5. Kristallographischer Anhang

5.1 2,6-Diformylpyridin-4-phenylsemicarbazon-4-phenylthiosemicarbazon (H₂L3^b)

Tabelle 5.1: Kristallographische	Daten und Parameter der	Strukturrechnung von H_2L3^b

Summenformel	$C_{21}H_{19}N_7OS$			
M (g/mol)	417.49			
Temperatur	293(2) K			
Wellenlänge	0.71069 Å			
Kristallsystem, Raumgruppe	Monoklin, P2 ₁ /n			
Elementarzelle	$a = 11.568(5) \text{ Å}$ $\alpha = 90^{\circ}$			
	b = 7.569(5) Å	β=90.900(5)°		
	c = 23.446(5) Å	$\gamma = 90^{\circ}$		
Volumen	2052.6(2) Å ³			
Berechnete Dichte	1.351 g/cm^3			
Linearer Absorptionskoeffizient	0.186 mm ⁻¹			
F(000)	872			
Kristallgröße	$0.50 \ge 0.25 \ge 0.1 \text{ mm}^3$			
Theta-Bereich	3.12 - 25.0°			
Indizes	-13≤h≤13, -0≤k≤9, -1≤l≤2	27		
Zahl der gemessenen Reflexe	3838			
Zahl der unabhängigen Reflexe	12194 [R(int) = 0.0799]			
Absorptionskorrektur	keine			
Zahl der verfeinerten Parameter	271			
Goof	0.978			
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0662, wR_2 = 0.119$	2		
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.2518, wR_2 = 0.182$	5		
Restelektronendichte	0.209 und -0.176 $e \cdot Å^{-3}$			
Diffraktometer	CAD4, Enraf Nonius			
Programm der Strukturlösung	SIR 97 ^[98]			

	Х	у	Z	E(eq)	
S	5344(1)	2778(3)	9395(1)	107(1)	
0	697(3)	784(5)	8974(2)	80(1)	
N(1)	199(4)	3429(5)	10522(2)	61(1)	
N(2)	2451(4)	3309(6)	10198(2)	61(1)	
N(3)	3572(4)	3426(6)	10029(2)	72(1)	
N(4)	-1604(4)	1817(7)	9837(3)	76(2)	
N(5)	-520(4)	1661(6)	9645(2)	69(1)	
N(6)	3228(4)	1459(6)	9311(2)	71(1)	
N(7)	-1256(4)	266(6)	8851(2)	71(1)	
C(28)	-301(6)	873(8)	9134(3)	68(2)	
C(7)	2182(5)	4146(7)	10648(2)	62(2)	
C(17)	3988(5)	2539(9)	9574(3)	68(2)	
C(6)	1001(6)	4204(8)	10850(3)	62(2)	
C(2)	-892(6)	3486(8)	10686(3)	66(2)	
C(5)	741(6)	5050(8)	11351(3)	80(2)	
C(21)	-1300(6)	-600(8)	8325(3)	71(2)	
C(16)	2956(5)	397(9)	8355(3)	82(2)	
C(11)	3513(5)	273(9)	8859(3)	64(2)	
C(9)	-1751(5)	2640(9)	10308(3)	81(2)	
C(3)	-1220(6)	4311(9)	11183(3)	88(2)	
C(22)	-380(6)	-735(8)	7978(3)	87(2)	
C(4)	-389(8)	5096(8)	11517(3)	92(2)	
C(23)	-497(8)	-1582(10)	7445(3)	104(2)	
C(12)	4277(5)	-1074(10)	8962(3)	82(2)	
C(26)	-2349(6)	-1316(8)	8160(3)	89(2)	
C(14)	3907(7)	-2120(11)	8017(3)	101(2)	
C(13)	4484(6)	-2285(10)	8524(4)	100(2)	
C(15)	3136(6)	-798(11)	7927(3)	101(2)	
C(25)	-2458(8)	-2187(10)	7647(4)	110(3)	
C(24)	-1542(9)	-2278(10)	7287(4)	114(3)	

Tabelle 5.2: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter(Å² $x10^3$) von H₂L3^b

Abb. 5.1: Ellipsoiddarstellung von H₂L3^b. Die Schwingunsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.

5.2 2,6-Diformylpyridin-bis-4-phenylsemicarbazon-2,6-diformyl-pyridin-4-phenylsemicarbazon-4-phenylsemicarbazonato-samarium(III)nitrat Methanol/Wasser-Solvat [Sm(H₂L2^b)(HL2^b)](NO₃)₂·2H₂O·MeOH

 $[Sm(H_2L2^b)(HL2^b)](NO_3)_2 \cdot 2H_2O \cdot MeOH$ Summenformel C43H42N16O13Sm M (g/mol) 1141.28 Temperatur 153(2) K 0.71073 Å Wellenlänge Kristallsystem, Raumgruppe Monoklin, C2/c Elementarzelle a = 22.305(5) Å $\alpha = 90^{\circ}$ b = 13.016(3) Å $\beta = 99.471(4)^{\circ}$ c = 17.779(4) Å $\gamma = 90^{\circ}$ 5091.0(2) Å³ Volumen 1.489 g/cm^{3} **Berechnete Dichte** 1.230 mm^{-1} Linearer Absorptionskoeffizient F(000) 2312 0.35 x 0.18 x 0.08 mm³ Kristallgröße Theta-Bereich 1.82 - 30.54° Indizes -31≤h≤31, -18≤k≤18, -25≤l≤25 Zahl der gemessenen Reflexe 31250 Zahl der unabhängigen Reflexe 7792 [R(int) = 0.0435]Absorptionskorrektur semiempirisch (SADABS) Zahl der verfeinerten Parameter 319 Goof 1.109 $R_1 / wR_2 [I > 2\sigma(I)]$ $R_1 = 0.0450, wR_2 = 0.1273$ $R_1 = 0.0540, wR_2 = 0.1351$ R_1 / wR_2 (alle Reflexe) $2.909 \text{ und } -1.472 \text{ e.Å}^{-3}$ Restelektronendichte CCD4, Bruker Smart Diffraktometer

Tabelle 5.3: Kristallographische Daten und Parameter der Strukturrechnung von

Programm der Strukturlösung

SHELXS-86^[99]

	$[Sm(H_2L2^b)(HL2^b)](NO_3)_2 \cdot 2H_2O \cdot MeOH$				
	Х	У	Z	E(eq)	
Sm	5000	1874(1)	7500	16(1)	
O(18)	5228(1)	859(2)	8676(1)	23(1)	
N(1)	3829(1)	1811(2)	6798(2)	19(1)	
N(4)	4602(1)	3207(2)	6433(2)	23(1)	
O(28)	5719(1)	2860(2)	6932(1)	23(1)	
N(2)	4262(1)	380(2)	7794(2)	22(1)	
O(63)	6109(2)	3564(3)	775(2)	45(1)	
N(5)	5011(1)	3862(3)	6206(2)	31(1)	
N(3)	4509(1)	-335(2)	8315(2)	27(1)	
N(6)	5275(1)	-670(2)	9311(2)	26(1)	
O(62)	6121(2)	2181(3)	1436(2)	51(1)	
O(64)	5316(2)	2605(3)	657(2)	57(1)	
C(9)	4048(2)	3290(3)	6108(2)	24(1)	
C(2)	3612(1)	2550(3)	6303(2)	22(1)	
N(61)	5854(2)	2784(3)	955(2)	33(1)	
N(7)	6022(2)	4163(3)	6224(2)	39(1)	
C(17)	5026(1)	0(3)	8776(2)	21(1)	
C(7)	3706(2)	283(3)	7485(2)	25(1)	
C(11)	5813(2)	-524(3)	9841(2)	24(1)	
C(21)	6644(2)	3898(3)	6323(2)	29(1)	
C(6)	3446(1)	1086(3)	6952(2)	22(1)	
C(23)	7559(2)	3271(3)	7074(3)	37(1)	
C(16)	6132(2)	393(3)	9924(2)	33(1)	
C(13)	6537(2)	-1272(3)	10841(2)	36(1)	
C(26)	6939(2)	3972(4)	5704(2)	40(1)	
C(3)	3001(2)	2598(3)	5969(2)	28(1)	
C(4)	2605(2)	1854(3)	6150(2)	32(1)	
C(22)	6960(2)	3568(3)	7019(2)	29(1)	
C(27)	5590(2)	3588(3)	6486(2)	25(1)	
C(15)	6660(2)	459(4)	10466(2)	38(1)	
C(25)	7544(2)	3678(4)	5776(3)	49(1)	
C(5)	2830(2)	1078(3)	6646(2)	29(1)	
C(14)	6863(2)	-363(4)	10917(2)	37(1)	
C(12)	6016(2)	-1354(3)	10308(2)	31(1)	
C(24)	7847(2)	3321(4)	6456(3)	45(1)	
O(91)	4550(3)	5639(5)	5459(4)	98(2)	
C(81)	3817	5856	6925	98(5)	
O(82)	4054	6303	6307	260(13)	

Tabelle 5.4: Atomkoordinaten $(x10^4)$ und isotrope Temperaturparameter $(Å^2x10^3)$ von

Abb. 5.2: Ellipsoiddarstellung von $[Sm(H_2L2^b)_2]^{2+}$. *Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Symmetreioperation für zweiten Ligand:* 1 -x+1,y,-z+3/2

5.3 Bis(2,6-diformylpyridin-bis-4-phenylsemicarbazon)samarium(III)chlorid Ethanol/Wasser-Solvat [Sm(H₂L2^b)₂]Cl₃·2¹/₂H₂O·EtOH

$[Sm(H_2L2b)_2]Cl_3\cdot 2\frac{1}{2}H_2O\cdot E$	$[Sm(H_2L2b)_2]Cl_3 \cdot 2\frac{1}{2}H_2O \cdot EtOH$				
Summenformel	$C_{44}H_{43}Cl_3N_{14}O_{7.5}Sm$				
M (g/mol)	1144.62				
Temperatur	173(2) K				
Wellenlänge	0.71073 Å				
Kristallsystem, Raumgruppe	Monoklin, P2 ₁ /n				
Elementarzelle	a = 11.861(1) Å	$\alpha = 90^{\circ}$			
	b = 23.709(2) Å	β= 101.291(1)°			
	c = 18.193(2) Å	$\gamma = 90^{\circ}$			
Volumen	5017(6) Å ³				
Berechnete Dichte	1.489 g/cm^3				
Linearer Absorptionskoeffizient	1.394 mm^{-1}				
F(000)	2312				
Kristallgröße	0.18 x 0.14 x 0.05 mm ³				
Theta-Bereich	1.43 - 28.03°				
Indizes	-15≤h≤7, -31≤k≤28, -23	3≤l≤23			
Zahl der gemessenen Reflexe	29378				
Zahl der unabhängigen Reflexe	11541 [R(int) = 0.0666]				
Absorptionskorrektur	semiempirisch (SADAB	BS)			
Zahl der verfeinerten Parameter	649				
Goof	0.878				
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0444, wR_2 = 0.09$	913			
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.0980, wR_2 = 0.10$	023			
Restelektronendichte	$1.085 \text{ und } -0.671 \text{ e.Å}^{-3}$				
Diffraktometer	CCD4, Bruker Smart				
Programm der Strukturlösung	SIR 92 ^[98]				

Tabelle 5.5: Kristallographische Daten und Parameter der Strukturrechnung von

$[Sm(H_2L2b)_2]Cl_3 \cdot 2\frac{1}{2}H_2O \cdot EtOH$					
	Х	У	Z	E(eq)	
Sm	2430(1)	753(1)	2735(1)	15(1)	
Cl(2)	5849(1)	2631(1)	4816(1)	31(1)	
Cl(3)	7353(1)	4300(1)	2826(1)	29(1)	
Cl(1)	9746(1)	3395(1)	1149(1)	32(1)	
O(58)	1653(3)	139(2)	1711(2)	21(1)	
O(28)	1013(3)	1480(1)	2642(2)	24(1)	
O(18)	3042(3)	154(2)	3837(2)	25(1)	
O(48)	4047(3)	1383(2)	2735(2)	23(1)	
N(1)	3653(3)	644(2)	1592(2)	14(1)	
N(32)	3169(4)	1414(2)	3914(2)	19(1)	
N(36)	5323(4)	2090(2)	3175(2)	22(1)	
N(31)	1258(4)	822(2)	3900(2)	17(1)	
N(34)	492(4)	152(2)	2745(2)	16(1)	
N(4)	2043(4)	1438(2)	1532(2)	16(1)	
N(2)	3966(4)	-83(2)	2718(2)	18(1)	
N(7)	19(4)	2278(2)	2212(2)	23(1)	
N(3)	4084(4)	-457(2)	3294(2)	22(1)	
N(5)	1241(4)	1848(2)	1534(2)	21(1)	
N(37)	457(4)	-504(2)	1008(2)	20(1)	
N(35)	112(4)	-189(2)	2139(2)	20(1)	
N(33)	4129(4)	1719(2)	3903(2)	24(1)	
N(6)	3800(4)	-632(2)	4478(2)	23(1)	
C(7)	4590(5)	-160(2)	2222(3)	19(1)	
C(6)	4469(5)	254(2)	1609(3)	18(1)	
C(32)	284(5)	529(2)	3901(3)	18(1)	
C(17)	3609(5)	-285(2)	3885(3)	17(1)	
C(41)	5836(5)	2188(2)	2539(3)	21(1)	
C(2)	3515(5)	1021(2)	1029(3)	18(1)	
C(25)	-1014(5)	3093(2)	3663(3)	29(1)	
C(36)	1645(5)	1154(2)	4495(3)	20(1)	
C(39)	-104(5)	171(2)	3255(3)	19(1)	
C(51)	971(5)	-531(2)	367(3)	18(1)	
C(16)	3420(5)	17(2)	5456(3)	20(1)	
C(37)	2696(5)	1467(2)	4483(3)	24(1)	
C(45)	6451(5)	1915(2)	1417(3)	33(2)	
C(12)	3370(5)	-986(2)	5625(3)	24(1)	
C(53)	2099(5)	-151(2)	-482(3)	27(1)	
C(42)	6331(5)	2713(2)	2495(3)	24(1)	
C(46)	5898(5)	1783(2)	2000(3)	26(1)	
C(9)	2625(5)	1444(2)	1016(3)	20(1)	
C(14)	3076(5)	-366(2)	6616(3)	25(1)	
C(33)	-328(5)	565(2)	4485(3)	25(1)	
C(54)	1852(5)	-615(2)	-941(3)	27(1)	
C(3)	4180(5)	1013(2)	475(3)	22(1)	
C(5)	5183(5)	230(2)	1088(3)	23(1)	
C(27)	757(5)	1857(2)	2159(3)	21(1)	
C(15)	3200(5)	89(2)	6170(3)	26(1)	

Tabelle 5.6: Atomkoordinaten $(x10^4)$ und isotrope Temperaturparameter $(Å^2x10^3)$ von

	Х	у	Z	E(eq)	
C(11)	3505(5)	-524(2)	5190(3)	23(1)	
C(47)	4482(5)	1715(2)	3235(3)	21(1)	
C(26)	-586(5)	2955(2)	3039(3)	25(1)	
C(21)	-444(5)	2394(2)	2860(3)	22(1)	
C(56)	703(5)	-990(2)	-109(3)	34(2)	
C(24)	-1306(5)	2673(2)	4125(3)	30(1)	
C(4)	5044(5)	620(2)	521(3)	26(1)	
C(22)	-752(5)	1973(2)	3304(3)	29(2)	
C(52)	1666(5)	-110(2)	169(3)	25(1)	
C(43)	6880(5)	2842(2)	1915(3)	34(2)	
C(13)	3157(5)	-903(2)	6343(3)	27(1)	
C(57)	786(5)	-172(2)	1608(3)	18(1)	
C(44)	6951(5)	2438(2)	1376(3)	35(2)	
C(23)	-1176(5)	2117(2)	3937(3)	32(2)	
C(34)	93(5)	909(2)	5097(3)	30(2)	
C(35)	1095(5)	1205(2)	5108(3)	29(2)	
C(55)	1161(6)	-1033(3)	-748(3)	38(2)	
O(61)	-1516(3)	-1202(2)	816(2)	33(1)	
O(84)	1931(10)	7750(5)	226(7)	87(4)	
O(81)	2334(10)	7643(4)	1924(6)	72(3)	
C(83)	2782(8)	8020(5)	742(6)	102(4)	
C(82)	2491(9)	8143(4)	1470(5)	98(3)	
O(91)	1158(8)	-1379(3)	3143(5)	43(2)	
O(92)	1693(11)	8144(4)	3843(11)	131(7)	
O(93)	2354(13)	7977(4)	3470(5)	90(5)	

Abb. 5.3: Ellipsoiddarstellung von [Sm(H₂L2^b)₂]²⁺. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurde nur ein Ligand beschriftet.

5.4 Bis(2,6-Diformylpyridin-bis-4-phenylsemicarbazon)europium(III)chlorid Ethanol/Wasser-Solvat [Eu(H₂L2^b)₂]Cl₃·H₂O·3EtOH

$[Eu(H_2L2^b)_2]Cl_3 \cdot H_2O \cdot 3EtO$	Н	
Summenformel	$C_{48}H_{56}Cl_{3}N_{14}O_{8}Eu$	
M (g/mol)	1215.39	
Temperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, C2/c	
Elementarzelle	a = 33.695(8) Å	$\alpha = 90^{\circ}$
	b = 16.556(4) Å	β= 125.545(4)°
	c = 25.499(6) Å	$\gamma = 90^{\circ}$
Volumen	11574(5) Å ³	
Berechnete Dichte	1.395 g/cm^{3}	
Linearer Absorptionskoeffizient	1.283 mm^{-1}	
F(000)	4959	
Kristallgröße	0.53 x 0.46 x 0.25 mm ³	
Theta-Bereich	1.48 - 30.60°	
Indizes	-48≤h≤43, -23≤k≤23, -3	34 <u>≤</u> 1 <u>≤</u> 36
Zahl der gemessenen Reflexe	70390	
Zahl der unabhängigen Reflexe	17676 [R(int) = 0.0337]	l
Absorptionskorrektur	keine	
Zahl der verfeinerten Parameter	665	
Goof	1.107	
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0451, wR_2 = 0.1$	132
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.0562, wR_2 = 0.12$	201
Restelektronendichte	$1.607 \text{ und } -1.778 \text{ e.Å}^{-3}$	
Diffraktometer	CCD4, Bruker Smart	
Programm der Strukturlösung	SIR 92 ^[98]	

Tabelle 5.7: Kristallographische Daten und Parameter der Strukturrechnung von

$[Eu(H_2L2^b)_2]Cl_3 \cdot H_2O \cdot 3EtOH$					
	Х	У	Z	E(eq)	
Eu	941(1)	7449(1)	813(1)	23(1)	
Cl(1)	1318(1)	3255(1)	356(1)	37(1)	
Cl(2)	1621(1)	3802(1)	2037(1)	44(1)	
Cl(3)	739(1)	397(1)	3562(1)	53(1)	
N(1)	1162(1)	6566(2)	86(1)	31(1)	
N(2)	1224(1)	5894(2)	1077(1)	33(1)	
N(3)	1289(1)	5593(2)	1619(2)	40(1)	
N(4)	955(1)	8127(2)	-131(2)	37(1)	
N(5)	886(1)	8947(2)	-200(2)	43(1)	
N(6)	1295(1)	5871(2)	2507(2)	51(1)	
N(7)	809(1)	10110(2)	216(2)	37(1)	
N(31)	686(1)	8336(1)	1502(1)	26(1)	
N(32)	1610(1)	8251(2)	1891(1)	31(1)	
N(33)	2088(1)	8163(2)	2105(2)	39(1)	
N(34)	21(1)	7500(1)	464(1)	26(1)	
N(35)	-312(1)	7044(2)	-54(1)	31(1)	
N(36)	2609(1)	7497(2)	1956(2)	59(1)	
N(37)	-439(1)	6162(2)	-834(1)	35(1)	
O(18)	1018(1)	6789(1)	1703(1)	35(1)	
O(28)	793(1)	8874(1)	604(1)	34(1)	
O(48)	1785(1)	7362(2)	1233(1)	46(1)	
O(58)	319(1)	6650(2)	-74(1)	33(1)	
C(2)	1123(2)	6897(2)	-419(2)	42(1)	
C(3)	1180(2)	6458(3)	-839(3)	65(1)	
C(4)	1287(2)	5645(3)	-721(3)	71(2)	
C(5)	1328(2)	5293(2)	-201(2)	54(1)	
C(6)	1264(1)	5771(2)	193(2)	37(1)	
C(7)	1306(1)	5429(2)	749(2)	38(1)	
C(9)	1020(2)	7763(2)	-517(2)	46(1)	
C(11)	1200(2)	6297(2)	2904(2)	45(1)	
C(12)	1487(2)	6124(3)	3559(2)	60(1)	
C(13)	1393(2)	6502(4)	3961(2)	70(2)	
C(14)	1029(2)	7046(4)	3724(3)	70(2)	
C(15)	751(2)	7230(3)	3082(3)	64(1)	
C(16)	828(2)	6854(3)	2664(2)	55(1)	
C(17)	1189(1)	6115(2)	1938(2)	35(1)	
C(21)	761(1)	10593(2)	638(2)	36(1)	
C(22)	453(2)	10387(2)	813(2)	40(1)	
C(23)	411(2)	10898(2)	1212(2)	49(1)	
C(24)	683(2)	11609(3)	1442(2)	59(1)	
C(25)	986(2)	11809(2)	1259(2)	58(1)	
C(26)	1024(2)	11309(2)	859(2)	47(1)	
C(27)	825(1)	9300(2)	227(2)	32(1)	
C(32)	222(1)	8384(2)	1308(2)	29(1)	
C(33)	80(1)	8842(2)	1632(2)	37(1)	
C(34)	429(2)	9276(2)	2171(2)	43(1)	
C(35)	906(1)	9236(2)	2371(2)	39(1)	

Tabelle 5.8: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter($Å^2x10^3$) von

	Х	У	Z	E(eq)	
C(36)	1021(1)	8759(2)	2025(2)	31(1)	
C(37)	1523(1)	8690(2)	2229(2)	35(1)	
C(39)	-135(1)	7913(2)	742(2)	30(1)	
C(41)	2772(2)	6936(4)	1704(3)	80(2)	
C(42)	3242(2)	6961(3)	1908(3)	65(1)	
C(43)	3430(2)	6439(5)	1684(4)	94(2)	
C(44)	3159(2)	5832(6)	1293(4)	144(5)	
C(45)	2688(3)	5746(8)	1117(6)	218(8)	
C(46)	2493(2)	6315(6)	1307(6)	196(7)	
C(47)	2147(1)	7653(2)	1739(2)	44(1)	
C(51)	-277(1)	5654(2)	-1132(2)	34(1)	
C(52)	44(1)	5031(2)	-787(2)	40(1)	
C(53)	197(2)	4532(2)	-1082(2)	47(1)	
C(54)	23(2)	4661(3)	-1714(2)	51(1)	
C(55)	-303(2)	5276(3)	-2057(2)	59(1)	
C(56)	-453(2)	5780(3)	-1768(2)	48(1)	
C(57)	-125(1)	6617(2)	-316(2)	29(1)	
O(61)	2373(1)	3244(4)	1592(2)	109(2)	
C(62)	2566(2)	2630(6)	1374(4)	118(3)	
C(63)	2651(4)	3004(9)	953(5)	160(5)	
O(71)	1133(1)	959(2)	9556(2)	61(1)	
C(72)	1604(4)	1263(7)	9823(5)	133(3)	
C(73)	1990(7)	859(11)	9970(9)	242(8)	
O(81)	1746(5)	5632(9)	8275(7)	149(5)	
C(82)	2258(7)	5922(12)	9093(9)	118(6)	
C(83)	2758(8)	6480(13)	9555(10)	143(7)	
O(91)	2331(3)	4927(5)	3206(4)	80(2)	
C(92)	2729	5311	3200	136(7)	
C(93)	2707(7)	5471(12)	2725(7)	138(8)	
O(111)	519(5)	7851(7)	7770(6)	106(3)	
O(112)	83(7)	7645(9)	7316(7)	143(5)	

Abb. 5.4: Ellipsoiddarstellung von [*Eu*(*H*₂*L*2^{*b*})₂]³⁺. *Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurde nur ein Ligand beschriftet.*

5.5 Bis(2,6-diacetylpyridin-benzoylhydrazon-benzoylhydrazonato)lanthan(III)-nitrat Wasser-Solvat [La(HL1^a)₂]NO₃·H₂O

[La(HL1 ^a) ₂]NO ₃ ·H ₂ O		
Summenformel	$C_{46}H_{40}LaN_{11}O_8$	
M (g/mol)	1013.80	
Temperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Triklin, P-1	
Elementarzelle	a = 11.571(2) Å	$\alpha = 70.413(3)^{\circ}$
	b = 12.034(2) Å	β= 89.052(4)°
	c = 16.875(3) Å	$\gamma = 82.409(4)^{\circ}$
Volumen	2193(1) Å ³	
Berechnete Dichte	1.535 g/cm^{3}	
Linearer Absorptionskoeffizient	1.042 mm^{-1}	
F(000)	1028	
Kristallgröße	0.31 x 0.23 x 0.14 mm ³	3
Theta-Bereich	1.28 - 30.348°	
Indizes	-16≤h≤12, -13≤k≤17, -2	24≤l≤24
Zahl der gemessenen Reflexe	27610	
Zahl der unabhängigen Reflexe	13187 [R(int) = 0.0205]]
Absorptionskorrektur	semiempirisch (SADAI	BS)
Zahl der verfeinerten Parameter	603	
Goof	1.102	
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0301, wR_2 = 0.0$	715
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.0407, wR_2 = 0.0$	803
Restelektronendichte	$1.175 \text{ und } -0.742 \text{ e.Å}^{-3}$	
Diffraktometer	CCD4, Bruker Smart	
Programm der Strukturlösung	SIR 92 ^[98]	

