant of gA in terms of the directional variation. For
further details and definitions, we refer the reader to the paper and the references

23



3. The objective function

cited therein.

The inverse question whether the covariogram determines a convex body in Rd,
up to translations and reflections in the origin, is answered affirmatively for the
planar case in [11]. For three dimensions, convex polytopes are determined by their
covariogram [14]. In dimension ≥ 4, the question has a negative answer [16]. In
the planar case, the class of sets among which the covariogram of a convex body is
unique is extended in [13].

The function gB,A(t) := |(A + t) ∩ B| is called cross covariogram for convex sets
A and B. It equals F for the case of convex shapes and translations. Bianchi
[15] proves that, for convex polygons A and B in the plane, gB,A determines the
pair (A,B), except for a few exceptional pairs of parallelograms. The family of
exceptions is completely described. For further references and other occurrences of
the covariogram problem, see [11].

3.2. Upper bounds on the volume of the symmetric
difference of a body and a congruent copy

A preliminary version of this and the next section can be found in [47]. Let A be
a bounded subset of Rd. We give an upper bound on the volume of the symmetric
difference of A and f(A) where f is a translation, a rotation, or the composition of
both, a rigid motion.

We bound the volume of the symmetric difference of A and f(A) in terms of
the (d − 1)-dimensional volume of the boundary of A and the maximal distance
of a boundary point to its image under f . In the case of translations, our bound
is sharp. In the case of rotations, we get a sharp bound under the assumption
that the boundary is sufficiently nice. Recall that the volume is measured by the
d-dimensional Hausdorff measure, which coincides with the Lebesgue measure for
Lebesgue measurable sets, and the boundary is measured by the (d−1)-dimensional
Hausdorff measure, which matches the surface area for sufficiently nice sets.

Let A and B be bounded subsets of Rd, and let F be the function that maps a
rigid motion r to the volume of overlap of r(A) and B. Knowing that F is Lipschitz
continuous helps to maximize it. We apply our results to bound the difference
|F (r)−F (s)| for rigid motions r, s that are close, implying that F is indeed Lipschitz
continuous for many metrics on the space of rigid motions. Depending on the metric,
also a Lipschitz constant can be deduced from the bound. We will use this repeatedly
in later chapters.

In Section 3.3, we prove the following theorem, which gives an upper bound on
the volume of A4 (A+ t) in terms of the (d− 1)-dimensional volume of ∂A and the
length of t.

Theorem 3.2. Let A ⊂ Rd be a bounded set. Let t ∈ Rd be a translation vector.
Then

Hd(A4 (A+ t)) ≤ |t|Hd−1(∂A).
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3.2. Upper bounds on the volume of the symmetric difference

This inequality is best possible, in the sense that it becomes false when the right
hand side is multiplied with any constant that is smaller than one. Let us assume
for contradiction that the upper bound could be multiplied with (1 − ε) for some
small, positive ε. Translate a rectangle R with side lengths 1 and ε in direction of
the side of length ε. If the length of that translation t is ε/2, then the volume of
R4 (R+ t) equals ε, but the modified bound gives ε− ε3.

We also ask how the volume of the symmetric difference behaves when we rotate
the set, instead of translating it. A rotation matrix is defined to be an orthogonal
matrix that has determinant +1. For a rotation matrix M ∈ Rd×d, we give an upper
bound on the volume of A4MA, in terms of the (d− 1)-dimensional volume of the
boundary of A and a parameter w that measures the closeness of M and the identity
matrix with respect to A. The parameter w is the maximal distance between a and
Ma among all points a ∈ ∂A. We prove the following theorem in Section 3.3.

Theorem 3.3. Let A ⊂ Rd be a bounded set. Let M ∈ Rd×d be a rotation matrix
and let w = maxa∈∂A |a−Ma|. Then

Hd(A4MA) ≤
(

2d
d+1

) d−1
2 wHd−1(∂A).

The constant
(

2d
d+1

) d−1
2 can be replaced by 1 for sets that have an (Hd−1, d − 1)-

rectifiable boundary.

Again, the constant 1 is the best possible constant because a rotation is arbitrarily
close to a translation if the rotation center is sufficiently far away from the rotated
set.

A rigid motion is the composition of a rotation and a translation. Let SO(d) ⊂
Rd×d be the special orthogonal group, that is, the group of rotation matrices. Pa-
rameterize the space of rigid motions as R = SO(d)×Rd where (M, t) ∈ R denotes
the rigid motion x 7→Mx+ t.

Since the symmetric difference fulfills the triangle inequality, we have the following
corollary for rigid motions. We assume that ∂A is (Hd−1, d−1)-rectifiable such that
we can use Theorem 3.3 with constant 1.

Corollary 3.4. Let A ⊂ Rd be a bounded set whose boundary ∂A is (Hd−1, d− 1)-
rectifiable. Let r = (M, t) ∈ R be a rigid motion, and let w = maxa∈∂A |a −Ma|.
Then

Hd(A4 r(A)) ≤ (|t|+ w)Hd−1(∂A).

We are interested in studying the smoothness of the function F . In particular, we
want to bound |F (r) − F (s)| if the rigid motions r and s are close, meaning that
they do not move points from A too far apart. Equip the space of rigid motions
R with any metric that is induced by a norm on Rd×d × Rd. Then the following
bound on |F (r) − F (s)| implies that F is Lipschitz continuous if ∂A has a finite
(d− 1)-dimensional volume. Also a Lipschitz constant can be deduced.
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3. The objective function

Corollary 3.5. Let A,B ⊂ Rd be bounded and Hd-measurable sets such that ∂A is
(Hd−1, d− 1)-rectifiable. Let r = (M,p) and s = (N, q) be rigid motions. Then

|F (r)− F (s)| ≤ 1
2

(
|p− q|+ w

)
Hd−1(∂A)

where w = maxa∈∂A |Ma−Na|.

We prove an easy proposition, which we then use to prove Corollary 3.5.

Proposition 3.6. Let (M, µ) be a measure space and let D,E,G be µ-measurable
sets in M. If µ(D) = µ(G), then |µ(D ∩ E)− µ(G ∩ E)| ≤ µ(D \G).

Proof. Because of µ(D) = µ(G), we have µ(G \D) = µ(D \G).

|µ(D ∩ E)− µ(G ∩ E)| = |µ((D \G) ∩ E)− µ((G \D) ∩ E)|
≤ max{µ((D \G) ∩ E), µ((G \D) ∩ E)}
≤ max{µ(D \G), µ(G \D)}
= µ(D \G).

Proof of Corollary 3.5 from Corollary 3.4. Let r = (M,p) and s = (N, q) be rigid
motions, and let w = maxa∈∂A |Ma − Na|. By the invariance of Hd under rigid
motions we can apply Proposition 3.6 to get

|Hd(r(A) ∩B)−Hd(s(A) ∩B)| ≤ 1
2 H

d
(
r(A)4 s(A)

)
= 1

2 H
d
(
(s−1 ◦ r)(A)4A

)
.

The map s−1◦r is a rigid motion with rotation matrix N−1M and translation vector
N−1(p− q). Therefore, |Hd(r(A) ∩B)−Hd(s(A) ∩B)| ≤ 1

2

(
|p− q|+w

)
Hd−1(∂A)

by Corollary 3.4.

From Corollary 3.5, Lipschitz constants for various metrics can be deduced.

3.3. Proof of the upper bounds

We give the proofs of Theorems 3.2 and 3.3. More precisely, as Proof Step 1, we
show that A4 (A+ t) and A4MA are contained in certain unions of line segments.
For translations t, we show that A 4 (A + t) ⊆ ∂A ⊕ [0, 1]t where ⊕ denotes the
Minkowski sum. For a rotation matrix M , we prove that A4MA is contained in
the set of all line segments from a to Ma for a ∈ ∂A; see Figure 3.1. As Proof Step
2, we bound the volume of the unions of these line segments.

Proof Step 1 – Covering the symmetric difference of a body and a copy
by line segments

For x, y ∈ Rd, the line segment from x to y is the set {(1 − λ)x + λy : λ ∈ [0, 1]},
and is denoted by `(x, y). The Minkowski sum of two sets A ⊕ B equals the set of
all sums a+ b for a ∈ A and b ∈ B.
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We show that for any bounded set A ⊂ Rd and a translation t, the set A4 (A+ t)
is covered by the union of the line segments `(a, a + t) where a is in the boundary
of A. For a rotation matrix M , the set A4MA is covered by the union of the line
segments `(a,Ma) where a again is in the boundary of A. See Figure 3.1.

A t+

A

MA

AA

Figure 3.1.: On the left, the figure shows a body A. In the middle, the figure
shows A and a translated copy of A. On the right, the figure shows A and a
rotated copy. The symmetric differences are drawn in dark-gray. Examples of the
line segments are drawn and the union of the line segments is drawn in light-gray.

Lemma 3.7. Let A ⊂ Rd be a bounded set, and let t ∈ Rd be a translation vector.
Then

A4 (A+ t) ⊆
⋃
{`(a, a+ t) : a ∈ ∂A}.

Proof. It suffices to show A \ (A + t) ⊆
⋃
{`(a, a + t) : a ∈ ∂A}, because applying

this to A′ = A + t and t′ = −t gives (A + t) \ A ⊆
⋃
{`(a, a + t) : a ∈ ∂A}. Let

a ∈ A \ (A + t) and let l be the line {a + λt : λ ∈ R}. If a ∈ ∂A, we are done.
Otherwise a ∈ int(A) and therefore a+t ∈ int(A+t). Since l intersects int(A+t) and
A+ t is bounded, we have ∂(A+ t)∩ l 6= ∅. Let λ ∈ (0, 1] such that a+λt ∈ ∂(A+ t).
Then a′ = a+ (λ− 1)t is a point in ∂A such that a′ + (1− λ)t = a.

Lemma 3.8. Let A ⊂ Rd be a bounded set, and let M ∈ Rd×d be a rotation matrix.
Then

A4MA ⊆
⋃
{`(a,Ma) : a ∈ ∂A}.

Proof. Consider the continuous function ϕ : [0, 1] × Rd → Rd that is defined by
ϕ(λ, x) = ϕλ(x) = (1 − λ)x + λMx. We show that MA \ A ⊆ ϕ([0, 1] × ∂A).
Applying this to A′ = MA and M ′ = M−1 gives the claim. We first prove that ϕλ
is injective for all λ ∈ [0, 1] \ {1

2}. This implies that for each λ ∈ [0, 1] \ {1
2} and

each bounded set S ⊂ Rd, the function ϕλ : cl(S)→ ϕλ(cl(S)) is a homeomorphism
because it is bijective and linear.

Assume that there exist x, y ∈ Rd, x 6= y, such that ϕλ(x) = ϕλ(y). Since x 6= y,
we have λ 6= 0. Then M(x− y) = ((λ− 1)/λ)(x− y), so (λ− 1)/λ is an eigenvalue
of the rotation M . Since only 1 or −1 can occur as eigenvalues for a rotation, we
get λ = 1/2.

Let y ∈ MA \ A. We show that there exist λ ∈ [0, 1] and a ∈ ∂A such that
y = ϕ(λ, a). We distinguish two cases.
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3. The objective function

• Case 1. ϕ1/2 : cl(A)→ ϕ1/2(cl(A)) is not bijective and y ∈ ϕ1/2(cl(A)).

Let a, b ∈ cl(A) such that a 6= b and ϕ1/2(a) = ϕ1/2(b), and let x ∈ ϕ−1
1/2(y) ∩

cl(A). For each point v on the line l = {x + µ(b − a) : µ ∈ R}, we have
ϕ1/2(v) = y, due to the linearity of ϕλ. Since A is bounded and x ∈ cl(A), we
have ∂A∩l 6= ∅ and for every point x′ in this set y = ϕ(1/2, x′) ∈ ϕ([0, 1]×∂A).

• Case 2. ϕ1/2 : cl(A)→ ϕ1/2(cl(A)) is bijective or y /∈ ϕ1/2(cl(A)).

Since y ∈ ϕ1(A), we can define t = inf{λ ∈ [0, 1] : ∀µ ∈ [λ, 1] y ∈ ϕµ(cl(A))}.
We now show that y ∈ ϕt(cl(A)). Assume that y /∈ ϕt(cl(A)). Then for all
a ∈ cl(A) the distance |ϕt(a) − y| > 0. Since cl(A) is compact and ϕt is
continuous, ϕt(cl(A) is compact. Since the distance is continuous, we would
have min{|ϕt(a) − y| : a ∈ cl(A)} = η > 0. Let w = max{|a −Ma| : a ∈
cl(A)} <∞. For all a ∈ cl(A), λ ∈ [0, 1− ν], ν ∈ [0, 1− λ], we have

|ϕλ(a)− ϕλ+ν(a)| ≤ νw, (3.1)

so we have |y − ϕt+ η
2w

(a)| ≥
∣∣∣|y − ϕt(a)| − |ϕt(a)− ϕt+ η

2w
(a)|

∣∣∣ ≥ η
2 by the

triangle inequality. Therefore t < t + η
2w ≤ inf{λ ∈ [0, 1] : ∀µ ∈ [λ, 1] y ∈

ϕµ(cl(A))}, which is a contradiction to the definition of t. Therefore y ∈
ϕt(cl(A)). By the case distinction, ϕt : cl(A) → ϕt(cl(A)) is bijective: If ϕ1/2

is not bijective, then y /∈ ϕt(A) as we are in case 2. That implies t > 1
2 , and

so ϕt is bijective. Otherwise, ϕ1/2 is bijective, and so ϕs is bijective for every
choice of s.

If y ∈ ∂A, we are done. Assume otherwise that y /∈ ∂A. Next, we show
that y ∈ ∂ϕt(cl(A)). Assume on the contrary that y ∈ int(ϕt(cl(A))). Then
y /∈ cl(A) = ϕ0(cl(A)), so we have t > 0. We show that there exists ε′ > 0
such that for all δ ∈ (0, ε′] we have y ∈ ϕt−δ(cl(A)), which is a contradiction
to the definition of t.

Since y ∈ int(ϕt(cl(A))), there exists ε > 0 such that B(y, ε) ⊆ ϕt(cl(A)).
Let ε′ ∈ (0, ε

3w ] such that for all δ ∈ (0, ε′] we have 0 < t − δ 6= 1
2 . Let

U = ϕ−1
t (B(y, ε)). For all δ ∈ (0, ε′], the function f = ϕt−δ ◦ ϕ−1

t : B(y, ε) →
ϕt−δ(U) is a homeomorphism. Let a ∈ cl(A) be such that y = ϕt(a). For
a′ = ϕ−1

t−δ(y), we have ϕt−δ(a
′) = y. We prove a′ ∈ cl(A).

Let v ∈ B(y, ε) and let v′ = ϕ−1
t (v). We have |f(v)−v| = |ϕt−δ(v′)−ϕt(v′)| ≤

δw by Inequality (3.1). Because of δ ≤ ε
3w , we have

|f(v)− v| ≤ ε
3 . (3.2)

The set ∂B(y, 2ε
3 ) is the set of all points that have distance 2ε

3 from y. The
set f(B(y, ε)) is homeomorphic to a d-dimensional ball and f(∂B(y, 2ε

3 )) is
homeomorphic to a (d − 1)-dimensional sphere. Because of Inequality (3.2),
f(∂B(y, 2ε

3 )) ⊂ B(y, ε) \ B(y, ε3) and f(y) ∈ B(y, ε3). By the Jordan-Brouwer
separation theorem, which is the generalization of the Jordan curve theorem
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3.3. Proof of the upper bounds

to higher dimensions, the topological sphere f(∂B(y, 2ε
3 )) cuts Rd in two com-

ponents, one of which containing B(y, ε3) and the other containing Rd\B(y, ε).
Since f(B(y, ε)) is simply connected, it follows that B(y, ε3) ⊂ f(B(y, ε)) and
therefore y ∈ f(B(y, ε)) ⊆ ϕt−δ(cl(A)), which is a contradiction to the defini-
tion of t.

Since ϕt is a homeomorphism, we have that ∂ϕt(cl(A)) = ϕt(∂A), which ends
the proof of Lemma 3.8.

Proof Step 2 – Bounding the volume of certain unions of line segments

Next, we prove that the volume of the union of line segments from a to a+t for a ∈ ∂A
is bounded by the length of t times the (d− 1)-dimensional volume of ∂A. Together
with the results of Proof Step 1, this gives a bound on the volume of A4 (A + t),
proving Theorem 3.2.

Lemma 3.9. Let A ⊂ Rd be a bounded set. Let t ∈ Rd be a translation vector. Then

Hd
(⋃
{`(a, a+ t) : a ∈ ∂A}

)
≤ |t| Hd−1(∂A).

Proof. We abbreviate L =
⋃
{`(a, a + t) : a ∈ ∂A}. Let δ > 0 and let {Bj : j ∈ N}

be a covering of ∂A with diamBj ≤ δ for all j ∈ N.
For each j ∈ N, we define a cylinder Zj such that L ⊆

⋃
{Zj : j ∈ N}. We denote

the orthogonal space of t by t⊥. The top and bottom of the cylinder are formed by
copies of Bj projected to t⊥. See Figure 3.2 as an illustration. The bottom Zbj of
the cylinder Zj sits in the hyperplane that contains a point of cl(Bj), but does not
contain any point of cl(Bj), when translated in direction −t by any small amount.

The top Ztj of the cylinder Zj is formed by Zbj +
(
1 +

diam(Bj)
|t|

)
t. By construction,

the cylinder Zj contains
⋃
{`(b, b+ t) : b ∈ Bj}.

Bj tBj+

?jtBj

t

diam( )Bjtj jj j+diam( )Bjtj jj j+

Zj

Figure 3.2.: The definition of the cylinder Zj , which contains all line segments
`(b, b+ t) for b ∈ Bj .

We have Hd(Zj) = Hd−1(Bj |t⊥)
(
1 +

diam(Bj)
|t|

)
|t| due to [28, Theorem 3.2.23].

Note that diam(Bj |t⊥) ≤ diam(Bj). We have Hd−1(Bj |t⊥) = Hd−1(conv(Bj |t⊥))
and by Theorem 2.2, we have Hd−1(conv(Bj |t⊥)) ≤ ωd−1(diam(Bj)/2)d−1 and hence

Hd(L) ≤
∑
j∈N
Hd(Zj) ≤ (|t|+ δ)

∑
j∈N

ωd−1(diam(Bj)/2)d−1.
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This implies that Hd(L) ≤ (|t| + δ)Hd−1
δ (∂A) for all δ > 0. Therefore Hd(L) ≤

|t|Hd−1(∂A).

Next, we will bound the volume of the union of line segments from a to Ma for
a ∈ ∂A for a rotation matrix M . Together with the results of the previous section,
this gives a bound on the volume of A4MA, proving Theorem 3.3.

Lemma 3.10. Let A ⊂ Rd be a bounded set. Let M ∈ Rd×d be a rotation matrix
and let w = maxa∈∂A |a−Ma|. Then

Hd
(⋃
{`(a,Ma) : a ∈ ∂A}

)
≤
(

2d
d+1

) d−1
2 wHd−1(∂A).

Proof. The proof works similarly as the one of Lemma 3.9. We abbreviate L =⋃
{`(a,Ma) : a ∈ ∂A}. Let δ > 0 and let {Bj : j ∈ N} be a covering of ∂A with

diamBj ≤ δ for all j ∈ N. We again cover L by a set of cylinders {Zj : j ∈ N},
which are defined using the sets Bj . Since the line segments in L are not parallel,
top and bottom of Zj have a volume that is larger than a ball of diameter diam(Bj),
and therefore we get a constant in the inequality, which is larger than one.

Let enc(Bj) and enc(MBj) be the smallest enclosing balls of Bj and MBj .
Clearly, both have the same radius. By Theorem 2.1, their radius r is at most√

d
2d+2 diam(Bj). Let t be the vector from the center of enc(Bj) to the center of

enc(MBj). The length of |t| is bounded from above by w + 2
√

d
2d+2 diam(Bj). See

Figure 3.3 for illustration.

BjMBj

·w+
q|
|dd 2+2

diam( )Bj

t

4

Zj

enc ( ) ?jtBj( )

Figure 3.3.: The definition of the cylinder Zj , which contains all line segments
`(b,Mb) for b ∈ Bj .

Already the convex hull of enc(Bj) and enc(MBj) contains the union of all line
segments `(b,Mb) for b ∈ Bj . We enlarge this set by considering the cylinder Zj
having copies of the (d − 1)-dimensional ball enc(Bj)|t⊥ as top and bottom. Top
and bottom are touching enc(Bj) and enc(MBj), respectively, so that the cylinder
contains the convex hull of enc(Bj) and enc(MBj). The volume of top and bottom

equals Hd−1(enc(Bj)|t⊥) = ωd−1r
d−1 ≤ ωd−1( d

2d+2)
d−1
2 diam(Bj)

d−1. The distance

of top and bottom is at most |t| + 2r ≤ w + 4
√

d
2d+2 diam(Bj). By [28, Theorem
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3.4. Lower bounds

3.2.23] the volume of Zj can be computed as the product of the area of the bottom
and the height of the cylinder.

We have

Hd(L) ≤
∑
j∈N
Hd(Zj)

≤
∑
j∈N

ωd−1

(
d

2d+2

) d−1
2 diam(Bj)

d−1
(
w + 4

√
d

2d+2 diam(Bj)
)

≤
(
w + 4

√
d

2d+2δ
) ∑

j∈N
ωd−1

(
d

2d+2

) d−1
2 diam(Bj)

d−1

≤ 2
d−1
2
(

d
d+1

) d−1
2

(
w + 4

√
d

2d+2δ
) ∑

j∈N
ωd−12−(d−1) diam(Bj)

d−1

This implies Hd(L) ≤
(

2d
d+1

) d−1
2
(
w + 4

√
d

2d+2δ
)
Hd−1
δ (∂A) for all δ > 0. Therefore

Hd(L) ≤
(

2d
d+1

) d−1
2 w Hd−1(∂A).

A close look into the proof of the above shows that, if we could assume in the

proof that the covering {Bj}j≥0 contains only balls, then the constant
(

2d
d+1

) d−1
2 in

Lemma 3.10 could be replaced by 1. We can do this for sets for which the Hausdorff
and the spherical measure coincide, as was discussed in Section 2.1.

Corollary 3.11. Let A ⊂ Rd be a bounded set such that ∂A is (Hd−1, d − 1)-
rectifiable. Let M ∈ Rd×d be a rotation matrix and let w = maxa∈∂A |a − Ma|.
Then

Hd
(⋃
{`(a,Ma) : a ∈ ∂A}

)
≤ wHd−1(∂A).

For example, if A ⊂ Rd is a finite union of simplices, then ∂A is (Hd−1, d − 1)-
rectifiable. Finite unions of simplices are a common representation of shapes, so this
corollary is interesting for the shape matching application of this chapter.

3.4. Lower bounds

We prove a lower bound on the volume of (A+ t)4A for a translation vector t ∈ Rd
in terms of the length of t and the diameter and the volume of A.

Lemma 3.12. Let t ∈ Rd be a vector of length at most diam(A). Then

|(A+ t)4A| ≥ |A|
diam(A) |t|.

Proof. Let k = ddiam(A)
|t| e. LetH be a hyperplane orthogonal to t such thatH touches

A, and one closed halfspace defined by H, say H+, contains A and A + t. For an
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3. The objective function

illustration of the following definitions, see Figure 3.4. Define parallel hyperplanes
H0, H1, . . . ,Hk+2 such that the Hi are orthogonal to t, the distance of Hi to Hi+1

equals |t| for all i = 0, . . . , k + 1 and H1 = H. Denote the slices H+
i ∩ H

−
i+1 by

Si and the volumes |Si ∩ A| by mi for i = 0, . . . , k. We have m0 = mk+1 = 0 and

Figure 3.4.: The definition of the Hi, Si and mi is sketched.

∑k
i=1mi = |A|. Hence there exists a j such that mj ≥ |A|k . For the first step of the

following computation, note that slice Si is mapped onto Si+1 by the translation t.

|(A+ t)4A| =
k∑
i=0

|t(A ∩ Si)4 (A ∩ Si+1)|

≥
k∑
i=0

||t(A ∩ Si)| − |A ∩ Si+1||

=

k∑
i=0

||A ∩ Si| − |A ∩ Si+1||

=
k∑
i=0

|mi −mi+1|

=

j−1∑
i=0

|mi −mi+1|+
k∑
i=j

|mi −mi+1|

≥
∣∣∣j−1∑
i=0

mi −mi+1

∣∣∣+
∣∣∣ k∑
i=j

mi −mi+1

∣∣∣
= 2mj

≥ 2|A|
k
.
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3.4. Lower bounds

δ

δ
1

1

Figure 3.5.: Two rectangles of side lengths 1 and δ with small maximal overlap.
The square has the same area as the Minkowski sum of the rectangles.

Because of
2|A|
k

=
2|A|

ddiam(A)
|t| e

≥ 2|A||t|
diam(A) + |t|

≥ |A||t|
diam(A)

,

the claim of the lemma follows.

We are interested in the maximal volume of overlap of A and B; still, it is an
interesting question how small the maximal volume of overlap can be. We determine
a simple lower bound in terms of the volumes and the diameters of A and B.

The maximal volume of overlap can be very small as the following example of
skinny rectangles shows. The rectangles [0, 1]k×[0, δ]d−k ⊂ Rd and [0, δ]k×[0, 1]d−k ⊂
Rd have a maximal volume of overlap of δd, which equals the product of their
volumes. The volume of their Minkowski sum is (1 + δ)d. Figure 3.5 shows an
example in dimension 2.

We consider the case of translations here. Of course, the bound is then also a
lower bound in the case of rigid motions.

Proposition 3.13. There exists t ∈ Rd such that |t(A) ∩B| ≥ |A| |B|
|B⊕(−A)| .

Proof. As we will see soon, the function f : Rd → Rd with f(t) = |t(A)∩B|
|A| |B| is a

density function that equals 0 outside the set B ⊕ (−A). If we had f(t) < 1
|B⊕(−A)|

for all t ∈ Rd, then 1 =
∫
B⊕(−A) f(t) dt <

∫
B⊕(−A)

1
|B⊕(−A)| dt = 1, which would be

a contradiction. Hence there exists t ∈ Rd such that |t(A) ∩B| ≥ |A| |B|
|B⊕(−A)| .

We now find an upper bound on |B ⊕ (−A)| in terms of the diameters of A
and B. Let enc(−A) be the smallest enclosing ball of −A. We have B ⊕ (−A) ⊆
enc(B)⊕ enc(−A).

The Minkowski sum of two balls is again a ball. Its radius is the sum of the
radii of the summands. Hence the volume of enc(B)⊕ enc(−A) equals (rA + rB)dωd
where rA is the radius of enc(−A) and rB is the radius of enc(B).
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3. The objective function

By Theorem 2.1, we have rA ≤
√

d
2d+2 diam(A) and analogously for B. Hence

there exist numbers C1 and C2 that depend on d and fulfill

|B ⊕ (−A)| = C1

(
(diam(A) + diam(B))d

)
= C2

(
diam(A)d + diam(B)d

)
.

Thus as a lower bound on |A||B|
|B⊕(−A)| we get the following:

|A||B|
|B ⊕ (−A)|

≥ ωd
(

2d+ 2

d

) d
2 |A||B|

(diam(A) + diam(B))d
.