Tabelle 5.9: Kristallographische Daten und Parameter der Strukturrechnung von

	[La(HL1 ^a) ₂]NO ₃ ·H ₂ O				
	Х	У	Z	E(eq)	
La	1015(1)	1707(1)	2297(1)	16(1)	
O(18)	-1117(1)	2005(1)	2075(1)	25(1)	
O(58)	1855(1)	2947(1)	2971(1)	24(1)	
O(48)	1086(1)	1598(1)	790(1)	24(1)	
N(32)	807(2)	-350(2)	2003(1)	22(1)	
O(28)	2615(1)	40(2)	3319(1)	27(1)	
N(34)	144(2)	1905(2)	3712(1)	20(1)	
N(35)	333(2)	2916(2)	3890(1)	22(1)	
N(4)	3270(2)	1335(2)	1834(1)	22(1)	
N(5)	3878(2)	229(2)	2261(1)	25(1)	
N(31)	-161(2)	-60(2)	3371(1)	19(1)	
N(2)	-120(2)	3868(2)	1581(1)	23(1)	
C(34)	-1707(2)	-1579(2)	4278(2)	30(1)	
N(1)	2079(2)	3476(2)	1133(1)	20(1)	
O(62)	4489(2)	-3111(2)	1193(2)	65(1)	
O(63)	2641(2)	-2451(2)	1142(1)	44(1)	
C(32)	-805(2)	202(2)	3978(1)	21(1)	
C(43)	2127(2)	-191(2)	-1283(2)	30(1)	
O(64)	3932(2)	-1323(2)	1185(2)	57(1)	
N(33)	1275(2)	-417(2)	1248(1)	23(1)	
C(36)	-304(2)	-1055(2)	3203(1)	21(1)	
N(3)	-1281(2)	4036(2)	1809(1)	25(1)	
C(37)	313(2)	-1238(2)	2465(1)	22(1)	
C(45)	2941(2)	1598(2)	-1384(2)	31(1)	
C(4)	3116(2)	5283(2)	-19(2)	36(1)	
C(8)	-315(2)	6048(2)	892(2)	35(1)	
C(47)	1391(2)	642(2)	662(1)	21(1)	
N(61)	3697(2)	-2296(2)	1175(1)	39(1)	
C(51)	1620(2)	4391(2)	3657(1)	20(1)	
C(52)	2386(2)	5068(2)	3119(1)	24(1)	
C(27)	3518(2)	-347(2)	3043(1)	22(1)	
C(33)	-1590(2)	-549(2)	4442(1)	26(1)	
C(15)	-4473(2)	1892(3)	2996(2)	35(1)	
C(7)	330(2)	4812(2)	1151(1)	22(1)	
C(41)	1867(2)	627(2)	-159(1)	22(1)	
C(13)	-4871(2)	4013(3)	2357(2)	45(1)	
C(23)	5057(3)	-2702(3)	4921(2)	46(1)	
C(3)	3668(2)	4123(2)	229(2)	32(1)	
C(35)	-105/(2)	-1846(2)	3653(1)	$\frac{2}{(1)}$	
C(2)	3131(2)	3244(2)	825(1)	23(1)	
C(9)	3/41(2)	2006(2)	1180(1)	24(1)	
C(33)	1022(2)	2022(2)	431/(2)	30(1)	
C(39)	-049(2)	1308(2)	4138(1)	20(1) 21(1)	
C(33)	$\frac{2}{0}$	0022(2)	3282(2)	31(1) 22(1)	
C(0)	152/(2) 1260(2)	4003(2)	$\delta 0 \mathcal{I}(1)$	22(1) 10(1)	
C(37)	1200(2)	2240(2) 1120(2)	3403(1) 2551(1)	19(1)	
$\mathcal{O}(21)$	4309(2)	-1420(2)	3331(1)	23(1)	

Tabelle 5.10: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter($Å^2x10^3$) von

	Х	У	Z	E(eq)	
C(16)	-3324(2)	1923(2)	2746(2)	29(1)	
C(5)	2043(2)	5535(2)	297(2)	31(1)	
C(42)	1689(2)	-246(2)	-500(1)	26(1)	
C(54)	2390(2)	6302(2)	3980(2)	31(1)	
C(46)	2481(2)	1551(2)	-606(1)	26(1)	
C(22)	4348(2)	-1698(2)	4421(2)	34(1)	
C(56)	1241(2)	4689(2)	4360(1)	25(1)	
C(17)	-1690(2)	2999(2)	2055(1)	23(1)	
C(10)	4856(2)	1624(2)	820(2)	38(1)	
C(14)	-5251(2)	2937(3)	2790(2)	40(1)	
C(11)	-2929(2)	3004(2)	2316(1)	26(1)	
C(25)	5704(2)	-3163(2)	3699(2)	42(1)	
C(44)	2755(2)	721(2)	-1719(2)	32(1)	
C(38)	215(2)	-2328(2)	2245(2)	30(1)	
C(12)	-3708(2)	4058(2)	2131(2)	38(1)	
C(40)	-1388(2)	1701(2)	4761(2)	29(1)	
C(26)	4995(2)	-2157(2)	3187(2)	31(1)	
C(24)	5728(3)	-3434(3)	4559(2)	48(1)	
O(71)	8498(2)	-4775(2)	3135(2)	56(1)	

Abb. 5.5: Ellipsoiddarstellung von **[La(H₂L1^a)₂]⁺.** *Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurde nur ein Ligandbeschriftet.*

5.6 2,6-Diformylpyridin-bis-benzoylhydrazon-2,6-diformylpyridinbenzoylhydrazon-benzoylhydrazonato-cer(III)-nitrat Ethanol/Wasser-Solvat [Ce(H₂L1^a)(HL1^a)](NO₃)₂·3H₂O·EtOH

Tabelle 5.11: Kristallographische Daten und Parameter der Strukturrechnung von

$[Ce(H_2L1^{*})(HL1^{*})](NO_3)_2 \cdot 3H_2O \cdot EtOH$				
Summenformel	C48H47CeN12O15			
M (g/mol)	1172.10			
Temperatur	150(2) K			
Wellenlänge	0.71073 Å			
Kristallsystem, Raumgruppe	Triklin, P-1			
Elementarzelle	a = 11.601(4) Å	$\alpha = 99.512(7)^{\circ}$		
	b = 12.989(4) Å	$\beta = 98.668(6)^{\circ}$		
	c = 17.907(6) Å	$\gamma = 102.536(7)^{\circ}$		
Volumen	2548(2) Å ³			
Berechnete Dichte	1.527 g/cm^3			
Linearer Absorptionskoeffizient	0.973 mm^{-1}			
F(000)	1194			
Kristallgröße	0.1 x 0.13 x 0.24 mm ³			
Theta-Bereich	1.64 - 26.00°			
Indizes	-14≤h≤14, -16≤k≤15, 0≤	<u>≤</u> 1≤22		
Zahl der gemessenen Reflexe	9941			
Zahl der unabhängigen Reflexe	9941 [R(int) = 0.0000]			
Absorptionskorrektur	semiempirisch (SADAB	S)		
Zahl der verfeinerten Parameter	693			
Goof	1.048			
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0856, wR_2 = 0.20$	034		
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.1395, wR_2 = 0.25$	587		
Restelektronendichte	$2.706 \text{ und } -5.398 \text{ e.Å}^{-3}$			
Diffraktometer	CCD4, Bruker Smart			
Programm der Strukturlösung	SIR 92 ^[98]			

	$[Ce(H_2L1^a)(HL1^a)](NO_3)_2 \cdot 3H_2O \cdot EtOH$				
	Х	у	Z	E(eq)	
Ce	4235(1)	3951(1)	2466(1)	25(1)	
O(18)	6361(5)	3909(5)	2381(4)	27(1)	
O(48)	3304(5)	2945(5)	3339(3)	28(1)	
O(58)	3979(5)	3639(5)	976(3)	27(1)	
O(28)	3328(6)	5437(5)	3083(4)	34(2)	
N(31)	5883(6)	5813(6)	3150(4)	23(2)	
N(1)	2563(6)	2131(6)	1663(4)	23(2)	
N(32)	5390(6)	4175(6)	3876(4)	26(2)	
N(34)	4687(7)	5588(6)	1742(4)	27(2)	
N(2)	4795(6)	2082(6)	2163(4)	24(2)	
N(33)	5051(7)	3343(6)	4261(5)	31(2)	
N(35)	4005(7)	5377(6)	991(4)	26(2)	
O(62)	7758(6)	-339(6)	2194(4)	46(2)	
N(3)	6004(6)	2134(6)	2388(5)	28(2)	
N(5)	1853(7)	5050(7)	2033(5)	30(2)	
O(63)	9674(7)	-154(6)	2432(5)	51(2)	
C(11)	8051(7)	3248(7)	2779(5)	22(2)	
N(4)	2022(7)	4034(6)	1908(4)	26(2)	
C(57)	3678(8)	4355(7)	646(5)	24(2)	
O(61)	8710(8)	50(6)	3371(5)	53(2)	
C(51)	2954(8)	4051(8)	-146(5)	27(2)	
C(32)	6115(8)	6640(7)	2797(5)	27(2)	
C(27)	2610(8)	5757(7)	2642(5)	27(2) 27(2)	
C(21)	2543(9)	6872(8)	2757(5)	30(2)	
C(39)	5360(8)	6535(7)	2737(3) 2012(5)	26(2)	
C(9)	1183(8)	3253(8)	1498(5)	32(2)	
C(14)	105(0)	3548(8)	3275(5)	32(2) 33(2)	
C(47)	3945(8)	2759(7)	3273(5) 3913(5)	27(2)	
C(6)	2807(8)	1173(8)	1558(5)	$\frac{27(2)}{30(2)}$	
N(61)	8743(8)	-167(6)	2661(5)	33(2)	
C(7)	4090(8)	1159(7)	1807(5)	$\frac{33(2)}{28(2)}$	
C(52)	2255(8)	3005(8)	-411(6)	32(2)	
C(32)	2255(8) 2172(8)	1/01(7)	4068(5)	32(2) 30(2)	
C(40) C(37)	6274(8)	1401(7) 1082(7)	4008(5) 4245(5)	30(2) 25(2)	
C(37)	3/11(8)	1862(7)	4243(3)	23(2) 27(2)	
C(1)	1/11(8)	2167(8)	1380(6)	$\frac{27(2)}{35(2)}$	
C(2)	2538(11)	2107(0) 0034(0)	2046(6)	33(2) 47(3)	
C(24)	2556(11)	3034(9)	2940(0) 3124(6)	$\frac{4}{(3)}$	
C(10) C(15)	0078(8)	4200(8)	3124(0) 3370(6)	31(2) 33(2)	
C(13)	7770(0) 7050(0)	7566(7)	3379(0) 3111(6)	30(2)	
C(33)	(USU(9) 8576(0)	7300(7)	2660(5)	30(2)	
C(12) C(53)	0370(0)	2377(0)	2000(3)	30(2)	
C(35)	1303(9)	2010(9) 7202(0)	-1130(0)	30(2)	
C(20)	1340(10)	7202(9)	2402(0)	43(3)	
C(4)	1/2(9)	2/0(9)	900(0) 2020(()	40(3)	
U(13)	9813(9)	∠ <u>341(</u> 8)	2920(6)	33(2)	

Tabelle 5.12: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter(Å²x10³) von

132

	Х	у	Z	E(eq)	
C(38)	6916(9)	5066(7)	5052(5)	33(2)	
C(35)	7563(8)	6742(7)	4161(6)	31(2)	
C(17)	6748(8)	3115(7)	2500(5)	23(2)	
C(55)	2318(9)	4452(10)	-1392(6)	43(3)	
C(5)	1934(9)	223(8)	1235(6)	35(2)	
C(10)	-23(10)	3411(11)	1133(7)	55(3)	
C(34)	7788(9)	7602(8)	3795(6)	39(2)	
C(54)	1635(9)	3424(9)	-1641(6)	43(3)	
C(42)	4075(9)	1472(8)	4829(6)	39(2)	
C(36)	6588(8)	5882(8)	3844(6)	31(2)	
C(23)	3587(10)	8739(9)	3232(6)	44(3)	
C(25)	1538(11)	8272(9)	2574(7)	51(3)	
C(56)	2985(9)	4776(8)	-636(6)	36(2)	
C(45)	1640(9)	599(7)	4406(6)	34(2)	
C(43)	3533(10)	674(9)	5159(7)	46(3)	
C(22)	3574(9)	7679(9)	3159(6)	38(2)	
C(8)	4497(10)	160(8)	1611(6)	41(3)	
C(3)	513(9)	1243(9)	1049(6)	39(3)	
C(40)	5432(9)	7432(8)	1617(6)	38(2)	
C(44)	2298(10)	238(8)	4951(6)	41(3)	
O(72)	2774(9)	6972(8)	707(8)	90(4)	
O(71)	908(14)	5727(11)	724(7)	102(4)	
O(73)	1246(13)	7591(11)	568(8)	126(5)	
N(71)	1670(20)	6720(20)	694(9)	159(11)	
O(81)	6415(6)	701(6)	3295(4)	41(2)	
O(91)	7064(7)	2491(7)	4451(5)	54(2)	
C(92)	7797(10)	2619(9)	5192(6)	39(2)	
C(91)	9094(10)	2771(11)	5085(8)	61(3)	
O(82)	4507(8)	1722(7)	214(5)	56(2)	
O(83)	7543(8)	9800(8)	636(5)	65(2)	
O(84)	3073(9)	8282(8)	-448(7)	88(3)	

Abb. 5.6: Ellipsoiddarstellung von **[Ce(H₂L1^a)(HL1^a]²⁺.** Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurde nur ein Ligand beschriftet.

5.7 2,6-Diacetylpyridin-bis-benzoylhydrazonato-2,6-diacetylpyridinpyridinbenzoylhydrazon-benzoylhydrazonato-neodym(III) Wasser-Solvat [Nd(L1^a)(HL1^a)]·11.75H₂O

[Nd(L1 ^a)(HL1 ^a)]·11.75H ₂ O		
Summenformel	$C_{46}H_{39}N_{10}NdO_{15.75}$	
M (g/mol)	1128.11	
Temperatur	120(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Triklin, P-1	
Elementarzelle	a = 11.587(2) Å	$\alpha = 77.445(2)^{\circ}$
	b = 12.802(2) Å	β= 77.514(2)°
	c = 19.808(2) Å	$\gamma = 83.653(2)^{\circ}$
Volumen	2793.7(6)Å ³	
Berechnete Dichte	1.341 g/cm^3	
Linearer Absorptionskoeffizient	0.999 mm^{-1}	
F(000)	1142	
Kristallgröße	0.30 x 0.17 x 0.15 mm ²	3
Theta-Bereich	1.77 - 26.00°	
Indizes	-13≤h≤14, -15≤k≤15, 0≤	<u>≤l≤</u> 25
Zahl der gemessenen Reflexe	10848	
Zahl der unabhängigen Reflexe	10848 [R(int) = 0.0000]	
Absorptionskorrektur	semiempirisch (SADAE	3S)
Zahl der verfeinerten Parameter	705	
Goof	1.090	
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0585, wR_2 = 0.14$	402
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.0984, wR_2 = 0.16$	556
Restelektronendichte	$1.224 \text{ und } -2.063 \text{ e.Å}^{-3}$	
Diffraktometer	CCD4, Bruker Smart	
Programm der Strukturlösung	SIR 92 ^[98]	

Tabelle 5.13: Kristallographische Daten und Parameter der Strukturrechnung von

[Nd(L1 ^a)(HL1 ^a)]·11.75H ₂ O					
	Х	У	Z	E(eq)	
Nd	2546(1)	4998(1)	2435(1)	32(1)	
O(58)	1106(4)	5711(4)	3361(2)	33(1)	
O(28)	1293(4)	3448(4)	2812(2)	36(1)	
O(18)	4644(4)	5108(4)	2489(2)	36(1)	
O(48)	3215(4)	5792(4)	1153(2)	34(1)	
N(4)	701(4)	4999(4)	1885(2)	32(1)	
N(2)	3290(4)	6845(4)	2494(3)	32(1)	
N(3)	4338(5)	6755(5)	2743(3)	34(1)	
N(1)	1387(4)	6868(4)	1957(2)	32(1)	
N(5)	342(4)	3987(4)	1904(3)	33(1)	
N(34)	2776(5)	4384(5)	3742(3)	35(1)	
N(31)	3675(5)	3093(4)	2841(3)	37(1)	
N(32)	3406(5)	3752(4)	1534(3)	38(1)	
N(33)	3300(5)	4180(5)	836(3)	38(1)	
N(35)	2253(5)	5087(5)	4180(3)	38(1)	
C(57)	1379(5)	5723(5)	3944(3)	31(1)	
C(6)	1741(6)	7811(6)	1997(3)	37(2)	
C(9)	35(5)	5821(6)	1660(3)	34(1)	
C(17)	4979(5)	5833(6)	2717(3)	33(1)	
C(7)	2826(6)	7790(6)	2288(3)	36(2)	
C(51)	676(6)	6455(5)	4390(3)	35(2)	
C(39)	3352(6)	3542(6)	4002(4)	43(2)	
C(21)	272(6)	2130(6)	2539(3)	35(2)	
C(27)	691(5)	3239(5)	2415(3)	30(1)	
C(32)	3828(6)	2797(6)	3510(4)	48(2)	
C(47)	3214(5)	5248(6)	689(3)	34(2)	
C(53)	-751(7)	7954(6)	4500(4)	48(2)	
C(11)	6139(5)	5697(6)	2940(3)	35(2)	
C(41)	3145(5)	5807(6)	-45(3)	40(2)	
C(37)	3892(6)	2800(6)	1668(4)	42(2)	
C(23)	340(6)	309(6)	3173(4)	46(2)	
C(2)	424(5)	6871(6)	1679(3)	36(2)	
C(22)	766(6)	1330(6)	2998(3)	40(2)	
C(36)	4029(6)	2414(6)	2398(4)	45(2)	
C(26)	-611(6)	1908(6)	2232(4)	49(2)	
C(54)	-768(7)	7/61(7)	5206(4)	53(2)	
C(15)	7/40(6)	4495(7)	3316(3)	51(2)	
C(16)	6630(5)	4661(6)	3124(3)	41(2)	
C(52)	-41(6)	7299(6)	4089(3)	39(2)	
C(14)	8335(6)	5376(8)	3315(3)	54(2)	
C(10)	-1092(6)	5/54(6)	1425(4)	43(2)	
C(56)	669(7) 2624(8)	62/5(6)	510/(3)	46(2)	
C(45)	2624(8)	/399(8)	-836(4)	50(2)	
C(33)	-33(/)	0921(/)	5510(4)	50(2)	
C(13)	/848(0)	0380(8)	5140(4) 1201(4)	55(2)	
C(43)	3338(/) 2500(()	3907(8) 5220(7)	-1301(4)	55(2)	
U(42)	3399(0)	3329(7)	-019(4)	30(2)	

Tabelle 5.14: Atomkoordinaten $(x10^4)$ und isotrope Temperaturparameter $(Å^2x10^3)$ von

	х	У	Z	E(eq)	
C(8)	3323(7)	8801(6)	2293(4)	50(2)	
C(5)	1153(7)	8784(7)	1760(4)	56(2)	
C(3)	-201(7)	7809(6)	1431(4)	53(2)	
C(38)	4361(7)	2113(7)	1131(5)	58(2)	
C(4)	157(8)	8767(8)	1480(5)	68(2)	
C(46)	2640(7)	6860(7)	-160(4)	50(2)	
C(44)	3073(7)	6925(9)	-1397(4)	64(2)	
C(40)	3498(8)	3245(7)	4765(4)	59(2)	
C(24)	-560(8)	116(7)	2877(4)	58(2)	
C(25)	-1050(8)	905(7)	2412(4)	60(2)	
C(33)	4362(10)	1792(8)	3751(5)	79(3)	
C(34)	4698(11)	1089(8)	3284(6)	92(4)	
O(62)	4431(3)	7957(3)	3888(2)	25(1)	
O(63)	43(4)	3836(4)	476(2)	38(1)	
O(64)	3952(4)	5827(4)	4847(2)	42(1)	
O(65)	2399(6)	2920(5)	123(3)	72(2)	
O(66)	6462(6)	7476(5)	1176(3)	69(2)	
O(67)	4325(6)	7744(5)	793(3)	70(2)	
O(68)	6764(7)	8925(6)	3420(5)	35(2)	
O(69)	2286(13)	795(9)	699(6)	73(4)	
O(71)	4063(12)	-308(11)	-110(7)	79(4)	
O(72)	-29(15)	1418(10)	341(6)	88(4)	
O(73)	6580(20)	40(13)	4538(11)	88(7)	
O(74)	8476(19)	49(14)	301(9)	76(6)	
O(61)	6674(11)	9604(11)	1716(5)	22(2)	
O(75)	8033(17)	888(14)	5043(11)	70(5)	
O(76)	-3314(12)	-597(11)	1956(7)	32(3)	
O(77)	-3108(18)	-262(14)	1482(8)	51(5)	
O(81)	5810(18)	-443(17)	4634(10)	46(5)	
O(78)	2720(30)	9575(19)	4544(12)	72(7)	
O(79)	2380(20)	8520(20)	5638(14)	82(8)	

Abb. 5.7: Ellipsoiddarstellung von **[Sm(H₂L1^a)₂]²⁺.** Die Schwingungsellipsoide repräsentieren 50%der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurde nur ein Ligand beschriftet.

5.8 2,6-Diacetylpyridin-bis-benzoylhydrazon-2,6-diacetylpyridinbenzoylhydrazon-benzoylhydrazonato-samarium(III)-nitrat Ethanol/Wasser-Solvat [Sm(H₂L1^a)(HL1^a)](NO₃)₂·4H₂O·EtOH

Tabelle 5.15: Kristallographische Daten und Parameter der Strukturrechnung von

	nze Eten	
Summenformel	$C_{48}H_{48}N_{12}O_{15}Sm$	
M (g/mol)	1183.33	
Temperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Triklin, P-1	
Elementarzelle	a = 11.561(4) Å	$\alpha = 98.011(7)^{\circ}$
	b = 12.975(5) Å	β=99.917(7)°
	c = 17.957(6) Å	$\gamma = 102.331(7)^{\circ}$
Volumen	2548(2) Å ³	
Berechnete Dichte	1.542 g/cm^3	
Linearer Absorptionskoeffizient	1.233 mm^{-1}	
F(000)	1204	
Kristallgröße	0.38 x 0.20 x 0.10 mm ³	
Theta-Bereich	1.17 - 30.496°	
Indizes	-16≤h≤16, -18≤k≤18, -24	l≤l≤25
Zahl der gemessenen Reflexe	31434	
Zahl der unabhängigen Reflexe	15293 [R(int) = 0.0161]	
Absorptionskorrektur	semiempirisch (SADABS	5)
Zahl der verfeinerten Parameter	685	
Goof	1.092	
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0260, wR_2 = 0.066$	56
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.0328, wR_2 = 0.076$	05
Restelektronendichte	$0.806 \text{ und } -0.823 \text{ e.Å}^{-3}$	
Diffraktometer	CCD4, Bruker Smart	
Programm der Strukturlösung	SIR 92 ^[98]	
	SummenformelM (g/mol)TemperaturWellenlängeKristallsystem, RaumgruppeElementarzelleVolumenBerechnete DichteLinearer AbsorptionskoeffizientF(000)KristallgrößeTheta-BereichIndizesZahl der gemessenen ReflexeZahl der unabhängigen ReflexeAbsorptionskorrekturZahl der verfeinerten ParameterGoofR_1 / wR_2 [I>2 σ (I)]R_1 / wR_2 (alle Reflexe)RestelektronendichteDiffraktometerProgramm der Strukturlösung	John (12) Project 11 (11) (11) (11) (11) (11) (11) (11)

[Sm(H₂L1^a)(HL1^a)](NO₃)₂·4H₂O·EtOH

	$[Sm(H_2L1^a)(HL1^a)](NO_3)_2 \cdot 4H_2O \cdot EtOH$				
	Х	У	Z	E(eq)	
Sm	5828(1)	1021(1)	2527(1)	15(1)	
O(48)	6631(1)	-459(1)	1876(1)	21(1)	
O(58)	3751(1)	1053(1)	2637(1)	21(1)	
O(28)	6764(1)	2020(1)	1694(1)	21(1)	
O(18)	6067(1)	1358(1)	3992(1)	22(1)	
C(23)	8490(2)	4357(2)	616(1)	31(1)	
C(10)	3134(2)	-34(2)	-31(1)	28(1)	
N(1)	4168(1)	-798(1)	1878(1)	18(1)	
C(12)	7074(2)	253(2)	5650(1)	30(1)	
N(4)	4651(2)	842(1)	1162(1)	20(1)	
N(31)	7549(1)	2753(1)	3322(1)	19(1)	
N(34)	5311(1)	2853(1)	2817(1)	19(1)	
C(35)	9610(2)	3570(2)	3968(1)	26(1)	
N(5)	4996(2)	1689(1)	780(1)	22(1)	
C(13)	7707(2)	590(2)	6406(1)	35(1)	
C(8)	4609(2)	-2408(2)	3454(1)	29(1)	
N(33)	8109(1)	-188(1)	2933(1)	20(1)	
N(35)	4089(1)	2820(1)	2598(1)	20(1)	
O(74)	1386(2)	4945(2)	1656(1)	41(1)	
N(32)	7971(1)	853(1)	3080(1)	19(1)	
C(44)	7362(3)	-4120(2)	1966(2)	38(1)	
N(2)	5442(2)	-571(1)	3265(1)	20(1)	
O(73)	2347(2)	5333(1)	2836(1)	38(1)	
N(3)	6125(2)	-361(1)	4011(1)	21(1)	
O(83)	8827(2)	-2688(1)	4402(1)	41(1)	
O(84)	7313(2)	-1973(2)	4299(1)	52(1)	
O(72)	399(2)	5132(2)	2569(1)	46(1)	
C(55)	258(2)	2429(2)	2136(1)	26(1)	
C(16)	7793(2)	2040(2)	5407(1)	25(1)	
C(34)	9373(2)	4574(2)	4020(1)	28(1)	
C(26)	5991(2)	3572(2)	218(1)	33(1)	
O(82)	9058(2)	-1068(1)	4171(1)	40(1)	
C(7)	4728(2)	-1514(1)	3015(1)	20(1)	
C(39)	6034(2)	3762(2)	3162(1)	21(1)	
C(11)	7113(2)	980(2)	5148(1)	21(1)	
C(38)	10055(2)	1352(2)	3839(1)	29(1)	
C(4)	2290(2)	-2604(2)	1230(1)	29(1)	
C(27)	6114(2)	2237(1)	1114(1)	19(1)	
C(33)	8216(2)	4662(2)	3754(1)	26(1)	
C(41)	7388(2)	-1963(2)	2166(1)	21(1)	
N(71)	1359(2)	5140(1)	2353(1)	30(1)	
C(15)	8429(2)	2361(2)	6162(1)	31(1)	
C(9)	3782(2)	45(2)	782(1)	21(1)	
C(14)	8376(2)	1640(2)	6658(1)	33(1)	
C(51)	2028(2)	1724(2)	2251(1)	20(1)	
C(37)	8881(2)	1579(2)	3500(1)	20(1)	
C(3)	2504(2)	-1751(2)	853(1)	26(1)	

Tabelle 5.16: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter(Å²x10³) von

	Х	у	Z	E(eq)	
C(36)	8675(2)	2675(2)	3607(1)	20(1)	
C(32)	7313(2)	3728(1)	3413(1)	20(1)	
C(17)	6410(2)	683(2)	4348(1)	19(1)	
C(21)	6670(2)	3137(2)	755(1)	21(1)	
C(56)	1497(2)	2581(2)	2389(1)	23(1)	
C(43)	8412(3)	-3368(2)	2327(2)	40(1)	
C(2)	3473(2)	-860(2)	1187(1)	20(1)	
C(5)	3044(2)	-2563(2)	1926(1)	27(1)	
N(81)	8409(2)	-1913(2)	4287(1)	30(1)	
C(52)	1309(2)	715(2)	1872(1)	24(1)	
C(6)	3962(2)	-1636(1)	2241(1)	20(1)	
C(47)	7342(2)	-823(2)	2301(1)	19(1)	
C(54)	-455(2)	1432(2)	1753(1)	28(1)	
C(22)	7918(2)	3546(2)	955(1)	25(1)	
C(57)	3344(2)	1838(1)	2506(1)	19(1)	
C(42)	8425(2)	-2290(2)	2436(1)	31(1)	
C(53)	75(2)	575(2)	1624(1)	29(1)	
C(46)	6338(2)	-2729(2)	1778(1)	27(1)	
C(91)	2921(2)	2495(2)	535(1)	51(1)	
C(24)	7810(2)	4774(2)	83(1)	34(1)	
C(92)	2155(2)	2377(2)	-196(1)	35(1)	
C(25)	6564(2)	4391(2)	-109(2)	39(1)	
C(45)	6324(2)	-3809(2)	1692(1)	35(1)	
C(93)	873(3)	2206(3)	-93(2)	59(1)	
O(101)	3605(2)	4256(1)	1692(1)	33(1)	
O(102)	5435(2)	3212(2)	4733(1)	52(1)	
C(40)	5639(2)	4777(2)	3360(1)	30(1)	
O(103)	2544(2)	5278(2)	4417(1)	59(1)	
O(104)	6946(2)	-3322(2)	5472(2)	68(1)	

Abb. 5.8: Ellipsoiddarstellung von [*Sm*(*H*₂*L*1^{*a*})₂]²⁺. *Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurde nur ein Ligand beschriftet.*

5.9 Bis(2,6-diacetylpyridin-bis-benzoylhydrazon)europium(III)chlorid Ethanol/Wasser-Solvat [Eu(H₂L1^a)₂]Cl₃·2H₂O·3EtOH

$[Eu(H_2L1^a)_2]Cl_3·2H_2O·3EtOH$				
Summenformel	C ₅₂ H ₆₂ Cl ₃ EuN ₁₀ O ₉			
M (g/mol)	1229.43			
Temperatur	120(2) K			
Wellenlänge	0.71073 Å			
Kristallsystem, Raumgruppe	Triklin, P-1			
Elementarzelle	a = 12.193(3) Å	$\alpha = 105.951(4)^{\circ}$		
	b = 13.558(3) Å	$\beta = 96.559(4)^{\circ}$		
	c = 17.570(4) Å	$\gamma = 93.956(4)^{\circ}$		
Volumen	2759(1) Å ³			
Berechnete Dichte	1.480 g/cm^3			
Linearer Absorptionskoeffizient	1.345 mm^{-1}			
F(000)	1260			
Kristallgröße	$0.29 \ge 0.25 \ge 0.23 \text{ mm}^3$			
Theta-Bereich	1.22 - 26.4°			
Indizes	-15≤h≤15, -16≤k≤16, 0≤	l≤21		
Zahl der gemessenen Reflexe	11147			
Zahl der unabhängigen Reflexe	11147 [R(int) = 0.0000]			
Absorptionskorrektur	semiempirisch (SADAB	S)		
Zahl der verfeinerten Parameter	685			
Goof	1.068			
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0445, WR_2 = 0.099$	98		
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.0663, wR_2 = 0.11$	10		
Restelektronendichte	$1.936 \text{ und } -2.056 \text{ e.Å}^{-3}$			
Diffraktometer	CCD4, Bruker Smart			
Programm der Strukturlösung	SIR 92 ^[98]			

Tabelle 5.17: Kristallographische Daten und Parameter der Strukturrechnung von

	$Eu(H_2L1^a)_2]Cl_3\cdot 2H_2O\cdot 3EtOH$				
	Х	У	Z	E(eq)	
Eu	2324(1)	2449(1)	7599(1)	15(1)	
N(1)	1157(3)	1597(3)	8483(2)	17(1)	
N(31)	3510(3)	3287(3)	6732(2)	16(1)	
O(18)	3323(2)	1368(2)	8308(2)	16(1)	
C(27)	61(4)	3588(4)	7582(3)	19(1)	
N(5)	690(3)	4365(3)	7451(2)	20(1)	
O(58)	1757(3)	1789(2)	6144(2)	23(1)	
O(48)	3832(3)	3798(2)	8332(2)	17(1)	
C(55)	1271(4)	-795(4)	3665(3)	30(1)	
C(54)	1937(4)	-197(5)	3335(3)	34(1)	
C(10)	486(5)	-1083(4)	7051(3)	32(1)	
C(17)	3667(4)	588(3)	7888(3)	16(1)	
C(40)	1815(5)	5483(4)	6619(3)	30(1)	
C(8)	1439(4)	3887(4)	10317(3)	29(1)	
O(28)	408(3)	2724(2)	7527(2)	22(1)	
C(53)	2502(4)	722(5)	3800(3)	34(1)	
N(4)	1722(3)	4076(3)	7252(2)	18(1)	
N(3)	2736(3)	4460(3)	9257(2)	18(1)	
N(2)	3947(3)	1551(3)	7024(2)	17(1)	
N(34)	1358(3)	592(3)	7008(2)	17(1)	
N(32)	2122(3)	3494(3)	9010(2)	17(1)	
C(7)	1544(4)	3234(4)	9497(3)	19(1)	
C(11)	3580(4)	-406(3)	8085(3)	18(1)	
N(33)	4110(3)	636(3)	7223(2)	18(1)	
C(22)	-1597(4)	3054(4)	8102(3)	24(1)	
C(14)	3240(4)	-2245(4)	8480(3)	28(1)	
C(6)	4404(4)	2863(4)	6454(3)	19(1)	
C(2)	3276(4)	4184(3)	6596(3)	19(1)	
C(51)	1760(4)	449(4)	4950(3)	20(1)	
C(24)	-3273(4)	3864(4)	8033(3)	25(1)	
C(15)	2875(4)	-1360(4)	8930(3)	28(1)	
C(36)	969(4)	2169(4)	9202(3)	19(1)	
C(23)	-2684(4)	3124(4)	8242(3)	27(1)	
N(35)	1482(3)	156(3)	6216(2)	19(1)	
C(9)	8/6(4)	40(4)	/38/(3)	21(1)	
C(52)	2411(4)	1049(4)	4608(3)	29(1)	
C(4/)	3618(4)	4538(3)	88 / /(3)	$\frac{1}{(1)}$	
C(25)	-2/55(4)	4558(4)	//04(3)	28(1)	
C(26)	-166/(4)	4505(4)	7570(3)	24(1)	
C(39)	2238(4)	4585(3)	6861(3)	20(1)	
C(4)	4848(4)	4236(4)	5904(3)	51(1) 17(1)	
C(41)	4341(4) 5676(4)	3330(3)	9130(3)	$\frac{1}{(1)}$	
$C(3\delta)$	50/0(4)	1410(4) 1202(4)	0412(3)	24(1)	
C(12)	5940(4)	-1302(4)	/034(3)	22(1)	
C(32)	084(4) 1070(4)	010(3) 2747(4)	6204(3) 7762(2)	19(1)	
C(21) C(42)	-10/9(4)	5/4/(4) 5700(1)	(103(3) 8622(2)	20(1) 22(1)	
U(+2)	5017(4)	5/00(4)	0032(3)	22(1)	

Tabelle 5.18: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter($Å^2x10^3$) von

	X	у	Z	E(eq)	
C(37)	4652(4)	1884(3)	6638(3)	18(1)	
C(57)	1670(4)	851(4)	5809(3)	20(1)	
C(16)	3046(4)	-440(4)	8743(3)	24(1)	
C(46)	5744(4)	6681(4)	8886(3)	28(1)	
C(56)	1188(4)	-480(4)	4468(3)	24(1)	
C(43)	4390(4)	6182(3)	9924(3)	22(1)	
C(35)	280(4)	1788(4)	9660(3)	22(1)	
C(34)	-226(4)	789(4)	9362(3)	23(1)	
C(5)	5074(4)	3302(4)	6022(3)	25(1)	
C(33)	-7(4)	182(4)	8633(3)	22(1)	
C(3)	3953(4)	4695(4)	6205(3)	26(1)	
C(13)	3785(4)	-2211(4)	7832(3)	27(1)	
Cl(2)	5615(1)	1069(1)	4309(1)	28(1)	
Cl(1)	1534(1)	2403(1)	1886(1)	42(1)	
Cl(3)	8410(2)	3595(2)	280(1)	60(1)	
O(73)	2498(3)	715(3)	564(3)	36(1)	
C(45)	5795(4)	7319(4)	9660(3)	31(1)	
C(44)	5114(4)	7076(4)	10175(3)	26(1)	
C(72)	3464(5)	471(5)	970(5)	54(2)	
C(71)	3264(6)	-340(7)	1347(5)	78(3)	
O(91)	1983(3)	-1880(3)	5606(2)	37(1)	
O(92)	4701(5)	6750(4)	5969(3)	49(1)	
O(93)	545(4)	6398(3)	8145(4)	84(2)	
C(91)	1758(6)	-2761(5)	4919(5)	65(2)	
C(92)	616(7)	-3181(6)	4760(6)	82(3)	
C(81)	1672(12)	4087(14)	4198(7)	176(8)	
C(82)	2531(14)	4186(13)	4029(10)	55(5)	
C(83)	2358(13)	3384(12)	4043(9)	63(5)	
O(83)	3092(5)	3392(5)	3472(4)	72(2)	

Abb. 5.9: Ellipsoiddarstellung von **[Eu(H₂L1^a)₂]³⁺.** Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurde nur ein Ligand beschriftet.

5.10 Bis(2,6-diformylpyridin-bis-benzoylhydrazon)terbium(III)chlorid Ethanol-Solvat Tb(H₂L1^b)₂]Cl₃·1½EtOH

Tb(H ₂ L1 ^b) ₂]Cl ₃ ·1 ¹ / ₂ EtOH		
Summenformel	$C_{45}H_{43}Cl_3N_{10}O_{5.5}Tb$	
M (g/mol)	1077.16	
Temperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, P2 ₁ /n	
Elementarzelle	a = 12.943(2) Å	α= 90°
	b = 19.098(2) Å	β= 104.648(2)°
	c = 19.787(2) Å	$\gamma = 90^{\circ}$
Volumen	4732(1) Å ³	
Berechnete Dichte	1.512 g/cm^3	
Linearer Absorptionskoeffizient	1.720 mm^{-1}	
F(000)	2172	
Kristallgröße	0.49 x 0.48 x 0.46 mm ³	
Theta-Bereich	$1.94-28.01^\circ$	
Indizes	-11≤h≤17, -25≤k≤25, -2	6≤l≤26
Zahl der gemessenen Reflexe	28057	
Zahl der unabhängigen Reflexe	10892 [R(int) = 0.0474]	
Absorptionskorrektur	semiempirisch (SADAB	S)
Zahl der verfeinerten Parameter	603	
Goof	1.013	
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0485, wR_2 = 0.11$	39
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.0752, wR_2 = 0.12$	14
Restelektronendichte	$2.614 \text{ und } -1.320 \text{ e.Å}^{-3}$	
Diffraktometer	CCD4, Bruker Smart	
Programm der Strukturlösung	SIR 92 ^[98]	

Tabelle 5.19: Kristallographische Daten und Parameter der Strukturrechnung von

143

	$Tb(H_2L1^b)_2]Cl_3\cdot 1\frac{1}{2}Et$	НС			
	Х	У	Z	E(eq)	
Tb	985(1)	2268(1)	4105(1)	18(1)	
O(28)	101(3)	3232(2)	4500(2)	26(1)	
O(18)	523(2)	1811(2)	2931(2)	22(1)	
O(58)	2639(3)	2803(2)	4128(2)	32(1)	
O(48)	864(2)	1265(2)	4773(2)	27(1)	
N(32)	-894(3)	1803(2)	4159(2)	22(1)	
N(31)	-839(3)	2796(2)	3242(2)	19(1)	
N(1)	2844(3)	1764(2)	5045(2)	20(1)	
N(34)	1056(3)	3321(2)	3259(2)	19(1)	
N(4)	1646(3)	2742(2)	5425(2)	21(1)	
N(5)	1020(3)	3243(2)	5620(2)	23(1)	
N(33)	-891(3)	1323(2)	4675(2)	27(1)	
N(2)	2232(3)	1303(2)	3744(2)	23(1)	
N(35)	2065(3)	3560(2)	3260(2)	23(1)	
C(32)	-810(4)	3357(2)	2850(2)	21(1)	
N(3)	1917(3)	1076(2)	3068(2)	26(1)	
C(39)	255(4)	3634(3)	2856(3)	23(1)	
C(41)	253(4)	657(2)	5636(3)	23(1)	
C(17)	1021(4)	1378(3)	2669(2)	23(1)	
C(51)	3988(4)	3432(3)	3775(3)	24(1)	
C(37)	-1797(4)	1989(3)	3765(3)	27(1)	
C(27)	225(3)	3478(2)	5091(2)	21(1)	
C(11)	678(4)	1174(3)	1927(2)	23(1)	
C(21)	-465(3)	4057(2)	5228(2)	20(1)	
C(46)	1231(4)	334(3)	5880(3)	26(1)	
C(25)	-1143(4)	4812(3)	5983(3)	28(1)	
C(14)	-35(4)	837(3)	525(3)	33(1)	
C(6)	3460(4)	1285(3)	4840(3)	24(1)	
C(9)	2512(4)	2559(2)	5877(2)	22(1)	
C(23)	-1714(4)	4969(3)	4737(3)	28(1)	
C(36)	-1803(4)	2542(3)	3252(3)	23(1)	
C(2)	3212(4)	2052(3)	5677(2)	21(1)	
C(57)	2859(4)	3250(3)	3728(2)	21(1)	
C(42)	-519(4)	597(3)	6016(3)	32(1)	
C(35)	-2751(4)	2830(3)	2856(3)	27(1)	
C(3)	4221(4)	1893(3)	6112(3)	29(1)	
C(47)	96(4)	1091(2)	5009(3)	22(1)	
C(33)	-1729(4)	3689(3)	2445(3)	28(1)	
C(26)	-507(4)	4254(3)	5903(3)	26(1)	
C(7)	3059(4)	1006(3)	4139(3)	30(1)	
C(34)	-2715(4)	3395(3)	2448(3)	29(1)	
C(22)	-1073(4)	4413(3)	4649(3)	24(1)	
C(45)	1455(4)	-49(3)	6488(3)	31(1)	
C(56)	4294(4)	4018(3)	3458(3)	32(1)	
C(16)	-394(4)	1240(3)	1589(3)	24(1)	
C(24)	-1740(4)	5171(3)	5408(3)	32(1)	
C(12)	1392(4)	939(3)	1558(3)	34(1)	

Tabelle 5.20: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter($Å^2x10^3$) von

	Х	У	Z	E(eq)	
C(52)	4764(4)	2987(3)	4178(3)	33(1)	
C(15)	-746(4)	1065(3)	891(3)	29(1)	
C(4)	4839(4)	1391(3)	5896(3)	34(1)	
C(5)	4454(4)	1072(3)	5257(3)	31(1)	
C(44)	692(5)	-103(3)	6867(3)	37(1)	
C(43)	-277(5)	226(3)	6636(3)	42(2)	
C(13)	1031(5)	765(3)	861(3)	38(1)	
C(55)	5376(5)	4163(3)	3555(3)	42(2)	
C(54)	6125(4)	3722(4)	3952(3)	44(2)	
C(53)	5837(4)	3134(3)	4265(3)	43(2)	
Cl(1)	7112(1)	1141(1)	2050(1)	37(1)	
Cl(2)	2973(1)	-324(1)	2861(1)	35(1)	
O(61)	9394(3)	5178(2)	2335(2)	49(1)	
C(63)	10106(6)	6251(4)	1959(5)	71(2)	
C(62)	9495(5)	5569(4)	1759(3)	49(2)	
O(71)	3030(20)	2747(7)	1766(8)	174(10)	
C(73)	3160(20)	2554(8)	624(9)	97(8)	
C(72)	3540(30)	2484(11)	1346(15)	200(20)	
Cl(3)	1941(2)	3832(2)	-36(1)	137(2)	

Abb. 5.10: Ellipsoiddarstellung von [*Tb*(*H*₂*L*1^{*b*})₂]³⁺. *Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurde nur ein Ligand beschriftet.*

5.11 2,6-Diformylpyridin-bis-benzoylhydrazon-trinitrato-lanthan(III) Ethanol-Solvat [La(H₂L1^b)(NO₃)₃]·EtOH

[La(H ₂ L1 ^b)(NO ₃) ₃]·EtOH		
Summenformel	$C_{23}H_{23}LaN_8O_{12}$	
M (g/mol)	742.40	
Temperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, P2 ₁ /n	
Elementarzelle	a = 8.711(2) Å	$\alpha = 90^{\circ}$
	b = 23.209(4) Å	β=91.095(4)°
	c = 14.262(3) Å	$\gamma = 90^{\circ}$
Volumen	2882.7(9) Å ³	
Berechnete Dichte	1.711 g/cm^3	
Linearer Absorptionskoeffizient	1.558 mm^{-1}	
F(000)	1480	
Kristallgröße	$0.5 \ge 0.12 \ge 0.08 \text{ mm}^3$	
Theta-Bereich	$1.68 - 30.55^{\circ}$	
Indizes	-12≤h≤12, -32≤k≤33, -2	0≤l≤20
Zahl der gemessenen Reflexe	35440	
Zahl der unabhängigen Reflexe	8782 [R(int) = 0.0311]	
Absorptionskorrektur	semiempirisch (SADAB	S)
Zahl der verfeinerten Parameter	603	
Goof	1.013	
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0225, wR2 = 0.05$	516
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.0316, wR_2 = 0.05$	56
Restelektronendichte	$0.811 \text{ und } -0.762 \text{ e.Å}^{-3}$	
Diffraktometer	CCD4, Bruker Smart	
Programm der Strukturlösung	SHELXS-86 ^[99]	

Tabelle 5.21: Kristallographische Daten und Parameter der Strukturrechnung von

	[La(H ₂ L1 ^b)(NO ₃) ₃]·E	tOH			
	Х	У	Z	E(eq)	
La	2524(1)	1434(1)	571(1)	18(1)	
C(14)	3042(3)	-1182(1)	3640(2)	41(1)	
C(92)	-3283(3)	617(1)	3950(2)	41(1)	
C(15)	4512(3)	-1067(1)	3336(2)	39(1)	
O(91)	-2607(2)	1164(1)	3762(1)	34(1)	
C(29)	-2106(3)	158(1)	4129(2)	56(1)	
O(64)	550(2)	1449(1)	1988(1)	28(1)	
O(28)	304(1)	2155(1)	403(1)	26(1)	
O(62)	-119(1)	947(1)	767(1)	26(1)	
N(5)	1492(2)	2752(1)	-593(1)	22(1)	
O(18)	2617(2)	545(1)	1605(1)	32(1)	
N(4)	2716(2)	2380(1)	-576(1)	20(1)	
C(5)	7640(2)	1391(1)	-968(1)	24(1)	
N(71)	4530(2)	2127(1)	1927(1)	28(1)	
C(21)	-1114(2)	2970(1)	-135(1)	21(1)	
N(81)	1814(2)	817(1)	-1312(1)	29(1)	
N(3)	5018(2)	271(1)	1275(1)	21(1)	
O(84)	2721(2)	595(1)	-695(1)	35(1)	
C(7)	6289(2)	811(1)	207(1)	21(1)	
N(2)	5058(2)	728(1)	663(1)	20(1)	
N(1)	5106(2)	1655(1)	-477(1)	20(1)	
O(73)	3509(2)	2367(1)	1417(1)	34(1)	
C(26)	-1320(2)	3385(1)	-834(1)	25(1)	
C(6)	6337(2)	1303(1)	-435(1)	20(1)	
C(24)	-3793(2)	3616(1)	-212(2)	35(1)	
N(61)	-424(2)	1133(1)	1572(1)	29(1)	
C(22)	-2246(2)	2882(1)	527(1)	25(1) 26(1)	
C(12)	2066(2)	-390(1)	2731(1)	20(1) 29(1)	
C(12) C(11)	3537(2)	-278(1)	2409(1)	22(1)	
C(11)	5162(2)	2102(1)	-1078(1)	22(1) 21(1)	
C(17)	3693(2)	2102(1) 207(1)	1742(1)	21(1) 21(1)	
C(9)	3842(2)	207(1) 2493(1)	-1104(1)	23(1)	
C(4)	7673(2)	1848(1)	-1588(1)	23(1) 27(1)	
O(72)	4518(2)	1584(1)	1938(1)	$\frac{27(1)}{42(1)}$	
C(13)	1827(3)	-844(1)	3342(2)	$\frac{42(1)}{36(1)}$	
C(13)	-3580(2)	3208(1)	$\frac{3342(2)}{490(2)}$	30(1) 32(1)	
C(23)	-5586(2)	2507(1)	+90(2) 83(1)	$\frac{32(1)}{20(1)}$	
O(83)	1245(2)	2397(1) 1295(1)	-0.3(1)	20(1) 30(1)	
C(3)	1243(2) 6/10(2)	1293(1) 2210(1)	-1113(1) 1640(1)	$\frac{30(1)}{26(1)}$	
C(25)	0410(2)	2210(1) 3705(1)	-10+9(1) 870(2)	20(1) 32(1)	
C(23)	-2075(2)	5703(1)	-0/0(2)	$\frac{32(1)}{20(1)}$	
O(74)	4/00(2)	-010(1)	$\frac{2}{1}$	$\frac{29(1)}{42(1)}$	
O(74)	3403(2)	240/(1)	2301(1) 1024(1)	42(1)	
O(03)	-1000(2)	1000(1)	1934(1)	01(1)	
$O(\delta 2)$	1557(2)	5/2(1)	-2036(1)	30(1)	

Tabelle 5.22: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter(Å² $x10^3$) von

Abb. 5.11: Ellipsoiddarstellung von **[La(H₂L1^b)(NO₃)₃]**. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurden die Nitratoliganden nicht beschriftet.

5.12 Aqua-chloro-(2,6-diacetylpyridin-bis-benzoylhydrazonato)ytterbium(III) Dimethylformamid-Solvat [Yb(HL1^a)(H₂O)Cl]·DMF

[Yb(HL1 ^a)(H ₂ O)Cl]·DMF		
Summenformel	$C_{26}H_{26}ClN_6O_4Yb$	
M (g/mol)	695.02	
Temperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, P2 ₁ /n	
Elementarzelle	a = 8.565(2) Å	$\alpha = 90(4)^{\circ}$
	b = 20.862(2) Å	$\beta = 99.75(4)^{\circ}$
	c = 15.339(2) Å	$\gamma = 90(4)^{\circ}$
Volumen	2701.2 (4) Å ³	
Berechnete Dichte	1.709 g/cm^3	
Linearer Absorptionskoeffizient	3.604 mm^{-1}	
F(000)	1372	
Kristallgröße	0.3 x 0.3 x 0.1 mm ³	
Theta-Bereich	$2.87 - 29.23^{\circ}$	
Indizes	-11≤h≤9, -24≤k≤28, -21≤	<u>≤1≤21</u>
Zahl der gemessenen Reflexe	16907	
Zahl der unabhängigen Reflexe	7094 [R(int) = 0.1022]	
Absorptionskorrektur	Integration	
Zahl der verfeinerten Parameter	343	
Goof	0.961	
$R_1 / wR_2 [I \!\!>\!\! 2\sigma(I)]$	$R_1 = 0.0588, wR2 = 0.10$	19
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.1227, wR_2 = 0.118$	37
Restelektronendichte	$1.107 \text{ und } -2.564 \text{ e.Å}^{-3}$	
Diffraktometer	IPDS, Stoe	
Programm der Strukturlösung	SIR 92 ^[98]	

Tabelle 5.23: Kristallographische Daten und Parameter der Strukturrechnung von

_	[Yb(HL1 ^a)(H ₂ O)Cl]·DI	MF			
	Х	У	Z	E(eq)	
Yb	9274(1)	3821(1)	8357(1)	20(1)	
Cl	6999(3)	3010(1)	8158(1)	40(1)	
O(32)	11325(7)	4501(3)	8690(3)	28(1)	
O(18)	9554(7)	3910(3)	6938(3)	23(1)	
O(28)	7690(7)	4672(3)	8346(3)	27(1)	
N(1)	10587(9)	3168(3)	9544(4)	24(1)	
N(2)	11178(9)	3099(3)	7942(4)	26(2)	
N(3)	11541(9)	3134(4)	7095(4)	28(2)	
N(4)	8808(8)	4140(3)	9803(4)	20(1)	
N(5)	7976(8)	4696(3)	9871(4)	22(1)	
C(2)	10265(10)	3240(4)	10377(5)	26(2)	
C(3)	10887(11)	2812(5)	11046(5)	32(2)	
C(4)	11809(12)	2306(4)	10857(5)	33(2)	
C(5)	12161(13)	2243(4)	10022(6)	35(2)	
C(6)	11555(10)	2685(4)	9371(5)	24(2)	
C(7)	11956(11)	2676(4)	8469(5)	27(2)	
C(8)	13147(13)	2230(5)	8228(6)	41(2)	
C(9)	9310(9)	3802(5)	10516(4)	24(1)	
C(11)	10927(10)	3692(4)	5728(4)	24(2)	
C(12)	12090(12)	3354(5)	5384(6)	37(2)	
C(13)	12336(12)	3461(6)	4528(6)	44(3)	
C(14)	11425(12)	3901(6)	3995(5)	42(3)	
C(15)	10254(13)	4239(5)	4316(6)	38(2)	
C(16)	10007(12)	4134(4)	5174(5)	30(2)	
C(17)	10642(12)	3585(4)	6654(5)	23(2)	
C(21)	6515(10)	5535(4)	9005(5)	26(2)	
C(22)	6311(11)	5889(4)	8219(6)	31(2)	
C(23)	5523(12)	6468(5)	8156(7)	42(2)	
C(10)	8981(12)	3972(5)	11408(5)	34(2)	
C(24)	4876(14)	6704(5)	8859(7)	45(3)	
C(25)	5027(11)	6349(5)	9626(7)	39(2)	
C(26)	5820(10)	5771(4)	9703(5)	26(2)	
C(27)	7429(10)	4931(4)	9058(4)	22(2)	
N(41)	4524(10)	4710(4)	6577(4)	34(2)	
O(45)	2711(9)	4940(4)	7437(4)	46(2)	
C(42)	5743(13)	4289(7)	6369(6)	54(3)	
C(43)	4132(14)	5268(6)	6010(6)	50(3)	
C(44)	3799(11)	4605(5)	7247(5)	35(2)	

Tabelle 5.24: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter($Å^2x10^3$) von

Abb. 5.12: Ellipsoiddarstellung von **[Tb(HL1^a)Cl(H₂O)] DMF**. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.