The factor ωd
(

2d+2
d

) d
2 tends to 0 as d tends to∞, but we assume that the dimension

is constant. If the shapes A and B fulfill the assumptions described in Section 2.2,
we know an upper bound on diam(A) and a lower bound on |A|. If we are given

such bounds also for the shape B, we can compute a lower bound on |A||B|
|B⊕(−A)| with

the above inequality.
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4. The probabilistic toolbox

In this short chapter, we introduce the tools from probability theory that we use
for analyzing the probabilistic algorithms in Chapters 5, 6 and 8. We apply results
from [25] to deduce a theorem that we call our probabilistic toolbox. It describes
conditions under which the empirical measure approximates the density function
uniformly and is central for the analysis of our algorithms.

We assume that the reader is familiar with the basic notions of probability theory,
such as the concepts of random vectors, density functions and expected values, as
they are explained, for example, in [36, 34]. We start by briefly discussing how
to determine the density function of a random vector. We cite a transformation
formula for density functions that allows us to compute the density function of a
transformed random vector from the density function of the original random vector.
Then we explain how to uniformly approximate the density function by the empirical
measure, resulting in Theorem 4.6, the probabilistic toolbox. We also define the
notion of Vapnik-Chervonenkis dimension, or short VC dimension, and give some
examples and properties that we use in later chapters.

Let Ω ⊆ Rk be a space with a metric d, a measure vol and a probability measure µ.
Recall that µ has a density function f : Ω→ R if the probability µ(E) of all events
E ⊆ Ω can be computed as the integral over the density function

∫
E f(x)dx. The

function f is non-negative and we have
∫

Ω f(x)dx = 1. An important example is
the uniform distribution on a measurable set S ⊂ Rk of finite positive volume. Its
density function equals χS(x)/ vol(S) where χS denotes the characteristic function
that equals 1 at points from S and 0 at points from Rk \ S.

At this point, a remark about measurability seems appropriate. There are two
approaches in the literature to define measures. The first is to define a measure µ on
all subsets of a space Ω. A measure is then defined as a non-negative, subadditive
function to the extended real line. A set E ⊆ Ω is said to be measurable if for all
subsets A ⊆ Ω, we have µ(E) = µ(E ∩ A) + µ(E \ A). The set of all measurable
sets forms a σ-algebra. We follow this approach, which is taken in the classic book
of Federer [28], for example.

The other approach is to define a measure only on the sets of some σ-algebra
such that all sets in this σ-algebra are measurable. A measure is then defined to
be a non-negative, countably additive function to the extended real line. With the
second approach, one often has to be careful to formulate results for measurable sets
only. This caution is not necessary in the same way when taking the first approach.
Both approaches lead to the same results, the difference is a difference of language
only.
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4. The probabilistic toolbox

4.1. Transformation of density functions

The following transformation theorem for density functions can be found in its basic
version in many probability theory books; we cite it from Hoffmann-Jørgensen [34,
Volume II], adapting the notation to our usage.

Let X be an absolutely continuous random vector on Rk with density function fX
and probability measure P such that P (X ∈ D) = 1 for some open set D ⊂ Rk. Let
ϕ : D → Rk be a continuously differentiable, injective map such that Jϕ(u) > 0 for

all u ∈ D where the Jacobian Jϕ(u) is defined to be
∣∣∣det

((∂ϕi
∂xj

(u)
)
i,j=1,...,k

)∣∣∣. Then

Y = ϕ(X) is an absolutely continuous random vector on Rk with density function

fY (v) =

{
fX(ϕ−1(v))
Jϕ(ϕ−1(v))

for all v ∈ ϕ(D)

0 for all v /∈ ϕ(D)
.

This theorem follows from the change of variable formula for multiple integrals. We
need a slightly more general version of the theorem for Borel sets D, which follows
from the following special case of [34, Section 8.7].

Theorem 4.1. Let T : D → Rd be an almost everywhere smooth and injective
Borel function, where D is a Borel subset of Rd. Let B ⊆ D be a Borel set and let
g : Rd → [0,∞] be a Borel function. Then∫

B
g(T (x))JT (x)dx =

∫
T (B)

g(y)dy.

4.2. Uniform approximation of the density function by the
empirical measure

In a first step, we would like to approximate the values of the density function
at a point x ∈ Ω by the probability of a small set containing x. For sufficiently
nice functions f and small sets B containing x, the probability µ(B) is close to
f(x) · vol(B), implying that f(x) is close to µ(B)/ vol(B). We make this precise in
Proposition 4.2. As small sets containing x we use balls of a small radius δ, centered
at x. In a metric space, we denote the closed ball of radius δ that is centered at x
by B(x, δ).

Recall that a function g from a metric space (Ω, d) to R is called Lipschitz continu-
ous if there is a constant L such that for all x, y ∈ Ω it holds |g(x)−g(y)| ≤ L d(x, y).
The constant L is called a Lipschitz constant of f .

The following proposition implies that, if f is Lipschitz continuous, then the ratio
µ(B(x,δ))

vol(B(x,δ)) converges uniformly to the value of the density function f(x) as δ tends
to zero.

Proposition 4.2. Let Ω be a space with a metric d and a probability measure µ. Let
f : Ω→ R be a Lipschitz continuous density function of µ with Lipschitz constant L.
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4.2. Uniform approximation of the density function by the empirical measure

Then, for all x ∈ Ω and δ > 0,∣∣∣∣ µ(B(x, δ))

vol(B(x, δ))
− f(x)

∣∣∣∣ ≤ Lδ.
Proof. Let x ∈ Ω. For all y ∈ B(x, δ), we have |f(x)−f(y)| ≤ Lδ. Since µ(B(x, δ)) =∫
B(x,δ) f(y)dy, it holds that

(f(x)− Lδ) vol(B(x, δ)) ≤ µ(B(x, δ)) ≤ (f(x) + Lδ) vol(B(x, δ)).

In a second step, we approximate the probability measure µ by the empirical
measure µN , which we now define. Let X1, . . . , XN be a sequence of independent
and identically distributed (i.i.d.) random vectors with common distribution µ. The
empirical measure µN of a measurable set C is defined as

µN (C) =
|{i : Xi ∈ C}|

N
=

1

N

N∑
i=1

χC(Xi).

On a basic level, the deviation from the expected value can be controlled by the
well-known Chernoff bound.

Theorem 4.3 (Chernoff bound). Let X1, . . . , XN be independent binary random
variables, let X =

∑N
i=1Xi and let ε ∈ (0, 1). Then

P (|X −EX| > εN) < 2e−ε
2N/2

where EX is the expected value of X.

We need a tool that allows us to control not only the error at one point, but over
a whole space, that is, the supremum of the error. We cite two theorems [25] that
allow us to do so.

Together they tell us in which sense µN tends to µ as N tends to infinity. The
first theorem states that, with high probability, the supremum of the error over a
set system does not deviate much from its expected value.

Theorem 4.4 (Chapter 3, [25]). Let N ∈ N and let X1, . . . , XN be i.i.d. random
variables taking values in Rk with common distribution µ and empirical distribu-
tion µN . Let C be a class of subsets of Rk. For all τ > 0,

P

(∣∣∣∣sup
C∈C
|µN (C)− µ(C)| −E

(
sup
C∈C
|µN (C)− µ(C)|

)∣∣∣∣ > τ

)
≤ 2e−2Nτ2 .

For the formulation of the second theorem, we need to know what the Vapnik-
Chervonenkis dimension is [52]. For a class C of subsets of Rk, define the Vapnik-
Chervonenkis shatter coefficient to be

SC(m) = max
x1,...,xm∈Rk

|{{x1, . . . , xm} ∩ C : C ∈ C}|.
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4. The probabilistic toolbox

The Vapnik-Chervonenskis dimension, or shortly VC dimension, of a class C is de-
fined as the largest integer m such that SC(m) = 2m. We denote it by dim(C) = m.
We say that C shatters {x1, . . . , xm} if |{{x1, . . . , xm} ∩ C : C ∈ C}| = 2m.

The next theorem says that, if the VC dimension of the set system is finite, then
the expected value of the supremum of the approximation error over a set system
converges to 0 as the number of random samples tends to infinity.

Theorem 4.5 (Chapter 4, [25]). Let X1, . . . , XN be i.i.d. random variables taking
values in Rk with common distribution µ and empirical distribution µN . Let C be a
class of subsets of Rk with VC dimension V . Then

E

(
sup
C∈C
|µN (C)− µ(C)|

)
≤ c
√
V/N

where c is a universal constant.

The constant c could be bounded explicitly.
Together, Proposition 4.2, Theorems 4.4 and 4.5 quantify the following intuitive

statement:

f(x) ≈
small δ

µ(B(x, δ))

vol(B(x, δ))
≈

large N
µN (B(x, δ))

vol(B(x, δ))
.

Theorem 4.6 makes this precise. For optimization problems whose objective func-
tion can be expressed as the Lipschitz continuous density function of some probabil-
ity distribution, this yields a method for solving these problems approximately by
random sampling.

For the shape matching application, given two shapes A and B, we are interested
in finding a translation or rigid motion f for which the volume of overlap of f(A)
and B is close to maximal. We will express this function that maps a transformation
to the volume of overlap as a density function that can easily be sampled.

We summarize the result in the following longish theorem that specifies under
which assumptions and in which way the maximal value of the density function can
be approximated by a sample point of maximal empirical measure.

Theorem 4.6 (Probabilistic toolbox). Let Ω ⊆ Rk be a metric space, and let B be
the set of balls of some fixed radius δ > 0 in Ω. Let vol be a measure on Ω such that
there is a vδ > 0 with vol(B(x, δ)) = vδ for all x ∈ Ω. Assume further that B has
finite VC dimension V .

Let µ be a probability measure on Ω that has a Lipschitz continuous density func-
tion f with Lipschitz constant L. Let X1, . . . , XN be i.i.d. random variables taking
values in Ω with common distribution µ and empirical measure µN .

Let B∗ ∈ B a random set such that µN (B∗) = max{µN (B(Xi, δ)) : 1 ≤ i ≤ N},
and let the random vector X∗ be the center of B∗. Then for all τ > 0 with probability
≥ 1− 2e−2Nτ2 the following inequality is true:

f(X∗) ≥ f(x)− 2(c
√
V/N + τ)/vδ − 3Lδ for all x ∈ Ω. (4.1)

In this inequality, c is the universal constant from Theorem 4.5.
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4.2. Uniform approximation of the density function by the empirical measure

Proof. Because of the Lipschitz continuity of f and Proposition 4.2, for all B ∈ B
with center x holds

|f(x) − µ(B)/vδ| ≤ Lδ. (4.2)

By the triangle inequality and Theorems 4.4 and 4.5, we know that with probability
at least 1− 2e−2Nτ2 for all B ∈ B

|µ(B) − µN (B)| ≤ c
√
V/N + τ. (4.3)

Let η = (c
√
V/N+τ)/vδ. If f(x) ≤ η+Lδ for all x ∈ Ω, then Equation (4.1) is true

because f is non-negative. Assume that there is an x ∈ Ω such that f(x) > η + Lδ.
Let x̄ ∈ Ω be a point for which f is maximal. If f does not attain its supremum,
then let ε′ > 0 and let x̄ be a point such that f(x̄) > η + Lδ and f(x̄) + ε′ > f(x)
for all x ∈ Ω.

Let B̄ = B(x̄, δ). Because of f(x̄) ≤ µN (B̄)/vδ + η+Lδ by the triangle inequality
and Equations (4.2) and (4.3), we have µN (B̄) > 0. Therefore there is an i ∈
{1, . . . , N} such that Xi ∈ B̄. Since f is Lipschitz continuous, we have

|f(x̄)− f(Xi)| ≤ Lδ. (4.4)

We put things together now. First we use Inequality (4.4). Second we use Inequal-
ities (4.2), (4.3) and the triangle inequality. Third we use the assumption on B∗.
Lastly we use Inequalities (4.2), (4.3) and the triangle inequality again. We get that
with probability at least 1− 2e−2Nτ2 the following holds:

f(x̄) ≤ f(Xi) + Lδ

≤ µN (B(Xi, δ))/vδ + η + 2Lδ

≤ µN (B∗)/vδ + η + 2Lδ

≤ f(X∗) + 2η + 3Lδ.

Since this holds for all small ε′ > 0, it implies f(x) ≤ f(X∗) + 2η+ 3Lδ for all x ∈ Ω
and thus Equation (4.1).

Since Equations (4.2), (4.3) and (4.4) bound the absolute difference, choosing
a sample point whose neighborhood has minimal empirical measure approximates
the minimal value of the density function in a way completely analogous to Equa-
tion (4.1). More generally, the fraction of random samples in a neighborhood divided
by the volume of the neighborhood is an approximation of the value of the density
function at the center of the neighborhood for any neighborhood because of the
uniform convergence.

We generalize Theorem 4.6 to cases where the objective function has the form f
g

for a density function f as above and a Lipschitz continuous function g that is
positive and bounded away from zero.

Furthermore, we require no longer that all balls of radius δ have the same volume,
but only that the volume is bounded away from zero.
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4. The probabilistic toolbox

Theorem 4.7 (Refined probabilistic toolbox). Let Ω ⊆ Rk be a metric space, and
let B be a set of balls of some fixed radius δ > 0 in Ω. Let vol be a measure on Ω
such that there is a vδ > 0 with vol(B(x, δ)) ≥ vδ for all x ∈ Ω. Assume further that
B has finite VC dimension V .

Let µ be a probability measure on Ω that has a Lipschitz continuous density func-
tion f with Lipschitz constant Lf , and let f be bounded from above by Mf . Let
X1, . . . , XN be i.i.d. random variables taking values in Ω with common distribution
µ and empirical measure µN . Let C > 0 and let g : Ω → [C,+∞) be a Lipschitz
continuous function with Lipschitz constant Lg.

Let B∗ ∈ B a random set such that µN (B∗)
g(X∗) vol(B(X∗,δ)) = max

{
µN (B(Xi,δ))

g(Xi) vol(B(Xi,δ))
:

i = 1, . . . , N
}

where the random vector X∗ is the center of B∗. Then, for all τ > 0,

with probability ≥ 1− 2e−2Nτ2, for all x ∈ Ω

f(X∗)

g(X∗)
≥ f(x)

g(x)
−
(2(c

√
V/N + τ)

C vδ
+

3Lfδ

C
+
MfLgδ

C2

)
. (4.5)

In this inequality, c is the universal constant from Theorem 4.5.

Proof. The proof follows the same lines as the proof of Theorem 4.6. Abbreviate
η = (c

√
V/N + τ)/vδ. For all i = 1, . . . , N and for all τ > 0, with probability

≥ 1−2e−2Nτ2 , the following inequality is true, similar to Inequalities (4.2) and (4.3),

∣∣∣f(Xi)

g(Xi)
− µN (B(Xi, δ))

g(Xi) vol(B(Xi, δ))

∣∣∣ ≤ η + Lfδ

C
. (4.6)

If f(x)
g(x) ≤

η+Lf δ
C for all x ∈ Ω, then Equation (4.5) is trivially true. Otherwise,

let ε′ > 0 and let x̄ ∈ Ω be such that f(x̄)
g(x̄) >

η+Lf δ
C and f(x̄)

g(x̄) + ε′ > f(x)
g(x) for all x ∈ Ω.

We show that Equation (4.5) is true for x̄. This implies that it is true for all x ∈ Ω.
Let B̄ = B(x̄, δ). As in the proof of Theorem 4.6, we have µN (B̄) > 0 and therefore
there is an i ∈ {1, . . . , N} such that Xi ∈ B̄. We estimate the difference between
f(x̄)
g(x̄) and f(Xi)

g(Xi)
.

∣∣∣f(x̄)

g(x̄)
− f(Xi)

g(Xi)

∣∣∣ ≤ ∣∣∣f(x̄)

g(x̄)
− f(Xi)

g(x̄)

∣∣∣+
∣∣∣f(Xi)

g(x̄)
− f(Xi)

g(Xi)

∣∣∣
≤
Lfδ

C
+
f(Xi) |g(Xi)− g(x̄)|

g(x̄) g(Xi)

≤
Lfδ

C
+
MfLgδ

C2
.
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4.2. Uniform approximation of the density function by the empirical measure

Using this estimate and Equation (4.6), we prove Equation (4.5):

f(X∗)

g(X∗)
≥ µN (B∗)

g(X∗) vol(B(X∗, δ))
−
η + Lfδ

C

≥ µN (B(Xi, δ))

g(Xi) vol(B(Xi, δ))
−
η + Lfδ

C

≥ f(Xi)

g(Xi)
−

2(η + Lfδ)

C

≥ f(x̄)

g(x̄)
− 2η

C
−

3Lfδ

C
−
MfLgδ

C2
.

To apply these theorems, we have to bound the VC dimension of classes of balls of
fixed radius δ in a metric space. In preparation of this, we mention two easy results
about the VC dimension.

Note that the VC dimension of a subclass of C can be only smaller than dim(C).
Therefore, the following lemma bounds the VC dimension whenever our space at
hand is some Rk with the metric that is induced by the maximum norm.

Lemma 4.8. [25, Lemma 4.1] The VC dimension of the class of all rectangles in Rk
equals 2k.

Lemma 4.9. [26] The VC dimension of the class of all closed Euclidean balls in Rk
equals k + 1.
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5. Probabilistic matching under
translations in arbitrary dimension

In this chapter, we design and analyze a simple probabilistic algorithm for matching
shapes in Rd under translations. Given two shapes A and B, the algorithm computes
a translation t∗ such that the volume of overlap of t∗(A) and B is approximately
maximal.

The algorithm works as follows. Given two shapes A and B, we pick a point a ∈ A
and a point b ∈ B uniformly at random. This tells us that the translation t that
is given by the vector b − a maps some part of A onto some part of B. We record
this as a vote for t and repeat this procedure very often. Then we determine the
densest cluster of the resulting point cloud of translation vectors, and output the
center of this cluster. This translation maps a large part of A onto B. The details
of the algorithm are explained in Section 5.1.

We show that this algorithm approximates the maximal volume of overlap under
translations. More precisely, let topt be a translation that maximizes the volume of
overlap of A and B, and let t∗ be a translation that is computed by the algorithm.
Given an error tolerance ε and an allowable probability of failure p, both between 0
and 1, we derive bounds on the required number of random experiments, guarantee-
ing that the difference between approximation and optimum |topt(A)∩B|−|t∗(A)∩B|
is not larger than ε|A| with probability at least 1 − p. As before, | · | denotes the
volume (Lebesgue measure) of a set. We use ε|A| and not just ε as an error bound
because the inequality should be invariant under scaling of both shapes with the
same factor.

This algorithm is an instance of a probabilistic algorithmic scheme for approxima-
ting an optimal match of planar sets under a subgroup of affine transformations. Alt
and Scharf [5] analyzed another instance of this algorithmic scheme that compares
polygonal curves under translations, rigid motions, and similarities.

A preliminary version of the results in this chapter appeared in [9], together with
Helmut Alt and Ludmila Scharf. In that paper, the algorithm was described and
analyzed only for shapes in the plane. Here we not only generalize the results to
higher dimensions, but also give new and simpler proofs, using the method that
we presented in Chapter 4. We also slightly improve the bounds on the number of
random samples for translations. Furthermore we improve the time complexity of
the algorithm by showing that a simpler definition of a cluster suffices to guarantee
approximation. In [9], a translation (not necessarily a vote) whose neighborhood
contained the maximal number of votes was computed, which boils down to com-
puting a deepest cell of an arrangement of boxes. For N boxes in Rd, the best known
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5. Probabilistic matching under translations in arbitrary dimension

time bound for solving this problem is O(Nd/2/(logN)d/2−1 polyloglogN) [19]. Here
we show that it is sufficient to output the vote whose neighborhood contains the max-
imal number of votes, which can be computed by brute force in time O(N2) in any
dimension. The time bound can be further improved to O

(
N(logN)d−1

)
by using

orthogonal range counting queries [22].

For two simple polygons with at most n vertices in the plane, Mount et al. [43] show
that a translation that maximizes the area of overlap can be computed in time O(n4).
Ahn et al. [1] state that the maximal volume of overlap of two sets of n simplices
in Rd under translations can be computed in time O(n2d) by a generalization of
Mount et al.’s algorithm to higher dimensions.

Cheong et al. [20] introduce a general probabilistic framework, which they use
for approximating the maximal area of overlap of two unions of n and m triangles
in the plane, with prespecified absolute error ε, in time O(m + (n2/ε4)(log n)2) for
translations. Their algorithm works with high probability. The method of Cheong
et al. bears some similarity to our approach. For shapes A and B, they sample a
set of points S uniformly from shape A. For each sample point s ∈ S, they compute
the set of translations W (s) that map s into B. For every s ∈ S, the set W (s) is
a translate of B. They return a point from a deepest cell in the arrangement of all
regions W (s) as a translation that approximates the maximal area of overlap.

In contrast to their approach, we do not need to compute the deepest cell of an
arrangement. Furthermore our method does not require the shapes to be polygonal
regions but works for a larger class of shapes. Apart from measurability assumptions,
we only require that uniformly distributed random points can be generated from the
shapes; see Chapter 2 for details on the shape model that we use. For unions of
simplices, the runtime of our method depends only linearly on the number of vertices
in any dimension, but more significantly on the error ε and a fatness parameter,
namely the isoperimetric quotient.

5.1. The algorithm

We start by introducing some notation. A translation ft : Rd → Rd, ft : x 7→ x+t is
identified with its translation vector t, so the translation space equals Rd. Observe
that an ordered pair of points in Rd uniquely determines a translation mapping the
first point onto the second. The set of translations that map some point of A ⊂ Rd
onto some point of B ⊂ Rd equals the Minkowski sum B ⊕ (−A) = {b − a : a ∈
A, b ∈ B}. We denote the Euclidean distance by | · |, and the maximum norm by
|| · ||∞. The closed ball around t ∈ Rd of radius δ with respect to || · ||∞ is denoted
by B(t, δ) = {s ∈ Rd : ||t− s||∞ ≤ δ}.

Given an integer N and a positive number δ, the algorithm draws N times
points a ∈ A and b ∈ B uniformly at random (u.a.r.) and stores the N random
translations b − a in the translation space. Then it determines a translation t∗

among the N random translations such that the cube of side length 2δ, centered
at t∗, contains the maximum number of the N random translations. The transla-
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5.1. The algorithm

tion t∗ is the result of the algorithm. We also output the number of votes that it
received, which is an approximation of the maximal volume of overlap when suit-
ably normalized. Note that, in contrast to [9], the output translation t∗ is one of
the votes, which simplifies its computation. First we state a heuristic version of the
algorithm. On the input of a shape A, the function RandomPoint(A) returns a point
from A uniformly at random.

Algorithm 1: ProbMatchT(A,B, δ,N)

Input: shapes A,B ⊂ Rd, clustering size δ > 0, sample size N ∈ N
collection Q← ∅;
for i = 1 . . . N do

point a← RandomPoint(A);
point b← RandomPoint(B);
add(Q, b− a);

end
return FindDensestClusterT(Q, δ);

Function FindDensestClusterT(Q, δ)

Input: collection Q of points in Rd, positive number δ
Output: a pair of a point t in Q and an integer V such that the cube of side

length 2δ that is centered at t contains a maximal number V of
points from Q

To turn Algorithm 1 from a heuristic to an approximation algorithm, we modify
the input. Algorithm 2 gets more meaningful parameters as input: along with the
shapes A and B, an error tolerance ε and an allowable probability of failure p are
given as input. The algorithm computes a clustering size δ and a sample size N that
guarantee that the additive error of the output translation is less than ε|A| with
probability at least 1− p.

It turns out that such a clustering size δ can be computed depending only on A
and ε, and such a sample size can be computed depending on B, δ, ε, and p. A
smaller clustering size enforces a larger sample size. Of course, the roles of A and B
can be interchanged. This may result in a smaller N , which would clearly improve
the runtime of the algorithm. For the shortness of presentation, we do not reflect
this fact in the following.

The algorithm also outputs a certain multiple of the number of votes that the
output translation receives by the run of Algorithm 1. This number approximates
the volume of overlap when A is translated by the output translation. It is used for
matching under rigid motions in the next chapters.

The clustering size δ has to be sufficiently small to guarantee approximation; it
depends on the shapes how small δ has to be. Skinny shapes require a smaller
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5. Probabilistic matching under translations in arbitrary dimension

Algorithm 2: MaxOverlapT

Input: shapes A,B ⊂ Rd, error tolerance ε ∈ (0, 1), allowable probability of
failure p ∈ (0, 1)

real δ ← ClusteringSizeT(A, ε);
integer N ← SampleSizeT(B, ε, δ, p);
(point,integer) (t∗, V )← ProbMatchT(A,B, δ,N);
// Compute an estimate of |t∗(A) ∩B|/(|A| |B|)
real V ∗ ← V (2δ)−dN−1;
return (t∗, V ∗);

Function ClusteringSizeT(A, ε)

Input: shape A, parameter ε ∈ (0, 1)

Output: positive number δ ≤ 2
√
d

3(d+1)
ε|A|
|∂A|

clustering size than fat shapes. The relevant concept of fatness is perimeter-fatness,
introduced in Chapter 2. The clustering size also depends on the absolute size of
the shape since scaling a shape with a constant greater than 1 enlarges the shape’s
features and allows a larger clustering size. Given shapes A,B and an error tolerance
ε, we prove that for all positive clustering sizes below some constant multiple of ε |A||∂A|
there is a sample size N that guarantees approximation with high probability.

The universal constant C can be deduced from the proofs. Note that, when both
shapes are scaled with the same factor, the sample size N does not change. The
clustering size scales with the shapes. This is reasonable because blowing up the
shapes coarsens fine features.

The following theorem states that Algorithm 2 computes a probabilistic absolute
error approximation of the maximal volume of overlap under translations.

Theorem 5.1 (Approximation property of Algorithm 2). Let A and B be shapes
in constant dimension d, which are given by an oracle and fulfill the assumptions
described in Section 2.2. Let ε, p ∈ (0, 1) be parameters.

Algorithm 2 with input (A,B, ε, p) computes a pair of a translation t∗ and a num-
ber V ∗ such that, with probability at least 1−p, we have |t∗(A)∩B| ≥ |t(A)∩B|−ε|A|
for all translations t ∈ Rd, and

∣∣V ∗|A| |B| − |t∗(A) ∩B|
∣∣ ≤ ε

2 |A|.

Before proving this theorem, we determine the runtime of the algorithm. Re-
call that the parameters KA,mA,MB are given for the shapes by the assumptions
described in Section 2.2.

Theorem 5.2 (Runtime of Algorithm 2). Let A and B be shapes in constant dimen-
sion d, which are given by an oracle and fulfill the assumptions described in Section
2.2. Let ε, p ∈ (0, 1) be parameters.

Algorithm 2 with input (A,B, ε, p) runs in time O
(
T (N) + N(logN)d−1

)
where

N = O
(
ε−(2d+2)(KAMB/mA)2 log 2

p

)
.
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5.2. Correctness proof

Function SampleSizeT(B, ε, δ, p)

Input: shape B, parameters ε, p, δ > 0
Output: integer N ≥ Cε−2 δ−2d |B|2 log 2

p for some universal constant
C > 0

Proof of Theorem 5.2.

• 2N calls of Function RandomPoint:
By assumption, N uniformly distributed random points can be generated from
a shape in time T (N). For the case of unions of simplices, see Chapter 2.

• Functions ClusteringSizeT(A, ε) and SampleSizeT(B, ε, δ, p):
By assumption, we are given an upper bound KA on the isoperimetric quotient
of A, a lower bound mA on |A|, and an upper bound MB on |B|. In the
case of unions of simplices, we can compute |A| and |B| in linear time as a
preprocessing step and assume that |B| is at most a constant multiple of |A|.
Hence for all shapes that fulfill the assumption described in Section 2.2, we
can compute in constant time a clustering size

δ = 2
√
d

3(d+1) ε (mA/KA)1/d ≤ 2
√
d

3(d+1) ε
|A|
|∂A|

and a sample size

N = C(d+ 1)2
(3(d+1)

2
√
d

)2d
K2
A (MB/mA)2 ε−2d−2 log 2

p

≥ C(d+ 1)2 ε−2 δ−2d |B|2 log 2
p .