5.13 Aqua-chloro-(2,6-diformylpyridin-benzoylhydrazon-benzoylhydrazonato)-ethanol-ytterbium(III)-chlorid Ethanol-Solvat [Yb(HL1^b)(H₂O)Cl(EtOH)]Cl·EtOH

Summenformel	$C_{25}H_{18}Cl_2N_5O_5Yb$	
M (g/mol)	722.47	
Temperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, P2 ₁ /c	
Elementarzelle	a = 15.021(2) Å	$\alpha = 90^{\circ}$
	b = 13.990(2) Å	β=110.770(6)°
	c = 14.178(2) Å	$\gamma = 90^{\circ}$
Volumen	2785.8(4) Å ³	
Berechnete Dichte	1.723 Mg/m ³	
Linearer Absorptionskoeffizient	3.593 mm ⁻¹	
F(000)	1428	
Kristallgröße	0.4 x 0.3 x 0.1 mm ³	
Theta-Bereich	$2.86-29.20^\circ$	
Indizes	-20≤h≤17, -16≤k≤19, -15	<u>≤l≤</u> 19
Zahl der gemessenen Reflexe	14303	
Zahl der unabhängigen Reflexe	7321 [R(int) = 0.1042]	
Absorptionskorrektur	Integration	
Zahl der verfeinerten Parameter	371	
Goof	0.996	
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0671, wR2 = 0.110$	63
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.1298, wR_2 = 0.134$	40
Restelektronendichte	$1.334 \text{ und } -2.382 \text{ e.Å}^{-3}$	
Diffraktometer	IPDS, Stoe	
Programm der Strukturlösung	SIR 92 ^[98]	

Tabelle 5.25: Kristallographische Daten und Parameter der Strukturrechnung von [Vb(HL1^b)(H₂O)Cl(EtOH)]Cl·EtOH
Yb(HL1 ^b)(H ₂ O)Cl(EtOH)]Cl·EtOH					
	Х	У	Z	E(eq)	
Yb	3162(1)	-4288(1)	3008(1)	17(1)	
Cl(1)	3341(2)	-4593(2)	1261(2)	26(1)	
O(18)	3096(4)	-5881(4)	3117(5)	24(2)	
O(28)	1609(4)	-3943(4)	1896(5)	22(1)	
O(31)	2034(5)	-4608(5)	3777(5)	27(2)	
O(32)	3623(4)	-3566(4)	4575(5)	24(1)	
N(1)	4583(5)	-3257(5)	3258(6)	19(2)	
N(2)	4700(5)	-5082(5)	3716(6)	21(2)	
N(3)	4729(5)	-6060(5)	3875(6)	18(2)	
N(4)	2868(5)	-2615(5)	2358(6)	20(2)	
N(5)	1955(5)	-2393(5)	1746(6)	21(2)	
C(2)	4486(6)	-2321(6)	3078(7)	20(2)	
C(3)	5255(6)	-1699(6)	3379(7)	19(2)	
C(4)	6176(6)	-2058(6)	3862(7)	23(2)	
C(5)	6268(7)	-3042(6)	4013(7)	25(2)	
C(6)	5472(6)	-3622(6)	3723(7)	20(2)	
C(7)	5504(6)	-4640(6)	3907(7)	18(2)	
C(9)	3526(6)	-1992(6)	2520(7)	22(2)	
C(11)	3719(6)	-7446(6)	3615(7)	20(2)	
C(12)	4475(7)	-8075(6)	3844(8)	26(2)	
C(13)	4337(9)	-9059(7)	3938(9)	37(3)	
C(14)	3428(8)	-9402(6)	3787(8)	36(3)	
C(15)	2673(8)	-8768(7)	3535(8)	36(3)	
C(16)	2802(7)	-7788(7)	3450(7)	25(2)	
C(17)	3834(5)	-6407(5)	3522(6)	16(2)	
C(21)	380(6)	-2995(6)	760(7)	21(2)	
C(22)	-202(7)	-3798(7)	427(8)	33(3)	
C(23)	-1067(8)	-3751(8)	-357(9)	37(3)	
C(24)	-1389(7)	-2856(8)	-789(8)	33(2)	
C(25)	-848(8)	-2043(8)	-426(10)	41(3)	
C(26)	45(7)	-2103(7)	351(8)	29(2)	
C(27)	1347(6)	-3140(6)	1505(7)	22(2)	
C(31)	328(8)	-4647(12)	3334(12)	58(4)	
C(32)	1202(7)	-5204(8)	3399(8)	34(2)	
O(51)	2796(7)	-1893(6)	4512(7)	57(3)	
C(51)	1290(11)	-1188(12)	3680(13)	66(4)	
C(52)	1808(9)	-2045(9)	4158(10)	44(3)	
Cl(2)	2054(2)	-366(2)	936(2)	29(1)	

Tabelle 5.26: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter($Å^2x10^3$) von

Abb. 5.13: Ellipsoiddarstellung von $Yb(HL1^b)(H_2O)Cl(EtOH)J^+$. *Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.*

5.14 Bis(bis(2,6-diacetylpyridin-benzoylhydrazonato-4-phenylsemicarbazon)cer(III)-sulfat Ethanol-Solvat [Ce(HL3^a)₂]₂(SO₄)·7EtOH

[Ce(HL3 ^a) ₂] ₂ (SO ₄)·7EtOH			
Summenformel	$C_{110}H_{138}Ce_2N_{24}O_{21}S$		
M (g/mol)	2444.74		
Temperatur	173(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem, Raumgruppe	Monoklin, P2 ₁ /n		
Elementarzelle	a = 23.169(5) Å	$\alpha = 90^{\circ}$	
	b = 20.064(5) Å	$\beta = 93.067(5)^{\circ}$	
	c = 25.288(5) Å	$\gamma = 90^{\circ}$	
Volumen	11739(5) Å ³		
Berechnete Dichte	1.383 g/cm^3		
Linearer Absorptionskoeffizient	0.860 mm^{-1}		
F(000)	5064		
Kristallgröße	0.64 x 0.1 x 0.05 mm ³		
Theta-Bereich	$1.16 - 27.18^{\circ}$		
Indizes	-27≤h≤27, -23≤k≤23, -2.	5≤l≤29	
Zahl der gemessenen Reflexe	94435		
Zahl der unabhängigen Reflexe	20010 [R(int) = 0.0421]		
Absorptionskorrektur	semiempirisch (SADAB	S)	
Zahl der verfeinerten Parameter	1475		
Goof	0.979		
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0287, wR2 = 0.0674$		
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.0522, wR_2 = 0.0807$		
Restelektronendichte	$1.214 \text{ und } -0.560 \text{ e.Å}^{-3}$		
Diffraktometer	CCD4, Bruker Smart		
Programm der Strukturlösung	SIR 97 ^[98]		

Tabelle 5.27: Kristallographische Daten und Parameter der Strukturrechnung von

	[Ce(HL3 ^a) ₂] ₂ (SO ₄)·7E	tOH			
	Х	У	Z	E(eq)	
Ce(1)	5997(1)	9794(1)	2200(1)	22(1)	
O(18)	6057(1)	8965(1)	1454(1)	33(1)	
O(28)	6773(1)	10505(1)	2537(1)	35(1)	
O(48)	5370(1)	10704(1)	1772(1)	31(1)	
O(58)	5715(1)	8995(1)	2851(1)	40(1)	
N(1)	4913(1)	9955(1)	2612(1)	25(1)	
N(2)	5023(1)	9139(1)	1788(1)	25(1)	
N(3)	5101(1)	8757(1)	1351(1)	29(1)	
N(4)	5807(1)	10739(1)	2934(1)	25(1)	
N(5)	6247(1)	11202(1)	3052(1)	26(1)	
N(6)	5723(1)	8277(1)	789(1)	30(1)	
N(31)	7081(1)	9638(1)	1773(1)	27(1)	
N(32)	6321(1)	10486(1)	1305(1)	28(1)	
N(33)	5922(1)	10926(1)	1083(1)	32(1)	
N(34)	6752(1)	8876(1)	2581(1)	29(1)	
N(35)	6583(1)	8446(1)	2975(1)	33(1)	
N(36)	5057(1)	11456(1)	1142(1)	27(1)	
C(2)	4478(1)	9532(2)	2480(1)	28(1)	
C(3)	3988(1)	9482(2)	2775(2)	41(1)	
C(4)	3948(2)	9878(2)	3212(2)	51(1)	
C(5)	4380(2)	10324(2)	3342(2)	44(1)	
C(6)	4860(1)	10350(2)	3040(1)	28(1)	
C(7)	5338(1)	10817(2)	3175(1)	27(1)	
C(8)	5245(2)	11344(2)	3586(2)	47(1)	
C(9)	4534(1)	9110(2)	2006(1)	29(1)	
C(10)	4036(2)	8672(2)	1825(2)	47(1)	
C(11)	6256(1)	8103(2)	578(1)	27(1)	
C(12)	6728(1)	8532(2)	587(1)	31(1)	
C(13)	7229(2)	8333(2)	365(1)	38(1)	
C(14)	7269(2)	7720(2)	123(2)	44(1)	
C(15)	6805(2)	7299(2)	120(2)	48(1)	
C(16)	6300(2)	7484(2)	344(1)	40(1)	
C(17)	5654(1)	8686(2)	1208(1)	26(1)	
C(21)	7232(1)	11465(2)	2903(1)	27(1)	
C(22)	7286(2)	11906(2)	3325(1)	38(1)	
C(23)	7775(2)	12305(2)	3397(2)	47(1)	
C(24)	8202(2)	12273(2)	3047(2)	49(1)	
C(25)	8156(2)	11841(2)	2625(2)	46(1)	
C(26)	7673(1)	11435(2)	2555(1)	37(1)	
C(27)	6721(1)	11021(2)	2822(1)	25(1)	
Ce(2)	7714(1)	9999(1)	5930(1)	22(1)	
O(78)	8545(1)	9240(1)	6158(1)	33(1)	
O(88)	7312(1)	10848(1)	6466(1)	36(1)	
O(108)	8322(1)	10383(1)	5181(1)	37(1)	
O(118)	6866(1)	9299(1)	5872(1)	37(1)	
N(61)	7224(1)	9855(1)	4918(1)	25(1)	
N(62)	7946(1)	8915(1)	5305(1)	24(1)	

Tabelle 5.28: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter($Å^2x10^3$) von

	X	У	Z	E(eq)
N(63)	8311(1)	8450(1)	5546(1)	27(1)
N(64)	7060(1)	10966(1)	5485(1)	32(1)
N(65)	6949(1)	11524(1)	5791(1)	36(1)
N(66)	9057(1)	8274(1)	6167(1)	30(1)
N(91)	8230(1)	10234(1)	6957(1)	28(1)
N(92)	8731(1)	10742(1)	6122(1)	31(1)
N(93)	9022(1)	10899(2)	5684(1)	36(1)
N(94)	7394(1)	9338(1)	6779(1)	32(1)
N(95)	6998(1)	8816(1)	6692(1)	37(1)
N(96)	9101(1)	10819(1)	4791(1)	37(1)
C(32)	7245(1)	9994(2)	1356(1)	31(1)
C(33)	7784(2)	9909(2)	1143(2)	46(1)
C(34)	8156(2)	9448(2)	1368(2)	57(1)
C(35)	8001(2)	9095(2)	1797(2)	52(1)
C(36)	7461(1)	9205(2)	1999(1)	32(1)
C(37)	7281(1)	8815(2)	2456(1)	32(1)
C(38)	7716(2)	8367(2)	2744(2)	48(1)
C(39)	6826(1)	10476(2)	1115(1)	35(1)
C(40)	7000(2)	10928(2)	680(2)	76(2)
C(41)	4553(1)	11696(2)	1372(1)	29(1)
C(42)	4446(2)	11616(2)	1902(1)	40(1)
C(43)	3956(2)	11895(2)	2098(2)	53(1)
C(44)	3571(2)	12249(2)	1781(2)	53(1)
C(45)	3671(2)	12323(2)	1253(2)	51(1)
C(46)	4159(2)	12050(2)	1047(2)	41(1)
C(47)	5437(1)	11009(2)	1358(1)	26(1)
C(51)	5772(2)	8048(2)	3422(1)	37(1)
C(52)	6092(2)	7544(2)	3664(1)	48(1)
C(53)	5832(2)	7080(2)	3985(2)	60(1)
C(54)	5253(2)	7125(2)	4064(2)	67(1)
C(55)	4931(2)	7621(2)	3827(2)	68(1)
C(56)	5189(2)	8083(2)	3505(2)	54(1)
C(57)	6036(1)	8541(2)	3056(1)	31(1)
C(62)	7287(1)	9290(2)	4638(1)	28(1)
C(63)	7060(2)	9222(2)	4122(1)	41(1)
C(64)	6780(2)	9752(2)	3881(2)	50(1)
C(65)	6707(2)	10330(2)	4163(1)	46(1)
C(66)	6929(1)	10365(2)	4684(1)	32(1)
C(67)	6833(2)	10963(2)	5009(1)	34(1)
C(68)	6470(2)	11515(2)	4776(2)	49(1)
C(69)	7628(1)	8745(2)	4894(1)	26(1)
C(70)	7587(2)	8058(2)	4663(1)	39(1)
C(71)	9387(1)	8357(2)	6653(1)	29(1)
C(72)	9850(2)	7928(2)	6747(1)	41(1)
C(73)	10163(2)	7940(2)	7224(2)	51(1)
C(74)	10033(2)	8387(2)	7610(2)	48(1)
C(75)	9582(2)	8819(2)	7514(1)	43(1)
C(76)	9257(2)	8813(2)	7040(1)	36(1)

	x	v	Z	E(eq)	
$\overline{C(77)}$	8638(1)	8684(2)	5070(1)	25(1)	
C(77)	7017(1)	11035(2)	5970(1)	25(1) 35(1)	
C(81)	7017(1) 7238(2)	11955(2) 11853(2)	7196(2)	$\frac{33(1)}{42(1)}$	
C(82)	7230(2) 7171(2)	11033(2) 12340(2)	7170(2)	+2(1) 53(1)	
C(84)	(1/1(2))	12340(2) 12008(2)	7377(2) 7440(2)	$\frac{33(1)}{72(1)}$	
C(04)	$\frac{0075(2)}{6651(2)}$	12908(2)	7440(2)	72(1) 78(2)	
C(85)	6031(2)	12998(2) 12521(2)	0934(2)	78(2) 56(1)	
C(80)	$\frac{0723(2)}{7101(1)}$	12321(2) 11206(2)	0340(2)	30(1) 28(1)	
C(07)	7101(1)	11390(2) 10697(2)	0200(1) 7042(1)	20(1) 22(1)	
C(92)	8032(1)	10087(2) 10047(2)	7042(1) 7520(2)	52(1) 50(1)	
C(93)	8790(2)	10947(2) 10745(2)	7339(2)	50(1)	
C(94)	0400(2) 2047(2)	10743(2) 10284(2)	7900(2)	40(1)	
C(93)	$\frac{804}{(2)}$	10284(2) 10022(2)	7870(2)	49(1) 24(1)	
C(90)	7932(2)	10033(2)	7370(1) 7264(1)	34(1) 26(1)	
C(97)	7480(2)	9323(2)	7204(1)	50(1)	
C(98)	7140(2)	9201(2)	(578(1))	02(1) 22(1)	
C(99)	$\frac{8972(1)}{2}$	10884(2)	03/8(1)	53(1) 51(1)	
C(100) C(101)	9555(2)	11212(2) 10646(2)	0030(2)	51(1) 40(1)	
C(101) C(102)	8908(2) 0424(2)	10040(2) 10620(2)	4233(1)	40(1) 54(1)	
C(102)	9434(2)	10029(2)	3927(2)	54(1)	
C(103)	9337(2)	10404(2) 10215(2)	3397(2)	08(1)	
C(104) C(105)	8792(2)	10313(2) 10220(2)	3190(2)	03(1) 58(1)	
C(105)	8333(2)	10339(2) 10506(2)	3322(2)	38(1)	
C(100) C(107)	8419(2) 8782(1)	10300(2) 10670(2)	4031(2) 5208(1)	49(1) 21(1)	
C(107)	$\frac{8}{83}(1)$	100/9(2)	5208(1)	31(1) 26(1)	
C(111) C(112)	03/3(1)	8283(2)	6044(2)	50(1) 52(1)	
C(112) C(112)	5707(2)	8300(2)	5347(2)	52(1)	
C(113) C(114)	5707(2)	7801(2)	5393(2)	69(1)	
C(114) C(115)	5394(2)	7293(2)	5739(2)	08(1) 58(1)	
C(115) C(116)	5800(2)	7278(2)	6230(2)	38(1)	
C(110) C(117)	0233(2)	(1/1(2))	(0383(2))	43(1) 20(1)	
C(117)	0/80(1)	8838(2) 7506(1)	$\frac{0207(1)}{2047(1)}$	50(1)	
O(121) C(122)	8902(1)	7390(1)	2047(1) 2485(2)	04(1) 08(2)	
C(122) C(122)	9349(3)	7002(3)	2483(2) 2081(2)	98(2)	
C(123) O(121)	9112(2)	7400(3) 5420(1)	2901(2) 5741(1)	102(2)	
O(131) C(122)	0944(1)	3430(1)	5/41(1)	31(1) 40(1)	
C(132) C(122)	9303(2)	4921(2)	5090(2)	49(1) 55(1)	
C(155)	9329(2)	4378(2) 8257(1)	51/0(2) 1107(1)	53(1)	
O(141) C(142)	9208(1)	8337(1)	1197(1) 721(2)	58(1)	
C(142) C(142)	8987(2) 0057(2)	8037(2)	721(2)	09(1) 84(2)	
C(143)	9037(2)	8518(3)	2/1(2)	84(2) 51(1)	
O(151) C(152)	9930(1)	85/3(1)	4040(1)	51(1)	
C(152)	9410(2)	8933(2)	4028(2)	04(1) 78(2)	
C(153)	9012(2)	8/75(2)	4109(2)	78(2)	
O(101) C(162)	0382(2)	545U(2) 5605(2)	4//(2)	113(2)	
C(102) C(162)	3840(3) 5717(3)	2002(3) 5285(2)	4937(2)	93(2) 101(2)	
C(103) C(172)	$\frac{3}{1}(2)$	5283(3) 6700(4)	5027(2)	101(2) 142(2)	
C(173)	7003(3)	0/90(4)	3937(3) 5612(2)	142(3) 122(2)	
U(1/2)	1247(3)	0333(4)	3012(3)	132(3)	

	Х	У	Z	E(eq)	
O(171)	7194(5)	5876(6)	5425(4)	94(4)	
O(172)	7076(5)	5891(6)	5737(4)	91(4)	
C(183)	7215(2)	4131(2)	5803(2)	79(2)	
C(182)	7837(2)	4342(2)	5829(2)	77(2)	
O(181)	7893(1)	5017(1)	6000(1)	64(1)	
O(191)	67(2)	9051(2)	1724(2)	112(2)	
C(192)	-272(3)	9602(3)	1954(2)	89(2)	
C(193)	-339(4)	10092(3)	1527(3)	142(3)	
O(201)	5173(16)	9357(17)	4839(12)	440(20)	
C(202)	4743(17)	9530(30)	4627(12)	530(50)	
C(203)	4262(4)	9947(5)	4561(4)	69(3)	
O(211)	5418(6)	10008(8)	4387(5)	191(6)	
C(212)	5250(6)	9391(5)	4321(5)	85(4)	
C(213)	4584(6)	9275(6)	4406(5)	90(4)	
S	9296(1)	7027(1)	5102(1)	25(1)	
O(2)	9457(1)	7096(1)	5669(1)	41(1)	
O(3)	9193(1)	6319(1)	4973(1)	35(1)	
O(4)	8785(1)	7421(1)	4971(1)	41(1)	
O(5)	9781(1)	7252(1)	4796(1)	50(1)	

Abb. 5.14: Ellipsoiddarstellung von **[Ce(HL3^a)₂**]⁺. Die Schwingungsellipsoide repräsentieren 50% der *Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurde nur ein Ligand beschriftet.*

5.15 Bis(2,6-diacetylpyridin-benzoylhydrazonato-4-phenylsemicarbazon)europium(III)-chlorid Aceton/iso-Propanol/Wasser-Solvat [Eu(HL3^a)₂]Cl H₂O·¹/₂Acetn·2ⁱPrOH

[Eu(HL3 ^a) ₂]Cl·H ₂ O·½Acetn·2 ⁱ PrOH				
Summenformel	C50.5H55ClEuN12O6.5			
M (g/mol)	1121.47			
Temperatur	173(2) K			
Wellenlänge	0.71073 Å			
Kristallsystem, Raumgruppe	Monoklin, P2 ₁ /c			
Elementarzelle	a = 11.446(3) Å	$\alpha = 90^{\circ}$		
	b = 31.751(7) Å	β=102.778(6)°		
	c = 15.632(4) Å	$\gamma = 90^{\circ}$		
Volumen	5541(2) Å ³			
Berechnete Dichte	1.344 g/cm^3			
Linearer Absorptionskoeffizient	1.237 mm^{-1}			
F(000)	2296			
Kristallgröße	0.68 x 0.08 x 0.01 mm ³			
Theta-Bereich	$1.85 - 26.00^{\circ}$			
Indizes	-14≤h≤14, -35≤k≤39, -18	3≤1≤19		
Zahl der gemessenen Reflexe	48520			
Zahl der unabhängigen Reflexe	10795 [R(int) = 0.1312]			
Absorptionskorrektur	semiempirisch (SADABS	S)		
Zahl der verfeinerten Parameter	650			
Goof	0.989			
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0591, wR2 = 0.1156$			
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.1127, wR_2 = 0.1348$			
Restelektronendichte	$1.555 \text{ und } -1.868 \text{ e.Å}^{-3}$			
Diffraktometer	CCD4, Bruker Smart			
Programm der Strukturlösung	SIR 92 ^[98]			

Tabelle 5.29: Kristallographische Daten und Parameter der Strukturrechnung von

[Eu(HL3 ^a) ₂]Cl·H ₂ O· ¹ / ₂ Acetn·2 ⁱ PrOH					
	Х	У	Z	E(eq)	
Eu	8773(1)	1576(1)	546(1)	17(1)	
O(48)	8026(4)	1369(2)	-1037(3)	26(1)	
O(18)	10270(4)	1039(1)	445(3)	26(1)	
N(31)	8866(4)	920(2)	1657(3)	21(1)	
O(28)	7521(3)	1606(2)	1559(3)	23(1)	
O(58)	9575(4)	2235(1)	1110(3)	27(1)	
N(4)	6725(4)	1936(2)	93(3)	21(1)	
N(2)	10490(4)	1765(2)	-249(3)	22(1)	
N(32)	7356(4)	926(2)	147(3)	21(1)	
C(5)	7240(7)	2730(2)	-1453(5)	38(2)	
N(33)	6598(4)	964(2)	-658(3)	26(1)	
C(43)	6168(9)	1379(4)	-4358(6)	71(3)	
C(4)	8195(7)	2873(3)	-1759(5)	46(2)	
N(1)	8468(4)	2200(2)	-620(3)	22(1)	
C(42)	5941(7)	1233(3)	-3595(5)	49(2)	
C(33)	8862(6)	293(3)	2901(5)	42(2)	
N(34)	10309(4)	1586(2)	2010(3)	23(1)	
N(5)	5844(4)	1808(2)	530(4)	26(1)	
C(40)	6260(6)	290(2)	392(5)	40(2)	
C(12)	13405(8)	397(3)	1518(6)	54(2)	
C(32)	8065(6)	282(2)	2114(5)	33(2)	
C(10)	11663(6)	2260(3)	-902(5)	44(2)	
C(22)	6155(6)	1211(2)	2556(4)	31(2)	
C(44)	6982(9)	1701(4)	-4353(6)	67(3)	
C(35)	9645(5)	935(2)	2460(4)	23(2)	
N(36)	6264(5)	1238(2)	-2037(3)	29(1)	
C(45)	7558(8)	1875(3)	-3586(6)	57(2)	
C(9)	10562(6)	2110(2)	-661(4)	24(2)	
C(23)	5505(6)	1075(3)	3152(5)	39(2)	
N(35)	11084(4)	1929(2)	2146(3)	23(1)	
N(6)	12234(5)	876(2)	494(4)	35(2)	
C(31)	8079(5)	600(2)	1499(4)	21(1)	
C(38)	7217(6)	617(2)	646(4)	24(2)	
C(15)	11503(12)	-130(3)	1433(9)	89(4)	
C(14)	12572(14)	-230(4)	1986(8)	83(4)	

Tabelle 5.30: Atomkoordinaten $(x10^4)$ und isotrope Temperaturparameter $(Å^2x10^3)$ von

C(21) $5646(5)$ $1487(2)$ $1901(4)$ $26(2)$ C(24) $4356(7)$ $1205(3)$ $3094(5)$ $50(2)$ C(26) $4461(5)$ $1624(3)$ $1832(5)$ $34(2)$ C(47) $7019(5)$ $1202(2)$ $-1245(4)$ $23(2)$ N(3) $11478(5)$ $1513(2)$ $-11(4)$ $29(1)$ C(27) $6384(5)$ $1648(2)$ $1284(4)$ $22(2)$ C(2) $9405(6)$ $2340(2)$ $-935(4)$ $28(2)$ C(51) $11417(6)$ $2607(2)$ $1534(4)$ $29(2)$ C(36) $10446(5)$ $1309(2)$ $2632(4)$ $22(2)$ C(17) $11267(5)$ $1138(2)$ $312(4)$ $26(2)$ C(7) $6431(5)$ $2232(2)$ $-479(4)$ $28(2)$ C(16) $11356(8)$ $231(3)$ $926(7)$ $61(3)$ C(6) $7412(5)$ $2392(2)$ $-876(4)$ $25(2)$ C(41) $6534(6)$ $1404(2)$ $-2802(5)$ $31(2)$ C(34) $9646(6)$ $627(2)$ $3089(5)$ $34(2)$ C(35) $5212(6)$ $2428(3)$ $-703(5)$ $43(2)$ C(36) $5212(6)$ $2428(3)$ $-703(5)$ $39(2)$ C(31) $1299(6)$ $1348(3)$ $3499(4)$ $39(2)$ C(33) $9289(7)$ $2681(2)$ $-1504(5)$ $37(2)$ C(46) $7331(6)$ $1730(3)$ $-2807(5)$ $39(2)$ C(13) $13500(12)$ $31(4)$ $2016(7)$ $83(4)$ C(11) $12309(7)$ $498(3)$ $968(5)$ $41(2)$ </th <th></th> <th>х</th> <th>у</th> <th>Z</th> <th>E(eq)</th> <th></th>		х	у	Z	E(eq)	
C(24) 4356(7) 1205(3) 3094(5) 50(2) C(26) 4461(5) 1624(3) 1832(5) 34(2) C(47) 7019(5) 1202(2) -1245(4) 23(2) N(3) 11478(5) 1513(2) -11(4) 29(1) C(27) 6384(5) 1648(2) 1284(4) 22(2) C(31) 11417(6) 2607(2) 1534(4) 29(2) C(17) 11267(5) 1138(2) 312(4) 26(2) C(7) 6431(5) 2232(2) -479(4) 28(2) C(16) 11356(8) 231(3) 926(7) 61(3) C(34) 9646(6) 627(2) 3089(5) 34(2) C(34) 9646(6) 627(2) 3089(5) 34(2) C(37) 11299(6) 1348(3) 3499(4) 39(2) C(33) 9289(7) 2681(2) -1504(5) 37(2) C(57) 10632(5) 2237(2) 1594(4) 23(2) C(46) 7331(6) 1730(3) -2807(5) 39(2) C(13) 13500(12) 31(4) <	C(21)	5646(5)	1487(2)	1901(4)	26(2)	
C(26) 4461(5) 1624(3) 1832(5) 34(2) C(47) 7019(5) 1202(2) -1245(4) 23(2) N(3) 11478(5) 1513(2) -11(4) 29(1) C(27) 6384(5) 1648(2) 1284(4) 22(2) C(2) 9405(6) 2340(2) -935(4) 28(2) C(36) 10446(5) 1309(2) 2632(4) 22(2) C(17) 11267(5) 1138(2) 312(4) 26(2) C(16) 11356(8) 231(3) 926(7) 61(3) C(6) 7412(5) 2392(2) -876(4) 25(2) C(41) 6534(6) 1404(2) -2802(5) 31(2) C(34) 9646(6 627(2) 3089(5) 34(2) C(37) 11299(6) 1348(3) 2449(5) 41(2) C(37) 116392(5) 2237(2) 1594(4) 23(2) C(31) 9289(7) 2681(2) -1504(5) 37(2) C(46) 7331(6) 1730(3) -2807(5) 39(2) C(13) 13500(12) 31(4)	C(24)	4356(7)	1205(3)	3094(5)	50(2)	
C(47) 7019(5) 1202(2) -1245(4) 23(2) N(3) 11478(5) 1513(2) -11(4) 29(1) C(27) 6384(5) 1648(2) 1284(4) 22(2) C(2) 9405(6) 2340(2) -935(4) 28(2) C(36) 11447(6) 2607(2) 1534(4) 29(2) C(17) 11267(5) 1138(2) 312(4) 26(2) C(16) 1135(8) 2232(2) -479(4) 28(2) C(16) 1135(8) 231(3) 926(7) 61(3) C(6) 7412(5) 2392(2) -876(4) 25(2) C(41) 6534(6) 1404(2) -2802(5) 31(2) C(3) 9249(7) 2681(2) -1504(5) 37(2) C(3) 9289(7) 2681(2) -1504(5) 37(2) C(57) 10632(5) 2237(2) 1594(4) 23(2) C(13) 13500(12) 31(4) 2016(7) 83(4) C(11) 12309(7) 498(3) 968(5) 41(2) C(46) 7331(6) 1730(3)	C(26)	4461(5)	1624(3)	1832(5)	34(2)	
N(3)11478(5)1513(2) $-11(4)$ 29(1) $C(27)$ $6384(5)$ $1648(2)$ $1284(4)$ $22(2)$ $C(2)$ $9405(6)$ $2340(2)$ $-935(4)$ $28(2)$ $C(51)$ $11417(6)$ $2607(2)$ $1534(4)$ $29(2)$ $C(36)$ $10446(5)$ $1309(2)$ $2632(4)$ $22(2)$ $C(17)$ $11267(5)$ $1138(2)$ $312(4)$ $26(2)$ $C(7)$ $6431(5)$ $2232(2)$ $-479(4)$ $28(2)$ $C(16)$ $11356(8)$ $231(3)$ $926(7)$ $61(3)$ $C(6)$ $7412(5)$ $2392(2)$ $-876(4)$ $25(2)$ $C(41)$ $6534(6)$ $1404(2)$ $-2802(5)$ $31(2)$ $C(3)$ $9646(6)$ $627(2)$ $3089(5)$ $34(2)$ $C(3)$ $9249(7)$ $2681(2)$ $-1504(5)$ $37(2)$ $C(3)$ $9289(7)$ $2681(2)$ $-1504(5)$ $37(2)$ $C(57)$ $10632(5)$ $2237(2)$ $1594(4)$ $23(2)$ $C(57)$ $10632(5)$ $2237(2)$ $1594(4)$ $23(2)$ $C(54)$ $7331(6)$ $1730(3)$ $-2807(5)$ $39(2)$ $C(13)$ $13500(12)$ $31(4)$ $2016(7)$ $83(4)$ $C(11)$ $1239(7)$ $498(3)$ $968(5)$ $41(2)$ $C(11)$ $1239(7)$ $498(3)$ $5103(6)$ $34(2)$ $C(62)$ $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ $C(63)$ $-532(8)$ $4149(4)$ $1404(8)$ $89(4)$ $C(71)$ $12787(11)$ $135(5)$ <	C(47)	7019(5)	1202(2)	-1245(4)	23(2)	
C(27) $6384(5)$ $1648(2)$ $1284(4)$ $22(2)$ $C(2)$ $9405(6)$ $2340(2)$ $-935(4)$ $28(2)$ $C(51)$ $11417(6)$ $2607(2)$ $1534(4)$ $29(2)$ $C(36)$ $10446(5)$ $1309(2)$ $2632(4)$ $22(2)$ $C(17)$ $11267(5)$ $1138(2)$ $312(4)$ $26(2)$ $C(7)$ $6431(5)$ $2232(2)$ $-479(4)$ $28(2)$ $C(16)$ $11356(8)$ $231(3)$ $926(7)$ $61(3)$ $C(6)$ $7412(5)$ $2392(2)$ $-876(4)$ $25(2)$ $C(41)$ $6534(6)$ $1404(2)$ $-2802(5)$ $31(2)$ $C(34)$ $9646(6)$ $627(2)$ $3089(5)$ $34(2)$ $C(3)$ $5212(6)$ $2428(3)$ $-703(5)$ $43(2)$ $C(3)$ $9289(7)$ $2681(2)$ $-1504(5)$ $37(2)$ $C(57)$ $10632(5)$ $2237(2)$ $1594(4)$ $23(2)$ $C(57)$ $10632(5)$ $2237(2)$ $1594(4)$ $23(2)$ $C(57)$ $10632(5)$ $2237(2)$ $1594(4)$ $23(2)$ $C(46)$ $7331(6)$ $1730(3)$ $-2807(5)$ $39(2)$ $C(11)$ $12309(7)$ $498(3)$ $968(5)$ $41(2)$ $C(41)$ $1552(5)$ $4256(2)$ $1802(4)$ $44(2)$ $O(74)$ $11552(5)$ $4256(2)$ $1802(4)$ $44(2)$ $O(74)$ $1157(11)$ $135(5)$ $4215(9)$ $31(3)$ $C(62)$ $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ $C(71)$ $12787(11)$ <t< td=""><td>N(3)</td><td>11478(5)</td><td>1513(2)</td><td>-11(4)</td><td>29(1)</td><td></td></t<>	N(3)	11478(5)	1513(2)	-11(4)	29(1)	
C(2)9405(6)2340(2)-935(4)28(2) $C(51)$ 11417(6)2607(2)1534(4)29(2) $C(36)$ 10446(5)1309(2)2632(4)22(2) $C(17)$ 11267(5)1138(2)312(4)26(2) $C(7)$ 6431(5)2232(2)-479(4)28(2) $C(16)$ 11356(8)231(3)926(7)61(3) $C(6)$ 7412(5)2392(2)-876(4)25(2) $C(11)$ 6534(6)1404(2)-2802(5)31(2) $C(34)$ 9646(6)627(2)3089(5)34(2) $C(3)$ 9289(7)2681(2)-1504(5)37(2) $C(3)$ 9289(7)2681(2)-1504(5)37(2) $C(57)$ 10632(5)2237(2)1594(4)23(2) $C(46)$ 7331(6)1730(3)-2807(5)39(2) $C(13)$ 13500(12)31(4)2016(7)83(4) $C(11)$ 12309(7)498(3)968(5)41(2) $C(46)$ 7331(6)1730(3)-2807(5)39(2) $C(13)$ 13500(12)31(4)2016(7)83(4) $C(11)$ 12309(7)498(3)968(5)41(2) $C(62)$ 516(9)4173(4)2135(7)76(3) $C(63)$ -532(8)4149(4)1404(8)89(4) $C(71)$ 12787(11)135(5)4215(9)31(3) $C(72)$ 12614(12)234(5)5143(10)40(1) $C(52)$ 10980(7)2941(2)989(5)40(2) $C(73)$ 13600(12) </td <td>C(27)</td> <td>6384(5)</td> <td>1648(2)</td> <td>1284(4)</td> <td>22(2)</td> <td></td>	C(27)	6384(5)	1648(2)	1284(4)	22(2)	
C(51) $11417(6)$ $2607(2)$ $1534(4)$ $29(2)$ $C(36)$ $10446(5)$ $1309(2)$ $2632(4)$ $22(2)$ $C(17)$ $11267(5)$ $1138(2)$ $312(4)$ $26(2)$ $C(7)$ $6431(5)$ $2232(2)$ $-479(4)$ $28(2)$ $C(16)$ $11356(8)$ $231(3)$ $926(7)$ $61(3)$ $C(6)$ $7412(5)$ $2392(2)$ $-876(4)$ $25(2)$ $C(41)$ $6534(6)$ $1404(2)$ $-2802(5)$ $31(2)$ $C(34)$ $9646(6)$ $627(2)$ $3089(5)$ $44(2)$ $C(8)$ $5212(6)$ $2428(3)$ $-703(5)$ $43(2)$ $C(37)$ $11299(6)$ $1348(3)$ $3499(4)$ $39(2)$ $C(3)$ $9289(7)$ $2681(2)$ $-1504(5)$ $37(2)$ $C(57)$ $10632(5)$ $2237(2)$ $1594(4)$ $23(2)$ $C(46)$ $7331(6)$ $1730(3)$ $-2807(5)$ $39(2)$ $C(13)$ $13500(12)$ $31(4)$ $2016(7)$ $83(4)$ $C(11)$ $12309(7)$ $498(3)$ $968(5)$ $41(2)$ $C(46)$ $7331(6)$ $1730(3)$ $-2807(5)$ $39(2)$ $C(11)$ $12309(7)$ $498(3)$ $968(5)$ $41(2)$ $C(62)$ $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ $C(63)$ $-532(8)$ $4149(4)$ $1404(8)$ $89(4)$ $C(71)$ $12787(11)$ $135(5)$ $4215(9)$ $31(3)$ $C(72)$ $12614(12)$ $234(5)$ $5143(10)$ $40(4)$ $C(61)$ $662(9)$ <td< td=""><td>C(2)</td><td>9405(6)</td><td>2340(2)</td><td>-935(4)</td><td>28(2)</td><td></td></td<>	C(2)	9405(6)	2340(2)	-935(4)	28(2)	
C(36) $10446(5)$ $1309(2)$ $2632(4)$ $22(2)$ $C(17)$ $11267(5)$ $1138(2)$ $312(4)$ $26(2)$ $C(7)$ $6431(5)$ $2232(2)$ $-479(4)$ $28(2)$ $C(16)$ $11356(8)$ $231(3)$ $926(7)$ $61(3)$ $C(6)$ $7412(5)$ $2392(2)$ $-876(4)$ $25(2)$ $C(41)$ $6534(6)$ $1404(2)$ $-2802(5)$ $31(2)$ $C(34)$ $9646(6)$ $627(2)$ $3089(5)$ $34(2)$ $C(8)$ $5212(6)$ $2428(3)$ $-703(5)$ $43(2)$ $C(3)$ $9289(7)$ $2681(2)$ $-1504(5)$ $37(2)$ $C(3)$ $9289(7)$ $2681(2)$ $-1504(5)$ $37(2)$ $C(57)$ $10632(5)$ $2237(2)$ $1594(4)$ $23(2)$ $C(46)$ $7331(6)$ $1730(3)$ $-2807(5)$ $39(2)$ $C(13)$ $13500(12)$ $31(4)$ $2016(7)$ $83(4)$ $C(11)$ $12309(7)$ $498(3)$ $968(5)$ $41(2)$ $C(1)$ $3993(2)$ $701(1)$ $-1744(1)$ $39(1)$ $O(64)$ $1552(5)$ $4256(2)$ $1802(4)$ $44(2)$ $O(74)$ $11767(8)$ $545(3)$ $5103(6)$ $34(2)$ $C(62)$ $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ $C(63)$ $-532(8)$ $4149(4)$ $1404(8)$ $89(4)$ $C(71)$ $12787(11)$ $135(5)$ $4215(9)$ $31(3)$ $C(72)$ $12614(12)$ $234(5)$ $5143(10)$ $40(4)$ $C(61)$ $662(9)$ 3	C(51)	11417(6)	2607(2)	1534(4)	29(2)	
C(17)11267(5)1138(2)312(4)26(2)C(7)6431(5)2232(2)-479(4)28(2)C(16)11356(8)231(3)926(7)61(3)C(6)7412(5)2392(2)-876(4)25(2)C(41)6534(6)1404(2)-2802(5)31(2)C(34)9646(6)627(2)3089(5)34(2)C(8)5212(6)2428(3)-703(5)43(2)C(37)11299(6)1348(3)3499(4)39(2)C(3)9289(7)2681(2)-1504(5)37(2)C(57)10632(5)2237(2)1594(4)23(2)C(54)7331(6)1730(3)-2807(5)39(2)C(13)13500(12)31(4)2016(7)83(4)C(11)12309(7)498(3)968(5)41(2)C13993(2)701(1)-1744(1)39(1)O(64)1552(5)4256(2)1802(4)44(2)O(74)11767(8)545(3)5103(6)34(2)C(62)516(9)4173(4)2135(7)76(3)C(63)-532(8)4149(4)1404(8)89(4)C(71)12787(11)135(5)4215(9)31(3)C(72)12614(12)234(5)5143(10)40(4)C(61)662(9)3851(5)2779(8)118(6)C(73)13600(12)180(5)5827(10)42(4)O(81)3745(4)1404(2)-333(3)40(1)C(52)10980(7)2941(2)989(5)40(2) <td>C(36)</td> <td>10446(5)</td> <td>1309(2)</td> <td>2632(4)</td> <td>22(2)</td> <td></td>	C(36)	10446(5)	1309(2)	2632(4)	22(2)	
C(7) $6431(5)$ $2232(2)$ $-479(4)$ $28(2)$ $C(16)$ $11356(8)$ $231(3)$ $926(7)$ $61(3)$ $C(6)$ $7412(5)$ $2392(2)$ $-876(4)$ $25(2)$ $C(41)$ $6534(6)$ $1404(2)$ $-2802(5)$ $31(2)$ $C(34)$ $9646(6)$ $627(2)$ $3089(5)$ $34(2)$ $C(3)$ $9249(7)$ $2428(3)$ $-703(5)$ $43(2)$ $C(3)$ $9289(7)$ $2681(2)$ $-1504(5)$ $37(2)$ $C(57)$ $10632(5)$ $2237(2)$ $1594(4)$ $23(2)$ $C(46)$ $7331(6)$ $1730(3)$ $-2807(5)$ $39(2)$ $C(13)$ $13500(12)$ $31(4)$ $2016(7)$ $83(4)$ $C(11)$ $12309(7)$ $498(3)$ $968(5)$ $41(2)$ $C(11)$ $12309(7)$ $498(3)$ $968(5)$ $41(2)$ $C(62)$ $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ $C(62)$ $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ $C(71)$ $12787(11)$ $135(5)$ $4215(9)$ $31(3)$ $C(72)$ $12614(12)$ $234(5)$ $5143(10)$ $40(4)$ $C(61)$ $662(9)$ $3851(5)$ $2779(8)$ $118(6)$ $C(73)$ $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ $O(81)$ $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ $C(52)$ $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ $C(54)$ $12924(9)$ $3266(3)$ $1316(7)$ $72(3)$	C(17)	11267(5)	1138(2)	312(4)	26(2)	
C(16) $11356(8)$ $231(3)$ $926(7)$ $61(3)$ $C(6)$ $7412(5)$ $2392(2)$ $-876(4)$ $25(2)$ $C(41)$ $6534(6)$ $1404(2)$ $-2802(5)$ $31(2)$ $C(34)$ $9646(6)$ $627(2)$ $3089(5)$ $34(2)$ $C(8)$ $5212(6)$ $2428(3)$ $-703(5)$ $43(2)$ $C(3)$ $9289(7)$ $2681(2)$ $-1504(5)$ $37(2)$ $C(3)$ $9289(7)$ $2681(2)$ $-1504(5)$ $37(2)$ $C(57)$ $10632(5)$ $2237(2)$ $1594(4)$ $23(2)$ $C(25)$ $3845(6)$ $1488(3)$ $2449(5)$ $41(2)$ $C(46)$ $7331(6)$ $1730(3)$ $-2807(5)$ $39(2)$ $C(13)$ $13500(12)$ $31(4)$ $2016(7)$ $83(4)$ $C(11)$ $12309(7)$ $498(3)$ $968(5)$ $41(2)$ $C(1)$ $3993(2)$ $701(1)$ $-1744(1)$ $39(1)$ $O(64)$ $1552(5)$ $4256(2)$ $1802(4)$ $44(2)$ $O(74)$ $11767(8)$ $545(3)$ $5103(6)$ $34(2)$ $C(62)$ $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ $C(63)$ $-532(8)$ $4149(4)$ $1404(8)$ $89(4)$ $C(71)$ $12787(11)$ $135(5)$ $4215(9)$ $31(3)$ $C(73)$ $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ $O(81)$ $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ $C(52)$ $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ $C(54)$ $12924(9)$	C(7)	6431(5)	2232(2)	-479(4)	28(2)	
C(6) $7412(5)$ $2392(2)$ $-876(4)$ $25(2)$ $C(41)$ $6534(6)$ $1404(2)$ $-2802(5)$ $31(2)$ $C(34)$ $9646(6)$ $627(2)$ $3089(5)$ $34(2)$ $C(8)$ $5212(6)$ $2428(3)$ $-703(5)$ $43(2)$ $C(37)$ $11299(6)$ $1348(3)$ $3499(4)$ $39(2)$ $C(3)$ $9289(7)$ $2681(2)$ $-1504(5)$ $37(2)$ $C(57)$ $10632(5)$ $2237(2)$ $1594(4)$ $23(2)$ $C(25)$ $3845(6)$ $1488(3)$ $2449(5)$ $41(2)$ $C(46)$ $7331(6)$ $1730(3)$ $-2807(5)$ $39(2)$ $C(13)$ $13500(12)$ $31(4)$ $2016(7)$ $83(4)$ $C(11)$ $12309(7)$ $498(3)$ $968(5)$ $41(2)$ $C1$ $3993(2)$ $701(1)$ $-1744(1)$ $39(1)$ $O(64)$ $1552(5)$ $4256(2)$ $1802(4)$ $44(2)$ $O(74)$ $11767(8)$ $545(3)$ $5103(6)$ $34(2)$ $C(62)$ $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ $C(63)$ $-532(8)$ $4149(4)$ $1404(8)$ $89(4)$ $C(71)$ $12787(11)$ $135(5)$ $4215(9)$ $31(3)$ $C(73)$ $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ $O(81)$ $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ $C(52)$ $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ $C(56)$ $12624(6)$ $2606(3)$ $1985(5)$ $45(2)$ $C(54)$ $12924(9)$ <td< td=""><td>C(16)</td><td>11356(8)</td><td>231(3)</td><td>926(7)</td><td>61(3)</td><td></td></td<>	C(16)	11356(8)	231(3)	926(7)	61(3)	
C(41) $6534(6)$ $1404(2)$ $-2802(5)$ $31(2)$ $C(34)$ $9646(6)$ $627(2)$ $3089(5)$ $34(2)$ $C(8)$ $5212(6)$ $2428(3)$ $-703(5)$ $43(2)$ $C(37)$ $11299(6)$ $1348(3)$ $3499(4)$ $39(2)$ $C(3)$ $9289(7)$ $2681(2)$ $-1504(5)$ $37(2)$ $C(57)$ $10632(5)$ $2237(2)$ $1594(4)$ $23(2)$ $C(25)$ $3845(6)$ $1488(3)$ $2449(5)$ $41(2)$ $C(46)$ $7331(6)$ $1730(3)$ $-2807(5)$ $39(2)$ $C(13)$ $13500(12)$ $31(4)$ $2016(7)$ $83(4)$ $C(11)$ $12309(7)$ $498(3)$ $968(5)$ $41(2)$ $C1$ $3993(2)$ $701(1)$ $-1744(1)$ $39(1)$ $O(64)$ $1552(5)$ $4256(2)$ $1802(4)$ $44(2)$ $O(74)$ $11767(8)$ $545(3)$ $5103(6)$ $34(2)$ $C(62)$ $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ $C(63)$ $-532(8)$ $4149(4)$ $1404(8)$ $89(4)$ $C(71)$ $12787(11)$ $135(5)$ $4215(9)$ $31(3)$ $C(72)$ $12614(12)$ $234(5)$ $5143(10)$ $40(4)$ $C(73)$ $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ $O(81)$ $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ $C(52)$ $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ $C(56)$ $12624(6)$ $2606(3)$ $1985(5)$ $53(2)$ $C(54)$ $11741(8)$	C(6)	7412(5)	2392(2)	-876(4)	25(2)	
C(34)9646(6)627(2)3089(5)34(2)C(8)5212(6)2428(3)-703(5)43(2)C(37)11299(6)1348(3)3499(4)39(2)C(3)9289(7)2681(2)-1504(5)37(2)C(57)10632(5)2237(2)1594(4)23(2)C(25)3845(6)1488(3)2449(5)41(2)C(46)7331(6)1730(3)-2807(5)39(2)C(13)13500(12)31(4)2016(7)83(4)C(11)12309(7)498(3)968(5)41(2)C13993(2)701(1)-1744(1)39(1)O(64)1552(5)4256(2)1802(4)44(2)O(74)11767(8)545(3)5103(6)34(2)C(62)516(9)4173(4)2135(7)76(3)C(63)-532(8)4149(4)1404(8)89(4)C(71)12787(11)135(5)4215(9)31(3)C(72)12614(12)234(5)5143(10)40(4)C(61)662(9)3851(5)2779(8)118(6)C(73)13600(12)180(5)5827(10)42(4)O(81)3745(4)1404(2)-333(3)40(1)C(52)10980(7)2941(2)989(5)40(2)C(56)12624(6)2606(3)1985(5)53(2)C(53)11741(8)3265(3)885(5)53(2)C(54)12924(9)3266(3)1316(7)72(3)	C(41)	6534(6)	1404(2)	-2802(5)	31(2)	
C(8) $5212(6)$ $2428(3)$ $-703(5)$ $43(2)$ $C(37)$ $11299(6)$ $1348(3)$ $3499(4)$ $39(2)$ $C(3)$ $9289(7)$ $2681(2)$ $-1504(5)$ $37(2)$ $C(57)$ $10632(5)$ $2237(2)$ $1594(4)$ $23(2)$ $C(25)$ $3845(6)$ $1488(3)$ $2449(5)$ $41(2)$ $C(46)$ $7331(6)$ $1730(3)$ $-2807(5)$ $39(2)$ $C(13)$ $13500(12)$ $31(4)$ $2016(7)$ $83(4)$ $C(11)$ $12309(7)$ $498(3)$ $968(5)$ $41(2)$ $C1$ $3993(2)$ $701(1)$ $-1744(1)$ $39(1)$ $O(64)$ $1552(5)$ $4256(2)$ $1802(4)$ $44(2)$ $O(74)$ $11767(8)$ $545(3)$ $5103(6)$ $34(2)$ $C(62)$ $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ $C(63)$ $-532(8)$ $4149(4)$ $1404(8)$ $89(4)$ $C(71)$ $12787(11)$ $135(5)$ $4215(9)$ $31(3)$ $C(72)$ $12614(12)$ $234(5)$ $5143(10)$ $40(4)$ $C(61)$ $662(9)$ $3851(5)$ $2779(8)$ $118(6)$ $C(73)$ $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ $O(81)$ $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ $C(52)$ $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ $C(56)$ $12624(6)$ $2606(3)$ $1985(5)$ $45(2)$ $C(53)$ $11741(8)$ $3265(3)$ $885(5)$ $53(2)$ $C(54)$ $12924(9)$	C(34)	9646(6)	627(2)	3089(5)	34(2)	
C(37) $11299(6)$ $1348(3)$ $3499(4)$ $39(2)$ $C(3)$ $9289(7)$ $2681(2)$ $-1504(5)$ $37(2)$ $C(57)$ $10632(5)$ $2237(2)$ $1594(4)$ $23(2)$ $C(25)$ $3845(6)$ $1488(3)$ $2449(5)$ $41(2)$ $C(46)$ $7331(6)$ $1730(3)$ $-2807(5)$ $39(2)$ $C(13)$ $13500(12)$ $31(4)$ $2016(7)$ $83(4)$ $C(11)$ $12309(7)$ $498(3)$ $968(5)$ $41(2)$ $C1$ $3993(2)$ $701(1)$ $-1744(1)$ $39(1)$ $O(64)$ $1552(5)$ $4256(2)$ $1802(4)$ $44(2)$ $O(74)$ $11767(8)$ $545(3)$ $5103(6)$ $34(2)$ $C(62)$ $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ $C(63)$ $-532(8)$ $4149(4)$ $1404(8)$ $89(4)$ $C(71)$ $12787(11)$ $135(5)$ $4215(9)$ $31(3)$ $C(72)$ $12614(12)$ $234(5)$ $5143(10)$ $40(4)$ $C(61)$ $662(9)$ $3851(5)$ $2779(8)$ $118(6)$ $C(73)$ $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ $O(81)$ $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ $C(52)$ $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ $C(56)$ $12624(6)$ $2606(3)$ $1985(5)$ $45(2)$ $C(53)$ $11741(8)$ $3265(3)$ $885(5)$ $53(2)$ $C(54)$ $12924(9)$ $3266(3)$ $1316(7)$ $72(3)$	C(8)	5212(6)	2428(3)	-703(5)	43(2)	
C(3) $9289(7)$ $2681(2)$ $-1504(5)$ $37(2)$ $C(57)$ $10632(5)$ $2237(2)$ $1594(4)$ $23(2)$ $C(25)$ $3845(6)$ $1488(3)$ $2449(5)$ $41(2)$ $C(46)$ $7331(6)$ $1730(3)$ $-2807(5)$ $39(2)$ $C(13)$ $13500(12)$ $31(4)$ $2016(7)$ $83(4)$ $C(11)$ $12309(7)$ $498(3)$ $968(5)$ $41(2)$ $C1$ $3993(2)$ $701(1)$ $-1744(1)$ $39(1)$ $O(64)$ $1552(5)$ $4256(2)$ $1802(4)$ $44(2)$ $O(74)$ $11767(8)$ $545(3)$ $5103(6)$ $34(2)$ $C(62)$ $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ $C(63)$ $-532(8)$ $4149(4)$ $1404(8)$ $89(4)$ $C(71)$ $12787(11)$ $135(5)$ $4215(9)$ $31(3)$ $C(72)$ $12614(12)$ $234(5)$ $5143(10)$ $40(4)$ $C(61)$ $662(9)$ $3851(5)$ $2779(8)$ $118(6)$ $C(73)$ $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ $O(81)$ $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ $C(52)$ $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ $C(56)$ $12624(6)$ $2606(3)$ $1985(5)$ $45(2)$ $C(54)$ $12924(9)$ $3266(3)$ $1316(7)$ $72(3)$	C(37)	11299(6)	1348(3)	3499(4)	39(2)	
C(57) $10632(5)$ $2237(2)$ $1594(4)$ $23(2)$ $C(25)$ $3845(6)$ $1488(3)$ $2449(5)$ $41(2)$ $C(46)$ $7331(6)$ $1730(3)$ $-2807(5)$ $39(2)$ $C(13)$ $13500(12)$ $31(4)$ $2016(7)$ $83(4)$ $C(11)$ $12309(7)$ $498(3)$ $968(5)$ $41(2)$ $C1$ $3993(2)$ $701(1)$ $-1744(1)$ $39(1)$ $O(64)$ $1552(5)$ $4256(2)$ $1802(4)$ $44(2)$ $O(74)$ $11767(8)$ $545(3)$ $5103(6)$ $34(2)$ $C(62)$ $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ $C(63)$ $-532(8)$ $4149(4)$ $1404(8)$ $89(4)$ $C(71)$ $12787(11)$ $135(5)$ $4215(9)$ $31(3)$ $C(72)$ $12614(12)$ $234(5)$ $5143(10)$ $40(4)$ $C(61)$ $662(9)$ $3851(5)$ $2779(8)$ $118(6)$ $C(73)$ $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ $O(81)$ $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ $C(52)$ $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ $C(56)$ $12624(6)$ $2606(3)$ $1985(5)$ $45(2)$ $C(53)$ $11741(8)$ $3265(3)$ $885(5)$ $53(2)$ $C(54)$ $12924(9)$ $3266(3)$ $1316(7)$ $72(3)$	C(3)	9289(7)	2681(2)	-1504(5)	37(2)	
C(25) $3845(6)$ $1488(3)$ $2449(5)$ $41(2)$ $C(46)$ $7331(6)$ $1730(3)$ $-2807(5)$ $39(2)$ $C(13)$ $13500(12)$ $31(4)$ $2016(7)$ $83(4)$ $C(11)$ $12309(7)$ $498(3)$ $968(5)$ $41(2)$ $C1$ $3993(2)$ $701(1)$ $-1744(1)$ $39(1)$ $O(64)$ $1552(5)$ $4256(2)$ $1802(4)$ $44(2)$ $O(74)$ $11767(8)$ $545(3)$ $5103(6)$ $34(2)$ $C(62)$ $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ $C(63)$ $-532(8)$ $4149(4)$ $1404(8)$ $89(4)$ $C(71)$ $12787(11)$ $135(5)$ $4215(9)$ $31(3)$ $C(72)$ $12614(12)$ $234(5)$ $5143(10)$ $40(4)$ $C(61)$ $662(9)$ $3851(5)$ $2779(8)$ $118(6)$ $C(73)$ $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ $O(81)$ $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ $C(52)$ $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ $C(56)$ $12624(6)$ $2606(3)$ $1985(5)$ $45(2)$ $C(53)$ $11741(8)$ $3265(3)$ $885(5)$ $53(2)$ $C(54)$ $12924(9)$ $3266(3)$ $1316(7)$ $72(3)$	C(57)	10632(5)	2237(2)	1594(4)	23(2)	
C(46)7331(6)1730(3) $-2807(5)$ 39(2) $C(13)$ 13500(12)31(4)2016(7)83(4) $C(11)$ 12309(7)498(3)968(5)41(2) $C1$ 3993(2)701(1) $-1744(1)$ 39(1) $O(64)$ 1552(5)4256(2)1802(4)44(2) $O(74)$ 11767(8)545(3)5103(6)34(2) $C(62)$ 516(9)4173(4)2135(7)76(3) $C(63)$ $-532(8)$ 4149(4)1404(8)89(4) $C(71)$ 12787(11)135(5)4215(9)31(3) $C(72)$ 12614(12)234(5)5143(10)40(4) $C(61)$ 662(9)3851(5)2779(8)118(6) $C(73)$ 13600(12)180(5)5827(10)42(4) $O(81)$ 3745(4)1404(2) $-333(3)$ 40(1) $C(52)$ 10980(7)2941(2)989(5)40(2) $C(56)$ 12624(6)2606(3)1985(5)45(2) $C(53)$ 11741(8)3265(3)885(5)53(2) $C(54)$ 12924(9)3266(3)1316(7)72(3)	C(25)	3845(6)	1488(3)	2449(5)	41(2)	
C(13) $13500(12)$ $31(4)$ $2016(7)$ $83(4)$ $C(11)$ $12309(7)$ $498(3)$ $968(5)$ $41(2)$ $C1$ $3993(2)$ $701(1)$ $-1744(1)$ $39(1)$ $O(64)$ $1552(5)$ $4256(2)$ $1802(4)$ $44(2)$ $O(74)$ $11767(8)$ $545(3)$ $5103(6)$ $34(2)$ $C(62)$ $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ $C(63)$ $-532(8)$ $4149(4)$ $1404(8)$ $89(4)$ $C(71)$ $12787(11)$ $135(5)$ $4215(9)$ $31(3)$ $C(72)$ $12614(12)$ $234(5)$ $5143(10)$ $40(4)$ $C(61)$ $662(9)$ $3851(5)$ $2779(8)$ $118(6)$ $C(73)$ $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ $O(81)$ $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ $C(52)$ $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ $C(56)$ $12624(6)$ $2606(3)$ $1985(5)$ $45(2)$ $C(53)$ $11741(8)$ $3265(3)$ $885(5)$ $53(2)$ $C(54)$ $12924(9)$ $3266(3)$ $1316(7)$ $72(3)$	C(46)	7331(6)	1730(3)	-2807(5)	39(2)	
C(11) $12309(7)$ $498(3)$ $968(5)$ $41(2)$ Cl $3993(2)$ $701(1)$ $-1744(1)$ $39(1)$ $O(64)$ $1552(5)$ $4256(2)$ $1802(4)$ $44(2)$ $O(74)$ $11767(8)$ $545(3)$ $5103(6)$ $34(2)$ $C(62)$ $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ $C(63)$ $-532(8)$ $4149(4)$ $1404(8)$ $89(4)$ $C(71)$ $12787(11)$ $135(5)$ $4215(9)$ $31(3)$ $C(72)$ $12614(12)$ $234(5)$ $5143(10)$ $40(4)$ $C(61)$ $662(9)$ $3851(5)$ $2779(8)$ $118(6)$ $C(73)$ $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ $O(81)$ $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ $C(52)$ $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ $C(56)$ $12624(6)$ $2606(3)$ $1985(5)$ $45(2)$ $C(53)$ $11741(8)$ $3265(3)$ $885(5)$ $53(2)$ $C(54)$ $12924(9)$ $3266(3)$ $1316(7)$ $72(3)$	C(13)	13500(12)	31(4)	2016(7)	83(4)	
Cl $3993(2)$ $701(1)$ $-1744(1)$ $39(1)$ O(64) $1552(5)$ $4256(2)$ $1802(4)$ $44(2)$ O(74) $11767(8)$ $545(3)$ $5103(6)$ $34(2)$ C(62) $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ C(63) $-532(8)$ $4149(4)$ $1404(8)$ $89(4)$ C(71) $12787(11)$ $135(5)$ $4215(9)$ $31(3)$ C(72) $12614(12)$ $234(5)$ $5143(10)$ $40(4)$ C(61) $662(9)$ $3851(5)$ $2779(8)$ $118(6)$ C(73) $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ O(81) $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ C(52) $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ C(56) $12624(6)$ $2606(3)$ $1985(5)$ $45(2)$ C(53) $11741(8)$ $3265(3)$ $885(5)$ $53(2)$ C(54) $12924(9)$ $3266(3)$ $1316(7)$ $72(3)$	C(11)	12309(7)	498(3)	968(5)	41(2)	
O(64) $1552(5)$ $4256(2)$ $1802(4)$ $44(2)$ $O(74)$ $11767(8)$ $545(3)$ $5103(6)$ $34(2)$ $C(62)$ $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ $C(63)$ $-532(8)$ $4149(4)$ $1404(8)$ $89(4)$ $C(71)$ $12787(11)$ $135(5)$ $4215(9)$ $31(3)$ $C(72)$ $12614(12)$ $234(5)$ $5143(10)$ $40(4)$ $C(61)$ $662(9)$ $3851(5)$ $2779(8)$ $118(6)$ $C(73)$ $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ $O(81)$ $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ $C(52)$ $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ $C(56)$ $12624(6)$ $2606(3)$ $1985(5)$ $45(2)$ $C(53)$ $11741(8)$ $3265(3)$ $885(5)$ $53(2)$ $C(54)$ $12924(9)$ $3266(3)$ $1316(7)$ $72(3)$	Cl	3993(2)	701(1)	-1744(1)	39(1)	
O(74) $11767(8)$ $545(3)$ $5103(6)$ $34(2)$ $C(62)$ $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ $C(63)$ $-532(8)$ $4149(4)$ $1404(8)$ $89(4)$ $C(71)$ $12787(11)$ $135(5)$ $4215(9)$ $31(3)$ $C(72)$ $12614(12)$ $234(5)$ $5143(10)$ $40(4)$ $C(61)$ $662(9)$ $3851(5)$ $2779(8)$ $118(6)$ $C(73)$ $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ $O(81)$ $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ $C(52)$ $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ $C(56)$ $12624(6)$ $2606(3)$ $1985(5)$ $45(2)$ $C(53)$ $11741(8)$ $3265(3)$ $885(5)$ $53(2)$ $C(54)$ $12924(9)$ $3266(3)$ $1316(7)$ $72(3)$	O(64)	1552(5)	4256(2)	1802(4)	44(2)	
C(62) $516(9)$ $4173(4)$ $2135(7)$ $76(3)$ $C(63)$ $-532(8)$ $4149(4)$ $1404(8)$ $89(4)$ $C(71)$ $12787(11)$ $135(5)$ $4215(9)$ $31(3)$ $C(72)$ $12614(12)$ $234(5)$ $5143(10)$ $40(4)$ $C(61)$ $662(9)$ $3851(5)$ $2779(8)$ $118(6)$ $C(73)$ $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ $O(81)$ $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ $C(52)$ $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ $C(56)$ $12624(6)$ $2606(3)$ $1985(5)$ $45(2)$ $C(53)$ $11741(8)$ $3265(3)$ $885(5)$ $53(2)$ $C(54)$ $12924(9)$ $3266(3)$ $1316(7)$ $72(3)$	O(74)	11767(8)	545(3)	5103(6)	34(2)	
C(63) $-532(8)$ $4149(4)$ $1404(8)$ $89(4)$ $C(71)$ $12787(11)$ $135(5)$ $4215(9)$ $31(3)$ $C(72)$ $12614(12)$ $234(5)$ $5143(10)$ $40(4)$ $C(61)$ $662(9)$ $3851(5)$ $2779(8)$ $118(6)$ $C(73)$ $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ $O(81)$ $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ $C(52)$ $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ $C(56)$ $12624(6)$ $2606(3)$ $1985(5)$ $45(2)$ $C(53)$ $11741(8)$ $3265(3)$ $885(5)$ $53(2)$ $C(54)$ $12924(9)$ $3266(3)$ $1316(7)$ $72(3)$	C(62)	516(9)	4173(4)	2135(7)	76(3)	
C(71) $12787(11)$ $135(5)$ $4215(9)$ $31(3)$ $C(72)$ $12614(12)$ $234(5)$ $5143(10)$ $40(4)$ $C(61)$ $662(9)$ $3851(5)$ $2779(8)$ $118(6)$ $C(73)$ $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ $O(81)$ $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ $C(52)$ $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ $C(56)$ $12624(6)$ $2606(3)$ $1985(5)$ $45(2)$ $C(53)$ $11741(8)$ $3265(3)$ $885(5)$ $53(2)$ $C(54)$ $12924(9)$ $3266(3)$ $1316(7)$ $72(3)$	C(63)	-532(8)	4149(4)	1404(8)	89(4)	
C(72) $12614(12)$ $234(5)$ $5143(10)$ $40(4)$ $C(61)$ $662(9)$ $3851(5)$ $2779(8)$ $118(6)$ $C(73)$ $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ $O(81)$ $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ $C(52)$ $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ $C(56)$ $12624(6)$ $2606(3)$ $1985(5)$ $45(2)$ $C(53)$ $11741(8)$ $3265(3)$ $885(5)$ $53(2)$ $C(54)$ $12924(9)$ $3266(3)$ $1316(7)$ $72(3)$	C(71)	12787(11)	135(5)	4215(9)	31(3)	
C(61) $662(9)$ $3851(5)$ $2779(8)$ $118(6)$ $C(73)$ $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ $O(81)$ $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ $C(52)$ $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ $C(56)$ $12624(6)$ $2606(3)$ $1985(5)$ $45(2)$ $C(53)$ $11741(8)$ $3265(3)$ $885(5)$ $53(2)$ $C(54)$ $12924(9)$ $3266(3)$ $1316(7)$ $72(3)$	C(72)	12614(12)	234(5)	5143(10)	40(4)	
C(73) $13600(12)$ $180(5)$ $5827(10)$ $42(4)$ $O(81)$ $3745(4)$ $1404(2)$ $-333(3)$ $40(1)$ $C(52)$ $10980(7)$ $2941(2)$ $989(5)$ $40(2)$ $C(56)$ $12624(6)$ $2606(3)$ $1985(5)$ $45(2)$ $C(53)$ $11741(8)$ $3265(3)$ $885(5)$ $53(2)$ $C(54)$ $12924(9)$ $3266(3)$ $1316(7)$ $72(3)$	C(61)	662(9)	3851(5)	2779(8)	118(6)	
O(81)3745(4)1404(2)-333(3)40(1)C(52)10980(7)2941(2)989(5)40(2)C(56)12624(6)2606(3)1985(5)45(2)C(53)11741(8)3265(3)885(5)53(2)C(54)12924(9)3266(3)1316(7)72(3)	C(73)	13600(12)	180(5)	5827(10)	42(4)	
C(52)10980(7)2941(2)989(5)40(2)C(56)12624(6)2606(3)1985(5)45(2)C(53)11741(8)3265(3)885(5)53(2)C(54)12924(9)3266(3)1316(7)72(3)	O(81)	3745(4)	1404(2)	-333(3)	40(1)	
C(56)12624(6)2606(3)1985(5)45(2)C(53)11741(8)3265(3)885(5)53(2)C(54)12924(9)3266(3)1316(7)72(3)	C(52)	10980(7)	2941(2)	989(5)	40(2)	
C(53)11741(8)3265(3)885(5)53(2)C(54)12924(9)3266(3)1316(7)72(3)	C(56)	12624(6)	2606(3)	1985(5)	45(2)	
C(54) 12924(9) 3266(3) 1316(7) 72(3)	C(53)	11741(8)	3265(3)	885(5)	53(2)	
	C(54)	12924(9)	3266(3)	1316(7)	72(3)	