• Function FindDensestClusterT(Q, δ):
Let Q = {t1, . . . , tN}. A translation ti maximizing |B(ti, δ) ∩ Q| can be
computed in time O

(
N(logN)d−1

)
for all t1, . . . , tN ∈ Rd and δ > 0. For

this, we build a standard orthogonal range counting query data structure for
t1, . . . , tN in time O

(
N(logN)d−1

)
. Then we query the data structure N

times with cubes of side length 2δ, centered at the ti. Each query takes time
O
(
(logN)d−1

)
. For details and references on range counting queries, see for

example the book [22].

5.2. Correctness proof

Let µ be the probability distribution on the translation space that is induced by the
random experiment in the algorithm, and let µN be the empirical measure. The
main idea is to prove that the density function of µ is proportional to the objective
function, that is the function that maps a translation vector t ∈ Rd to the volume
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5. Probabilistic matching under translations in arbitrary dimension

of the intersection of t(A) and B. Then the goal is to find a translation at which
the density function is approximately maximal.

Conceptually, the density function f is approximated in a two step process. First,
f(t) · |B(t, δ)| is close to µ(B(t, δ)) if f is nice enough and δ is sufficiently small.
Second, the probability of a small cube µ(B(t, δ)) is close to µN (B(t, δ)) if N is
sufficiently large. The analysis of the algorithm is based on these simple ideas whose
details are not that easy. They are hidden in Theorem 4.6, which we proved in
Chapter 4. We first prove that the density function of µ is proportional to the
objective function.

In the following, for a function ϕ on Rd ×Rd, we may write ϕ(a, b) for a function
value, omitting the double brackets.

Lemma 5.3. Let Z be the random vector on Rd that draws translations b− a where
(a, b) ∈ A×B is drawn from the uniform distribution. The density function of Z is

given by f(t) = |t(A)∩B|
|A| |B| .

Proof. Let X be a random vector on Rd×Rd that is uniformly distributed on A×B;
its density function fX is given by fX(x) = χA×B(x)/(|A| |B|). Let ϕ : A × B →
A × (−A ⊕ B) be the function defined by ϕ(a, b) = (a, b − a). Denote by Id the
(d × d)-identity matrix. The function ϕ is linear with matrix representation J =(
Id 0
−Id Id

)
, and its determinant equals 1. By Section 4.1, the density function

of Y = ϕ(X) equals fY (a, t) = χA×B(a, a + t)/(|A| |B|). Let π be the projection
defined by π : A× (−A⊕B)→ (−A⊕B), π : (a, t) 7→ t, and define Z = π(Y ). The
density function fZ of Z equals

∫
Rd fY (a, t)da.

Since χA×B(a, a+ t) = χA(a)χB−t(a) = χA∩(B−t)(a), we have

fZ(t) =

∫
Rd

χA∩(B−t)(a)

|A| |B|
da =

|A ∩ (B − t)|
|A| |B|

=
|(A+ t) ∩B|
|A| |B|

.

Next we deduce from Corollary 3.5 that f is Lipschitz continuous with respect
to || · ||∞. Applying the Cauchy-Schwarz inequality yields |t − s| ≤

√
d ||t − s||∞,

which is best possible.

Corollary 5.4. The function f on Rd, given by f(t) = |t(A)∩B|
|A| |B| , is Lipschitz con-

tinuous with constant L =
√
d|∂A|

2|A| |B| with respect to the metric that is induced by the
maximum norm.

Now we are ready to prove Theorems 5.1 and 5.2.

Proof of Theorem 5.1. We apply our probabilistic toolbox Theorem 4.6 to the trans-
lation space Rd, equipped with the metric that is induced by the maximum norm.
Let Bδ be the set of closed balls that have radius δ. For every B ∈ Bδ, we have
|B| = 2dδd. By Lemma 4.8, the VC dimension of Bδ is at most 2d.
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5.2. Correctness proof

Let X1, X2, . . . , XN be the random translations in the algorithm. Denote their
common distribution by µ. By Lemma 5.3, µ has a density function f that is given
by f(t) = |t(A)∩B|

|A| |B| , and by Lemma 5.4, f is Lipschitz continuous with constant

L =
√
d|∂A|

2|A| |B| .

Let µN be the empirical measure of µ. Algorithm 1 computes a B∗ ∈ Bδ such
that µN (B∗) = max{µN (B(Xi, δ)) : i = 1, . . . , N}. Let t∗ be the center of B∗. By
Theorem 4.6, for all τ > 0, with probability at least 1− 2e−2Nτ2 , for all t ∈ Rd, we
have

f(t∗) ≥ f(t)−

(
2c
√

2d√
N(2δ)d

+
2τ

(2δ)d
+ 3Lδ

)
(5.1)

for some constant c > 0.

Let ε, p ∈ (0, 1). We want to keep N as small as possible as the runtime of
our algorithm grows with N . We now determine the minimal value of N and a
compatible value of δ for that we can guarantee that with probability at least 1− p
the error is at most ε|A|. For the sake of clarity, we compute N only up to a constant.

Since p ∈ (0, 1) is the allowable probability of failure, we should have 2e−2Nτ2 ≤ p,
which is equivalent to τ ≥

√
1

2N log 2
p . The larger τ is, the larger is the error term

in Inequality (5.1), so we set τ =
√

1
2N log 2

p .

Substituting τ , L and the definition of f shows that

|t∗(A) ∩B| ≥ |t(A) ∩B| −

(√
2 |A| |B|√
N(2δ)d

(
2c
√
d+

√
log

2

p

)
+

3

2

√
d δ|∂A|

)
. (5.2)

We want the additive error in Inequality (5.2) to be at most ε|A|. Therefore it

is necessary that δ < 2ε|A|
3
√
d|∂A| . Let η ∈ (0, 1) be such that δ = η 2ε|A|

3
√
d|∂A| . Then as

condition for N we get the following:

√
2 |A| |B|√
N(2δ)d

(
2c
√
d+

√
log

2

p

)
< (1− η)ε|A|.

There is a universal constant C > 0, such that this condition is fulfilled if

N ≥ C(1− η)−2ε−2 δ−2d |B|2 log 2
p .

Differentiating with respect to η shows that η = d
d+1 minimizes the bound on N , so

we use this value, which gives δ ≤ 2
√
d

3(d+1)
ε|A|
|∂A| .

A look at Inequalities (4.2) and (4.3) in the proof of Theorem 4.6 tells us that
|f(t∗)− µN (B(t∗, δ))/(2δ)d| is at most as large as half of the error term in Inequal-
ity (5.1). This means that

∣∣|t∗(A) ∩B| − |A| |B|V/((2δ)dN)
∣∣ is as most as large as

half of the error term in Inequality (5.2) where V is the number of votes that t∗

received.
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5. Probabilistic matching under translations in arbitrary dimension

5.3. Adaptive Sampling

We improve the probabilistic matching algorithm for translations by computing the
output translation in two steps. First we compute a candidate region of translations
that we prove to contain all optimal translations with high probability. We do so
by matching the two input shapes with an error bound of εk for some k ∈ (0, 1) and
keeping all sufficiently good translations. Second we search for a translation in the
candidate region with error bound ε. We choose k later such that the runtime for
both steps is balanced; it will turn out that it is best to choose k = 2d+2

3d+1 .

For the search in the candidate region, we show how to restrict the algorithm
to certain regions in the translation space. For this, we need to be able to answer
membership queries of the type “Is b ∈ B?” Therefore, in this section, we assume
that in time Tq(N) we cannot only generate N random points from B, but also
answer N membership queries. For details, see Chapter 2.

The improvement in the runtime depends on the size of the candidate region: the
more translations exist that match A and B with small error, the larger is the can-
didate region, and the larger the candidate region, the smaller is the improvement.
More precisely, for a lower bound mB on |B| and an error bound ε, we show a time
bound on the runtime of the algorithm in which the volume of the set

W = {t ∈ Rd : |topt(A) ∩B| − |t(A) ∩B| ≤ (2 |B|mB
+ 1)εk|A|} (5.3)

appears as a multiplicative factor.

Despite the fact that the candidate region may be large, the adaptive algorithm
has a better time bound in ε: the dependence on ε is ε−( 4

3
d+ 8

3
), ignoring log-factors,

in contrast to ε−(2d+2), which we proved for Algorithm 2 in the previous section.

Computation of a candidate region

For the first step, the computation of a candidate region, we modify Algorithm 2.
Instead of Function FindDensestClusterT, we call the following Function Find-
AllDenseClustersT. It returns a collection of translations. The error bound ε and
a lower bound mB on the volume of shape B are given as additional input to the
function.

Function FindAllDenseClustersT(Q, δ, ε,mB)

Input: collection Q of N points in Rd, positive numbers δ, ε, mB

Output: Subcollection Q′ of Q, containing exactly those q ∈ Q for which
V ∗−Vq ≤ 2d+1δdεkN

mB
where Vq = |B(q, δ)∩Q| and V ∗ = maxq∈Q Vq.

Next we give a pseudocode description of the computation of a candidate region,
Algorithm 3.

Let A,B ⊂ Rd be shapes in constant dimension d, and let ε, p ∈ (0, 1) be as usual.
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5.3. Adaptive Sampling

Algorithm 3: MaxOverlapTCandidates(A,B, ε, p)

Input: shapes A,B ⊂ Rd, error tolerance ε ∈ (0, 1), allowable probability of
failure p ∈ (0, 1)

real δ ← ClusteringSizeT(A, εk);

integer N ← SampleSizeT(B, εk, δ, p);
collection Q← ∅;
for i = 1 . . . N do

point a← RandomPoint(A);
point b← RandomPoint(B);
add(Q, b− a);

end
collection Q′ ← FindAllDenseClustersT(Q, δ, ε,mB); // mB ≤ |B|
return (Q′, δ);

Lemma 5.5. Assume that |topt(A) ∩ B| ≥ εk

2 |A| for all translations topt that max-
imize the volume of overlap of A and B. Then Algorithm 3 with input (A,B, ε, p)
computes a collection of translations Q′ such that

⋃
q∈Q′ B(q, δ) contains, with prob-

ability at least 1 − p, all translations topt that match A and B optimally. For all
t ∈

⋃
q∈Q′ B(q, δ), we have |topt(A) ∩B| − |t(A) ∩B| ≤

(
2 |B|mB

+ 1
)
εk|A|.

Proof. We use the method developed in Chapter 4. For all t ∈ Rd, define

Vt = |B(t, δ) ∩Q| and et =
Vt|A| |B|
N(2δ)d

.

The number et is the empirical measure of B(t, δ), multiplied by |A| |B|, which makes
it an estimate of |t(A) ∩ B|. We use the notation of the proof of Theorem 5.1, but

replace ε by εk. Let τ > 0 and abbreviate η = 2c
√

2d√
N(2δ)d

+ 2τ
(2δ)d

. By Inequalities (4.2)

and (4.3), we have that, with probability at least 1− 2e−τ
2N/2, for all t ∈ Rd,∣∣et − |t(A) ∩B|

∣∣ ≤ |A| |B|(η + Lδ). (5.4)

Choosing τ =
√

1
2N log 2

p , Inequality (5.4) is true with probability at least 1 − p.

There is a constant C > 0 such that, if δ ≤ 2
√
d

3(d+1)
εk|A|
|∂A| and N ≥ Cε−1 δ−2d |B|2 log 2

p ,
then it follows with the same argument as in the proof of Theorem 5.1 that

|A| |B|(2η + 3Lδ) ≤ εk|A|. (5.5)

We first prove that for all optimal solutions topt there exists a q0 ∈ Q′ such that
topt ∈ B(q0, δ). Because of Inequalities (5.4) and (5.5), assuming that |topt(A)∩B| ≥
εk

2 |A| implies that etopt > 0. This implies that there exists q0 ∈ B(topt, δ)∩Q. Hence
we have found q0 ∈ Q such that topt ∈ B(q0, δ).
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5. Probabilistic matching under translations in arbitrary dimension

Next we show

V ∗ − Vq0 ≤
2d+1δdεkN

|B|
≤ 2d+1δdεkN

mB
,

which implies q0 ∈ Q′. We have
∣∣|q0(A) ∩ B| − |topt(A) ∩ B|

∣∣ ≤ |A| |B|Lδ by the
Lipschitz continuity of f . Applying Inequality (5.4) to q0 and using the Lipschitz
continuity gives

eq0 ≥ |q0(A) ∩B| − |A| |B|(η + Lδ) ≥ |topt(A) ∩B| − |A| |B|(η + 2Lδ). (5.6)

Observe that et∗−eq0 ≤ 2εk|A| is equivalent to V ∗−Vq0 ≤ 2d+1δdεkN
|B| where t∗ ∈ Q

such that V ∗ = Vt∗ . We prove that et∗ − eq0 ≤ 2εk|A|. Using Theorem 5.1, we have

|topt(A) ∩B| ≥ |t∗(A) ∩B| − |A| |B|(2η + 3Lδ) ≥ et∗ − |A| |B|(3η + 4Lδ). (5.7)

Inequalities (5.6) and (5.7) give

eq0 ≥ et∗ − |A| |B|(4η + 6Lδ) ≥ et∗ − 2εk|A|.

Lastly we show ∣∣|t(A) ∩B| − |topt(A) ∩B|
∣∣ ≤ (2 |B|mB

+ 1
)
εk|A|

for all t ∈
⋃
q∈Q′ B(q, δ). Because of |Vt − Vq0 | ≤ 2d+1δdεkN

mB
, we have |et − eq0 | ≤

2 |B|mB
εk|A|. Hence

|t(A) ∩B| ≥ et − |A| |B|(η + Lδ)

≥ eq0 − |A| |B|(η + Lδ)− 2 |B|mB
εk|A|

≥ |topt(A) ∩B| − |A| |B|(2η + 3Lδ)− 2 |B|mB
εk|A|

≥ |topt(A) ∩B| −
(
2 |B|mB

+ 1
)
εk|A|.

As a direct corollary of Proposition 3.13, we get a sufficient condition on ε such
that the assumption |topt(A) ∩B| ≥ c εk|A| for some positive constant c is satisfied.

Corollary 5.6. If εk ≤ |B|
c|B⊕(−A)| for any c > 0, then there exists a translation

t ∈ Rd such that |t(A) ∩B| ≥ c εk|A|.

Searching in the candidate cubes

Let Q′ be as in Lemma 5.5. Denote the points in Q′ by t1, . . . , tI . We have I ≤ N .

For i = 1, . . . , I, we search for good translations in B(ti, δ), where δ ≤ 2
√
d

3(d+1)
εk|A|
|∂A| .

In fact, later we thin out the set Q′ and search in fewer than I cubes B(ti, δ).
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5.3. Adaptive Sampling

We draw (a, b) ∈ A×B u.a.r., but accept only samples such that ||(b−a)−ti||∞ ≤ δ.
We generate the samples (a, b) by drawing a ∈ A and t ∈ B(0, δ) u.a.r. and checking
if b = a + ti + t ∈ B. If b /∈ B, we discard the sample. In this way, we generate
samples u.a.r. from {(a, b) ∈ A×B : b− a ∈ B(ti, δ)}.

We describe the modified version of Algorithm 2 for the second step of the ap-
proximation, the search for a solution in a candidate cube B(q, δ).

Algorithm 4: MaxOverlapTCube(A,B, q, δ, ε, p)

Input: shapes A,B ⊂ Rd, translation q, neighborhood size δ > 0,
error bound ε ∈ (0, 1), allowed probability of failure p ∈ (0, 1)

real δε ← δε1−k;
// Compute the necessary number of samples

integer N ← Cε2kd−k−2d−2 log 2
p ; // C is a positive constant

collection Q← ∅;
for i = 1 . . . N do

point a← RandomPoint(A);
point t← RandomPoint(B(q, δ));
point b← q + t+ a;
if b ∈ B then

add(Q, b− a);
end

end
return FindDensestClusterT(Q, δε);

The set W is defined in Equation (5.3).

Lemma 5.7. Assume that |topt(A) ∩ B| ≥
(
4 |B|mB

+ 2
)
εk|A| for any optimal trans-

lation topt. Then, for all q ∈ W and for all δ ∈
(
0, 2

√
d

3(d+1)
εk|A|
|∂A|

]
, Algorithm 4 with

input (A,B, q, δ, ε, p) computes a pair of a translation t∗ ∈ B(q, δ) and a number V ∗

such that with probability at least 1− p we have |t∗(A) ∩B| ≥ |t(A) ∩B| − ε|A| for
all t ∈ B(q, δ) and

∣∣V ∗|A||B| − |t∗(A) ∩B|
∣∣ ≤ ε

2 |A|.

Proof. Not every sample generated in the algorithm is valid, that is, not every
sample t satisfies a+ q+ t ∈ B. First we show that there is a constant C such that,
if the algorithm generates M ≥ Cε2kd−2d−2 log 2

p valid samples, then the claim of
the lemma is true.

By Lemma 5.5, for all t ∈ B(q, δ), we have

|topt(A) ∩B| − |t(A) ∩B| ≤
(
2
|B|
mB

+ 1
)
εk|A|.

By this and the assumption, we have

|topt(A) ∩B| ≥
(
4
|B|
mB

+ 2
)
εk|A| ≥ 2|topt(A) ∩B| − 2|t(A) ∩B|,
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5. Probabilistic matching under translations in arbitrary dimension

implying |t(A) ∩B| ≥ 1
2 |t

opt(A) ∩B|.
We restricted the random experiment to B(q, δ), so the density function is a

function on B(q, δ), given by f(t) = c |t(A) ∩B| where c =
(∫
B(q,δ) |t(A) ∩B|dt

)−1
.

Hence

2dδd|topt(A) ∩B| ≥
∫
B(q,δ)

|t(A) ∩B| dt ≥ 2d−1δd|topt(A) ∩B|.

This implies that the density function is given by f(t) = c′δ−d |t(A)∩B|
|topt(A)∩B| for some

c′ ∈ [ 1
2d
, 1

2d−1 ] and f is Lipschitz continuous with constant c′δ−d |∂A|
|topt(A)∩B| .

Completely analogously to Inequality (5.2) in the proof of Theorem 5.1, we have,
with probability at least 1− p,

|t∗(A) ∩B| ≥ |t(A) ∩B| −
(
|topt(A) ∩B|δd

c′
√
M(2δε)d

(
2c
√

2d+ 2

√
log

2

p

)
+

3

2

√
dδε|∂A|

)
.

(5.8)

As before, there is a constant C > 0 such that for every positive δε ≤ 2
√
d

3(d+1)ε
|A|
|∂A| and

every integer M ≥ Cε−2δ2dδ−2d
ε log 2

p , we have |t∗(A) ∩ B| ≥ |t(A) ∩ B| − ε|A|. We

can choose δε = δε1−k, which simplifies the bound on M to M ≥ Cε2kd−2d−2 log 2
p .

Since log 4
p = log 2+log 2

p and log 2
p ≥ log 2 for p ∈ (0, 1), we have log 4

p = Θ(log 2
p).

By multiplying the constant C with 2, we can safely assume that Inequality (5.8)
holds with probability at least 1− p

2 .
Next we have to estimate how many samples we have to generate such that, with

probability at least 1 − p
2 there are at least M valid samples. Let N be the total

number of generated samples.
We estimate the probability that for (a, t) ∈ A×B(0, δ) u.a.r., we have b ∈ B.

P (a+ q + t ∈ B) =
1

|A|δd

∫
B(0,δ)

∫
A
χ(B−q−t)(a) da dt

=
1

|A|δd

∫
B(0,δ)

|(q + t)(A) ∩B| dt

≥ 1

|A|δd

∫
B(0,δ)

(|topt(A) ∩B| −
(
2
|B|
mB

+ 1
)
εk|A|)dt

≥ |topt(A) ∩B|
|A|

−
(

2
|B|
mB

+ 1
)
εk

≥
(

2
|B|
mB

+ 1
)
εk

≥ 3εk.

Let Xj be a binary random variable indicating if the jth sample t fulfills

a + q + t ∈ B, and let X =
∑N

j=1Xj . The expected value EX equals P1N where

P1 = P (Xj = 1) = P (a+ q + t ∈ B), which is as least as large as εk. By the Cher-

noff bound (Theorem 4.3), P (X < P1
2 N) < 2e−P

2
1N/8. For N ≥ 8

P 2
1

log 4
p , we have
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5.3. Adaptive Sampling

2e−P
2
1N/8 ≤ p

2 . If additionally N ≥ 2M
P1

, then with probability at least 1− p
2 , we have

at least M valid samples. For N ≥ max{ 8
9ε2k

log 4
p ,

2M
3εk
}, we have with probability at

least 1− p
2 at least M valid samples. We have M ≥ Cε2kd−2d−2 log 2

p and because of
2kd− 2d− 2 < −k, which is equivalent to the correct inequality k(2d+ 1) < 2d+ 2,
we can choose C such that 2M

3εk
≥ 8

9ε2k
log 4

p . To summarize, the condition on N is

N ≥ 2M
3εk

.

Reducing the number of candidate cubes

Next we thin out the set Q′ in the following simple way. As long as we have a point
q0 ∈ Q′ left, we put q0 in the output collection Q′′ and delete all points in B(q0, δ)
from Q′.

Function thinOut(Q′, δ)

Input: collection Q′ of points from Rd, positive number δ
collection Q′′ ← ∅;
while Q′ 6= ∅ do

q ← element(Q′);
Q′ ← removeAll(q, δ,Q′); // removes all points in B(q, δ) from Q′

Q′′ ← add(q,Q′′);

end
return Q′′;

Define
Q =

⋃
q∈Q′′

B(q, δ).

Then by construction
⋃
q∈Q′ B(q, δ) = Q and for all q0 ∈ Q, we have

|topt(A) ∩B| − |q0(A) ∩B| ≤
(

2 |B|mB
+ 1
)
εk|A|.

For c > 0, define

Wc = {t ∈ Rd : |topt(A) ∩B| − |t(A) ∩B| ≤ cεk|A|}.

Let c0 = 2 |B|mB
+ 1, then Q ⊆ Wc0 =W. Next we bound the number of points in Q′′

from above. To a point q ∈ Q′′, let us associate the cube B(q, δ2) ⊂ Q. Observe that
for q1, q2 ∈ Q′′, the distance ||q1 − q2||∞ > δ and therefore the associated cubes are
disjoint. Hence |Q′′|( δ2)d ≤ |Q|, and therefore

|Q′′| ≤ ( δ2)−d|Wc0 | ≤ ( δ2)−d|B ⊕ (−A)|. (5.9)

We do not know how to find a better upper bound than the volume of the translation
space on |Wc0 | in general. For the special case of perfectly matching shapes A and B,
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5. Probabilistic matching under translations in arbitrary dimension

we prove that, if ε < 1/c2
0, then |Wc0 | ≤ (2c0ε

k diam(A))dωd. We know there is

η ∈ (0, 1) such that δ = η 2
√
d

3(d+1)
εk|A|
|∂A| . If we can assume η to be constant, then for

perfectly matching shapes we have |Q′′| = O
(diam(A)d|∂A|d

|A|d
)

= O(DAKA).

Lemma 5.8. Let A,B ⊂ Rd be shapes such that there is topt ∈ Rd with topt(A) = B.
Let ε ∈ (0, 1) and c > 0 such that cεk < 1. Then |Wc| ≤ (2cεk diam(A))d ωd.

Proof. If there is topt ∈ Rd with topt(A) = B, then this translation topt is unique,
and |topt(A) ∩B| = |A|. Let t ∈ Wc, and denote t∗ = topt − t. We have

|t(A) ∩B| = |t(A) ∩ topt(A)| = |t∗(A) ∩A| = |A| − 1
2 |t
∗(A)4A|.

If |t∗| ≥ diam(A), then |t∗(A) 4 A| = 2|A| and hence |t(A) ∩ B| = 0. Therefore
|A| = |topt(A) ∩B| ≤ cεk|A| < |A|, which is a contradiction.

By Lemma 3.12, it holds that |t∗(A)4 A| ≥ |A|
diam(A) |t

∗|. Using that t ∈ Wc, we
have

|A| − cεk|A| ≤ |t(A) ∩B| ≤ |A| − |A|
2 diam(A) |t

∗|.

Hence |t∗| ≤ 2cεk diam(A), and Wc is contained in the Euclidean ball of radius
2cεk diam(A) around topt.

Putting things together

First we describe Algorithm 5. Recall that k is not a variable, although the algorithm
works for every k ∈ (0, 1). We will set k to some optimal constant, as soon as we
analyzed the runtime of the algorithm. Therefore it is not part of the input.

Let E1 be the event that MaxOverlapTCandidates(A,B, ε, p2) fails and let E2 be
the event that one of the |Q′′| calls of MaxOverlapTCube(A,B, q, δ, ε, p

4|Q′′|) fails.

We have P (E1) ≤ p
2 and P (E2) ≤ p

4 .

Denote the event that MaxOverlapTCandidates(A,B, ε, p2) succeeds by E1. Then
P (E1) ≥ 1 − p

2 . The probability that Algorithm 5 fails is less or equal to
P (E1) + P (E2 |E1). We have

P (E2 |E1) =
P (E2 ∩ E1)

P (E1)
≤

p
4

2(1− p
2)
≤ p

2
.

With this observation, Lemmas 5.5 and 5.7 imply the following corollary.

Corollary 5.9 (Correctness of Algorithm 5). Let A and B be shapes in constant
dimension d, and let ε, k, p ∈ (0, 1) be parameters. Assume that there exists t ∈ Rd

such that |t(A) ∩ B| ≥ (4 |B|mB
+ 2)εk|A|. Then Algorithm 5 with input (A,B, ε, p)

computes a pair of a translation t∗ and a number V ∗ such that, with probability at
least 1− p, we have |t∗(A) ∩B| ≥ |t(A) ∩B| − ε|A| for all translations t ∈ Rd, and
|V ∗|A| |B| − |t∗(A) ∩B|| ≤ ε

2 |A|.
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5.3. Adaptive Sampling

Algorithm 5: AdaptiveMaxOverlapT(A,B, ε, p)

Input: shapes A,B ⊂ Rd, error bound ε ∈ (0, 1), allowed probability of
failure p ∈ (0, 1)

// Step 1: Computation of a candidate region Q′

(collection, real) (Q′, δ)← MaxOverlapTCandidates(A,B, ε, p2);
collection Q′′ ← thinOut(Q′);
// Step 2: Search in cubes B(q, δ) for all q ∈ Q′′
integer V ∗ ← 0; // current maximum

point t∗ ← (0, 0, . . . , 0); // corresponding translation

for q ∈ Q′′ do
(point, integer) (t, V )← MaxOverlapTCube(A,B, q, δ, ε, p

4|Q′′|);

if V > V ∗ then
V ∗ ← V ;
t∗ ← t;

end

end
return (t∗, V ∗);

Theorem 5.10 (Runtime of Algorithm 5). Let A and B be shapes in constant
dimension d, which are given by an oracle and fulfill the assumptions described in
Section 2.2. Let ε, p ∈ (0, 1) be parameters. Assume that there exists t ∈ Rd such

that |t(A) ∩B| ≥ (4 |B|mB
+ 2)εk|A|.

Then Algorithm 5 with input (A,B, ε, p) runs in time O
(
Tq(N

′) +N ′(logN ′)d−1
)

where N ′ = O
(
ε−

4d2+8d+4
3d+1 log 2

p

(
(KAMB/mA)2 +KA

∆d
A+∆d

B
mA

))
.

Proof. We determine the time complexity of the different steps of the algorithm.