	Х	У	Z	E(eq)	
C(55)	13352(8)	2938(3)	1864(7)	74(3)	

Abb. 5.15: Ellipsoiddarstellung von [*Eu(HL3^a)*₂]⁺. *Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurde nur ein Ligand beschriftet.*

5.16 Bis(2,6-diacetylpyridin-4-phenylsemicarbazon-4-phenylthiosemicarbazonato)samarium(III)-nitrat Wasser-Solvat [Sm(HL4^b)₂]NO₃·H₂O

[Sm(HL4 ^b) ₂]NO ₃ ·H ₂ O			
Summenformel	$C_{42}H_{36}N_{15}O_6S_2Sm$		
M (g/mol)	1061.33		
Temperatur	173(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem, Raumgruppe	Trigonal, R-3		
Elementarzelle	a = 49.76(5) Å	$\alpha = 90^{\circ}$	
	b = 49.76(5) Å	$\beta = 90^{\circ}$	
	c = 13.85(3) Å	$\gamma = 120^{\circ}$	
Volumen	29706(80) Å ³		
Berechnete Dichte	1.068 g/cm^3		
Linearer Absorptionskoeffizient	0.997 mm^{-1}		
F(000)	9630		
Kristallgröße	0.5 x 0.1 x 0.08 mm	3	
Theta-Bereich	$1.42 - 24.87^{\circ}$		
Indizes	-58≤h≤28, 0≤k≤58, 0	0≤l≤16	
Zahl der gemessenen Reflexe	11364		
Zahl der unabhängigen Reflexe	11364 [R(int) = 0.00]	00]	
Absorptionskorrektur	keine		
Zahl der verfeinerten Parameter	586		
Goof	0.975		
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0669, wR2 = 0.1558$		
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.1261, wR_2 = 0.1894$		
Restelektronendichte	$1.285 \text{ und } -0.604 \text{ e.Å}^{-3}$		
Diffraktometer	CCD4, Bruker Smart		
Programm der Strukturlösung	SHELXS-86 ^[99]		

Tabelle 5.31:	Kristallographische	Daten und Parameter	der Strukturrechnung von
---------------	---------------------	---------------------	--------------------------

	[Sm(HL4 ^b) ₂]NO ₃ ·H ₂ O				
	Х	у	Z	E(eq)	
Sm	3192(1)	1045(1)	9026(1)	39(1)	
N(1)	3511(2)	794(2)	9794(4)	46(2)	
N(2)	3251(2)	1025(1)	10942(4)	40(2)	
N(3)	3109(2)	1152(2)	11477(4)	43(2)	
N(4)	3427(2)	782(2)	7830(4)	42(2)	
N(5)	3399(2)	748(2)	6823(4)	45(2)	
N(6)	2906(2)	1476(2)	11478(4)	43(2)	
N(7)	3118(2)	736(2)	5478(4)	45(2)	
N(31)	2852(2)	1305(2)	8442(4)	56(2)	
N(32)	3470(3)	1597(2)	8139(5)	72(3)	
N(33)	3792(3)	1740(2)	8044(7)	99(4)	
N(34)	2606(2)	803(2)	9613(5)	49(2)	
N(35)	2473(2)	571(2)	10322(5)	58(2)	
N(36)	4249(3)	1774(3)	8585(10)	127(5)	
N(37)	2505(2)	163(2)	11032(5)	58(2)	
O(18)	3155(1)	1428(1)	10123(3)	47(1)	
O(48)	3777(2)	1380(2)	9074(5)	76(2)	
S(28)	2943(1)	900(1)	7074(1)	44(1)	
S(58)	2821(1)	371(1)	9415(2)	57(1)	
C(2)	3657(2)	689(2)	9214(6)	51(2)	
C(3)	3845(2)	576(2)	9579(6)	66(3)	
C(4)	3877(2)	561(2)	10577(7)	73(3)	
C(5)	3719(2)	659(2)	11179(6)	54(2)	
C(6)	3542(2)	776(2)	10769(5)	44(2)	
C(7)	3382(2)	890(2)	11376(5)	46(2)	
C(9)	3607(2)	692(2)	8183(5)	51(2)	
C(11)	2804(2)	1677(2)	11121(5)	48(2)	
C(12)	2585(2)	1705(2)	11695(7)	66(3)	
C(13)	2474(3)	1893(3)	11394(8)	85(3)	
C(14)	2565(3)	2053(3)	10536(8)	86(4)	
C(15)	2784(3)	2034(2)	9986(7)	66(3)	
C(16)	2905(2)	1843(2)	10272(5)	53(2)	
C(17)	3058(2)	1363(2)	10981(5)	42(2)	
C(21)	3206(2)	580(2)	4811(5)	40(2)	
C(22)	3034(2)	482(2)	3941(5)	44(2)	
C(23)	3098(2)	315(2)	3260(5)	49(2)	
C(24)	3325(2)	241(2)	3424(6)	56(2)	
C(25)	3490(2)	333(2)	4286(5)	56(2)	
C(26)	3435(2)	498(2)	4964(5)	50(2)	
C(27)	3180(2)	788(2)	6462(5)	39(2)	
C(32)	2557(3)	1180(2)	8676(6)	60(3)	
C(33)	2367(3)	1301(3)	8375(8)	92(4)	
C(34)	2523(5)	1577(4)	7797(9)	119(6)	
C(35)	2842(4)	1710(3)	7603(9)	100(5)	
C(36)	2988(3)	1572(2)	7932(5)	67(3)	
C(37)	3326(4)	1721(2)	7792(6)	83(4)	
C(39)	2437(2)	916(2)	9339(4)	61(2)	

Tabelle 5.32: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter(Å² $x10^3$) von

	X	у	Z	E(eq)	
C(41)	4439(2)	1692(2)	9043(4)	159(7)	
C(42)	4370(2)	1400(2)	9373(4)	144(6)	
C(43)	4593(2)	1364(2)	9867(4)	195(8)	
C(44)	4885(2)	1619(2)	10030(4)	288(15)	
C(45)	4954(2)	1911(2)	9699(4)	370(30)	
C(46)	4731(2)	1947(2)	9206(4)	294(15)	
C(47)	3928(3)	1602(4)	8638(10)	95(4)	
C(51)	2364(2)	141(2)	11939(6)	53(2)	
C(52)	2270(2)	-134(2)	12453(7)	65(3)	
C(53)	2147(2)	-163(2)	13390(8)	76(3)	
C(54)	2115(3)	66(3)	13800(7)	90(4)	
C(55)	2197(3)	332(3)	13269(8)	83(3)	
C(56)	2328(2)	375(2)	12360(7)	67(3)	
C(57)	2592(2)	386(2)	10304(6)	50(2)	
N(61)	2778(2)	1068(2)	3808(5)	50(2)	
O(62)	2687(2)	951(2)	4637(4)	61(2)	
O(63)	3028(2)	1104(2)	3495(4)	60(2)	
O(64)	2623(2)	1151(2)	3311(4)	66(2)	
O(71)	1808(14)	872(11)	1150(60)	510(60)	
O(72)	2199(5)	1011(5)	5899(17)	204(14)	

 Abb. 5.16: Ellipsoiddarstellung von [Sm(HL4^b)₂]⁺. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurde nur ein Ligand beschriftet
vollständig beschriftet.

5.17 Bis(2,6-diacetylpyridin-4-phenylsemicarbazon-4-phenylthiosemicarbazon)europium(III)-chlorid Ethanol/Wasser-Solvat [Eu(H₂L4^b)₂]Cl₃·½EtOH·½H₂O

$[Eu(112L4)2]C13^{\circ}/2EtO11^{\circ}/2$	II ₂ O	
Summenformel	$C_{44}H_{38}Cl_3EuN_{14}O_3S_2$	
M (g/mol)	1133.31	
Temperatur	153(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Orthorhombisch, Fddd	
Elementarzelle	a = 19.171(6) Å	$\alpha = 90^{\circ}$
	b = 33.58(1)Å	$\beta = 90^{\circ}$
	c = 34.27(1) Å	$\gamma = 90^{\circ}$
Volumen	22060(11) Å ³	
Berechnete Dichte	1.365 g/cm^3	
Linearer Absorptionskoeffizient	1.407 mm^{-1}	
F(000)	9120	
Kristallgröße	0.35 x 0.25x 0.18 mm ³	
Theta-Bereich	$1.36 - 27.56^{\circ}$	
Indizes	-24≤h≤24, -39≤k≤43, -40	<u>≤l</u> ≤44
Zahl der gemessenen Reflexe	54010	
Zahl der unabhängigen Reflexe	6364 [R(int) = 0.0356]	
Absorptionskorrektur	keine	
Zahl der verfeinerten Parameter	350	
Goof	1.103	
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0625, wR2 = 0.196$	05
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.0844, wR_2 = 0.218$	30
Restelektronendichte	$1.127 \text{ und } -1.401 \text{ e.Å}^{-3}$	
Diffraktometer	CCD4, Bruker Smart	
Programm der Strukturlösung	SIR 92 ^[98]	

Tabelle 5.33: Kristallographische Daten und Parameter der Strukturrechnung von [Fu(HaI 4^b)alCla:¹/2FtOH:¹/2HaO

$[Eu(H_2L4^b)_2]Cl_3\cdot\frac{1}{2}EtOH\cdot\frac{1}{2}H_2O$					
	Х	У	Z	E(eq)	
Eu	3750	427(1)	3750	48(1)	
S(18)	2928(1)	941(1)	4253(1)	76(1)	
N(4)	4499(3)	-78(2)	3292(2)	64(1)	
O(28)	3172(3)	-14(1)	3294(1)	64(1)	
N(5)	4133(3)	-308(2)	3050(2)	69(2)	
C(27)	3428(4)	-274(2)	3074(2)	63(2)	
N(2)	4487(3)	942(2)	4212(2)	53(1)	
N(1)	5193(3)	402(2)	3770(2)	63(2)	
N(3)	4178(3)	1240(2)	4420(2)	64(1)	
C(17)	3477(4)	1271(2)	4455(2)	63(2)	
N(6)	3286(3)	1585(2)	4666(2)	74(2)	
N(7)	3053(4)	-518(2)	2864(2)	74(2)	
C(7)	5148(4)	922(2)	4246(2)	72(2)	
C(6)	5544(4)	633(3)	4029(3)	82(2)	
C(26)	2024(7)	-911(5)	2850(4)	144(6)	
C(9)	5165(4)	-110(3)	3297(3)	85(2)	
C(21)	2329(5)	-543(3)	2852(2)	89(3)	
C(2)	5554(4)	135(3)	3564(3)	92(3)	
C(5)	6262(4)	612(4)	4089(4)	126(5)	
C(22)	1907(5)	-200(5)	2836(3)	116(4)	
C(3)	6279(5)	83(5)	3608(4)	132(6)	
C(4)	6616(6)	311(5)	3892(5)	145(5)	
Cl(1)	4724(1)	1995(1)	4860(1)	81(1)	
C(23)	1205(6)	-226(8)	2815(3)	154(7)	
C(24)	911(8)	-596(10)	2803(4)	211(14)	
C(25)	1324(11)	-975(10)	2851(7)	235(16)	
C(11)	2607(4)	1706(3)	4793(3)	83(2)	
C(12)	2541(11)	1783(9)	5186(6)	109(8)	
C(13)	1887(17)	1921(14)	5310(8)	169(16)	
C(32)	2550(12)	2087(7)	4965(10)	125(9)	
C(33)	1942(13)	2258(8)	5085(11)	141(12)	
C(14)	1337(8)	1996(7)	5085(7)	172(8)	
C(15)	1454(12)	1867(12)	4693(11)	129(16)	
C(16)	2090(8)	1706(7)	4530(7)	104(9)	
C(35)	1331(13)	1753(12)	4854(15)	146(17)	
C(36)	1949(11)	1553(10)	4729(12)	182(19)	
O(61)	3750	2121(8)	3750	109(8)	
C(62)	4241(12)	2542(9)	4105(8)	119(8)	
C(61)	3790(20)	2434(15)	3894(9)	210(20)	
$\dot{Cl(2)}$	3750	8750	2486(1)	80(1)	
O(71)	3750	-1250	3750	263(19)	
				× /	

Tabelle 5.34: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter(Å² $x10^3$) von

Abb. 5.17: Ellipsoiddarstellung von $[Eu(H_2L4^b)_2]^{3+}$. *Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Symmetrieoperation für zweiten Liganden: -x+3/4,y,-z+3/4.*

5.18 Tris-[2-formyl-benzoylhydrazonato)phenyl]phosphan-indium(III) Methanol-Solvat [In(L1P)]·MeOH

[In(L1P)]·MeOH		
Summenformel	$C_{43}H_{34}InN_6O_4P$	
M (g/mol)	844.55	
Temperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, P2 ₁ /n	
Elementarzelle	a = 11.123(3) Å	$\alpha = 90^{\circ}$
	b = 22.826(7) Å	β=103.849(6)°
	c = 15.460(5) Å	$\gamma = 90^{\circ}$
Volumen	$3811(2) \text{ Å}^3$	
Berechnete Dichte	1.472 g/cm^3	
Linearer Absorptionskoeffizient	0.714 mm^{-1}	
F(000)	1720	
Kristallgröße	0.90 x 0.23 x 0.10 mm ³	
Theta-Bereich	$1.62 - 30.498^{\circ}$	
Indizes	-15≤h≤15, -32≤k≤29, -2	22≤l≤22
Zahl der gemessenen Reflexe	46875	
Zahl der unabhängigen Reflexe	11658 [R(int) = 0.0267]	
Absorptionskorrektur	semiempirisch (SADAE	3S)
Zahl der verfeinerten Parameter	498	
Goof	1.076	
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0323, wR2 = 0.0$	763
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.0469, wR_2 = 0.08$	864
Restelektronendichte	$1.204 \text{ und } -0.765 \text{ e.Å}^{-3}$	
Diffraktometer	CCD4, Bruker Smart	
Programm der Strukturlösung	SIR 92 ^[98]	

Tabelle 5.35: Kristallographische Daten und Parameter der Strukturrechnung von

	[In(L1P)]·MeOH				
	Х	У	Z	E(eq)	
In	5510(1)	1642(1)	7695(1)	21(1)	
Р	5327(1)	2745(1)	7436(1)	23(1)	
O(19)	7124(1)	1095(1)	8089(1)	24(1)	
O(39)	4739(1)	1239(1)	8675(1)	29(1)	
O(59)	4732(1)	1009(1)	6699(1)	31(1)	
N(18)	6941(2)	1867(1)	6808(1)	28(1)	
N(19)	7965(2)	1497(1)	6983(1)	32(1)	
N(38)	6283(2)	2105(1)	9152(1)	25(1)	
N(39)	6037(2)	1757(1)	9828(1)	29(1)	
N(58)	3326(2)	1857(1)	7016(1)	26(1)	
N(59)	2743(2)	1390(1)	6513(1)	29(1)	
C(11)	5133(2)	2906(1)	6263(1)	27(1)	
C(12)	4236(2)	3297(1)	5819(2)	29(1)	
C(13)	4147(2)	3440(1)	4932(2)	37(1)	
C(14)	4959(3)	3204(1)	4487(2)	50(1)	
C(15)	5862(3)	2815(1)	4919(2)	54(1)	
C(16)	5947(2)	2649(1)	5802(2)	38(1)	
C(17)	6913(3)	2220(1)	6162(2)	49(1)	
C(18)	7953(2)	1132(1)	7636(1)	22(1)	
C(21)	9029(2)	724(1)	7868(1)	23(1)	
C(22)	9006(2)	260(1)	8438(2)	32(1)	
C(23)	10003(2)	-121(1)	8671(2)	41(1)	
C(24)	11030(2)	-42(1)	8324(2)	40(1)	
C(25)	11063(2)	421(1)	7754(2)	37(1)	
C(26)	10072(2)	803(1)	7523(1)	29(1)	
C(31)	6702(2)	3144(1)	7994(1)	26(1)	
C(32)	7138(2)	3604(1)	7561(2)	40(1)	
C(33)	8162(3)	3928(1)	7984(2)	49(1)	
C(34)	8763(2)	3799(1)	8849(2)	43(1)	
C(35)	8354(2)	3342(1)	9292(2)	32(1)	
C(36)	7327(2)	3004(1)	8876(1)	24(1)	
C(37)	6968(2)	2550(1)	9436(1)	26(1)	
C(38)	5244(2)	1335(1)	9501(1)	26(1)	
C(41)	4900(2)	938(1)	10166(1)	28(1)	
C(42)	5627(2)	896(1)	11035(2)	34(1)	
C(43)	5331(3)	492(1)	11620(2)	39(1)	
C(44)	4302(3)	137(1)	11351(2)	41(1)	
C(45)	35/1(3)	186(1)	10498(2)	43(1)	
C(46)	3867(2)	581(1)	9900(2)	$\frac{3}{(1)}$	
C(51)	4046(2)	3082(1)	//85(1)	26(1)	
C(52)	4200(2)	3631(1)	8198(2)	$\frac{3}{(1)}$	
C(53)	<i>52</i> 44(<i>3</i>)	3893(1) 2(10(1)	8490(2)	42(1)	
C(54)	2119(2)	3010(1)	8366(2)	40(1)	
C(55)	1934(2)	$\frac{30}{4(1)}$	7936(2)	33(1)	
C(50)	2891(2)	2/94(1)	/049(1)	$\frac{2}{(1)}$	
C(57)	2500(2)	2230(1)	(193(1))	29(1)	
U(38)	3333(2)	1003(1)	03/8(1)	23(1)	

Tabelle 5.36: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter($Å^2x10^3$) von

Kristal	lograp	hischer	Anhang
	<u> </u>		0

C(61)	3033(2)	522(1)	5751(1)	25(1)
C(62)	1802(2)	535(1)	5267(2)	34(1)
C(63)	1359(2)	111(1)	4626(2)	36(1)
C(64)	2122(2)	-333(1)	4470(1)	31(1)
C(65)	3339(2)	-351(1)	4956(1)	31(1)
C(66)	3796(2)	73(1)	5595(1)	27(1)
O(71)	4804(2)	2520(1)	10918(2)	59(1)
C(72)	4620(3)	3005(1)	10329(2)	57(1)

Abb. 5.18: Ellipsoiddarstellung von **[In(L1P)]**. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurde auf die Beschriftung der Kohlenstoffatome in 2 Ligand-Armen verzichtet.

5.19 Tris-[2-(formyl-benzoylhydrazon)phenyl]phosphan-cobalt(III)chlorid Ethanol-Solvat [Co(H₃L1P)]Cl₃·2EtOH

[Co(H ₃ L1P)]Cl ₃ ·2EtOH		
Summenformel	$C_{46}H_{45}Cl_3CoN_6O_5P$	
M (g/mol)	958.13	
Temperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, C2/c	
Elementarzelle	a = 24.23(2) Å	$\alpha = 90^{\circ}$
	b = 10.963(3) Å	$\beta = 93.52(5)^{\circ}$
	c = 35.10(2) Å	$\gamma = 90^{\circ}$
Volumen	9308(8) Å ³	
Berechnete Dichte	1.367 g/cm^3	
Linearer Absorptionskoeffizient	0.714 mm^{-1}	
F(000)	3968	
Kristallgröße	$0.1 \ge 0.1 \ge 0.1 \ge 0.1 \ \text{mm}^3$	
Theta-Bereich	$2.11 - 26.87^{\circ}$	
Indizes	-30≤h≤30, -13≤k≤12, -4	l4 <u>≤</u> l≤42
Zahl der gemessenen Reflexe	23298	
Zahl der unabhängigen Reflexe	9576 [R(int) = 0.0676]	
Absorptionskorrektur	keine	
Zahl der verfeinerten Parameter	564	
Goof	0.994	
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0647, wR2 = 0.1$	666
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.0969, wR_2 = 0.19$	907
Restelektronendichte	$0.714 \text{ und } -1.000 \text{ e.Å}^{-3}$	
Diffraktometer	IPDS, Stoe	
Programm der Strukturlösung	SIR 92 ^[98]	

Tabelle 5.37: Kristallographische Daten und Parameter der Strukturrechnung von

	[Co(H ₃ L1P)]Cl ₃ ·2Et(OH			
	х	У	Z	E(eq)	
Co	1294(1)	459(1)	6382(1)	39(1)	
Р	780(1)	363(1)	5803(1)	40(1)	
O(59)	1788(1)	-855(2)	6669(1)	44(1)	
N(58)	766(1)	-1313(2)	6431(1)	42(1)	
O(39)	1927(1)	1709(2)	6530(1)	46(1)	
C(56)	-116(1)	-837(3)	6104(1)	43(1)	
C(31)	986(1)	-903(3)	5511(1)	42(1)	
N(59)	1061(1)	-2121(3)	6669(1)	45(1)	
C(58)	1583(1)	-1820(3)	6780(1)	40(1)	
C(53)	-911(2)	594(4)	5705(1)	57(1)	
C(36)	1550(1)	-1159(3)	5479(1)	44(1)	
C(41)	2899(1)	1969(3)	6610(1)	45(1)	
N(18)	802(1)	2317(3)	6349(1)	42(1)	
C(52)	-356(2)	822(4)	5671(1)	50(1)	
O(19)	955(1)	749(2)	6904(1)	45(1)	
C(38)	2394(1)	1448(3)	6421(1)	43(1)	
C(44)	3816(2)	2925(4)	7019(1)	54(1)	
C(37)	2010(1)	-490(3)	5670(1)	47(1)	
C(33)	753(2)	-2677(3)	5119(1)	51(1)	
C(32)	594(2)	-1675(3)	5332(1)	47(1)	
C(65)	2021(2)	-4399(4)	7445(1)	58(1)	
C(66)	1687(2)	-3669(4)	7207(1)	53(1)	
N(39)	2446(1)	690(3)	6124(1)	47(1)	
C(61)	1907(1)	-2650(3)	7036(1)	43(1)	
C(51)	50(1)	112(3)	5861(1)	41(1)	
C(21)	738(1)	2097(3)	7395(1)	41(1)	
C(18)	809(1)	1793(3)	6992(1)	41(1)	
N(38)	1965(1)	170(3)	5966(1)	44(1)	
C(34)	1303(2)	-2897(3)	5076(1)	52(1)	
C(35)	1694(2)	-2144(3)	5251(1)	52(1)	
C(62)	2461(2)	-2381(4)	7110(1)	55(1)	
C(14)	781(2)	3828(4)	5059(1)	57(1)	
C(11)	805(1)	1727(3)	5511(1)	43(1)	
C(13)	873(2)	2699(4)	4896(1)	55(1)	
C(22)	746(2)	3275(3)	7537(1)	50(1)	
N(19)	726(1)	2659(3)	6722(1)	43(1)	
C(55)	-681(1)	-1080(4)	6116(1)	52(1)	
C(45)	3317(2)	3546(4)	7010(1)	57(1)	
C(15)	716(2)	3913(4)	5446(1)	55(1)	
$C(\Gamma/)$	689(2)	3107(3)	6089(1)	48(1)	
C(54)	-10/3(2)	-36/(4)	5925(1)	59(1)	
C(42)	340/(1)	13/1(3)	6620(1)	48(1) 52(1)	
C(43)	3860(2)	1846(4)	6825(1) 5122(1)	52(1)	
C(12)	881(1)	1659(3)	5123(1)	4/(1)	
C(03)	2/95(2)	-3118(4)	/354(1)	OI(1)	
C(10)	/41(1)	2890(3)	3081(1)	43(1)	
U(24)	/03(2)	2528(4)	81/2(1)	0/(1)	

Tabelle 5.38: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter($Å^2x10^3$) von

	X	у	Z	E(eq)	
C(26)	706(2)	1136(4)	7651(1)	51(1)	
C(25)	684(2)	1345(4)	8036(1)	63(1)	
C(23)	733(2)	3474(4)	7922(1)	63(1)	
C(46)	2857(2)	3065(3)	6809(1)	51(1)	
C(57)	259(1)	-1586(3)	6344(1)	46(1)	
C(64)	2569(2)	-4129(4)	7521(1)	55(1)	
O(96)	2845(2)	-3096(6)	5790(1)	143(2)	
C(95)	2649(7)	-3257(14)	6157(2)	226(8)	
C(94)	2225(10)	-4170(13)	6168(4)	306(15)	
O(101)	2295(3)	-115(6)	4785(2)	168(3)	
C(102)	2727(3)	655(8)	4752(3)	135(3)	
C(100)	2568(4)	1767(8)	4523(3)	170(4)	
Cl(1)	347(1)	-4542(1)	6758(1)	53(1)	
Cl(2)	3487(1)	-582(3)	5812(1)	166(1)	
Cl(3)	5000	2037(6)	7500	239(2)	
Cl(4)	-305(2)	5655(5)	5920(1)	152(2)	

Abb. 5.19: Ellipsoiddarstellung von **[Co(H₃L1P)]³⁺**. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurde auf die Beschriftung einiger Kohlenstoffatome verzichtet.

5.20 Bis-[2-(formyl-benzoylhydrazonato)phenyl]-[2-(formylbenzoylhydrazon)phenyl]phosphan-nickel(II) Chloroform-Solvat [Ni(HL1P)]·2CHCl₃

[Ni(HL1P)]·2CHCl ₃		
Summenformel	C44H33Cl6N6NiO3P	
M (g/mol)	996.14	
Temperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, P2 ₁ /c	
Elementarzelle	a = 13.036(3) Å	$\alpha = 90^{\circ}$
	b = 19.126(2) Å	β=109.90(2)°
	c = 18.934(7) Å	$\gamma = 90^{\circ}$
Volumen	4439(2) Å ³	
Berechnete Dichte	1.491 g/cm^3	
Linearer Absorptionskoeffizient	0.882 mm^{-1}	
F(000)	2032	
Kristallgröße	0.25 x 0.14 x 0.1 mm ³	
Theta-Bereich	$2.13 - 26.87^{\circ}$	
Indizes	-12≤h≤16, -24≤k≤21, -23	3≤1≤23
Zahl der gemessenen Reflexe	22402	
Zahl der unabhängigen Reflexe	9285 [R(int) = 0.1349]	
Absorptionskorrektur	keine	
Zahl der verfeinerten Parameter	550	
Goof	1.042	
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0932, wR2 = 0.17$	65
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.1730, wR_2 = 0.210$	05
Restelektronendichte	$0.562 \text{ und } -0.664 \text{ e.Å}^{-3}$	
Diffraktometer	IPDS, Stoe	
Programm der Strukturlösung	SHELXS-97 ^[99]	

Tabelle 5.39: Kristallographische Daten und Parameter der Strukturrechnung von

	[Ni(HL1P)]·2CHCl ₃				
	Х	У	Z	E(eq)	
Ni	8543(1)	766(1)	690(1)	29(1)	
Р	8367(2)	1694(1)	69(1)	30(1)	
C(11)	8644(5)	1629(4)	-800(3)	31(1)	
C(12)	8656(6)	2221(4)	-1212(4)	39(2)	
C(13)	8840(7)	2177(4)	-1895(4)	43(2)	
C(14)	8990(6)	1530(4)	-2167(4)	43(2)	
C(15)	8987(6)	932(4)	-1766(3)	42(2)	
C(16)	8818(5)	958(4)	-1065(3)	32(2)	
C(17)	8832(6)	293(4)	-700(3)	33(2)	
N(8)	8715(5)	180(3)	-42(3)	30(1)	
N(9)	8653(5)	-543(3)	117(3)	31(1)	
C(18)	8392(6)	-594(4)	743(3)	32(2)	
O(19)	8247(4)	-81(2)	1105(2)	35(1)	
C(21)	8278(5)	-1315(3)	1017(3)	30(2)	
C(22)	8426(6)	-1917(4)	667(4)	38(2)	
C(23)	8329(7)	-2564(4)	958(4)	44(2)	
C(24)	8032(7)	-2619(4)	1601(4)	42(2)	
C(25)	7846(6)	-2022(4)	1945(4)	39(2)	
C(26)	7973(6)	-1362(4)	1663(3)	36(2)	
C(31)	6920(6)	1839(4)	-163(4)	36(2)	
C(32)	6229(6)	1981(4)	-888(4)	44(2)	
C(33)	5095(6)	2073(4)	-1025(4)	44(2)	
C(34)	4704(7)	2042(4)	-450(4)	49(2)	
C(35)	5404(6)	1902(4)	284(4)	43(2)	
C(36)	6506(6)	1795(4)	429(3)	33(2)	
C(37)	7205(6)	1662(4)	1203(3)	35(2)	
N(38)	8081(5)	1307(3)	1374(3)	31(1)	
N(39)	8665(5)	1227(3)	2137(3)	31(1)	
C(38)	9646(6)	935(3)	2268(3)	33(2)	
O(39)	10081(4)	778(3)	1783(2)	36(1)	
C(41)	10252(6)	783(4)	3083(3)	37(2)	
C(42)	11335(7)	603(3)	3329(4)	43(2)	
C(43)	11875(8)	498(4)	4098(4)	55(2)	
C(44)	11359(8)	557(4)	4609(4)	53(2)	
C(45)	10266(8)	724(4)	4362(4)	56(2)	
C(46)	9707(7)	848(4)	3607(3)	47(2)	
C(51)	9018(6)	2495(3)	521(3)	32(2)	
C(52)	8356(7)	30/9(4)	495(4)	41(2)	
C(53)	8803(7)	3707(4)	814(4)	43(2)	
C(54)	9923(8)	3763(4)	1156(4)	47(2)	
C(55)	10593(6)	3204(4)	1196(4)	38(2)	
C(50)	1014/(6)	2550(4)	898(3)	55(2) 24(2)	
U(5/)	10882(6)	1956(4)	905(3)	34(2) 27(1)	
N(58)	11889(5)	1989(3)	1381(3) 1240(2)	$\frac{3}{(1)}$	
IN(39)	12524(5)	1424(3) 1200(4)	1340(3)	30(1) 20(2)	
O(50)	$133/\delta(0)$ 12022(5)	1390(4) 1700(2)	1002(4)	39(2) 50(2)	
0(39)	13932(3)	1/30(3)	2343(3)	30(2)	

Tabelle 5.40: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter($Å^2x10^3$) von

	Х	у	Z	E(eq)	
C(61)	14291(6)	871(4)	1611(4)	39(2)	
C(62)	13918(7)	380(4)	1040(5)	49(2)	
C(63)	14608(7)	-69(5)	871(5)	57(2)	
C(64)	15698(8)	-32(5)	1240(5)	55(2)	
C(65)	16100(7)	441(5)	1828(5)	55(2)	
C(66)	15393(6)	888(4)	2013(4)	46(2)	
C(71)	14235(10)	3243(5)	1746(5)	71(3)	
Cl(71)	13875(4)	3985(1)	2132(2)	105(1)	
Cl(72)	13535(3)	3173(2)	785(1)	86(1)	
Cl(73)	15652(3)	3231(2)	1935(2)	100(1)	
C(81)	14757(10)	5934(5)	1075(5)	72(3)	
Cl(81)	14855(4)	6112(2)	207(2)	129(2)	
Cl(82)	13389(3)	5782(2)	993(2)	108(1)	
Cl(83)	15556(3)	5196(2)	1492(2)	93(1)	

Abb. 5.20: Ellipsoiddarstellung von **[Ni(HL1P)]**. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurde auf die Beschriftung einiger Kohlenstoffatome verzichtet.

5.21 Bis-[2-(formyl-benzoylhydrazonato)phenyl]-[2-(formyl-benzoylhydrazon)phenyl]phosphan-kupfer(II) Chloroform-Solvat [Cu(HL1P)]·2CHCl₃

Same on former of	C II CI C-N O P	
Summenformel	$C_{44}H_{33}CI_6CuN_6O_3P$	
M (g/mol)	1000.97	
Temperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, P2 ₁ /c	
Elementarzelle	a = 11.702(2) Å	α= 90°
	b = 17.108(2) Å	β= 91.596(9)°
	c = 22.090(3) Å	$\gamma = 90^{\circ}$
Volumen	4420.8(8) Å ³	
Berechnete Dichte	1.491 g/cm^3	
Linearer Absorptionskoeffizient	0.941 mm^{-1}	
F(000)	2036	
Kristallgröße	0.3 x 0.1 x 0.02 mm ³	
Theta-Bereich	$2.50 - 26.81^{\circ}$	
Indizes	-14≤h≤14, -21≤k≤21, -2	27 <u>≤1</u> ≤23
Zahl der gemessenen Reflexe	25169	
Zahl der unabhängigen Reflexe	9267 [R(int) = 0.1279]	
Absorptionskorrektur	keine	
Zahl der verfeinerten Parameter	586	
Goof	0.858	
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0636, wR2 = 0.1$	323
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.1482, wR_2 = 0.1$	693
Restelektronendichte	$0.562 \text{ und } -0.664 \text{ e.Å}^{-3}$	
Diffraktometer	IPDS, Stoe	
Programm der Strukturlösung	SHELXS-97 ^[99]	

Tabelle 5.41: Kristallographische Daten und Parameter der Strukturrechnung von

[Cu(HL1P)]·2CHCl₃

	[Cu(HL1P)]·2CHCl ₃				
	Х	У	Z	E(eq)	
Cu	9379(1)	221(1)	3656(1)	38(1)	
Р	11109(1)	532(1)	3338(1)	36(1)	
C(11)	11077(4)	-28(3)	2643(2)	43(1)	
C(12)	11982(5)	-510(3)	2483(3)	56(1)	
C(13)	11954(6)	-904(4)	1933(3)	78(2)	
C(14)	11065(7)	-810(4)	1536(3)	84(2)	
C(15)	10153(5)	-315(4)	1672(3)	71(2)	
C(16)	10133(4)	62(3)	2235(2)	48(1)	
C(17)	9145(4)	553(4)	2348(2)	52(1)	
N(8)	8789(3)	690(3)	2884(2)	46(1)	
N(9)	7881(3)	1206(3)	2950(2)	52(1)	
C(18)	7819(4)	1433(3)	3524(2)	47(1)	
O(19)	8478(3)	1214(2)	3965(1)	47(1)	
C(21)	6940(4)	2040(4)	3640(3)	56(2)	
C(22)	5989(5)	2153(5)	3259(3)	80(2)	
C(23)	5218(7)	2744(6)	3365(6)	117(4)	
C(24)	5408(8)	3243(6)	3852(6)	122(5)	
C(25)	6352(7)	3151(4)	4230(4)	97(3)	
C(26)	7107(5)	2537(4)	4131(3)	66(2)	
C(31)	12261(4)	178(3)	3818(2)	40(1)	
C(32)	13392(4)	376(3)	3695(2)	53(1)	
C(33)	14302(4)	83(4)	4036(3)	68(2)	
C(34)	14107(5)	-415(4)	4503(3)	71(2)	
C(35)	12992(4)	-607(4)	4657(3)	57(1)	
C(36)	12060(4)	-327(3)	4321(2)	41(1)	
C(37)	10961(4)	-616(3)	4524(2)	39(1)	
N(38)	9954(3)	-489(2)	4291(2)	38(1)	
N(39)	9076(3)	-943(3)	4543(2)	45(1)	
C(38)	8136(4)	-879(3)	4197(2)	46(1)	
O(39)	8031(3)	-442(2)	3730(2)	54(1)	
C(41)	7143(4)	-1375(3)	4343(2)	51(1)	
C(42)	6363(4)	-1574(4)	3890(2)	56(1)	
C(43)	5446(5)	-2060(4)	3994(3)	72(2)	
C(44)	5296(6)	-2344(6)	4570(4)	103(3)	
C(45)	6028(6)	-2121(6)	5027(4)	117(3)	
C(46)	6964(5)	-1639(5)	4924(3)	88(2)	
C(51)	11497(4)	1507(3)	3097(2)	36(1)	
C(52)	11968(4)	1629(3)	2531(2)	49(1)	
C(53)	12235(4)	2357(3)	2325(2)	54(1)	
C(54)	12041(5)	3007(3)	2685(3)	59(2)	
C(55)	11594(5)	2903(3)	3250(2)	51(1)	
C(56)	11306(4)	2167(3)	3466(2)	43(1)	
C(57)	10813(4)	2082(3)	4062(2)	46(1)	
N(58)	10494(5)	2676(3)	4356(2)	70(2)	
N(59)	10106(4)	2517(3)	4926(2)	66(1)	
C(58)	9426(6)	3056(4)	5196(3)	71(2)	
O(59)	9104(5)	3659(3)	4945(2)	105(2)	

Tabelle 5.42: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter($Å^2x10^3$) von

	Х	у	Z	E(eq)	
C(61)	9030(6)	2834(4)	5800(3)	63(2)	
C(62)	7945(5)	3056(4)	5956(3)	69(2)	
C(63)	7524(6)	2841(5)	6508(3)	77(2)	
C(64)	8181(6)	2430(4)	6919(3)	78(2)	
C(65)	9271(6)	2212(4)	6779(3)	74(2)	
C(66)	9681(6)	2417(4)	6219(3)	70(2)	
C(71)	5905(5)	357(4)	2099(3)	73(2)	
Cl(71)	6579(2)	-9(2)	1459(1)	107(1)	
Cl(72)	4739(2)	938(2)	1902(1)	127(1)	
Cl(73)	5453(2)	-422(1)	2545(1)	104(1)	
C(81)	2254(10)	400(7)	370(5)	51(3)	
Cl(81)	1793(4)	805(3)	-320(2)	94(1)	
Cl(82)	2183(5)	1282(4)	898(3)	76(2)	
Cl(83)	3687(3)	191(3)	356(3)	104(1)	
C(91)	2507(13)	989(9)	148(6)	76(4)	
Cl(91)	1919(9)	1004(5)	940(4)	118(4)	
Cl(92)	1708(3)	145(3)	-36(2)	89(1)	
Cl(93)	3940(4)	800(4)	82(3)	126(2)	

Abb. 5.21: Ellipsoiddarstellung von **[Cu(HL1P)]**. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurde auf die Beschriftung einiger Kohlenstoffatome verzichtet.