• Algorithm MaxOverlapTCandidates(A,B, ε, p2):
For Function FindAllDenseClustersT, we proceed as in the case of Function
FindDensestClusterT: We build an orthogonal range counting query data-
structure for the N random translations in Q. Then we query every B(q, δ)
for q ∈ Q twice. In the first round, we determine the translation with the
maximum number of points in its neighborhood. During the second round
we keep all translations q ∈ Q that are sufficiently close to the maximum.
We have the same time bound for FindAllDenseClustersT(Q, δ, ε,mB) as for
FindDensestClusterT(Q, δ), that is O(N(logN)d−1) where N = |Q|.
Hence the runtime of Algorithm MaxOverlapTCandidates(A,B, ε, p2) equals
the runtime of Algorithm MaxOverlapT(A,B, εk, p2), which by Theorem 5.2 is
O
(
T (N) +N(logN)d−1

)
where N = O

(
ε−2kd−2k(KAMB/mA)2 log 2

p

)
.

• Function thinOut(Q′):
The while-loop is entered |Q′′| times since in every pass one element is added
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5. Probabilistic matching under translations in arbitrary dimension

to Q′′. We build a orthogonal range reporting data structure for Q′. We have
|Q′| ≤ N . For a q ∈ Q′, we query B(q, δ). Let bq = B(q, δ) ∩ Q′. Then
the query time can be bounded by O

(
(logN)d−1 + bq

)
. We can also remove

the elements from Q′ within the same time bound since we do not care about
rebalancing the tree. We have

∑
q∈Q′ bq = |Q′| ≤ N , and in total we need time

O
(
|Q′′|(logN)d−1 +N

)
= O(N(logN)d−1).

• Algorithm MaxOverlapTCube(A,B, q, δ, ε, p
4|Q′′|):

Recall that we assume in this section that in time Tq(N) we can generate N
random samples from a shape and answer N membership queries. Algorithm
MaxOverlapTCube(A,B, q, δ, ε, p

4|Q′′|) runs in time O(Tq(M) +M(logM)d−1)

where M = O(ε2kd−k−2d−2 log 4|Q′′|
p ).

• Upper bound on |Q′′|:
The value δ that is computed in MaxOverlapTCandidates(A,B, εk, p2) fulfills

δ ≤ 2
√
d

3(d+1)
εk|A|
|∂A| and we can assume that δ−1 = O(ε−kK

1
d
Am

− 1
d

A ). By Inequal-

ity (5.9) and Section 3.4, we have |Q′′| = O(ε−kdKAm
−1
A (∆d

A + ∆d
B)).

In total, the runtime is O
(
T (N) +N(logN)d−1 + |Q′′|

(
Tq(M) +M(logM)d−1

))
.

The bound O
(
N(logN)d−1

)
increases with increasing k, while the corresponding

bound for the second step O
(
ε−kdKAm

−1
A (∆d

A + ∆d
B)M(logM)d−1

)
decreases with

increasing k. Hence we choose k such that both bounds are equal in the growth rate
of ε. If we have reason to believe that |Q′′| is small for our instance, than a different
choice of k might be appropriate.

Denote by O∗ε the growth rate in ε, ignoring log-factors. Then O(N(logN)d−1) =
O∗ε(ε

−2kd−2k) and O
(
ε−kdKAm

−1
A (∆d

A + ∆d
B)M(logM)d−1

)
= O∗ε(ε

kd−k−2d−2). For

−2kd − 2k = kd − k − 2d − 2, which is equivalent to k = 2d+2
3d+1 , both growth rates

are equal to O∗ε(ε
− 4d2+8d+4

3d+1 ).
We can choose δ such that there is

N ′ = N + |Q′′|M = O
(
ε−

4d2+8d+4
3d+1 log 2

p

(
(KAMB/mA)2 +KA

∆d
A+∆d

B
mA

))
.

Assuming that Tq(N) grows at least linearly in N , the runtime is O
(
Tq(N

′) +
N ′(logN ′)d−1

)
.
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6. Probabilistic matching of planar
regions under rigid motions

We present three simple probabilistic algorithms that approximately maximize the
area of overlap of two given 2-dimensional shapes under rigid motions. More pre-
cisely, given shapes A,B ⊂ R2 and parameters p, ε ∈ (0, 1) , the presented algo-
rithms compute a rigid motion r∗ such that with probability at least 1− p we have
|r∗(A) ∩B| ≥ |r(A) ∩B| − ε|A| for all rigid motions r.

These algorithms are based on the ideas explained in Chapter 5. The algorithm
described in Section 6.1 uses the algorithm for translations. The algorithms de-
scribed in Sections 6.2 and 6.3 are generalizations of the idea of the probabilistic
matching algorithm for translations. They differ in the generation of random rigid
motions. We provide an experimental comparison of these algorithms in Chapter 7.

Variants of the two algorithms in Sections 6.2 and 6.3 were analyzed in [9]. Here
we improve the results by showing that a simpler definition of cluster suffices to
guarantee approximation, as in the case of translations. We also slightly improve
the bounds on the number of random samples, but more importantly, the clustering
size now scales with the shapes and the sample size is homogeneous in all variants
of the probabilistic matching algorithm.

For two polygonal regions with n and m vertices, Cheong et al. [20] give an
absolute error approximation of the maximal area of overlap under rigid motions in
time O(m + (n3/ε8) log5 n), which works with high probability. The runtime given
in the paper is smaller because of a calculation error in the final derivation of the
time bound, as was noted by Vigneron [54]. We compared Cheong et al.’s and our
approach in Chapter 5 for the case of translations; basically the same remarks apply
to the case of rigid motions.

For maximizing the area of overlap of two simple polygons with at most n vertices
under rigid motions, no exact polynomial time algorithm is known. Vigneron [54]
gives an FPTAS with relative error ε that runs in time O((n6/ε3) log4(n/ε)β(n/ε))
where β is a very slowly growing function related to the inverse Ackermann func-
tion. He also gives an FPTAS for minimizing the area of the symmetric differ-
ence of two polygons in the plane under rigid motions that has time complexity
O
(
n17+ε′ + (n15/ε3) log4(n/ε)β(n/ε)β(n)

)
for any ε′ > 0.

The space of rigid motions in the plane R is given as 1
2πS

1 × R2. Therein, the
1-dimensional sphere S1 is understood as the interval [0, 2π]/ ∼, where the equiva-
lence relation ∼ identifies 0 and 2π. A point (α, t) ∈ R denotes the rigid motion

x 7→Mαx+ t, Mα =

(
cos 2πα − sin 2πα
sin 2πα cos 2πα

)
.

59



6. Probabilistic matching of planar regions under rigid motions

6.1. Using the algorithm for translations

The idea of the first algorithm for rigid motions is very simple. We discretize
the angle space [0, 1] in m angles (α1, . . . , αm) and apply Algorithm 2 with input
(MαkA,B, ε/3, p/m) for all k = 1, . . . ,m. Let (t1, V1), . . . , (tm, Vm) be the outputs of
Algorithm 2. The result is a rigid motion (αi, ti) such that the area estimate Vi|A||B|
is maximal among V1, . . . , Vm, which means that ti received the overall most votes.

Algorithm 6: 2DMaxOverlapRMT

Input: shapes A,B ⊂ R2, error tolerance ε ∈ (0, 1), allowed probability of
failure p ∈ (0, 1)

// discretization size 1/m
integer m← 2DDiscretizationSizeRMT(A, ε);
real V ∗ ← 0 ; // current maximal area estimate

point t∗ ← (0, 0) ; // corresponding translation vector

real α∗ ← 0 ; // corresponding rotation angle

for k = 1 . . .m do
Ak ←Mk/mA; // compute rotated A

// use algorithm for translations to match Ak and B
(point,real) (t, V )← MaxOverlapT(Ak, B, ε/3, p/m);
if V > V ∗ then

V ∗ ← V ; // update area estimate

t∗ ← t; // update translation

α∗ ← k
m ; // update rotation angle

end

end
return (α∗, t∗);

Observe that we do not need to compute rotated shapes MαA. Instead we can
pass the angle α to the algorithm for translation and rotate every generated random
point from A in constant time. In this way, we generate uniformly distributed points
from MαA without actually computing MαA. We can also use Algorithm 5 instead
of Algorithm 2 for the matching under translations.

A bound on the discretization size that guarantees approximation is given in the
following theorem.

Theorem 6.1 (Approximation property of Algorithm 6). Let A,B ⊂ R2 be shapes
and let ε, p ∈ (0, 1) be parameters. If 2DDiscretizationSizeRMT(A, ε) returns an
integer m ≥ 3πε−1|A|−1 diam(A)|∂A|, then Algorithm 6 with input (A,B, ε, p) com-
putes a rigid motion r∗ that maximizes the area of overlap of A and B up to an
additive error of ε|A| with probability at least 1− p.

Proof. Let (a∗, t∗) be the output of Algorithm 6 and V ∗ the area estimate that Al-
gorithm 2 computed for t∗. Each of the m calls of Algorithm 2 fails with probability
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6.1. Using the algorithm for translations

at most p/m. Hence the probability that one of the m calls fails, which is the prob-
ability of the union of these events, is at most p, and the probability that all m calls
succeed is at least 1− p.

Let us assume that this is the case, meaning that for all k = 1, . . . ,m, the output
(tk, Vk) of MaxOverlapT(Ak, B, ε/3, p/m) fulfills for all t ∈ R2 that

|tk(Ak) ∩B| ≥ |t(Ak) ∩B| − ε/3|A| and
∣∣|tk(Ak) ∩B| − Vk∣∣ ≤ ε/6|A|.

Let (αopt, topt) be an optimal solution. There exists k such that |αk−αopt| < 1/m.
We show that |tk(Ak) ∩B| is close to the maximal area of overlap, as well as to the
area of overlap with respect to the output, implying that also the maximal area of
overlap and the area of overlap with respect to to (α∗, t∗) are close.

First, we show that∣∣|tk(Ak) ∩B| − |topt(Mopt
α A) ∩B|

∣∣ ≤ 2/3ε|A|.

By the optimality of (αopt, topt), we have |topt(Mopt
α A) ∩ B| ≥ |tk(Ak) ∩ B|. Using

Proposition 3.6 and Theorem 3.3, we have for all translations t, in particular for topt,∣∣|(Ak + t) ∩B| − |(MαoptA+ t) ∩B|
∣∣ =

∣∣|Ak ∩ (B − t)| − |MαoptA ∩ (B − t)|
∣∣

≤ 1
2 |Ak4MαoptA|

≤ w
2 |∂A|

where w = supa∈∂A |Mk/ma −Mαopta|. We have w ≤ 2π/mdiam(A). If m is as
least as large as 3π ε−1|A|−1 diam(A)|∂A|, then w

2 |∂A| ≤ ε/3|A|. By this and the
assumption on the outputs of Algorithm 6, we have

|tk(Ak) ∩B| ≥ |topt(Ak) ∩B| − ε/3|A| ≥ |topt(MαoptA) ∩B| − 2/3ε|A|.

If the area of overlap with respect to the output is as least as large as |tk(Ak)∩B|,
then

∣∣|t∗(Mα∗A) ∩ B| − |topt(Mopt
α A) ∩ B|

∣∣ ≤ 2/3ε|A| and we are done. Assume on
the contrary that |t∗(Mα∗A) ∩B| < |tk(Ak) ∩B|.

Since V ∗ ≥ Vk and
∣∣|tk(Ak)∩B|−Vk∣∣ ≤ ε/6|A| as well as

∣∣|t∗(Mα∗A)∩B|−V ∗
∣∣ ≤

ε/6|A|, we have
∣∣|t∗(Mα∗A) ∩B| − |tk(Ak) ∩B|

∣∣ ≤ ε/3|A|.
In total, we get

∣∣|t∗(Mα∗A) ∩B| − |topt(MαoptA) ∩B|
∣∣ ≤ ε|A|.

The runtime of Algorithm 6 equals m times the runtime of Algorithm 2 in two
dimensions plus the time to compute the discretization size m since we do not
actually rotate shape A, but rotate the generated random points from A. For a
better time bound, we use Algorithm 5 instead of Algorithm 2 for the matching
under translations. We can compute a valid m, using the given upper bound DA

on diam(A)2

|A| (see Chapter 2). For unions of simplices, the diameter and the volume

can be computed in linear time, so only an upper bound on |∂A| that is better than∑
∆∈A |∂∆| is useful.
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6. Probabilistic matching of planar regions under rigid motions

Corollary 6.2 (Runtime of Algorithm 6). Let A,B ⊂ R2 be shapes, which are given
by an oracle and fulfill the assumptions described in Section 2.2. Let ε, p ∈ (0, 1)
be parameters. Then Algorithm 6 with input (A,B, ε, p) computes a rigid motion r∗

that maximizes the area of overlap of A and B up to an additive error of ε|A| with
probability at least 1 − p in time O

(
ε−1
√
DAKA (Tq(N) + N logN)

)
where N =

O
(
ε−(5+ 1

7
)
(
(KAMB/mA)2 +KA

∆2
A+∆2

B
mA

)
log 2

p

)
.

If we use Algorithm 2, the runtime is O
(
ε−1
√
DAKA

(
T (N) + N logN

))
where

N = O(ε−6(KAMB/mA)2 log 2
p).

6.2. Vote generation with random angle

The second algorithm for rigid motions, Algorithm 7, is a generalization of the al-
gorithm for translations. In each step, we select uniformly distributed an angle α
and random points a ∈ A and b ∈ B. We give one vote to the unique rigid mo-
tion with counterclockwise rotation angle α that maps a onto b, which is the rigid
motion (α, b−Mαa).

For the definition of a best cluster, we first define a metric on the space of rigid
motions in the plane R. We use a scaled version of the metric that is induced by the
maximum norm. The scaling factor depends on the input shape A. More precisely,
we scale the axis that corresponds to the rotation angle with diam(A). Instead of
diam(A), an upper bound on the diameter DA can be used. Let r = (α, p) and
s = (β, q) be rigid motions. Define

d(r, s) = max{ diam(A) |α− β| , ||p− q||∞ }.

The angle distance is scaled because otherwise it is not comparable to the distance
of the translational part. When scaling the shape with a factor, the clustering size
for the rotational part should not change, but the clustering size for the translational
part should change linearly.

Any usual metric, which does not depend on A, for example the Euclidean distance
or the L∞ metric, behaves differently for the rotational part and for the translational
part. If two translation vectors p and q have distance δ, then for each point in R2, the
images under the translations p and q have distance exactly δ, too. If two rotation
angles α and β have distance δ, it depends on the distance from a point x ∈ R2 to
the origin how large the distance of Mαx and Mβx is. This distance depends linearly
on δ and the length of the vector x.

W.l.o.g. the shape A contains the origin. Then the maximal distance ∆ from
the origin to any point of A has the same order of magnitude as diam(A) since
1
2 diam(A) ≤ ∆ ≤ diam(A).

The δ-neighborhood of r is the closed δ-ball around r with respect to the metric d.
It is a 3-dimensional box with side lengths 2δ/diam(A) and 2δ and 2δ that is centered
at r.
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6.2. Vote generation with random angle

Algorithm 7: 2DMaxOverlapRMRA

Input: shapes A,B ⊂ R2, error tolerance ε ∈ (0, 1), allowed probability of
failure p ∈ (0, 1)

real δ ← 2DClusteringSizeRMRA(A, ε);
integer N ← 2DSampleSizeRMRA(B, ε, δ, p);
collection Q← ∅;
for i = 1 . . . N do

real α← RandomAngle(); // returns a real in [0, 1] u.a.r.

point a← RandomPoint(A);
point b← RandomPoint(B);
add(Q, (α, b−Mαa));

end
return 2DFindDensestClusterRM(Q, δ,diam(A));

Function 2DFindDensestClusterRM computes a rigid motion whose neighborhood
contains the most rigid motions from the input collection Q. The radius of the
neighborhood δ and the scaling factor of the metric ∆ are given as input parameters.

Function 2DFindDensestClusterRM(Q, δ,∆)

Input: collection of points in the plane Q, positive numbers δ and ∆
Output: point r ∈ [0, 1]× R2 such that the rectangle of side lengths 2δ/∆,

2δ and 2δ that is centered at r contains a maximal number of
points from Q

Theorem 6.3 (Approximation property of Algorithm 7). Let A,B ⊂ R2 be shapes
and let ε, p ∈ (0, 1) be parameters. If 2DClusteringSizeRMRA(A, ε) returns a posi-

tive number δ ≤ 2
3
√

2+6π

ε|A|
|∂A| and 2DSampleSizeRMRA(B, ε, δ, p) returns an integer

N ≥ Cε−2δ−6 diam(A)2|B|2 log 2
p for some universal constant C > 0, then Algo-

rithm 7 with input (A,B, ε, p) computes a rigid motion r∗ such that with probability
at least 1− p we have |r∗(A) ∩B| ≥ |r(A) ∩B| − ε|A| for all rigid motions r.

As one would expect, the clustering size scales with the shapes. In contrast to the
earlier version of this result [9], the sample size N is invariant under scaling of both
shapes with the same factor. The constant C can be computed from the proofs.

We analyze the density functions of the probability distribution in the transforma-
tion space that is induced by the random experiments in the algorithms. We show
the surprising fact that, also in the case of rigid motions, the value of the density
function for a rigid motion r is proportional to the area of overlap |r(A) ∩B|.

Lemma 6.4. Let X be a random vector that draws rigid motions (α, b −Mαa) ∈
[0, 1]×R2 where (α, a, b) ∈ [0, 1]×A×B is drawn u.a.r. The density function of X

is given by gRA(r) = |r(A)∩B|
|A| |B| .

63



6. Probabilistic matching of planar regions under rigid motions

Proof. Our random experiment consists in selecting uniformly distributed points
from Ω = 1

2πS
1 × A × B. Let I = 1

2πS
1. We are interested in the density function

fY of the random variable

Y : Ω→ R, Y : (α, a, b) 7→ (α, b−Mαa).

We will express the density function of Y in terms of the conditional probability
densities of the following two random variables YI and YT defined as

YI : Ω→ I, YI : (α, a, b) 7→ α,

YT : Ω→ R2, YT : (α, a, b) 7→ b−Mαa.

The density function of Y is the joint density of the random variables YI and YT .
Recall that the counterclockwise rotation angle is selected uniformly distributed in I
independently from the points a and b. So the marginal probability density of YI ,
i.e., probability density of YI = α allowing all possible values of YT , is

fI(α) = 1
|I| = 1.

The value of YT depends on the selected points a and b and on the value of YI . The
conditional probability density of YT = t given YI = α is exactly the probability
density in the space of translations for shapes MαA and B:

fT (t | YI = α) =
|(MαA+ t) ∩B|

|A||B|
.

The conditional probability density can also be expressed in terms of the joint prob-
ability density fT (t | YI = α) = fY (α, t)/fI(α). Thus we get for any rigid motion
r = (α, t)

gRA(r) = fY (r) =
|r(A) ∩B|
|A| |B|

.

Lemma 6.5. The density function gRA is Lipschitz continuous with the constant
L = LRA = ( 1√

2
+ π) |∂A||A| |B| .

Proof. For two angles α and β, we have |Mβa − Mαa| ≤ 2π|β − α| |a| because
2π|β − α| |a| is the length of the circular arc from Mαa to Mβa that is a segment of
the circle of radius |a| around the origin. W.l.o.g. let A contain the origin, then we
have supa∈A |Mβa−Mαa| ≤ 2π|β − α|diam(A). By Corollary 3.5,∣∣|r(A) ∩B| − |s(A) ∩B|

∣∣ ≤ |∂A|
2|A| |B|

(
|t− s|+ 2π|β − α|diam(A)

)
.

Because of |t− s| ≤
√

2||t− s||∞, the claim follows.

Proof of Theorem 6.3. The proof works similarly as in the case of translations.
Again, we start by checking that all assumptions of Theorem 4.6 are satisfied. The
space of rigid motions R = 1

2πS
1 × R2 is a metric space. Recall the definition of
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6.2. Vote generation with random angle

the metric d((α, p), (β, q)) = max{diam(A)|α−β| , ||p− q||∞ }. Let Bδ be the set of
closed balls in the space of rigid motions that have radius δ. For every B ∈ Bδ, we
have |B| = 8δ3/ diam(A). The VC dimension of Bδ is at most 6 by Lemma 4.8.

Let µ be the probability distribution that is implicitly given by the random
experiment in Algorithm 7. The density function of µ equals gRA(r) = |r(A)∩B|

|A| |B|

by Lemma 6.4. It is Lipschitz continuous with constant L = ( 1√
2

+ π) |∂A||A| |B| by

Lemma 6.5.
Let Y1, Y2, . . . , YN be the random rigid motions in the algorithm. They have the

common distribution µ. Let µN be the empirical measure. Algorithm 7 computes
a Yj such that µN (B(Yj , δ)) = max{µN (B(Yi, δ)) : 1 ≤ i ≤ N}. By Theorem 4.6,
there is a constant c > 0 such that for all τ > 0, we have with probability at least
1− 2e−2Nτ2 that for all r ∈ R,

gRA(r∗) ≥ gRA(r)−

(
c
√

6 diam(A)

4
√
Nδ3

+
τ diam(A)

4δ3
+ 3Lδ

)
. (6.1)

As in the case of translations, we set τ =
√

1
2N log 2

p because this minimizes the

error term while guaranteeing a probability of success ≥ 1− p.
We now determine a minimal N and a compatible δ such that with probability

at least p, for all r ∈ R, we have |r∗(A) ∩ B| ≥ |r(A) ∩ B| − ε|A|. Therefore by
Inequality (6.1) we need to have

1

4
δ−3 diam(A)|A| |B|

(
c
√

6√
N

+ τ

)
+

(
3√
2

+ 3π

)
|∂A| δ ≤ ε|A|.

Clearly, we need δ < 2
3
√

2+6π

ε|A|
|∂A| . Let η ∈ (0, 1) such that δ = η 2

3
√

2+6π

ε|A|
|∂A| . There

is a C > 0 such that for N ≥ C(1 − η)−2ε−2δ−6 diam(A)2|B|2 log 2
p , we have that

the error term is at most ε|A|. Differentiating shows that η = 3/4 gives the optimal
value for δ, that is the value minimizing N .

The runtime of Algorithm 7 is bounded by the time to compute δ and N , to
generate N random points from a shape, and to find a best δ-neighborhood. For
the computation of δ, we use an upper bound on the isoperimetric quotient and a
lower bound on the volume of A.

The angle space 1
2πS

1 can be represented as [0, 1+ δ
diam(A) ]. Angles α ∈ [0, δ

diam(A) ]
are then inserted twice as α and 1 + α. This ensures that the number of random
samples in their neighborhood will be computed correctly for one of the copies.

Corollary 6.6 (Runtime of Algorithm 7). Let A,B ⊂ R2 be shapes, which are given
by an oracle and fulfill the assumption described in Section 2.2. Let ε, p ∈ (0, 1) be
parameters.

Then Algorithm 7 with input (A,B, ε, p) computes a rigid motion r that maximizes
the volume of overlap of r(A) and B up to an additive error of ε|A| with probability at
least 1−p in time O

(
T (N)+N(logN)2

)
where N = O

(
ε−8K3

ADA(MB/mA)2 log 2
p

)
.
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6. Probabilistic matching of planar regions under rigid motions

6.3. Vote generation with 3+1 points

Algorithms 6 and 7 do not use any information about the shape for the generation
of the rotation angles. We consider a variant of the probabilistic algorithm for rigid
motions that uses the directions present in the shapes to determine the rotation angle
in the random experiments. For this variant, we need to be able to test whether a
given point is contained in a shape. Therefore, in this section, we assume that in
time Tq(N) we can not only generate N random points from a shape B, but also
execute N membership queries “b ∈ B?”.

A rigid motion is determined by selecting two points a1, a2 ∈ A and one point
b1 ∈ B uniformly at random. Then we select another point b2 ∈ R2 such that
the distances between the points a1 and a2 and b1 and b2 are the same, i.e., b2 =
b1 + |a2 − a1|Mβ

(
1
0

)
, where β ∈ [0, 1] is selected u.a.r. If b2 happens to be in B,

then (a1, a2, b1, b2) is a valid random sample. Otherwise, we discard the sample and
select new points. In this way, we select uniformly distributed tuples from

S = {(a1, a2, b1, β) ∈ A2 ×B × [0, 1] : a1 6= a2, b2 = b1 + |a2 − a1|Mβ

(
1
0

)
∈ B}.

Generating one random sample for this algorithm involves testing whether a
point b2 lies in the shape B, which takes more time than simply generating a ran-
dom rotation angle, as in Algorithm 7. Also, we need to analyze how many random
samples are discarded by the algorithm. This increases the bound on the required
number of random samples. However, experiments with our implementation of the
algorithms show that the quality of random samples is significantly better than in
the random rotation case. For the same number of random samples, Algorithm 8
computes a much better matching transformation. See Chapter 7 for experimental
results.

How often we have to discard samples depends on the shapes in a way that is
not immediately clear. For skinny shapes, we cannot control the probability of
discarding a sample. We bound this probability for fat shapes. We discussed a
number of fatness notions in Chapter 2. Here we use a very simple, home-made
definition of fatness that is designed for the purpose. We say that a shape A is
κ-fat if it contains a disk of area at least κ|A|. This simple notion of fatness has the
advantage that it is a very weak assumption. Whenever fat shapes are used in this
chapter, we refer to this definition.

Algorithm 8 does not only get two shapes, an error tolerance and a desired prob-
ability of success as input, but also a fatness constant κ. The shapes are assumed
to be κ-fat.

Theorem 6.7 (Approximation property of Algorithm 8). Let κ, ε, p ∈ (0, 1) be
parameters, and let A,B ⊂ R2 shapes such that A and B contain disks of area
µA ≥ κ|A| and µB ≥ κ|B|, respectively, and µA ≤ µB.

There is a constant C > 0 such that, if 2DClusteringSizeRM3+1(A, ε, κ) re-

turns a positive number δ < ε κ
3(
√

2+2π)

|A|
|∂A| and 2DSampleSizeRM3+1(B, ε, δ, p, κ)
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6.3. Vote generation with 3+1 points

Algorithm 8: 2DMaxOverlap3+1

Input: shapes A,B ⊂ R2, fatness constant κ ∈ (0, 1), error tolerance
ε ∈ (0, 1), allowed probability of failure p ∈ (0, 1)

real δ ← 2DClusteringSizeRM3+1(A, ε, κ);
integer N ← 2DSampleSizeRM3+1(B, ε, δ, p, κ);
collection Q← ∅;
for i = 1 . . . N do

point a1 ← RandomPoint(A);
point a2 ← RandomPoint(A);
point b1 ← RandomPoint(B);
real β ← RandomAngle();

point b2 ← b1 + |a2 − a1|Mβ

(
1
0

)
;

if b2 ∈ B then
α← ∠(a2 − a1, b2 − b1)/(2π);
add(Q, (α, b1 −Mαa1));

end

end
return 2DFindDensestClusterRM(Q, δ,diam(A));

returns an integer N ≥ C ε−2δ−6κ−5 diam(A)2|B|2 log 2
p , then Algorithm 8 with in-

put (A,B, κ, ε, p) computes a rigid motion r∗ such that |r∗(A)∩B| is maximal up to
an additive error of ε|A| with probability at least 1− p.

Note that also in this version of the probabilistic matching δ scales with the shapes
and N is invariant under scaling of both shapes with the same factor.

Lemma 6.8. The density function on the space of rigid motions R that is induced
by the random experiment in Algorithm 8 is given by

g3+1(r) = |r(A) ∩B|2/c,

where c is a positive real depending on A and B that satisfies c ≤ |A|2|B|.

Proof. Let I = 1
2πS

1. In one random experiment, we select uniformly distributed
random elements from the set

S = {(a1, a2, b1, β) ∈ A2 ×B × I : a1 6= a2, b2 = b1 + |a2 − a1|Mβ

(
1
0

)
∈ B}.

The density function of the random variable X = idS is then

fX(a1, a2, b1, β) =
χS(a1, a2, b1, β)

|S|
=
χA(a1)χA(a2)χB(b1)χB(b2)

|S|
,

where b2 is as in the definition of S.
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6. Probabilistic matching of planar regions under rigid motions

Let Y denote the random variable that corresponds to the rigid motion resulting
from one random experiment:

Y : S → R, Y : (a1, a2, b1, β) 7→ (α, b1 −Mαa1),

where α = ∠(a2 − a1, b2 − b1)/2π. We represent Y as a composite function of the
random variable X. Define functions ϕ1, ϕ2 as follows:

ϕ1 : S → R6 × I ϕ1 : (a1, a2, b1, β) 7→ (a1, a2, b1 −Mαa1, α)

ϕ2 : R6 × I → R ϕ2 : (a1, a2, t, α) 7→ (α, t).

Then Y = ϕ2 ◦ ϕ1 ◦X.

Observe that S is a Borel set and the function ϕ1 and its inverse are bijective
and differentiable, so we can apply the transformation formula from Section 4.1 to
compute the density function of ϕ1(X). We first compute the absolute value Jϕ1(x)
of the determinant of the Jacobian matrix of ϕ1.

Denote x = (x1, . . . , x7) = (a1, a2, b1, β). Because of ϕ1,i(x) = xi for i = 1, . . . , 4,

we have
∂ϕ1,i

∂xj
= δij for (i, j) ∈ {1, 2, 3, 4} × {1, . . . , 7}. Hence det(

∂ϕ1,i

∂xj
)i,j=1,...,7 =

det(
∂ϕ1,i

∂xj
)i,j=5,...,7.

Note that the angle α does not depend on b1 and it depends linearly on β: We
have α = β + γ where γ = ∠(a2 − a1, (1

0))/2π. See Figure 6.1.
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Figure 6.1.:

Therefore ∂(b1−Mαa1)i
∂b1j

= δij ,
∂α
∂b1j

= 0 for j = 1, 2, and ∂α
∂β = 1. Now we have

(
∂ϕ1,i

∂xj

)
i,j=5,...,7

=

1 0 λ1

0 1 λ2

0 0 1

 ,

for some λ1, λ2 ∈ R. Thus Jϕ1(x) = 1. The inverse function of ϕ1 maps a tuple
(a1, a2, t, α) to (a1, a2, t + Mαa1, α + γ). By Section 4.1, the density function of
ϕ1(X) is given by

fϕ◦idS (a1, a2, t, α) = χA(a1)χA(a2)χB(t+Mαa1)χB(t+Mαa2)/|S|
= χA(a1)χA(a2)χM−α(B−t)(a1)χM−α(B−t)(a2)/|S|.
= χ(A∩r−1(B))2(a1, a2)/|S|
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6.3. Vote generation with 3+1 points

for r = (α, t) ∈ R. The density function of random variable Y on R is then

g3+1(r) =
1

|S|

∫
A2

χ(A∩r−1(B))2(a1, a2)d(a1, a2)

= |A ∩ r−1(B)|2/|S|
= |r(A) ∩B|2/|S|.

Lemma 6.9. The density function g3+1 is Lipschitz continuous with constant
L = (

√
2 + 2π) |∂A| min{|A|, |B|}/c, where c is as in Lemma 6.8.

Proof. The density function g3+1 induced by Algorithm 8 has the form f2(r)/c,
where c is as in Lemma 6.8. Observe that if f is bounded and Lipschitz contin-
uous with Lipschitz constant Lf , then f2 is Lipschitz continuous with constant
Lf2 = 2Lf supx f(x) due to the following consideration:

|f2(x)− f2(y)| = |f(x)− f(y)| · |f(x) + f(y)|
< Lf · |x− y| · |f(x) + f(y)|
≤ 2Lf |x− y| sup

z
f(z).

Because of Lemma 6.5, the Lipschitz constant of the function g3+1 is

L3+1 = (
√

2 + 2π)|∂A| sup
z
f(z)/c. (6.2)

The maximal possible area of overlap of two shapes under rigid motions is clearly
bounded by the area of the smaller shape. Therefore, the function g3+1 is Lipschitz
continuous with constant L3+1 = (

√
2 + 2π)|∂A| min{|A|, |B|}/c.

Proof of Theorem 6.7. Since in Algorithm 8 some random samples are rejected and
do not induce a vote in the transformation space, we first determine the necessary
number of not rejected experiments, in the following denoted by M , in order to
guarantee the required error bound with probability at least 1 − p

2 . Afterwards
we determine the total number N of random samples that the algorithm needs
to generate in order to record at least M votes in the transformation space with
probability at least 1− p

2 . Then the probability that less than M votes are recorded
or the error is larger than ε|A| is at most p.

Let f(r) denote the area of overlap |r(A)∩B| and let g3+1 be the density function of
the probability distribution µ in the space of rigid motions induced by Algorithm 8.
Let r∗ be a random rigid motion with the maximum number of random rigid motions
generated by the algorithm in its δ-neighborhood.

For Algorithm 8, the density function equals g3+1(r) = f2(r)/c, where c is as
in Lemma 6.8. Its Lipschitz constant is L = (

√
2 + 2π)|∂A| min{|A|, |B|}/c by

Lemma 6.9.
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6. Probabilistic matching of planar regions under rigid motions

Let r be a rigid motion that maximizes the area of overlap of A and B. By
Theorem 4.6, we have that

1
c (f(r)− f(r∗)) (f(r) + f(r∗)) = g3+1(r)− g3+1(r∗)

≤ 1
4 diam(A)δ−3

(
C
√

6
M + τ

)
+ 3Lδ.

The universal constant c from Theorem 4.6 is here called C to avoid a clash of
notation.

We want to have at least 1 − p
2 as probability of success, that is at most p

2 as

probability of failure, which lets us set τ =
√

1
2M log 4

p . Using f(r) ≥ κ|A|, which

holds by assumption, and substituting τ shows

f(r)− f(r∗) ≤ c

κ|A|

((
C
√

6 +

√
1

2
log

4

p

)
diam(A)

4δ3
√
M

+ 3Lδ

)
.

We need to have 3c
κ|A|Lδ < ε|A| to get the error small enough, which is fulfilled for

all clustering sizes

δ <
εκ

3(
√

2 + 2π)

|A|
|∂A|

.

For each such δ there is an

M = O
(
ε−2κ−2δ−6|B|2 diam(A)2 log 2

p

)
such that, if M is the number of not rejected experiments in Algorithm 8, the
additive error is at most ε|A| with probability at least 1− p

2 .
Next we determine the total number N of random samples that the algorithm

needs to generate in order to record at least M votes with probability at least 1− p
2 .

For that purpose we first determine the probability that one randomly generated
sample is not rejected. In the following this probability is denoted by q.

Let CA and CB denote the largest inscribed circles in A and B, respectively, and
let rA, rB denote the radii of CA and CB. By the assumptions |CA| ≥ κ|A| and
|CB| ≥ κ|B|, and by a precondition of the theorem rA ≤ rB.

Consider a circle C′A of radius rA/4 contained in A and a circle C′B concentric
with CB of radius rB − rA/2 ≥ rB/2 in B. The area of C′A is at least κ|A|/16 and
the area of C′B is at least κ|B|/4. Then the probability that two randomly selected
points a1 and a2 from A are both contained in C′A is at least (κ/16)2. The distance
between a1 and a2 is at most rA/2. The probability that a randomly selected point
b1 from B is contained in C′B is at least κ/4, and by construction, the complete circle
centered at b1 with radius equal to the distance between a1 and a2 is completely
contained in CB ⊂ B. Therefore, for every choice of two points in C′A, a point in C′B
and for every randomly chosen direction, the random sample induces a vote in the
transformation space. The probability q that one random sample is not rejected is
then at least as large as κ3/45.
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6.3. Vote generation with 3+1 points

Our algorithm generates random samples independently in every step. For each
sample the probability not to be rejected is at least q. Then the expected number of
valid samples after N steps is at least qN . Let X denote the number of valid samples
after N steps. Using the Chernoff bound (Theorem 4.3) we can determine the
number of steps N for which X is not much smaller than qN with high probability:

P (X < qN − ξN) < 2e−ξ
2N/2

for all ξ ∈ (0, 1). For ξ = q/2 we have P
(
X < q

2N
)
< 2e−q

2N/8. Restricting this
failure probability to be at most p

2 , we get that for N ≥ 8q−2 log 4
p the number of

votes X is at least qN/2 with probability at least 1− p
2 . Then with N ≥ 2M/q ran-

dom samples the algorithm generates at least M votes with probability at least 1− p
2 .

Finally, choosing

N ≥ max
{

2M
q ,

8
q2

log 4
p

}
= O

(
max

{
ε−2δ−6κ−5 diam(A)2|B|2 log 2

p , κ
−6 log 2

p

})
,

we have that with probability at least 1−p
2 the number of recorded votes is sufficiently

large, and therefore with probability at least 1−p the approximation of the maximum
area of overlap differs from the optimum by at most ε|A|. Since κ−1 = O(δ−1), the
term κ−6 log 2

p can be dropped.

Corollary 6.10 (Runtime of Algorithm 8). Let κ, ε, p ∈ (0, 1) be parameters, and let
A,B ⊂ R2 shapes, which are given by an oracle and fulfill the assumptions described
in Section 2.2, such that A and B contain disks of area µA ≥ κ|A| and µB ≥ κ|B|,
respectively, and µA ≤ µB. Then Algorithm 8 with input (A,B, κ, ε, p) computes a
rigid motion that maximizes the volume of overlap of A and B up to an additive
error of ε|A| with probability at least 1 − p in time O

(
Tq(N) + N(logN)2

)
where

N = O(ε−8κ−11K3
ADA(MB/mA)2 log 2

p).
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7. Evaluating the probabilistic matching
approach in 2D

The purpose of this chapter is to further investigate the probabilistic matching
approach in the plane, as described in the two previous chapters. Matching under
translations for arbitrary dimension is described in Chapter 5 in Algorithms 2 and
5. In the previous chapter, three algorithms for matching solid shapes in the plane
under rigid motions were studied.

In the first section of this chapter, we present simple, deterministic, grid-based
matching algorithms for translations and rigid motions in the plane, which are in
some sense the deterministic versions of the probabilistic algorithms. We compare
them to the probabilistic algorithms.

In Section 7.2, we study whether the probabilistic matching approach can be
applied to matching under similarities. We describe a random experiment that
results in matching under similarities and determine the density function for two
parameterizations of the space of similarities.

In the last section of this chapter, we present experimental results for translations
in dimension 2 (Algorithm 1) and rigid motions (Algorithms 7 and 8), which indi-
cate that our theoretical bounds are overly pessimistic and that all but one of the
presented algorithms work well. The experimental results are not meant as rigorous
study, but to prove that the algorithms are easily implementable and give reasonable
results.

7.1. Comparison with a simple, deterministic approach

One could ask whether it is necessary to make such heavy use of randomness in
our algorithms. There might be a simple deterministic algorithm that serves the
same purpose and is equally simple as the probabilistic matching approach. We
study a deterministic analogue of the probabilistic algorithm to check to what extent
randomness helps. We only do so for the plane, but we immediately take care of the
case of rigid motions.

We present a deterministic algorithm that approximately maximizes the area of
overlap of two shapes under translations and rigid motions in the plane. Here we
model a shape A as a region in the plane whose boundary is a set of simple closed
curves. Additionally we assume that we can generate all points from A ∩ δZ2 for
each grid width δ > 0. We formulate the results for the example of finite unions of
triangles that have non-intersecting interiors.
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7. Evaluating the probabilistic matching approach in 2D

The deterministic algorithm for translations

The idea of the algorithm for translations is as follows. The shapes A and B are ap-
proximated by orthogonal polygons, namely by unions of squares from the grid δZ2,
for some positive grid width δ, whose centers are contained in the shapes. For these
orthogonal polygons, only translations that map grid points onto each other are
considered, which is a finite number of translations.

The grid width is chosen so small that the area of the union of the squares that
intersects the boundary of the shapes is only a small fraction of the area of A and B.

The algorithm counts how many pairs of grid points from A×B are mapped onto
each other by each translation and outputs the most frequent translation. All pairs
of grid points (a, b) with t = b− a for which the square centered at a is contained in
A and the square centered at b is contained in B contribute δ2 to the area of overlap
|t(A) ∩ B|. Therefore, for a translation t, the number of pairs (a, b) such that a is
the center of a square in A and b is the center of a square in B and t = b− a gives
an estimate of the area of overlap |t(A) ∩ B|. From the definition of the Lebesgue
measure follows limδ→0 |t(A) ∩ B ∩ δZ2| · δ2 = |t(A) ∩ B|. Figure 7.1 illustrates the
idea of the algorithm.

Figure 7.1.: The figure shows two polygonal shapes, drawn with dotted lines, and
a grid of some example width. In the algorithm, the grid width is chosen so small
that the union of the squares that intersect the boundary, which is drawn in dark
gray, has a small area. The boldly drawn orthogonal polygons are the unions of
squares whose centers are contained in the shapes. The figure also shows four
example pairs of centers of squares that give the same translation vector.

Our algorithm, which is given a pseudocode description in Algorithm 9, obtains
as input shapes A, B and an error tolerance ε. It computes some grid width δ that
depends on A, B and ε. The next theorem gives an upper bound on the grid width
that guarantees that the output translation t∗ is optimal up to an additive error of
at most ε|A|. It also outputs the number of pairs of grid points m(t∗) that have t∗ as
difference vector. This information will be used for matching under rigid motions.
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7.1. Comparison with a simple, deterministic approach

Algorithm 9: 2DGridMaxOverlapT

Input: finite sets of triangles A,B ⊂ R2 that have pairwise disjoint
interiors, error tolerance ε ∈ (0, 1)

δ ← 2DGridWidthT(A,B, ε); // Compute positive grid with δ
Initialize hashtable H;
for (a, b) ∈ (A ∩ δZ2)× (B ∩ δZ2) do

t← b− a;
if t ∈ H then

increase value m(t) in H by 1;
else

insert key t with value m(t) = 1 into H;

end
Compute t∗ in H with maximal value m(t∗);
return (t∗,m(t∗));

Theorem 7.1 (Correctness of Algorithm 9). Let A,B ⊂ R2 be unions of finitely
many triangles that have pairwise disjoint interiors, and let ε ∈ (0, 1) be a pa-
rameter. Let M(A,B) be the minimal length of the boundaries of the triangles
of A and B, and let L(A,B) be the total length of the boundaries of A and B. If

2DGridWidthT(A,B, ε) returns a positive number δ ≤ min
{

1
12

ε|A|
L(A,B) ,

1
4M(A,B)

}
,

then Algorithm 9 with input (A,B, ε) computes a translation t∗ such that
|t∗(A) ∩B| ≥ |t(A) ∩B| − ε|A| for all translations t ∈ R2, and an integer m(t∗)
such that

∣∣|t∗(A) ∩B| −m(t∗)δ2
∣∣ ≤ 5

12 ε|A|.

We prepare the correctness proof of Algorithm 9 with a series of lemmas. A (half
open) square of the grid δZ2 is a set of the form [xδ, (x+ 1)δ)× [yδ, (y+ 1)δ) for two
integers x, y. We show that a closed curve cannot intersect too many squares in a
grid.

Lemma 7.2. Let C be a simple closed curve of length ` in the plane. Let δ > 0 and
let k be the number of squares of δZ2 that C intersects. Then, k ≤ 4(`/δ + 1).

Proof. If C intersects at most four squares, the claim is clearly true. If C intersects
more than four squares, let c1 ∈ C be a point at which C crosses the boundary of
a square. Following C clockwise from c1, let S1 be the first square that C passes
through, i.e. C ∩ S1 6= ∅. Let c2 be the next point on the curve C that is on
the boundary of a square such that from c2 on C passes through a previously not
seen square. Proceeding in this way, c1, . . . , ck are defined, and as a consequence k
equals the number of squares that C intersects. Compare Figure 7.2 for the defini-
tion of c1, . . . , ck. Each piece of the curve from ci to ci+4 passes through at least 4
squares that were previously not visited. By inspection of the connected arrange-
ments of 4 squares, each such piece of the curve has length at least δ. Therefore
` ≥ δbk/4c ≥ δ(k/4− 1), which implies the claim.
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7. Evaluating the probabilistic matching approach in 2D

c1
c2ck

Figure 7.2.: The figure shows an example curve C and points c1, . . . ck.

In our model, the boundary of a plane shape is a set of simple closed curves. We
bound the number of grid squares that the boundary of a shape can intersect.

Corollary 7.3. Let D be a finite set of simple closed curves, each of which has
length at least c > 0. Let L be the total length of the curves in D. Let 0 < δ ≤ c/4
and let K be the number of squares of δZ2 that are intersected by at least one of the
curves in D. Then, K ≤ 5L/δ.

Proof. Let C be a simple closed curve of length ` ≥ c > 0. Let δ ≤ c/4 and let
k be the number of squares of δZ2 that C intersects. By Lemma 7.2, we have
k ≤ 4`/δ + 4 ≤ 4`/δ + c/δ ≤ 5`/δ.

Let C1, . . . , Cn be simple closed curves of lengths `1, . . . , `n such that Ci intersects
ki squares of δZ2. Let K be the number of squares that are intersected by some Ci.
Then, K ≤ k1 + · · ·+ kn ≤ 5`1/δ + · · ·+ 5`n/δ = 5L/δ.

Let G(A) = A ∩ δZ2 for some fixed δ > 0. Let m be the number of pairs of grid
points in G(A)×G(B) that have some fixed vector t ∈ R2 as their difference vector.
Next we prove the key lemma for the algorithm. It states that mδ2 is indeed an
approximation of |t(A) ∩B|.

Lemma 7.4. Let t be a translation in G(B) ⊕ (−G(A)), and let m be the number
of pairs (a, b) ∈ G(A) × G(B) such that t = b − a. Let k be the number of squares
of δZ2 that ∂A ∪ ∂B intersects. Then (m− k)δ2 ≤ |t(A) ∩B| ≤ (m+ k)δ2.

Proof. For two distinct pairs (a, b) and (a′, b′) that yield the same translation t,
a 6= a′ and b 6= b′ hold. Each pair (a, b) such that the square with center a is
contained in A, the square with center b is contained in B, and t = b−a contributes
the area of one square, which is δ2, to the area of overlap. Consider the shape SA
that consists of all squares of δZ2 that are intersected by A. Also, consider the
shape sA that consists of all squares that are contained in A. Clearly sA ⊆ A ⊆ SA.
Similarly, let SB be the union of all squares of δZ2 that are intersected by B and sB
the union of all squares that are contained in B. We have

(m− k)δ2 ≤ |t(sA) ∩ sB| ≤ |t(A) ∩B| ≤ |t(SA) ∩ SB| ≤ (m+ k)δ2.
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7.1. Comparison with a simple, deterministic approach

Finally we prove that for every translation t for which the area of overlap of t(A)
and B is not too small, there is a translation close to t that is the difference of a
grid point from A and a grid point from B.

Lemma 7.5. Let k be the number of squares of δZ2 that ∂A ∪ ∂B intersects.
For every translation t ∈ R2 such that |t(A) ∩ B| > kδ2, there is a translation
t ∈ G(B)⊕ (−G(A)) such that |t− t| ≤

√
2δ.

Proof. Let t ∈ R2 be a translation vector. If for all (a, b) ∈ A×B such that t = b−a
hold that ∂A intersects the square of δZ2 that contains a or ∂B intersects the square
that contains b, then |t(A) ∩B| ≤ kδ2. Therefore, if |t(A) ∩B| > kδ2, then there is
(a, b) ∈ A×B such that t = b− a and the squares containing a and b are contained
in A and B, respectively. Let a be the center of the square containing a and let b
be the center of the square containing b. Then t = b − a ∈ G(B) ⊕ (−G(A)) and
|t− t| = |b− a− (b− a)| ≤ |a− a|+ |b− b| ≤

√
2δ.

Proof of Theorem 7.1. Let A, B, ε, t∗ and m(t∗) be defined as in the theorem,
and assume that δ is at most as large as the given upper bound. Let k be the
number of squares of δZ2 intersected by ∂A ∪ ∂B. The set ∂A ∪ ∂B is a set of
simple closed curves. Let L(A,B) the sum of the lengths of the boundaries of A
and B. Using δ ≤ 1

4M(A,B), we have k ≤ 5L(A,B)/δ by Corollary 7.3. We have
kδ2 ≤ 5L(A,B)δ ≤ 5

12 ε|A|. By Lemma 7.4, it holds that m(t∗) is the claimed
approximation of |t∗(A) ∩B|.

If the maximal area of overlap is less than or equal to ε|A|, then every trans-
lation t∗ is a valid output. Assume that there is a translation t ∈ R2 such that
|t(A) ∩B| > ε|A|.

By Lemma 7.4 and the above inequality, for every t ∈ G(B)⊕ (−G(A)) holds that
m(t)δ2 + 5

12ε|A| ≥ |t(A) ∩B| ≥ m(t)δ2 − 5
12 ε|A| where m(t) is the number of pairs

(a, b) ∈ G(A)×G(B) such that t = b− a.

Let t ∈ R2 be a translation that maximizes the area of overlap, and let t∗ be the
output of Algorithm 9. By Lemma 7.5, there is a t ∈ G(B) ⊕ (−G(A)) such that
|t− t| ≤

√
2δ. By Corollary 3.5, we have

|t(A) ∩B| ≥ |t(A) ∩B| −
√

2
2 δ|∂A| > |t(A) ∩B| − 1

12 ε|A|.

Since m(t∗) ≥ m(t), we have

|t∗(A) ∩B|+ 5
12 ε|A| ≥ |t(A) ∩B| − 5

12 ε|A|.

Because 5
12 + 5

12 + 1
12 < 1, we have |t∗(A) ∩B| > |t(A) ∩B| − ε|A|.

The deterministic algorithm for rigid motions

A rigid motion in the plane is defined by a counterclockwise rotation angle α ∈ [0, 2π)
and a translation vector t ∈ R2. We denote the rotation matrix of the angle α by Mα.
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7. Evaluating the probabilistic matching approach in 2D

We use the algorithm for translations to compute a matching under rigid motions.
For k = 1, . . . , q, where q is a large enough integer, we apply the algorithm for
translations to the shapes M2πk/q(A) and B with error tolerance ε/4. We output
the translation t for which m(t) is the largest and the corresponding angle 2πk/q.
See the pseudocode description of Algorithm 10.

Algorithm 10: 2DGridMaxOverlapRMT

Input: finite sets of triangles A,B ⊂ R2 that have pairwise disjoint
interiors, error tolerance ε ∈ (0, 1)

q ← 2DAngleWidthRM(A,B, ε);
// Discretization size for the angle is 1/q
V ← 0; t∗ ← (0, 0); α∗ ← 0;
for k = 1, . . . , q do

Ak ←M2πk/qA; // Compute rotated A

// Use algorithm for translations to match Ak and B
(point, integer) (t, v)← 2DGridMaxOverlapT(Ak, B, ε/4);
if V < v then

t∗ ← t; // Update translation

α∗ ← 2πk/q; // Update angle

V ← v; // Update estimated overlap

end
return (α∗, t∗);

We prove a bound on the discretization size of the angle that ensures approxima-
tion up to the given error.

Theorem 7.6 (Correctness of Algorithm 10). Let A,B ⊂ R2 be unions of finitely
many triangles that have pairwise disjoint interiors, and let ε ∈ (0, 1) be a param-

eter. If 2DAngleWidthRM(A,B, ε) returns a positive integer q ≥ diam(A)|∂A|
2ε|A| , then

Algorithm 10 computes with input (A,B, ε) a rigid motion r∗ such that |r∗(A)∩B| ≥
|r(A) ∩B| − ε|A| for all rigid motions r.

Proof. Denote by tβ the output of Algorithm 9 on input of (MβA,B, ε). Let
(αopt, topt) be a rigid motion that maximizes the area of overlap of A and B. For all
x ∈ R2 and all angles β ∈ [0, 2π), we have that |Mαoptx −Mβx| ≤ |αopt − β| · |x|.
Let β be an angle such that |αopt − β| < 1/q. Since by assumption 0 ∈ A, we have
|Mαopta−Mβa| ≤ diam(A)/q for all a ∈ A. By Theorem 3.5, we have∣∣|(MαoptA+ topt) ∩B| − |(MβA+ topt) ∩B|

∣∣ ≤ diam(A)|∂A|/(2q). (7.1)

For q ≥ diam(A)|∂A|
2ε|A| , the right hand side is at most ε|A|.

Let mβ(t) be the number of pairs of grid points that have t as their difference,
as counted by Algorithm 9 with input (MβA,B, ε). Let (α∗, t∗) be the output of
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7.1. Comparison with a simple, deterministic approach

Algorithm 10. We know

|(Mα∗A+ t∗) ∩B| ≥ mα∗(t
∗)δ2 − ε|A|

by Theorem 7.1. By the definition of Algorithm 10, mα∗(t
∗) ≥ mβ(tβ). Applying

Theorem 7.1 two more times and using Inequality (7.1), we obtain

|(Mα∗A+ t∗) ∩B| ≥ mα∗(t
∗)δ2 − ε|A|

≥ mβ(tβ)δ2 − ε|A|
≥ |(MβA+ tβ) ∩B| − 2ε|A|
≥ |(MβA+ topt) ∩B| − 3ε|A|
≥ |(MαoptA+ topt) ∩B| − 4ε|A|.

Runtimes and comparison with the probabilistic approach

We briefly discuss the runtimes of Algorithm 9 and Algorithm 10 and compare them
with the time bounds on the probabilistic matching algorithms. We assume that
the input shapes A and B both are sets of at most n triangles that have pairwise
disjoint interiors.

Let L(A,B) the total length of the boundary. We can compute L(A,B) in
quadratic time as a preprocessing step. We will see in a moment that the time bound
involves a factor of n2 anyway. After also having computed |A| and M(A,B), which

we can do in linear time, we compute δ = min
{

ε|A|
12L(A,B) ,

1
4M(A,B)

}
.

For each triangle ∆, the set ∆ ∩ δZ2 can be computed in time O(|∆ ∩ δZ2|) =
O(|∆|/δ2 + |∂∆|/δ + 1) in a straightforward way. The set G(A) = A ∩ δZ2 has size
O
(
|A|/δ2+|∂A|/δ+n

)
and can be computed within the same time bound. Note that

we do not have to store G(A) at once, but that we can also output one grid point
after the other while storing only a constant amount of information. Using universal
hashing, we can compute a translation t with maximal value m(t) in expected time
O(|G(A)| · |G(B)|) and space O(|G(B) ⊕ (−G(A))|). This time bound involves the
sum of n2 and ε−4, as well as terms in |A|, |∂A|, |B|, |∂B|, L(A,B) and M(A,B).

Table 7.1 summarizes the time bounds for the different algorithms for the case of
matching unions of triangles in the plane under translations and rigid motions. For
unions of at most n triangles, we have T (N) = O(n + N log n), if we generate one
random point at a time. Furthermore Tq(N) = O((n+N) log n). See Chapter 2 for
details.