5.22 2-Formylphenyl(benzoylhydrazonato)-κ³C,N,O-2,3 Dihydro-3ethoxy-1-(2-formylphenylbenzoylhydrazonato)-benzazaphospholκ³P,N,O-2-benzamid-cobalt(III) [Co(L1P*OET)]

[Co(L1P*OET)]		
Summenformel	$C_{44}H_{36}CoN_6O_4P$	
M (g/mol)	802.69	
Temperatur	293(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, P2 ₁ /n	
Elementarzelle	a = 10.671(2) Å	$\alpha = 90^{\circ}$
	b = 21.150(2) Å	β=97.122(8)°
	c = 17.171(2) Å	$\gamma = 90^{\circ}$
Volumen	3845.5(6) Å ³	
Berechnete Dichte	1.386 g/cm^3	
Linearer Absorptionskoeffizient	0.540 mm^{-1}	
F(000)	2036	
Kristallgröße	$0.66 \ge 0.12 \ge 0.10 \text{ mm}^3$	
Theta-Bereich	$1.53 - 26.80^{\circ}$	
Indizes	-12≤h≤13, -24≤k≤26, -21	≤l≤21
Zahl der gemessenen Reflexe	19629	
Zahl der unabhängigen Reflexe	8118 [R(int) = 0.1204]	
Absorptionskorrektur	keine	
Zahl der verfeinerten Parameter	506	
Goof	0.784	
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0474, wR2 = 0.10$	58
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.1375, wR_2 = 0.147$	78
Restelektronendichte	$0.562 \text{ und } -0.664 \text{ e.Å}^{-3}$	
Diffraktometer	IPDS, Stoe	
Programm der Strukturlösung	SIR 92 ^[98]	

Tabelle 5.43: Kristallographische Daten und Parameter der Strukturrechnung von

	[Co(L1P*OET)]				
	Х	У	Z	E(eq)	
Со	3237(1)	1833(1)	4649(1)	33(1)	
Р	4926(1)	2370(1)	4608(1)	36(1)	
C(11)	6218(4)	2110(2)	5321(2)	40(1)	
C(12)	7425(5)	2314(3)	5261(3)	56(2)	
C(13)	8396(5)	2212(3)	5855(3)	68(2)	
C(14)	8154(5)	1922(3)	6539(3)	66(2)	
C(15)	6970(5)	1712(3)	6609(3)	55(2)	
C(16)	5961(4)	1794(2)	6007(2)	41(1)	
C(17)	4764(4)	1529(2)	6147(2)	42(1)	
N(18)	3722(4)	1505(2)	5673(2)	35(1)	
N(19)	2759(4)	1163(2)	5969(2)	38(1)	
C(18)	1765(5)	1116(2)	5430(2)	36(1)	
O(19)	1746(3)	1339(2)	4727(2)	39(1)	
C(21)	649(5)	793(2)	5646(2)	40(1)	
C(22)	648(5)	477(2)	6357(3)	50(1)	
C(23)	-418(6)	184(3)	6551(3)	66(2)	
C(24)	-1524(6)	205(3)	6050(3)	63(2)	
C(25)	-1549(6)	510(3)	5342(3)	67(2)	
C(26)	-472(5)	802(3)	5140(3)	53(1)	
C(31)	5573(4)	2559(2)	3718(2)	41(1)	
C(32)	5942(5)	2164(3)	3156(3)	58(1)	
C(33)	6423(6)	2417(4)	2515(3)	68(2)	
C(34)	6528(6)	3050(4)	2439(3)	73(2)	
C(35)	6177(6)	3451(3)	3001(4)	75(2)	
C(36)	5695(5)	3203(3)	3643(3)	54(1)	
C(37)	5330(7)	3585(3)	4309(4)	71(2)	
O(72)	4796(9)	4170(3)	4184(4)	158(3)	
C(72)	2922(12)	4776(5)	3837(8)	205(6)	
C(71)	3717(10)	4068(6)	3726(6)	163(5)	
N(38)	4774(4)	3149(2)	4781(2)	46(1)	
N(39)	4267(4)	3351(2)	5451(2)	47(1)	
C(38)	5024(5)	3498(3)	6129(3)	53(1)	
O(39)	6163(4)	3483(2)	6195(2)	75(1)	
C(41)	4273(5)	3686(3)	6769(3)	57(2)	
C(42)	4546(6)	3377(3)	7495(3)	70(2)	
C(43)	3888(7)	3555(4)	8114(4)	83(2)	
C(44)	3015(7)	4033(4)	8003(5)	94(2)	
C(45)	2707(7)	4314(4)	7295(5)	91(2)	
C(46)	3344(6)	4144(3)	6668(4)	74(2)	
C(51)	4009(4)	1186(2)	4079(2)	36(1)	
C(52)	4836(5)	700(2)	4325(3)	44(1)	
C(53)	5176(5)	251(3)	3789(3)	55(1)	
C(54)	4690(6)	282(3)	3011(3)	60(2)	
C(55)	3886(5)	761(3)	2745(3)	57(2)	
C(56)	3553(5)	1220(2)	3269(2)	43(1)	
C(57)	2728(5)	1748(3)	3060(3)	47(1)	
N(58)	2531(4)	2097(2)	3653(2)	39(1)	

Tabelle 5.44: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter(Å²x10³) von

N(59)	1690(4)	2588(2)	3598(2)	45(1)
C(58)	1573(4)	2795(2)	4312(3)	42(1)
O(59)	2218(3)	2577(2)	4943(2)	41(1)
C(61)	662(5)	3318(2)	4381(3)	53(1)
C(62)	-22(6)	3577(3)	3729(4)	85(2)
C(63)	-873(8)	4069(4)	3820(6)	111(3)
C(64)	-1045(9)	4295(4)	4540(7)	122(3)
C(65)	-370(8)	4033(4)	5184(5)	113(3)
C(66)	485(6)	3543(3)	5112(4)	79(2)

Abb. 5.22: Ellipsoiddarstellung von [Co(L1P*OET)]. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurde auf die Beschriftung einiger Kohlenstoffatome verzichtet.

5.23 2-Formylphenyl(benzoylhydrazonato)-κ³C,N,O-2,3 Dihydro-3methoxy-1-(2-formylphenylbenzoylhydrazonato)-benzazaphospholκ³P,N,O-2-benzamid-cobalt(III) [Co(L1P*OMe)]

[Co(L1P*OMe)]		
Summenformel	$C_{43}H_{33}CoN_6O_4P$	
M (g/mol)	787.65	
Temperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Triklin, P-1	
Elementarzelle	a = 11.343(2) Å	$\alpha = 67.990(6)^{\circ}$
	b = 13.055(2) Å	$\beta = 89.618(7)^{\circ}$
	c = 13.903(2) Å	$\gamma = 75.977(7)^{\circ}$
Volumen	1843.7(3) Å ³	
Berechnete Dichte	1.419 g/cm^3	
Linearer Absorptionskoeffizient	0.562 mm^{-1}	
F(000)	814	
Kristallgröße	$0.87 \ge 0.29 \ge 0.16 \text{ mm}^3$	
Theta-Bereich	$2.19 - 29.25^{\circ}$	
Indizes	-15≤h≤11, -17≤k≤17, -19	l≤l≤16
Zahl der gemessenen Reflexe	19660	
Zahl der unabhängigen Reflexe	9858 [R(int) = 0.0929]	
Absorptionskorrektur	keine	
Zahl der verfeinerten Parameter	496	
Goof	0.929	
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0510, wR2 = 0.12$	55
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.0848, wR_2 = 0.143$	52
Restelektronendichte	$0.593 \text{ und } -1.358 \text{ e.Å}^{-3}$	
Diffraktometer	IPDS, Stoe	
Programm der Strukturlösung	SIR 92 ^[98]	

Tabelle 5.45: Kristallographische Daten und Parameter der Strukturrechnung von

	[Co(L1P*OMe)]				
	Х	У	Z	E(eq)	
Co	8735(1)	2903(1)	7321(1)	24(1)	
Р	7832(1)	3626(1)	8362(1)	28(1)	
C(11)	8740(3)	3128(2)	9598(2)	36(1)	
C(12)	8459(4)	3721(3)	10255(3)	60(1)	
C(13)	9068(4)	3322(4)	11232(3)	76(1)	
C(14)	9952(4)	2303(4)	11586(3)	61(1)	
C(15)	10240(3)	1699(3)	10962(2)	46(1)	
C(16)	9665(3)	2098(2)	9954(2)	36(1)	
C(17)	10112(2)	1405(2)	9358(2)	33(1)	
N(18)	9829(2)	1657(2)	8380(2)	28(1)	
N(19)	10485(2)	839(2)	8021(2)	33(1)	
C(18)	10333(2)	1237(2)	7002(2)	29(1)	
O(19)	9649(2)	2227(1)	6424(1)	29(1)	
C(21)	11016(2)	492(2)	6481(2)	32(1)	
C(22)	11770(3)	-575(3)	7072(3)	48(1)	
C(23)	12383(3)	-1278(3)	6588(3)	60(1)	
C(24)	12247(3)	-924(3)	5525(3)	56(1)	
C(25)	11510(3)	135(3)	4938(3)	48(1)	
C(26)	10893(3)	843(2)	5413(2)	38(1)	
C(31)	7146(2)	5125(2)	8072(2)	35(1)	
C(32)	7692(3)	6029(2)	7782(3)	42(1)	
C(33)	7016(3)	7086(3)	7735(3)	56(1)	
C(34)	5823(3)	7239(3)	7999(3)	57(1)	
C(35)	5285(3)	6340(3)	8311(3)	48(1)	
C(36)	5946(3)	5280(2)	8344(2)	40(1)	
C(37)	5444(3)	4238(2)	8691(2)	39(1)	
O(72)	4365(2)	4381(2)	8117(2)	42(1)	
C(71)	4439(3)	4803(3)	6998(3)	58(1)	
N(38)	6465(2)	3346(2)	8629(2)	31(1)	
N(39)	6398(2)	2207(2)	8991(2)	34(1)	
C(38)	6428(2)	1585(2)	10033(2)	34(1)	
O(39)	6375(2)	2020(2)	10676(2)	47(1)	
C(41)	6497(2)	348(2)	10317(2)	36(1)	
C(42)	6624(3)	-169(2)	9602(3)	47(1)	
C(43)	6671(3)	-1325(3)	9925(3)	57(1)	
C(44)	6609(3)	-1962(3)	10948(3)	58(1)	
C(45)	6493(3)	-1455(3)	11670(3)	61(1)	
C(46)	6442(3)	-311(3)	11353(3)	50(1)	
C(51)	9646(2)	4033(2)	7071(2)	29(1)	
C(52)	10677(2)	4010(2)	7615(2)	35(1)	
C(53)	11239(2)	4911(2)	7223(3)	39(1)	
C(54)	10766(3)	5838(2)	6304(3)	41(1)	
C(55)	9730(3)	5883(2)	5745(2)	36(1)	
C(56)	9170(2)	4982(2)	6134(2)	30(1)	
C(57)	8118(2)	4902(2)	5618(2)	30(1)	
N(58)	7765(2)	3990(2)	6133(2)	26(1)	
N(59)	6834(2)	3702(2)	5742(2)	30(1)	

Tabelle 5.46: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter($Å^2x10^3$) von

Х	V	Z	E(eq)	
6782(2)	2675(2)	6281(2)	27(1)	
7491(2)	2073(2) 2062(1)	7231(1)	$\frac{27(1)}{28(1)}$	
5846(2)	2189(2)	6096(2)	30(1)	
4864(3)	2874(3)	5370(3)	41(1)	
4036(3)	2386(3)	5081(3)	52(1)	
4181(3)	1220(3)	5529(3)	53(1)	
5158(3)	536(3)	6253(3)	50(1)	
5979(3)	1011(2)	6543(2)	39(1)	
	x 6783(2) 7491(2) 5846(2) 4864(3) 4036(3) 4181(3) 5158(3) 5979(3)	xy6783(2)2675(2)7491(2)2062(1)5846(2)2189(2)4864(3)2874(3)4036(3)2386(3)4181(3)1220(3)5158(3)536(3)5979(3)1011(2)	xyz6783(2)2675(2)6381(2)7491(2)2062(1)7231(1)5846(2)2189(2)6096(2)4864(3)2874(3)5370(3)4036(3)2386(3)5081(3)4181(3)1220(3)5529(3)5158(3)536(3)6253(3)5979(3)1011(2)6543(2)	xyz $E(eq)$ 6783(2)2675(2)6381(2)27(1)7491(2)2062(1)7231(1)28(1)5846(2)2189(2)6096(2)30(1)4864(3)2874(3)5370(3)41(1)4036(3)2386(3)5081(3)52(1)4181(3)1220(3)5529(3)53(1)5158(3)536(3)6253(3)50(1)5979(3)1011(2)6543(2)39(1)

Abb. 5.23: Ellipsoiddarstellung von [Co(L1P*OMe)]. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurde auf die Beschriftung einiger Kohlenstoffatome verzichtet.

5.23 Tris-[2-(formyl-benzoylhydrazon)phenyl]phosphan-nickel(II)-nitrat Ethanol/Wasser-Solvat [Ni(H₃L2P)](NO₃)₂·1¹/₂EtOH·H₂O

$[Ni(H_3L2P)](NO_3)_2 \cdot 1\frac{1}{2}EtOH \cdot H_2O$				
Summenformel	C ₄₅ H ₄₅ N ₁₁ NiO _{11.5} P			
M (g/mol)	1013.60			
Temperatur	173(2) K			
Wellenlänge	0.71073 Å			
Kristallsystem, Raumgruppe	Triklin, P-1			
Elementarzelle	a = 13.914(6) Å	$\alpha = 65.375(9)^{\circ}$		
	b = 14.234(7) Å	$\beta = 64.647(9)^{\circ}$		
	c = 15.395(7) Å	$\gamma = 63.534(9)^{\circ}$		
Volumen	2369(2) Å ³			
Berechnete Dichte	1.421 g/cm^3			
Linearer Absorptionskoeffizient	0.516 mm^{-1}			
F(000)	1054			
Kristallgröße	0.32 x 0.14 x 0.12 mm	3		
Theta-Bereich	1.66 – 30.59°			
Indizes	-19≤h≤19, -18≤k≤20, -	21≤l≤22		
Zahl der gemessenen Reflexe	29439			
Zahl der unabhängigen Reflexe	14289 [R(int) = 0.0445]		
Absorptionskorrektur	keine			
Zahl der verfeinerten Parameter	644			
Goof	1.015			
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0661, wR2 = 0.2$	1799		
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.1341, wR_2 = 0.2$	2185		
Restelektronendichte	$1.486 \text{ und } -0.651 \text{ e.Å}^{-3}$			
Diffraktometer	IPDS, Stoe			
Programm der Strukturlösung	SIR 92 ^[98]			

Tabelle 5.47: Kristallographische Daten und Parameter der Strukturrechnung von
[Ni(H ₃ L2P)](NO ₃) ₂ ·1 ¹ / ₂ EtOH·H ₂ O					
	Х	У	Z	E(eq)	
Ni	8499(1)	3303(1)	4739(1)	23(1)	
P(1)	7508(1)	3078(1)	6430(1)	22(1)	
O(18)	9917(2)	3004(2)	3523(2)	30(1)	
O(38)	7674(2)	3499(2)	3805(2)	26(1)	
O(68)	8276(2)	4963(2)	4197(2)	28(1)	
N(1)	9781(2)	3171(2)	5181(2)	25(1)	
N(2)	10835(2)	2713(3)	4568(2)	31(1)	
N(3)	11805(2)	2102(2)	3170(2)	30(1)	
N(21)	8497(2)	1715(2)	5073(2)	28(1)	
N(22)	8295(3)	1643(2)	4312(2)	32(1)	
N(23)	7618(3)	2522(3)	2978(2)	37(1)	
N(51)	6243(2)	4975(2)	5528(2)	25(1)	
N(52)	6395(2)	5851(2)	4728(2)	28(1)	
N(53)	7520(3)	6740(3)	3390(2)	35(1)	
C(1)	7714(3)	3977(3)	6847(2)	25(1)	
C(2)	6852(3)	4522(3)	7528(3)	29(1)	
C(3)	7021(3)	5180(3)	7866(3)	34(1)	
C(4)	8062(4)	5293(3)	7536(3)	35(1)	
C(5)	8937(3)	4761(3)	6851(3)	32(1)	
C(6)	8779(3)	4104(3)	6493(2)	26(1)	
C(7)	9787(3)	3573(3)	5781(3)	29(1)	
C(11)	11989(3)	1958(3)	2251(3)	29(1)	
C(12)	12888(3)	1081(3)	1952(3)	38(1)	
C(13)	13089(4)	904(3)	1067(3)	45(1)	
C(14)	12396(4)	1575(3)	474(3)	43(1)	
C(15)	11518(4)	2454(3)	755(3)	39(1)	
C(16)	11309(3)	2653(3)	1635(3)	34(1)	
C(17)	10811(3)	2610(3)	3739(3)	27(1)	
C(21)	8354(3)	1740(3)	7066(2)	27(1)	
C(22)	8535(3)	1603(3)	7939(3)	33(1)	
C(23)	9160(4)	595(3)	8429(3)	40(1)	
C(24)	9594(3)	-294(3)	8072(3)	39(1)	
C(25)	9404(3)	-179(3)	7212(3)	34(1)	
C(26)	8803(3)	835(3)	6695(3)	27(1)	
C(27)	8647(3)	857(3)	5809(3)	30(1)	
C(37)	7835(3)	2616(3)	3700(3)	29(1)	
C(41)	7404(3)	3379(3)	2114(3)	37(1)	
C(42)	6647(5)	3437(6)	1728(4)	72(2)	
C(43)	6445(6)	4258(7)	880(5)	97(3)	
C(44)	6993(6)	5036(6)	422(4)	84(2)	
C(45)	7778(5)	4948(4)	792(3)	64(2)	
C(46)	7994(4)	4114(4)	1632(3)	45(1)	
C(51)	6073(3)	3060(3)	7091(2)	23(1)	
C(52)	5874(3)	2126(3)	7830(3)	32(1)	
C(53)	4788(3)	2065(3)	8325(3)	37(1)	
C(54)	3885(3)	2944(3)	8090(3)	38(1)	
C(55)	4060(3)	3883(3)	7344(3)	30(1)	

Tabelle 5.48: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter(Å²x10³) von

C(56)	5133(3)	3949(3)	6840(2)	24(1)
C(57)	5257(3)	4935(3)	6026(2)	26(1)
C(61)	8424(3)	6841(3)	2503(3)	38(1)
C(62)	8598(5)	7845(4)	2035(3)	58(1)
C(63)	9485(6)	7959(6)	1120(4)	79(2)
C(64)	10154(5)	7095(6)	728(4)	73(2)
C(65)	9976(4)	6122(5)	1192(3)	64(2)
C(66)	9101(4)	5985(4)	2075(3)	48(1)
C(67)	7445(3)	5797(3)	4112(3)	27(1)
N(71)	7969(3)	-447(3)	3918(3)	44(1)
O(71)	8343(3)	-369(2)	4450(2)	56(1)
O(72)	7623(3)	373(3)	3230(3)	58(1)
O(73)	7941(3)	-1366(3)	4035(3)	69(1)
N(81)	5534(3)	1568(3)	5932(3)	36(1)
O(81)	5647(2)	2484(2)	5444(2)	42(1)
O(83)	4580(3)	1467(3)	6341(3)	57(1)
O(82)	6369(3)	749(2)	6020(3)	56(1)
O(93)	5145(6)	-2534(5)	8668(5)	56(2)
C(93)	4495(11)	-1985(10)	9422(7)	64(3)
C(94)	3676(12)	-890(12)	9112(11)	93(4)
O(91)	5774(8)	-2440(5)	6093(6)	174(4)
C(91)	5478(6)	-1275(5)	6021(5)	82(2)
C(92)	6059(4)	-1224(3)	6531(5)	60(2)
O(98)	1583(15)	-726(13)	9050(10)	169(6)
O(99)	4258(13)	-348(12)	7165(11)	147(5)

Abb. 5.24: Ellipsoiddarstellung von [Ni(H₃L2P)]²⁺. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurde auf die Beschriftung einiger Kohlenstoffatome verzichtet.

5.25 Tris-[2-(formyl-aminothiophenol)phenyl]phosphan-indium(III) [In(L3P)]

[In(L3P)]		
Summenformel	$C_{39}H_{27}InN_3PS_3$	
M (g/mol)	779.61	
Temperatur	293(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, P2 ₁ /n	
Elementarzelle	a = 11.127 (2) Å	α= 90°
	b = 18.826(3) Å	$\beta = 98.34(2)^{\circ}$
	c = 16.071(2) Å	$\gamma = 90^{\circ}$
Volumen	3331.1(7) Å ³	
Berechnete Dichte	1.555 g/cm^3	
Linearer Absorptionskoeffizient	0.980 mm^{-1}	
F(000)	1576	
Kristallgröße	0.3 x 0.08 x 0.01 mm ³	
Theta-Bereich	$3.01 - 25.00^{\circ}$	
Indizes	-1≤h≤13, 0≤k≤22, -19≤	≤19
Zahl der gemessenen Reflexe	7014	
Zahl der unabhängigen Reflexe	5826 [R(int) = 0.1349]	
Absorptionskorrektur	keine	
Zahl der verfeinerten Parameter	424	
Goof	0.950	
$R_1 / wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0653, wR2 = 0.14$	411
R_1 / wR_2 (alle Reflexe)	$R_1 = 0.2068, wR_2 = 0.2000$)29
Restelektronendichte	$0.756 \text{ und } -1.481 \text{ e.Å}^{-3}$	
Diffraktometer	CCD, Bruker	
Programm der Strukturlösung	SIR 92 ^[98]	

Tabelle 5.49: Kristallographische Daten und Parameter der Strukturrechnung von

[[In(L3P)]				
	Х	У	Z	E(eq)	
In	8286(1)	2214(1)	5618(1)	40(1)	
Р	10248(3)	2244(2)	6673(2)	39(1)	
C(1)	10055(10)	2801(6)	7577(6)	41(3)	
C(2)	11030(11)	3262(6)	7880(7)	50(3)	
C(3)	10987(13)	3663(7)	8583(8)	63(4)	
C(4)	9996(16)	3622(8)	9010(8)	75(5)	
C(5)	9052(13)	3171(7)	8733(7)	65(4)	
C(6)	9087(11)	2767(7)	7986(7)	48(3)	
C(7)	8032(10)	2292(6)	7775(7)	50(3)	
N(1)	7646(9)	2022(4)	7069(5)	43(2)	
C(11)	6574(11)	1576(6)	6994(8)	48(3)	
C(16)	5692(11)	1640(6)	7514(8)	55(3)	
C(15)	4718(13)	1178(8)	7418(9)	68(4)	
C(14)	4635(14)	671(7)	6793(10)	72(4)	
C(13)	5482(14)	631(7)	6266(9)	71(4)	
C(12)	6496(11)	1082(6)	6338(7)	48(3)	
S(11)	7564(3)	972(2)	5664(2)	54(1)	
C(21)	10884(10)	1421(5)	7139(6)	44(3)	
C(22)	11222(11)	1388(6)	8023(7)	51(3)	
C(23)	11647(12)	752(6)	8397(7)	55(3)	
C(24)	11709(12)	151(7)	7928(8)	65(4)	
C(25)	11351(11)	170(6)	7073(7)	54(3)	
C(26)	10976(11)	796(6)	6659(7)	47(3)	
C(27)	10757(11)	782(6)	5758(7)	47(3)	
N(21)	10535(8)	1333(5)	5295(5)	43(2)	
C(31)	10518(10)	1286(6)	4416(6)	41(3)	
C(36)	11294(12)	830(6)	4072(8)	60(4)	
C(35)	11303(14)	813(8)	3219(9)	73(4)	
C(34)	10551(15)	1263(8)	2698(8)	73(4)	
C(33)	9802(13)	1708(7)	3027(7)	60(4)	
C(32)	9763(11)	1749(6)	3892(7)	48(3)	
S(31)	8867(3)	2435(2)	4209(2)	56(1)	
C(41)	11433(10)	2666(6)	6180(6)	42(3)	
C(42)	12531(11)	2343(6)	6173(7)	49(3)	
C(43)	13405(11)	2627(7)	5744(7)	56(3)	
C(44)	13158(12)	3232(7)	5296(8)	61(4)	
C(45)	12090(13)	3582(7)	5310(8)	61(4)	
C(46)	11215(11)	3314(6)	5724(7)	49(3)	
C(47)	10090(12)	3729(6)	5729(7)	51(3)	
N(41)	9122(9)	3535(5)	5972(5)	40(2)	
C(51)	8211(11)	4041(6)	6006(6)	42(3)	
C(56)	8473(13)	4714(6)	6346(7)	57(3)	
C(55)	7578(15)	5210(7)	6406(8)	65(4)	
C(54)	6402(13)	5044(7)	6094(7)	58(4)	
C(53)	6118(11)	4382(6)	5780(7)	45(3)	
C(52)	6974(11)	3864(6)	5722(6)	41(3)	
S(51)	6509(3)	3021(2)	5322(2)	52(1)	

Tabelle 5.50: Atomkoordinaten($x10^4$) und isotrope Temperaturparameter($Å^2x10^3$) von

Abb. 5.25: Ellipsoiddarstellung von **[In(L3P)]**. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersicht wurde auf die Beschriftung einiger Kohlenstoffatome verzichtet.