The runtime of the probabilistic algorithm for translations in the plane is linear
in n, so the dependence on n is significantly better for the probabilistic approach.
However, the growth rate of the approximation error is ε−6 in the time bound on
the probabilistic approach, compared to ε−4 for the deterministic approach. For the
probabilistic adaptive algorithm, described in Section 5.3, the growth rate of the
time bound in n is n log n and the growth rate in ε is ε−

36
7 .
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7. Evaluating the probabilistic matching approach in 2D

Translations

Algo. 2 prob. incr. Og(n+N logN) where N = Og(ε−6 log 2
p)

Algo. 5 prob. incr. Og(n log n+N logN) where N = Og(ε−
36
7 log 2

p)

Algo. 9 determ. Og(n2 + ε−4)

Rigid motions

Algo. 6 prob. Og(nε−1 log n+N logN) where N = Og(ε−
43
7 log 2

p)

Algo. 7 prob. incr. Og(n+N(logN)2) where N = Og(ε−8 log 2
p)

Algo. 8 prob. incr. Og(n log n+N(logN)2) where N = Og(ε−8 log 2
p)

Algo. 10 determ. Og(n2ε−1 + ε−5)

Table 7.1.: Comparison of the time bounds for different algorithms for the match-
ing of unions of at most n triangles in the plane with error bound ε and allowed
probability of failure p under translations and rigid motions. The second column
indicates if the algorithm works incremental (incr.), probabilistic (prob.) or deter-
ministic (determ.). The notation Og indicates that there is a hidden dependence
on geometric parameters as the area, length of the boundary and the diameter
of the input shapes and in the case of Algorithm 8 on the fatness parameter κ
(Section 6.3).

Let us determine the runtime of the deterministic algorithm for rigid motions. For
each angle α, it takes time linear in n to compute Mα(A). We can do the same trick
as in Algorithm 11 and not actually rotate A, but rotate each sample point a ∈ A.
So the runtime for rigid motions is

O(ε−1|A|−1 diam(A)|∂A| · |G(A)| · |G(B)|).

This bound involves the summands ε−1n2 and ε−5 and terms depending on the
areas, diameters and lengths of the boundaries of the shapes.

The probabilistic approach has the advantage of working incrementally. The ex-
periments indicate that the bound on the number of random points that we proved
is overly pessimistic, as we will see in Section 7.3.

The discretization in the deterministic algorithm introduces a new type of error
since for a fixed grid width the result cannot be arbitrarily good. The optimal trans-
formation has a certain distance to the grid and the quality of the output depends
on this distance. When using the probabilistic approach with bucket clustering, this
type of error can also occur. By doing the latter, we will see in Section 7.3 that this
error type can worsen the result considerably.

When used with the clustering method that is described in the algorithms, the
probabilistic approach does not have this problem. If the clustering size is below a
certain threshold for the probabilistic matching approach, as described in Algorithms
2, 5, 7 and 8, then the error of the output tends to 0 with high probability, when
the number of random samples tends to +∞, even if the parameter δ stays fixed.
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7.2. Similarities

A similarity σ in the plane is a map that consists of rotation, scaling and translation.
It has the form σ(x) = λMαx+ t where λ ∈ [0,+∞) is a scaling factor, α ∈ [0, 2π) a
counterclockwise rotation angle and t ∈ R2 a translation vector. We use two different
parameterizations of similarities, namely (λ, α, t1, t2) and (λ cosα,−λ sinα, t1, t2).

It is natural to generalize the probabilistic matching approach to similarities since,
for two of points a, a′ ∈ A, a 6= a′, and two points b, b′ ∈ B, b 6= b′, there is exactly
one similarity that maps a onto b and a′ onto b′. We have σ(a) = b if and only if
the translation vector t equals −λMαa + b. With this, σ(a′) = b′ is equivalent to
σ(a)−σ(a′) = b− b′. Because of σ(a)−σ(a′) = λMα(a− a′), this is true if and only
if the rotation angle α is the counterclockwise angle between the vectors a′ − a and

b′ − b and the scaling factor λ equals |b−b
′|

|a−a′| .
With this observation, we can apply the probabilistic matching approach to match-

ing under similarities in the plane. In each random experiment, we draw points
a, a′ ∈ A and points b, b′ ∈ B uniformly at random and store a vote for the unique
similarity that maps a onto a′ and b onto b′.

In the following, we determine the density function on the space of similarities for
the two parameterizations of the space of similarities mentioned above.

Consider the parameterization of similarities as 4-tuples (s1, s2, t1, t2) ∈ R4 denot-

ing the map x 7→
(
s1 s2

−s2 s1

)
x+

(
t1
t2

)
.

By the above observations, we have the following formulas:

λ =
|b′ − b|
|a′ − a|

,

s1 = λ cos∠(a′ − a, b′ − b) =
(a′1 − a1)(b′1 − b1) + (a′2 − a2)(b′2 − b2)

|a′ − a|2
,

s2 = −λ sin∠(a′ − a, b′ − b) =
−(a′1 − a1)(b′2 − b2) + (a′2 − a2)(b′1 − b1)

|a′ − a|2
,

t1 = λ(s1a1 + s2a2) + b1,

t2 = λ(−s2a1 + s1a2) + b2.

Let X be a random vector that draws tuples (a, a′, b, b′) ∈ R8 u.a.r. from A2×B2,

i.e. with density function fX(a, a′, b, b′) =
χA2×B(a,a′,b,b′)

|A|2·|B|2 . Let σ = (s1, s2, t1, t2) be

the unique similarity that maps a onto b and a′ onto b′. Define

ϕ : (a, a′, b, b′) 7→ (a, a′, s1, s2, t1, t2).

We are interested in the density function of the projection of the random vector ϕ(X)
to the last four coordinates. Denote x = (x1, . . . , x8) = (a1, a2, a

′
1, a
′
2, b1, b2, b

′
1, b
′
2).

Applying elementary rules to compute the partial derivatives shows that the Jaco-
bian

det
(∂ϕi
∂xj

)
i,j=1,...,8

= − 1

|a′ − a|2
.
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The inverse function is given by ϕ−1(a, a′, s1, s2, t1, t2) = (a, a′, σ(a), σ(a′)) where
σ denotes the similarity map (s1, s2, t1, t2) since σ is the unique similarity that
maps a onto b and a′ onto b′. By Section 4.1, (a, a′, s1, s2, t1, t2) is distributed with
density function fϕ(X)(a, a

′, s1, s2, t1, t2) = fX(a, a′, σ(a), σ(a′))|a−a′|2. Therefore σ
is distributed with density function

h(σ) =
1

|A|2|B|2

∫
A×A
|a− a′|2χA2×B2(a, a′, σ(a), σ(a′))da da′.

We have χB(σ(a)) = χσ−1(B)(a), and hence h(σ) = 1
|A|2|B|2

∫
(A∩σ−1(B))2 |a−a

′|2da da′.
Furthermore ∫

(A∩σ−1(B))2
|a− a′|2da da′ = 1

λ2

∫
(σ(A)∩B)2

|a− a′|2da da′

where λ =
√
s2

1 + s2
2 is the scaling factor of σ, as

∫
C f(x)dx =

∫
λC f(xλ)dx for C ⊂ Rk

and λ > 0.

We apply the parallel axis theorem from physics to compute the integral expression∫
(σ(A)∩B)2 |a − a

′|2da da′. For a measurable set C ⊂ R2 of finite area and a point

z ∈ C, let Iz(C) =
∫
C |x − z|

2dx. In physics, Iz(C) is called the moment of inertia
of C about the point z. If c is the center of mass of C, Ic(C) is of special interest.
The parallel axis theorem states that Iz(C) = Ic(C) + |C| · |z − c|2. Let c be the
center of mass of σ(A) ∩B. We obtain

∫
(σ(A)∩B)2

|a− a′|2da da′ =

∫
σ(A)∩B

Ia′(σ(A) ∩B)da′

=

∫
σ(A)∩B

(
Ic(σ(A) ∩B) + |σ(A) ∩B| · |c− a′|2

)
da′

= 2 |σ(A) ∩B| Ic(σ(A) ∩B).

In total,

h(σ) =
2 |σ(A) ∩B| Ic(σ(A) ∩B)

λ2 |A|2 |B|2
,

where c is the center of mass of σ(A) ∩B.

Next we consider the parameterization of planar similarities as 4-tuples (λ, α, t1, t2) ∈
R+ × [0, 2π) × R2 denoting the map x 7→ λMαx + (t1 t2)T . To determine the den-
sity function on this space, we study the function ψ that maps (s1, s2, t1, t2) to
(λ, α, t1, t2). We have

ψ(σ) =


(√

s2
1 + s2

2, arccos
(

s1√
s21+s22

)
, t1, t2

)
for s2 ≤ 0(√

s2
1 + s2

2, arccos
(
− s1√

s21+s22

)
− π, t1, t2

)
for s2 ≥ 0
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where arccos : [−1, 1]→ [0, π]. An easy computation shows∣∣∣det
(∂ψi
∂σj

)
i,j=1,...,4

∣∣∣ =
1√

s2
1 + s2

2

.

By the results of Section 4.1, the density function on R+× [0, 2π)×R2 is given by

h∗(λ, α, t1, t2) =
√
s2

1 + s2
2 h(s1, s2, t1, t2) =

2 |σ(A) ∩B| Ic(σ(A) ∩B)

λ |A|2 |B|2
,

where σ is the map represented by (λ, α, t1, t2) and (s1, s2, t1, t2) and c is the center
of mass of σ(A) ∩B.

Thus the probabilistic scheme maximizes the function h or h∗, depending on the
parameterization of the space. Observe that the maxima of these functions change
if A and B are swapped. The functions h and h∗ do not seem to be useful objective
functions. With the help of Theorem 4.7, we could use the probabilistic scheme for
matching shapes under similarities with respect to the area of overlap, if we could
compute moments of inertia of the form Ic(σ(A) ∩B) fast.

When weighting the votes with the scaling factor λ, the product of the area of
overlap and the moment of inertia is maximized. The problem is that it is then
a good solution to blow up shape A such that it contains B. When the votes are
not weighted with the scaling factor, shrinking the shape with a very small scaling
factor obtains a high value.

7.3. Experimental results

We show and discuss experimental results of a test software, which was written by
Philipp Preis in Java.

Shapes. The shapes are modeled as unions of polygons in the plane that have pair-
wise disjoint interiors. The shape files are text files that contain a list of polygonal
chains, which may be closed or open. For our purposes, they are always closed. Each
polygonal chain is represented by the sequence of the Euclidean coordinates of its
vertices. Figure 7.3 shows the shapes with which the experiments in this section are
performed. The shapes were drawn with the shape editor provided by the software.

Shape FUBear.seg depicts the bear from the logo of Freie Universität Berlin. The
shape consists of 10 polygons with 344 vertices in total. It has an area of 241,757
square unit length, a boundary of 7414 unit length, a diameter of 868, and a bounding
box of 725 × 572. We will match FUBear.seg to itself under translations and rigid
motions. Whenever matching results for only one shape are mentioned, this shape
is taken as source and target shape.

Shape BTor.seg depicts the “Brandenburger Tor”. The shapes sightsT.seg and
sightsR.seg show three Berlin landmarks each. We will match BTor.seg to sightsT.seg
under translations and to sightsR.seg under rigid motions. This is a partial matching
task since the “Brandenburger Tor” is contained in shape sightsT.seg and sightsR.seg.
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FUBear.seg BTor.seg

sightsT.seg sightsR.seg

euroman.seg eastman.seg westman.seg

euromanWalking.seg eastmanWalking.seg westmanWalking.seg

Figure 7.3.: The input shapes for the experiments.
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Shapes euroman.seg and euromanWalking.seg show the standardized European
traffic light symbols, eastman.seg and eastmanWalking.seg show the former GDR
traffic light symbols, and westman.seg and westmanWalking.seg show the former
FRG traffic light symbols.

We use the shapes depicting traffic light symbols for giving examples of matching
results for shapes that differ considerably. Figure 7.4 summarizes relevant parame-
ters of some of the shapes, for example the area and number of vertices.

shape A # vertices |A| |∂A| diam(A) |∂A|2
|A|

|A|
|∂A|

FUBear.seg 344 241,757 7,414 868 227 33
BTor.seg 161 64,820 3,339 172 172 19
sightsT.seg 294 157,940 7,041 995 314 22
sightsR.seg 294 158,368 7,048 1,019 314 22
euromanWalking.seg 67 48,933 2,280 515 106 21
westmanWalking.seg 43 58,928 2,251 509 86 26

Figure 7.4.: Relevant parameters of some of the input shapes. The values are
rounded to integers.

The algorithms. For matching solid shapes under translations, the software im-
plements Algorithm 1 in dimension 2. We refer to the implemented algorithm for
translations as Algorithm ‘translations’. Recall that Algorithm 1 obtains as input
two shapes, a clustering size, and a sample size.

For matching solid shapes under rigid motions, the software implements versions
of Algorithms 7 and 8 that obtain as input two shapes, a clustering size for the
translational part, a clustering size for the rotation angle and a sample size. In the
following, we refer to the implemented versions of Algorithm 7 and 8 as Algorithms
‘random angle’ and Algorithm ‘3+1 points’. Unless otherwise stated, Algorithm
‘3+1 points’ is used for matching under rigid motions.

The program also provides probabilistic matching of solid shapes under similari-
ties for test purposes. Different parameterization of the space of similarities can be
chosen. Furthermore the software is able to perform probabilistic matching of poly-
lines. Figure 7.5 shows a screenshot of the main window of the program’s graphical
user interface.

The program offers a discretized clustering algorithm, additionally to implemen-
tations of the Functions FindDensestClusterT (in dimension 2) and 2DFindDenses-
tClusterRM. In this section, we call the clustering algorithms as described in Func-
tions FindDensestClusterT and 2DFindDensestClusterRM the exact clustering.

Recall that neighborhoods (or clusters) are rectangles. The discretized clustering
algorithm rounds every sample to a grid whose widths are given by the translational
and rotational clustering sizes. The clustering size in the program corresponds to
the side length of the rectangle and not half of the side length as in the analysis in
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previous chapters. In the descriptions, we stay with our notation and refer to the

Figure 7.5.: The GUI of the test software. The transformation class, the type of
algorithm and two clustering methods can be chosen in the upper part of the
window. Also, the clustering sizes and the number of random samples can be
set. On the right side, a number of parameters, as the area of the shapes and the
area of the symmetric difference of the result are displayed. On the left side, the
source and target shape are shown as small pictures. In the middle, the matching
result is displayed. Here the target shape is shown in black, and the transformed
source shape is shown in gray. In the screenshot matching under rigid motions of
FUBear.seg and a rotated copy, FUBearRot.seg, is performed.

clustering size as half of the side length of the rectangle. The discretized clustering
algorithm, which is often called bucket clustering, is much faster than the exact
clustering algorithm. The non-empty grid cells are stored in a hash table, together
with the number of points in the grid cell.

But the discretized clustering introduces an additional error. The quality of the
result depends on the distance of the optimal transformation to the closest grid point.
In general, the result cannot be arbitrarily close to the optimum. Furthermore an
optimal translation might lie on the boundary of four grid cells, and an optimal
rigid motion might even lie on the boundary of eight grid cells. In this case, the best
cluster is cut and distributed on several grid cells, which can corrupt the result. On
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the other hand, if the optimal transformation happens to be a grid point, a large
clustering size and a small number of random samples might result reliably in the
optimal transformation.

We use the exact clustering whenever it is feasible with respect to the runtime.
The experimental results for translations are performed using the exact clustering
algorithm. In the experiments for rigid motions, the clustering is done by the dis-
cretized algorithm.

The absolute error. Denote the input shapes by A and B. Let t∗ be an output
transformation and topt be the optimal transformation. In the theoretical analysis,

we considered |topt(A)∩B|
|A| − |t

∗(A)∩B|
|A| to be the absolute error, where |A| could be

replaced by |B|. By Proposition 3.1, we have |topt(A)∩B|−|t∗(A)∩B| ≤ ε|A| if and
only if |t∗(A)4B|−|topt(A)4B| ≤ 2ε|A|. Hence the absolute error expressed in the

area of the symmetric difference would be |t
∗(A)4B|

2|A| − |t
opt(A)4B|

2|A| . However it seems

to be more reasonable to consider |t
∗(A)4B|
|A|+|B| −

|topt(A)4B|
|A|+|B| to be the absolute error,

since for any transformation t, we have |t(A)4B|
|A|+|B| ∈ [0, 1], and every transformation t

such that t(A) and B are disjoint yields |t(A)4B|
|A|+|B| = 1. Hence in this section the

absolute error is defined to be

|t∗(A)4B|
|A|+ |B|

− |t
opt(A)4B|
|A|+ |B|

.

Figure 7.6 shows example values of the absolute error for matches of FUBear.seg.
The reader is invited to take these values as a reference to interpret the plots in
Figures 7.9 to 7.14.

0.037 0.081 0.12

Figure 7.6.: Three different matches of FUBear.seg with the respective values of
the absolute error below the pictures.

Matching results. Figures 7.7 and 7.8 show matching results for the shapes de-
picting traffic light symbols. The results were obtained with the described software.
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Figure 7.7.: Matching results for matching the standardized European to the for-
mer GDR and former FRG symbols under translations.

Figure 7.8.: Matching results for matching the former GDR symbols to one another
under translations (left) and rigid motions (right).

Let us look at a few examples of how the error of the matching result behaves
for a fixed clustering size, as the number of random samples grows. First, we look
at matching FUBear.seg to itself under translations. Figure 7.9 shows the results
of 50 runs of Algorithm ‘translations’ for four different clustering sizes. The exact
clustering algorithm is used. For k = 1, . . . , 50, the minimum, median and maximum
absolute errors for 20, 000k random samples are shown, which gives a total number
of 1, 000, 000 random samples. The median is defined to be the value at position dk2e
in the increasingly ordered list of values. One can see that the convergence of the
error is the slower the smaller the clustering size is, but that for a clustering size of
20 the results are slightly worse than for 5, 10, and 15. This behavior coincides with
the results of the theoretical analysis (Theorem 5.1).

Figure 7.10 displays partial matching results. BTor.seg is matched to sightsT.seg
under translations. The optimal match translates BTor.seg onto the congruent shape
in sightsT.seg. The optimal area of the symmetric difference is the difference between
the areas of the two shapes. The plot shows a maximum number of 200,000 votes.
Note that the results are far better than for FUBear.seg. For a sample size of 50,000,
the median error is about 0.05, while for FUBear.seg the median error is at least
0.1 for all tested clustering sizes. One reason for this is that for a partial matching
problem the normalizing term of the absolute error, i.e. |A| + |B|, is larger than
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2|A|, which is the normalizing term for matching a shape A to itself. Furthermore
FUBear.seg has a more complex boundary structure than BTor.seg.

Figure 7.11 shows results of matching euromanWalking.seg to westmanWalk-
ing.seg under translations. Since we do not know the optimal area of the symmetric
difference in this case, the y-axis shows |t

∗(A)4B|
|A|+|B| , which is the sum of the absolute

error and the optimal area of the symmetric difference, normalized by |A|+ |B|. The
latter is called the optimal distance in the plots. It is believable that the minima
are close to the optimum. Already for 8,000 votes, the median results are close
to the minimum, which might be due to the fact that euromanWalking.seg and
westmanWalking.seg are relatively simple shapes.

Next we turn to matching under rigid motions. Figure 7.12 depicts the results
of 20 runs of Algorithm ‘3+1 points’. The clustering size for the translational part
was set to 15, and the clustering size for the angle was set to 1.5 degree. The
random experiments are performed in 10 steps of 200,000 votes, which gives a total
number of 2,000,000 votes. As described above, the discretized clustering introduces
an additional error. The results for Algorithm ‘3+1 points’ are far better than for
Algorithm ‘random angle’ for any given sample size.

Figure 7.13 shows results for matching euromanWalking.seg to westmanWalk-
ing.seg for Algorithm ‘3+1 points’ and Algorithm ‘random angle’. Again, Algorithm
‘3+1 points’ outperforms Algorithm ‘random angle’ with respect to the quality of
the matching results. Comparing the results to the results of matching euroman-
Walking.seg to westmanWalking.seg under translations, as depicted in Figure 7.11,
shows the influence of the discretization error. The best found rigid motion has a
larger absolute error than the best found translation.

Figure 7.14 depicts results for partial matching under rigid motions. BTor.seg is
matched to sightsR.seg. Note that an absolute error of 0 should be possible, but
the best match has an error of about 0.1. Probably this is due to the discretization
error.

Summing up, the experiments show that Algorithm ‘translations’ and Algorithm
‘3+1 points’ work well, whereas the convergence of Algorithm ‘random angle’ is quite
slow. For the same sample size, the results of Algorithm ‘3+1 points’ are far better
than the results of Algorithm ‘random angle’. The computation of one random rigid
motion however is faster for Algorithm ‘random angle’ than for Algorithm ‘3+1
points’. Furthermore the experiments show that the speed of convergence of the
error is very different for different shapes.

The empirical distribution on the transformation space. The program is able to
display the distribution of votes on the transformation space, Figures 7.15 and 7.16
show examples for translations and rigid motions.

For the space of rigid motions, the translation space and the angle space are
depicted seperately. The translation space shows the orthogonal projection of all
votes onto the plane that is given by z = 0. The distribution of the angles is shown
by a curve that represents the number of times an angle occured. Of course, for
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Algorithm ‘random angle’ this curve is expected to be close to a constant function.
Comparing the first two pictures of Figure 7.16, one can see that the density

function for Algorithm ‘3+1 points’, which is proportional to the square of the area
of overlap, behaves better than the density function for Algorithm ‘random angle’,
which is proportional to the area of overlap. This is the theoretical reason for the
fact that the matching results of Algorithm ‘3+1 points’ are better than the results
of Algorithm ‘random angle’ for any fixed clustering size and any fixed number of
random samples.
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Figure 7.9.: Results of matching shape FUBear.seg (Figure 7.3) under translations.
The plots show the results of 50 runs of Algorithm ‘translations’ with different
clustering sizes. A clustering size of 15 gives the best results.
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Figure 7.10.: Results of 50 runs of Algorithm ‘translations’ on the input of shapes
BTor.seg (Figure 7.3) and sightsT.seg.
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Figure 7.11.: Results of 50 runs of matching euromanWalking.seg (Figure 7.3) to
westmanWalking.seg with Algorithm ‘translations’.
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Figure 7.12.: Results of matching under rigid motions of FUBear.seg (Figure 7.3).
The plots show the results of 20 runs of Algorithm ‘3+1 points’ and ‘random
angle’ with a clustering size of 15 for the translational part and 1.5 degree for the
angle. The discretized clustering algorithm is used.
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Figure 7.13.: Results of matching under rigid motions of euromanWalking.seg to
westmanWalking.seg (Figure 7.3). Both plots show the results of 20 runs of the
respective algorithm. The clustering size for the translational part equals 20 and
the clustering size for the angle equals 1.5 degrees. Note that the area of the
symmetric difference cannot vanish since the shapes are different.
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7. Evaluating the probabilistic matching approach in 2D

Figure 7.14.: Results of matching BTor.seg to sightsR.seg under rigid motions.
The plots show the results of 20 runs of Algorithm ‘3+1 points’ and Algorithm
‘random angle’. The translational clustering size is set to 15 and the rotational
clustering size is set to 1.5 degrees.
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7.3. Experimental results

Figure 7.15.: The empirical distribution on the translation space for matching un-
der translations. In all pictures, the number of votes is 3,000,000.

FUBear.seg matched to itself BTor.seg matched to itself

euromanWalking.seg euromanWalking.seg matched to
matched to itself eastmanWalking.seg
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7. Evaluating the probabilistic matching approach in 2D

Figure 7.16.: The empirical distribution on the space of rigid motions. The trans-
lation space is depicted on the left and the angle space on the right. The algorithms
generated 3,000,000 random samples.

FUBear.seg matched to itself by Algorithm ‘random angle’

FUBear.seg matched to itself by Algorithm ‘3+1 points’

BTor.seg matched to itself by Algorithm ‘3+1 points’
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8. Probabilistic matching under rigid
motions in arbitrary dimension

We study the probabilistic matching of d-dimensional shapes under rigid motions.
Given two shapes A and B, an error tolerance ε ∈ (0, 1) and an allowed probability
of failure p ∈ (0, 1), we compute a rigid motion r∗ such that with probability ≥ 1−p
for all rigid motions r, we have |r∗(A) ∩B| ≥ |r(A) ∩B| − ε|A|.

In d ≥ 3 dimensions, Vigneron [54] gives the only result for the matching of non-
convex polyhedra under rigid motions so far. He describes FPTASs for maximizing
the volume of overlap, as well as for minimizing the volume of the symmetric differ-
ence. For two polyhedra P and Q in Rd, given as the union of m and n simplices,
respectively, the algorithm for approximating the maximal volume of overlap has

time complexity O((nmε )
d2

2
+ d

2
+1(log nm

ε )
d2

2
+ d

2
+1). The time bound for approximat-

ing the minimal volume of the symmetric difference is not given in the paper for
dimension d ≥ 3.

As shapes, we consider shapes that are given by an oracle and fulfill the as-
sumptions described in Section 2.2. We present two approaches. First we use the
matching algorithm for translations that we studied in Chapter 5 to develop an al-
gorithm for matching under rigid motions. Second we generalize Algorithm 7, which
we presented in Chapter 6 from two to arbitrary dimension.

Our algorithms are again very simple and could easily be implemented, but the
time complexity increases quickly with the dimension. We begin with a section
about rotations and a section about rigid motions. Among other things, we have
to understand how to measure distances and volume in the space of rigid motions
because balls of a fixed radius δ and their volume will again play a central role in
the analysis.

8.1. The rotation group

A rotation is a linear map r : Rd → Rd, r(x) = Mx that preserves distances and
orientations; the matrix M ∈ Rd×d is called a rotation matrix. A matrix M is a
rotation matrix if and only if its determinant equals 1 and it is orthogonal, the latter
meaning that it is non-singular and M−1 = MT . The set of real rotation matrices,
together with the matrix multiplication, which corresponds to the composition of
the maps, forms the well-known special orthogonal group over the reals SO(d).

99



8. Probabilistic matching under rigid motions in arbitrary dimension

Measuring distances between rotations. To measure distances in SO(d), we use

the metric that is induced by the Frobenius norm ||M ||2 =
√∑

1≤i,j≤dm
2
ij where

M = (mij)1≤i,j≤d. We write d(M,N) for the distance ||M −N ||2. For M ∈ SO(d)
and δ > 0, denote the closed ball B(M, δ) = {N ∈ SO(d) : d(M,N) ≤ δ}.

A pair of vector norm || · ||v and matrix norm || · ||m is called compatible if for
all vectors x ∈ Rd and matrices M ∈ Rd×d, submultiplicativity holds: ‖Mx‖v ≤
‖M‖m‖x‖v. The Euclidean norm | · | is compatible with the Frobenius norm || · ||2.

It is convenient that the metric d is invariant under the group operation.

Proposition 8.1. For all M,N ∈ Rd×d and R ∈ SO(d), we have d(RM,RN) =
d(M,N).

Proof. For a matrix M , let Mi be the ith column vector. We write M = (M1 . . .Md).
Then RM = (RM1 . . . RMd) by the definition of matrix multiplication. For R ∈
SO(d) and x ∈ Rd, we have |Rx| = |x|. Therefore

||M −N ||22 =
d∑
j=1

d∑
i=1

(mij − nij)2 =
d∑
j=1

|Mj −Nj |2

=
d∑
j=1

|RMj −RNj |2 = ||RM −RN ||22.

Proposition 8.1 implies the following.

Corollary 8.2. For rotation matrices M,N ∈ SO(d) and δ > 0, we have B(M, δ) =
MNTB(N, δ).

Proof. If R ∈ B(N, δ), then d(N,R) = d(M,MNTR) ≤ δ and therefore MNTR ∈
B(M, δ).

If R ∈ B(M, δ), then d(M,R) = d(N,NMTR) ≤ δ. Therefore NMTR ∈ B(N, δ)
and R ∈ (MNT )B(N, δ).

Measuring the volume in SO(d). In the algorithm, we draw random rotation
matrices from the uniform distribution. This means that a drawn matrix lies in
a set E ⊆ SO(d) with probability proportional to the volume of E. So to define
the uniform distribution on SO(d) properly, we have to know how to measure the
volume in SO(d).

The elements of SO(d) are (d × d)-matrices, so SO(d) is a subset of Rd2 . But
SO(d) is not a full-dimensional subset of Rd2 . When determining a rotation matrix,
there are less than d2 degrees of freedom. For choosing the first column vector, there
are d− 1 degrees of freedom since any point from Sd−1 can be chosen. The second
column vector has also length 1, but it has to be orthogonal to the first one. So
it can be chosen from a (d − 2)-dimensional sphere that is orthogonal to the first
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8.1. The rotation group

column vector, as described above. Proceeding in this manner, it becomes clear that
the number of degrees of freedom equals (d − 1) + (d − 2) + · · · + 1 =

(
d
2

)
. In fact,

SO(d) is a
(
d
2

)
-dimensional manifold in Rd2 . We measure the volume | · | in SO(d)

by the
(
d
2

)
-dimensional Hausdorff measure H(d2), as defined in Section 2.1.

The algorithm is based on the fact that, for a fixed δ > 0, all δ-balls B(M, δ) have
the same volume. Corollary 8.2 implies that the set of all δ-balls {B(M, δ) : M ∈
SO(d)} equals {MB(I, δ) : M ∈ SO(d)} where I is the identity matrix. Thus the
fact that all δ-balls have the same volume boils down to |B(I, δ)| = |MB(I, δ)| for
all M ∈ SO(d).

A natural requirement on a measure µ over a group G, which is slightly more
general, is that for all g ∈ G and A ⊂ G we have µ(A) = µ(gA). Such a measure
is called a Haar measure. It turns out that there is up to a scaling factor a unique
Haar measure on SO(d) if we require the measure to be sufficiently “nice”. In this
context, “nice” means that we require the measure to be a Radon measure. These
notions are defined in Appendix A. It follows from the definition of the Hausdorff
measure that it is a Haar measure on SO(d). Since SO(d) is a

(
d
2

)
-dimensional set,

we measure SO(d) by H(d2) and we have 0 < H(d2)(SO(d)) < +∞ [28].
A different approach is to observe that SO(d) is a

(
d
2

)
-dimensional smooth mani-

fold in Rd2 and to use the surface area that is given by integration over manifolds.
Both approaches give, up to a constant, the same measure.

The analysis of the algorithm relies on the following theorem, which is proved in
Appendix A. Recall that ωk is the volume of the Euclidean unit ball in Rk.

Theorem 8.3. For all M ∈ SO(d), we have

lim
δ→+0

H(d2)
(
B(M, δ)

)
δ(
d
2)

= ω(d2)
.

Computing rotation matrices uniformly at random. Within the algorithms, ran-
dom rotation matrices have to be generated. There are many methods to generate
uniformly distributed random orthogonal matrices described in the literature. The
first algorithm [33], with a correction in [49], is based on the following observation.
The first column vector v1 from a random orthogonal matrix is uniformly distributed
on Sd−1 ⊂ Rd. The second column vector is uniformly distributed on Sd−1, inter-
sected with the hyperplane orthogonal to v1, which is a (d− 2)-dimensional sphere
in Rd. Proceeding inductively, the ith column vector vi is picked in a (d − i)-
dimensional sphere in Rd u.a.r., which is then intersected with (vi)

⊥, the orthogonal
space of vi, resulting in a (d − i − 1)-dimensional sphere. The last vector is chosen
from S0, which consists of two antipodal points. If we want to generate a matrix
with positive determinant, we do not have any choice, but have to take the vector
that gives determinant 1. Otherwise, if we allow all isometries, we choose one of the
two vectors at random. A uniformly distributed random orthogonal matrix can be
computed in O(d3) time [24]. A random orthogonal matrix can also be determined
by computing

(
d
2

)
random rotations of two axes, while all other axes are fixed.
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8. Probabilistic matching under rigid motions in arbitrary dimension

Sampling SO(d). In 2D, we described an algorithm for matching under rigid mo-
tions that uses the algorithm for matching under translations. Algorithm 6 runs
the algorithm for translations for all shapes M2πk/mA and B where k = 1 . . .m and
outputs the rigid motion that got the overall largest number of votes. We will do
something similar in arbitrary dimension. Instead of discretizing the angle space,
as we did in 2D, we use a random “dense” set of angles. For this, we introduce the
notion of ε-nets, which we quote from [40].

Let X be a set, let µ be a probability measure on X. Let F be a system of
µ-measurable subsets of X, and let ε ∈ [0, 1]. A subset N ⊆ X is called an ε-net for
(X,F) with respect to µ if N ∩ S 6= ∅ for all S ∈ F with µ(S) ≥ ε.

Theorem 8.4 (Epsilon net theorem [40]). If X is a set with probability measure µ,
F is a system of µ-measurable subsets of X with VC dimension at most d ≥ 2, and
r ≥ 2 is a parameter, then there exists a 1

r -net for (X,F) with respect to µ of size
at most Cdr ln r, where C is an absolute constant.

The proof of this theorem shows that any random sample of X of size Cdr ln r
where each sample is drawn independently according to µ is an 1

r -net with positive
probability, even with probability ≥ 1

2 . A sample of size kCdr ln r is then a 1
r -net of

X with probability ≥ 1− (1
2)k. For k ≥ log2

2
p , such a sample is an 1

r -net of X with

probability ≥ 1− p
2 .

For shapes A, B and the random sample S of SO(d), we want to have the property

∀M ∈ SO(d) ∃M ′ ∈ S ∀t ∈ Rd :
∣∣|M(A+ t)∩B| − |M ′(A+ t)∩B|

∣∣ ≤ ε
2 |A| (8.1)

Because of supa∈A |Ma −Ma′| ≤ diam(A)d(M,M ′), as we will see in Proposi-
tion 8.9, and Corollary 3.5, this is fulfilled if for all M ∈ SO(d) there exists M ′ ∈ S
such that d(M,M ′) ≤ ε|A|

diam(A)|∂A| .

Recall that B(I, δ) denotes the closed ball of radius δ with center I in SO(d) with
respect to the metric d. Define

ν =
|B(I, δ)|
|SO(d)|

where δ =
ε|A|

diam(A)|∂A|
. (8.2)

To see |A| ≤ diam(A)|∂A|, take a, a′ ∈ cl(A) such that |a − a′| = diam(A). A is
contained in the cylinder of height diam(A) with bottom a+A|(a− a′)⊥ and top a′+
A|(a− a′)⊥. The (d−1)-dimensional volume of a+A|(a− a′)⊥ and a′+A|(a− a′)⊥
is at most |∂A|. For details on this type of argument, see Chapter 3. Since 0 < δ ≤ 1

and H(d2)
(
B(M, δ)

)
δ−(d2) is continuous in δ, we have ν ≥ Cδ(

d
2) for some constant C,

depending on d, by Theorem 8.3.
Define

C = {B(M, δ) : M ∈ SO(d)}. (8.3)

Then each ν-net S for (SO(d), C) with respect to the uniform distribution satisfies
Property (8.1). By Lemma 8.11, the VC dimension of C is bounded by a constant.
Therefore there is a constant C such that any random sample S of SO(d) of size
C 1
ν log 1

ν log 2
p fulfills Property (8.1) with probability ≥ 1− p

2 .
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8.1. The rotation group

Reducing the number of parameters to represent a rotation. We would prefer
not to represent a rotation by the d2 entries of a rotation matrix, but only by

(
d
2

)
parameters. A rotation matrix can be identified with

(
d
2

)
parameters by using the

representation of a rotation matrix as a product of rotations along the
(
d
2

)
planes,

each rotation keeping d− 2 axes fixed.

Let Gij = Gij(αij) be the following simple rotation matrix.
I 0 0 0 0
0 cosαij 0 − sinαij 0
0 0 I 0 0
0 sinαij 0 cosαij 0
0 0 0 0 I


In this matrix, each I denotes an identity matrix and each 0 a zero matrix of the
appropriate sizes. The four entries that define the rotation along a plane have the
indices ii, ij, ji, and jj. The matrix Gij is called the Givens matrix in [10]. We
call the vector of angles (α12, . . . , α1d, α23, . . . , α2d, . . . , αd−1,d) the Givens angles of
the rotation.

Theorem 8.5. [10] Each orthogonal matrix R ∈ O(d) has a representation as a
product R = (G12G13 · · ·G1d)(G23 · · ·G2d) · · · (Gd−1,d)D of Givens matrices Gij with
angles αij ∈ (−π

2 ,
π
2 ] for all i, j ∈ {1, . . . , d} such that i < j, and a diagonal matrix D

with entries ±1 on the diagonal.

A random orthogonal matrix from the uniform distribution can be generated by
picking the entries on the diagonal of D independently as 1 or −1 with probability 1

2

and letting the
(
d
2

)
angles αij be mutually independent with joint density function

proportional to

(
d∏
j=2

cosj−2 α1j)(
d∏
j=3

cosj−3 α2j) · · · (
d∏
j=d

cosj−d αd−1,j).

We use this result to generate random rotation matrices in 3D. Rotation matri-
ces are orthogonal matrices that have a positive determinant. Hence we have the
following corollary.

Corollary 8.6. Each rotation matrix R ∈ SO(3) has a representation as a product
R = G1G2G3D, where G1, G2, G3 are the Givens matrices correspoding to some
angles α, β, γ ∈ (−π

2 ,
π
2 ] and D is one of the four 3 × 3 diagonal matrices with

entries ±1 on the diagonal and an even number of negative entries.

A random 3 × 3 rotation matrix from the uniform distribution can be generated
by picking one of the four possible matrices D with probability 1

4 and by picking
the Givens angles α, β, γ mutually independent with density functions f1(α) ≡ 1

π ,
f2(β) ≡ 1

π and f3(γ) = 1
2 cos γ.
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8. Probabilistic matching under rigid motions in arbitrary dimension

8.2. The space of rigid motions

A rigid motion is an orientation preserving isometry. For each rigid motion r, there
is a rotation matrix M and a translation vector t such that r(x) = Mx + t for
all x ∈ Rd. We identify a rigid motion with the pair (M, t) of its rotation matrix
and its translation vector. Thus the transformation space equals SO(d)× Rd.

Recall that we are given a parameter ∆A that fulfills diam(A) ≤ ∆A if A satisfies
the assumptions described in Section 2.2. We define a metric on the space of rigid
motions, which depends on the input shape A, by

d((M,p), (N, q)) = max{ ∆A · d(M,N), |p− q| }.

Denote by B(r, δ) the closed ball of radius δ with respect to d, centered at r, in the
space of rigid motions. From these definitions, the following proposition is obvious.

Proposition 8.7. For all rigid motions (M, t) and all δ > 0 holds that

B((M, t), δ) = B(M, δ/∆A)×B2(t, δ)

where B2(t, δ) is the closed Euclidean ball of radius δ, centered at t, in Rd.

The set of rigid motions forms a locally compact topological group. The group
operation is the composition of maps. The volume on the group of rigid motions is

the Haar measure. It equals the product measure ofH(d2) restricted to SO(d) and the
d-dimensional Lebesgue measure on Rd. Therefore for all rigid motions (M, t) and all
δ > 0 holds that |B((M, t), δ)| = |B(M, δ/∆A)| · |B2(t, δ)|. Because of Theorem 8.3
the following theorem is true.

Theorem 8.8. For all rigid motions r and all δ > 0 holds

lim
δ→+0

|B(r, δ)|∆(d2)
A δ−(d+1

2 ) = ω(d2)
ωd.

If the distance of two translation vectors t1 and t2 is δ with respect to some norm,
then, for each x, the translated points x+ t1 and x+ t2 have distance δ, too. If two
rotation matrices M1,M2 have distance δ with respect to the matrix norm ‖ · ‖M ,
then we only know that ‖M1x−M2x‖V ≤ ‖M1 −M2‖M‖x‖V = δ‖x‖V if ‖ · ‖V is a
to ‖ · ‖M compatible vector norm. The following proposition gives an upper bound
on how much the images of two rigid motions differ in terms of the distance of the
rigid motions. We assume w.l.o.g. that 0 ∈ A.

Proposition 8.9. Let r = (M,p) and s = (N, q) be rigid motions. Then, for all
x ∈ A,

|r(x)− s(x)| ≤ 2d(r, s) and |Mx−Nx| ≤ diam(A)d(M,N).

Proof. |r(x) − s(x)| ≤ ||M − N ||2|x| + |p − q| ≤ diam(A)||M − N ||2 + |p − q| =
diam(A)d(M,N) + d(p, q) ≤ 2d(r, s).
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8.3. Using the algorithm for translations

Note that the factor diam(A) in the proposition cannot be omitted. Let r = (I, 0)
be the identity, let e11 be the matrix that has a 1-entry in the upper left corner and
0-entries otherwise. Let S = (I + δe11, 0). Then d(r, s) = δ and for x = λe1 holds
|r(x) − s(x)| = |λδe1| = |λ|δ = |x|d(r, s). From this proposition and Corollary 3.5
follows:

Corollary 8.10. For all rigid motions r, s ∈ SO(d)× Rd∣∣|r(A) ∩B| − |s(A) ∩B|
∣∣ ≤ |∂A| d(r, s).

Shatter coefficients and the VC dimension were introduced in Chapter 4.

Lemma 8.11. The class C = {B(r, δ) : δ > 0, r ∈ SO(d) × Rd} has VC dimension
≤ 3(d2 + d+ 2) log(3(d2 + d+ 2)).

Proof. If C1 and C2 are set systems with C1 ⊂ C2, then dim(C1) ≤ dim(C2). Let
T = {B2(t, δ) : δ > 0, t ∈ Rd}. The family of all closed Euclidean balls in Rd has
VC dimension d+ 1 [26].

Let M′ = {B2(M, δ/∆A) : δ > 0,M ∈ Rd2}. Thus, dim(M′) = d2 + 1. Let M =
{B(M, δ/∆A) : δ > 0,M ∈ SO(d)} = {B2(M, δ/∆A) ∩ SO(d) : δ > 0,M ∈ SO(d)}.
It follows that dim(M) ≤ d2 + 1 since in comparison to M′ the point sets that
possibly can be shattered are restricted to SO(d).

The set system C = M × T . Let x1, . . . , xk be points in Rd2+d that can be
shattered by M× T . For all 1 ≤ i ≤ k, let xi = (yi, zi) where yi are the first d2

coordinates of xi and zi are the last d coordinates. For all I ⊆ {1, . . . , k}, there
exists (M,T ) ∈M×T such that I = {i : xi ∈ (M,T )} = {i : yi ∈M}∩{i : zi ∈ T}.

This implies |{(J, L) : ∃M ∈M : J = {i : yi ∈M}, ∃T ∈ T : L = {i : zi ∈ T}}| =
SM(k)ST (k) is as least as large as 2k. Using the fact that, for all set systems N
with finite VC dimension, SN (k) ≤ (k+ 1)dimN (Corollary 4.1. in [25]), we get that
2k ≤ (k + 1)d

2+d+2.

We prove that, if k ≥ 3(d2 + d + 2) log(3(d2 + d + 2)), then (k + 1)d
2+d+2 < 2k,

which shows that dim(C) < 3(d2 +d+ 2) log(3(d2 +d+ 2)). Let K = 3m log(3m) for
m = d2 + d+ 2. By the following computation we have (K + 1)d

2+d+2 < 2K , which
implies that, for all k ≥ K, we have (k + 1)d

2+d+2 < 2k.

2K/m−1

K
=

23 log(3m)

6m log(3m)
=

(3m)3

6m log(3m)
>

9

2
m ≥ 1

Therefore, 2K/m > 2K ≥ (K + 1). This implies the claim.

8.3. Using the algorithm for translations

Given d-dimensional shapes A and B, the idea of Algorithm 11 is to sample the set
of rotations SO(d) and to apply Algorithm 2 for matching under translations to the
rotated shape MA and B for every matrix M in the sample. Instead of Algorithm 2,
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8. Probabilistic matching under rigid motions in arbitrary dimension

Algorithm 11: MaxOverlapRMT

Input: shapes A,B ⊂ Rd, error tolerance ε ∈ (0, 1), allowed probability of
failure p ∈ (0, 1)

integer m← NumberOfRotations(A, ε, p);
real V ← 0 ; // current maximal area estimate

vector t∗ ← (0, 0) ; // corresponding translation vector

matrix M∗ ← I ; // corresponding rotation matrix

for k = 1 . . .m do
matrix M ← RandomRotationMatrix();
shape A′ = M(A); // compute rotated A
(vector,real) (t, v)← MaxOverlapT(A′, B, ε4 ,

p
2m);

if v > V then
V ← v; // update area estimate

t∗ ← t; // update translation

M∗ ←M ; // update rotation

end

end
return (M∗, t∗);

Function NumberOfRotations(A, ε, p)

Input: shape A, parameters ε, p ∈ (0, 1)

Output: m ≥ C
(
ε−1|A|−1 diam(A)|∂A|

)(d2) log(ε−1|A|−1 diam(A)|∂A|) log 2
p ,

where m ∈ N and C is some positive universal constant

we also could use Algorithm 5. For each run of Algorithm 2, we get a triple (M, t, V )
where M is from the sample and (t, V ) is the output of Algorithm 2. The result is
the rigid motion (M, t) with the maximal volume of overlap estimate V |A| |B|.

Theorem 8.12 (Correctness of Algorithm 11). Let A and B be shapes in constant
dimension d, which are given by an oracle and fulfill the assumptions described in
Section 2.2. Let ε, p ∈ (0, 1). Algorithm 11 with input (A,B, ε, p) computes a rigid
motion r∗ such that |r∗(A) ∩ B| is maximal up to an additive error of ε|A| with a
probability ≥ 1− p.

Proof. Let ν and C be defined as in Equations (8.2) and (8.3). Recall that there
exists a constant C > 0 such that, if

m ≥ C
(
ε−1|A|−1 diam(A)|∂A|

)(d2) log(ε−1|A|−1 diam(A)|∂A|) log 2
p ,

then any random sample S picked by m independent draws from SO(d), where each
matrix is drawn according to the uniform distribution, fulfills Property (8.1) with
probability ≥ 1− p

2 .
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Let (M∗, t∗) be the output of Algorithm 11, and let (Mopt, topt) be an optimal
solution. The probability that one of the m calls of Algorithm 2 fails is ≤ p

2 . With
probability at least 1 − p, the following conditions are satisfied: the set of random
rotation matrizes S drawn in the algorithm is a ν-net and thus fulfills Property (8.1)
and for all M ∈ S the output (t, V ) of Algorithm 2 satisfies

|(MA+ t) ∩B| ≥ |(MA+ topt) ∩B| − ε
4 |A| (8.4)

and ∣∣|(MA+ t) ∩B| − V |A||B|
∣∣ ≤ ε

8 |A|. (8.5)

Let us assume that this is the case. Let M ∈ S such that d(Mopt,M) ≤ ε|A|
2|∂A|diam(A) ,

and let (t, V ) be the output that is computed by Algorithm 2, when started with
input (MA,B, ε4 ,

p
2m). We show that |(MA+t)∩B| is close to both, |(M∗A+t∗)∩B|

and |(MoptA+ topt) ∩B|.
First we have

∣∣|(MA+ t)∩B|− |(MoptA+ topt)∩B)|
∣∣ ≤ 3

4ε|A| by Inequality (8.4)
and Property (8.1). If |(M∗A+ t∗) ∩B| ≥ |(MA+ t) ∩B|, then we are done.

Assume that this is not the case. Let V ∗ be the volume estimate corresponding
to t∗. Since (M∗, t∗) is the output of the algorithm, we have V ∗ ≥ V . Together
with Inequality (8.5), this implies

∣∣|(M∗A+ t∗)∩B| − |(MA+ t)∩B)|
∣∣ ≤ ε

4 |A| and
therefore

∣∣|(M∗A+ t∗) ∩B| − |(MoptA+ topt) ∩B)|
∣∣ ≤ ε|A|.

Recall that a random rotation matrix can be generated in constant time. The
runtime of Algorithm 11 is dominated by m times the runtime of Algorithm 2, plus
the time needed to compute m, which proves the next theorem.

Theorem 8.13 (Runtime of Algorithm 11). Let A and B be shapes in constant
dimension d, which are given by an oracle and fulfill the assumptions described in
Section 2.2. Let ε, p ∈ (0, 1) be parameters.

Then Algorithm 11 with input (A,B, ε, p) computes a rigid motion that maximizes
the volume of overlap of A and B up to an additive error of ε|A| with probability at

least 1− p in time O
(
ε−(d2)(DAKA)

d−1
2 log(ε−1DAKA) log 2

p

(
T (N) +N(logN)d−1

))
where N = O

(
ε−(2d+2)(KAMB/mA)2 log 2

p

)
.

8.4. Sampling of the transformation space

Next we generalize Algorithm 7 for matching under rigid motions in the plane,
in which we chose the rotation angles uniformly at random, from two to higher
dimensions.

Given two d-dimensional shapes A and B, we sample SO(d) × A × B uniformly
at random. To each triple (M,a, b) of a rotation matrix, a point from A and a
point from B, we associate the unique rigid motion that has rotation matrix M
and maps a onto b, which is the map (M, b−Ma). By this process, we sample the
transformation space with a certain probability distribution µ.
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8. Probabilistic matching under rigid motions in arbitrary dimension

We prove in Lemma 8.15 that the density function of µ is proportional to f(r) =
|r(A)∩B|. Our goal is to find a rigid motion r at which the density function is close
to maximal with high probability. We find such a transformation by computing
that random rigid motion for which the empirical measure of a small neighborhood
is maximal. We apply our probabilistic toolbox, Theorem 4.6, to work out how to
choose the clustering size and the number of random experiments. Next we give a
pseudocode description of the generalized algorithm, which is Algorithm 12.

Algorithm 12: MaxOverlapRMRA

Input: shapes A,B ⊂ Rd, error tolerance ε ∈ (0, 1), allowed probability of
failure p ∈ (0, 1)

real δ ← ClusteringSizeRMRA(A, ε);
integer N ← SampleSizeRMRA(B, ε, δ, p);
collection Q← ∅;
for i = 1 . . . N do

matrix M ← RandomRotationMatrix();
point a← RandomPoint(A);
point b← RandomPoint(B);
add(Q, (M, b−Ma));

end
return FindDensestClusterRM(Q, δ,∆A);

Recall that for a rigid motion r a ball B(r, δ) equals the Cartesian product of a
ball around the rotation matrix and a Euclidean ball around the translation vector.
The ball around the matrix is with respect to the || · ||2 norm, scaled by a factor ∆A

that is at least the diameter of A. In Function FindDensestClusterRM, the factor
∆A is given as input.

Function FindDensestClusterRM(Q, δ,∆)

Input: collection Q of points in SO(d)×Rd, positive parameters δ,∆
Output: point r∗ ∈ Q such that |B(r∗, δ) ∩Q| = maxr∈Q |B(r, δ) ∩Q|,

where ∆ is the scaling factor of the matrix distance.

We chose the metric on the spaces of rigid motions in a way such that the clustering
size scales with the shapes. The required number of random experiments N does
not change if both shapes are scaled with the same constant.

Theorem 8.14. Let A and B be shapes in constant dimension d, and let ε, p ∈ (0, 1)
be parameters. There are C1, C2 > 0 such that, if ClusteringSizeRMRA(A, ε) re-

turns a positive δ ≤ C1ε
|A|
|∂A| and SampleSizeRMRA(B, ε, δ, p) returns an integer

N ≥ C2ε
−2δ−d

2−d∆d2−d
A |B|2 log 2

p , then Algorithm 12 with input (A,B, ε, p) com-
putes a rigid motion that maximizes the volume of overlap of A and B with proba-
bility at least 1− p up to an additive error of ε|A|.
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First, we prove the remarkable fact that the density function at a rigid motion r
is proportional to |r(A) ∩B|.
Lemma 8.15. Let Y be the random variable on SO(d)×Rd that draws pairs (M, b−
Ma) where (M,a, b) ∈ SO(d)× A× B is drawn uniformly at random. The density

function of Y is given by f(r) = |r(A)∩B|
|A| |B| |SO(d)| .

Proof. Our random experiment consists in drawing points from Ω = SO(d)×A×B
uniformly at random. Our goal is to determine the density function fY of the random
variable

Y : Ω→ SO(d)× Rd, Y : (M,a, b) 7→ (M, b−Ma).

The density function of Y can be expressed in terms of the conditional densities of
the two random variables

YSO(d) : Ω→ SO(d), YSO(d) : (M,a, b) 7→M,

YA×B : Ω→ Rd, YA×B : (M,a, b) 7→ b−Ma.

The density function of Y is the joint density of the random variables YSO(d) and
YA×B. The conditional density function can also be expressed in terms of the joint
density function

fA×B(t | YSO(d) = M) = fY (M, t)/fSO(d)(M). (8.6)

Clearly, fSO(d) ≡ 1/|SO(d)|. The conditional density function fA×B(t | YSO(d) = M)
equals the density function of the translational case for the shapes MA and B and
thus is |(MA+t)∩B|

|A| |B| . Therefore, fY (M, t) = |(MA+t)∩B|
|A| |B| |SO(d)| .

Proof of Theorem 8.14. We apply Theorem 4.6 to (SO(d)×Rd, d). Using Lemma 8.15,
we get that with probability at least 1− 2e−2Nτ2 for all rigid motions r,

|r∗(A) ∩B| ≥ |r(A) ∩B| − |A| |B|
(2c

√
V/N + 2τ

|B(r, δ)|
+ 3Lδ

)
where V is the VC dimension of C (Lemma 8.11). The number L = |∂A|

|A| |B| |SO(d)| is
a Lipschitz constant of the density function by Corollary 3.5 and Proposition 8.9.

Let ε, p ∈ (0, 1). We now determine bounds on N and δ such that this error term
is at most ε|A| with probability at least 1 − p. More precisely, we determine the
minimal value of N and a compatible value of δ for that we can guarantee an error
of at most ε|A| with probability at least 1 − p. We compute δ and N only up to
constants.

In order to get 2e−2Nτ2 ≤ p, we set τ =
√

log 2
p/(2N). For sufficiently small δ, the

volume of a δ-ball B(r, δ) is bounded from below by C∆
−(d2)
A δ(

d+1
2 ) for some constant

C, depending on d, by Theorem 8.3. Thus we get for the error term

|A| |B|

(
2c
√
V/N + 2τ

|B(r, δ)|
+ 3Lδ

)
=

O

(
|A| |B|∆(d2)

A δ−(d+1
2 )N−1/2

(
log 2

p

)1/2
+ 3|∂A|δ

)
.
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8. Probabilistic matching under rigid motions in arbitrary dimension

Therefore there are positive constants C1 and C2 such that, if δ ≤ C1ε|A|/|∂A| and

N ≥ ε−2δ−d
2−d∆d2−d

A |B|2 log 2
p , then the error is at most ε|A| with probability at

least 1− p.

The runtime of the algorithm equals the sum of the time to compute the clustering
size δ and the sample size N , the time to generate N random rigid motions as
described in the algorithm, and the time to determine the densest cluster.

Generating N random rigid motions costs O(N + T (N)) time. To compute N ,
we additionally need an explicit lower bound on |B(M, δ)| for a rotation matrix M .

Theorem 8.3 does not quantify the rate of convergence of |B(M, δ)|/δ(
d
2). Such

a lower bound can be achieved by estimating |B(M, δ)| by integration over the
manifold SO(d), but this is not done here. If we did this and traced the constants
that are hidden in the Big-Oh notation in the proof of Theorem 8.14, we could
compute N and δ in constant time for shapes that fulfill the assumptions described
in Section 2.2.

To determine the densest cluster, we simply check by brute force for every pair
{r, r′} of random rigid motions that is generated in the algorithm if d(r, r′) ≤ δ.
One test can be done in constant time. So we can determine a densest cluster in
time O(N2).

Theorem 8.16. Let A and B be shapes in constant dimension d, which are given
by an oracle and fulfill the assumptions described in Section 2.2. Let ε, p ∈ (0, 1) be
parameters.

Then Algorithm 12 with input (A,B, ε, p) computes a rigid motion that maximizes
the volume of overlap of A and B with probability at least 1−p up to an additive error
of ε|A| in time O(T (N)+N2) where N = O(ε−(d2+d+2)Kd+1

A Dd−1
A (MB/mA)2 log 2

p).

8.5. Improving the results in 3D

The main idea to improve the results in 3 dimensions is to represent rigid motions
with fewer parameters. We then cope with the arising technical difficulties by using
the refined probabilistic toolbox Theorem 4.7. The order of magnitude of the number
of random samples N in the modified approach is the same as in Algorithm 12,
but the modified representation of a rotation allows us to use neighborhoods that
are rectangles in R6, compared to the more complex neighborhood in R12 that
were used before. A best cluster can then be found in O(N(logN)5) instead of
O(N2). In principle this approach works in arbitrary dimension. To set limits to
the technicalities, we concentrate on the most interesting case, namely on the case
of 3 dimensions.

We use the representation from Corollary 8.6. For a fixed choice of D, we rep-
resent a rotation by the Givens angles (α, β, γ) ∈ (−π

2 ,
π
2 ]3. Given the 3 angles,

we can compute the corresponding rotation matrix in constant time. We apply the
algorithm to the rotated shape DA for all four choices of diagonal matrices D.
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8.5. Improving the results in 3D

We draw rotations (α, β, γ) ∈ (−π
2 ,

π
2 ]3 according to the distribution that has a

density function proportional to f(α, β, γ) = cos γ and corresponds to the uniform
distribution on SO(3). How to draw angles with respect to this distribution is
described in [10], and it can be done in constant time.

The definition of a best cluster is modified as follows. We define a δ-neighborhood
B(r, δ) of a rigid motion r to be a box in R6 with center r, side lengths 2δ/∆A for
the rotational part and side lengths 2δ for the translational part. The definition of
the function FindDensestClusterRM is modified to this notion of neighborhood.

It turns out that the density function g of the random experiment in the improved
algorithm is proportional to cos γ·|r(A)∩B| where γ is the third Givens angle of r. To

be able to apply Theorem 4.7 to g(r)
cos γ , we have to avoid angles γ for which the cosine

is close to 0. Observe that each rotation in 3D is of the form G1(α)G2(β)G3(γ+γ′)D
where α, β ∈ (−π

2 ,
π
2 ], γ ∈ (−π

6 ,
π
6 ] and γ′ ∈ {−π

3 , 0,
π
3 }.

Denote a diagonal matrix with entries ε1, . . . , εd on the diagonal by diag(ε1, . . . , εd).
We give a pseudocode description of the algorithm.

Function 3DFindDensentClusterRM(Q, δ,∆)

Input: collection Q of points in Ω = (−π
2 ,

π
2 ]2 × (−π

6 ,
π
6 ]× R3, positive

parameters δ,∆
Output: point r∗ ∈ Q that maximizes the number |B(r)∩Q|

cos r3|B(r)∩Ω| where

B(r) ⊂ R6 is the box with center r and side lengths 2δ/∆ along
the first three axes and side lengths 2δ along the second three axes.

Function RandomGivensAngles

Output: random triple (α, β, γ) ∈ (−π
2 ,

π
2 ]2 × (−π

6 ,
π
6 ] from the probability

distribution that has the density function f(α, β, γ) = 1
π2 cos γ.

Conceptually, the algorithm is applied to the rotated shape (G3(γ′)D)A and B
for each of the twelve choices of (γ′, D) where γ′ ∈ {−π

3 , 0,
π
3 } and D is one of

the four diagonal matrices with entries ±1 on the diagonal and positive determi-
nant. In each run, the approximate maximal volume of overlap over a partial set
of rigid motions is computed such that the union of the sets covers the space of
rigid motions. The sample size N in the twelve runs is chosen large enough such
that with probability ≥ 1−p all twelve runs succeed, and therefore the rigid motion
with the largest density estimate is an approximation of the overall maximum with
probability ≥ 1− p.

Let (−π
2 ,

π
2 ]3 × R3 be the (partial) space of rigid motions in 3 dimensions. Next

we prove that the density function of this random experiment on (−π
2 ,

π
2 ]3 × R3 is

proportional to |r(A) ∩B| · cos γ for r = (α, β, γ, t1, t2, t3).

Lemma 8.17. Let Y be a random vector that draws ((α, β, γ), b−Ma) ∈ (−π
2 ,

π
2 ]3×

R3 where (α, β, γ), a and b are drawn independently, M is the rotation matrix with
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8. Probabilistic matching under rigid motions in arbitrary dimension

Given angles (α, β, γ), a ∈ A and b ∈ B are drawn u.a.r. and (α, β, γ) is drawn
according to the density function given by f(α, β, γ) = 1

2π2 cos γ, which corresponds
to the uniform distribution on SO(3). Then Y is distributed with density function

g(r) = |r(A)∩B|·cos γ
2π2|A| |B| for r = (α, β, γ, t1, t2, t3).

Proof. The proof proceeds along the same lines as the proof of Lemma 6.4. Consider
the random experiment that consists in selecting triples (R, a, b) ∈ (−π

2 ,
π
2 ]3×A×B

where R, a and b are selected independently, a ∈ A and b ∈ B are drawn from
the uniform distribution and R is drawn from the distribution that has the density
function f(α, β, γ) = 1

2π2 cos γ and corresponds to the uniform distribution on SO(3)
[10]. Let I = (−π

2 ,
π
2 ]3, let Ω = I × A × B and let MR be the Givens matrix of R.

We are interested in the density function fY of the random variable

Y : Ω→ I × R3, Y : (R, a, b) 7→ (R, b−MRa).

We will express the density function of Y in terms of the conditional probability
densities of the following two random variables YI and YT defined as

YI : Ω→ I, YI : (R, a, b) 7→ R,

YT : Ω→ R3, YT : (R, a, b) 7→ b−MRa.

The density function of Y is the joint density of the random variables YI and YT .
By assumption, the marginal probability density of YI , i.e., probability density of
YI = α allowing all possible values of YT , is

fI(α, β, γ) =
cos γ

2π2
.

The value of YT depends on the selected points a and b and on the value of YI . The
conditional probability density of YT = t given YI = R is exactly the probability
density in the space of translations for shapes MRA and B:

fT (t | YI = R) =
|(MRA+ t) ∩B|

|A| |B|
.

The conditional probability density can also be expressed in terms of the joint prob-
ability density fT (t | YI = R) = fY (R, t)/fI(R). Thus we get for any rigid motion
r = (R, t), R = (α, β, γ)

g(r) = fY (r) =
cos γ |r(A) ∩B|

2π2|A| |B|
.

Define the distance d of two rigid motions (R1, t1) and (R2, t2) as a scaled version
of the distance that is induced by the maximum norm:

d
(
(R1, t1), (R2, t2)

)
= max{∆A||R1 −R2||∞ , ||t1 − t2||∞ }.

We prove that the density function g is Lipschitz continuous and determine a Lip-
schitz constant with respect to this distance.
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Lemma 8.18. The function g on the (partial) space of rigid motions (−π
2 ,

π
2 ]3×R3,

given by g(r) = cos γ |r(A)∩B|
2π2|A| |B| for r = (α, β, γ, t1, t2, t3), is Lipschitz continuous with

respect to the metric d with constant L = 42 |∂A|∆A+|A|
2π2|A| |B|∆A

.

Proof. Let r1 = (α1, β1, γ1, t1), r2 = (α2, β2, γ2, t2) ∈ (−π
2 ,

π
2 ]3 × R3 where ti ∈ R3

denotes the translation vector. Let Mi be the Givens matrices of (αi, βi, γi) for
i = 1, 2. Then

|g(r1)− g(r2)| ≤ 1
2π2|A| |B|

(
| cos γ1| ·

∣∣|r1(A) ∩B| − |r2(A) ∩B|
∣∣

+| cos γ1 − cos γ2| · |r2(A) ∩B|
)

≤ 1
2π2|A| |B|

(∣∣|r1(A) ∩B| − |r2(A) ∩B|
∣∣+ |γ1 − γ2| · |A|

)
.

(8.7)

To apply Corollary 3.5, we need to estimate |M1a − M2a| for a ∈ cl(A). For
a (d × d)-matrix M , define ||M ||G = dmaxij |mij |. The matrix norm || · ||G is
compatible with the Euclidean norm. Therefore |M1a−M2a| ≤ ||M1−M2||G · |a| ≤
||M1 −M2||G∆A. We have Mi = G12(αi)G13(βi)G23(γi) for i = 1, 2. Abbreviate
G12(αi) = M i

α etc. We have ||M i
α||G = 3. Next we upper bound ||M1 −M2||G.

For this note that ||M1
α − M2

α||G = 3 max{| cosα1 − cosα2|, | sinα1 − sinα2|} ≤
3|α1 − α2| because for all α1, α2 ∈ R, α1 < α2, there is ξ ∈ [α1, α2] such that
cosα2−cosα1

α2−α1
= (cos ξ)′ = − sin ξ ∈ [−1, 1] by the mean value theorem, and similarly

sinα2−sinα1
α2−α1

∈ [−1, 1]. Thus

||M1 −M2||G = ||M1
αM

1
βM

1
γ −M2

αM
1
βM

1
γ +M2

αM
1
βM

1
γ −M2

αM
2
βM

2
γ ||G

≤ ||M1
α −M2

α||G||M1
βM

1
γ ||G + ||M2

α||G||M1
βM

1
γ −M2

βM
2
γ ||G

≤ 27|α1 − α2|+ 3||M1
βM

1
γ −M2

βM
2
γ ||G

≤ 27|α1 − α2|+ 3(||M1
β −M2

β ||G||M1
γ ||G + ||M2

β ||G||M1
γ −M2

γ ||G)

≤ 27(|α1 − α2|+ |β1 − β2|+ |γ1 − γ2|)
≤ 81 d(r1, r2)/∆A.

Thus we get |M1a−M2a| ≤ 81 d(r1, r2). By Corollary 3.5, we have
∣∣|r1(A)∩B| −

|r2(A) ∩B|
∣∣ ≤ 1

2(81d(r1, r2) + |t1 − t2|)|∂A|. We have |t1 − t2| ≤
√

3||t1 − t2||∞ and

therefore 1
2(81d(r1, r2) + |t1 − t2|) ≤ 81+

√
3

2 d(r1, r2) < 42 d(r1, r2).

In total, we get by Inequality (8.7) |g(r1)−g(r2)| ≤ ( 21 |∂A|
π2|A| |B|+

1
2π2∆A |B|) d(r1, r2) =

42 |∂A|∆A+|A|
2π2|A| |B|∆A

d(r1, r2).

We now state the modified approximation result for rigid motions in 3 dimensions.

Theorem 8.19. Let A and B be shapes in dimension 3, and let ε, p ∈ (0, 1) be

parameters. If 3DClusteringSizeRM(A, ε) returns a positive δ ≤ επ2|A|∆A

180|∂A|∆A+20|A| and

3DSampleSizeRM(B, ε, δ, p) returns an integer N ≥ 18c2ε−2δ−12|B|2(∆6
A + log 24

p ),
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8. Probabilistic matching under rigid motions in arbitrary dimension

then Algorithm 13 with input (A,B, ε, p) computes a rigid motion that maximizes
the volume of overlap of A and B up to an additive error of ε|A| with probability at
least 1− p. The universal constant c comes from Theorem 4.5.

Proof. 1. Let δ ∈
(
0, επ2|A|∆A

252|∂A|∆A+14|A|
]
.

2. Let Ω = (−π
2 ,

π
2 ]2 × (−π

6 ,
π
6 ] × R3 be a subspace of the space of rigid motions

where the first three coordinates correspond to the Givens angles of a rotation,
as explained above. Define twelve subsets of SO(3) by

Rγ′,D = {M : M = G1(α)G2(β)G3(γ)G3(γ′)D, α, β ∈ (−π
2 ,

π
2 ], γ ∈ (−π

6 ,
π
6 ]}

for each D ∈ {diag(1, 1, 1), diag(1,−1,−1), diag(−1, 1,−1),diag(−1,−1, 1)}
and γ′ ∈ {−π

3 , 0,
π
3 }. The union of the sets Rγ′,D covers SO(3) because of

Corollary 8.6.

Let D ∈ {diag(1, 1, 1),diag(1,−1,−1),diag(−1, 1,−1), diag(−1,−1, 1)}, γ′ ∈
{−π

3 , 0,
π
3 } and let R = G3(γ′)D.

3. By Lemma 8.17, the density function of the random experiment in Line 9 to 15
of Algorithm 13 is given by f(r) = |r(RA)∩B|·cos γ

2π2|A| |B| where r = (α, β, γ, t1, t2, t3) ∈
Ω and R is the rotation matrix described by (α, β, γ). Instead of sampling the
shape RA, we sample A and rotate the sample points by R, which is a way of
sampling RA uniformly distributed.

By Lemma 8.18, the density function f is Lipschitz continuous with constant
Lf = 42|∂A|∆A+|A|

2π2|A| |B|∆A
. The function f is bounded from above by Mf = 1

2π2|B| .

4. The cosine is Lipschitz continuous with constant 1, so the function g : Ω →
[1
2 , 1], given by g(α, β, γ, t1, t2, t3) = cos γ is Lipschitz continuous with constant
Lg = 1

∆A
with respect to the metric d.

5. For all r ∈ Ω, the ball around r with radius δ with respect to d is a rectangle.
If r has Givens angles α, β, γ such that α and β have distance ≥ δ/∆A to
−π

2 and π
2 and γ has distance ≥ δ/∆A to all of the angles −π

2 ,−
π
6 ,

π
6
π
2 , then

|B(r, δ)| = 64 δ6/∆3
A. Otherwise, |B(r, δ)| is smaller, but it is at least 8 δ6/∆3

A

since, for small δ, no angle can be closer than δ/∆A to −π
2 and π

2 , for example.

Let B be the set of balls B(r, δ) for all r ∈ Ω. Because B is a set of rectangles
in 6 dimensions, the VC dimension of B is ≤ 12 by Lemma 4.8.

6. From Line 7 to 16, Algorithm 13 computes a rigid motion r such that |r(A)∩B|
is approximately maximal over the set of rigid motions Rγ′,D × R3 with high
probability. We make this statement precise by applying Theorem 4.7 to (Ω, d).
For all τ > 0, with probability ≥ 1− 2e−2Nτ2 , we have

|r∗(RA) ∩B| ≥ |r(RA) ∩B| − |A| |B|
(c∆3

A

√
12/N + τ

2δ6
+ 6Lfδ + 4MfLgδ

)
.

For τ =
√

log 24
p /(2N), we have this estimate with probability ≥ 1− p

12 .
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8.5. Improving the results in 3D

7. We show that under the assumptions in the theorem, the error term in Step 6
is at most ε|A|. We have |A| |B|(6Lf + 4MfLg) δ ≤ ε

2 |A| because of

ε

2(6Lf + 4MfLg)|B|
=

επ2|A|∆A

252|∂A|∆A + 14|A|
≥ δ.

The inequality |A| |B|
(
c∆3

A

√
12/N+τ

2δ6

)
≤ ε

2 |A| is equivalent to

|B|2δ−12ε−2
(√

12c∆3
A +

√
1
2 log 24

p

)2 ≤ N.
By an easy calculation, we have

(√
12c∆3

A +
√

1
2 log 24

p

)2
< 18c2(∆6

A + log 24
p ),

using that c ≥ 1. In total, the error term is ≤ ε|A| with probability ≥ 1− p
12 .

8. The probability that one of the 12 loops fails is ≤ p. So with probability
≥ 1 − p, all runs succeed and the overall largest estimate |B(X∗,δ)∩{X1,...,XN}|

cosX∗3 |B(X∗,δ)|
gives an approximation of the maximal volume of overlap with the desired
precision.

Theorem 8.20. Let A and B be shapes in dimension 3, which are given by an oracle
and fulfill the assumptions described in Section 2.2. Let ε, p ∈ (0, 1) be parameters.
Then Algorithm 13 with input (A,B, ε, p) computes a rigid motion that maximizes
the volume of overlap of A and B with probability at least 1 − p up to an additive
error of ε|A| in time O(T (N) +N(logN)5) where N is given as in Theorem 8.19.
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8. Probabilistic matching under rigid motions in arbitrary dimension

Algorithm 13: 3DMaxOverlapRM

Input: shapes A,B ⊂ R3, error tolerance ε ∈ (0, 1), allowed probability of
failure p ∈ (0, 1)

1 real δ ← 3DClusteringSizeRM(A, ε);
2 integer N ← 3DSampleSizeRM(B, ε, δ, p);
3 collection Q; matrix D∗; real γ′∗;
4 real V ∗ ← 0; vector r∗ ← 0;
5 for D ∈ {diag(1, 1, 1),diag(1,−1,−1),diag(−1, 1,−1), diag(−1,−1, 1)} do
6 for γ′ ∈ {−π

3 , 0,
π
3 } do

7 Q← ∅;
8 matrix R← G3(γ′)D; // rotation of A
9 for i = 1 . . . N do

10 point (α, β, γ)← RandomGivensAngles();
// Compute corresponding rotation matrix

11 matrix M ← G1(α)G2(β)G3(γ);
12 point a← RandomPoint(A);
13 point b← RandomPoint(B);
14 add(Q, (α, β, γ, b−MRa));

15 end
16 (point,real) (r, V )← 3DFindDensentClusterRM(Q, δ,∆A);
17 if V > V ∗ then
18 V ∗ ← V ; r∗ ← r;
19 D∗ ← D; γ′∗ ← γ′;

20 end

21 end

22 end
// Compute output rotation matrix

23 matrix M∗ ← G1(r∗1)G2(r∗2)G3(r∗3 + γ′∗)D∗;
// Output translation vector

24 vector t∗ ← (r∗4, r
∗
5, r
∗
6);

25 return (M∗, t∗);
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A. The volume of small balls in the
rotation group

We prove Theorem 8.3, which we used for the analysis of the algorithm for proba-
bilistic matching of solid shapes under rigid motions in arbitrary dimension. For the
proof, we have to introduce some notions from measure theory. For the convenience
of the reader, we repeat the theorem here. Recall that we measure distances in the
rotation group SO(d) by the metric that is induced by the Frobenius norm. Further
recall that Hk denotes the k-dimensional Hausdorff measure and that ωk denotes
the volume of the k-dimensional Euclidean unit ball.

Theorem 8.3. For all M ∈ SO(d), we have

lim
δ→+0

H(d2)
(
B(M, δ)

)
δ(
d
2)

= ω(d2)
.

Measure theoretic notions. We cite the following definitions and facts from [41].
A measure φ on a metric space Z is locally finite if for every z ∈ Z there is a
δ > 0 such that φ(B(z, δ)) < +∞. A measure φ on a topological space Z is a Borel
measure if every Borel set in Z is φ-measurable. It is Borel regular if it is a Borel
measure and each X ⊆ Z is contained in a Borel set Y for which φ(X) = φ(Y ). A
measure φ on Z is a Radon measure if it is a Borel measure, compact sets have finite
measure φ, for open sets U ⊆ Z holds φ(U) = sup {φ(K) : K ⊂ U compact} and
for all X ⊆ Z holds φ(X) = inf {φ(U) : X ⊆ U,U open}. Every Radon measure is
Borel regular. The converse is not true in general, but locally finite Borel regular
measures on complete separable metric spaces are Radon measures.

The Haar measure: definition, existence and uniqueness. A topological group is
a topological space with a group structure such that the group operation and the
inverse function of the group are continuous with respect to the given topology. A
topological group is locally compact if every point has a compact neighbourhood.
The rotation group SO(d) is a compact topological group.

We cite the following definition and theorems from [32], but we use the notions
Borel measure, Borel regular and Radon measure as defined above and translate the
theorems into this language.

A Haar measure is a Borel measure φ in a locally compact topological group G
such that every non-empty open Borel set has positive measure φ, every compact
set has finite measure φ and φ(E) = φ(gE) for all g ∈ G and all Borel sets E. The
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A. The volume of small balls in the rotation group

following theorems imply that there exists a unique normalized Haar measure on
SO(d) if we restrict our attention to Radon measures.

Theorem A.1. In every locally compact topological group G exists at least one
Radon measure that is a Haar measure.

Theorem A.2. If µ and ν are Haar measures on a locally compact topological
group G that are Radon measures, then there exists a constant c > 0 such that
µ = cν.

The Hausdorff measure on SO(d). With any measure φ on Z, and any set Y ⊆ Z,
one associates another measure φ∠Y on Z, the restriction of φ to Y , by the formula

(φ∠Y )(X) = φ(X ∩ Y ) for X ⊆ Z.

The Hausdorff measure Hm, which is defined in Section 2.1, is Borel regular. If
Y ⊂ Rn is Hm-measurable and Hm(Y ) < +∞, then Hm∠Y is a Radon measure
(Theorem 1.9(2), Corollary 1.11 and Corollary 4.5 in [41]).

The set of orthogonal matrices O(d) ⊂ Rd2 is Hm-measurable for every m since

it is a closed set. The value H(d2)(O(d)) is finite [28, 3.2.28]. Since SO(d) ⊂ O(d),

we also have H(d2)(SO(d)) < +∞ and H(d2)∠SO(d) is a Radon measure. We will
consider it as a measure on SO(d).

In general, if m is an integer and S is a sufficiently regular m-dimensional surface
in Rn, for example a C1-submanifold, then the restriction Hm∠S is a constant
multiple of the surface area on S. The surface area on S is the measure that is given
by integration over the characteristic function of a set over S. The computation of
such an integral can be reduced to an integral over Rm by transformation formulas;
see for example [50].

Proposition A.3. The measure H(d2)∠SO(d) on SO(d) is a Radon measure and a
Haar measure.

Proof. We have already seen that H(d2)∠SO(d) is a Radon measure on Rd2 . By the
definition of relative topology, the open sets of SO(d) are exactly the sets U ∩SO(d)
for U open in Rd2 . The compact sets of SO(d) are exactly the sets K ∩ SO(d) for
K compact in Rd2 because SO(d) is bounded. It follows directly from the definition

of a Radon measure that H(d2)∠SO(d) is a Radon measure on SO(d).

Let M be a rotation matrix and E ⊂ SO(d). For all δ > 0 and all coverings
{S1, S2, . . . } of E with non-empty sets Si of diameter ≤ δ, {MS1,MS2, . . . } is a
covering of ME with non-empty sets Si of diameter ≤ δ. Therefore, Hmδ (E) =
Hmδ (ME) and Hm(E) = Hm(ME) for all m.

Proof of Theorem 8.3 We need the notion of the density of a measure and another
theorem for the proof of Theorem 8.3, which we cite from [28].
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Whenever φ measures a metric space Z, z ∈ Z, and m is a natural number,
the m-dimensional upper and lower densities of φ at z are defined as Θ∗m(φ, z) =

lim supδ→+0
φ(B(z,δ))
ωmδm

and Θm
∗ (φ, z) = lim infδ→+0

φ(B(z,δ))
ωmδm

where B(z, δ) is the ball
of radius δ centered at z, as usual. If the upper and lower density are equal, their
common value Θm(φ, z) = limδ→+0

φ(B(z,δ))
ωmδm

is called the m-dimensional density of
φ at z. Recall the definition of rectifiability from Section 2.1. We now know all
definitions to understand the following theorem.

Theorem A.4 (Theorem 3.2.19 in [28]). If W is an (Hm,m)-rectifiable and Hm-
measurable subset of Rn, then, for Hm-almost all w ∈W ,

Θm(Hm∠W,w) = 1.

A common matrix norm is the operator norm, defined by ||M || = sup|x|=1 |Mx|.
For M ∈ SO(d), this norm equals 1. For δ > 0, denote the open ball B∗(M, δ) =
{N ∈ SO(d) : ||M − N || < δ}. The Euclidean norm | · | is compatible with the
operator norm. The proof of Theorem 8.3 is an application of Theorem A.4 to the
set W = B∗(I, 1) for m =

(
d
2

)
. Let us check that W and m satisfy the assumptions

of the theorem.

Lemma A.5. For all ε ∈ [0, 1), we have that the open ball B∗(I, ε) ⊂ SO(d) is(
d
2

)
-rectifiable.

Proof. We have to show that B∗(I, ε) is the image of a Lipschitz function of some

bounded set in R(d2). Define the usual matrix exponential as

exp : Rd×d → Rd×d, exp(M) =
∑
k≥0

Mk

k!
.

For the definition of the matrix exponential and its properties, we follow [12]. The
function exp is invertible on the ball B∗(I, 1). Its inverse log is defined as log(M) =∑

k≥1
(−1)k−1

k (M−I)k for all ||M−I|| < 1, and it is continuous. Since the continuous
image of a compact set is bounded, log(cl(B∗(I, ε))) is bounded for every ε ∈ [0, 1).
Therefore, log(B∗(I, ε)) is bounded for every ε ∈ [0, 1].

The function exp maps exactly the skew-symmetric matrices to rotation matrices.
A matrix M = (mij)1≤i,j≤d is skew-symmetric if mij = −mji for all 1 ≤ i, j ≤ d.

The set of skew-symmetric matrices can be identified with R(d2) by forgetting the
zero diagonal and the lower triangular matrix. So, we can identify log(B∗(I, ε)) with

a bounded subset of R(d2) for every ε ∈ [0, 1).

It remains to show that exp is a Lipschitz map on every bounded set of matrices.
This is true because of

|| exp(X)− exp(Y )|| ≤ ||X − Y || exp(||X − Y ||) exp(||X||)
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A. The volume of small balls in the rotation group

for all matrices X,Y and each submultiplicative matrix norm || · ||. Equivalently, we
show that || exp(X + Y )− exp(X)|| ≤ ||Y || exp(||X||) exp(||Y ||):

|| exp(X + Y )− exp(X)|| ≤
∞∑
k=1

1

k!
||(X + Y )k −Xk||

≤
∞∑
k=1

1

k!

k−1∑
l=0

(
k

l

)
||X||l||Y ||k−l

≤ ||Y ||
∞∑
k=0

k∑
l=0

||X||l

l!

||Y ||k−l

(k − l)!

= ||Y || exp(||X||) exp(||Y ||).

The fact that B∗(I, 1) =
⋃∞
k=1B∗(I, 1−

1
k ) and Lemma A.5 imply the following.

Corollary A.6. The ball B∗(I, 1) ⊂ SO(d) is (H(d2),
(
d
2

)
)-rectifiable.

Proof of Theorem 8.3. Let W = B∗(I, 1) ⊂ SO(d) and m =
(
d
2

)
. W is H(d2)-

measurable because it is a Borel set and it is (H(d2),
(
d
2

)
)-rectifiable due to Corol-

lary A.6. We now apply Theorem A.4, giving that

lim
δ→+0

H(d2)(B(w, δ))

δ(
d
2)

= ω(d2)

for almost all w ∈ B∗(I, 1). Since all δ-balls in SO(d) have the same measure for a
fixed δ > 0, the claim holds even for all w ∈ SO(d).
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